12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697 |
- /*
- stepper.c - stepper motor driver: executes motion plans using stepper motors
- Part of Grbl
- Copyright (c) 2009-2011 Simen Svale Skogsrud
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
- #include "Marlin.h"
- #include "stepper.h"
- #include "planner.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "cardreader.h"
- #include "speed_lookuptable.h"
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
- #include <SPI.h>
- #endif
- #ifdef TMC2130
- #include "tmc2130.h"
- #endif //TMC2130
- #ifdef FILAMENT_SENSOR
- #include "fsensor.h"
- int fsensor_counter = 0; //counter for e-steps
- #endif //FILAMENT_SENSOR
- #include "mmu.h"
- #ifdef DEBUG_STACK_MONITOR
- uint16_t SP_min = 0x21FF;
- #endif //DEBUG_STACK_MONITOR
- //===========================================================================
- //=============================public variables ============================
- //===========================================================================
- block_t *current_block; // A pointer to the block currently being traced
- bool x_min_endstop = false;
- bool x_max_endstop = false;
- bool y_min_endstop = false;
- bool y_max_endstop = false;
- bool z_min_endstop = false;
- bool z_max_endstop = false;
- //===========================================================================
- //=============================private variables ============================
- //===========================================================================
- //static makes it inpossible to be called from outside of this file by extern.!
- // Variables used by The Stepper Driver Interrupt
- static unsigned char out_bits; // The next stepping-bits to be output
- static dda_isteps_t
- counter_x, // Counter variables for the bresenham line tracer
- counter_y,
- counter_z,
- counter_e;
- volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
- static int32_t acceleration_time, deceleration_time;
- //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
- static uint16_t acc_step_rate; // needed for deccelaration start point
- static uint8_t step_loops;
- static uint16_t OCR1A_nominal;
- static uint8_t step_loops_nominal;
- volatile long endstops_trigsteps[3]={0,0,0};
- volatile long endstops_stepsTotal,endstops_stepsDone;
- static volatile bool endstop_x_hit=false;
- static volatile bool endstop_y_hit=false;
- static volatile bool endstop_z_hit=false;
- #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
- bool abort_on_endstop_hit = false;
- #endif
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
- int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
- int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
- int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
- #endif
- static bool old_x_min_endstop=false;
- static bool old_x_max_endstop=false;
- static bool old_y_min_endstop=false;
- static bool old_y_max_endstop=false;
- static bool old_z_min_endstop=false;
- static bool old_z_max_endstop=false;
- static bool check_endstops = true;
- static bool check_z_endstop = false;
- static bool z_endstop_invert = false;
- volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
- volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
- uint8_t LastStepMask = 0;
- #ifdef LIN_ADVANCE
- static uint16_t nextMainISR = 0;
- static uint16_t eISR_Rate;
- // Extrusion steps to be executed by the stepper.
- // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
- // If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
- static volatile int16_t e_steps = 0;
- // How many extruder steps shall be ticked at a single ISR invocation?
- static uint8_t estep_loops;
- // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
- // as current_adv_steps.
- static int current_estep_rate;
- // The current pretension of filament expressed in extruder micro steps.
