Marlin_main.cpp 288 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M860 - Wait for PINDA thermistor to reach target temperature.
  202. // M861 - Set / Read PINDA temperature compensation offsets
  203. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  204. // M907 - Set digital trimpot motor current using axis codes.
  205. // M908 - Control digital trimpot directly.
  206. // M350 - Set microstepping mode.
  207. // M351 - Toggle MS1 MS2 pins directly.
  208. // M928 - Start SD logging (M928 filename.g) - ended by M29
  209. // M999 - Restart after being stopped by error
  210. //Stepper Movement Variables
  211. //===========================================================================
  212. //=============================imported variables============================
  213. //===========================================================================
  214. //===========================================================================
  215. //=============================public variables=============================
  216. //===========================================================================
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. unsigned long PingTime = millis();
  221. unsigned long NcTime;
  222. union Data
  223. {
  224. byte b[2];
  225. int value;
  226. };
  227. float homing_feedrate[] = HOMING_FEEDRATE;
  228. // Currently only the extruder axis may be switched to a relative mode.
  229. // Other axes are always absolute or relative based on the common relative_mode flag.
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedmultiply=100; //100->1 200->2
  232. int saved_feedmultiply;
  233. int extrudemultiply=100; //100->1 200->2
  234. int extruder_multiply[EXTRUDERS] = {100
  235. #if EXTRUDERS > 1
  236. , 100
  237. #if EXTRUDERS > 2
  238. , 100
  239. #endif
  240. #endif
  241. };
  242. int bowden_length[4] = {385, 385, 385, 385};
  243. bool is_usb_printing = false;
  244. bool homing_flag = false;
  245. bool temp_cal_active = false;
  246. unsigned long kicktime = millis()+100000;
  247. unsigned int usb_printing_counter;
  248. int lcd_change_fil_state = 0;
  249. int feedmultiplyBckp = 100;
  250. float HotendTempBckp = 0;
  251. int fanSpeedBckp = 0;
  252. float pause_lastpos[4];
  253. unsigned long pause_time = 0;
  254. unsigned long start_pause_print = millis();
  255. unsigned long t_fan_rising_edge = millis();
  256. //unsigned long load_filament_time;
  257. bool mesh_bed_leveling_flag = false;
  258. bool mesh_bed_run_from_menu = false;
  259. unsigned char lang_selected = 0;
  260. int8_t FarmMode = 0;
  261. bool prusa_sd_card_upload = false;
  262. unsigned int status_number = 0;
  263. unsigned long total_filament_used;
  264. unsigned int heating_status;
  265. unsigned int heating_status_counter;
  266. bool custom_message;
  267. bool loading_flag = false;
  268. unsigned int custom_message_type;
  269. unsigned int custom_message_state;
  270. char snmm_filaments_used = 0;
  271. float distance_from_min[2];
  272. bool fan_state[2];
  273. int fan_edge_counter[2];
  274. int fan_speed[2];
  275. char dir_names[3][9];
  276. bool sortAlpha = false;
  277. bool volumetric_enabled = false;
  278. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  279. #if EXTRUDERS > 1
  280. , DEFAULT_NOMINAL_FILAMENT_DIA
  281. #if EXTRUDERS > 2
  282. , DEFAULT_NOMINAL_FILAMENT_DIA
  283. #endif
  284. #endif
  285. };
  286. float extruder_multiplier[EXTRUDERS] = {1.0
  287. #if EXTRUDERS > 1
  288. , 1.0
  289. #if EXTRUDERS > 2
  290. , 1.0
  291. #endif
  292. #endif
  293. };
  294. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  295. float add_homing[3]={0,0,0};
  296. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  297. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  298. bool axis_known_position[3] = {false, false, false};
  299. float zprobe_zoffset;
  300. // Extruder offset
  301. #if EXTRUDERS > 1
  302. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  303. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  304. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  305. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  306. #endif
  307. };
  308. #endif
  309. uint8_t active_extruder = 0;
  310. int fanSpeed=0;
  311. #ifdef FWRETRACT
  312. bool autoretract_enabled=false;
  313. bool retracted[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. bool retracted_swap[EXTRUDERS]={false
  322. #if EXTRUDERS > 1
  323. , false
  324. #if EXTRUDERS > 2
  325. , false
  326. #endif
  327. #endif
  328. };
  329. float retract_length = RETRACT_LENGTH;
  330. float retract_length_swap = RETRACT_LENGTH_SWAP;
  331. float retract_feedrate = RETRACT_FEEDRATE;
  332. float retract_zlift = RETRACT_ZLIFT;
  333. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  334. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  335. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  336. #endif
  337. #ifdef ULTIPANEL
  338. #ifdef PS_DEFAULT_OFF
  339. bool powersupply = false;
  340. #else
  341. bool powersupply = true;
  342. #endif
  343. #endif
  344. bool cancel_heatup = false ;
  345. #ifdef HOST_KEEPALIVE_FEATURE
  346. int busy_state = NOT_BUSY;
  347. static long prev_busy_signal_ms = -1;
  348. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  349. #else
  350. #define host_keepalive();
  351. #define KEEPALIVE_STATE(n);
  352. #endif
  353. const char errormagic[] PROGMEM = "Error:";
  354. const char echomagic[] PROGMEM = "echo:";
  355. bool no_response = false;
  356. uint8_t important_status;
  357. uint8_t saved_filament_type;
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. #ifdef TMC2130
  492. extern int8_t CrashDetectMenu;
  493. void crashdet_enable()
  494. {
  495. // MYSERIAL.println("crashdet_enable");
  496. tmc2130_sg_stop_on_crash = true;
  497. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  498. CrashDetectMenu = 1;
  499. }
  500. void crashdet_disable()
  501. {
  502. // MYSERIAL.println("crashdet_disable");
  503. tmc2130_sg_stop_on_crash = false;
  504. tmc2130_sg_crash = 0;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  506. CrashDetectMenu = 0;
  507. }
  508. void crashdet_stop_and_save_print()
  509. {
  510. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  511. }
  512. void crashdet_restore_print_and_continue()
  513. {
  514. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  515. // babystep_apply();
  516. }
  517. void crashdet_stop_and_save_print2()
  518. {
  519. cli();
  520. planner_abort_hard(); //abort printing
  521. cmdqueue_reset(); //empty cmdqueue
  522. card.sdprinting = false;
  523. card.closefile();
  524. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  525. st_reset_timer();
  526. sei();
  527. }
  528. void crashdet_detected(uint8_t mask)
  529. {
  530. // printf("CRASH_DETECTED");
  531. /* while (!is_buffer_empty())
  532. {
  533. process_commands();
  534. cmdqueue_pop_front();
  535. }*/
  536. st_synchronize();
  537. lcd_update_enable(true);
  538. lcd_implementation_clear();
  539. lcd_update(2);
  540. if (mask & X_AXIS_MASK)
  541. {
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  543. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  544. }
  545. if (mask & Y_AXIS_MASK)
  546. {
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  548. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  549. }
  550. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  551. bool yesno = true;
  552. #else
  553. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  554. #endif
  555. lcd_update_enable(true);
  556. lcd_update(2);
  557. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  558. if (yesno)
  559. {
  560. enquecommand_P(PSTR("G28 X Y"));
  561. enquecommand_P(PSTR("CRASH_RECOVER"));
  562. }
  563. else
  564. {
  565. enquecommand_P(PSTR("CRASH_CANCEL"));
  566. }
  567. }
  568. void crashdet_recover()
  569. {
  570. crashdet_restore_print_and_continue();
  571. tmc2130_sg_stop_on_crash = true;
  572. }
  573. void crashdet_cancel()
  574. {
  575. card.sdprinting = false;
  576. card.closefile();
  577. tmc2130_sg_stop_on_crash = true;
  578. }
  579. #endif //TMC2130
  580. void failstats_reset_print()
  581. {
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  585. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  586. }
  587. #ifdef MESH_BED_LEVELING
  588. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  589. #endif
  590. // Factory reset function
  591. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  592. // Level input parameter sets depth of reset
  593. // Quiet parameter masks all waitings for user interact.
  594. int er_progress = 0;
  595. void factory_reset(char level, bool quiet)
  596. {
  597. lcd_implementation_clear();
  598. int cursor_pos = 0;
  599. switch (level) {
  600. // Level 0: Language reset
  601. case 0:
  602. WRITE(BEEPER, HIGH);
  603. _delay_ms(100);
  604. WRITE(BEEPER, LOW);
  605. lcd_force_language_selection();
  606. break;
  607. //Level 1: Reset statistics
  608. case 1:
  609. WRITE(BEEPER, HIGH);
  610. _delay_ms(100);
  611. WRITE(BEEPER, LOW);
  612. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  613. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  616. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  617. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  620. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  621. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  622. lcd_menu_statistics();
  623. break;
  624. // Level 2: Prepare for shipping
  625. case 2:
  626. //lcd_printPGM(PSTR("Factory RESET"));
  627. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  628. // Force language selection at the next boot up.
  629. lcd_force_language_selection();
  630. // Force the "Follow calibration flow" message at the next boot up.
  631. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  632. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  633. farm_no = 0;
  634. farm_mode == false;
  635. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  636. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  637. WRITE(BEEPER, HIGH);
  638. _delay_ms(100);
  639. WRITE(BEEPER, LOW);
  640. //_delay_ms(2000);
  641. break;
  642. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  643. case 3:
  644. lcd_printPGM(PSTR("Factory RESET"));
  645. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. er_progress = 0;
  650. lcd_print_at_PGM(3, 3, PSTR(" "));
  651. lcd_implementation_print_at(3, 3, er_progress);
  652. // Erase EEPROM
  653. for (int i = 0; i < 4096; i++) {
  654. eeprom_write_byte((uint8_t*)i, 0xFF);
  655. if (i % 41 == 0) {
  656. er_progress++;
  657. lcd_print_at_PGM(3, 3, PSTR(" "));
  658. lcd_implementation_print_at(3, 3, er_progress);
  659. lcd_printPGM(PSTR("%"));
  660. }
  661. }
  662. break;
  663. case 4:
  664. bowden_menu();
  665. break;
  666. default:
  667. break;
  668. }
  669. }
  670. #include "LiquidCrystal_Prusa.h"
  671. extern LiquidCrystal_Prusa lcd;
  672. FILE _lcdout = {0};
  673. int lcd_putchar(char c, FILE *stream)
  674. {
  675. lcd.write(c);
  676. return 0;
  677. }
  678. FILE _uartout = {0};
  679. int uart_putchar(char c, FILE *stream)
  680. {
  681. MYSERIAL.write(c);
  682. return 0;
  683. }
  684. void lcd_splash()
  685. {
  686. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  687. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  688. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  689. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  690. }
  691. void factory_reset()
  692. {
  693. KEEPALIVE_STATE(PAUSED_FOR_USER);
  694. if (!READ(BTN_ENC))
  695. {
  696. _delay_ms(1000);
  697. if (!READ(BTN_ENC))
  698. {
  699. lcd_implementation_clear();
  700. lcd_printPGM(PSTR("Factory RESET"));
  701. SET_OUTPUT(BEEPER);
  702. WRITE(BEEPER, HIGH);
  703. while (!READ(BTN_ENC));
  704. WRITE(BEEPER, LOW);
  705. _delay_ms(2000);
  706. char level = reset_menu();
  707. factory_reset(level, false);
  708. switch (level) {
  709. case 0: _delay_ms(0); break;
  710. case 1: _delay_ms(0); break;
  711. case 2: _delay_ms(0); break;
  712. case 3: _delay_ms(0); break;
  713. }
  714. // _delay_ms(100);
  715. /*
  716. #ifdef MESH_BED_LEVELING
  717. _delay_ms(2000);
  718. if (!READ(BTN_ENC))
  719. {
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. _delay_ms(200);
  724. WRITE(BEEPER, HIGH);
  725. _delay_ms(100);
  726. WRITE(BEEPER, LOW);
  727. int _z = 0;
  728. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  729. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  730. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  731. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  732. }
  733. else
  734. {
  735. WRITE(BEEPER, HIGH);
  736. _delay_ms(100);
  737. WRITE(BEEPER, LOW);
  738. }
  739. #endif // mesh */
  740. }
  741. }
  742. else
  743. {
  744. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  745. }
  746. KEEPALIVE_STATE(IN_HANDLER);
  747. }
  748. void show_fw_version_warnings() {
  749. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  750. switch (FW_DEV_VERSION) {
  751. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  752. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  753. case(FW_VERSION_DEVEL):
  754. case(FW_VERSION_DEBUG):
  755. lcd_update_enable(false);
  756. lcd_implementation_clear();
  757. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  758. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  759. #else
  760. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  761. #endif
  762. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  763. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  764. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  765. lcd_wait_for_click();
  766. break;
  767. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  768. }
  769. lcd_update_enable(true);
  770. }
  771. uint8_t check_printer_version()
  772. {
  773. uint8_t version_changed = 0;
  774. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  775. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  776. if (printer_type != PRINTER_TYPE) {
  777. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  778. else version_changed |= 0b10;
  779. }
  780. if (motherboard != MOTHERBOARD) {
  781. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  782. else version_changed |= 0b01;
  783. }
  784. return version_changed;
  785. }
  786. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  787. {
  788. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  789. }
  790. // "Setup" function is called by the Arduino framework on startup.
  791. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  792. // are initialized by the main() routine provided by the Arduino framework.
  793. void setup()
  794. {
  795. lcd_init();
  796. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  797. lcd_splash();
  798. setup_killpin();
  799. setup_powerhold();
  800. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  801. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  802. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  803. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  804. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  805. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  806. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  807. if (farm_mode)
  808. {
  809. no_response = true; //we need confirmation by recieving PRUSA thx
  810. important_status = 8;
  811. prusa_statistics(8);
  812. selectedSerialPort = 1;
  813. }
  814. MYSERIAL.begin(BAUDRATE);
  815. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  816. stdout = uartout;
  817. SERIAL_PROTOCOLLNPGM("start");
  818. SERIAL_ECHO_START;
  819. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  820. #if 0
  821. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  822. for (int i = 0; i < 4096; ++i) {
  823. int b = eeprom_read_byte((unsigned char*)i);
  824. if (b != 255) {
  825. SERIAL_ECHO(i);
  826. SERIAL_ECHO(":");
  827. SERIAL_ECHO(b);
  828. SERIAL_ECHOLN("");
  829. }
  830. }
  831. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  832. #endif
  833. // Check startup - does nothing if bootloader sets MCUSR to 0
  834. byte mcu = MCUSR;
  835. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  836. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  837. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  838. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  839. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  840. if (mcu & 1) puts_P(MSG_POWERUP);
  841. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  842. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  843. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  844. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  845. MCUSR = 0;
  846. //SERIAL_ECHORPGM(MSG_MARLIN);
  847. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  848. #ifdef STRING_VERSION_CONFIG_H
  849. #ifdef STRING_CONFIG_H_AUTHOR
  850. SERIAL_ECHO_START;
  851. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  852. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  853. SERIAL_ECHORPGM(MSG_AUTHOR);
  854. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  855. SERIAL_ECHOPGM("Compiled: ");
  856. SERIAL_ECHOLNPGM(__DATE__);
  857. #endif
  858. #endif
  859. SERIAL_ECHO_START;
  860. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  861. SERIAL_ECHO(freeMemory());
  862. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  863. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  864. //lcd_update_enable(false); // why do we need this?? - andre
  865. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  866. bool previous_settings_retrieved = false;
  867. uint8_t hw_changed = check_printer_version();
  868. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  869. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  870. }
  871. else { //printer version was changed so use default settings
  872. Config_ResetDefault();
  873. }
  874. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  875. tp_init(); // Initialize temperature loop
  876. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  877. plan_init(); // Initialize planner;
  878. factory_reset();
  879. #ifdef TMC2130
  880. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  881. if (silentMode == 0xff) silentMode = 0;
  882. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  883. tmc2130_mode = TMC2130_MODE_NORMAL;
  884. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  885. if (crashdet)
  886. {
  887. crashdet_enable();
  888. MYSERIAL.println("CrashDetect ENABLED!");
  889. }
  890. else
  891. {
  892. crashdet_disable();
  893. MYSERIAL.println("CrashDetect DISABLED");
  894. }
  895. #ifdef TMC2130_LINEARITY_CORRECTION
  896. #ifdef EXPERIMENTAL_FEATURES
  897. tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  898. tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  899. tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  900. #endif //EXPERIMENTAL_FEATURES
  901. tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC);
  902. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  903. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  904. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  905. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  906. #endif //TMC2130_LINEARITY_CORRECTION
  907. #ifdef TMC2130_VARIABLE_RESOLUTION
  908. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  909. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  910. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  911. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  912. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  913. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  914. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  915. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  916. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  917. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  918. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  919. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  920. #else //TMC2130_VARIABLE_RESOLUTION
  921. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  922. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  923. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  924. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  925. #endif //TMC2130_VARIABLE_RESOLUTION
  926. #endif //TMC2130
  927. #ifdef NEW_SPI
  928. spi_init();
  929. #endif //NEW_SPI
  930. st_init(); // Initialize stepper, this enables interrupts!
  931. #ifdef TMC2130
  932. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  933. tmc2130_init();
  934. #endif //TMC2130
  935. setup_photpin();
  936. servo_init();
  937. // Reset the machine correction matrix.
  938. // It does not make sense to load the correction matrix until the machine is homed.
  939. world2machine_reset();
  940. #ifdef PAT9125
  941. fsensor_init();
  942. #endif //PAT9125
  943. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  944. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  945. #endif
  946. setup_homepin();
  947. #ifdef TMC2130
  948. if (1) {
  949. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  950. // try to run to zero phase before powering the Z motor.
  951. // Move in negative direction
  952. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  953. // Round the current micro-micro steps to micro steps.
  954. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  955. // Until the phase counter is reset to zero.
  956. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  957. delay(2);
  958. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  959. delay(2);
  960. }
  961. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  962. }
  963. #endif //TMC2130
  964. #if defined(Z_AXIS_ALWAYS_ON)
  965. enable_z();
  966. #endif
  967. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  968. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  969. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  970. if (farm_no == 0xFFFF) farm_no = 0;
  971. if (farm_mode)
  972. {
  973. prusa_statistics(8);
  974. }
  975. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  976. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  977. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  978. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  979. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  980. // where all the EEPROM entries are set to 0x0ff.
  981. // Once a firmware boots up, it forces at least a language selection, which changes
  982. // EEPROM_LANG to number lower than 0x0ff.
  983. // 1) Set a high power mode.
  984. #ifdef TMC2130
  985. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  986. tmc2130_mode = TMC2130_MODE_NORMAL;
  987. #endif //TMC2130
  988. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  989. }
  990. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  991. // but this times out if a blocking dialog is shown in setup().
  992. card.initsd();
  993. #ifdef DEBUG_SD_SPEED_TEST
  994. if (card.cardOK)
  995. {
  996. uint8_t* buff = (uint8_t*)block_buffer;
  997. uint32_t block = 0;
  998. uint32_t sumr = 0;
  999. uint32_t sumw = 0;
  1000. for (int i = 0; i < 1024; i++)
  1001. {
  1002. uint32_t u = micros();
  1003. bool res = card.card.readBlock(i, buff);
  1004. u = micros() - u;
  1005. if (res)
  1006. {
  1007. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1008. sumr += u;
  1009. u = micros();
  1010. res = card.card.writeBlock(i, buff);
  1011. u = micros() - u;
  1012. if (res)
  1013. {
  1014. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1015. sumw += u;
  1016. }
  1017. else
  1018. {
  1019. printf_P(PSTR("writeBlock %4d error\n"), i);
  1020. break;
  1021. }
  1022. }
  1023. else
  1024. {
  1025. printf_P(PSTR("readBlock %4d error\n"), i);
  1026. break;
  1027. }
  1028. }
  1029. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1030. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1031. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1032. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1033. }
  1034. else
  1035. printf_P(PSTR("Card NG!\n"));
  1036. #endif DEBUG_SD_SPEED_TEST
  1037. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1038. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1039. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1040. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1041. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1042. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1043. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1044. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1045. #ifdef SNMM
  1046. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1047. int _z = BOWDEN_LENGTH;
  1048. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1049. }
  1050. #endif
  1051. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1052. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1053. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1054. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1055. if (lang_selected >= LANG_NUM){
  1056. lcd_mylang();
  1057. }
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1059. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1060. temp_cal_active = false;
  1061. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1062. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1063. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1064. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1065. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0); //40C
  1066. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0); //45C
  1067. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0); //50C
  1068. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0); //55C
  1069. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0); //60C
  1070. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1071. temp_cal_active = false;
  1072. }
  1073. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1074. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1075. }
  1076. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1077. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1078. }
  1079. check_babystep(); //checking if Z babystep is in allowed range
  1080. #ifdef UVLO_SUPPORT
  1081. setup_uvlo_interrupt();
  1082. #endif //UVLO_SUPPORT
  1083. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1084. setup_fan_interrupt();
  1085. #endif //DEBUG_DISABLE_FANCHECK
  1086. #ifdef PAT9125
  1087. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1088. fsensor_setup_interrupt();
  1089. #endif //DEBUG_DISABLE_FSENSORCHECK
  1090. #endif //PAT9125
  1091. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1092. #ifndef DEBUG_DISABLE_STARTMSGS
  1093. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1094. show_fw_version_warnings();
  1095. switch (hw_changed) {
  1096. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1097. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1098. case(0b01):
  1099. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1100. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1101. break;
  1102. case(0b10):
  1103. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1104. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1105. break;
  1106. case(0b11):
  1107. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1108. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1109. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1110. break;
  1111. default: break; //no change, show no message
  1112. }
  1113. if (!previous_settings_retrieved) {
  1114. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1115. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1116. }
  1117. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1118. lcd_wizard(0);
  1119. }
  1120. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1121. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1122. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1123. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1124. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1125. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1126. // Show the message.
  1127. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1128. }
  1129. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1130. // Show the message.
  1131. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1132. lcd_update_enable(true);
  1133. }
  1134. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1135. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1136. lcd_update_enable(true);
  1137. }
  1138. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1139. // Show the message.
  1140. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1141. }
  1142. }
  1143. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1144. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1145. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1146. update_current_firmware_version_to_eeprom();
  1147. lcd_selftest();
  1148. }
  1149. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1150. KEEPALIVE_STATE(IN_PROCESS);
  1151. #endif //DEBUG_DISABLE_STARTMSGS
  1152. lcd_update_enable(true);
  1153. lcd_implementation_clear();
  1154. lcd_update(2);
  1155. // Store the currently running firmware into an eeprom,
  1156. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1157. update_current_firmware_version_to_eeprom();
  1158. #ifdef TMC2130
  1159. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1160. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1161. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1162. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1163. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1164. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1165. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1166. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1167. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1168. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1169. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1170. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1171. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1172. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1173. #endif //TMC2130
  1174. #ifdef UVLO_SUPPORT
  1175. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1176. /*
  1177. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1178. else {
  1179. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1180. lcd_update_enable(true);
  1181. lcd_update(2);
  1182. lcd_setstatuspgm(WELCOME_MSG);
  1183. }
  1184. */
  1185. manage_heater(); // Update temperatures
  1186. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1187. MYSERIAL.println("Power panic detected!");
  1188. MYSERIAL.print("Current bed temp:");
  1189. MYSERIAL.println(degBed());
  1190. MYSERIAL.print("Saved bed temp:");
  1191. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1192. #endif
  1193. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1194. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1195. MYSERIAL.println("Automatic recovery!");
  1196. #endif
  1197. recover_print(1);
  1198. }
  1199. else{
  1200. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1201. MYSERIAL.println("Normal recovery!");
  1202. #endif
  1203. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1204. else {
  1205. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1206. lcd_update_enable(true);
  1207. lcd_update(2);
  1208. lcd_setstatuspgm(WELCOME_MSG);
  1209. }
  1210. }
  1211. }
  1212. #endif //UVLO_SUPPORT
  1213. KEEPALIVE_STATE(NOT_BUSY);
  1214. #ifdef WATCHDOG
  1215. wdt_enable(WDTO_4S);
  1216. #endif //WATCHDOG
  1217. }
  1218. #ifdef PAT9125
  1219. void fsensor_init() {
  1220. int pat9125 = pat9125_init();
  1221. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1222. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1223. if (!pat9125)
  1224. {
  1225. fsensor = 0; //disable sensor
  1226. fsensor_not_responding = true;
  1227. }
  1228. else {
  1229. fsensor_not_responding = false;
  1230. }
  1231. puts_P(PSTR("FSensor "));
  1232. if (fsensor)
  1233. {
  1234. puts_P(PSTR("ENABLED\n"));
  1235. fsensor_enable();
  1236. }
  1237. else
  1238. {
  1239. puts_P(PSTR("DISABLED\n"));
  1240. fsensor_disable();
  1241. }
  1242. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1243. filament_autoload_enabled = false;
  1244. fsensor_disable();
  1245. #endif //DEBUG_DISABLE_FSENSORCHECK
  1246. }
  1247. #endif //PAT9125
  1248. void trace();
  1249. #define CHUNK_SIZE 64 // bytes
  1250. #define SAFETY_MARGIN 1
  1251. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1252. int chunkHead = 0;
  1253. int serial_read_stream() {
  1254. setTargetHotend(0, 0);
  1255. setTargetBed(0);
  1256. lcd_implementation_clear();
  1257. lcd_printPGM(PSTR(" Upload in progress"));
  1258. // first wait for how many bytes we will receive
  1259. uint32_t bytesToReceive;
  1260. // receive the four bytes
  1261. char bytesToReceiveBuffer[4];
  1262. for (int i=0; i<4; i++) {
  1263. int data;
  1264. while ((data = MYSERIAL.read()) == -1) {};
  1265. bytesToReceiveBuffer[i] = data;
  1266. }
  1267. // make it a uint32
  1268. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1269. // we're ready, notify the sender
  1270. MYSERIAL.write('+');
  1271. // lock in the routine
  1272. uint32_t receivedBytes = 0;
  1273. while (prusa_sd_card_upload) {
  1274. int i;
  1275. for (i=0; i<CHUNK_SIZE; i++) {
  1276. int data;
  1277. // check if we're not done
  1278. if (receivedBytes == bytesToReceive) {
  1279. break;
  1280. }
  1281. // read the next byte
  1282. while ((data = MYSERIAL.read()) == -1) {};
  1283. receivedBytes++;
  1284. // save it to the chunk
  1285. chunk[i] = data;
  1286. }
  1287. // write the chunk to SD
  1288. card.write_command_no_newline(&chunk[0]);
  1289. // notify the sender we're ready for more data
  1290. MYSERIAL.write('+');
  1291. // for safety
  1292. manage_heater();
  1293. // check if we're done
  1294. if(receivedBytes == bytesToReceive) {
  1295. trace(); // beep
  1296. card.closefile();
  1297. prusa_sd_card_upload = false;
  1298. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1299. return 0;
  1300. }
  1301. }
  1302. }
  1303. #ifdef HOST_KEEPALIVE_FEATURE
  1304. /**
  1305. * Output a "busy" message at regular intervals
  1306. * while the machine is not accepting commands.
  1307. */
  1308. void host_keepalive() {
  1309. if (farm_mode) return;
  1310. long ms = millis();
  1311. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1312. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1313. switch (busy_state) {
  1314. case IN_HANDLER:
  1315. case IN_PROCESS:
  1316. SERIAL_ECHO_START;
  1317. SERIAL_ECHOLNPGM("busy: processing");
  1318. break;
  1319. case PAUSED_FOR_USER:
  1320. SERIAL_ECHO_START;
  1321. SERIAL_ECHOLNPGM("busy: paused for user");
  1322. break;
  1323. case PAUSED_FOR_INPUT:
  1324. SERIAL_ECHO_START;
  1325. SERIAL_ECHOLNPGM("busy: paused for input");
  1326. break;
  1327. default:
  1328. break;
  1329. }
  1330. }
  1331. prev_busy_signal_ms = ms;
  1332. }
  1333. #endif
  1334. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1335. // Before loop(), the setup() function is called by the main() routine.
