| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475 | /*  planner.c - buffers movement commands and manages the acceleration profile plan Part of Grbl  Copyright (c) 2009-2011 Simen Svale Skogsrud  Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.  Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more details.  You should have received a copy of the GNU General Public License along with Grbl.  If not, see <http://www.gnu.org/licenses/>. *//* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. *//*   Reasoning behind the mathematics in this module (in the key of 'Mathematica'):  s == speed, a == acceleration, t == time, d == distance  Basic definitions:  Speed[s_, a_, t_] := s + (a*t)  Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]  Distance to reach a specific speed with a constant acceleration:  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()  Speed after a given distance of travel with constant acceleration:  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] m -> Sqrt[2 a d + s^2]      DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]  When to start braking (di) to reach a specified destionation speed (s2) after accelerating from initial speed s1 without ever stopping at a plateau:  Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()  IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) */#include "Marlin.h"#include "planner.h"#include "stepper.h"#include "temperature.h"#include "ultralcd.h"#include "language.h"#include "ConfigurationStore.h"#ifdef MESH_BED_LEVELING#include "mesh_bed_leveling.h"#include "mesh_bed_calibration.h"#endif#ifdef TMC2130#include "tmc2130.h"#endif //TMC2130//===========================================================================//=============================public variables ============================//===========================================================================// Use M203 to override by softwarefloat* max_feedrate = cs.max_feedrate_normal;// Use M201 to override by softwareunsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;unsigned long axis_steps_per_sqr_second[NUM_AXIS];#ifdef ENABLE_AUTO_BED_LEVELING// this holds the required transform to compensate for bed levelmatrix_3x3 plan_bed_level_matrix = {	1.0, 0.0, 0.0,	0.0, 1.0, 0.0,	0.0, 0.0, 1.0,};#endif // #ifdef ENABLE_AUTO_BED_LEVELING// The current position of the tool in absolute stepslong position[NUM_AXIS];   //rescaled from extern when axis_steps_per_unit are changed by gcodestatic float previous_speed[NUM_AXIS]; // Speed of previous path line segmentstatic float previous_nominal_speed; // Nominal speed of previous path line segmentstatic float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.uint8_t maxlimit_status;#ifdef AUTOTEMPfloat autotemp_max=250;float autotemp_min=210;float autotemp_factor=0.1;bool autotemp_enabled=false;#endifunsigned char g_uc_extruder_last_move[3] = {0,0,0};//===========================================================================//=================semi-private variables, used in inline  functions    =====//===========================================================================block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instfructionsvolatile unsigned char block_buffer_head;           // Index of the next block to be pushedvolatile unsigned char block_buffer_tail;           // Index of the block to process now#ifdef PLANNER_DIAGNOSTICS// Diagnostic function: Minimum number of planned moves since the last static uint8_t g_cntr_planner_queue_min = 0;#endif /* PLANNER_DIAGNOSTICS *///===========================================================================//=============================private variables ============================//===========================================================================#ifdef PREVENT_DANGEROUS_EXTRUDEfloat extrude_min_temp=EXTRUDE_MINTEMP;#endif#ifdef LIN_ADVANCEfloat extruder_advance_K = LIN_ADVANCE_K;float position_float[NUM_AXIS];#endif// Request the next block to start at zero E countstatic bool plan_reset_next_e_queue;static bool plan_reset_next_e_sched;// Returns the index of the next block in the ring buffer// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.static inline int8_t next_block_index(int8_t block_index) {  if (++ block_index == BLOCK_BUFFER_SIZE)    block_index = 0;   return block_index;}// Returns the index of the previous block in the ring bufferstatic inline int8_t prev_block_index(int8_t block_index) {  if (block_index == 0)    block_index = BLOCK_BUFFER_SIZE;   -- block_index;  return block_index;}//===========================================================================//=============================functions         ============================//===========================================================================// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // given acceleration:FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration){  if (acceleration!=0) {    return((target_rate*target_rate-initial_rate*initial_rate)/      (2.0*acceleration));  }  else {    return 0.0;  // acceleration was 0, set acceleration distance to 0  }}// This function gives you the point at which you must start braking (at the rate of -acceleration) if // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after// a total travel of distance. This can be used to compute the intersection point between acceleration and// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {  if (acceleration!=0) {    return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/      (4.0*acceleration) );  }  else {    return 0.0;  // acceleration was 0, set intersection distance to 0  }}// Minimum stepper rate 120Hz.#define MINIMAL_STEP_RATE 120// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {  // These two lines are the only floating point calculations performed in this routine.  // initial_rate, final_rate in Hz.  // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,  // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.  uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)  uint32_t final_rate   = ceil(exit_speed  * block->speed_factor); // (step/min)  // Limit minimal step rate (Otherwise the timer will overflow.)  