- static int current_adv_steps;
- #define _NEXT_ISR(T) nextMainISR = T
- #else
- #define _NEXT_ISR(T) OCR1A = T
- #endif
- #ifdef DEBUG_STEPPER_TIMER_MISSED
- extern bool stepper_timer_overflow_state;
- extern uint16_t stepper_timer_overflow_last;
- #endif /* DEBUG_STEPPER_TIMER_MISSED */
- //===========================================================================
- //=============================functions ============================
- //===========================================================================
- #ifndef _NO_ASM
- // intRes = intIn1 * intIn2 >> 16
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 24 bit result
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %A1, %A2 \n\t" \
- "add %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r0 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (charIn1), \
- "d" (intIn2) \
- : \
- "r26" \
- )
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 48bit result
- #define MultiU24X24toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
- #else //_NO_ASM
- void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
- {
- }
- void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
- {
- }
- #endif //_NO_ASM
- // Some useful constants
- void checkHitEndstops()
- {
- if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
- SERIAL_ECHO_START;
- SERIAL_ECHORPGM(_T(MSG_ENDSTOPS_HIT));
- if(endstop_x_hit) {
- SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
- // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("X")));
- }
- if(endstop_y_hit) {
- SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
- // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("Y")));
- }
- if(endstop_z_hit) {
- SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
- // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT),PSTR("Z")));
- }
- SERIAL_ECHOLN("");
- endstop_x_hit=false;
- endstop_y_hit=false;
- endstop_z_hit=false;
- #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
- if (abort_on_endstop_hit)
- {
- card.sdprinting = false;
- card.closefile();
- quickStop();
- setTargetHotend0(0);
- setTargetHotend1(0);
- setTargetHotend2(0);
- }
- #endif
- }
- }
- bool endstops_hit_on_purpose()
- {
- bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
- endstop_x_hit=false;
- endstop_y_hit=false;
- endstop_z_hit=false;
- return hit;
- }
- bool endstop_z_hit_on_purpose()
- {
- bool hit = endstop_z_hit;
- endstop_z_hit=false;
- return hit;
- }
- bool enable_endstops(bool check)
- {
- bool old = check_endstops;
- check_endstops = check;
- return old;
- }
- bool enable_z_endstop(bool check)
- {
- bool old = check_z_endstop;
- check_z_endstop = check;
- endstop_z_hit = false;
- return old;
- }
- void invert_z_endstop(bool endstop_invert)
- {
- z_endstop_invert = endstop_invert;
- }
- // __________________________
- // /| |\ _________________ ^
- // / | | \ /| |\ |
- // / | | \ / | | \ s
- // / | | | | | \ p
- // / | | | | | \ e
- // +-----+------------------------+---+--+---------------+----+ e
- // | BLOCK 1 | BLOCK 2 | d
- //
- // time ----->
- //
- // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- // first block->accelerate_until step_events_completed, then keeps going at constant speed until
- // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- // The slope of acceleration is calculated with the leib ramp alghorithm.
- FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
- unsigned short timer;
- if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
- if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
- step_rate = (step_rate >> 2)&0x3fff;
- step_loops = 4;
- }
- else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
- step_rate = (step_rate >> 1)&0x7fff;
- step_loops = 2;
- }
- else {
- step_loops = 1;
- }
- // step_loops = 1;
- if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
- step_rate -= (F_CPU/500000); // Correct for minimal speed
- if(step_rate >= (8*256)){ // higher step rate
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
- unsigned char tmp_step_rate = (step_rate & 0x00ff);
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
- MultiU16X8toH16(timer, tmp_step_rate, gain);
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;
- }
- else { // lower step rates
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate)>>1) & 0xfffc;
- timer = (unsigned short)pgm_read_word_near(table_address);
- timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
- }
- if(timer < 100) { timer = 100; MYSERIAL.print(_i("Steprate too high: ")); MYSERIAL.println(step_rate); }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH c=0 r=0
- return timer;
- }
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
- ISR(TIMER1_COMPA_vect) {
- #ifdef DEBUG_STACK_MONITOR
- uint16_t sp = SPL + 256 * SPH;
- if (sp < SP_min) SP_min = sp;
- #endif //DEBUG_STACK_MONITOR
- #ifdef LIN_ADVANCE
- // If there are any e_steps planned, tick them.