  1336. void loop()
  1337. {
  1338. KEEPALIVE_STATE(NOT_BUSY);
  1339. bool stack_integrity = true;
  1340. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1341. {
  1342. is_usb_printing = true;
  1343. usb_printing_counter--;
  1344. _usb_timer = millis();
  1345. }
  1346. if (usb_printing_counter == 0)
  1347. {
  1348. is_usb_printing = false;
  1349. }
  1350. if (prusa_sd_card_upload)
  1351. {
  1352. //we read byte-by byte
  1353. serial_read_stream();
  1354. } else
  1355. {
  1356. get_command();
  1357. #ifdef SDSUPPORT
  1358. card.checkautostart(false);
  1359. #endif
  1360. if(buflen)
  1361. {
  1362. cmdbuffer_front_already_processed = false;
  1363. #ifdef SDSUPPORT
  1364. if(card.saving)
  1365. {
  1366. // Saving a G-code file onto an SD-card is in progress.
  1367. // Saving starts with M28, saving until M29 is seen.
  1368. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1369. card.write_command(CMDBUFFER_CURRENT_STRING);
  1370. if(card.logging)
  1371. process_commands();
  1372. else
  1373. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1374. } else {
  1375. card.closefile();
  1376. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1377. }
  1378. } else {
  1379. process_commands();
  1380. }
  1381. #else
  1382. process_commands();
  1383. #endif //SDSUPPORT
  1384. if (! cmdbuffer_front_already_processed && buflen)
  1385. {
  1386. // ptr points to the start of the block currently being processed.
  1387. // The first character in the block is the block type.
  1388. char *ptr = cmdbuffer + bufindr;
  1389. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1390. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1391. union {
  1392. struct {
  1393. char lo;
  1394. char hi;
  1395. } lohi;
  1396. uint16_t value;
  1397. } sdlen;
  1398. sdlen.value = 0;
  1399. {
  1400. // This block locks the interrupts globally for 3.25 us,
  1401. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1402. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1403. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1404. cli();
  1405. // Reset the command to something, which will be ignored by the power panic routine,
  1406. // so this buffer length will not be counted twice.
  1407. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1408. // Extract the current buffer length.
  1409. sdlen.lohi.lo = *ptr ++;
  1410. sdlen.lohi.hi = *ptr;
  1411. // and pass it to the planner queue.
  1412. planner_add_sd_length(sdlen.value);
  1413. sei();
  1414. }
  1415. }
  1416. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1417. // this block's SD card length will not be counted twice as its command type has been replaced
  1418. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1419. cmdqueue_pop_front();
  1420. }
  1421. host_keepalive();
  1422. }
  1423. }
  1424. //check heater every n milliseconds
  1425. manage_heater();
  1426. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1427. checkHitEndstops();
  1428. lcd_update();
  1429. #ifdef PAT9125
  1430. fsensor_update();
  1431. #endif //PAT9125
  1432. #ifdef TMC2130
  1433. tmc2130_check_overtemp();
  1434. if (tmc2130_sg_crash)
  1435. {
  1436. uint8_t crash = tmc2130_sg_crash;
  1437. tmc2130_sg_crash = 0;
  1438. // crashdet_stop_and_save_print();
  1439. switch (crash)
  1440. {
  1441. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1442. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1443. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1444. }
  1445. }
  1446. #endif //TMC2130
  1447. }
  1448. #define DEFINE_PGM_READ_ANY(type, reader) \
  1449. static inline type pgm_read_any(const type *p) \
  1450. { return pgm_read_##reader##_near(p); }
  1451. DEFINE_PGM_READ_ANY(float, float);
  1452. DEFINE_PGM_READ_ANY(signed char, byte);
  1453. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1454. static const PROGMEM type array##_P[3] = \
  1455. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1456. static inline type array(int axis) \
  1457. { return pgm_read_any(&array##_P[axis]); } \
  1458. type array##_ext(int axis) \
  1459. { return pgm_read_any(&array##_P[axis]); }
  1460. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1461. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1462. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1463. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1464. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1465. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1466. static void axis_is_at_home(int axis) {
  1467. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1468. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1469. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1470. }
  1471. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1472. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1473. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1474. saved_feedrate = feedrate;
  1475. saved_feedmultiply = feedmultiply;
  1476. feedmultiply = 100;
  1477. previous_millis_cmd = millis();
  1478. enable_endstops(enable_endstops_now);
  1479. }
  1480. static void clean_up_after_endstop_move() {
  1481. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1482. enable_endstops(false);
  1483. #endif
  1484. feedrate = saved_feedrate;
  1485. feedmultiply = saved_feedmultiply;
  1486. previous_millis_cmd = millis();
  1487. }
  1488. #ifdef ENABLE_AUTO_BED_LEVELING
  1489. #ifdef AUTO_BED_LEVELING_GRID
  1490. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1491. {
  1492. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1493. planeNormal.debug("planeNormal");
  1494. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1495. //bedLevel.debug("bedLevel");
  1496. //plan_bed_level_matrix.debug("bed level before");
  1497. //vector_3 uncorrected_position = plan_get_position_mm();
  1498. //uncorrected_position.debug("position before");
  1499. vector_3 corrected_position = plan_get_position();
  1500. // corrected_position.debug("position after");
  1501. current_position[X_AXIS] = corrected_position.x;
  1502. current_position[Y_AXIS] = corrected_position.y;
  1503. current_position[Z_AXIS] = corrected_position.z;
  1504. // put the bed at 0 so we don't go below it.
  1505. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1506. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1507. }
  1508. #else // not AUTO_BED_LEVELING_GRID
  1509. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1510. plan_bed_level_matrix.set_to_identity();
  1511. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1512. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1513. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1514. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1515. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1516. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1517. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1518. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1519. vector_3 corrected_position = plan_get_position();
  1520. current_position[X_AXIS] = corrected_position.x;
  1521. current_position[Y_AXIS] = corrected_position.y;
  1522. current_position[Z_AXIS] = corrected_position.z;
  1523. // put the bed at 0 so we don't go below it.
  1524. current_position[Z_AXIS] = zprobe_zoffset;
  1525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1526. }
  1527. #endif // AUTO_BED_LEVELING_GRID
  1528. static void run_z_probe() {
  1529. plan_bed_level_matrix.set_to_identity();
  1530. feedrate = homing_feedrate[Z_AXIS];
  1531. // move down until you find the bed
  1532. float zPosition = -10;
  1533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1534. st_synchronize();
  1535. // we have to let the planner know where we are right now as it is not where we said to go.
  1536. zPosition = st_get_position_mm(Z_AXIS);
  1537. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1538. // move up the retract distance
  1539. zPosition += home_retract_mm(Z_AXIS);
  1540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1541. st_synchronize();
  1542. // move back down slowly to find bed
  1543. feedrate = homing_feedrate[Z_AXIS]/4;
  1544. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1546. st_synchronize();
  1547. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1548. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1550. }
  1551. static void do_blocking_move_to(float x, float y, float z) {
  1552. float oldFeedRate = feedrate;
  1553. feedrate = homing_feedrate[Z_AXIS];
  1554. current_position[Z_AXIS] = z;
  1555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1556. st_synchronize();
  1557. feedrate = XY_TRAVEL_SPEED;
  1558. current_position[X_AXIS] = x;
  1559. current_position[Y_AXIS] = y;
  1560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1561. st_synchronize();
  1562. feedrate = oldFeedRate;
  1563. }
  1564. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1565. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1566. }
  1567. /// Probe bed height at position (x,y), returns the measured z value
  1568. static float probe_pt(float x, float y, float z_before) {
  1569. // move to right place
  1570. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1571. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1572. run_z_probe();
  1573. float measured_z = current_position[Z_AXIS];
  1574. SERIAL_PROTOCOLRPGM(MSG_BED);
  1575. SERIAL_PROTOCOLPGM(" x: ");
  1576. SERIAL_PROTOCOL(x);
  1577. SERIAL_PROTOCOLPGM(" y: ");
  1578. SERIAL_PROTOCOL(y);
  1579. SERIAL_PROTOCOLPGM(" z: ");
  1580. SERIAL_PROTOCOL(measured_z);
  1581. SERIAL_PROTOCOLPGM("\n");
  1582. return measured_z;
  1583. }
  1584. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1585. #ifdef LIN_ADVANCE
  1586. /**
  1587. * M900: Set and/or Get advance K factor and WH/D ratio
  1588. *
  1589. * K<factor> Set advance K factor
  1590. * R<ratio> Set ratio directly (overrides WH/D)
  1591. * W<width> H<height> D<diam> Set ratio from WH/D
  1592. */
  1593. inline void gcode_M900() {
  1594. st_synchronize();
  1595. const float newK = code_seen('K') ? code_value_float() : -1;
  1596. if (newK >= 0) extruder_advance_k = newK;
  1597. float newR = code_seen('R') ? code_value_float() : -1;
  1598. if (newR < 0) {
  1599. const float newD = code_seen('D') ? code_value_float() : -1,
  1600. newW = code_seen('W') ? code_value_float() : -1,
  1601. newH = code_seen('H') ? code_value_float() : -1;
  1602. if (newD >= 0 && newW >= 0 && newH >= 0)
  1603. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1604. }
  1605. if (newR >= 0) advance_ed_ratio = newR;
  1606. SERIAL_ECHO_START;
  1607. SERIAL_ECHOPGM("Advance K=");
  1608. SERIAL_ECHOLN(extruder_advance_k);
  1609. SERIAL_ECHOPGM(" E/D=");
  1610. const float ratio = advance_ed_ratio;
  1611. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1612. }
  1613. #endif // LIN_ADVANCE
  1614. bool check_commands() {
  1615. bool end_command_found = false;
  1616. while (buflen)
  1617. {
  1618. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1619. if (!cmdbuffer_front_already_processed)
  1620. cmdqueue_pop_front();
  1621. cmdbuffer_front_already_processed = false;
  1622. }
  1623. return end_command_found;
  1624. }
  1625. #ifdef TMC2130
  1626. bool calibrate_z_auto()
  1627. {
  1628. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1629. lcd_implementation_clear();
  1630. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1631. bool endstops_enabled = enable_endstops(true);
  1632. int axis_up_dir = -home_dir(Z_AXIS);
  1633. tmc2130_home_enter(Z_AXIS_MASK);
  1634. current_position[Z_AXIS] = 0;
  1635. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1636. set_destination_to_current();
  1637. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1638. feedrate = homing_feedrate[Z_AXIS];
  1639. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1640. st_synchronize();
  1641. // current_position[axis] = 0;
  1642. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. tmc2130_home_exit();
  1644. enable_endstops(false);
  1645. current_position[Z_AXIS] = 0;
  1646. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1647. set_destination_to_current();
  1648. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1649. feedrate = homing_feedrate[Z_AXIS] / 2;
  1650. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1651. st_synchronize();
  1652. enable_endstops(endstops_enabled);
  1653. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1655. return true;
  1656. }
  1657. #endif //TMC2130
  1658. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1659. {
  1660. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1661. #define HOMEAXIS_DO(LETTER) \
  1662. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1663. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1664. {
  1665. int axis_home_dir = home_dir(axis);
  1666. feedrate = homing_feedrate[axis];
  1667. #ifdef TMC2130
  1668. tmc2130_home_enter(X_AXIS_MASK << axis);
  1669. #endif //TMC2130
  1670. // Move right a bit, so that the print head does not touch the left end position,
  1671. // and the following left movement has a chance to achieve the required velocity
  1672. // for the stall guard to work.
  1673. current_position[axis] = 0;
  1674. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1675. set_destination_to_current();
  1676. // destination[axis] = 11.f;
  1677. destination[axis] = 3.f;
  1678. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1679. st_synchronize();
  1680. // Move left away from the possible collision with the collision detection disabled.
  1681. endstops_hit_on_purpose();
  1682. enable_endstops(false);
  1683. current_position[axis] = 0;
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1685. destination[axis] = - 1.;
  1686. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1687. st_synchronize();
  1688. // Now continue to move up to the left end stop with the collision detection enabled.
  1689. enable_endstops(true);
  1690. destination[axis] = - 1.1 * max_length(axis);
  1691. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. for (uint8_t i = 0; i < cnt; i++)
  1694. {
  1695. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1696. endstops_hit_on_purpose();
  1697. enable_endstops(false);
  1698. current_position[axis] = 0;
  1699. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1700. destination[axis] = 10.f;
  1701. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1702. st_synchronize();
  1703. endstops_hit_on_purpose();
  1704. // Now move left up to the collision, this time with a repeatable velocity.
  1705. enable_endstops(true);
  1706. destination[axis] = - 11.f;
  1707. #ifdef TMC2130
  1708. feedrate = homing_feedrate[axis];
  1709. #else //TMC2130
  1710. feedrate = homing_feedrate[axis] / 2;
  1711. #endif //TMC2130
  1712. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1713. st_synchronize();
  1714. #ifdef TMC2130
  1715. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1716. if (pstep) pstep[i] = mscnt >> 4;
  1717. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1718. #endif //TMC2130
  1719. }
  1720. endstops_hit_on_purpose();
  1721. enable_endstops(false);
  1722. #ifdef TMC2130
  1723. uint8_t orig = tmc2130_home_origin[axis];
  1724. uint8_t back = tmc2130_home_bsteps[axis];
  1725. if (tmc2130_home_enabled && (orig <= 63))
  1726. {
  1727. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1728. if (back > 0)
  1729. tmc2130_do_steps(axis, back, 1, 1000);
  1730. }
  1731. else
  1732. tmc2130_do_steps(axis, 8, 2, 1000);
  1733. tmc2130_home_exit();
  1734. #endif //TMC2130
  1735. axis_is_at_home(axis);
  1736. axis_known_position[axis] = true;
  1737. // Move from minimum
  1738. #ifdef TMC2130
  1739. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1740. #else //TMC2130
  1741. float dist = 0.01f * 64;
  1742. #endif //TMC2130
  1743. current_position[axis] -= dist;
  1744. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1745. current_position[axis] += dist;
  1746. destination[axis] = current_position[axis];
  1747. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1748. st_synchronize();
  1749. feedrate = 0.0;
  1750. }
  1751. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1752. {
  1753. int axis_home_dir = home_dir(axis);
  1754. current_position[axis] = 0;
  1755. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1756. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1757. feedrate = homing_feedrate[axis];
  1758. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1759. st_synchronize();
  1760. current_position[axis] = 0;
  1761. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1762. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1763. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1764. st_synchronize();
  1765. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1766. feedrate = homing_feedrate[axis]/2 ;
  1767. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. axis_is_at_home(axis);
  1770. destination[axis] = current_position[axis];
  1771. feedrate = 0.0;
  1772. endstops_hit_on_purpose();
  1773. axis_known_position[axis] = true;
  1774. }
  1775. enable_endstops(endstops_enabled);
  1776. }
  1777. /**/
  1778. void home_xy()
  1779. {
  1780. set_destination_to_current();
  1781. homeaxis(X_AXIS);
  1782. homeaxis(Y_AXIS);
  1783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1784. endstops_hit_on_purpose();
  1785. }
  1786. void refresh_cmd_timeout(void)
  1787. {
  1788. previous_millis_cmd = millis();
  1789. }
  1790. #ifdef FWRETRACT
  1791. void retract(bool retracting, bool swapretract = false) {
  1792. if(retracting && !retracted[active_extruder]) {
  1793. destination[X_AXIS]=current_position[X_AXIS];
  1794. destination[Y_AXIS]=current_position[Y_AXIS];
  1795. destination[Z_AXIS]=current_position[Z_AXIS];
  1796. destination[E_AXIS]=current_position[E_AXIS];
  1797. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1798. plan_set_e_position(current_position[E_AXIS]);
  1799. float oldFeedrate = feedrate;
  1800. feedrate=retract_feedrate*60;
  1801. retracted[active_extruder]=true;
  1802. prepare_move();
  1803. current_position[Z_AXIS]-=retract_zlift;
  1804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1805. prepare_move();
  1806. feedrate = oldFeedrate;
  1807. } else if(!retracting && retracted[active_extruder]) {
  1808. destination[X_AXIS]=current_position[X_AXIS];
  1809. destination[Y_AXIS]=current_position[Y_AXIS];
  1810. destination[Z_AXIS]=current_position[Z_AXIS];
  1811. destination[E_AXIS]=current_position[E_AXIS];
  1812. current_position[Z_AXIS]+=retract_zlift;
  1813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1814. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1815. plan_set_e_position(current_position[E_AXIS]);
  1816. float oldFeedrate = feedrate;
  1817. feedrate=retract_recover_feedrate*60;
  1818. retracted[active_extruder]=false;
  1819. prepare_move();
  1820. feedrate = oldFeedrate;
  1821. }
  1822. } //retract
  1823. #endif //FWRETRACT
  1824. void trace() {
  1825. tone(BEEPER, 440);
  1826. delay(25);
  1827. noTone(BEEPER);
  1828. delay(20);
  1829. }
  1830. /*
  1831. void ramming() {
  1832. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1833. if (current_temperature[0] < 230) {
  1834. //PLA
  1835. max_feedrate[E_AXIS] = 50;
  1836. //current_position[E_AXIS] -= 8;
  1837. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1838. //current_position[E_AXIS] += 8;
  1839. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1840. current_position[E_AXIS] += 5.4;
  1841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1842. current_position[E_AXIS] += 3.2;
  1843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1844. current_position[E_AXIS] += 3;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1846. st_synchronize();
  1847. max_feedrate[E_AXIS] = 80;
  1848. current_position[E_AXIS] -= 82;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1850. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1851. current_position[E_AXIS] -= 20;
  1852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1853. current_position[E_AXIS] += 5;
  1854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1855. current_position[E_AXIS] += 5;
  1856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1857. current_position[E_AXIS] -= 10;
  1858. st_synchronize();
  1859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1860. current_position[E_AXIS] += 10;
  1861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1862. current_position[E_AXIS] -= 10;
  1863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1864. current_position[E_AXIS] += 10;
  1865. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1866. current_position[E_AXIS] -= 10;
  1867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1868. st_synchronize();
  1869. }
  1870. else {
  1871. //ABS
  1872. max_feedrate[E_AXIS] = 50;
  1873. //current_position[E_AXIS] -= 8;
  1874. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1875. //current_position[E_AXIS] += 8;
  1876. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1877. current_position[E_AXIS] += 3.1;
  1878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1879. current_position[E_AXIS] += 3.1;
  1880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1881. current_position[E_AXIS] += 4;
  1882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1883. st_synchronize();
  1884. //current_position[X_AXIS] += 23; //delay
  1885. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1886. //current_position[X_AXIS] -= 23; //delay
  1887. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1888. delay(4700);
  1889. max_feedrate[E_AXIS] = 80;
  1890. current_position[E_AXIS] -= 92;
  1891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1892. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1893. current_position[E_AXIS] -= 5;
  1894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1895. current_position[E_AXIS] += 5;
  1896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1897. current_position[E_AXIS] -= 5;
  1898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1899. st_synchronize();
  1900. current_position[E_AXIS] += 5;
  1901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1902. current_position[E_AXIS] -= 5;
  1903. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1904. current_position[E_AXIS] += 5;
  1905. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1906. current_position[E_AXIS] -= 5;
  1907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1908. st_synchronize();
  1909. }
  1910. }
  1911. */
  1912. #ifdef TMC2130
  1913. void force_high_power_mode(bool start_high_power_section) {
  1914. uint8_t silent;
  1915. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1916. if (silent == 1) {
  1917. //we are in silent mode, set to normal mode to enable crash detection
  1918. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1919. st_synchronize();
  1920. cli();
  1921. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1922. tmc2130_init();
  1923. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1924. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1925. st_reset_timer();
  1926. sei();
  1927. }
  1928. }
  1929. #endif //TMC2130
  1930. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1931. {
  1932. bool final_result = false;
  1933. #ifdef TMC2130
  1934. FORCE_HIGH_POWER_START;
  1935. #endif // TMC2130
  1936. // Only Z calibration?
  1937. if (!onlyZ)
  1938. {
  1939. setTargetBed(0);
  1940. setTargetHotend(0, 0);
  1941. setTargetHotend(0, 1);
  1942. setTargetHotend(0, 2);
  1943. adjust_bed_reset(); //reset bed level correction
  1944. }
  1945. // Disable the default update procedure of the display. We will do a modal dialog.
  1946. lcd_update_enable(false);
  1947. // Let the planner use the uncorrected coordinates.
  1948. mbl.reset();
  1949. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1950. // the planner will not perform any adjustments in the XY plane.
  1951. // Wait for the motors to stop and update the current position with the absolute values.
  1952. world2machine_revert_to_uncorrected();
  1953. // Reset the baby step value applied without moving the axes.
  1954. babystep_reset();
  1955. // Mark all axes as in a need for homing.
  1956. memset(axis_known_position, 0, sizeof(axis_known_position));
  1957. // Home in the XY plane.
  1958. //set_destination_to_current();
  1959. setup_for_endstop_move();
  1960. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1961. home_xy();
  1962. enable_endstops(false);
  1963. current_position[X_AXIS] += 5;
  1964. current_position[Y_AXIS] += 5;
  1965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1966. st_synchronize();
  1967. // Let the user move the Z axes up to the end stoppers.
  1968. #ifdef TMC2130
  1969. if (calibrate_z_auto())
  1970. {
  1971. #else //TMC2130
  1972. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1973. {
  1974. #endif //TMC2130
  1975. refresh_cmd_timeout();
  1976. #ifndef STEEL_SHEET
  1977. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1978. {
  1979. lcd_wait_for_cool_down();
  1980. }
  1981. #endif //STEEL_SHEET
  1982. if(!onlyZ)
  1983. {
  1984. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1985. #ifdef STEEL_SHEET
  1986. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1987. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1988. #endif //STEEL_SHEET
  1989. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1990. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1991. KEEPALIVE_STATE(IN_HANDLER);
  1992. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1993. lcd_implementation_print_at(0, 2, 1);
  1994. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1995. }
  1996. // Move the print head close to the bed.
  1997. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1998. bool endstops_enabled = enable_endstops(true);
  1999. #ifdef TMC2130
  2000. tmc2130_home_enter(Z_AXIS_MASK);
  2001. #endif //TMC2130
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2003. st_synchronize();
  2004. #ifdef TMC2130
  2005. tmc2130_home_exit();
  2006. #endif //TMC2130
  2007. enable_endstops(endstops_enabled);
  2008. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2009. {
  2010. int8_t verbosity_level = 0;
  2011. if (code_seen('V'))
  2012. {
  2013. // Just 'V' without a number counts as V1.
  2014. char c = strchr_pointer[1];
  2015. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2016. }
  2017. if (onlyZ)
  2018. {
  2019. clean_up_after_endstop_move();
  2020. // Z only calibration.
  2021. // Load the machine correction matrix
  2022. world2machine_initialize();
  2023. // and correct the current_position to match the transformed coordinate system.
  2024. world2machine_update_current();
  2025. //FIXME
  2026. bool result = sample_mesh_and_store_reference();
  2027. if (result)
  2028. {
  2029. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2030. // Shipped, the nozzle height has been set already. The user can start printing now.
  2031. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2032. final_result = true;
  2033. // babystep_apply();
  2034. }
  2035. }
  2036. else
  2037. {
  2038. // Reset the baby step value and the baby step applied flag.
  2039. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2040. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2041. // Complete XYZ calibration.
  2042. uint8_t point_too_far_mask = 0;
  2043. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2044. clean_up_after_endstop_move();
  2045. // Print head up.
  2046. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2048. st_synchronize();
  2049. //#ifndef NEW_XYZCAL
  2050. if (result >= 0)
  2051. {
  2052. #ifdef HEATBED_V2
  2053. sample_z();
  2054. #else //HEATBED_V2
  2055. point_too_far_mask = 0;
  2056. // Second half: The fine adjustment.
  2057. // Let the planner use the uncorrected coordinates.
  2058. mbl.reset();
  2059. world2machine_reset();
  2060. // Home in the XY plane.
  2061. setup_for_endstop_move();
  2062. home_xy();
  2063. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2064. clean_up_after_endstop_move();
  2065. // Print head up.
  2066. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2068. st_synchronize();
  2069. // if (result >= 0) babystep_apply();
  2070. #endif //HEATBED_V2
  2071. }
  2072. //#endif //NEW_XYZCAL
  2073. lcd_update_enable(true);
  2074. lcd_update(2);
  2075. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2076. if (result >= 0)
  2077. {
  2078. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2079. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2080. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2081. final_result = true;
  2082. }
  2083. }
  2084. #ifdef TMC2130
  2085. tmc2130_home_exit();
  2086. #endif
  2087. }
  2088. else
  2089. {
  2090. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2091. final_result = false;
  2092. }
  2093. }
  2094. else
  2095. {
  2096. // Timeouted.
  2097. }
  2098. lcd_update_enable(true);
  2099. #ifdef TMC2130
  2100. FORCE_HIGH_POWER_END;
  2101. #endif // TMC2130
  2102. return final_result;
  2103. }
  2104. void gcode_M114()
  2105. {
  2106. SERIAL_PROTOCOLPGM("X:");
  2107. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2108. SERIAL_PROTOCOLPGM(" Y:");
  2109. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2110. SERIAL_PROTOCOLPGM(" Z:");
  2111. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2112. SERIAL_PROTOCOLPGM(" E:");
  2113. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2114. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2115. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2116. SERIAL_PROTOCOLPGM(" Y:");
  2117. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2118. SERIAL_PROTOCOLPGM(" Z:");
  2119. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2120. SERIAL_PROTOCOLPGM(" E:");
  2121. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2122. SERIAL_PROTOCOLLN("");
  2123. }
  2124. void gcode_M701()
  2125. {
  2126. #ifdef SNMM
  2127. extr_adj(snmm_extruder);//loads current extruder
  2128. #else
  2129. enable_z();
  2130. custom_message = true;
  2131. custom_message_type = 2;
  2132. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2133. current_position[E_AXIS] += 70;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2135. current_position[E_AXIS] += 25;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2137. st_synchronize();
  2138. tone(BEEPER, 500);
  2139. delay_keep_alive(50);
  2140. noTone(BEEPER);
  2141. if (!farm_mode && loading_flag) {
  2142. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2143. while (!clean) {
  2144. lcd_update_enable(true);
  2145. lcd_update(2);
  2146. current_position[E_AXIS] += 25;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2148. st_synchronize();
  2149. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2150. }
  2151. }
  2152. lcd_update_enable(true);
  2153. lcd_update(2);
  2154. lcd_setstatuspgm(WELCOME_MSG);
  2155. disable_z();
  2156. loading_flag = false;
  2157. custom_message = false;
  2158. custom_message_type = 0;
  2159. #endif
  2160. }
  2161. /**
  2162. * @brief Get serial number from 32U2 processor
  2163. *
  2164. * Typical format of S/N is:CZPX0917X003XC13518
  2165. *
  2166. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2167. *
  2168. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2169. * reply is transmitted to serial port 1 character by character.
  2170. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2171. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2172. * in any case.
