fsensor.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "io_atmega2560.h"
  8. #include "cmdqueue.h"
  9. #include "ultralcd.h"
  10. #include "mmu.h"
  11. #include "cardreader.h"
  12. #include "adc.h"
  13. #include "temperature.h"
  14. #include "config.h"
  15. //! @name Basic parameters
  16. //! @{
  17. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  18. #define FSENSOR_ERR_MAX 9 //!< filament sensor maximum error count for runout detection
  19. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  20. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  21. //! @}
  22. //! @name Optical quality measurement parameters
  23. //! @{
  24. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  25. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  26. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  27. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  28. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  29. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  30. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  31. //! @}
  32. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  33. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  34. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  35. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  36. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  37. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  38. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  39. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  40. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  41. //! enabled = initialized and sampled every chunk event
  42. bool fsensor_enabled = true;
  43. //! runout watching is done in fsensor_update (called from main loop)
  44. bool fsensor_watch_runout = true;
  45. //! not responding - is set if any communication error occurred during initialization or readout
  46. bool fsensor_not_responding = false;
  47. #ifdef PAT9125
  48. uint8_t fsensor_int_pin_old = 0;
  49. //! optical checking "chunk lenght" (already in steps)
  50. int16_t fsensor_chunk_len = 0;
  51. //! enable/disable quality meassurement
  52. bool fsensor_oq_meassure_enabled = false;
  53. //! number of errors, updated in ISR
  54. uint8_t fsensor_err_cnt = 0;
  55. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  56. int16_t fsensor_st_cnt = 0;
  57. //! last dy value from pat9125 sensor (used in ISR)
  58. int16_t fsensor_dy_old = 0;
  59. //! count of total sensor "soft" failures (filament status checks)
  60. uint8_t fsensor_softfail = 0;
  61. //! timestamp of last soft failure
  62. unsigned long fsensor_softfail_last = 0;
  63. //! count of soft failures within the configured time
  64. uint8_t fsensor_softfail_ccnt = 0;
  65. #endif
  66. //! log flag: 0=log disabled, 1=log enabled
  67. uint8_t fsensor_log = 1;
  68. //! @name filament autoload variables
  69. //! @{
  70. //! autoload feature enabled
  71. bool fsensor_autoload_enabled = true;
  72. //! autoload watching enable/disable flag
  73. bool fsensor_watch_autoload = false;
  74. #ifdef PAT9125
  75. //
  76. uint16_t fsensor_autoload_y;
  77. //
  78. uint8_t fsensor_autoload_c;
  79. //
  80. uint32_t fsensor_autoload_last_millis;
  81. //
  82. uint8_t fsensor_autoload_sum;
  83. //! @}
  84. #endif
  85. //! @name filament optical quality measurement variables
  86. //! @{
  87. //! Measurement enable/disable flag
  88. bool fsensor_oq_meassure = false;
  89. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  90. uint8_t fsensor_oq_skipchunk;
  91. //! number of samples from start of measurement
  92. uint8_t fsensor_oq_samples;
  93. //! sum of steps in positive direction movements
  94. uint16_t fsensor_oq_st_sum;
  95. //! sum of deltas in positive direction movements
  96. uint16_t fsensor_oq_yd_sum;
  97. //! sum of errors during measurement
  98. uint16_t fsensor_oq_er_sum;
  99. //! max error counter value during measurement
  100. uint8_t fsensor_oq_er_max;
  101. //! minimum delta value
  102. int16_t fsensor_oq_yd_min;
  103. //! maximum delta value
  104. int16_t fsensor_oq_yd_max;
  105. //! sum of shutter value
  106. uint16_t fsensor_oq_sh_sum;
  107. //! @}
  108. #if IR_SENSOR_ANALOG
  109. ClFsensorPCB oFsensorPCB;
  110. ClFsensorActionNA oFsensorActionNA;
  111. bool bIRsensorStateFlag=false;
  112. unsigned long nIRsensorLastTime;
  113. #endif //IR_SENSOR_ANALOG
  114. void fsensor_stop_and_save_print(void)
  115. {
  116. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  117. stop_and_save_print_to_ram(0, 0);
  118. fsensor_watch_runout = false;
  119. }
  120. #ifdef PAT9125
  121. // Reset all internal counters to zero, including stepper callbacks