- bool run_main_isr = false;
- if (e_steps) {
- //WRITE_NC(LOGIC_ANALYZER_CH7, true);
- uint8_t cnt = 0;
- for (uint8_t i = estep_loops; e_steps && i --;) {
- WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
- -- e_steps;
- cnt++;
- WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
- }
- #ifdef FILAMENT_SENSOR
- if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
- {
- if (count_direction[E_AXIS] == 1)
- fsensor_counter -= cnt;
- else
- fsensor_counter += cnt;
- }
- else
- {
- if (count_direction[E_AXIS] == 1)
- fsensor_counter += cnt;
- else
- fsensor_counter -= cnt;
- }
- #endif //FILAMENT_SENSOR
- if (e_steps) {
- // Plan another Linear Advance tick.
- OCR1A = eISR_Rate;
- nextMainISR -= eISR_Rate;
- } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
- // The timer did not overflow and it is big enough, so it makes sense to plan it.
- OCR1A = nextMainISR;
- } else {
- // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
- // in the current interrupt tick.
- run_main_isr = true;
- //FIXME pick the serial line.
- }
- //WRITE_NC(LOGIC_ANALYZER_CH7, false);
- } else
- run_main_isr = true;
- if (run_main_isr)
- #endif
- isr();
- // Don't run the ISR faster than possible
- // Is there a 8us time left before the next interrupt triggers?
- if (OCR1A < TCNT1 + 16) {
- #ifdef DEBUG_STEPPER_TIMER_MISSED
- // Verify whether the next planned timer interrupt has not been missed already.
- // This debugging test takes < 1.125us
- // This skews the profiling slightly as the fastest stepper timer
- // interrupt repeats at a 100us rate (10kHz).
- if (OCR1A + 40 < TCNT1) {
- // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
- // Give a warning.
- stepper_timer_overflow_state = true;
- stepper_timer_overflow_last = TCNT1 - OCR1A;
- // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
- WRITE(BEEPER, HIGH);
- }
- #endif
- // Fix the next interrupt to be executed after 8us from now.
- OCR1A = TCNT1 + 16;
- }
- }
- uint8_t last_dir_bits = 0;
- #ifdef BACKLASH_X
- uint8_t st_backlash_x = 0;
- #endif //BACKLASH_X
- #ifdef BACKLASH_Y
- uint8_t st_backlash_y = 0;
- #endif //BACKLASH_Y
- FORCE_INLINE void stepper_next_block()
- {
- // Anything in the buffer?
- //WRITE_NC(LOGIC_ANALYZER_CH2, true);
- current_block = plan_get_current_block();
- if (current_block != NULL) {
- #ifdef BACKLASH_X
- if (current_block->steps_x.wide)
- { //X-axis movement
- if ((current_block->direction_bits ^ last_dir_bits) & 1)
- {
- printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
- if (current_block->direction_bits & 1)
- WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
- else
- WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
- _delay_us(100);
- for (uint8_t i = 0; i < st_backlash_x; i++)
- {
- WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
- _delay_us(100);
- WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
- _delay_us(900);
- }
- }
- last_dir_bits &= ~1;
- last_dir_bits |= current_block->direction_bits & 1;
- }
- #endif
- #ifdef BACKLASH_Y
- if (current_block->steps_y.wide)
- { //Y-axis movement
- if ((current_block->direction_bits ^ last_dir_bits) & 2)
- {
- printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
- if (current_block->direction_bits & 2)
- WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
- else
- WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
- _delay_us(100);
- for (uint8_t i = 0; i < st_backlash_y; i++)
- {
- WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
- _delay_us(100);
- WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
- _delay_us(900);
- }
- }
- last_dir_bits &= ~2;
- last_dir_bits |= current_block->direction_bits & 2;
- }
- #endif
- #ifdef FILAMENT_SENSOR
- fsensor_counter = 0;
- fsensor_st_block_begin(current_block);
- #endif //FILAMENT_SENSOR
- // The busy flag is set by the plan_get_current_block() call.
- // current_block->busy = true;
- // Initializes the trapezoid generator from the current block. Called whenever a new
- // block begins.
- deceleration_time = 0;
- // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
- // That means, delay the initialization of nominal step rate and step loops until the steady
- // state is reached.