  2173. */
  2174. static void gcode_PRUSA_SN()
  2175. {
  2176. if (farm_mode) {
  2177. selectedSerialPort = 0;
  2178. MSerial.write(";S");
  2179. int numbersRead = 0;
  2180. Timer timeout;
  2181. timeout.start();
  2182. while (numbersRead < 19) {
  2183. while (MSerial.available() > 0) {
  2184. uint8_t serial_char = MSerial.read();
  2185. selectedSerialPort = 1;
  2186. MSerial.write(serial_char);
  2187. numbersRead++;
  2188. selectedSerialPort = 0;
  2189. }
  2190. if (timeout.expired(100)) break;
  2191. }
  2192. selectedSerialPort = 1;
  2193. MSerial.write('\n');
  2194. #if 0
  2195. for (int b = 0; b < 3; b++) {
  2196. tone(BEEPER, 110);
  2197. delay(50);
  2198. noTone(BEEPER);
  2199. delay(50);
  2200. }
  2201. #endif
  2202. } else {
  2203. MYSERIAL.println("Not in farm mode.");
  2204. }
  2205. }
  2206. void process_commands()
  2207. {
  2208. if (!buflen) return; //empty command
  2209. #ifdef FILAMENT_RUNOUT_SUPPORT
  2210. SET_INPUT(FR_SENS);
  2211. #endif
  2212. #ifdef CMDBUFFER_DEBUG
  2213. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2214. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2215. SERIAL_ECHOLNPGM("");
  2216. SERIAL_ECHOPGM("In cmdqueue: ");
  2217. SERIAL_ECHO(buflen);
  2218. SERIAL_ECHOLNPGM("");
  2219. #endif /* CMDBUFFER_DEBUG */
  2220. unsigned long codenum; //throw away variable
  2221. char *starpos = NULL;
  2222. #ifdef ENABLE_AUTO_BED_LEVELING
  2223. float x_tmp, y_tmp, z_tmp, real_z;
  2224. #endif
  2225. // PRUSA GCODES
  2226. KEEPALIVE_STATE(IN_HANDLER);
  2227. #ifdef SNMM
  2228. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2229. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2230. int8_t SilentMode;
  2231. #endif
  2232. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2233. starpos = (strchr(strchr_pointer + 5, '*'));
  2234. if (starpos != NULL)
  2235. *(starpos) = '\0';
  2236. lcd_setstatus(strchr_pointer + 5);
  2237. }
  2238. #ifdef TMC2130
  2239. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2240. {
  2241. if(code_seen("CRASH_DETECTED"))
  2242. {
  2243. uint8_t mask = 0;
  2244. if (code_seen("X")) mask |= X_AXIS_MASK;
  2245. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2246. crashdet_detected(mask);
  2247. }
  2248. else if(code_seen("CRASH_RECOVER"))
  2249. crashdet_recover();
  2250. else if(code_seen("CRASH_CANCEL"))
  2251. crashdet_cancel();
  2252. }
  2253. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2254. {
  2255. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2256. {
  2257. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2258. tmc2130_set_wave(E_AXIS, 247, fac);
  2259. }
  2260. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2261. {
  2262. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2263. uint16_t res = tmc2130_get_res(E_AXIS);
  2264. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2265. }
  2266. }
  2267. #endif //TMC2130
  2268. else if(code_seen("PRUSA")){
  2269. if (code_seen("Ping")) { //PRUSA Ping
  2270. if (farm_mode) {
  2271. PingTime = millis();
  2272. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2273. }
  2274. }
  2275. else if (code_seen("PRN")) {
  2276. MYSERIAL.println(status_number);
  2277. }else if (code_seen("FAN")) {
  2278. MYSERIAL.print("E0:");
  2279. MYSERIAL.print(60*fan_speed[0]);
  2280. MYSERIAL.println(" RPM");
  2281. MYSERIAL.print("PRN0:");
  2282. MYSERIAL.print(60*fan_speed[1]);
  2283. MYSERIAL.println(" RPM");
  2284. }else if (code_seen("fn")) {
  2285. if (farm_mode) {
  2286. MYSERIAL.println(farm_no);
  2287. }
  2288. else {
  2289. MYSERIAL.println("Not in farm mode.");
  2290. }
  2291. }
  2292. else if (code_seen("thx")) {
  2293. no_response = false;
  2294. }else if (code_seen("fv")) {
  2295. // get file version
  2296. #ifdef SDSUPPORT
  2297. card.openFile(strchr_pointer + 3,true);
  2298. while (true) {
  2299. uint16_t readByte = card.get();
  2300. MYSERIAL.write(readByte);
  2301. if (readByte=='\n') {
  2302. break;
  2303. }
  2304. }
  2305. card.closefile();
  2306. #endif // SDSUPPORT
  2307. } else if (code_seen("M28")) {
  2308. trace();
  2309. prusa_sd_card_upload = true;
  2310. card.openFile(strchr_pointer+4,false);
  2311. } else if (code_seen("SN")) {
  2312. gcode_PRUSA_SN();
  2313. } else if(code_seen("Fir")){
  2314. SERIAL_PROTOCOLLN(FW_VERSION);
  2315. } else if(code_seen("Rev")){
  2316. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2317. } else if(code_seen("Lang")) {
  2318. lcd_force_language_selection();
  2319. } else if(code_seen("Lz")) {
  2320. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2321. } else if (code_seen("SERIAL LOW")) {
  2322. MYSERIAL.println("SERIAL LOW");
  2323. MYSERIAL.begin(BAUDRATE);
  2324. return;
  2325. } else if (code_seen("SERIAL HIGH")) {
  2326. MYSERIAL.println("SERIAL HIGH");
  2327. MYSERIAL.begin(1152000);
  2328. return;
  2329. } else if(code_seen("Beat")) {
  2330. // Kick farm link timer
  2331. kicktime = millis();
  2332. } else if(code_seen("FR")) {
  2333. // Factory full reset
  2334. factory_reset(0,true);
  2335. }
  2336. //else if (code_seen('Cal')) {
  2337. // lcd_calibration();
  2338. // }
  2339. }
  2340. else if (code_seen('^')) {
  2341. // nothing, this is a version line
  2342. } else if(code_seen('G'))
  2343. {
  2344. switch((int)code_value())
  2345. {
  2346. case 0: // G0 -> G1
  2347. case 1: // G1
  2348. if(Stopped == false) {
  2349. #ifdef FILAMENT_RUNOUT_SUPPORT
  2350. if(READ(FR_SENS)){
  2351. feedmultiplyBckp=feedmultiply;
  2352. float target[4];
  2353. float lastpos[4];
  2354. target[X_AXIS]=current_position[X_AXIS];
  2355. target[Y_AXIS]=current_position[Y_AXIS];
  2356. target[Z_AXIS]=current_position[Z_AXIS];
  2357. target[E_AXIS]=current_position[E_AXIS];
  2358. lastpos[X_AXIS]=current_position[X_AXIS];
  2359. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2360. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2361. lastpos[E_AXIS]=current_position[E_AXIS];
  2362. //retract by E
  2363. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2365. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2366. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2367. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2368. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2369. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2370. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2371. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2372. //finish moves
  2373. st_synchronize();
  2374. //disable extruder steppers so filament can be removed
  2375. disable_e0();
  2376. disable_e1();
  2377. disable_e2();
  2378. delay(100);
  2379. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2380. uint8_t cnt=0;
  2381. int counterBeep = 0;
  2382. lcd_wait_interact();
  2383. while(!lcd_clicked()){
  2384. cnt++;
  2385. manage_heater();
  2386. manage_inactivity(true);
  2387. //lcd_update();
  2388. if(cnt==0)
  2389. {
  2390. #if BEEPER > 0
  2391. if (counterBeep== 500){
  2392. counterBeep = 0;
  2393. }
  2394. SET_OUTPUT(BEEPER);
  2395. if (counterBeep== 0){
  2396. WRITE(BEEPER,HIGH);
  2397. }
  2398. if (counterBeep== 20){
  2399. WRITE(BEEPER,LOW);
  2400. }
  2401. counterBeep++;
  2402. #else
  2403. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2404. lcd_buzz(1000/6,100);
  2405. #else
  2406. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2407. #endif
  2408. #endif
  2409. }
  2410. }
  2411. WRITE(BEEPER,LOW);
  2412. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2414. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2416. lcd_change_fil_state = 0;
  2417. lcd_loading_filament();
  2418. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2419. lcd_change_fil_state = 0;
  2420. lcd_alright();
  2421. switch(lcd_change_fil_state){
  2422. case 2:
  2423. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2425. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2427. lcd_loading_filament();
  2428. break;
  2429. case 3:
  2430. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2432. lcd_loading_color();
  2433. break;
  2434. default:
  2435. lcd_change_success();
  2436. break;
  2437. }
  2438. }
  2439. target[E_AXIS]+= 5;
  2440. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2441. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2442. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2443. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2444. //plan_set_e_position(current_position[E_AXIS]);
  2445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2446. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2447. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2448. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2449. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2450. plan_set_e_position(lastpos[E_AXIS]);
  2451. feedmultiply=feedmultiplyBckp;
  2452. char cmd[9];
  2453. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2454. enquecommand(cmd);
  2455. }
  2456. #endif
  2457. get_coordinates(); // For X Y Z E F
  2458. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2459. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2460. }
  2461. #ifdef FWRETRACT
  2462. if(autoretract_enabled)
  2463. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2464. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2465. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2466. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2467. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2468. retract(!retracted);
  2469. return;
  2470. }
  2471. }
  2472. #endif //FWRETRACT
  2473. prepare_move();
  2474. //ClearToSend();
  2475. }
  2476. break;
  2477. case 2: // G2 - CW ARC
  2478. if(Stopped == false) {
  2479. get_arc_coordinates();
  2480. prepare_arc_move(true);
  2481. }
  2482. break;
  2483. case 3: // G3 - CCW ARC
  2484. if(Stopped == false) {
  2485. get_arc_coordinates();
  2486. prepare_arc_move(false);
  2487. }
  2488. break;
  2489. case 4: // G4 dwell
  2490. codenum = 0;
  2491. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2492. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2493. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2494. st_synchronize();
  2495. codenum += millis(); // keep track of when we started waiting
  2496. previous_millis_cmd = millis();
  2497. while(millis() < codenum) {
  2498. manage_heater();
  2499. manage_inactivity();
  2500. lcd_update();
  2501. }
  2502. break;
  2503. #ifdef FWRETRACT
  2504. case 10: // G10 retract
  2505. #if EXTRUDERS > 1
  2506. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2507. retract(true,retracted_swap[active_extruder]);
  2508. #else
  2509. retract(true);
  2510. #endif
  2511. break;
  2512. case 11: // G11 retract_recover
  2513. #if EXTRUDERS > 1
  2514. retract(false,retracted_swap[active_extruder]);
  2515. #else
  2516. retract(false);
  2517. #endif
  2518. break;
  2519. #endif //FWRETRACT
  2520. case 28: //G28 Home all Axis one at a time
  2521. {
  2522. st_synchronize();
  2523. #if 0
  2524. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2525. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2526. #endif
  2527. // Flag for the display update routine and to disable the print cancelation during homing.
  2528. homing_flag = true;
  2529. // Which axes should be homed?
  2530. bool home_x = code_seen(axis_codes[X_AXIS]);
  2531. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2532. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2533. // calibrate?
  2534. bool calib = code_seen('C');
  2535. // Either all X,Y,Z codes are present, or none of them.
  2536. bool home_all_axes = home_x == home_y && home_x == home_z;
  2537. if (home_all_axes)
  2538. // No X/Y/Z code provided means to home all axes.
  2539. home_x = home_y = home_z = true;
  2540. #ifdef ENABLE_AUTO_BED_LEVELING
  2541. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2542. #endif //ENABLE_AUTO_BED_LEVELING
  2543. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2544. // the planner will not perform any adjustments in the XY plane.
  2545. // Wait for the motors to stop and update the current position with the absolute values.
  2546. world2machine_revert_to_uncorrected();
  2547. // For mesh bed leveling deactivate the matrix temporarily.
  2548. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2549. // in a single axis only.
  2550. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2551. #ifdef MESH_BED_LEVELING
  2552. uint8_t mbl_was_active = mbl.active;
  2553. mbl.active = 0;
  2554. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2555. #endif
  2556. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2557. // consumed during the first movements following this statement.
  2558. if (home_z)
  2559. babystep_undo();
  2560. saved_feedrate = feedrate;
  2561. saved_feedmultiply = feedmultiply;
  2562. feedmultiply = 100;
  2563. previous_millis_cmd = millis();
  2564. enable_endstops(true);
  2565. memcpy(destination, current_position, sizeof(destination));
  2566. feedrate = 0.0;
  2567. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2568. if(home_z)
  2569. homeaxis(Z_AXIS);
  2570. #endif
  2571. #ifdef QUICK_HOME
  2572. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2573. if(home_x && home_y) //first diagonal move
  2574. {
  2575. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2576. int x_axis_home_dir = home_dir(X_AXIS);
  2577. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2578. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2579. feedrate = homing_feedrate[X_AXIS];
  2580. if(homing_feedrate[Y_AXIS]<feedrate)
  2581. feedrate = homing_feedrate[Y_AXIS];
  2582. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2583. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2584. } else {
  2585. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2586. }
  2587. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2588. st_synchronize();
  2589. axis_is_at_home(X_AXIS);
  2590. axis_is_at_home(Y_AXIS);
  2591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2592. destination[X_AXIS] = current_position[X_AXIS];
  2593. destination[Y_AXIS] = current_position[Y_AXIS];
  2594. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2595. feedrate = 0.0;
  2596. st_synchronize();
  2597. endstops_hit_on_purpose();
  2598. current_position[X_AXIS] = destination[X_AXIS];
  2599. current_position[Y_AXIS] = destination[Y_AXIS];
  2600. current_position[Z_AXIS] = destination[Z_AXIS];
  2601. }
  2602. #endif /* QUICK_HOME */
  2603. #ifdef TMC2130
  2604. if(home_x)
  2605. {
  2606. if (!calib)
  2607. homeaxis(X_AXIS);
  2608. else
  2609. tmc2130_home_calibrate(X_AXIS);
  2610. }
  2611. if(home_y)
  2612. {
  2613. if (!calib)
  2614. homeaxis(Y_AXIS);
  2615. else
  2616. tmc2130_home_calibrate(Y_AXIS);
  2617. }
  2618. #endif //TMC2130
  2619. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2620. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2621. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2622. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2623. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2624. #ifndef Z_SAFE_HOMING
  2625. if(home_z) {
  2626. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2627. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2628. feedrate = max_feedrate[Z_AXIS];
  2629. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2630. st_synchronize();
  2631. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2632. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2633. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2634. {
  2635. homeaxis(X_AXIS);
  2636. homeaxis(Y_AXIS);
  2637. }
  2638. // 1st mesh bed leveling measurement point, corrected.
  2639. world2machine_initialize();
  2640. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2641. world2machine_reset();
  2642. if (destination[Y_AXIS] < Y_MIN_POS)
  2643. destination[Y_AXIS] = Y_MIN_POS;
  2644. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2645. feedrate = homing_feedrate[Z_AXIS]/10;
  2646. current_position[Z_AXIS] = 0;
  2647. enable_endstops(false);
  2648. #ifdef DEBUG_BUILD
  2649. SERIAL_ECHOLNPGM("plan_set_position()");
  2650. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2651. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2652. #endif
  2653. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2654. #ifdef DEBUG_BUILD
  2655. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2656. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2657. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2658. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2659. #endif
  2660. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2661. st_synchronize();
  2662. current_position[X_AXIS] = destination[X_AXIS];
  2663. current_position[Y_AXIS] = destination[Y_AXIS];
  2664. enable_endstops(true);
  2665. endstops_hit_on_purpose();
  2666. homeaxis(Z_AXIS);
  2667. #else // MESH_BED_LEVELING
  2668. homeaxis(Z_AXIS);
  2669. #endif // MESH_BED_LEVELING
  2670. }
  2671. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2672. if(home_all_axes) {
  2673. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2674. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2675. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2676. feedrate = XY_TRAVEL_SPEED/60;
  2677. current_position[Z_AXIS] = 0;
  2678. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2679. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2680. st_synchronize();
  2681. current_position[X_AXIS] = destination[X_AXIS];
  2682. current_position[Y_AXIS] = destination[Y_AXIS];
  2683. homeaxis(Z_AXIS);
  2684. }
  2685. // Let's see if X and Y are homed and probe is inside bed area.
  2686. if(home_z) {
  2687. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2688. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2689. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2690. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2691. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2692. current_position[Z_AXIS] = 0;
  2693. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2694. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2695. feedrate = max_feedrate[Z_AXIS];
  2696. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2697. st_synchronize();
  2698. homeaxis(Z_AXIS);
  2699. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2700. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2701. SERIAL_ECHO_START;
  2702. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2703. } else {
  2704. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2705. SERIAL_ECHO_START;
  2706. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2707. }
  2708. }
  2709. #endif // Z_SAFE_HOMING
  2710. #endif // Z_HOME_DIR < 0
  2711. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2712. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2713. #ifdef ENABLE_AUTO_BED_LEVELING
  2714. if(home_z)
  2715. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2716. #endif
  2717. // Set the planner and stepper routine positions.
  2718. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2719. // contains the machine coordinates.
  2720. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2721. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2722. enable_endstops(false);
  2723. #endif
  2724. feedrate = saved_feedrate;
  2725. feedmultiply = saved_feedmultiply;
  2726. previous_millis_cmd = millis();
  2727. endstops_hit_on_purpose();
  2728. #ifndef MESH_BED_LEVELING
  2729. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2730. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2731. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2732. lcd_adjust_z();
  2733. #endif
  2734. // Load the machine correction matrix
  2735. world2machine_initialize();
  2736. // and correct the current_position XY axes to match the transformed coordinate system.
  2737. world2machine_update_current();
  2738. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2739. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2740. {
  2741. if (! home_z && mbl_was_active) {
  2742. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2743. mbl.active = true;
  2744. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2745. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2746. }
  2747. }
  2748. else
  2749. {
  2750. st_synchronize();
  2751. homing_flag = false;
  2752. // Push the commands to the front of the message queue in the reverse order!
  2753. // There shall be always enough space reserved for these commands.
  2754. // enquecommand_front_P((PSTR("G80")));
  2755. goto case_G80;
  2756. }
  2757. #endif
  2758. if (farm_mode) { prusa_statistics(20); };
  2759. homing_flag = false;
  2760. #if 0
  2761. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2762. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2763. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2764. #endif
  2765. break;
  2766. }
  2767. #ifdef ENABLE_AUTO_BED_LEVELING
  2768. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2769. {
  2770. #if Z_MIN_PIN == -1
  2771. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2772. #endif
  2773. // Prevent user from running a G29 without first homing in X and Y
  2774. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2775. {
  2776. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2777. SERIAL_ECHO_START;
  2778. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2779. break; // abort G29, since we don't know where we are
  2780. }
  2781. st_synchronize();
  2782. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2783. //vector_3 corrected_position = plan_get_position_mm();
  2784. //corrected_position.debug("position before G29");
  2785. plan_bed_level_matrix.set_to_identity();
  2786. vector_3 uncorrected_position = plan_get_position();
  2787. //uncorrected_position.debug("position durring G29");
  2788. current_position[X_AXIS] = uncorrected_position.x;
  2789. current_position[Y_AXIS] = uncorrected_position.y;
  2790. current_position[Z_AXIS] = uncorrected_position.z;
  2791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2792. setup_for_endstop_move();
  2793. feedrate = homing_feedrate[Z_AXIS];
  2794. #ifdef AUTO_BED_LEVELING_GRID
  2795. // probe at the points of a lattice grid
  2796. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2797. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2798. // solve the plane equation ax + by + d = z
  2799. // A is the matrix with rows [x y 1] for all the probed points
  2800. // B is the vector of the Z positions
  2801. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2802. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2803. // "A" matrix of the linear system of equations
  2804. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2805. // "B" vector of Z points
  2806. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2807. int probePointCounter = 0;
  2808. bool zig = true;
  2809. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2810. {
  2811. int xProbe, xInc;
  2812. if (zig)
  2813. {
  2814. xProbe = LEFT_PROBE_BED_POSITION;
  2815. //xEnd = RIGHT_PROBE_BED_POSITION;
  2816. xInc = xGridSpacing;
  2817. zig = false;
  2818. } else // zag
  2819. {
  2820. xProbe = RIGHT_PROBE_BED_POSITION;
  2821. //xEnd = LEFT_PROBE_BED_POSITION;
  2822. xInc = -xGridSpacing;
  2823. zig = true;
  2824. }
  2825. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2826. {
  2827. float z_before;
  2828. if (probePointCounter == 0)
  2829. {
  2830. // raise before probing
  2831. z_before = Z_RAISE_BEFORE_PROBING;
  2832. } else
  2833. {
  2834. // raise extruder
  2835. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2836. }
  2837. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2838. eqnBVector[probePointCounter] = measured_z;
  2839. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2840. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2841. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2842. probePointCounter++;
  2843. xProbe += xInc;
  2844. }
  2845. }
  2846. clean_up_after_endstop_move();
  2847. // solve lsq problem
  2848. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2849. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2850. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2851. SERIAL_PROTOCOLPGM(" b: ");
  2852. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2853. SERIAL_PROTOCOLPGM(" d: ");
  2854. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2855. set_bed_level_equation_lsq(plane_equation_coefficients);
  2856. free(plane_equation_coefficients);
  2857. #else // AUTO_BED_LEVELING_GRID not defined
  2858. // Probe at 3 arbitrary points
  2859. // probe 1
  2860. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2861. // probe 2
  2862. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2863. // probe 3
  2864. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2865. clean_up_after_endstop_move();
  2866. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2867. #endif // AUTO_BED_LEVELING_GRID
  2868. st_synchronize();
  2869. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2870. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2871. // When the bed is uneven, this height must be corrected.
  2872. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2873. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2874. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2875. z_tmp = current_position[Z_AXIS];
  2876. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2877. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2878. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2879. }
  2880. break;
  2881. #ifndef Z_PROBE_SLED
  2882. case 30: // G30 Single Z Probe
  2883. {
  2884. st_synchronize();
  2885. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2886. setup_for_endstop_move();
  2887. feedrate = homing_feedrate[Z_AXIS];
  2888. run_z_probe();
  2889. SERIAL_PROTOCOLPGM(MSG_BED);
  2890. SERIAL_PROTOCOLPGM(" X: ");
  2891. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2892. SERIAL_PROTOCOLPGM(" Y: ");
  2893. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2894. SERIAL_PROTOCOLPGM(" Z: ");
  2895. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2896. SERIAL_PROTOCOLPGM("\n");
  2897. clean_up_after_endstop_move();
  2898. }
  2899. break;
  2900. #else
  2901. case 31: // dock the sled
  2902. dock_sled(true);
  2903. break;
  2904. case 32: // undock the sled
  2905. dock_sled(false);
  2906. break;
  2907. #endif // Z_PROBE_SLED
  2908. #endif // ENABLE_AUTO_BED_LEVELING
  2909. #ifdef MESH_BED_LEVELING
  2910. case 30: // G30 Single Z Probe
  2911. {
  2912. st_synchronize();
  2913. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2914. setup_for_endstop_move();
  2915. feedrate = homing_feedrate[Z_AXIS];
  2916. find_bed_induction_sensor_point_z(-10.f, 3);
  2917. SERIAL_PROTOCOLRPGM(MSG_BED);
  2918. SERIAL_PROTOCOLPGM(" X: ");
  2919. MYSERIAL.print(current_position[X_AXIS], 5);
  2920. SERIAL_PROTOCOLPGM(" Y: ");
  2921. MYSERIAL.print(current_position[Y_AXIS], 5);
  2922. SERIAL_PROTOCOLPGM(" Z: ");
  2923. MYSERIAL.print(current_position[Z_AXIS], 5);
  2924. SERIAL_PROTOCOLPGM("\n");
  2925. clean_up_after_endstop_move();
  2926. }
  2927. break;
  2928. case 75:
  2929. {
  2930. for (int i = 40; i <= 110; i++) {
  2931. MYSERIAL.print(i);
  2932. MYSERIAL.print(" ");
  2933. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2934. }
  2935. }
  2936. break;
  2937. case 76: //PINDA probe temperature calibration
  2938. {
  2939. #ifdef PINDA_THERMISTOR
  2940. if (true)
  2941. {
  2942. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2943. {
  2944. // We don't know where we are! HOME!
  2945. // Push the commands to the front of the message queue in the reverse order!
  2946. // There shall be always enough space reserved for these commands.
  2947. repeatcommand_front(); // repeat G76 with all its parameters
  2948. enquecommand_front_P((PSTR("G28 W0")));
  2949. break;
  2950. }
  2951. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2952. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2953. if (result)
  2954. {
  2955. current_position[Z_AXIS] = 50;
  2956. current_position[Y_AXIS] += 180;
  2957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2958. st_synchronize();
  2959. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2960. current_position[Y_AXIS] -= 180;
  2961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2962. st_synchronize();
  2963. feedrate = homing_feedrate[Z_AXIS] / 10;
  2964. enable_endstops(true);
  2965. endstops_hit_on_purpose();
  2966. homeaxis(Z_AXIS);
  2967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2968. enable_endstops(false);
  2969. }
  2970. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  2971. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  2972. current_position[Z_AXIS] = 100;
  2973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2974. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  2975. lcd_temp_cal_show_result(false);
  2976. break;
  2977. }
  2978. }
  2979. lcd_update_enable(true);
  2980. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2981. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2982. float zero_z;
  2983. int z_shift = 0; //unit: steps
  2984. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2985. if (start_temp < 35) start_temp = 35;
  2986. if (start_temp < current_temperature_pinda) start_temp += 5;
  2987. SERIAL_ECHOPGM("start temperature: ");
  2988. MYSERIAL.println(start_temp);
  2989. // setTargetHotend(200, 0);
  2990. setTargetBed(70 + (start_temp - 30));
  2991. custom_message = true;
  2992. custom_message_type = 4;
  2993. custom_message_state = 1;
  2994. custom_message = MSG_TEMP_CALIBRATION;
  2995. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2996. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2997. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2999. st_synchronize();
  3000. while (current_temperature_pinda < start_temp)
  3001. {
  3002. delay_keep_alive(1000);
  3003. serialecho_temperatures();
  3004. }
  3005. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3006. current_position[Z_AXIS] = 5;
  3007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3008. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3009. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3011. st_synchronize();
  3012. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3013. if(find_z_result == false) lcd_temp_cal_show_result(find_z_result);
  3014. zero_z = current_position[Z_AXIS];
  3015. //current_position[Z_AXIS]
  3016. SERIAL_ECHOLNPGM("");
  3017. SERIAL_ECHOPGM("ZERO: ");
  3018. MYSERIAL.print(current_position[Z_AXIS]);
  3019. SERIAL_ECHOLNPGM("");
  3020. int i = -1; for (; i < 5; i++)
  3021. {
  3022. float temp = (40 + i * 5);
  3023. SERIAL_ECHOPGM("Step: ");
  3024. MYSERIAL.print(i + 2);
  3025. SERIAL_ECHOLNPGM("/6 (skipped)");
  3026. SERIAL_ECHOPGM("PINDA temperature: ");
  3027. MYSERIAL.print((40 + i*5));
  3028. SERIAL_ECHOPGM(" Z shift (mm):");
  3029. MYSERIAL.print(0);
  3030. SERIAL_ECHOLNPGM("");
  3031. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3032. if (start_temp <= temp) break;
  3033. }
  3034. for (i++; i < 5; i++)
  3035. {
  3036. float temp = (40 + i * 5);
  3037. SERIAL_ECHOPGM("Step: ");
  3038. MYSERIAL.print(i + 2);
  3039. SERIAL_ECHOLNPGM("/6");
  3040. custom_message_state = i + 2;
  3041. setTargetBed(50 + 10 * (temp - 30) / 5);
  3042. // setTargetHotend(255, 0);
  3043. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3044. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3045. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3047. st_synchronize();
  3048. while (current_temperature_pinda < temp)
  3049. {
  3050. delay_keep_alive(1000);
  3051. serialecho_temperatures();
  3052. }
  3053. current_position[Z_AXIS] = 5;
  3054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3055. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3056. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3058. st_synchronize();
  3059. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3060. if (find_z_result == false) lcd_temp_cal_show_result(find_z_result);
  3061. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3062. SERIAL_ECHOLNPGM("");
  3063. SERIAL_ECHOPGM("PINDA temperature: ");
  3064. MYSERIAL.print(current_temperature_pinda);
  3065. SERIAL_ECHOPGM(" Z shift (mm):");
  3066. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3067. SERIAL_ECHOLNPGM("");
  3068. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3069. }
  3070. lcd_temp_cal_show_result(true);
  3071. break;
  3072. }
  3073. #endif //PINDA_THERMISTOR
  3074. setTargetBed(PINDA_MIN_T);
  3075. float zero_z;
  3076. int z_shift = 0; //unit: steps
  3077. int t_c; // temperature
  3078. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3079. // We don't know where we are! HOME!
  3080. // Push the commands to the front of the message queue in the reverse order!
  3081. // There shall be always enough space reserved for these commands.