if (initial_rate < MINIMAL_STEP_RATE)      initial_rate = MINIMAL_STEP_RATE;  if (initial_rate > block->nominal_rate)      initial_rate = block->nominal_rate;  if (final_rate < MINIMAL_STEP_RATE)      final_rate = MINIMAL_STEP_RATE;  if (final_rate > block->nominal_rate)      final_rate = block->nominal_rate;  uint32_t acceleration      = block->acceleration_st;  if (acceleration == 0)      // Don't allow zero acceleration.      acceleration = 1;  // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)  // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));  uint32_t initial_rate_sqr  = initial_rate*initial_rate;  //FIXME assert that this result fits a 64bit unsigned int.  uint32_t nominal_rate_sqr  = block->nominal_rate*block->nominal_rate;  uint32_t final_rate_sqr    = final_rate*final_rate;  uint32_t acceleration_x2   = acceleration << 1;  // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));  uint32_t accelerate_steps  = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;  // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));  uint32_t decelerate_steps  = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;  uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;  // Size of Plateau of Nominal Rate.  uint32_t plateau_steps     = 0;  // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will  // have to use intersection_distance() to calculate when to abort acceleration and start braking  // in order to reach the final_rate exactly at the end of this block.  if (accel_decel_steps < block->step_event_count.wide) {    plateau_steps = block->step_event_count.wide - accel_decel_steps;  } else {    uint32_t acceleration_x4  = acceleration << 2;    // Avoid negative numbers    if (final_rate_sqr >= initial_rate_sqr) {        // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));        // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)         // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);#if 0        accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;#else        accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;        if (block->step_event_count.wide & 1)            accelerate_steps += acceleration_x2;        accelerate_steps /= acceleration_x4;        accelerate_steps += (block->step_event_count.wide >> 1);#endif        if (accelerate_steps > block->step_event_count.wide)            accelerate_steps = block->step_event_count.wide;    } else {#if 0        decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;#else        decelerate_steps = initial_rate_sqr - final_rate_sqr;        if (block->step_event_count.wide & 1)            decelerate_steps += acceleration_x2;        decelerate_steps /= acceleration_x4;        decelerate_steps += (block->step_event_count.wide >> 1);#endif        if (decelerate_steps > block->step_event_count.wide)            decelerate_steps = block->step_event_count.wide;        accelerate_steps = block->step_event_count.wide - decelerate_steps;    }  }#ifdef LIN_ADVANCE  uint16_t final_adv_steps = 0;  if (block->use_advance_lead) {      final_adv_steps = exit_speed * block->adv_comp;  }#endif  CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section  // This block locks the interrupts globally for 4.38 us,  // which corresponds to a maximum repeat frequency of 228.57 kHz.  // This blocking is safe in the context of a 10kHz stepper driver interrupt  // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.  if (! block->busy) { // Don't update variables if block is busy.    block->accelerate_until = accelerate_steps;    block->decelerate_after = accelerate_steps+plateau_steps;    block->initial_rate = initial_rate;    block->final_rate = final_rate;#ifdef LIN_ADVANCE    block->final_adv_steps = final_adv_steps;#endif  }  CRITICAL_SECTION_END;}// Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the // decceleration within the allotted distance.FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance) {    // assert(decceleration < 0);    return  sqrt(target_velocity*target_velocity-2*decceleration*distance);}// Recalculates the motion plan according to the following algorithm:////   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) //      so that://     a. The junction jerk is within the set limit//     b. No speed reduction within one block requires faster deceleration than the one, true constant //        acceleration.//   2. Go over every block in chronological order and dial down junction speed reduction values if //     a. The speed increase within one block would require faster accelleration than the one, true //        constant acceleration.//// When these stages are complete all blocks have an entry_factor that will allow all speed changes to // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than // the set limit. Finally it will:////   3. Recalculate trapezoids for all blocks.////FIXME This routine is called 15x every time a new line is added to the planner,// therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,// if the CPU is found lacking computational power.//// Following sources may be used to optimize the 8-bit AVR code:// http://www.mikrocontroller.net/articles/AVR_Arithmetik// http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf// // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S// https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html// https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html// // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/// https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/// https://github.com/rekka/avrmultiplication// // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/// https://courses.cit.cornell.edu/ee476/Math/// https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S//void planner_recalculate(const float &safe_final_speed) {    // Reverse pass    // Make a local copy of block_buffer_tail, because the interrupt can alter it    // by consuming the blocks, therefore shortening the queue.    unsigned char tail = block_buffer_tail;    uint8_t block_index;    block_t *prev, *current, *next;//    SERIAL_ECHOLNPGM("planner_recalculate - 1");    // At least three blocks are in the queue?    unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);    if (n_blocks >= 3) {        // Initialize the last tripple of blocks.        