- step_loops_nominal = 0;
- acc_step_rate = uint16_t(current_block->initial_rate);
- acceleration_time = calc_timer(acc_step_rate);
- #ifdef LIN_ADVANCE
- current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif /* LIN_ADVANCE */
- if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
- counter_x.lo = -(current_block->step_event_count.lo >> 1);
- counter_y.lo = counter_x.lo;
- counter_z.lo = counter_x.lo;
- counter_e.lo = counter_x.lo;
- } else {
- counter_x.wide = -(current_block->step_event_count.wide >> 1);
- counter_y.wide = counter_x.wide;
- counter_z.wide = counter_x.wide;
- counter_e.wide = counter_x.wide;
- }
- step_events_completed.wide = 0;
- // Set directions.
- out_bits = current_block->direction_bits;
- // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
- if((out_bits & (1<<X_AXIS))!=0){
- WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
- count_direction[X_AXIS]=-1;
- } else {
- WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
- count_direction[X_AXIS]=1;
- }
- if((out_bits & (1<<Y_AXIS))!=0){
- WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
- count_direction[Y_AXIS]=-1;
- } else {
- WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
- count_direction[Y_AXIS]=1;
- }
- if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
- WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
- count_direction[Z_AXIS]=-1;
- } else { // +direction
- WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
- count_direction[Z_AXIS]=1;
- }
- if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
- #ifndef LIN_ADVANCE
- WRITE(E0_DIR_PIN,
- #ifdef SNMM
- (mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
- #endif // SNMM
- INVERT_E0_DIR);
- #endif /* LIN_ADVANCE */
- count_direction[E_AXIS] = -1;
- } else { // +direction
- #ifndef LIN_ADVANCE
- WRITE(E0_DIR_PIN,
- #ifdef SNMM
- (mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
- #endif // SNMM
- !INVERT_E0_DIR);
- #endif /* LIN_ADVANCE */
- count_direction[E_AXIS] = 1;
- }
- }
- else {
- OCR1A = 2000; // 1kHz.
- }
- //WRITE_NC(LOGIC_ANALYZER_CH2, false);
- }
- // Check limit switches.
- FORCE_INLINE void stepper_check_endstops()
- {
- if(check_endstops)
- {
- #ifndef COREXY
- if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
- #else
- if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
- #endif
- {
- #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
- #ifdef TMC2130_SG_HOMING
- // Stall guard homing turned on
- x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
- #else
- // Normal homing
- x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
- #endif
- if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
- endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
- endstop_x_hit=true;
- step_events_completed.wide = current_block->step_event_count.wide;
- }
- old_x_min_endstop = x_min_endstop;
- #endif
- } else { // +direction
- #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
- #ifdef TMC2130_SG_HOMING
- // Stall guard homing turned on
- x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
- #else
- // Normal homing
- x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
- #endif
- if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
- endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
- endstop_x_hit=true;
- step_events_completed.wide = current_block->step_event_count.wide;
- }
- old_x_max_endstop = x_max_endstop;
- #endif
- }
- #ifndef COREXY
- if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
- #else
- if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
- #endif
- {
- #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
- #ifdef TMC2130_SG_HOMING
- // Stall guard homing turned on
- y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
- #else
- // Normal homing
- y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
- #endif
- if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
- endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
- endstop_y_hit=true;
- step_events_completed.wide = current_block->step_event_count.wide;
- }
- old_y_min_endstop = y_min_endstop;
- #endif
- } else { // +direction
- #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
- #ifdef TMC2130_SG_HOMING
- // Stall guard homing turned on
- y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
- #else
- // Normal homing
- y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
- #endif
- if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
- endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
- endstop_y_hit=true;
- step_events_completed.wide = current_block->step_event_count.wide;
- }
- old_y_max_endstop = y_max_endstop;
- #endif
- }
- if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
- {
- #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
- if (! check_z_endstop) {
- #ifdef TMC2130_SG_HOMING
- // Stall guard homing turned on
- #ifdef TMC2130_STEALTH_Z
- if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
- else
- #endif //TMC2130_STEALTH_Z
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
- #else
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
- #endif //TMC2130_SG_HOMING
- if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_z_hit=true;
- step_events_completed.wide = current_block->step_event_count.wide;
- }
- old_z_min_endstop = z_min_endstop;
- }
- #endif
- } else { // +direction
- #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
- #ifdef TMC2130_SG_HOMING
- // Stall guard homing turned on
- #ifdef TMC2130_STEALTH_Z
- if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
- z_max_endstop = false;
- else
- #endif //TMC2130_STEALTH_Z
- z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
- #else
- z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
- #endif //TMC2130_SG_HOMING
- if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_z_hit=true;
- step_events_completed.wide = current_block->step_event_count.wide;
- }
- old_z_max_endstop = z_max_endstop;
- #endif
- }
- }
- // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
- #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
- if (check_z_endstop) {
- // Check the Z min end-stop no matter what.