  3082. repeatcommand_front(); // repeat G76 with all its parameters
  3083. enquecommand_front_P((PSTR("G28 W0")));
  3084. break;
  3085. }
  3086. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3087. custom_message = true;
  3088. custom_message_type = 4;
  3089. custom_message_state = 1;
  3090. custom_message = MSG_TEMP_CALIBRATION;
  3091. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3092. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3093. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3095. st_synchronize();
  3096. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3097. delay_keep_alive(1000);
  3098. serialecho_temperatures();
  3099. }
  3100. //enquecommand_P(PSTR("M190 S50"));
  3101. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3102. delay_keep_alive(1000);
  3103. serialecho_temperatures();
  3104. }
  3105. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3106. current_position[Z_AXIS] = 5;
  3107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3108. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3109. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3111. st_synchronize();
  3112. find_bed_induction_sensor_point_z(-1.f);
  3113. zero_z = current_position[Z_AXIS];
  3114. //current_position[Z_AXIS]
  3115. SERIAL_ECHOLNPGM("");
  3116. SERIAL_ECHOPGM("ZERO: ");
  3117. MYSERIAL.print(current_position[Z_AXIS]);
  3118. SERIAL_ECHOLNPGM("");
  3119. for (int i = 0; i<5; i++) {
  3120. SERIAL_ECHOPGM("Step: ");
  3121. MYSERIAL.print(i+2);
  3122. SERIAL_ECHOLNPGM("/6");
  3123. custom_message_state = i + 2;
  3124. t_c = 60 + i * 10;
  3125. setTargetBed(t_c);
  3126. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3127. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3128. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3130. st_synchronize();
  3131. while (degBed() < t_c) {
  3132. delay_keep_alive(1000);
  3133. serialecho_temperatures();
  3134. }
  3135. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3136. delay_keep_alive(1000);
  3137. serialecho_temperatures();
  3138. }
  3139. current_position[Z_AXIS] = 5;
  3140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3141. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3142. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3144. st_synchronize();
  3145. find_bed_induction_sensor_point_z(-1.f);
  3146. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3147. SERIAL_ECHOLNPGM("");
  3148. SERIAL_ECHOPGM("Temperature: ");
  3149. MYSERIAL.print(t_c);
  3150. SERIAL_ECHOPGM(" Z shift (mm):");
  3151. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3152. SERIAL_ECHOLNPGM("");
  3153. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3154. }
  3155. custom_message_type = 0;
  3156. custom_message = false;
  3157. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3158. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3159. disable_x();
  3160. disable_y();
  3161. disable_z();
  3162. disable_e0();
  3163. disable_e1();
  3164. disable_e2();
  3165. setTargetBed(0); //set bed target temperature back to 0
  3166. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3167. temp_cal_active = true;
  3168. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3169. lcd_update_enable(true);
  3170. lcd_update(2);
  3171. }
  3172. break;
  3173. #ifdef DIS
  3174. case 77:
  3175. {
  3176. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3177. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3178. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3179. float dimension_x = 40;
  3180. float dimension_y = 40;
  3181. int points_x = 40;
  3182. int points_y = 40;
  3183. float offset_x = 74;
  3184. float offset_y = 33;
  3185. if (code_seen('X')) dimension_x = code_value();
  3186. if (code_seen('Y')) dimension_y = code_value();
  3187. if (code_seen('XP')) points_x = code_value();
  3188. if (code_seen('YP')) points_y = code_value();
  3189. if (code_seen('XO')) offset_x = code_value();
  3190. if (code_seen('YO')) offset_y = code_value();
  3191. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3192. } break;
  3193. #endif
  3194. case 79: {
  3195. for (int i = 255; i > 0; i = i - 5) {
  3196. fanSpeed = i;
  3197. //delay_keep_alive(2000);
  3198. for (int j = 0; j < 100; j++) {
  3199. delay_keep_alive(100);
  3200. }
  3201. fan_speed[1];
  3202. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3203. }
  3204. }break;
  3205. /**
  3206. * G80: Mesh-based Z probe, probes a grid and produces a
  3207. * mesh to compensate for variable bed height
  3208. *
  3209. * The S0 report the points as below
  3210. *
  3211. * +----> X-axis
  3212. * |
  3213. * |
  3214. * v Y-axis
  3215. *
  3216. */
  3217. case 80:
  3218. #ifdef MK1BP
  3219. break;
  3220. #endif //MK1BP
  3221. case_G80:
  3222. {
  3223. mesh_bed_leveling_flag = true;
  3224. int8_t verbosity_level = 0;
  3225. static bool run = false;
  3226. if (code_seen('V')) {
  3227. // Just 'V' without a number counts as V1.
  3228. char c = strchr_pointer[1];
  3229. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3230. }
  3231. // Firstly check if we know where we are
  3232. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3233. // We don't know where we are! HOME!
  3234. // Push the commands to the front of the message queue in the reverse order!
  3235. // There shall be always enough space reserved for these commands.
  3236. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3237. repeatcommand_front(); // repeat G80 with all its parameters
  3238. enquecommand_front_P((PSTR("G28 W0")));
  3239. }
  3240. else {
  3241. mesh_bed_leveling_flag = false;
  3242. }
  3243. break;
  3244. }
  3245. bool temp_comp_start = true;
  3246. #ifdef PINDA_THERMISTOR
  3247. temp_comp_start = false;
  3248. #endif //PINDA_THERMISTOR
  3249. if (temp_comp_start)
  3250. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3251. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3252. temp_compensation_start();
  3253. run = true;
  3254. repeatcommand_front(); // repeat G80 with all its parameters
  3255. enquecommand_front_P((PSTR("G28 W0")));
  3256. }
  3257. else {
  3258. mesh_bed_leveling_flag = false;
  3259. }
  3260. break;
  3261. }
  3262. run = false;
  3263. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3264. mesh_bed_leveling_flag = false;
  3265. break;
  3266. }
  3267. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3268. bool custom_message_old = custom_message;
  3269. unsigned int custom_message_type_old = custom_message_type;
  3270. unsigned int custom_message_state_old = custom_message_state;
  3271. custom_message = true;
  3272. custom_message_type = 1;
  3273. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3274. lcd_update(1);
  3275. mbl.reset(); //reset mesh bed leveling
  3276. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3277. // consumed during the first movements following this statement.
  3278. babystep_undo();
  3279. // Cycle through all points and probe them
  3280. // First move up. During this first movement, the babystepping will be reverted.
  3281. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3283. // The move to the first calibration point.
  3284. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3285. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3286. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3287. #ifdef SUPPORT_VERBOSITY
  3288. if (verbosity_level >= 1) {
  3289. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3290. }
  3291. #endif //SUPPORT_VERBOSITY
  3292. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3294. // Wait until the move is finished.
  3295. st_synchronize();
  3296. int mesh_point = 0; //index number of calibration point
  3297. int ix = 0;
  3298. int iy = 0;
  3299. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3300. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3301. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3302. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3303. #ifdef SUPPORT_VERBOSITY
  3304. if (verbosity_level >= 1) {
  3305. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3306. }
  3307. #endif // SUPPORT_VERBOSITY
  3308. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3309. const char *kill_message = NULL;
  3310. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3311. // Get coords of a measuring point.
  3312. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3313. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3314. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3315. float z0 = 0.f;
  3316. if (has_z && mesh_point > 0) {
  3317. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3318. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3319. //#if 0
  3320. #ifdef SUPPORT_VERBOSITY
  3321. if (verbosity_level >= 1) {
  3322. SERIAL_ECHOLNPGM("");
  3323. SERIAL_ECHOPGM("Bed leveling, point: ");
  3324. MYSERIAL.print(mesh_point);
  3325. SERIAL_ECHOPGM(", calibration z: ");
  3326. MYSERIAL.print(z0, 5);
  3327. SERIAL_ECHOLNPGM("");
  3328. }
  3329. #endif // SUPPORT_VERBOSITY
  3330. //#endif
  3331. }
  3332. // Move Z up to MESH_HOME_Z_SEARCH.
  3333. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3335. st_synchronize();
  3336. // Move to XY position of the sensor point.
  3337. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3338. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3339. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3340. #ifdef SUPPORT_VERBOSITY
  3341. if (verbosity_level >= 1) {
  3342. SERIAL_PROTOCOL(mesh_point);
  3343. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3344. }
  3345. #endif // SUPPORT_VERBOSITY
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3347. st_synchronize();
  3348. // Go down until endstop is hit
  3349. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3350. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3351. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3352. break;
  3353. }
  3354. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3355. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3356. break;
  3357. }
  3358. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3359. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3360. break;
  3361. }
  3362. #ifdef SUPPORT_VERBOSITY
  3363. if (verbosity_level >= 10) {
  3364. SERIAL_ECHOPGM("X: ");
  3365. MYSERIAL.print(current_position[X_AXIS], 5);
  3366. SERIAL_ECHOLNPGM("");
  3367. SERIAL_ECHOPGM("Y: ");
  3368. MYSERIAL.print(current_position[Y_AXIS], 5);
  3369. SERIAL_PROTOCOLPGM("\n");
  3370. }
  3371. #endif // SUPPORT_VERBOSITY
  3372. float offset_z = 0;
  3373. #ifdef PINDA_THERMISTOR
  3374. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3375. #endif //PINDA_THERMISTOR
  3376. // #ifdef SUPPORT_VERBOSITY
  3377. /* if (verbosity_level >= 1)
  3378. {
  3379. SERIAL_ECHOPGM("mesh bed leveling: ");
  3380. MYSERIAL.print(current_position[Z_AXIS], 5);
  3381. SERIAL_ECHOPGM(" offset: ");
  3382. MYSERIAL.print(offset_z, 5);
  3383. SERIAL_ECHOLNPGM("");
  3384. }*/
  3385. // #endif // SUPPORT_VERBOSITY
  3386. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3387. custom_message_state--;
  3388. mesh_point++;
  3389. lcd_update(1);
  3390. }
  3391. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3392. #ifdef SUPPORT_VERBOSITY
  3393. if (verbosity_level >= 20) {
  3394. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3395. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3396. MYSERIAL.print(current_position[Z_AXIS], 5);
  3397. }
  3398. #endif // SUPPORT_VERBOSITY
  3399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3400. st_synchronize();
  3401. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3402. kill(kill_message);
  3403. SERIAL_ECHOLNPGM("killed");
  3404. }
  3405. clean_up_after_endstop_move();
  3406. // SERIAL_ECHOLNPGM("clean up finished ");
  3407. bool apply_temp_comp = true;
  3408. #ifdef PINDA_THERMISTOR
  3409. apply_temp_comp = false;
  3410. #endif
  3411. if (apply_temp_comp)
  3412. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3413. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3414. // SERIAL_ECHOLNPGM("babystep applied");
  3415. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3416. #ifdef SUPPORT_VERBOSITY
  3417. if (verbosity_level >= 1) {
  3418. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3419. }
  3420. #endif // SUPPORT_VERBOSITY
  3421. for (uint8_t i = 0; i < 4; ++i) {
  3422. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3423. long correction = 0;
  3424. if (code_seen(codes[i]))
  3425. correction = code_value_long();
  3426. else if (eeprom_bed_correction_valid) {
  3427. unsigned char *addr = (i < 2) ?
  3428. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3429. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3430. correction = eeprom_read_int8(addr);
  3431. }
  3432. if (correction == 0)
  3433. continue;
  3434. float offset = float(correction) * 0.001f;
  3435. if (fabs(offset) > 0.101f) {
  3436. SERIAL_ERROR_START;
  3437. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3438. SERIAL_ECHO(offset);
  3439. SERIAL_ECHOLNPGM(" microns");
  3440. }
  3441. else {
  3442. switch (i) {
  3443. case 0:
  3444. for (uint8_t row = 0; row < 3; ++row) {
  3445. mbl.z_values[row][1] += 0.5f * offset;
  3446. mbl.z_values[row][0] += offset;
  3447. }
  3448. break;
  3449. case 1:
  3450. for (uint8_t row = 0; row < 3; ++row) {
  3451. mbl.z_values[row][1] += 0.5f * offset;
  3452. mbl.z_values[row][2] += offset;
  3453. }
  3454. break;
  3455. case 2:
  3456. for (uint8_t col = 0; col < 3; ++col) {
  3457. mbl.z_values[1][col] += 0.5f * offset;
  3458. mbl.z_values[0][col] += offset;
  3459. }
  3460. break;
  3461. case 3:
  3462. for (uint8_t col = 0; col < 3; ++col) {
  3463. mbl.z_values[1][col] += 0.5f * offset;
  3464. mbl.z_values[2][col] += offset;
  3465. }
  3466. break;
  3467. }
  3468. }
  3469. }
  3470. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3471. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3472. // SERIAL_ECHOLNPGM("Upsample finished");
  3473. mbl.active = 1; //activate mesh bed leveling
  3474. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3475. go_home_with_z_lift();
  3476. // SERIAL_ECHOLNPGM("Go home finished");
  3477. //unretract (after PINDA preheat retraction)
  3478. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3479. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3481. }
  3482. KEEPALIVE_STATE(NOT_BUSY);
  3483. // Restore custom message state
  3484. custom_message = custom_message_old;
  3485. custom_message_type = custom_message_type_old;
  3486. custom_message_state = custom_message_state_old;
  3487. mesh_bed_leveling_flag = false;
  3488. mesh_bed_run_from_menu = false;
  3489. lcd_update(2);
  3490. }
  3491. break;
  3492. /**
  3493. * G81: Print mesh bed leveling status and bed profile if activated
  3494. */
  3495. case 81:
  3496. if (mbl.active) {
  3497. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3498. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3499. SERIAL_PROTOCOLPGM(",");
  3500. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3501. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3502. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3503. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3504. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3505. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3506. SERIAL_PROTOCOLPGM(" ");
  3507. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3508. }
  3509. SERIAL_PROTOCOLPGM("\n");
  3510. }
  3511. }
  3512. else
  3513. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3514. break;
  3515. #if 0
  3516. /**
  3517. * G82: Single Z probe at current location
  3518. *
  3519. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3520. *
  3521. */
  3522. case 82:
  3523. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3524. setup_for_endstop_move();
  3525. find_bed_induction_sensor_point_z();
  3526. clean_up_after_endstop_move();
  3527. SERIAL_PROTOCOLPGM("Bed found at: ");
  3528. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3529. SERIAL_PROTOCOLPGM("\n");
  3530. break;
  3531. /**
  3532. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3533. */
  3534. case 83:
  3535. {
  3536. int babystepz = code_seen('S') ? code_value() : 0;
  3537. int BabyPosition = code_seen('P') ? code_value() : 0;
  3538. if (babystepz != 0) {
  3539. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3540. // Is the axis indexed starting with zero or one?
  3541. if (BabyPosition > 4) {
  3542. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3543. }else{
  3544. // Save it to the eeprom
  3545. babystepLoadZ = babystepz;
  3546. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3547. // adjust the Z
  3548. babystepsTodoZadd(babystepLoadZ);
  3549. }
  3550. }
  3551. }
  3552. break;
  3553. /**
  3554. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3555. */
  3556. case 84:
  3557. babystepsTodoZsubtract(babystepLoadZ);
  3558. // babystepLoadZ = 0;
  3559. break;
  3560. /**
  3561. * G85: Prusa3D specific: Pick best babystep
  3562. */
  3563. case 85:
  3564. lcd_pick_babystep();
  3565. break;
  3566. #endif
  3567. /**
  3568. * G86: Prusa3D specific: Disable babystep correction after home.
  3569. * This G-code will be performed at the start of a calibration script.
  3570. */
  3571. case 86:
  3572. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3573. break;
  3574. /**
  3575. * G87: Prusa3D specific: Enable babystep correction after home
  3576. * This G-code will be performed at the end of a calibration script.
  3577. */
  3578. case 87:
  3579. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3580. break;
  3581. /**
  3582. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3583. */
  3584. case 88:
  3585. break;
  3586. #endif // ENABLE_MESH_BED_LEVELING
  3587. case 90: // G90
  3588. relative_mode = false;
  3589. break;
  3590. case 91: // G91
  3591. relative_mode = true;
  3592. break;
  3593. case 92: // G92
  3594. if(!code_seen(axis_codes[E_AXIS]))
  3595. st_synchronize();
  3596. for(int8_t i=0; i < NUM_AXIS; i++) {
  3597. if(code_seen(axis_codes[i])) {
  3598. if(i == E_AXIS) {
  3599. current_position[i] = code_value();
  3600. plan_set_e_position(current_position[E_AXIS]);
  3601. }
  3602. else {
  3603. current_position[i] = code_value()+add_homing[i];
  3604. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3605. }
  3606. }
  3607. }
  3608. break;
  3609. case 98: //activate farm mode
  3610. farm_mode = 1;
  3611. PingTime = millis();
  3612. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3613. break;
  3614. case 99: //deactivate farm mode
  3615. farm_mode = 0;
  3616. lcd_printer_connected();
  3617. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3618. lcd_update(2);
  3619. break;
  3620. default:
  3621. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3622. }
  3623. } // end if(code_seen('G'))
  3624. else if(code_seen('M'))
  3625. {
  3626. int index;
  3627. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3628. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3629. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3630. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3631. } else
  3632. switch((int)code_value())
  3633. {
  3634. #ifdef ULTIPANEL
  3635. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3636. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3637. {
  3638. char *src = strchr_pointer + 2;
  3639. codenum = 0;
  3640. bool hasP = false, hasS = false;
  3641. if (code_seen('P')) {
  3642. codenum = code_value(); // milliseconds to wait
  3643. hasP = codenum > 0;
  3644. }
  3645. if (code_seen('S')) {
  3646. codenum = code_value() * 1000; // seconds to wait
  3647. hasS = codenum > 0;
  3648. }
  3649. starpos = strchr(src, '*');
  3650. if (starpos != NULL) *(starpos) = '\0';
  3651. while (*src == ' ') ++src;
  3652. if (!hasP && !hasS && *src != '\0') {
  3653. lcd_setstatus(src);
  3654. } else {
  3655. LCD_MESSAGERPGM(MSG_USERWAIT);
  3656. }
  3657. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3658. st_synchronize();
  3659. previous_millis_cmd = millis();
  3660. if (codenum > 0){
  3661. codenum += millis(); // keep track of when we started waiting
  3662. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3663. while(millis() < codenum && !lcd_clicked()){
  3664. manage_heater();
  3665. manage_inactivity(true);
  3666. lcd_update();
  3667. }
  3668. KEEPALIVE_STATE(IN_HANDLER);
  3669. lcd_ignore_click(false);
  3670. }else{
  3671. if (!lcd_detected())
  3672. break;
  3673. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3674. while(!lcd_clicked()){
  3675. manage_heater();
  3676. manage_inactivity(true);
  3677. lcd_update();
  3678. }
  3679. KEEPALIVE_STATE(IN_HANDLER);
  3680. }
  3681. if (IS_SD_PRINTING)
  3682. LCD_MESSAGERPGM(MSG_RESUMING);
  3683. else
  3684. LCD_MESSAGERPGM(WELCOME_MSG);
  3685. }
  3686. break;
  3687. #endif
  3688. case 17:
  3689. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3690. enable_x();
  3691. enable_y();
  3692. enable_z();
  3693. enable_e0();
  3694. enable_e1();
  3695. enable_e2();
  3696. break;
  3697. #ifdef SDSUPPORT
  3698. case 20: // M20 - list SD card
  3699. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3700. card.ls();
  3701. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3702. break;
  3703. case 21: // M21 - init SD card
  3704. card.initsd();
  3705. break;
  3706. case 22: //M22 - release SD card
  3707. card.release();
  3708. break;
  3709. case 23: //M23 - Select file
  3710. starpos = (strchr(strchr_pointer + 4,'*'));
  3711. if(starpos!=NULL)
  3712. *(starpos)='\0';
  3713. card.openFile(strchr_pointer + 4,true);
  3714. break;
  3715. case 24: //M24 - Start SD print
  3716. if (!card.paused)
  3717. failstats_reset_print();
  3718. card.startFileprint();
  3719. starttime=millis();
  3720. break;
  3721. case 25: //M25 - Pause SD print
  3722. card.pauseSDPrint();
  3723. break;
  3724. case 26: //M26 - Set SD index
  3725. if(card.cardOK && code_seen('S')) {
  3726. card.setIndex(code_value_long());
  3727. }
  3728. break;
  3729. case 27: //M27 - Get SD status
  3730. card.getStatus();
  3731. break;
  3732. case 28: //M28 - Start SD write
  3733. starpos = (strchr(strchr_pointer + 4,'*'));
  3734. if(starpos != NULL){
  3735. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3736. strchr_pointer = strchr(npos,' ') + 1;
  3737. *(starpos) = '\0';
  3738. }
  3739. card.openFile(strchr_pointer+4,false);
  3740. break;
  3741. case 29: //M29 - Stop SD write
  3742. //processed in write to file routine above
  3743. //card,saving = false;
  3744. break;
  3745. case 30: //M30 <filename> Delete File
  3746. if (card.cardOK){
  3747. card.closefile();
  3748. starpos = (strchr(strchr_pointer + 4,'*'));
  3749. if(starpos != NULL){
  3750. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3751. strchr_pointer = strchr(npos,' ') + 1;
  3752. *(starpos) = '\0';
  3753. }
  3754. card.removeFile(strchr_pointer + 4);
  3755. }
  3756. break;
  3757. case 32: //M32 - Select file and start SD print
  3758. {
  3759. if(card.sdprinting) {
  3760. st_synchronize();
  3761. }
  3762. starpos = (strchr(strchr_pointer + 4,'*'));
  3763. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3764. if(namestartpos==NULL)
  3765. {
  3766. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3767. }
  3768. else
  3769. namestartpos++; //to skip the '!'
  3770. if(starpos!=NULL)
  3771. *(starpos)='\0';
  3772. bool call_procedure=(code_seen('P'));
  3773. if(strchr_pointer>namestartpos)
  3774. call_procedure=false; //false alert, 'P' found within filename
  3775. if( card.cardOK )
  3776. {
  3777. card.openFile(namestartpos,true,!call_procedure);
  3778. if(code_seen('S'))
  3779. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3780. card.setIndex(code_value_long());
  3781. card.startFileprint();
  3782. if(!call_procedure)
  3783. starttime=millis(); //procedure calls count as normal print time.
  3784. }
  3785. } break;
  3786. case 928: //M928 - Start SD write
  3787. starpos = (strchr(strchr_pointer + 5,'*'));
  3788. if(starpos != NULL){
  3789. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3790. strchr_pointer = strchr(npos,' ') + 1;
  3791. *(starpos) = '\0';
  3792. }
  3793. card.openLogFile(strchr_pointer+5);
  3794. break;
  3795. #endif //SDSUPPORT
  3796. case 31: //M31 take time since the start of the SD print or an M109 command
  3797. {
  3798. stoptime=millis();
  3799. char time[30];
  3800. unsigned long t=(stoptime-starttime)/1000;
  3801. int sec,min;
  3802. min=t/60;
  3803. sec=t%60;
  3804. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3805. SERIAL_ECHO_START;
  3806. SERIAL_ECHOLN(time);
  3807. lcd_setstatus(time);
  3808. autotempShutdown();
  3809. }
  3810. break;
  3811. #ifndef _DISABLE_M42_M226
  3812. case 42: //M42 -Change pin status via gcode
  3813. if (code_seen('S'))
  3814. {
  3815. int pin_status = code_value();
  3816. int pin_number = LED_PIN;
  3817. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3818. pin_number = code_value();
  3819. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3820. {
  3821. if (sensitive_pins[i] == pin_number)
  3822. {
  3823. pin_number = -1;
  3824. break;
  3825. }
  3826. }
  3827. #if defined(FAN_PIN) && FAN_PIN > -1
  3828. if (pin_number == FAN_PIN)
  3829. fanSpeed = pin_status;
  3830. #endif
  3831. if (pin_number > -1)
  3832. {
  3833. pinMode(pin_number, OUTPUT);
  3834. digitalWrite(pin_number, pin_status);
  3835. analogWrite(pin_number, pin_status);
  3836. }
  3837. }
  3838. break;
  3839. #endif //_DISABLE_M42_M226
  3840. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3841. // Reset the baby step value and the baby step applied flag.
  3842. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3843. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3844. // Reset the skew and offset in both RAM and EEPROM.
  3845. reset_bed_offset_and_skew();
  3846. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3847. // the planner will not perform any adjustments in the XY plane.
  3848. // Wait for the motors to stop and update the current position with the absolute values.
  3849. world2machine_revert_to_uncorrected();
  3850. break;
  3851. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3852. {
  3853. int8_t verbosity_level = 0;
  3854. bool only_Z = code_seen('Z');
  3855. #ifdef SUPPORT_VERBOSITY
  3856. if (code_seen('V'))
  3857. {
  3858. // Just 'V' without a number counts as V1.
  3859. char c = strchr_pointer[1];
  3860. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3861. }
  3862. #endif //SUPPORT_VERBOSITY
  3863. gcode_M45(only_Z, verbosity_level);
  3864. }
  3865. break;
  3866. /*
  3867. case 46:
  3868. {
  3869. // M46: Prusa3D: Show the assigned IP address.
  3870. uint8_t ip[4];
  3871. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3872. if (hasIP) {
  3873. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3874. SERIAL_ECHO(int(ip[0]));
  3875. SERIAL_ECHOPGM(".");
  3876. SERIAL_ECHO(int(ip[1]));
  3877. SERIAL_ECHOPGM(".");
  3878. SERIAL_ECHO(int(ip[2]));
  3879. SERIAL_ECHOPGM(".");
  3880. SERIAL_ECHO(int(ip[3]));
  3881. SERIAL_ECHOLNPGM("");
  3882. } else {
  3883. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3884. }
  3885. break;
  3886. }
  3887. */
  3888. case 47:
  3889. // M47: Prusa3D: Show end stops dialog on the display.
  3890. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3891. lcd_diag_show_end_stops();
  3892. KEEPALIVE_STATE(IN_HANDLER);
  3893. break;
  3894. #if 0
  3895. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3896. {
  3897. // Disable the default update procedure of the display. We will do a modal dialog.
  3898. lcd_update_enable(false);
  3899. // Let the planner use the uncorrected coordinates.
  3900. mbl.reset();
  3901. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3902. // the planner will not perform any adjustments in the XY plane.
  3903. // Wait for the motors to stop and update the current position with the absolute values.
  3904. world2machine_revert_to_uncorrected();
  3905. // Move the print head close to the bed.
  3906. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3908. st_synchronize();
  3909. // Home in the XY plane.
  3910. set_destination_to_current();
  3911. setup_for_endstop_move();
  3912. home_xy();
  3913. int8_t verbosity_level = 0;
  3914. if (code_seen('V')) {
  3915. // Just 'V' without a number counts as V1.
  3916. char c = strchr_pointer[1];
  3917. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3918. }
  3919. bool success = scan_bed_induction_points(verbosity_level);
  3920. clean_up_after_endstop_move();
  3921. // Print head up.
  3922. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3924. st_synchronize();
  3925. lcd_update_enable(true);
  3926. break;
  3927. }
  3928. #endif
  3929. // M48 Z-Probe repeatability measurement function.
  3930. //
  3931. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3932. //
  3933. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3934. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3935. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3936. // regenerated.