  122. void fsensor_reset_err_cnt()
  123. {
  124. fsensor_err_cnt = 0;
  125. pat9125_y = 0;
  126. st_reset_fsensor();
  127. }
  128. void fsensor_set_axis_steps_per_unit(float u)
  129. {
  130. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
  131. }
  132. #endif
  133. void fsensor_restore_print_and_continue(void)
  134. {
  135. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  136. fsensor_watch_runout = true;
  137. #ifdef PAT9125
  138. fsensor_reset_err_cnt();
  139. #endif
  140. restore_print_from_ram_and_continue(0);
  141. }
  142. // fsensor_checkpoint_print cuts the current print job at the current position,
  143. // allowing new instructions to be inserted in the middle
  144. void fsensor_checkpoint_print(void)
  145. {
  146. printf_P(PSTR("fsensor_checkpoint_print\n"));
  147. stop_and_save_print_to_ram(0, 0);
  148. restore_print_from_ram_and_continue(0);
  149. }
  150. void fsensor_init(void)
  151. {
  152. #ifdef PAT9125
  153. uint8_t pat9125 = pat9125_init();
  154. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  155. #endif //PAT9125
  156. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  157. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  158. fsensor_not_responding = false;
  159. #ifdef PAT9125
  160. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  161. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  162. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
  163. if (!pat9125)
  164. {
  165. fsensor = 0; //disable sensor
  166. fsensor_not_responding = true;
  167. }
  168. #endif //PAT9125
  169. #if IR_SENSOR_ANALOG
  170. bIRsensorStateFlag=false;
  171. oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  172. oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  173. #endif //IR_SENSOR_ANALOG
  174. if (fsensor)
  175. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  176. else
  177. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  178. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  179. #if IR_SENSOR_ANALOG
  180. printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
  181. #else //IR_SENSOR_ANALOG
  182. printf_P(PSTR("\n"));
  183. #endif //IR_SENSOR_ANALOG
  184. if (check_for_ir_sensor()) ir_sensor_detected = true;
  185. }
  186. bool fsensor_enable(bool bUpdateEEPROM)
  187. {
  188. #ifdef PAT9125
  189. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  190. uint8_t pat9125 = pat9125_init();
  191. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  192. if (pat9125)
  193. fsensor_not_responding = false;
  194. else
  195. fsensor_not_responding = true;
  196. fsensor_enabled = pat9125 ? true : false;
  197. fsensor_watch_runout = true;
  198. fsensor_oq_meassure = false;
  199. fsensor_reset_err_cnt();
  200. fsensor_dy_old = 0;
  201. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  202. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  203. }
  204. else //filament sensor is FINDA, always enable
  205. {
  206. fsensor_enabled = true;
  207. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  208. FSensorStateMenu = 1;
  209. }
  210. #else // PAT9125
  211. #if IR_SENSOR_ANALOG
  212. if(!fsensor_IR_check())
  213. {
  214. bUpdateEEPROM=true;
  215. fsensor_enabled=false;
  216. fsensor_not_responding=true;
  217. FSensorStateMenu=0;
  218. }
  219. else {
  220. #endif //IR_SENSOR_ANALOG
  221. fsensor_enabled=true;
  222. fsensor_not_responding=false;
  223. FSensorStateMenu=1;
  224. #if IR_SENSOR_ANALOG
  225. }
  226. #endif //IR_SENSOR_ANALOG
  227. if(bUpdateEEPROM)
  228. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  229. #endif //PAT9125
  230. return fsensor_enabled;
  231. }
  232. void fsensor_disable(bool bUpdateEEPROM)
  233. {
  234. fsensor_enabled = false;
  235. FSensorStateMenu = 0;
  236. if(bUpdateEEPROM)
  237. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  238. }
  239. void fsensor_autoload_set(bool State)
  240. {
  241. #ifdef PAT9125
  242. if (!State) fsensor_autoload_check_stop();
  243. #endif //PAT9125
  244. fsensor_autoload_enabled = State;
  245. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  246. }
  247. void pciSetup(byte pin)
  248. {
  249. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  250. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  251. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  252. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  253. }
  254. #ifdef PAT9125
  255. void fsensor_autoload_check_start(void)
  256. {
  257. // puts_P(_N("fsensor_autoload_check_start\n"));
  258. if (!fsensor_enabled) return;
  259. if (!fsensor_autoload_enabled) return;