block_index = prev_block_index(block_buffer_head);        next        = block_buffer + block_index;        current     = block_buffer + (block_index = prev_block_index(block_index));        // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.        // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because        // 1) it may already be running at the stepper interrupt,        // 2) there is no way to limit it when going in the forward direction.        while (block_index != tail) {            if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {                // Don't modify the entry velocity of the starting block.                // Also don't modify the trapezoids before this block, they are finalized already, prepared                // for the stepper interrupt routine to use them.                tail = block_index;                // Update the number of blocks to process.                n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);                // SERIAL_ECHOLNPGM("START");                break;            }            // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.            // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and            // check for maximum allowable speed reductions to ensure maximum possible planned speed.            if (current->entry_speed != current->max_entry_speed) {                // assert(current->entry_speed < current->max_entry_speed);                // Entry speed could be increased up to the max_entry_speed, limited by the length of the current                // segment and the maximum acceleration allowed for this segment.                // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.                // Only compute for max allowable speed if block is decelerating and nominal length is false.                // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.                // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient                // together with an assembly 32bit->16bit sqrt function.                current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?                    current->max_entry_speed :                    // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));                    min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));                current->flag |= BLOCK_FLAG_RECALCULATE;            }            next = current;            current = block_buffer + (block_index = prev_block_index(block_index));        }    }//    SERIAL_ECHOLNPGM("planner_recalculate - 2");    // Forward pass and recalculate the trapezoids.    if (n_blocks >= 2) {        // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.        block_index = tail;        prev    = block_buffer + block_index;        current = block_buffer + (block_index = next_block_index(block_index));        do {            // If the previous block is an acceleration block, but it is not long enough to complete the            // full speed change within the block, we need to adjust the entry speed accordingly. Entry            // speeds have already been reset, maximized, and reverse planned by reverse planner.            // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.            if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {                float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));                // Check for junction speed change                if (current->entry_speed != entry_speed) {                    current->entry_speed = entry_speed;                    current->flag |= BLOCK_FLAG_RECALCULATE;                }            }            // Recalculate if current block entry or exit junction speed has changed.            if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {                // NOTE: Entry and exit factors always > 0 by all previous logic operations.                calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);                // Reset current only to ensure next trapezoid is computed.                prev->flag &= ~BLOCK_FLAG_RECALCULATE;            }            prev = current;            current = block_buffer + (block_index = next_block_index(block_index));        } while (block_index != block_buffer_head);    }//    SERIAL_ECHOLNPGM("planner_recalculate - 3");    // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.    current = block_buffer + prev_block_index(block_buffer_head);    calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);    current->flag &= ~BLOCK_FLAG_RECALCULATE;//    SERIAL_ECHOLNPGM("planner_recalculate - 4");}void plan_init() {  block_buffer_head = 0;  block_buffer_tail = 0;  memset(position, 0, sizeof(position)); // clear position  #ifdef LIN_ADVANCE  memset(position_float, 0, sizeof(position_float)); // clear position  #endif  previous_speed[0] = 0.0;  previous_speed[1] = 0.0;  previous_speed[2] = 0.0;  previous_speed[3] = 0.0;  previous_nominal_speed = 0.0;  plan_reset_next_e_queue = false;  plan_reset_next_e_sched = false;}#ifdef AUTOTEMPvoid getHighESpeed(){  static float oldt=0;  if(!autotemp_enabled){    return;  }  if(degTargetHotend0()+2<autotemp_min) {  //probably temperature set to zero.    return; //do nothing  }  float high=0.0;  uint8_t block_index = block_buffer_tail;  while(block_index != block_buffer_head) {    if((block_buffer[block_index].steps_x.wide != 0) ||      (block_buffer[block_index].steps_y.wide != 0) ||      (block_buffer[block_index].steps_z.wide != 0)) {      float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;      //se; mm/sec;      if(se>high)      {        high=se;      }    }    block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);  }  float g=autotemp_min+high*autotemp_factor;  float t=g;  if(t<autotemp_min)    t=autotemp_min;  if(t>autotemp_max)    t=autotemp_max;  if(oldt>t)  {    t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;  }  oldt=t;  setTargetHotend0(t);}#endifbool e_active(){	unsigned char e_active = 0;	block_t *block;  if(block_buffer_tail != block_buffer_head)  {    uint8_t block_index = block_buffer_tail;    while(block_index != block_buffer_head)    {      block = &block_buffer[block_index];      if(block->steps_e.wide != 0) e_active++;      block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);    }  }  return (e_active > 0) ? true : false ;}void check_axes_activity(){  unsigned char x_active = 0;  unsigned char y_active = 0;    unsigned char z_active = 0;  unsigned char e_active = 0;  unsigned char tail_fan_speed = fanSpeed;  block_t *block;  if(block_buffer_tail != block_buffer_head)  {    uint8_t block_index = block_buffer_tail;    tail_fan_speed = block_buffer[block_index].fan_speed;    while(block_index != block_buffer_head)    {      block = &block_buffer[block_index];      if(block->steps_x.wide != 0) x_active++;      if(block->steps_y.wide != 0) y_active++;      if(block->steps_z.wide != 0) z_active++;      if(block->steps_e.wide != 0) e_active++;      block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);    }  }  if((DISABLE_X) && (x_active == 0)) disable_x();  if((DISABLE_Y) && (y_active == 0)) disable_y();  if((DISABLE_Z) && (z_active == 0)) disable_z();  if((DISABLE_E) && (e_active == 0))  {    disable_e0();    disable_e1();    disable_e2();   }#if defined(FAN_PIN) && FAN_PIN > -1  #ifdef FAN_KICKSTART_TIME    static unsigned long fan_kick_end;    if (tail_fan_speed) {      if (fan_kick_end == 0) {        // Just starting up fan - run at full power.        fan_kick_end = _millis() + FAN_KICKSTART_TIME;        tail_fan_speed = 255;      } else if (fan_kick_end > _millis())        // Fan still spinning up.        tail_fan_speed = 255;    } else {      fan_kick_end = 0;    }  #endif//FAN_KICKSTART_TIME  #ifdef FAN_SOFT_PWM	if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value		fanSpeedBckp = tail_fan_speed;	}	else {		fanSpeedSoftPwm = tail_fan_speed;	}  //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);  #else  analogWrite(FAN_PIN,tail_fan_speed);  #endif//!FAN_SOFT_PWM#endif//FAN_PIN > -1#ifdef AUTOTEMP  getHighESpeed();#endif}bool waiting_inside_plan_buffer_line_print_aborted = false;/*void planner_abort_soft(){    // Empty the queue.    while (blocks_queued()) plan_discard_current_block();    // Relay to planner wait routine, that the current line shall be canceled.    waiting_inside_plan_buffer_line_print_aborted = true;    //current_position[i]}*/#ifdef PLANNER_DIAGNOSTICSstatic inline void planner_update_queue_min_counter(){  uint8_t new_counter = moves_planned();  if (new_counter < g_cntr_planner_queue_min)    g_cntr_planner_queue_min = new_counter;}#endif /* PLANNER_DIAGNOSTICS */extern volatile uint32_t step_events_completed; // The number of step events executed in the current blockvoid planner_abort_hard(){    // Abort the stepper routine and flush the planner queue.    DISABLE_STEPPER_DRIVER_INTERRUPT();    // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.    // First update the planner's current position in the physical motor steps.    position[X_AXIS] = st_get_position(X_AXIS);    position[Y_AXIS] = st_get_position(Y_AXIS);    position[Z_AXIS] = st_get_position(Z_AXIS);    position[E_AXIS] = st_get_position(E_AXIS);    // Second update the current position of the front end.    current_position[X_AXIS] = st_get_position_mm(X_AXIS);    current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);    current_position[E_AXIS] = st_get_position_mm(E_AXIS);    // Apply the mesh bed leveling correction to the Z axis.#ifdef MESH_BED_LEVELING    if (mbl.active) {#if 1        // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.        // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.        current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);#else        // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.        if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))            current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);        else {            float t = float(step_events_completed) / float(current_block->step_event_count);            float vec[3] = {               current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],              current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],              current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]            };            float pos1[3], pos2[3];            for (int8_t i = 0; i < 3; ++ i) {              if (current_block->direction_bits & (1<<i))                vec[i] = - vec[i];              pos1[i] = current_position[i] - vec[i] * t;              pos2[i] = current_position[i] + vec[i] * (1.f - t);            }            pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);            pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);            current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);        }#endif    }#endif    // Clear the planner queue, reset and re-enable the stepper timer.    quickStop();    // Apply inverse world correction matrix.    machine2world(current_position[X_AXIS], current_position[Y_AXIS]);    memcpy(destination, current_position, sizeof(destination));#ifdef LIN_ADVANCE    memcpy(position_float, current_position, sizeof(position_float));#endif    // Resets planner junction speeds. Assumes start from rest.    previous_nominal_speed = 0.0;    previous_speed[0] = 0.0;    previous_speed[1] = 0.0;    previous_speed[2] = 0.0;    previous_speed[3] = 0.0;    plan_reset_next_e_queue = false;    plan_reset_next_e_sched = false;    // Relay to planner wait routine, that the current line shall be canceled.    waiting_inside_plan_buffer_line_print_aborted = true;}void plan_buffer_line_curposXYZE(float feed_rate, uint8_t extruder) { 	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, extruder );}float junction_deviation = 0.1;// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration// calculation the caller must also provide the physical length of the line in millimeters.void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target){    // Calculate the buffer head after we push this byte  int next_buffer_head = next_block_index(block_buffer_head);  // If the buffer is full: good! That means we are well ahead of the robot.   // Rest here until there is room in the buffer.  waiting_inside_plan_buffer_line_print_aborted = false;  if (block_buffer_tail == next_buffer_head) {      do {          manage_heater();           // Vojtech: Don't disable motors inside the planner!          