  3937. //
  3938. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3939. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3940. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3941. //
  3942. #ifdef ENABLE_AUTO_BED_LEVELING
  3943. #ifdef Z_PROBE_REPEATABILITY_TEST
  3944. case 48: // M48 Z-Probe repeatability
  3945. {
  3946. #if Z_MIN_PIN == -1
  3947. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3948. #endif
  3949. double sum=0.0;
  3950. double mean=0.0;
  3951. double sigma=0.0;
  3952. double sample_set[50];
  3953. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3954. double X_current, Y_current, Z_current;
  3955. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3956. if (code_seen('V') || code_seen('v')) {
  3957. verbose_level = code_value();
  3958. if (verbose_level<0 || verbose_level>4 ) {
  3959. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3960. goto Sigma_Exit;
  3961. }
  3962. }
  3963. if (verbose_level > 0) {
  3964. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3965. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3966. }
  3967. if (code_seen('n')) {
  3968. n_samples = code_value();
  3969. if (n_samples<4 || n_samples>50 ) {
  3970. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3971. goto Sigma_Exit;
  3972. }
  3973. }
  3974. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3975. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3976. Z_current = st_get_position_mm(Z_AXIS);
  3977. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3978. ext_position = st_get_position_mm(E_AXIS);
  3979. if (code_seen('X') || code_seen('x') ) {
  3980. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3981. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3982. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3983. goto Sigma_Exit;
  3984. }
  3985. }
  3986. if (code_seen('Y') || code_seen('y') ) {
  3987. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3988. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3989. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3990. goto Sigma_Exit;
  3991. }
  3992. }
  3993. if (code_seen('L') || code_seen('l') ) {
  3994. n_legs = code_value();
  3995. if ( n_legs==1 )
  3996. n_legs = 2;
  3997. if ( n_legs<0 || n_legs>15 ) {
  3998. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3999. goto Sigma_Exit;
  4000. }
  4001. }
  4002. //
  4003. // Do all the preliminary setup work. First raise the probe.
  4004. //
  4005. st_synchronize();
  4006. plan_bed_level_matrix.set_to_identity();
  4007. plan_buffer_line( X_current, Y_current, Z_start_location,
  4008. ext_position,
  4009. homing_feedrate[Z_AXIS]/60,
  4010. active_extruder);
  4011. st_synchronize();
  4012. //
  4013. // Now get everything to the specified probe point So we can safely do a probe to
  4014. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4015. // use that as a starting point for each probe.
  4016. //
  4017. if (verbose_level > 2)
  4018. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4019. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4020. ext_position,
  4021. homing_feedrate[X_AXIS]/60,
  4022. active_extruder);
  4023. st_synchronize();
  4024. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4025. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4026. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4027. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4028. //
  4029. // OK, do the inital probe to get us close to the bed.
  4030. // Then retrace the right amount and use that in subsequent probes
  4031. //
  4032. setup_for_endstop_move();
  4033. run_z_probe();
  4034. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4035. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4036. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4037. ext_position,
  4038. homing_feedrate[X_AXIS]/60,
  4039. active_extruder);
  4040. st_synchronize();
  4041. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4042. for( n=0; n<n_samples; n++) {
  4043. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4044. if ( n_legs) {
  4045. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4046. int rotational_direction, l;
  4047. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4048. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4049. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4050. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4051. //SERIAL_ECHOPAIR(" theta: ",theta);
  4052. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4053. //SERIAL_PROTOCOLLNPGM("");
  4054. for( l=0; l<n_legs-1; l++) {
  4055. if (rotational_direction==1)
  4056. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4057. else
  4058. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4059. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4060. if ( radius<0.0 )
  4061. radius = -radius;
  4062. X_current = X_probe_location + cos(theta) * radius;
  4063. Y_current = Y_probe_location + sin(theta) * radius;
  4064. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4065. X_current = X_MIN_POS;
  4066. if ( X_current>X_MAX_POS)
  4067. X_current = X_MAX_POS;
  4068. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4069. Y_current = Y_MIN_POS;
  4070. if ( Y_current>Y_MAX_POS)
  4071. Y_current = Y_MAX_POS;
  4072. if (verbose_level>3 ) {
  4073. SERIAL_ECHOPAIR("x: ", X_current);
  4074. SERIAL_ECHOPAIR("y: ", Y_current);
  4075. SERIAL_PROTOCOLLNPGM("");
  4076. }
  4077. do_blocking_move_to( X_current, Y_current, Z_current );
  4078. }
  4079. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4080. }
  4081. setup_for_endstop_move();
  4082. run_z_probe();
  4083. sample_set[n] = current_position[Z_AXIS];
  4084. //
  4085. // Get the current mean for the data points we have so far
  4086. //
  4087. sum=0.0;
  4088. for( j=0; j<=n; j++) {
  4089. sum = sum + sample_set[j];
  4090. }
  4091. mean = sum / (double (n+1));
  4092. //
  4093. // Now, use that mean to calculate the standard deviation for the
  4094. // data points we have so far
  4095. //
  4096. sum=0.0;
  4097. for( j=0; j<=n; j++) {
  4098. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4099. }
  4100. sigma = sqrt( sum / (double (n+1)) );
  4101. if (verbose_level > 1) {
  4102. SERIAL_PROTOCOL(n+1);
  4103. SERIAL_PROTOCOL(" of ");
  4104. SERIAL_PROTOCOL(n_samples);
  4105. SERIAL_PROTOCOLPGM(" z: ");
  4106. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4107. }
  4108. if (verbose_level > 2) {
  4109. SERIAL_PROTOCOL(" mean: ");
  4110. SERIAL_PROTOCOL_F(mean,6);
  4111. SERIAL_PROTOCOL(" sigma: ");
  4112. SERIAL_PROTOCOL_F(sigma,6);
  4113. }
  4114. if (verbose_level > 0)
  4115. SERIAL_PROTOCOLPGM("\n");
  4116. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4117. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4118. st_synchronize();
  4119. }
  4120. delay(1000);
  4121. clean_up_after_endstop_move();
  4122. // enable_endstops(true);
  4123. if (verbose_level > 0) {
  4124. SERIAL_PROTOCOLPGM("Mean: ");
  4125. SERIAL_PROTOCOL_F(mean, 6);
  4126. SERIAL_PROTOCOLPGM("\n");
  4127. }
  4128. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4129. SERIAL_PROTOCOL_F(sigma, 6);
  4130. SERIAL_PROTOCOLPGM("\n\n");
  4131. Sigma_Exit:
  4132. break;
  4133. }
  4134. #endif // Z_PROBE_REPEATABILITY_TEST
  4135. #endif // ENABLE_AUTO_BED_LEVELING
  4136. case 104: // M104
  4137. if(setTargetedHotend(104)){
  4138. break;
  4139. }
  4140. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4141. setWatch();
  4142. break;
  4143. case 112: // M112 -Emergency Stop
  4144. kill("", 3);
  4145. break;
  4146. case 140: // M140 set bed temp
  4147. if (code_seen('S')) setTargetBed(code_value());
  4148. break;
  4149. case 105 : // M105
  4150. if(setTargetedHotend(105)){
  4151. break;
  4152. }
  4153. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4154. SERIAL_PROTOCOLPGM("ok T:");
  4155. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4156. SERIAL_PROTOCOLPGM(" /");
  4157. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4158. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4159. SERIAL_PROTOCOLPGM(" B:");
  4160. SERIAL_PROTOCOL_F(degBed(),1);
  4161. SERIAL_PROTOCOLPGM(" /");
  4162. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4163. #endif //TEMP_BED_PIN
  4164. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4165. SERIAL_PROTOCOLPGM(" T");
  4166. SERIAL_PROTOCOL(cur_extruder);
  4167. SERIAL_PROTOCOLPGM(":");
  4168. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4169. SERIAL_PROTOCOLPGM(" /");
  4170. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4171. }
  4172. #else
  4173. SERIAL_ERROR_START;
  4174. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4175. #endif
  4176. SERIAL_PROTOCOLPGM(" @:");
  4177. #ifdef EXTRUDER_WATTS
  4178. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4179. SERIAL_PROTOCOLPGM("W");
  4180. #else
  4181. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4182. #endif
  4183. SERIAL_PROTOCOLPGM(" B@:");
  4184. #ifdef BED_WATTS
  4185. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4186. SERIAL_PROTOCOLPGM("W");
  4187. #else
  4188. SERIAL_PROTOCOL(getHeaterPower(-1));
  4189. #endif
  4190. #ifdef PINDA_THERMISTOR
  4191. SERIAL_PROTOCOLPGM(" P:");
  4192. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4193. #endif //PINDA_THERMISTOR
  4194. #ifdef AMBIENT_THERMISTOR
  4195. SERIAL_PROTOCOLPGM(" A:");
  4196. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4197. #endif //AMBIENT_THERMISTOR
  4198. #ifdef SHOW_TEMP_ADC_VALUES
  4199. {float raw = 0.0;
  4200. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4201. SERIAL_PROTOCOLPGM(" ADC B:");
  4202. SERIAL_PROTOCOL_F(degBed(),1);
  4203. SERIAL_PROTOCOLPGM("C->");
  4204. raw = rawBedTemp();
  4205. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4206. SERIAL_PROTOCOLPGM(" Rb->");
  4207. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4208. SERIAL_PROTOCOLPGM(" Rxb->");
  4209. SERIAL_PROTOCOL_F(raw, 5);
  4210. #endif
  4211. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4212. SERIAL_PROTOCOLPGM(" T");
  4213. SERIAL_PROTOCOL(cur_extruder);
  4214. SERIAL_PROTOCOLPGM(":");
  4215. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4216. SERIAL_PROTOCOLPGM("C->");
  4217. raw = rawHotendTemp(cur_extruder);
  4218. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4219. SERIAL_PROTOCOLPGM(" Rt");
  4220. SERIAL_PROTOCOL(cur_extruder);
  4221. SERIAL_PROTOCOLPGM("->");
  4222. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4223. SERIAL_PROTOCOLPGM(" Rx");
  4224. SERIAL_PROTOCOL(cur_extruder);
  4225. SERIAL_PROTOCOLPGM("->");
  4226. SERIAL_PROTOCOL_F(raw, 5);
  4227. }}
  4228. #endif
  4229. SERIAL_PROTOCOLLN("");
  4230. KEEPALIVE_STATE(NOT_BUSY);
  4231. return;
  4232. break;
  4233. case 109:
  4234. {// M109 - Wait for extruder heater to reach target.
  4235. if(setTargetedHotend(109)){
  4236. break;
  4237. }
  4238. LCD_MESSAGERPGM(MSG_HEATING);
  4239. heating_status = 1;
  4240. if (farm_mode) { prusa_statistics(1); };
  4241. #ifdef AUTOTEMP
  4242. autotemp_enabled=false;
  4243. #endif
  4244. if (code_seen('S')) {
  4245. setTargetHotend(code_value(), tmp_extruder);
  4246. CooldownNoWait = true;
  4247. } else if (code_seen('R')) {
  4248. setTargetHotend(code_value(), tmp_extruder);
  4249. CooldownNoWait = false;
  4250. }
  4251. #ifdef AUTOTEMP
  4252. if (code_seen('S')) autotemp_min=code_value();
  4253. if (code_seen('B')) autotemp_max=code_value();
  4254. if (code_seen('F'))
  4255. {
  4256. autotemp_factor=code_value();
  4257. autotemp_enabled=true;
  4258. }
  4259. #endif
  4260. setWatch();
  4261. codenum = millis();
  4262. /* See if we are heating up or cooling down */
  4263. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4264. KEEPALIVE_STATE(NOT_BUSY);
  4265. cancel_heatup = false;
  4266. wait_for_heater(codenum); //loops until target temperature is reached
  4267. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4268. KEEPALIVE_STATE(IN_HANDLER);
  4269. heating_status = 2;
  4270. if (farm_mode) { prusa_statistics(2); };
  4271. //starttime=millis();
  4272. previous_millis_cmd = millis();
  4273. }
  4274. break;
  4275. case 190: // M190 - Wait for bed heater to reach target.
  4276. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4277. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4278. heating_status = 3;
  4279. if (farm_mode) { prusa_statistics(1); };
  4280. if (code_seen('S'))
  4281. {
  4282. setTargetBed(code_value());
  4283. CooldownNoWait = true;
  4284. }
  4285. else if (code_seen('R'))
  4286. {
  4287. setTargetBed(code_value());
  4288. CooldownNoWait = false;
  4289. }
  4290. codenum = millis();
  4291. cancel_heatup = false;
  4292. target_direction = isHeatingBed(); // true if heating, false if cooling
  4293. KEEPALIVE_STATE(NOT_BUSY);
  4294. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4295. {
  4296. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4297. {
  4298. if (!farm_mode) {
  4299. float tt = degHotend(active_extruder);
  4300. SERIAL_PROTOCOLPGM("T:");
  4301. SERIAL_PROTOCOL(tt);
  4302. SERIAL_PROTOCOLPGM(" E:");
  4303. SERIAL_PROTOCOL((int)active_extruder);
  4304. SERIAL_PROTOCOLPGM(" B:");
  4305. SERIAL_PROTOCOL_F(degBed(), 1);
  4306. SERIAL_PROTOCOLLN("");
  4307. }
  4308. codenum = millis();
  4309. }
  4310. manage_heater();
  4311. manage_inactivity();
  4312. lcd_update();
  4313. }
  4314. LCD_MESSAGERPGM(MSG_BED_DONE);
  4315. KEEPALIVE_STATE(IN_HANDLER);
  4316. heating_status = 4;
  4317. previous_millis_cmd = millis();
  4318. #endif
  4319. break;
  4320. #if defined(FAN_PIN) && FAN_PIN > -1
  4321. case 106: //M106 Fan On
  4322. if (code_seen('S')){
  4323. fanSpeed=constrain(code_value(),0,255);
  4324. }
  4325. else {
  4326. fanSpeed=255;
  4327. }
  4328. break;
  4329. case 107: //M107 Fan Off
  4330. fanSpeed = 0;
  4331. break;
  4332. #endif //FAN_PIN
  4333. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4334. case 80: // M80 - Turn on Power Supply
  4335. SET_OUTPUT(PS_ON_PIN); //GND
  4336. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4337. // If you have a switch on suicide pin, this is useful
  4338. // if you want to start another print with suicide feature after
  4339. // a print without suicide...
  4340. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4341. SET_OUTPUT(SUICIDE_PIN);
  4342. WRITE(SUICIDE_PIN, HIGH);
  4343. #endif
  4344. #ifdef ULTIPANEL
  4345. powersupply = true;
  4346. LCD_MESSAGERPGM(WELCOME_MSG);
  4347. lcd_update();
  4348. #endif
  4349. break;
  4350. #endif
  4351. case 81: // M81 - Turn off Power Supply
  4352. disable_heater();
  4353. st_synchronize();
  4354. disable_e0();
  4355. disable_e1();
  4356. disable_e2();
  4357. finishAndDisableSteppers();
  4358. fanSpeed = 0;
  4359. delay(1000); // Wait a little before to switch off
  4360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4361. st_synchronize();
  4362. suicide();
  4363. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4364. SET_OUTPUT(PS_ON_PIN);
  4365. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4366. #endif
  4367. #ifdef ULTIPANEL
  4368. powersupply = false;
  4369. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4370. /*
  4371. MACHNAME = "Prusa i3"
  4372. MSGOFF = "Vypnuto"
  4373. "Prusai3"" ""vypnuto""."
  4374. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4375. */
  4376. lcd_update();
  4377. #endif
  4378. break;
  4379. case 82:
  4380. axis_relative_modes[3] = false;
  4381. break;
  4382. case 83:
  4383. axis_relative_modes[3] = true;
  4384. break;
  4385. case 18: //compatibility
  4386. case 84: // M84
  4387. if(code_seen('S')){
  4388. stepper_inactive_time = code_value() * 1000;
  4389. }
  4390. else
  4391. {
  4392. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4393. if(all_axis)
  4394. {
  4395. st_synchronize();
  4396. disable_e0();
  4397. disable_e1();
  4398. disable_e2();
  4399. finishAndDisableSteppers();
  4400. }
  4401. else
  4402. {
  4403. st_synchronize();
  4404. if (code_seen('X')) disable_x();
  4405. if (code_seen('Y')) disable_y();
  4406. if (code_seen('Z')) disable_z();
  4407. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4408. if (code_seen('E')) {
  4409. disable_e0();
  4410. disable_e1();
  4411. disable_e2();
  4412. }
  4413. #endif
  4414. }
  4415. }
  4416. snmm_filaments_used = 0;
  4417. break;
  4418. case 85: // M85
  4419. if(code_seen('S')) {
  4420. max_inactive_time = code_value() * 1000;
  4421. }
  4422. break;
  4423. case 92: // M92
  4424. for(int8_t i=0; i < NUM_AXIS; i++)
  4425. {
  4426. if(code_seen(axis_codes[i]))
  4427. {
  4428. if(i == 3) { // E
  4429. float value = code_value();
  4430. if(value < 20.0) {
  4431. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4432. max_jerk[E_AXIS] *= factor;
  4433. max_feedrate[i] *= factor;
  4434. axis_steps_per_sqr_second[i] *= factor;
  4435. }
  4436. axis_steps_per_unit[i] = value;
  4437. }
  4438. else {
  4439. axis_steps_per_unit[i] = code_value();
  4440. }
  4441. }
  4442. }
  4443. break;
  4444. case 110: // M110 - reset line pos
  4445. if (code_seen('N'))
  4446. gcode_LastN = code_value_long();
  4447. break;
  4448. #ifdef HOST_KEEPALIVE_FEATURE
  4449. case 113: // M113 - Get or set Host Keepalive interval
  4450. if (code_seen('S')) {
  4451. host_keepalive_interval = (uint8_t)code_value_short();
  4452. // NOMORE(host_keepalive_interval, 60);
  4453. }
  4454. else {
  4455. SERIAL_ECHO_START;
  4456. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4457. SERIAL_PROTOCOLLN("");
  4458. }
  4459. break;
  4460. #endif
  4461. case 115: // M115
  4462. if (code_seen('V')) {
  4463. // Report the Prusa version number.
  4464. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4465. } else if (code_seen('U')) {
  4466. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4467. // pause the print and ask the user to upgrade the firmware.
  4468. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4469. } else {
  4470. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4471. }
  4472. break;
  4473. /* case 117: // M117 display message
  4474. starpos = (strchr(strchr_pointer + 5,'*'));
  4475. if(starpos!=NULL)
  4476. *(starpos)='\0';
  4477. lcd_setstatus(strchr_pointer + 5);
  4478. break;*/
  4479. case 114: // M114
  4480. gcode_M114();
  4481. break;
  4482. case 120: // M120
  4483. enable_endstops(false) ;
  4484. break;
  4485. case 121: // M121
  4486. enable_endstops(true) ;
  4487. break;
  4488. case 119: // M119
  4489. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4490. SERIAL_PROTOCOLLN("");
  4491. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4492. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4493. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4494. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4495. }else{
  4496. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4497. }
  4498. SERIAL_PROTOCOLLN("");
  4499. #endif
  4500. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4501. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4502. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4503. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4504. }else{
  4505. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4506. }
  4507. SERIAL_PROTOCOLLN("");
  4508. #endif
  4509. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4510. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4511. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4512. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4513. }else{
  4514. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4515. }
  4516. SERIAL_PROTOCOLLN("");
  4517. #endif
  4518. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4519. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4520. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4521. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4522. }else{
  4523. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4524. }
  4525. SERIAL_PROTOCOLLN("");
  4526. #endif
  4527. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4528. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4529. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4530. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4531. }else{
  4532. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4533. }
  4534. SERIAL_PROTOCOLLN("");
  4535. #endif
  4536. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4537. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4538. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4539. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4540. }else{
  4541. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4542. }
  4543. SERIAL_PROTOCOLLN("");
  4544. #endif
  4545. break;
  4546. //TODO: update for all axis, use for loop
  4547. #ifdef BLINKM
  4548. case 150: // M150
  4549. {
  4550. byte red;
  4551. byte grn;
  4552. byte blu;
  4553. if(code_seen('R')) red = code_value();
  4554. if(code_seen('U')) grn = code_value();
  4555. if(code_seen('B')) blu = code_value();
  4556. SendColors(red,grn,blu);
  4557. }
  4558. break;
  4559. #endif //BLINKM
  4560. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4561. {
  4562. tmp_extruder = active_extruder;
  4563. if(code_seen('T')) {
  4564. tmp_extruder = code_value();
  4565. if(tmp_extruder >= EXTRUDERS) {
  4566. SERIAL_ECHO_START;
  4567. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4568. break;
  4569. }
  4570. }
  4571. float area = .0;
  4572. if(code_seen('D')) {
  4573. float diameter = (float)code_value();
  4574. if (diameter == 0.0) {
  4575. // setting any extruder filament size disables volumetric on the assumption that
  4576. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4577. // for all extruders
  4578. volumetric_enabled = false;
  4579. } else {
  4580. filament_size[tmp_extruder] = (float)code_value();
  4581. // make sure all extruders have some sane value for the filament size
  4582. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4583. #if EXTRUDERS > 1
  4584. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4585. #if EXTRUDERS > 2
  4586. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4587. #endif
  4588. #endif
  4589. volumetric_enabled = true;
  4590. }
  4591. } else {
  4592. //reserved for setting filament diameter via UFID or filament measuring device
  4593. break;
  4594. }
  4595. calculate_extruder_multipliers();
  4596. }
  4597. break;
  4598. case 201: // M201
  4599. for(int8_t i=0; i < NUM_AXIS; i++)
  4600. {
  4601. if(code_seen(axis_codes[i]))
  4602. {
  4603. max_acceleration_units_per_sq_second[i] = code_value();
  4604. }
  4605. }
  4606. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4607. reset_acceleration_rates();
  4608. break;
  4609. #if 0 // Not used for Sprinter/grbl gen6
  4610. case 202: // M202
  4611. for(int8_t i=0; i < NUM_AXIS; i++) {
  4612. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4613. }
  4614. break;
  4615. #endif
  4616. case 203: // M203 max feedrate mm/sec
  4617. for(int8_t i=0; i < NUM_AXIS; i++) {
  4618. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4619. }
  4620. break;
  4621. case 204: // M204 acclereration S normal moves T filmanent only moves
  4622. {
  4623. if(code_seen('S')) acceleration = code_value() ;
  4624. if(code_seen('T')) retract_acceleration = code_value() ;
  4625. }
  4626. break;
  4627. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4628. {
  4629. if(code_seen('S')) minimumfeedrate = code_value();
  4630. if(code_seen('T')) mintravelfeedrate = code_value();
  4631. if(code_seen('B')) minsegmenttime = code_value() ;
  4632. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4633. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4634. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4635. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4636. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4637. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4638. }
  4639. break;
  4640. case 206: // M206 additional homing offset
  4641. for(int8_t i=0; i < 3; i++)
  4642. {
  4643. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4644. }
  4645. break;
  4646. #ifdef FWRETRACT
  4647. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4648. {
  4649. if(code_seen('S'))
  4650. {
  4651. retract_length = code_value() ;
  4652. }
  4653. if(code_seen('F'))
  4654. {
  4655. retract_feedrate = code_value()/60 ;
  4656. }
  4657. if(code_seen('Z'))
  4658. {
  4659. retract_zlift = code_value() ;
  4660. }
  4661. }break;
  4662. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4663. {
  4664. if(code_seen('S'))
  4665. {
  4666. retract_recover_length = code_value() ;
  4667. }
  4668. if(code_seen('F'))
  4669. {
  4670. retract_recover_feedrate = code_value()/60 ;
  4671. }
  4672. }break;
  4673. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4674. {
  4675. if(code_seen('S'))
  4676. {
  4677. int t= code_value() ;
  4678. switch(t)
  4679. {
  4680. case 0:
  4681. {
  4682. autoretract_enabled=false;
  4683. retracted[0]=false;
  4684. #if EXTRUDERS > 1
  4685. retracted[1]=false;
  4686. #endif
  4687. #if EXTRUDERS > 2
  4688. retracted[2]=false;
  4689. #endif
  4690. }break;
  4691. case 1:
  4692. {
  4693. autoretract_enabled=true;
  4694. retracted[0]=false;
  4695. #if EXTRUDERS > 1
  4696. retracted[1]=false;
  4697. #endif
  4698. #if EXTRUDERS > 2
  4699. retracted[2]=false;
  4700. #endif
  4701. }break;
  4702. default:
  4703. SERIAL_ECHO_START;
  4704. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4705. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4706. SERIAL_ECHOLNPGM("\"(1)");
  4707. }
  4708. }
  4709. }break;
  4710. #endif // FWRETRACT
  4711. #if EXTRUDERS > 1
  4712. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4713. {
  4714. if(setTargetedHotend(218)){
  4715. break;
  4716. }
  4717. if(code_seen('X'))
  4718. {
  4719. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4720. }
  4721. if(code_seen('Y'))
  4722. {
  4723. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4724. }
  4725. SERIAL_ECHO_START;
  4726. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4727. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4728. {
  4729. SERIAL_ECHO(" ");
  4730. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4731. SERIAL_ECHO(",");
  4732. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4733. }
  4734. SERIAL_ECHOLN("");
  4735. }break;
  4736. #endif
  4737. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4738. {
  4739. if(code_seen('S'))
  4740. {
  4741. feedmultiply = code_value() ;
  4742. }
  4743. }
  4744. break;
  4745. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4746. {
  4747. if(code_seen('S'))
  4748. {
  4749. int tmp_code = code_value();
  4750. if (code_seen('T'))
  4751. {
  4752. if(setTargetedHotend(221)){
  4753. break;
  4754. }
  4755. extruder_multiply[tmp_extruder] = tmp_code;
  4756. }
  4757. else
  4758. {
  4759. extrudemultiply = tmp_code ;
  4760. }
  4761. }
  4762. calculate_extruder_multipliers();
  4763. }
  4764. break;
  4765. #ifndef _DISABLE_M42_M226
  4766. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4767. {
  4768. if(code_seen('P')){
  4769. int pin_number = code_value(); // pin number
  4770. int pin_state = -1; // required pin state - default is inverted
  4771. if(code_seen('S')) pin_state = code_value(); // required pin state
  4772. if(pin_state >= -1 && pin_state <= 1){
  4773. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4774. {
  4775. if (sensitive_pins[i] == pin_number)
  4776. {
  4777. pin_number = -1;
  4778. break;
  4779. }
  4780. }
  4781. if (pin_number > -1)
  4782. {
  4783. int target = LOW;
  4784. st_synchronize();
  4785. pinMode(pin_number, INPUT);
  4786. switch(pin_state){
  4787. case 1:
  4788. target = HIGH;
  4789. break;
  4790. case 0:
  4791. target = LOW;
  4792. break;
  4793. case -1:
  4794. target = !digitalRead(pin_number);
  4795. break;
  4796. }
  4797. while(digitalRead(pin_number) != target){
  4798. manage_heater();
  4799. manage_inactivity();
  4800. lcd_update();
  4801. }
  4802. }
  4803. }
  4804. }
  4805. }
  4806. break;
  4807. #endif //_DISABLE_M42_M226
  4808. #if NUM_SERVOS > 0
  4809. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4810. {
  4811. int servo_index = -1;
  4812. int servo_position = 0;
  4813. if (code_seen('P'))
  4814. servo_index = code_value();
  4815. if (code_seen('S')) {
  4816. servo_position = code_value();
  4817. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4818. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4819. servos[servo_index].attach(0);
  4820. #endif
  4821. servos[servo_index].write(servo_position);
  4822. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4823. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4824. servos[servo_index].detach();
  4825. #endif
  4826. }
  4827. else {
  4828. SERIAL_ECHO_START;
  4829. SERIAL_ECHO("Servo ");
  4830. SERIAL_ECHO(servo_index);
  4831. SERIAL_ECHOLN(" out of range");
  4832. }
  4833. }
  4834. else if (servo_index >= 0) {
  4835. SERIAL_PROTOCOL(MSG_OK);
  4836. SERIAL_PROTOCOL(" Servo ");
  4837. SERIAL_PROTOCOL(servo_index);
  4838. SERIAL_PROTOCOL(": ");
  4839. SERIAL_PROTOCOL(servos[servo_index].read());
  4840. SERIAL_PROTOCOLLN("");
  4841. }
  4842. }
  4843. break;
  4844. #endif // NUM_SERVOS > 0
  4845. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4846. case 300: // M300
  4847. {
  4848. int beepS = code_seen('S') ? code_value() : 110;
  4849. int beepP = code_seen('P') ? code_value() : 1000;
  4850. if (beepS > 0)
  4851. {
  4852. #if BEEPER > 0
  4853. tone(BEEPER, beepS);
  4854. delay(beepP);
  4855. noTone(BEEPER);
  4856. #elif defined(ULTRALCD)
  4857. lcd_buzz(beepS, beepP);
  4858. #elif defined(LCD_USE_I2C_BUZZER)
  4859. lcd_buzz(beepP, beepS);
  4860. #endif
  4861. }
  4862. else
  4863. {
  4864. delay(beepP);
  4865. }
  4866. }
  4867. break;
  4868. #endif // M300
  4869. #ifdef PIDTEMP
  4870. case 301: // M301
  4871. {
  4872. if(code_seen('P')) Kp = code_value();
  4873. if(code_seen('I')) Ki = scalePID_i(code_value());
  4874. if(code_seen('D')) Kd = scalePID_d(code_value());
  4875. #ifdef PID_ADD_EXTRUSION_RATE
  4876. if(code_seen('C')) Kc = code_value();
  4877. #endif
  4878. updatePID();
  4879. SERIAL_PROTOCOLRPGM(MSG_OK);
  4880. SERIAL_PROTOCOL(" p:");
  4881. SERIAL_PROTOCOL(Kp);
  4882. SERIAL_PROTOCOL(" i:");
  4883. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4884. SERIAL_PROTOCOL(" d:");
  4885. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4886. #ifdef PID_ADD_EXTRUSION_RATE
  4887. SERIAL_PROTOCOL(" c:");
  4888. //Kc does not have scaling applied above, or in resetting defaults
  4889. SERIAL_PROTOCOL(Kc);
  4890. #endif
  4891. SERIAL_PROTOCOLLN("");
  4892. }
  4893. break;
  4894. #endif //PIDTEMP
  4895. #ifdef PIDTEMPBED
  4896. case 304: // M304
  4897. {
  4898. if(code_seen('P')) bedKp = code_value();
  4899. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4900. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4901. updatePID();
  4902. SERIAL_PROTOCOLRPGM(MSG_OK);
  4903. SERIAL_PROTOCOL(" p:");
  4904. SERIAL_PROTOCOL(bedKp);
  4905. SERIAL_PROTOCOL(" i:");
  4906. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4907. SERIAL_PROTOCOL(" d:");
  4908. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4909. SERIAL_PROTOCOLLN("");
  4910. }
  4911. break;
  4912. #endif //PIDTEMP
  4913. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4914. {
  4915. #ifdef CHDK
  4916. SET_OUTPUT(CHDK);
  4917. WRITE(CHDK, HIGH);
  4918. chdkHigh = millis();
  4919. chdkActive = true;
  4920. #else
  4921. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4922. const uint8_t NUM_PULSES=16;
  4923. const float PULSE_LENGTH=0.01524;
  4924. for(int i=0; i < NUM_PULSES; i++) {
  4925. WRITE(PHOTOGRAPH_PIN, HIGH);
  4926. _delay_ms(PULSE_LENGTH);
  4927. WRITE(PHOTOGRAPH_PIN, LOW);
  4928. _delay_ms(PULSE_LENGTH);
  4929. }
  4930. delay(7.33);
  4931. for(int i=0; i < NUM_PULSES; i++) {
  4932. WRITE(PHOTOGRAPH_PIN, HIGH);
  4933. _delay_ms(PULSE_LENGTH);
  4934. WRITE(PHOTOGRAPH_PIN, LOW);
  4935. _delay_ms(PULSE_LENGTH);
  4936. }
  4937. #endif
  4938. #endif //chdk end if
  4939. }
  4940. break;
  4941. #ifdef DOGLCD
  4942. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4943. {
  4944. if (code_seen('C')) {
  4945. lcd_setcontrast( ((int)code_value())&63 );
  4946. }
  4947. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4948. SERIAL_PROTOCOL(lcd_contrast);
  4949. SERIAL_PROTOCOLLN("");