  260. if (fsensor_watch_autoload) return;
  261. if (!pat9125_update()) //update sensor
  262. {
  263. fsensor_disable();
  264. fsensor_not_responding = true;
  265. fsensor_watch_autoload = false;
  266. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  267. return;
  268. }
  269. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  270. fsensor_autoload_y = pat9125_y; //save current y value
  271. fsensor_autoload_c = 0; //reset number of changes counter
  272. fsensor_autoload_sum = 0;
  273. fsensor_autoload_last_millis = _millis();
  274. fsensor_watch_runout = false;
  275. fsensor_watch_autoload = true;
  276. }
  277. void fsensor_autoload_check_stop(void)
  278. {
  279. // puts_P(_N("fsensor_autoload_check_stop\n"));
  280. if (!fsensor_enabled) return;
  281. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  282. if (!fsensor_autoload_enabled) return;
  283. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  284. if (!fsensor_watch_autoload) return;
  285. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  286. fsensor_autoload_sum = 0;
  287. fsensor_watch_autoload = false;
  288. fsensor_watch_runout = true;
  289. fsensor_reset_err_cnt();
  290. }
  291. #endif //PAT9125
  292. bool fsensor_check_autoload(void)
  293. {
  294. if (!fsensor_enabled) return false;
  295. if (!fsensor_autoload_enabled) return false;
  296. if (ir_sensor_detected) {
  297. if (digitalRead(IR_SENSOR_PIN) == 1) {
  298. fsensor_watch_autoload = true;
  299. }
  300. else if (fsensor_watch_autoload == true) {
  301. fsensor_watch_autoload = false;
  302. return true;
  303. }
  304. }
  305. #ifdef PAT9125
  306. if (!fsensor_watch_autoload)
  307. {
  308. fsensor_autoload_check_start();
  309. return false;
  310. }
  311. #if 0
  312. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  313. #endif
  314. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  315. fsensor_autoload_last_millis = _millis();
  316. if (!pat9125_update_y()) //update sensor
  317. {
  318. fsensor_disable();
  319. fsensor_not_responding = true;
  320. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  321. return false;
  322. }
  323. int16_t dy = pat9125_y - fsensor_autoload_y;
  324. if (dy) //? dy value is nonzero
  325. {
  326. if (dy > 0) //? delta-y value is positive (inserting)
  327. {
  328. fsensor_autoload_sum += dy;
  329. fsensor_autoload_c += 3; //increment change counter by 3
  330. }
  331. else if (fsensor_autoload_c > 1)
  332. fsensor_autoload_c -= 2; //decrement change counter by 2
  333. fsensor_autoload_y = pat9125_y; //save current value
  334. }
  335. else if (fsensor_autoload_c > 0)
  336. fsensor_autoload_c--;
  337. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  338. #if 0
  339. puts_P(_N("fsensor_check_autoload\n"));
  340. if (fsensor_autoload_c != fsensor_autoload_c_old)
  341. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  342. #endif
  343. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  344. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  345. {
  346. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  347. return true;
  348. }
  349. #endif //PAT9125
  350. return false;
  351. }
  352. #ifdef PAT9125
  353. void fsensor_oq_meassure_set(bool State)
  354. {
  355. fsensor_oq_meassure_enabled = State;
  356. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  357. }
  358. void fsensor_oq_meassure_start(uint8_t skip)
  359. {
  360. if (!fsensor_enabled) return;
  361. if (!fsensor_oq_meassure_enabled) return;
  362. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  363. fsensor_oq_skipchunk = skip;
  364. fsensor_oq_samples = 0;
  365. fsensor_oq_st_sum = 0;
  366. fsensor_oq_yd_sum = 0;
  367. fsensor_oq_er_sum = 0;
  368. fsensor_oq_er_max = 0;
  369. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  370. fsensor_oq_yd_max = 0;
  371. fsensor_oq_sh_sum = 0;
  372. pat9125_update();
  373. pat9125_y = 0;
  374. fsensor_oq_meassure = true;
  375. }
  376. void fsensor_oq_meassure_stop(void)
  377. {
  378. if (!fsensor_enabled) return;
  379. if (!fsensor_oq_meassure_enabled) return;
  380. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  381. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  382. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  383. fsensor_oq_meassure = false;
  384. }
  385. const char _OK[] PROGMEM = "OK";
  386. const char _NG[] PROGMEM = "NG!";
  387. bool fsensor_oq_result(void)
  388. {
  389. if (!fsensor_enabled) return true;
  390. if (!fsensor_oq_meassure_enabled) return true;
  391. printf_P(_N("fsensor_oq_result\n"));