- // Good for searching for the center of an induction target.
- #ifdef TMC2130_SG_HOMING
- // Stall guard homing turned on
- #ifdef TMC2130_STEALTH_Z
- if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
- else
- #endif //TMC2130_STEALTH_Z
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
- #else
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
- #endif //TMC2130_SG_HOMING
- if(z_min_endstop && old_z_min_endstop) {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_z_hit=true;
- step_events_completed.wide = current_block->step_event_count.wide;
- }
- old_z_min_endstop = z_min_endstop;
- }
- #endif
- }
- FORCE_INLINE void stepper_tick_lowres()
- {
- for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
- MSerial.checkRx(); // Check for serial chars.
- // Step in X axis
- counter_x.lo += current_block->steps_x.lo;
- if (counter_x.lo > 0) {
- WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
- LastStepMask |= X_AXIS_MASK;
- #ifdef DEBUG_XSTEP_DUP_PIN
- WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
- #endif //DEBUG_XSTEP_DUP_PIN
- counter_x.lo -= current_block->step_event_count.lo;
- count_position[X_AXIS]+=count_direction[X_AXIS];
- WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
- #ifdef DEBUG_XSTEP_DUP_PIN
- WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
- #endif //DEBUG_XSTEP_DUP_PIN
- }
- // Step in Y axis
- counter_y.lo += current_block->steps_y.lo;
- if (counter_y.lo > 0) {
- WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
- LastStepMask |= Y_AXIS_MASK;
- #ifdef DEBUG_YSTEP_DUP_PIN
- WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
- #endif //DEBUG_YSTEP_DUP_PIN
- counter_y.lo -= current_block->step_event_count.lo;
- count_position[Y_AXIS]+=count_direction[Y_AXIS];
- WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
- #ifdef DEBUG_YSTEP_DUP_PIN
- WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
- #endif //DEBUG_YSTEP_DUP_PIN
- }
- // Step in Z axis
- counter_z.lo += current_block->steps_z.lo;
- if (counter_z.lo > 0) {
- WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
- LastStepMask |= Z_AXIS_MASK;
- counter_z.lo -= current_block->step_event_count.lo;
- count_position[Z_AXIS]+=count_direction[Z_AXIS];
- WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
- }
- // Step in E axis
- counter_e.lo += current_block->steps_e.lo;
- if (counter_e.lo > 0) {
- #ifndef LIN_ADVANCE
- WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
- #endif /* LIN_ADVANCE */
- counter_e.lo -= current_block->step_event_count.lo;
- count_position[E_AXIS] += count_direction[E_AXIS];
- #ifdef LIN_ADVANCE
- ++ e_steps;
- #else
- #ifdef FILAMENT_SENSOR
- ++ fsensor_counter;
- #endif //FILAMENT_SENSOR
- WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
- #endif
- }
- if(++ step_events_completed.lo >= current_block->step_event_count.lo)
- break;
- }
- }
- FORCE_INLINE void stepper_tick_highres()
- {
- for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
- MSerial.checkRx(); // Check for serial chars.