  4950. }
  4951. break;
  4952. #endif
  4953. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4954. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4955. {
  4956. float temp = .0;
  4957. if (code_seen('S')) temp=code_value();
  4958. set_extrude_min_temp(temp);
  4959. }
  4960. break;
  4961. #endif
  4962. case 303: // M303 PID autotune
  4963. {
  4964. float temp = 150.0;
  4965. int e=0;
  4966. int c=5;
  4967. if (code_seen('E')) e=code_value();
  4968. if (e<0)
  4969. temp=70;
  4970. if (code_seen('S')) temp=code_value();
  4971. if (code_seen('C')) c=code_value();
  4972. PID_autotune(temp, e, c);
  4973. }
  4974. break;
  4975. case 400: // M400 finish all moves
  4976. {
  4977. st_synchronize();
  4978. }
  4979. break;
  4980. case 500: // M500 Store settings in EEPROM
  4981. {
  4982. Config_StoreSettings(EEPROM_OFFSET);
  4983. }
  4984. break;
  4985. case 501: // M501 Read settings from EEPROM
  4986. {
  4987. Config_RetrieveSettings(EEPROM_OFFSET);
  4988. }
  4989. break;
  4990. case 502: // M502 Revert to default settings
  4991. {
  4992. Config_ResetDefault();
  4993. }
  4994. break;
  4995. case 503: // M503 print settings currently in memory
  4996. {
  4997. Config_PrintSettings();
  4998. }
  4999. break;
  5000. case 509: //M509 Force language selection
  5001. {
  5002. lcd_force_language_selection();
  5003. SERIAL_ECHO_START;
  5004. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5005. }
  5006. break;
  5007. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5008. case 540:
  5009. {
  5010. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5011. }
  5012. break;
  5013. #endif
  5014. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5015. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5016. {
  5017. float value;
  5018. if (code_seen('Z'))
  5019. {
  5020. value = code_value();
  5021. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5022. {
  5023. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5024. SERIAL_ECHO_START;
  5025. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5026. SERIAL_PROTOCOLLN("");
  5027. }
  5028. else
  5029. {
  5030. SERIAL_ECHO_START;
  5031. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5032. SERIAL_ECHORPGM(MSG_Z_MIN);
  5033. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5034. SERIAL_ECHORPGM(MSG_Z_MAX);
  5035. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5036. SERIAL_PROTOCOLLN("");
  5037. }
  5038. }
  5039. else
  5040. {
  5041. SERIAL_ECHO_START;
  5042. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5043. SERIAL_ECHO(-zprobe_zoffset);
  5044. SERIAL_PROTOCOLLN("");
  5045. }
  5046. break;
  5047. }
  5048. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5049. #ifdef FILAMENTCHANGEENABLE
  5050. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5051. {
  5052. #ifdef PAT9125
  5053. bool old_fsensor_enabled = fsensor_enabled;
  5054. fsensor_enabled = false; //temporary solution for unexpected restarting
  5055. #endif //PAT9125
  5056. st_synchronize();
  5057. float target[4];
  5058. float lastpos[4];
  5059. if (farm_mode)
  5060. {
  5061. prusa_statistics(22);
  5062. }
  5063. feedmultiplyBckp=feedmultiply;
  5064. int8_t TooLowZ = 0;
  5065. float HotendTempBckp = degTargetHotend(active_extruder);
  5066. int fanSpeedBckp = fanSpeed;
  5067. target[X_AXIS]=current_position[X_AXIS];
  5068. target[Y_AXIS]=current_position[Y_AXIS];
  5069. target[Z_AXIS]=current_position[Z_AXIS];
  5070. target[E_AXIS]=current_position[E_AXIS];
  5071. lastpos[X_AXIS]=current_position[X_AXIS];
  5072. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5073. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5074. lastpos[E_AXIS]=current_position[E_AXIS];
  5075. //Restract extruder
  5076. if(code_seen('E'))
  5077. {
  5078. target[E_AXIS]+= code_value();
  5079. }
  5080. else
  5081. {
  5082. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5083. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5084. #endif
  5085. }
  5086. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5087. //Lift Z
  5088. if(code_seen('Z'))
  5089. {
  5090. target[Z_AXIS]+= code_value();
  5091. }
  5092. else
  5093. {
  5094. #ifdef FILAMENTCHANGE_ZADD
  5095. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5096. if(target[Z_AXIS] < 10){
  5097. target[Z_AXIS]+= 10 ;
  5098. TooLowZ = 1;
  5099. }else{
  5100. TooLowZ = 0;
  5101. }
  5102. #endif
  5103. }
  5104. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5105. //Move XY to side
  5106. if(code_seen('X'))
  5107. {
  5108. target[X_AXIS]+= code_value();
  5109. }
  5110. else
  5111. {
  5112. #ifdef FILAMENTCHANGE_XPOS
  5113. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5114. #endif
  5115. }
  5116. if(code_seen('Y'))
  5117. {
  5118. target[Y_AXIS]= code_value();
  5119. }
  5120. else
  5121. {
  5122. #ifdef FILAMENTCHANGE_YPOS
  5123. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5124. #endif
  5125. }
  5126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5127. st_synchronize();
  5128. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5129. uint8_t cnt = 0;
  5130. int counterBeep = 0;
  5131. fanSpeed = 0;
  5132. unsigned long waiting_start_time = millis();
  5133. uint8_t wait_for_user_state = 0;
  5134. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5135. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5136. //cnt++;
  5137. manage_heater();
  5138. manage_inactivity(true);
  5139. /*#ifdef SNMM
  5140. target[E_AXIS] += 0.002;
  5141. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5142. #endif // SNMM*/
  5143. //if (cnt == 0)
  5144. {
  5145. #if BEEPER > 0
  5146. if (counterBeep == 500) {
  5147. counterBeep = 0;
  5148. }
  5149. SET_OUTPUT(BEEPER);
  5150. if (counterBeep == 0) {
  5151. WRITE(BEEPER, HIGH);
  5152. }
  5153. if (counterBeep == 20) {
  5154. WRITE(BEEPER, LOW);
  5155. }
  5156. counterBeep++;
  5157. #else
  5158. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5159. lcd_buzz(1000 / 6, 100);
  5160. #else
  5161. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5162. #endif
  5163. #endif
  5164. }
  5165. switch (wait_for_user_state) {
  5166. case 0:
  5167. delay_keep_alive(4);
  5168. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5169. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5170. wait_for_user_state = 1;
  5171. setTargetHotend(0, 0);
  5172. setTargetHotend(0, 1);
  5173. setTargetHotend(0, 2);
  5174. st_synchronize();
  5175. disable_e0();
  5176. disable_e1();
  5177. disable_e2();
  5178. }
  5179. break;
  5180. case 1:
  5181. delay_keep_alive(4);
  5182. if (lcd_clicked()) {
  5183. setTargetHotend(HotendTempBckp, active_extruder);
  5184. lcd_wait_for_heater();
  5185. wait_for_user_state = 2;
  5186. }
  5187. break;
  5188. case 2:
  5189. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5190. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5191. waiting_start_time = millis();
  5192. wait_for_user_state = 0;
  5193. }
  5194. else {
  5195. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5196. lcd.setCursor(1, 4);
  5197. lcd.print(ftostr3(degHotend(active_extruder)));
  5198. }
  5199. break;
  5200. }
  5201. }
  5202. WRITE(BEEPER, LOW);
  5203. lcd_change_fil_state = 0;
  5204. // Unload filament
  5205. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5206. KEEPALIVE_STATE(IN_HANDLER);
  5207. custom_message = true;
  5208. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5209. if (code_seen('L'))
  5210. {
  5211. target[E_AXIS] += code_value();
  5212. }
  5213. else
  5214. {
  5215. #ifdef SNMM
  5216. #else
  5217. #ifdef FILAMENTCHANGE_FINALRETRACT
  5218. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5219. #endif
  5220. #endif // SNMM
  5221. }
  5222. #ifdef SNMM
  5223. target[E_AXIS] += 12;
  5224. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5225. target[E_AXIS] += 6;
  5226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5227. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5228. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5229. st_synchronize();
  5230. target[E_AXIS] += (FIL_COOLING);
  5231. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5232. target[E_AXIS] += (FIL_COOLING*-1);
  5233. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5234. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5235. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5236. st_synchronize();
  5237. #else
  5238. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5239. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5240. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5241. st_synchronize();
  5242. #ifdef TMC2130
  5243. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5244. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5245. #else
  5246. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5247. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5248. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5249. #endif //TMC2130
  5250. target[E_AXIS] -= 45;
  5251. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5252. st_synchronize();
  5253. target[E_AXIS] -= 15;
  5254. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5255. st_synchronize();
  5256. target[E_AXIS] -= 20;
  5257. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5258. st_synchronize();
  5259. #ifdef TMC2130
  5260. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5261. #else
  5262. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5263. if(silentMode) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5264. else st_current_set(2, tmp_motor_loud[2]);
  5265. #endif //TMC2130
  5266. #endif // SNMM
  5267. //finish moves
  5268. st_synchronize();
  5269. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5270. //disable extruder steppers so filament can be removed
  5271. disable_e0();
  5272. disable_e1();
  5273. disable_e2();
  5274. delay(100);
  5275. WRITE(BEEPER, HIGH);
  5276. counterBeep = 0;
  5277. while(!lcd_clicked() && (counterBeep < 50)) {
  5278. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5279. delay_keep_alive(100);
  5280. counterBeep++;
  5281. }
  5282. WRITE(BEEPER, LOW);
  5283. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5284. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5285. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5286. //lcd_return_to_status();
  5287. lcd_update_enable(true);
  5288. //Wait for user to insert filament
  5289. lcd_wait_interact();
  5290. //load_filament_time = millis();
  5291. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5292. #ifdef PAT9125
  5293. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5294. #endif //PAT9125
  5295. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5296. while(!lcd_clicked())
  5297. {
  5298. manage_heater();
  5299. manage_inactivity(true);
  5300. #ifdef PAT9125
  5301. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5302. {
  5303. tone(BEEPER, 1000);
  5304. delay_keep_alive(50);
  5305. noTone(BEEPER);
  5306. break;
  5307. }
  5308. #endif //PAT9125
  5309. /*#ifdef SNMM
  5310. target[E_AXIS] += 0.002;
  5311. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5312. #endif // SNMM*/
  5313. }
  5314. #ifdef PAT9125
  5315. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5316. #endif //PAT9125
  5317. //WRITE(BEEPER, LOW);
  5318. KEEPALIVE_STATE(IN_HANDLER);
  5319. #ifdef SNMM
  5320. display_loading();
  5321. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5322. do {
  5323. target[E_AXIS] += 0.002;
  5324. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5325. delay_keep_alive(2);
  5326. } while (!lcd_clicked());
  5327. KEEPALIVE_STATE(IN_HANDLER);
  5328. /*if (millis() - load_filament_time > 2) {
  5329. load_filament_time = millis();
  5330. target[E_AXIS] += 0.001;
  5331. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5332. }*/
  5333. //Filament inserted
  5334. //Feed the filament to the end of nozzle quickly
  5335. st_synchronize();
  5336. target[E_AXIS] += bowden_length[snmm_extruder];
  5337. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5338. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5339. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5340. target[E_AXIS] += 40;
  5341. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5342. target[E_AXIS] += 10;
  5343. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5344. #else
  5345. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5346. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5347. #endif // SNMM
  5348. //Extrude some filament
  5349. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5350. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5351. //Wait for user to check the state
  5352. lcd_change_fil_state = 0;
  5353. lcd_loading_filament();
  5354. tone(BEEPER, 500);
  5355. delay_keep_alive(50);
  5356. noTone(BEEPER);
  5357. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5358. lcd_change_fil_state = 0;
  5359. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5360. lcd_alright();
  5361. KEEPALIVE_STATE(IN_HANDLER);
  5362. switch(lcd_change_fil_state){
  5363. // Filament failed to load so load it again
  5364. case 2:
  5365. #ifdef SNMM
  5366. display_loading();
  5367. do {
  5368. target[E_AXIS] += 0.002;
  5369. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5370. delay_keep_alive(2);
  5371. } while (!lcd_clicked());
  5372. st_synchronize();
  5373. target[E_AXIS] += bowden_length[snmm_extruder];
  5374. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5375. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5376. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5377. target[E_AXIS] += 40;
  5378. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5379. target[E_AXIS] += 10;
  5380. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5381. #else
  5382. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5384. #endif
  5385. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5386. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5387. lcd_loading_filament();
  5388. break;
  5389. // Filament loaded properly but color is not clear
  5390. case 3:
  5391. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5392. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5393. lcd_loading_color();
  5394. break;
  5395. // Everything good
  5396. default:
  5397. lcd_change_success();
  5398. lcd_update_enable(true);
  5399. break;
  5400. }
  5401. }
  5402. //Not let's go back to print
  5403. fanSpeed = fanSpeedBckp;
  5404. //Feed a little of filament to stabilize pressure
  5405. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5406. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5407. //Retract
  5408. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5409. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5410. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5411. //Move XY back
  5412. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5413. //Move Z back
  5414. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5415. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5416. //Unretract
  5417. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5418. //Set E position to original
  5419. plan_set_e_position(lastpos[E_AXIS]);
  5420. //Recover feed rate
  5421. feedmultiply=feedmultiplyBckp;
  5422. char cmd[9];
  5423. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5424. enquecommand(cmd);
  5425. lcd_setstatuspgm(WELCOME_MSG);
  5426. custom_message = false;
  5427. custom_message_type = 0;
  5428. #ifdef PAT9125
  5429. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5430. if (fsensor_M600)
  5431. {
  5432. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5433. st_synchronize();
  5434. while (!is_buffer_empty())
  5435. {
  5436. process_commands();
  5437. cmdqueue_pop_front();
  5438. }
  5439. fsensor_enable();
  5440. fsensor_restore_print_and_continue();
  5441. }
  5442. #endif //PAT9125
  5443. }
  5444. break;
  5445. #endif //FILAMENTCHANGEENABLE
  5446. case 601: {
  5447. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5448. }
  5449. break;
  5450. case 602: {
  5451. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5452. }
  5453. break;
  5454. #ifdef PINDA_THERMISTOR
  5455. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5456. {
  5457. int setTargetPinda = 0;
  5458. if (code_seen('S')) {
  5459. setTargetPinda = code_value();
  5460. }
  5461. else {
  5462. break;
  5463. }
  5464. LCD_MESSAGERPGM(MSG_PLEASE_WAIT);
  5465. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5466. SERIAL_PROTOCOL(setTargetPinda);
  5467. SERIAL_PROTOCOLLN("");
  5468. codenum = millis();
  5469. cancel_heatup = false;
  5470. KEEPALIVE_STATE(NOT_BUSY);
  5471. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5472. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5473. {
  5474. SERIAL_PROTOCOLPGM("P:");
  5475. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5476. SERIAL_PROTOCOLPGM("/");
  5477. SERIAL_PROTOCOL(setTargetPinda);
  5478. SERIAL_PROTOCOLLN("");
  5479. codenum = millis();
  5480. }
  5481. manage_heater();
  5482. manage_inactivity();
  5483. lcd_update();
  5484. }
  5485. LCD_MESSAGERPGM(MSG_OK);
  5486. break;
  5487. }
  5488. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5489. if (code_seen('?')) { // ? - Print out current EEPRO offset values
  5490. uint8_t cal_status = calibration_status_pinda();
  5491. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5492. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5493. for (uint8_t i = 0; i < 6; i++)
  5494. {
  5495. uint16_t usteps = 0;
  5496. if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
  5497. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5498. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5499. SERIAL_PROTOCOLPGM(", ");
  5500. SERIAL_PROTOCOL(35 + (i * 5));
  5501. SERIAL_PROTOCOLPGM(", ");
  5502. SERIAL_PROTOCOL(usteps);
  5503. SERIAL_PROTOCOLPGM(", ");
  5504. SERIAL_PROTOCOL(mm * 1000);
  5505. SERIAL_PROTOCOLLN("");
  5506. }
  5507. }
  5508. else if (code_seen('!')) { // ! - Set factory default values
  5509. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5510. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  5511. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  5512. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  5513. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  5514. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  5515. SERIAL_PROTOCOLLN("factory restored");
  5516. }
  5517. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5518. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5519. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0);
  5520. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0);
  5521. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0);
  5522. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0);
  5523. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0);
  5524. SERIAL_PROTOCOLLN("zerorized");
  5525. }
  5526. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5527. uint16_t usteps = code_value();
  5528. if (code_seen('I')) {
  5529. byte index = code_value();
  5530. if ((index >= 0) && (index < 5)) {
  5531. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + index, usteps);
  5532. SERIAL_PROTOCOLLN("OK");
  5533. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5534. for (uint8_t i = 0; i < 6; i++)
  5535. {
  5536. uint16_t usteps = 0;
  5537. if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
  5538. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5539. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5540. SERIAL_PROTOCOLPGM(", ");
  5541. SERIAL_PROTOCOL(35 + (i * 5));
  5542. SERIAL_PROTOCOLPGM(", ");
  5543. SERIAL_PROTOCOL(usteps);
  5544. SERIAL_PROTOCOLPGM(", ");
  5545. SERIAL_PROTOCOL(mm * 1000);
  5546. SERIAL_PROTOCOLLN("");
  5547. }
  5548. }
  5549. }
  5550. }
  5551. else {
  5552. SERIAL_PROTOCOLPGM("no valid command");
  5553. }
  5554. break;
  5555. #endif //PINDA_THERMISTOR
  5556. #ifdef LIN_ADVANCE
  5557. case 900: // M900: Set LIN_ADVANCE options.
  5558. gcode_M900();
  5559. break;
  5560. #endif
  5561. case 907: // M907 Set digital trimpot motor current using axis codes.
  5562. {
  5563. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5564. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5565. if(code_seen('B')) st_current_set(4,code_value());
  5566. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5567. #endif
  5568. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5569. if(code_seen('X')) st_current_set(0, code_value());
  5570. #endif
  5571. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5572. if(code_seen('Z')) st_current_set(1, code_value());
  5573. #endif
  5574. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5575. if(code_seen('E')) st_current_set(2, code_value());
  5576. #endif
  5577. }
  5578. break;
  5579. case 908: // M908 Control digital trimpot directly.
  5580. {
  5581. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5582. uint8_t channel,current;
  5583. if(code_seen('P')) channel=code_value();
  5584. if(code_seen('S')) current=code_value();
  5585. digitalPotWrite(channel, current);
  5586. #endif
  5587. }
  5588. break;
  5589. #ifdef TMC2130
  5590. case 910: // M910 TMC2130 init
  5591. {
  5592. tmc2130_init();
  5593. }
  5594. break;
  5595. case 911: // M911 Set TMC2130 holding currents
  5596. {
  5597. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5598. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5599. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5600. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5601. }
  5602. break;
  5603. case 912: // M912 Set TMC2130 running currents
  5604. {
  5605. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5606. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5607. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5608. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5609. }
  5610. break;
  5611. case 913: // M913 Print TMC2130 currents
  5612. {
  5613. tmc2130_print_currents();
  5614. }
  5615. break;
  5616. case 914: // M914 Set normal mode
  5617. {
  5618. tmc2130_mode = TMC2130_MODE_NORMAL;
  5619. tmc2130_init();
  5620. }
  5621. break;
  5622. case 915: // M915 Set silent mode
  5623. {
  5624. tmc2130_mode = TMC2130_MODE_SILENT;
  5625. tmc2130_init();
  5626. }
  5627. break;
  5628. case 916: // M916 Set sg_thrs
  5629. {
  5630. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5631. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5632. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5633. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5634. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5635. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5636. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5637. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5638. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5639. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5640. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5641. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5642. }
  5643. break;
  5644. case 917: // M917 Set TMC2130 pwm_ampl
  5645. {
  5646. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5647. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5648. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5649. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5650. }
  5651. break;
  5652. case 918: // M918 Set TMC2130 pwm_grad
  5653. {
  5654. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5655. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5656. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5657. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5658. }
  5659. break;
  5660. #endif //TMC2130
  5661. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5662. {
  5663. #ifdef TMC2130
  5664. if(code_seen('E'))
  5665. {
  5666. uint16_t res_new = code_value();
  5667. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5668. {
  5669. st_synchronize();
  5670. uint8_t axis = E_AXIS;
  5671. uint16_t res = tmc2130_get_res(axis);
  5672. tmc2130_set_res(axis, res_new);
  5673. if (res_new > res)
  5674. {
  5675. uint16_t fac = (res_new / res);
  5676. axis_steps_per_unit[axis] *= fac;
  5677. position[E_AXIS] *= fac;
  5678. }
  5679. else
  5680. {
  5681. uint16_t fac = (res / res_new);
  5682. axis_steps_per_unit[axis] /= fac;
  5683. position[E_AXIS] /= fac;
  5684. }
  5685. }
  5686. }
  5687. #else //TMC2130
  5688. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5689. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5690. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5691. if(code_seen('B')) microstep_mode(4,code_value());
  5692. microstep_readings();
  5693. #endif
  5694. #endif //TMC2130
  5695. }
  5696. break;
  5697. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5698. {
  5699. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5700. if(code_seen('S')) switch((int)code_value())
  5701. {
  5702. case 1:
  5703. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5704. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5705. break;
  5706. case 2:
  5707. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5708. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5709. break;
  5710. }
  5711. microstep_readings();
  5712. #endif
  5713. }
  5714. break;
  5715. case 701: //M701: load filament
  5716. {
  5717. gcode_M701();
  5718. }
  5719. break;
  5720. case 702:
  5721. {
  5722. #ifdef SNMM
  5723. if (code_seen('U')) {
  5724. extr_unload_used(); //unload all filaments which were used in current print
  5725. }
  5726. else if (code_seen('C')) {
  5727. extr_unload(); //unload just current filament
  5728. }
  5729. else {
  5730. extr_unload_all(); //unload all filaments
  5731. }
  5732. #else
  5733. #ifdef PAT9125
  5734. bool old_fsensor_enabled = fsensor_enabled;
  5735. fsensor_enabled = false;
  5736. #endif //PAT9125
  5737. custom_message = true;
  5738. custom_message_type = 2;
  5739. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5740. // extr_unload2();
  5741. current_position[E_AXIS] -= 45;
  5742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5743. st_synchronize();
  5744. current_position[E_AXIS] -= 15;
  5745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5746. st_synchronize();
  5747. current_position[E_AXIS] -= 20;
  5748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5749. st_synchronize();
  5750. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5751. //disable extruder steppers so filament can be removed
  5752. disable_e0();
  5753. disable_e1();
  5754. disable_e2();
  5755. delay(100);
  5756. WRITE(BEEPER, HIGH);
  5757. uint8_t counterBeep = 0;
  5758. while (!lcd_clicked() && (counterBeep < 50)) {
  5759. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5760. delay_keep_alive(100);
  5761. counterBeep++;
  5762. }
  5763. WRITE(BEEPER, LOW);
  5764. st_synchronize();
  5765. while (lcd_clicked()) delay_keep_alive(100);
  5766. lcd_update_enable(true);
  5767. lcd_setstatuspgm(WELCOME_MSG);
  5768. custom_message = false;
  5769. custom_message_type = 0;
  5770. #ifdef PAT9125
  5771. fsensor_enabled = old_fsensor_enabled;
  5772. #endif //PAT9125
  5773. #endif
  5774. }
  5775. break;
  5776. case 999: // M999: Restart after being stopped
  5777. Stopped = false;
  5778. lcd_reset_alert_level();
  5779. gcode_LastN = Stopped_gcode_LastN;
  5780. FlushSerialRequestResend();
  5781. break;
  5782. default:
  5783. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5784. }
  5785. } // end if(code_seen('M')) (end of M codes)
  5786. else if(code_seen('T'))
  5787. {
  5788. int index;
  5789. st_synchronize();
  5790. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5791. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5792. SERIAL_ECHOLNPGM("Invalid T code.");
  5793. }
  5794. else {
  5795. if (*(strchr_pointer + index) == '?') {
  5796. tmp_extruder = choose_extruder_menu();
  5797. }
  5798. else {
  5799. tmp_extruder = code_value();
  5800. }
  5801. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5802. #ifdef SNMM
  5803. #ifdef LIN_ADVANCE
  5804. if (snmm_extruder != tmp_extruder)
  5805. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5806. #endif
  5807. snmm_extruder = tmp_extruder;
  5808. delay(100);
  5809. disable_e0();
  5810. disable_e1();
  5811. disable_e2();
  5812. pinMode(E_MUX0_PIN, OUTPUT);
  5813. pinMode(E_MUX1_PIN, OUTPUT);
  5814. pinMode(E_MUX2_PIN, OUTPUT);
  5815. delay(100);
  5816. SERIAL_ECHO_START;
  5817. SERIAL_ECHO("T:");
  5818. SERIAL_ECHOLN((int)tmp_extruder);
  5819. switch (tmp_extruder) {
  5820. case 1:
  5821. WRITE(E_MUX0_PIN, HIGH);
  5822. WRITE(E_MUX1_PIN, LOW);
  5823. WRITE(E_MUX2_PIN, LOW);
  5824. break;
  5825. case 2:
  5826. WRITE(E_MUX0_PIN, LOW);
  5827. WRITE(E_MUX1_PIN, HIGH);
  5828. WRITE(E_MUX2_PIN, LOW);
  5829. break;
  5830. case 3:
  5831. WRITE(E_MUX0_PIN, HIGH);
  5832. WRITE(E_MUX1_PIN, HIGH);
  5833. WRITE(E_MUX2_PIN, LOW);
  5834. break;
  5835. default:
  5836. WRITE(E_MUX0_PIN, LOW);
  5837. WRITE(E_MUX1_PIN, LOW);
  5838. WRITE(E_MUX2_PIN, LOW);
  5839. break;
  5840. }
  5841. delay(100);
  5842. #else
  5843. if (tmp_extruder >= EXTRUDERS) {
  5844. SERIAL_ECHO_START;
  5845. SERIAL_ECHOPGM("T");
  5846. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5847. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5848. }
  5849. else {
  5850. boolean make_move = false;
  5851. if (code_seen('F')) {
  5852. make_move = true;
  5853. next_feedrate = code_value();
  5854. if (next_feedrate > 0.0) {
  5855. feedrate = next_feedrate;
  5856. }
  5857. }
  5858. #if EXTRUDERS > 1
  5859. if (tmp_extruder != active_extruder) {
  5860. // Save current position to return to after applying extruder offset
  5861. memcpy(destination, current_position, sizeof(destination));
  5862. // Offset extruder (only by XY)
  5863. int i;
  5864. for (i = 0; i < 2; i++) {
  5865. current_position[i] = current_position[i] -
  5866. extruder_offset[i][active_extruder] +
  5867. extruder_offset[i][tmp_extruder];
  5868. }
  5869. // Set the new active extruder and position
  5870. active_extruder = tmp_extruder;
  5871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5872. // Move to the old position if 'F' was in the parameters
  5873. if (make_move && Stopped == false) {
  5874. prepare_move();
  5875. }
  5876. }
  5877. #endif
  5878. SERIAL_ECHO_START;
  5879. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5880. SERIAL_PROTOCOLLN((int)active_extruder);
  5881. }
  5882. #endif
  5883. }
  5884. } // end if(code_seen('T')) (end of T codes)
  5885. #ifdef DEBUG_DCODES
  5886. else if (code_seen('D')) // D codes (debug)
  5887. {
  5888. switch((int)code_value())
  5889. {
  5890. case -1: // D-1 - Endless loop
  5891. dcode__1(); break;
  5892. case 0: // D0 - Reset
  5893. dcode_0(); break;
  5894. case 1: // D1 - Clear EEPROM
  5895. dcode_1(); break;
  5896. case 2: // D2 - Read/Write RAM
  5897. dcode_2(); break;
  5898. case 3: // D3 - Read/Write EEPROM
  5899. dcode_3(); break;
  5900. case 4: // D4 - Read/Write PIN
  5901. dcode_4(); break;
  5902. case 5: // D5 - Read/Write FLASH
  5903. // dcode_5(); break;
  5904. break;
  5905. case 6: // D6 - Read/Write external FLASH
  5906. dcode_6(); break;
  5907. case 7: // D7 - Read/Write Bootloader
  5908. dcode_7(); break;
  5909. case 8: // D8 - Read/Write PINDA
  5910. dcode_8(); break;
  5911. case 9: // D9 - Read/Write ADC
  5912. dcode_9(); break;
  5913. case 10: // D10 - XYZ calibration = OK
  5914. dcode_10(); break;
  5915. #ifdef TMC2130
  5916. case 2130: // D9125 - TMC2130
  5917. dcode_2130(); break;
  5918. #endif //TMC2130
  5919. #ifdef PAT9125
  5920. case 9125: // D9125 - PAT9125
  5921. dcode_9125(); break;
  5922. #endif //PAT9125
  5923. }
  5924. }
  5925. #endif //DEBUG_DCODES
  5926. else
  5927. {
  5928. SERIAL_ECHO_START;
  5929. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5930. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5931. SERIAL_ECHOLNPGM("\"(2)");
  5932. }
  5933. KEEPALIVE_STATE(NOT_BUSY);
  5934. ClearToSend();
  5935. }
  5936. void FlushSerialRequestResend()
  5937. {
  5938. //char cmdbuffer[bufindr][100]="Resend:";
  5939. MYSERIAL.flush();
  5940. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5941. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5942. previous_millis_cmd = millis();
  5943. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5944. }
  5945. // Confirm the execution of a command, if sent from a serial line.