  392. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  393. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  394. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  395. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  396. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  397. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  398. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  399. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  400. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  401. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  402. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  403. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  404. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  405. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  406. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  407. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  408. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  409. if (yd_qua >= 8) res_sh_avg = true;
  410. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  411. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  412. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  413. return res;
  414. }
  415. ISR(FSENSOR_INT_PIN_VECT)
  416. {
  417. if (mmu_enabled || ir_sensor_detected) return;
  418. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  419. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  420. static bool _lock = false;
  421. if (_lock) return;
  422. _lock = true;
  423. int st_cnt = fsensor_st_cnt;
  424. fsensor_st_cnt = 0;
  425. sei();
  426. uint8_t old_err_cnt = fsensor_err_cnt;
  427. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  428. if (!pat9125_res)
  429. {
  430. fsensor_disable();
  431. fsensor_not_responding = true;
  432. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  433. }
  434. if (st_cnt != 0)
  435. { //movement
  436. if (st_cnt > 0) //positive movement
  437. {
  438. if (pat9125_y < 0)
  439. {
  440. fsensor_err_cnt++;
  441. }
  442. else if (pat9125_y > 0)
  443. {
  444. if (fsensor_err_cnt)
  445. fsensor_err_cnt--;
  446. }
  447. else //(pat9125_y == 0)
  448. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  449. fsensor_err_cnt++;
  450. if (fsensor_oq_meassure)
  451. {
  452. if (fsensor_oq_skipchunk)
  453. {
  454. fsensor_oq_skipchunk--;
  455. fsensor_err_cnt = 0;
  456. }
  457. else
  458. {
  459. if (st_cnt == fsensor_chunk_len)
  460. {
  461. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  462. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  463. }
  464. fsensor_oq_samples++;
  465. fsensor_oq_st_sum += st_cnt;
  466. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  467. if (fsensor_err_cnt > old_err_cnt)
  468. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  469. if (fsensor_oq_er_max < fsensor_err_cnt)
  470. fsensor_oq_er_max = fsensor_err_cnt;
  471. fsensor_oq_sh_sum += pat9125_s;
  472. }
  473. }
  474. }
  475. else //negative movement
  476. {
  477. }
  478. }
  479. else
  480. { //no movement
  481. }
  482. #ifdef DEBUG_FSENSOR_LOG
  483. if (fsensor_log)
  484. {
  485. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  486. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  487. }
  488. #endif //DEBUG_FSENSOR_LOG
  489. fsensor_dy_old = pat9125_y;
  490. pat9125_y = 0;
  491. _lock = false;
  492. return;
  493. }
  494. void fsensor_setup_interrupt(void)
  495. {
  496. pinMode(FSENSOR_INT_PIN, OUTPUT);
  497. digitalWrite(FSENSOR_INT_PIN, LOW);
  498. fsensor_int_pin_old = 0;
  499. //pciSetup(FSENSOR_INT_PIN);
  500. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  501. // so interrupt registers settings:
  502. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  503. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  504. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  505. }
  506. void fsensor_st_block_chunk(int cnt)
  507. {
  508. if (!fsensor_enabled) return;
  509. fsensor_st_cnt += cnt;
  510. if (abs(fsensor_st_cnt) >= fsensor_chunk_len)
  511. {
  512. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  513. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  514. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  515. }
  516. }
  517. #endif //PAT9125
  518. //! Common code for enqueing M600 and supplemental codes into the command queue.
  519. //! Used both for the IR sensor and the PAT9125
  520. void fsensor_enque_M600(){
  521. printf_P(PSTR("fsensor_update - M600\n"));
  522. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  523. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  524. enquecommand_front_P((PSTR("M600")));
  525. }
  526. //! @brief filament sensor update (perform M600 on filament runout)
  527. //!