manage_inactivity(false);           lcd_update(0);      } while (block_buffer_tail == next_buffer_head);      if (waiting_inside_plan_buffer_line_print_aborted) {          // Inside the lcd_update(0) routine the print has been aborted.          // Cancel the print, do not plan the current line this routine is waiting on.#ifdef PLANNER_DIAGNOSTICS          planner_update_queue_min_counter();#endif /* PLANNER_DIAGNOSTICS */          return;      }  }#ifdef PLANNER_DIAGNOSTICS  planner_update_queue_min_counter();#endif /* PLANNER_DIAGNOSTICS */  // Prepare to set up new block  block_t *block = &block_buffer[block_buffer_head];  // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)  block->busy = false;  // Set sdlen for calculating sd position  block->sdlen = 0;  // Save original destination of the move  if (gcode_target)      memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));  else  {      block->gcode_target[X_AXIS] = x;      block->gcode_target[Y_AXIS] = y;      block->gcode_target[Z_AXIS] = z;      block->gcode_target[E_AXIS] = e;  }  // Save the global feedrate at scheduling time  block->gcode_feedrate = feedrate;  // Reset the starting E position when requested  if (plan_reset_next_e_queue)  {      position[E_AXIS] = 0;#ifdef LIN_ADVANCE      position_float[E_AXIS] = 0;#endif      // the block might still be discarded later, but we need to ensure the lower-level      // count_position is also reset correctly for consistent results!      plan_reset_next_e_queue = false;      plan_reset_next_e_sched = true;  }#ifdef ENABLE_AUTO_BED_LEVELING  apply_rotation_xyz(plan_bed_level_matrix, x, y, z);#endif // ENABLE_AUTO_BED_LEVELING    // Apply the machine correction matrix.    {      #if 0        SERIAL_ECHOPGM("Planner, current position - servos: ");        MYSERIAL.print(st_get_position_mm(X_AXIS), 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Planner, target position, initial: ");        MYSERIAL.print(x, 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(y, 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Planner, world2machine: ");        MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Planner, offset: ");        MYSERIAL.print(world2machine_shift[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_shift[1], 5);        SERIAL_ECHOLNPGM("");      #endif        world2machine(x, y);      #if 0        SERIAL_ECHOPGM("Planner, target position, corrected: ");        MYSERIAL.print(x, 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(y, 5);        SERIAL_ECHOLNPGM("");      #endif    }  // The target position of the tool in absolute steps  // Calculate target position in absolute steps  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow  long target[4];  target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);  target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);#ifdef MESH_BED_LEVELING    if (mbl.active){        target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);    }else{        target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);    }#else    target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);#endif // ENABLE_MESH_BED_LEVELING  target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);    #ifdef PREVENT_DANGEROUS_EXTRUDE  if(target[E_AXIS]!=position[E_AXIS])  {    if(degHotend(active_extruder)<extrude_min_temp)    {      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part      #ifdef LIN_ADVANCE      position_float[E_AXIS] = e;      #endif      SERIAL_ECHO_START;      SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP    }        #ifdef PREVENT_LENGTHY_EXTRUDE    if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)    {      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part      #ifdef LIN_ADVANCE      position_float[E_AXIS] = e;      #endif      SERIAL_ECHO_START;      SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP    }    #endif  }  #endif  // Number of steps for each axis#ifndef COREXY// default non-h-bot planningblock->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);#else// corexy planning// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.htmlblock->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));#endif  block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);  block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);  block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));  // Bail if this is a zero-length block  if (block->step_event_count.wide <= dropsegments)  { #ifdef PLANNER_DIAGNOSTICS    planner_update_queue_min_counter();#endif /* PLANNER_DIAGNOSTICS */    return;   }  block->fan_speed = fanSpeed;  // Compute direction bits for this block   block->direction_bits = 0;#ifndef COREXY  if (target[X_AXIS] < position[X_AXIS])  {    block->direction_bits |= (1<<X_AXIS);   }  if (target[Y_AXIS] < position[Y_AXIS])  {    block->direction_bits |= (1<<Y_AXIS);   }#else  if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)  {    block->direction_bits |= (1<<X_AXIS);   }  if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)  {    block->direction_bits |= (1<<Y_AXIS);   }#endif  if (target[Z_AXIS] < position[Z_AXIS])  {    block->direction_bits |= (1<<Z_AXIS);   }  if (target[E_AXIS] < position[E_AXIS])  {    block->direction_bits |= (1<<E_AXIS);   }  block->active_extruder = extruder;  //enable active axes  #ifdef COREXY  if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))  {    enable_x();    enable_y();  }  #else  if(block->steps_x.wide != 0) enable_x();  if(block->steps_y.wide != 0) enable_y();  #endif  if(block->steps_z.wide != 0) enable_z();  // Enable extruder(s)  if(block->steps_e.wide != 0)  {    if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder    {      if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;      if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;      if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;            switch(extruder)      {        case 0:           enable_e0();           g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;                    if(g_uc_extruder_last_move[1] == 0) {disable_e1();}          if(g_uc_extruder_last_move[2] == 0) {disable_e2();}        break;        case 1:          enable_e1();           g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;                    if(g_uc_extruder_last_move[0] == 0) {disable_e0();}          if(g_uc_extruder_last_move[2] == 0) {disable_e2();}        break;        case 2:          enable_e2();           g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;                    if(g_uc_extruder_last_move[0] == 0) {disable_e0();}          if(g_uc_extruder_last_move[1] == 0) {disable_e1();}        break;              }    }    else //enable all    {      enable_e0();      enable_e1();      enable_e2();     }  }  if (block->steps_e.wide == 0)  {    if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;  }  else  {    if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;  } /* This part of the code calculates the total length of the movement. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXISand B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.*/   #ifndef COREXY    float delta_mm[4];    delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];    delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];  #else    float delta_mm[6];    delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];    delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];    delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];    delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];  #endif  delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];  delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];  if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )  {    block->millimeters = fabs(delta_mm[E_AXIS]);  }   else  {    #ifndef COREXY      block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));	#else	  block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));    #endif	  }  float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides     // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.  float inverse_second = feed_rate * inverse_millimeters;  int moves_queued = moves_planned();  // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill#ifdef SLOWDOWN  //FIXME Vojtech: Why moves_queued > 1? Why not >=1?  // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?  if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {      // segment time in micro seconds      unsigned long segment_time = lround(1000000.0/inverse_second);      if (segment_time < cs.minsegmenttime)          // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.          inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));  }#endif // SLOWDOWN  block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0  block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0  // Calculate and limit speed in mm/sec for each axis  float current_speed[4];  float speed_factor = 1.0; //factor <=1 do decrease speed//  maxlimit_status &= ~0xf;  for(int i=0; i < 4; i++)  {    current_speed[i] = delta_mm[i] * inverse_second;	if(fabs(current_speed[i]) > max_feedrate[i])	{      speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));	  maxlimit_status |= (1 << i);	}  }  // Correct the speed    if( speed_factor < 1.0)  {    for(unsigned char i=0; i < 4; i++)    {      current_speed[i] *= speed_factor;    }    block->nominal_speed *= speed_factor;    block->nominal_rate *= speed_factor;  }#ifdef LIN_ADVANCE  float e_D_ratio = 0;#endif  // Compute and limit the acceleration rate for the trapezoid generator.    // block->step_event_count ... event count of the fastest axis  // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.  float steps_per_mm = block->step_event_count.wide/block->millimeters;  if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)  {    block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2    #ifdef LIN_ADVANCE    block->use_advance_lead = false;    #endif  }  else  {    block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2    #ifdef LIN_ADVANCE    /**     * Use LIN_ADVANCE within this block if all these are true:     *     * block->steps_e           : This is a print move, because we checked for X, Y, Z steps before.     * extruder_advance_K       : There is an advance factor set.     * delta_mm[E_AXIS] > 0     : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)     * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)     */    block->use_advance_lead = block->steps_e.wide                              && extruder_advance_K                              && delta_mm[E_AXIS] > 0                              && abs(delta_mm[Z_AXIS]) < 0.5;    if (block->use_advance_lead) {        e_D_ratio = (e - position_float[E_AXIS]) /                    sqrt(sq(x - position_float[X_AXIS])                         + sq(y - position_float[Y_AXIS])                         + sq(z - position_float[Z_AXIS]));        // Check for unusual high e_D ratio to detect if a retract move was combined with the last        // print move due to min. steps per segment. Never execute this with advance! This assumes        // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print        // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.        if (e_D_ratio > 3.0)            block->use_advance_lead = false;        else {            const uint32_t max_accel_steps_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio) * steps_per_mm;            if (block->acceleration_st > max_accel_steps_per_s2) {                block->acceleration_st = max_accel_steps_per_s2;                #ifdef LA_DEBUG                SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");                #endif            }        }    }    #endif    // Limit acceleration per axis    //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.    if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])	{  block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }    if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])	{  block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }    if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])	{  block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }    if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])	{  block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }  }  // Acceleration of the segment, in mm/sec^2  block->acceleration = block->acceleration_st / steps_per_mm;#if 0  // Oversample diagonal movements by a power of 2 up to 8x  // to achieve more accurate diagonal movements.  