  5946. // Execution of a command from a SD card will not be confirmed.
  5947. void ClearToSend()
  5948. {
  5949. previous_millis_cmd = millis();
  5950. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5951. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5952. }
  5953. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5954. void update_currents() {
  5955. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5956. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5957. float tmp_motor[3];
  5958. //SERIAL_ECHOLNPGM("Currents updated: ");
  5959. if (destination[Z_AXIS] < Z_SILENT) {
  5960. //SERIAL_ECHOLNPGM("LOW");
  5961. for (uint8_t i = 0; i < 3; i++) {
  5962. st_current_set(i, current_low[i]);
  5963. /*MYSERIAL.print(int(i));
  5964. SERIAL_ECHOPGM(": ");
  5965. MYSERIAL.println(current_low[i]);*/
  5966. }
  5967. }
  5968. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5969. //SERIAL_ECHOLNPGM("HIGH");
  5970. for (uint8_t i = 0; i < 3; i++) {
  5971. st_current_set(i, current_high[i]);
  5972. /*MYSERIAL.print(int(i));
  5973. SERIAL_ECHOPGM(": ");
  5974. MYSERIAL.println(current_high[i]);*/
  5975. }
  5976. }
  5977. else {
  5978. for (uint8_t i = 0; i < 3; i++) {
  5979. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5980. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5981. st_current_set(i, tmp_motor[i]);
  5982. /*MYSERIAL.print(int(i));
  5983. SERIAL_ECHOPGM(": ");
  5984. MYSERIAL.println(tmp_motor[i]);*/
  5985. }
  5986. }
  5987. }
  5988. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5989. void get_coordinates()
  5990. {
  5991. bool seen[4]={false,false,false,false};
  5992. for(int8_t i=0; i < NUM_AXIS; i++) {
  5993. if(code_seen(axis_codes[i]))
  5994. {
  5995. bool relative = axis_relative_modes[i] || relative_mode;
  5996. destination[i] = (float)code_value();
  5997. if (i == E_AXIS) {
  5998. float emult = extruder_multiplier[active_extruder];
  5999. if (emult != 1.) {
  6000. if (! relative) {
  6001. destination[i] -= current_position[i];
  6002. relative = true;
  6003. }
  6004. destination[i] *= emult;
  6005. }
  6006. }
  6007. if (relative)
  6008. destination[i] += current_position[i];
  6009. seen[i]=true;
  6010. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  6011. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  6012. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  6013. }
  6014. else destination[i] = current_position[i]; //Are these else lines really needed?
  6015. }
  6016. if(code_seen('F')) {
  6017. next_feedrate = code_value();
  6018. #ifdef MAX_SILENT_FEEDRATE
  6019. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6020. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6021. #endif //MAX_SILENT_FEEDRATE
  6022. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6023. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6024. {
  6025. // float e_max_speed =
  6026. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6027. }
  6028. }
  6029. }
  6030. void get_arc_coordinates()
  6031. {
  6032. #ifdef SF_ARC_FIX
  6033. bool relative_mode_backup = relative_mode;
  6034. relative_mode = true;
  6035. #endif
  6036. get_coordinates();
  6037. #ifdef SF_ARC_FIX
  6038. relative_mode=relative_mode_backup;
  6039. #endif
  6040. if(code_seen('I')) {
  6041. offset[0] = code_value();
  6042. }
  6043. else {
  6044. offset[0] = 0.0;
  6045. }
  6046. if(code_seen('J')) {
  6047. offset[1] = code_value();
  6048. }
  6049. else {
  6050. offset[1] = 0.0;
  6051. }
  6052. }
  6053. void clamp_to_software_endstops(float target[3])
  6054. {
  6055. #ifdef DEBUG_DISABLE_SWLIMITS
  6056. return;
  6057. #endif //DEBUG_DISABLE_SWLIMITS
  6058. world2machine_clamp(target[0], target[1]);
  6059. // Clamp the Z coordinate.
  6060. if (min_software_endstops) {
  6061. float negative_z_offset = 0;
  6062. #ifdef ENABLE_AUTO_BED_LEVELING
  6063. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6064. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6065. #endif
  6066. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6067. }
  6068. if (max_software_endstops) {
  6069. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6070. }
  6071. }
  6072. #ifdef MESH_BED_LEVELING
  6073. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6074. float dx = x - current_position[X_AXIS];
  6075. float dy = y - current_position[Y_AXIS];
  6076. float dz = z - current_position[Z_AXIS];
  6077. int n_segments = 0;
  6078. if (mbl.active) {
  6079. float len = abs(dx) + abs(dy);
  6080. if (len > 0)
  6081. // Split to 3cm segments or shorter.
  6082. n_segments = int(ceil(len / 30.f));
  6083. }
  6084. if (n_segments > 1) {
  6085. float de = e - current_position[E_AXIS];
  6086. for (int i = 1; i < n_segments; ++ i) {
  6087. float t = float(i) / float(n_segments);
  6088. plan_buffer_line(
  6089. current_position[X_AXIS] + t * dx,
  6090. current_position[Y_AXIS] + t * dy,
  6091. current_position[Z_AXIS] + t * dz,
  6092. current_position[E_AXIS] + t * de,
  6093. feed_rate, extruder);
  6094. }
  6095. }
  6096. // The rest of the path.
  6097. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6098. current_position[X_AXIS] = x;
  6099. current_position[Y_AXIS] = y;
  6100. current_position[Z_AXIS] = z;
  6101. current_position[E_AXIS] = e;
  6102. }
  6103. #endif // MESH_BED_LEVELING
  6104. void prepare_move()
  6105. {
  6106. clamp_to_software_endstops(destination);
  6107. previous_millis_cmd = millis();
  6108. // Do not use feedmultiply for E or Z only moves
  6109. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6110. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6111. }
  6112. else {
  6113. #ifdef MESH_BED_LEVELING
  6114. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6115. #else
  6116. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6117. #endif
  6118. }
  6119. for(int8_t i=0; i < NUM_AXIS; i++) {
  6120. current_position[i] = destination[i];
  6121. }
  6122. }
  6123. void prepare_arc_move(char isclockwise) {
  6124. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6125. // Trace the arc
  6126. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6127. // As far as the parser is concerned, the position is now == target. In reality the
  6128. // motion control system might still be processing the action and the real tool position
  6129. // in any intermediate location.
  6130. for(int8_t i=0; i < NUM_AXIS; i++) {
  6131. current_position[i] = destination[i];
  6132. }
  6133. previous_millis_cmd = millis();
  6134. }
  6135. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6136. #if defined(FAN_PIN)
  6137. #if CONTROLLERFAN_PIN == FAN_PIN
  6138. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6139. #endif
  6140. #endif
  6141. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6142. unsigned long lastMotorCheck = 0;
  6143. void controllerFan()
  6144. {
  6145. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6146. {
  6147. lastMotorCheck = millis();
  6148. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6149. #if EXTRUDERS > 2
  6150. || !READ(E2_ENABLE_PIN)
  6151. #endif
  6152. #if EXTRUDER > 1
  6153. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6154. || !READ(X2_ENABLE_PIN)
  6155. #endif
  6156. || !READ(E1_ENABLE_PIN)
  6157. #endif
  6158. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6159. {
  6160. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6161. }
  6162. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6163. {
  6164. digitalWrite(CONTROLLERFAN_PIN, 0);
  6165. analogWrite(CONTROLLERFAN_PIN, 0);
  6166. }
  6167. else
  6168. {
  6169. // allows digital or PWM fan output to be used (see M42 handling)
  6170. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6171. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6172. }
  6173. }
  6174. }
  6175. #endif
  6176. #ifdef TEMP_STAT_LEDS
  6177. static bool blue_led = false;
  6178. static bool red_led = false;
  6179. static uint32_t stat_update = 0;
  6180. void handle_status_leds(void) {
  6181. float max_temp = 0.0;
  6182. if(millis() > stat_update) {
  6183. stat_update += 500; // Update every 0.5s
  6184. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6185. max_temp = max(max_temp, degHotend(cur_extruder));
  6186. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6187. }
  6188. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6189. max_temp = max(max_temp, degTargetBed());
  6190. max_temp = max(max_temp, degBed());
  6191. #endif
  6192. if((max_temp > 55.0) && (red_led == false)) {
  6193. digitalWrite(STAT_LED_RED, 1);
  6194. digitalWrite(STAT_LED_BLUE, 0);
  6195. red_led = true;
  6196. blue_led = false;
  6197. }
  6198. if((max_temp < 54.0) && (blue_led == false)) {
  6199. digitalWrite(STAT_LED_RED, 0);
  6200. digitalWrite(STAT_LED_BLUE, 1);
  6201. red_led = false;
  6202. blue_led = true;
  6203. }
  6204. }
  6205. }
  6206. #endif
  6207. #ifdef SAFETYTIMER
  6208. /**
  6209. * @brief Turn off heating after 15 minutes of inactivity
  6210. */
  6211. static void handleSafetyTimer()
  6212. {
  6213. #if (EXTRUDERS > 1)
  6214. #error Implemented only for one extruder.
  6215. #endif //(EXTRUDERS > 1)
  6216. static Timer safetyTimer;
  6217. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  6218. (!degTargetBed() && !degTargetHotend(0)))
  6219. {
  6220. safetyTimer.stop();
  6221. }
  6222. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6223. {
  6224. safetyTimer.start();
  6225. }
  6226. else if (safetyTimer.expired(900000ul))
  6227. {
  6228. setTargetBed(0);
  6229. setTargetHotend(0, 0);
  6230. }
  6231. }
  6232. #endif //SAFETYTIMER
  6233. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6234. {
  6235. #ifdef PAT9125
  6236. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6237. {
  6238. if (fsensor_autoload_enabled)
  6239. {
  6240. if (fsensor_check_autoload())
  6241. {
  6242. if (degHotend0() > EXTRUDE_MINTEMP)
  6243. {
  6244. fsensor_autoload_check_stop();
  6245. tone(BEEPER, 1000);
  6246. delay_keep_alive(50);
  6247. noTone(BEEPER);
  6248. loading_flag = true;
  6249. enquecommand_front_P((PSTR("M701")));
  6250. }
  6251. else
  6252. {
  6253. lcd_update_enable(false);
  6254. lcd_implementation_clear();
  6255. lcd.setCursor(0, 0);
  6256. lcd_printPGM(MSG_ERROR);
  6257. lcd.setCursor(0, 2);
  6258. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6259. delay(2000);
  6260. lcd_implementation_clear();
  6261. lcd_update_enable(true);
  6262. }
  6263. }
  6264. }
  6265. else
  6266. fsensor_autoload_check_start();
  6267. }
  6268. else
  6269. if (fsensor_autoload_enabled)
  6270. fsensor_autoload_check_stop();
  6271. #endif //PAT9125
  6272. #ifdef SAFETYTIMER
  6273. handleSafetyTimer();
  6274. #endif //SAFETYTIMER
  6275. #ifdef SAFETYTIMER
  6276. handleSafetyTimer();
  6277. #endif //SAFETYTIMER
  6278. #if defined(KILL_PIN) && KILL_PIN > -1
  6279. static int killCount = 0; // make the inactivity button a bit less responsive
  6280. const int KILL_DELAY = 10000;
  6281. #endif
  6282. if(buflen < (BUFSIZE-1)){
  6283. get_command();
  6284. }
  6285. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6286. if(max_inactive_time)
  6287. kill("", 4);
  6288. if(stepper_inactive_time) {
  6289. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6290. {
  6291. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6292. disable_x();
  6293. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6294. disable_y();
  6295. disable_z();
  6296. disable_e0();
  6297. disable_e1();
  6298. disable_e2();
  6299. }
  6300. }
  6301. }
  6302. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6303. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6304. {
  6305. chdkActive = false;
  6306. WRITE(CHDK, LOW);
  6307. }
  6308. #endif
  6309. #if defined(KILL_PIN) && KILL_PIN > -1
  6310. // Check if the kill button was pressed and wait just in case it was an accidental
  6311. // key kill key press
  6312. // -------------------------------------------------------------------------------
  6313. if( 0 == READ(KILL_PIN) )
  6314. {
  6315. killCount++;
  6316. }
  6317. else if (killCount > 0)
  6318. {
  6319. killCount--;
  6320. }
  6321. // Exceeded threshold and we can confirm that it was not accidental
  6322. // KILL the machine
  6323. // ----------------------------------------------------------------
  6324. if ( killCount >= KILL_DELAY)
  6325. {
  6326. kill("", 5);
  6327. }
  6328. #endif
  6329. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6330. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6331. #endif
  6332. #ifdef EXTRUDER_RUNOUT_PREVENT
  6333. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6334. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6335. {
  6336. bool oldstatus=READ(E0_ENABLE_PIN);
  6337. enable_e0();
  6338. float oldepos=current_position[E_AXIS];
  6339. float oldedes=destination[E_AXIS];
  6340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6341. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6342. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6343. current_position[E_AXIS]=oldepos;
  6344. destination[E_AXIS]=oldedes;
  6345. plan_set_e_position(oldepos);
  6346. previous_millis_cmd=millis();
  6347. st_synchronize();
  6348. WRITE(E0_ENABLE_PIN,oldstatus);
  6349. }
  6350. #endif
  6351. #ifdef TEMP_STAT_LEDS
  6352. handle_status_leds();
  6353. #endif
  6354. check_axes_activity();
  6355. }
  6356. void kill(const char *full_screen_message, unsigned char id)
  6357. {
  6358. SERIAL_ECHOPGM("KILL: ");
  6359. MYSERIAL.println(int(id));
  6360. //return;
  6361. cli(); // Stop interrupts
  6362. disable_heater();
  6363. disable_x();
  6364. // SERIAL_ECHOLNPGM("kill - disable Y");
  6365. disable_y();
  6366. disable_z();
  6367. disable_e0();
  6368. disable_e1();
  6369. disable_e2();
  6370. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6371. pinMode(PS_ON_PIN,INPUT);
  6372. #endif
  6373. SERIAL_ERROR_START;
  6374. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6375. if (full_screen_message != NULL) {
  6376. SERIAL_ERRORLNRPGM(full_screen_message);
  6377. lcd_display_message_fullscreen_P(full_screen_message);
  6378. } else {
  6379. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6380. }
  6381. // FMC small patch to update the LCD before ending
  6382. sei(); // enable interrupts
  6383. for ( int i=5; i--; lcd_update())
  6384. {
  6385. delay(200);
  6386. }
  6387. cli(); // disable interrupts
  6388. suicide();
  6389. while(1)
  6390. {
  6391. #ifdef WATCHDOG
  6392. wdt_reset();
  6393. #endif //WATCHDOG
  6394. /* Intentionally left empty */
  6395. } // Wait for reset
  6396. }
  6397. void Stop()
  6398. {
  6399. disable_heater();
  6400. if(Stopped == false) {
  6401. Stopped = true;
  6402. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6403. SERIAL_ERROR_START;
  6404. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6405. LCD_MESSAGERPGM(MSG_STOPPED);
  6406. }
  6407. }
  6408. bool IsStopped() { return Stopped; };
  6409. #ifdef FAST_PWM_FAN
  6410. void setPwmFrequency(uint8_t pin, int val)
  6411. {
  6412. val &= 0x07;
  6413. switch(digitalPinToTimer(pin))
  6414. {
  6415. #if defined(TCCR0A)
  6416. case TIMER0A:
  6417. case TIMER0B:
  6418. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6419. // TCCR0B |= val;
  6420. break;
  6421. #endif
  6422. #if defined(TCCR1A)
  6423. case TIMER1A:
  6424. case TIMER1B:
  6425. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6426. // TCCR1B |= val;
  6427. break;
  6428. #endif
  6429. #if defined(TCCR2)
  6430. case TIMER2:
  6431. case TIMER2:
  6432. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6433. TCCR2 |= val;
  6434. break;
  6435. #endif
  6436. #if defined(TCCR2A)
  6437. case TIMER2A:
  6438. case TIMER2B:
  6439. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6440. TCCR2B |= val;
  6441. break;
  6442. #endif
  6443. #if defined(TCCR3A)
  6444. case TIMER3A:
  6445. case TIMER3B:
  6446. case TIMER3C:
  6447. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6448. TCCR3B |= val;
  6449. break;
  6450. #endif
  6451. #if defined(TCCR4A)
  6452. case TIMER4A:
  6453. case TIMER4B:
  6454. case TIMER4C:
  6455. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6456. TCCR4B |= val;
  6457. break;
  6458. #endif
  6459. #if defined(TCCR5A)
  6460. case TIMER5A:
  6461. case TIMER5B:
  6462. case TIMER5C:
  6463. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6464. TCCR5B |= val;
  6465. break;
  6466. #endif
  6467. }
  6468. }
  6469. #endif //FAST_PWM_FAN
  6470. bool setTargetedHotend(int code){
  6471. tmp_extruder = active_extruder;
  6472. if(code_seen('T')) {
  6473. tmp_extruder = code_value();
  6474. if(tmp_extruder >= EXTRUDERS) {
  6475. SERIAL_ECHO_START;
  6476. switch(code){
  6477. case 104:
  6478. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6479. break;
  6480. case 105:
  6481. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6482. break;
  6483. case 109:
  6484. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6485. break;
  6486. case 218:
  6487. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6488. break;
  6489. case 221:
  6490. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6491. break;
  6492. }
  6493. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6494. return true;
  6495. }
  6496. }
  6497. return false;
  6498. }
  6499. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6500. {
  6501. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6502. {
  6503. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6504. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6505. }
  6506. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6507. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6508. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6509. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6510. total_filament_used = 0;
  6511. }
  6512. float calculate_extruder_multiplier(float diameter) {
  6513. float out = 1.f;
  6514. if (volumetric_enabled && diameter > 0.f) {
  6515. float area = M_PI * diameter * diameter * 0.25;
  6516. out = 1.f / area;
  6517. }
  6518. if (extrudemultiply != 100)
  6519. out *= float(extrudemultiply) * 0.01f;
  6520. return out;
  6521. }
  6522. void calculate_extruder_multipliers() {
  6523. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6524. #if EXTRUDERS > 1
  6525. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6526. #if EXTRUDERS > 2
  6527. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6528. #endif
  6529. #endif
  6530. }
  6531. void delay_keep_alive(unsigned int ms)
  6532. {
  6533. for (;;) {
  6534. manage_heater();
  6535. // Manage inactivity, but don't disable steppers on timeout.
  6536. manage_inactivity(true);
  6537. lcd_update();
  6538. if (ms == 0)
  6539. break;
  6540. else if (ms >= 50) {
  6541. delay(50);
  6542. ms -= 50;
  6543. } else {
  6544. delay(ms);
  6545. ms = 0;
  6546. }
  6547. }
  6548. }
  6549. void wait_for_heater(long codenum) {
  6550. #ifdef TEMP_RESIDENCY_TIME
  6551. long residencyStart;
  6552. residencyStart = -1;
  6553. /* continue to loop until we have reached the target temp
  6554. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6555. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6556. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6557. #else
  6558. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6559. #endif //TEMP_RESIDENCY_TIME
  6560. if ((millis() - codenum) > 1000UL)
  6561. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6562. if (!farm_mode) {
  6563. SERIAL_PROTOCOLPGM("T:");
  6564. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6565. SERIAL_PROTOCOLPGM(" E:");
  6566. SERIAL_PROTOCOL((int)tmp_extruder);
  6567. #ifdef TEMP_RESIDENCY_TIME
  6568. SERIAL_PROTOCOLPGM(" W:");
  6569. if (residencyStart > -1)
  6570. {
  6571. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6572. SERIAL_PROTOCOLLN(codenum);
  6573. }
  6574. else
  6575. {
  6576. SERIAL_PROTOCOLLN("?");
  6577. }
  6578. }
  6579. #else
  6580. SERIAL_PROTOCOLLN("");
  6581. #endif
  6582. codenum = millis();
  6583. }
  6584. manage_heater();
  6585. manage_inactivity();
  6586. lcd_update();
  6587. #ifdef TEMP_RESIDENCY_TIME
  6588. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6589. or when current temp falls outside the hysteresis after target temp was reached */
  6590. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6591. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6592. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6593. {
  6594. residencyStart = millis();
  6595. }
  6596. #endif //TEMP_RESIDENCY_TIME
  6597. }
  6598. }
  6599. void check_babystep() {
  6600. int babystep_z;
  6601. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6602. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6603. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6604. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6605. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6606. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6607. lcd_update_enable(true);
  6608. }
  6609. }
  6610. #ifdef DIS
  6611. void d_setup()
  6612. {
  6613. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6614. pinMode(D_DATA, INPUT_PULLUP);
  6615. pinMode(D_REQUIRE, OUTPUT);
  6616. digitalWrite(D_REQUIRE, HIGH);
  6617. }
  6618. float d_ReadData()
  6619. {
  6620. int digit[13];
  6621. String mergeOutput;
  6622. float output;
  6623. digitalWrite(D_REQUIRE, HIGH);
  6624. for (int i = 0; i<13; i++)
  6625. {
  6626. for (int j = 0; j < 4; j++)
  6627. {
  6628. while (digitalRead(D_DATACLOCK) == LOW) {}
  6629. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6630. bitWrite(digit[i], j, digitalRead(D_DATA));
  6631. }
  6632. }
  6633. digitalWrite(D_REQUIRE, LOW);
  6634. mergeOutput = "";
  6635. output = 0;
  6636. for (int r = 5; r <= 10; r++) //Merge digits
  6637. {
  6638. mergeOutput += digit[r];
  6639. }
  6640. output = mergeOutput.toFloat();
  6641. if (digit[4] == 8) //Handle sign
  6642. {
  6643. output *= -1;
  6644. }
  6645. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6646. {
  6647. output /= 10;
  6648. }
  6649. return output;
  6650. }
  6651. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6652. int t1 = 0;
  6653. int t_delay = 0;
  6654. int digit[13];
  6655. int m;
  6656. char str[3];
  6657. //String mergeOutput;
  6658. char mergeOutput[15];
  6659. float output;
  6660. int mesh_point = 0; //index number of calibration point
  6661. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6662. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6663. float mesh_home_z_search = 4;
  6664. float row[x_points_num];
  6665. int ix = 0;
  6666. int iy = 0;
  6667. char* filename_wldsd = "wldsd.txt";
  6668. char data_wldsd[70];
  6669. char numb_wldsd[10];
  6670. d_setup();
  6671. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6672. // We don't know where we are! HOME!
  6673. // Push the commands to the front of the message queue in the reverse order!
  6674. // There shall be always enough space reserved for these commands.