  528. //! Works only if filament sensor is enabled.
  529. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  530. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  531. void fsensor_update(void)
  532. {
  533. #ifdef PAT9125
  534. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  535. {
  536. fsensor_stop_and_save_print();
  537. KEEPALIVE_STATE(IN_HANDLER);
  538. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  539. fsensor_autoload_enabled = false;
  540. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  541. fsensor_oq_meassure_enabled = true;
  542. // move the nozzle away while checking the filament
  543. current_position[Z_AXIS] += 0.8;
  544. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  545. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  546. st_synchronize();
  547. // check the filament in isolation
  548. fsensor_reset_err_cnt();
  549. fsensor_oq_meassure_start(0);
  550. float e_tmp = current_position[E_AXIS];
  551. current_position[E_AXIS] -= 3;
  552. plan_buffer_line_curposXYZE(200/60, active_extruder);
  553. current_position[E_AXIS] = e_tmp;
  554. plan_buffer_line_curposXYZE(200/60, active_extruder);
  555. st_synchronize();
  556. fsensor_oq_meassure_stop();
  557. bool err = false;
  558. err |= (fsensor_err_cnt > 1);
  559. err |= (fsensor_oq_er_sum > 2);
  560. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  561. fsensor_restore_print_and_continue();
  562. fsensor_autoload_enabled = autoload_enabled_tmp;
  563. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  564. unsigned long now = _millis();
  565. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  566. fsensor_softfail_ccnt = 0;
  567. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  568. {
  569. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  570. ++fsensor_softfail;
  571. ++fsensor_softfail_ccnt;
  572. fsensor_softfail_last = now;
  573. }
  574. else
  575. {
  576. fsensor_softfail_ccnt = 0;
  577. fsensor_softfail_last = 0;
  578. fsensor_enque_M600();
  579. }
  580. }
  581. #else //PAT9125
  582. if (CHECK_FSENSOR && ir_sensor_detected)
  583. {
  584. if(digitalRead(IR_SENSOR_PIN))
  585. { // IR_SENSOR_PIN ~ H
  586. #if IR_SENSOR_ANALOG
  587. if(!bIRsensorStateFlag)
  588. {
  589. bIRsensorStateFlag=true;
  590. nIRsensorLastTime=_millis();
  591. }
  592. else
  593. {
  594. if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
  595. {
  596. uint8_t nMUX1,nMUX2;
  597. uint16_t nADC;
  598. bIRsensorStateFlag=false;
  599. // sequence for direct data reading from AD converter
  600. DISABLE_TEMPERATURE_INTERRUPT();
  601. nMUX1=ADMUX; // ADMUX saving
  602. nMUX2=ADCSRB;
  603. adc_setmux(VOLT_IR_PIN);
  604. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  605. while(ADCSRA&(1<<ADSC))
  606. ;
  607. ADCSRA|=(1<<ADSC); // second conversion used
  608. while(ADCSRA&(1<<ADSC))
  609. ;
  610. nADC=ADC;
  611. ADMUX=nMUX1; // ADMUX restoring
  612. ADCSRB=nMUX2;
  613. ENABLE_TEMPERATURE_INTERRUPT();
  614. // end of sequence for ...
  615. if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
  616. {
  617. fsensor_disable();
  618. fsensor_not_responding = true;
  619. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  620. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  621. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  622. lcd_pause_print();
  623. }
  624. else
  625. {
  626. #endif //IR_SENSOR_ANALOG
  627. fsensor_checkpoint_print();
  628. fsensor_enque_M600();
  629. #if IR_SENSOR_ANALOG
  630. }
  631. }
  632. }
  633. }
  634. else
  635. { // IR_SENSOR_PIN ~ L
  636. bIRsensorStateFlag=false;
  637. #endif //IR_SENSOR_ANALOG
  638. }
  639. }
  640. #endif //PAT9125
  641. }
  642. #if IR_SENSOR_ANALOG
  643. bool fsensor_IR_check()
  644. {
  645. uint16_t volt_IR_int;
  646. bool bCheckResult;
  647. volt_IR_int=current_voltage_raw_IR;
  648. bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
  649. bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
  650. return(bCheckResult);
  651. }
  652. #endif //IR_SENSOR_ANALOG