uint8_t bresenham_oversample = 1;  for (uint8_t i = 0; i < 3; ++ i) {    if (block->nominal_rate >= 5000) // 5kHz      break;    block->nominal_rate << 1;    bresenham_oversample << 1;    block->step_event_count << 1;  }  if (bresenham_oversample > 1)    // Lower the acceleration steps/sec^2 to account for the oversampling.    block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;#endif  block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));#ifdef LIN_ADVANCE  if (block->use_advance_lead) {      // the nominal speed doesn't change past this point: calculate the compression ratio for the      // segment and the required advance steps      block->adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS];      block->max_adv_steps = block->nominal_speed * block->adv_comp;      // to save more space we avoid another copy of calc_timer and go through slow division, but we      // still need to replicate the *exact* same step grouping policy (see below)      float advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);      if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;      float advance_rate = (F_CPU / 8.0) / advance_speed;      if (advance_speed > 20000) {          block->advance_rate = advance_rate * 4;          block->advance_step_loops = 4;      }      else if (advance_speed > 10000) {          block->advance_rate = advance_rate * 2;          block->advance_step_loops = 2;      }      else      {          // never overflow the internal accumulator with very low rates          if (advance_rate < UINT16_MAX)              block->advance_rate = advance_rate;          else              block->advance_rate = UINT16_MAX;          block->advance_step_loops = 1;      }      #ifdef LA_DEBUG      if (block->advance_step_loops > 2)          // @wavexx: we should really check for the difference between step_loops and          //          advance_step_loops instead. A difference of more than 1 will lead          //          to uneven speed and *should* be adjusted here by furthermore          //          reducing the speed.          SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");      #endif  }#endif  // Start with a safe speed.  // Safe speed is the speed, from which the machine may halt to stop immediately.  float safe_speed = block->nominal_speed;  bool  limited = false;  for (uint8_t axis = 0; axis < 4; ++ axis) {      float jerk = fabs(current_speed[axis]);      if (jerk > cs.max_jerk[axis]) {          // The actual jerk is lower, if it has been limited by the XY jerk.          if (limited) {              // Spare one division by a following gymnastics:              // Instead of jerk *= safe_speed / block->nominal_speed,              // multiply max_jerk[axis] by the divisor.              jerk *= safe_speed;              float mjerk = cs.max_jerk[axis] * block->nominal_speed;              if (jerk > mjerk) {                  safe_speed *= mjerk / jerk;                  limited = true;              }          } else {              safe_speed = cs.max_jerk[axis];              limited = true;          }      }  }  // Reset the block flag.  block->flag = 0;  if (plan_reset_next_e_sched)  {      // finally propagate a pending reset      block->flag |= BLOCK_FLAG_E_RESET;      plan_reset_next_e_sched = false;  }  // Initial limit on the segment entry velocity.  float vmax_junction;  //FIXME Vojtech: Why only if at least two lines are planned in the queue?  // Is it because we don't want to tinker with the first buffer line, which  // is likely to be executed by the stepper interrupt routine soon?  if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {      // Estimate a maximum velocity allowed at a joint of two successive segments.      // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,      // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.      // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.      bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;      float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);      // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.      vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;      // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.      float v_factor = 1.f;      limited = false;      // Now limit the jerk in all axes.      for (uint8_t axis = 0; axis < 4; ++ axis) {          // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.          float v_exit  = previous_speed[axis];          float v_entry = current_speed [axis];          if (prev_speed_larger)              v_exit *= smaller_speed_factor;          if (limited) {              v_exit  *= v_factor;              v_entry *= v_factor;          }          // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.          float jerk =               (v_exit > v_entry) ?                  ((v_entry > 0.f || v_exit < 0.f) ?                      // coasting                      (v_exit - v_entry) :                       // axis reversal                      max(v_exit, - v_entry)) :                  // v_exit <= v_entry                  ((v_entry < 0.f || v_exit > 0.f) ?                      // coasting                      (v_entry - v_exit) :                      // axis reversal                      max(- v_exit, v_entry));          if (jerk > cs.max_jerk[axis]) {              v_factor *= cs.max_jerk[axis] / jerk;              limited = true;          }      }      if (limited)          vmax_junction *= v_factor;      // Now the transition velocity is known, which maximizes the shared exit / entry velocity while      // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.      float vmax_junction_threshold = vmax_junction * 0.99f;      if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {          // Not coasting. The machine will stop and start the movements anyway,          // better to start the segment from start.          block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;          vmax_junction = safe_speed;      }  } else {      block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;      vmax_junction = safe_speed;  }  // Max entry speed of this block equals the max exit speed of the previous block.  