  6675. repeatcommand_front(); // repeat G80 with all its parameters
  6676. enquecommand_front_P((PSTR("G28 W0")));
  6677. enquecommand_front_P((PSTR("G1 Z5")));
  6678. return;
  6679. }
  6680. bool custom_message_old = custom_message;
  6681. unsigned int custom_message_type_old = custom_message_type;
  6682. unsigned int custom_message_state_old = custom_message_state;
  6683. custom_message = true;
  6684. custom_message_type = 1;
  6685. custom_message_state = (x_points_num * y_points_num) + 10;
  6686. lcd_update(1);
  6687. mbl.reset();
  6688. babystep_undo();
  6689. card.openFile(filename_wldsd, false);
  6690. current_position[Z_AXIS] = mesh_home_z_search;
  6691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6692. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6693. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6694. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6695. setup_for_endstop_move(false);
  6696. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6697. SERIAL_PROTOCOL(x_points_num);
  6698. SERIAL_PROTOCOLPGM(",");
  6699. SERIAL_PROTOCOL(y_points_num);
  6700. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6701. SERIAL_PROTOCOL(mesh_home_z_search);
  6702. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6703. SERIAL_PROTOCOL(x_dimension);
  6704. SERIAL_PROTOCOLPGM(",");
  6705. SERIAL_PROTOCOL(y_dimension);
  6706. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6707. while (mesh_point != x_points_num * y_points_num) {
  6708. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6709. iy = mesh_point / x_points_num;
  6710. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6711. float z0 = 0.f;
  6712. current_position[Z_AXIS] = mesh_home_z_search;
  6713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6714. st_synchronize();
  6715. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6716. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6718. st_synchronize();
  6719. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6720. break;
  6721. card.closefile();
  6722. }
  6723. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6724. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6725. //strcat(data_wldsd, numb_wldsd);
  6726. //MYSERIAL.println(data_wldsd);
  6727. //delay(1000);
  6728. //delay(3000);
  6729. //t1 = millis();
  6730. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6731. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6732. memset(digit, 0, sizeof(digit));
  6733. //cli();
  6734. digitalWrite(D_REQUIRE, LOW);
  6735. for (int i = 0; i<13; i++)
  6736. {
  6737. //t1 = millis();
  6738. for (int j = 0; j < 4; j++)
  6739. {
  6740. while (digitalRead(D_DATACLOCK) == LOW) {}
  6741. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6742. bitWrite(digit[i], j, digitalRead(D_DATA));
  6743. }
  6744. //t_delay = (millis() - t1);
  6745. //SERIAL_PROTOCOLPGM(" ");
  6746. //SERIAL_PROTOCOL_F(t_delay, 5);
  6747. //SERIAL_PROTOCOLPGM(" ");
  6748. }
  6749. //sei();
  6750. digitalWrite(D_REQUIRE, HIGH);
  6751. mergeOutput[0] = '\0';
  6752. output = 0;
  6753. for (int r = 5; r <= 10; r++) //Merge digits
  6754. {
  6755. sprintf(str, "%d", digit[r]);
  6756. strcat(mergeOutput, str);
  6757. }
  6758. output = atof(mergeOutput);
  6759. if (digit[4] == 8) //Handle sign
  6760. {
  6761. output *= -1;
  6762. }
  6763. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6764. {
  6765. output *= 0.1;
  6766. }
  6767. //output = d_ReadData();
  6768. //row[ix] = current_position[Z_AXIS];
  6769. memset(data_wldsd, 0, sizeof(data_wldsd));
  6770. for (int i = 0; i <3; i++) {
  6771. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6772. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6773. strcat(data_wldsd, numb_wldsd);
  6774. strcat(data_wldsd, ";");
  6775. }
  6776. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6777. dtostrf(output, 8, 5, numb_wldsd);
  6778. strcat(data_wldsd, numb_wldsd);
  6779. //strcat(data_wldsd, ";");
  6780. card.write_command(data_wldsd);
  6781. //row[ix] = d_ReadData();
  6782. row[ix] = output; // current_position[Z_AXIS];
  6783. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6784. for (int i = 0; i < x_points_num; i++) {
  6785. SERIAL_PROTOCOLPGM(" ");
  6786. SERIAL_PROTOCOL_F(row[i], 5);
  6787. }
  6788. SERIAL_PROTOCOLPGM("\n");
  6789. }
  6790. custom_message_state--;
  6791. mesh_point++;
  6792. lcd_update(1);
  6793. }
  6794. card.closefile();
  6795. }
  6796. #endif
  6797. void temp_compensation_start() {
  6798. custom_message = true;
  6799. custom_message_type = 5;
  6800. custom_message_state = PINDA_HEAT_T + 1;
  6801. lcd_update(2);
  6802. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6803. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6804. }
  6805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6806. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6807. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6808. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6810. st_synchronize();
  6811. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6812. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6813. delay_keep_alive(1000);
  6814. custom_message_state = PINDA_HEAT_T - i;
  6815. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6816. else lcd_update(1);
  6817. }
  6818. custom_message_type = 0;
  6819. custom_message_state = 0;
  6820. custom_message = false;
  6821. }
  6822. void temp_compensation_apply() {
  6823. int i_add;
  6824. int compensation_value;
  6825. int z_shift = 0;
  6826. float z_shift_mm;
  6827. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6828. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6829. i_add = (target_temperature_bed - 60) / 10;
  6830. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6831. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6832. }else {
  6833. //interpolation
  6834. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6835. }
  6836. SERIAL_PROTOCOLPGM("\n");
  6837. SERIAL_PROTOCOLPGM("Z shift applied:");
  6838. MYSERIAL.print(z_shift_mm);
  6839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6840. st_synchronize();
  6841. plan_set_z_position(current_position[Z_AXIS]);
  6842. }
  6843. else {
  6844. //we have no temp compensation data
  6845. }
  6846. }
  6847. float temp_comp_interpolation(float inp_temperature) {
  6848. //cubic spline interpolation
  6849. int n, i, j, k;
  6850. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6851. int shift[10];
  6852. int temp_C[10];
  6853. n = 6; //number of measured points
  6854. shift[0] = 0;
  6855. for (i = 0; i < n; i++) {
  6856. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6857. temp_C[i] = 50 + i * 10; //temperature in C
  6858. #ifdef PINDA_THERMISTOR
  6859. temp_C[i] = 35 + i * 5; //temperature in C
  6860. #else
  6861. temp_C[i] = 50 + i * 10; //temperature in C
  6862. #endif
  6863. x[i] = (float)temp_C[i];
  6864. f[i] = (float)shift[i];
  6865. }
  6866. if (inp_temperature < x[0]) return 0;
  6867. for (i = n - 1; i>0; i--) {
  6868. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6869. h[i - 1] = x[i] - x[i - 1];
  6870. }
  6871. //*********** formation of h, s , f matrix **************
  6872. for (i = 1; i<n - 1; i++) {
  6873. m[i][i] = 2 * (h[i - 1] + h[i]);
  6874. if (i != 1) {
  6875. m[i][i - 1] = h[i - 1];
  6876. m[i - 1][i] = h[i - 1];
  6877. }
  6878. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6879. }
  6880. //*********** forward elimination **************
  6881. for (i = 1; i<n - 2; i++) {
  6882. temp = (m[i + 1][i] / m[i][i]);
  6883. for (j = 1; j <= n - 1; j++)
  6884. m[i + 1][j] -= temp*m[i][j];
  6885. }
  6886. //*********** backward substitution *********
  6887. for (i = n - 2; i>0; i--) {
  6888. sum = 0;
  6889. for (j = i; j <= n - 2; j++)
  6890. sum += m[i][j] * s[j];
  6891. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6892. }
  6893. for (i = 0; i<n - 1; i++)
  6894. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6895. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6896. b = s[i] / 2;
  6897. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6898. d = f[i];
  6899. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6900. }
  6901. return sum;
  6902. }
  6903. #ifdef PINDA_THERMISTOR
  6904. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6905. {
  6906. if (!temp_cal_active) return 0;
  6907. if (!calibration_status_pinda()) return 0;
  6908. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6909. }
  6910. #endif //PINDA_THERMISTOR
  6911. void long_pause() //long pause print
  6912. {
  6913. st_synchronize();
  6914. //save currently set parameters to global variables
  6915. saved_feedmultiply = feedmultiply;
  6916. HotendTempBckp = degTargetHotend(active_extruder);
  6917. fanSpeedBckp = fanSpeed;
  6918. start_pause_print = millis();
  6919. //save position
  6920. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6921. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6922. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6923. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6924. //retract
  6925. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6927. //lift z
  6928. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6929. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6931. //set nozzle target temperature to 0
  6932. setTargetHotend(0, 0);
  6933. setTargetHotend(0, 1);
  6934. setTargetHotend(0, 2);
  6935. //Move XY to side
  6936. current_position[X_AXIS] = X_PAUSE_POS;
  6937. current_position[Y_AXIS] = Y_PAUSE_POS;
  6938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6939. // Turn off the print fan
  6940. fanSpeed = 0;
  6941. st_synchronize();
  6942. }
  6943. void serialecho_temperatures() {
  6944. float tt = degHotend(active_extruder);
  6945. SERIAL_PROTOCOLPGM("T:");
  6946. SERIAL_PROTOCOL(tt);
  6947. SERIAL_PROTOCOLPGM(" E:");
  6948. SERIAL_PROTOCOL((int)active_extruder);
  6949. SERIAL_PROTOCOLPGM(" B:");
  6950. SERIAL_PROTOCOL_F(degBed(), 1);
  6951. SERIAL_PROTOCOLLN("");
  6952. }
  6953. extern uint32_t sdpos_atomic;
  6954. #ifdef UVLO_SUPPORT
  6955. void uvlo_()
  6956. {
  6957. unsigned long time_start = millis();
  6958. bool sd_print = card.sdprinting;
  6959. // Conserve power as soon as possible.
  6960. disable_x();
  6961. disable_y();
  6962. disable_e0();
  6963. #ifdef TMC2130
  6964. tmc2130_set_current_h(Z_AXIS, 20);
  6965. tmc2130_set_current_r(Z_AXIS, 20);
  6966. tmc2130_set_current_h(E_AXIS, 20);
  6967. tmc2130_set_current_r(E_AXIS, 20);
  6968. #endif //TMC2130
  6969. // Indicate that the interrupt has been triggered.
  6970. // SERIAL_ECHOLNPGM("UVLO");
  6971. // Read out the current Z motor microstep counter. This will be later used
  6972. // for reaching the zero full step before powering off.
  6973. uint16_t z_microsteps = 0;
  6974. #ifdef TMC2130
  6975. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6976. #endif //TMC2130
  6977. // Calculate the file position, from which to resume this print.
  6978. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6979. {
  6980. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6981. sd_position -= sdlen_planner;
  6982. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6983. sd_position -= sdlen_cmdqueue;
  6984. if (sd_position < 0) sd_position = 0;
  6985. }
  6986. // Backup the feedrate in mm/min.
  6987. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6988. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6989. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6990. // are in action.
  6991. planner_abort_hard();
  6992. // Store the current extruder position.
  6993. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6994. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6995. // Clean the input command queue.
  6996. cmdqueue_reset();
  6997. card.sdprinting = false;
  6998. // card.closefile();
  6999. // Enable stepper driver interrupt to move Z axis.
  7000. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7001. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7002. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7003. sei();
  7004. plan_buffer_line(
  7005. current_position[X_AXIS],
  7006. current_position[Y_AXIS],
  7007. current_position[Z_AXIS],
  7008. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7009. 95, active_extruder);
  7010. st_synchronize();
  7011. disable_e0();
  7012. plan_buffer_line(
  7013. current_position[X_AXIS],
  7014. current_position[Y_AXIS],
  7015. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7016. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7017. 40, active_extruder);
  7018. st_synchronize();
  7019. disable_e0();
  7020. plan_buffer_line(
  7021. current_position[X_AXIS],
  7022. current_position[Y_AXIS],
  7023. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7024. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7025. 40, active_extruder);
  7026. st_synchronize();
  7027. disable_e0();
  7028. disable_z();
  7029. // Move Z up to the next 0th full step.
  7030. // Write the file position.
  7031. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7032. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7033. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7034. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7035. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7036. // Scale the z value to 1u resolution.
  7037. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7038. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7039. }
  7040. // Read out the current Z motor microstep counter. This will be later used
  7041. // for reaching the zero full step before powering off.
  7042. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7043. // Store the current position.
  7044. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7045. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7046. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7047. // Store the current feed rate, temperatures and fan speed.
  7048. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7049. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7050. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7051. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7052. // Finaly store the "power outage" flag.
  7053. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7054. st_synchronize();
  7055. SERIAL_ECHOPGM("stps");
  7056. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7057. disable_z();
  7058. // Increment power failure counter
  7059. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7060. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7061. SERIAL_ECHOLNPGM("UVLO - end");
  7062. MYSERIAL.println(millis() - time_start);
  7063. #if 0
  7064. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7065. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7067. st_synchronize();
  7068. #endif
  7069. cli();
  7070. volatile unsigned int ppcount = 0;
  7071. SET_OUTPUT(BEEPER);
  7072. WRITE(BEEPER, HIGH);
  7073. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7074. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7075. }
  7076. WRITE(BEEPER, LOW);
  7077. while(1){
  7078. #if 1
  7079. WRITE(BEEPER, LOW);
  7080. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7081. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7082. }
  7083. #endif
  7084. };
  7085. }
  7086. #endif //UVLO_SUPPORT
  7087. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7088. void setup_fan_interrupt() {
  7089. //INT7
  7090. DDRE &= ~(1 << 7); //input pin
  7091. PORTE &= ~(1 << 7); //no internal pull-up
  7092. //start with sensing rising edge
  7093. EICRB &= ~(1 << 6);
  7094. EICRB |= (1 << 7);
  7095. //enable INT7 interrupt
  7096. EIMSK |= (1 << 7);
  7097. }
  7098. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7099. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7100. ISR(INT7_vect) {
  7101. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7102. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7103. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7104. t_fan_rising_edge = millis_nc();
  7105. }
  7106. else { //interrupt was triggered by falling edge
  7107. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7108. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7109. }
  7110. }
  7111. EICRB ^= (1 << 6); //change edge
  7112. }
  7113. #endif
  7114. #ifdef UVLO_SUPPORT
  7115. void setup_uvlo_interrupt() {
  7116. DDRE &= ~(1 << 4); //input pin
  7117. PORTE &= ~(1 << 4); //no internal pull-up
  7118. //sensing falling edge
  7119. EICRB |= (1 << 0);
  7120. EICRB &= ~(1 << 1);
  7121. //enable INT4 interrupt
  7122. EIMSK |= (1 << 4);
  7123. }
  7124. ISR(INT4_vect) {
  7125. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7126. SERIAL_ECHOLNPGM("INT4");
  7127. if (IS_SD_PRINTING) uvlo_();
  7128. }
  7129. void recover_print(uint8_t automatic) {
  7130. char cmd[30];
  7131. lcd_update_enable(true);
  7132. lcd_update(2);
  7133. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  7134. recover_machine_state_after_power_panic();
  7135. // Set the target bed and nozzle temperatures.
  7136. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7137. enquecommand(cmd);
  7138. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7139. enquecommand(cmd);
  7140. // Lift the print head, so one may remove the excess priming material.
  7141. if (current_position[Z_AXIS] < 25)
  7142. enquecommand_P(PSTR("G1 Z25 F800"));
  7143. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7144. enquecommand_P(PSTR("G28 X Y"));
  7145. // Set the target bed and nozzle temperatures and wait.
  7146. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7147. enquecommand(cmd);
  7148. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7149. enquecommand(cmd);
  7150. enquecommand_P(PSTR("M83")); //E axis relative mode
  7151. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7152. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7153. if(automatic == 0){
  7154. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7155. }
  7156. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7157. // Mark the power panic status as inactive.
  7158. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7159. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7160. delay_keep_alive(1000);
  7161. }*/
  7162. SERIAL_ECHOPGM("After waiting for temp:");
  7163. SERIAL_ECHOPGM("Current position X_AXIS:");
  7164. MYSERIAL.println(current_position[X_AXIS]);
  7165. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7166. MYSERIAL.println(current_position[Y_AXIS]);
  7167. // Restart the print.
  7168. restore_print_from_eeprom();
  7169. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7170. MYSERIAL.print(current_position[Z_AXIS]);
  7171. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7172. MYSERIAL.print(current_position[E_AXIS]);
  7173. }
  7174. void recover_machine_state_after_power_panic()
  7175. {
  7176. char cmd[30];
  7177. // 1) Recover the logical cordinates at the time of the power panic.
  7178. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7179. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7180. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7181. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7182. // The current position after power panic is moved to the next closest 0th full step.
  7183. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7184. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7185. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7186. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7187. sprintf_P(cmd, PSTR("G92 E"));
  7188. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7189. enquecommand(cmd);
  7190. }
  7191. memcpy(destination, current_position, sizeof(destination));
  7192. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7193. print_world_coordinates();
  7194. // 2) Initialize the logical to physical coordinate system transformation.
  7195. world2machine_initialize();
  7196. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7197. mbl.active = false;
  7198. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7199. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7200. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7201. // Scale the z value to 10u resolution.
  7202. int16_t v;
  7203. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7204. if (v != 0)
  7205. mbl.active = true;
  7206. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7207. }
  7208. if (mbl.active)
  7209. mbl.upsample_3x3();
  7210. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7211. // print_mesh_bed_leveling_table();
  7212. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7213. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7214. babystep_load();
  7215. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7216. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7217. // 6) Power up the motors, mark their positions as known.
  7218. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7219. axis_known_position[X_AXIS] = true; enable_x();
  7220. axis_known_position[Y_AXIS] = true; enable_y();
  7221. axis_known_position[Z_AXIS] = true; enable_z();
  7222. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7223. print_physical_coordinates();
  7224. // 7) Recover the target temperatures.
  7225. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7226. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7227. }
  7228. void restore_print_from_eeprom() {
  7229. float x_rec, y_rec, z_pos;
  7230. int feedrate_rec;
  7231. uint8_t fan_speed_rec;
  7232. char cmd[30];
  7233. char* c;
  7234. char filename[13];
  7235. uint8_t depth = 0;
  7236. char dir_name[9];
  7237. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7238. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7239. SERIAL_ECHOPGM("Feedrate:");
  7240. MYSERIAL.println(feedrate_rec);
  7241. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7242. MYSERIAL.println(int(depth));
  7243. for (int i = 0; i < depth; i++) {
  7244. for (int j = 0; j < 8; j++) {
  7245. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7246. }
  7247. dir_name[8] = '\0';
  7248. MYSERIAL.println(dir_name);
  7249. card.chdir(dir_name);
  7250. }
  7251. for (int i = 0; i < 8; i++) {
  7252. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7253. }
  7254. filename[8] = '\0';
  7255. MYSERIAL.print(filename);
  7256. strcat_P(filename, PSTR(".gco"));
  7257. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7258. for (c = &cmd[4]; *c; c++)
  7259. *c = tolower(*c);
  7260. enquecommand(cmd);
  7261. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7262. SERIAL_ECHOPGM("Position read from eeprom:");
  7263. MYSERIAL.println(position);
  7264. // E axis relative mode.
  7265. enquecommand_P(PSTR("M83"));
  7266. // Move to the XY print position in logical coordinates, where the print has been killed.
  7267. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7268. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7269. strcat_P(cmd, PSTR(" F2000"));
  7270. enquecommand(cmd);
  7271. // Move the Z axis down to the print, in logical coordinates.
  7272. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7273. enquecommand(cmd);
  7274. // Unretract.
  7275. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7276. // Set the feedrate saved at the power panic.
  7277. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7278. enquecommand(cmd);
  7279. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7280. {
  7281. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7282. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7283. }
  7284. // Set the fan speed saved at the power panic.
  7285. strcpy_P(cmd, PSTR("M106 S"));
  7286. strcat(cmd, itostr3(int(fan_speed_rec)));
  7287. enquecommand(cmd);
  7288. // Set a position in the file.
  7289. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7290. enquecommand(cmd);
  7291. // Start SD print.
  7292. enquecommand_P(PSTR("M24"));
  7293. }
  7294. #endif //UVLO_SUPPORT
  7295. ////////////////////////////////////////////////////////////////////////////////
  7296. // new save/restore printing
  7297. //extern uint32_t sdpos_atomic;
  7298. bool saved_printing = false;
  7299. uint32_t saved_sdpos = 0;
  7300. float saved_pos[4] = {0, 0, 0, 0};
  7301. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7302. float saved_feedrate2 = 0;
  7303. uint8_t saved_active_extruder = 0;
  7304. bool saved_extruder_under_pressure = false;
  7305. void stop_and_save_print_to_ram(float z_move, float e_move)
  7306. {
  7307. if (saved_printing) return;
  7308. cli();
  7309. unsigned char nplanner_blocks = number_of_blocks();
  7310. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7311. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7312. saved_sdpos -= sdlen_planner;
  7313. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7314. saved_sdpos -= sdlen_cmdqueue;
  7315. #if 0
  7316. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7317. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7318. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7319. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7320. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7321. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7322. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7323. {
  7324. card.setIndex(saved_sdpos);
  7325. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7326. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7327. MYSERIAL.print(char(card.get()));
  7328. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7329. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7330. MYSERIAL.print(char(card.get()));
  7331. SERIAL_ECHOLNPGM("End of command buffer");
  7332. }
  7333. {
  7334. // Print the content of the planner buffer, line by line:
  7335. card.setIndex(saved_sdpos);
  7336. int8_t iline = 0;
  7337. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7338. SERIAL_ECHOPGM("Planner line (from file): ");
  7339. MYSERIAL.print(int(iline), DEC);
  7340. SERIAL_ECHOPGM(", length: ");
  7341. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7342. SERIAL_ECHOPGM(", steps: (");
  7343. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7344. SERIAL_ECHOPGM(",");
  7345. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7346. SERIAL_ECHOPGM(",");
  7347. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7348. SERIAL_ECHOPGM(",");
  7349. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7350. SERIAL_ECHOPGM("), events: ");
  7351. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7352. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7353. MYSERIAL.print(char(card.get()));
  7354. }
  7355. }
  7356. {
  7357. // Print the content of the command buffer, line by line:
  7358. int8_t iline = 0;
  7359. union {
  7360. struct {
  7361. char lo;
  7362. char hi;
  7363. } lohi;
  7364. uint16_t value;
  7365. } sdlen_single;
  7366. int _bufindr = bufindr;
  7367. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7368. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7369. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7370. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7371. }
  7372. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7373. MYSERIAL.print(int(iline), DEC);
  7374. SERIAL_ECHOPGM(", type: ");
  7375. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7376. SERIAL_ECHOPGM(", len: ");
  7377. MYSERIAL.println(sdlen_single.value, DEC);
  7378. // Print the content of the buffer line.
  7379. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7380. SERIAL_ECHOPGM("Buffer line (from file): ");
  7381. MYSERIAL.print(int(iline), DEC);
  7382. MYSERIAL.println(int(iline), DEC);
  7383. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7384. MYSERIAL.print(char(card.get()));
  7385. if (-- _buflen == 0)
  7386. break;
  7387. // First skip the current command ID and iterate up to the end of the string.
  7388. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7389. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7390. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7391. // If the end of the buffer was empty,
  7392. if (_bufindr == sizeof(cmdbuffer)) {
  7393. // skip to the start and find the nonzero command.
  7394. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7395. }
  7396. }
  7397. }
  7398. #endif
  7399. #if 0
  7400. saved_feedrate2 = feedrate; //save feedrate
  7401. #else
  7402. // Try to deduce the feedrate from the first block of the planner.
  7403. // Speed is in mm/min.
  7404. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7405. #endif
  7406. planner_abort_hard(); //abort printing
  7407. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7408. saved_active_extruder = active_extruder; //save active_extruder
  7409. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7410. cmdqueue_reset(); //empty cmdqueue
  7411. card.sdprinting = false;
  7412. // card.closefile();
  7413. saved_printing = true;
  7414. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7415. st_reset_timer();
  7416. sei();
  7417. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7418. #if 1
  7419. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7420. char buf[48];
  7421. strcpy_P(buf, PSTR("G1 Z"));
  7422. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7423. strcat_P(buf, PSTR(" E"));
  7424. // Relative extrusion
  7425. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7426. strcat_P(buf, PSTR(" F"));
  7427. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7428. // At this point the command queue is empty.
  7429. enquecommand(buf, false);
  7430. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7431. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7432. repeatcommand_front();
  7433. #else
  7434. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7435. st_synchronize(); //wait moving
  7436. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7437. memcpy(destination, current_position, sizeof(destination));
  7438. #endif
  7439. }
  7440. }
  7441. void restore_print_from_ram_and_continue(float e_move)
  7442. {
  7443. if (!saved_printing) return;
  7444. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7445. // current_position[axis] = st_get_position_mm(axis);
  7446. active_extruder = saved_active_extruder; //restore active_extruder
  7447. feedrate = saved_feedrate2; //restore feedrate
  7448. float e = saved_pos[E_AXIS] - e_move;
  7449. plan_set_e_position(e);
  7450. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7451. st_synchronize();
  7452. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7453. memcpy(destination, current_position, sizeof(destination));
  7454. card.setIndex(saved_sdpos);
  7455. sdpos_atomic = saved_sdpos;
  7456. card.sdprinting = true;
  7457. saved_printing = false;
  7458. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7459. }
  7460. void print_world_coordinates()
  7461. {
  7462. SERIAL_ECHOPGM("world coordinates: (");
  7463. MYSERIAL.print(current_position[X_AXIS], 3);
  7464. SERIAL_ECHOPGM(", ");
  7465. MYSERIAL.print(current_position[Y_AXIS], 3);
  7466. SERIAL_ECHOPGM(", ");
  7467. MYSERIAL.print(current_position[Z_AXIS], 3);
  7468. SERIAL_ECHOLNPGM(")");
  7469. }
  7470. void print_physical_coordinates()
  7471. {
  7472. SERIAL_ECHOPGM("physical coordinates: (");
  7473. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7474. SERIAL_ECHOPGM(", ");
  7475. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7476. SERIAL_ECHOPGM(", ");
  7477. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7478. SERIAL_ECHOLNPGM(")");
  7479. }
  7480. void print_mesh_bed_leveling_table()
  7481. {
  7482. SERIAL_ECHOPGM("mesh bed leveling: ");
  7483. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7484. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7485. MYSERIAL.print(mbl.z_values[y][x], 3);
  7486. SERIAL_ECHOPGM(" ");
  7487. }
  7488. SERIAL_ECHOLNPGM("");
  7489. }
  7490. #define FIL_LOAD_LENGTH 60
  7491. void extr_unload2() { //unloads filament
  7492. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7493. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7494. // int8_t SilentMode;
  7495. uint8_t snmm_extruder = 0;
  7496. if (degHotend0() > EXTRUDE_MINTEMP) {
  7497. lcd_implementation_clear();
  7498. lcd_display_message_fullscreen_P(PSTR(""));
  7499. max_feedrate[E_AXIS] = 50;
  7500. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7501. // lcd.print(" ");
  7502. // lcd.print(snmm_extruder + 1);
  7503. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7504. if (current_position[Z_AXIS] < 15) {
  7505. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7507. }
  7508. current_position[E_AXIS] += 10; //extrusion
  7509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7510. // st_current_set(2, E_MOTOR_HIGH_CURRENT);
  7511. if (current_temperature[0] < 230) { //PLA & all other filaments
  7512. current_position[E_AXIS] += 5.4;
  7513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7514. current_position[E_AXIS] += 3.2;
  7515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7516. current_position[E_AXIS] += 3;
  7517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7518. }
  7519. else { //ABS
  7520. current_position[E_AXIS] += 3.1;
  7521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7522. current_position[E_AXIS] += 3.1;
  7523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7524. current_position[E_AXIS] += 4;
  7525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7526. /*current_position[X_AXIS] += 23; //delay
  7527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7528. current_position[X_AXIS] -= 23; //delay
  7529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7530. delay_keep_alive(4700);
  7531. }
  7532. max_feedrate[E_AXIS] = 80;
  7533. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7535. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7537. st_synchronize();
  7538. //st_current_init();
  7539. // if (SilentMode == 1) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  7540. // else st_current_set(2, tmp_motor_loud[2]);
  7541. lcd_update_enable(true);
  7542. // lcd_return_to_status();
  7543. max_feedrate[E_AXIS] = 50;
  7544. }
  7545. else {
  7546. lcd_implementation_clear();
  7547. lcd.setCursor(0, 0);
  7548. lcd_printPGM(MSG_ERROR);
  7549. lcd.setCursor(0, 2);
  7550. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7551. delay(2000);
  7552. lcd_implementation_clear();
  7553. }
  7554. // lcd_return_to_status();
  7555. }