block->max_entry_speed = vmax_junction;  // Initialize block entry speed. Compute based on deceleration to safe_speed.  double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);  block->entry_speed = min(vmax_junction, v_allowable);  // Initialize planner efficiency flags  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then  // the current block and next block junction speeds are guaranteed to always be at their maximum  // junction speeds in deceleration and acceleration, respectively. This is due to how the current  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both  // the reverse and forward planners, the corresponding block junction speed will always be at the  // the maximum junction speed and may always be ignored for any speed reduction checks.  // Always calculate trapezoid for new block  block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;  // Update previous path unit_vector and nominal speed  memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]  previous_nominal_speed = block->nominal_speed;  previous_safe_speed = safe_speed;  // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.  block->speed_factor = block->nominal_rate / block->nominal_speed;  calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);  if (block->step_event_count.wide <= 32767)    block->flag |= BLOCK_FLAG_DDA_LOWRES;  // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.  block_buffer_head = next_buffer_head;  // Update position  memcpy(position, target, sizeof(target)); // position[] = target[]  #ifdef LIN_ADVANCE  position_float[X_AXIS] = x;  position_float[Y_AXIS] = y;  position_float[Z_AXIS] = z;  position_float[E_AXIS] = e;  #endif      // Recalculate the trapezoids to maximize speed at the segment transitions while respecting  // the machine limits (maximum acceleration and maximum jerk).  // This runs asynchronously with the stepper interrupt controller, which may  // interfere with the process.  planner_recalculate(safe_speed);//  SERIAL_ECHOPGM("Q");//  SERIAL_ECHO(int(moves_planned()));//  SERIAL_ECHOLNPGM("");#ifdef PLANNER_DIAGNOSTICS  planner_update_queue_min_counter();#endif /* PLANNER_DIAGNOSTIC */  // The stepper timer interrupt will run continuously from now on.  // If there are no planner blocks to be executed by the stepper routine,  // the stepper interrupt ticks at 1kHz to wake up and pick a block  // from the planner queue if available.  ENABLE_STEPPER_DRIVER_INTERRUPT();}#ifdef ENABLE_AUTO_BED_LEVELINGvector_3 plan_get_position() {	vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));	//position.debug("in plan_get position");	//plan_bed_level_matrix.debug("in plan_get bed_level");	matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);	//inverse.debug("in plan_get inverse");	position.apply_rotation(inverse);	//position.debug("after rotation");	return position;}#endif // ENABLE_AUTO_BED_LEVELINGvoid plan_set_position(float x, float y, float z, const float &e){#ifdef ENABLE_AUTO_BED_LEVELING    apply_rotation_xyz(plan_bed_level_matrix, x, y, z);#endif // ENABLE_AUTO_BED_LEVELING    world2machine(x, y);  position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);  position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);#ifdef MESH_BED_LEVELING  position[Z_AXIS] = mbl.active ?     lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :    lround(z*cs.axis_steps_per_unit[Z_AXIS]);#else  position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);#endif // ENABLE_MESH_BED_LEVELING  position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);  #ifdef LIN_ADVANCE  position_float[X_AXIS] = x;  position_float[Y_AXIS] = y;  position_float[Z_AXIS] = z;  position_float[E_AXIS] = e;  #endif  st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);  previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.  previous_speed[0] = 0.0;  previous_speed[1] = 0.0;  previous_speed[2] = 0.0;  previous_speed[3] = 0.0;}// Only useful in the bed leveling routine, when the mesh bed leveling is off.void plan_set_z_position(const float &z){  #ifdef LIN_ADVANCE  position_float[Z_AXIS] = z;  #endif  position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);  st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);}void plan_set_e_position(const float &e){  #ifdef LIN_ADVANCE  position_float[E_AXIS] = e;  #endif  position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);    st_set_e_position(position[E_AXIS]);}void plan_reset_next_e(){    plan_reset_next_e_queue = true;}#ifdef PREVENT_DANGEROUS_EXTRUDEvoid set_extrude_min_temp(float temp){  extrude_min_temp=temp;}#endif// Calculate the steps/s^2 acceleration rates, based on the mm/s^svoid reset_acceleration_rates(){	for(int8_t i=0; i < NUM_AXIS; i++)        axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];}#ifdef TMC2130void update_mode_profile(){	if (tmc2130_mode == TMC2130_MODE_NORMAL)	{		max_feedrate = cs.max_feedrate_normal;		max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;	}	else if (tmc2130_mode == TMC2130_MODE_SILENT)	{		max_feedrate = cs.max_feedrate_silent;		max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;	}	reset_acceleration_rates();}#endif //TMC2130unsigned char number_of_blocks(){	return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);}#ifdef PLANNER_DIAGNOSTICSuint8_t planner_queue_min(){  return g_cntr_planner_queue_min;}void planner_queue_min_reset(){  g_cntr_planner_queue_min = moves_planned();}#endif /* PLANNER_DIAGNOSTICS */void planner_add_sd_length(uint16_t sdlen){  if (block_buffer_head != block_buffer_tail) {    // The planner buffer is not empty. Get the index of the last buffer line entered,    // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.    block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;  } else {    // There is no line stored in the planner buffer, which means the last command does not need to be revertible,    // at a power panic, so the length of this command may be forgotten.  }}uint16_t planner_calc_sd_length(){	unsigned char _block_buffer_head = block_buffer_head;	unsigned char _block_buffer_tail = block_buffer_tail;	uint16_t sdlen = 0;	while (_block_buffer_head != _block_buffer_tail)	{		sdlen += block_buffer[_block_buffer_tail].sdlen;	    _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);  	}	return sdlen;}
 |