- // Step in X axis
- counter_x.wide += current_block->steps_x.wide;
- if (counter_x.wide > 0) {
- WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
- LastStepMask |= X_AXIS_MASK;
- #ifdef DEBUG_XSTEP_DUP_PIN
- WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
- #endif //DEBUG_XSTEP_DUP_PIN
- counter_x.wide -= current_block->step_event_count.wide;
- count_position[X_AXIS]+=count_direction[X_AXIS];
- WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
- #ifdef DEBUG_XSTEP_DUP_PIN
- WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
- #endif //DEBUG_XSTEP_DUP_PIN
- }
- // Step in Y axis
- counter_y.wide += current_block->steps_y.wide;
- if (counter_y.wide > 0) {
- WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
- LastStepMask |= Y_AXIS_MASK;
- #ifdef DEBUG_YSTEP_DUP_PIN
- WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
- #endif //DEBUG_YSTEP_DUP_PIN
- counter_y.wide -= current_block->step_event_count.wide;
- count_position[Y_AXIS]+=count_direction[Y_AXIS];
- WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
- #ifdef DEBUG_YSTEP_DUP_PIN
- WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
- #endif //DEBUG_YSTEP_DUP_PIN
- }
- // Step in Z axis
- counter_z.wide += current_block->steps_z.wide;
- if (counter_z.wide > 0) {
- WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
- LastStepMask |= Z_AXIS_MASK;
- counter_z.wide -= current_block->step_event_count.wide;
- count_position[Z_AXIS]+=count_direction[Z_AXIS];
- WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
- }
- // Step in E axis
- counter_e.wide += current_block->steps_e.wide;
- if (counter_e.wide > 0) {
- #ifndef LIN_ADVANCE
- WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
- #endif /* LIN_ADVANCE */
- counter_e.wide -= current_block->step_event_count.wide;
- count_position[E_AXIS]+=count_direction[E_AXIS];
- #ifdef LIN_ADVANCE
- ++ e_steps;
- #else
- #ifdef FILAMENT_SENSOR
- ++ fsensor_counter;
- #endif //FILAMENT_SENSOR
- WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
- #endif
- }
- if(++ step_events_completed.wide >= current_block->step_event_count.wide)
- break;
- }
- }
- // 50us delay
- #define LIN_ADV_FIRST_TICK_DELAY 100
- FORCE_INLINE void isr() {
- //WRITE_NC(LOGIC_ANALYZER_CH0, true);
- //if (UVLO) uvlo();
- // If there is no current block, attempt to pop one from the buffer
- if (current_block == NULL)
- stepper_next_block();
- LastStepMask = 0;
- if (current_block != NULL)
- {
- stepper_check_endstops();
- #ifdef LIN_ADVANCE
- e_steps = 0;
- #endif /* LIN_ADVANCE */
- if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
- stepper_tick_lowres();
- else
- stepper_tick_highres();
- #ifdef LIN_ADVANCE
- if (out_bits&(1<<E_AXIS))
- // Move in negative direction.
- e_steps = - e_steps;
- if (current_block->use_advance_lead) {
- //int esteps_inc = 0;
- //esteps_inc = current_estep_rate - current_adv_steps;
- //e_steps += esteps_inc;
- e_steps += current_estep_rate - current_adv_steps;
- #if 0
- if (abs(esteps_inc) > 4) {
- LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
- if (esteps_inc < -511 || esteps_inc > 511)
- LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
- }
- #endif
- current_adv_steps = current_estep_rate;
- }
- // If we have esteps to execute, step some of them now.
- if (e_steps) {
- //WRITE_NC(LOGIC_ANALYZER_CH7, true);
- // Set the step direction.
- bool neg = e_steps < 0;
- {
- bool dir =
- #ifdef SNMM
- (neg == (mmu_extruder & 1))
- #else
- neg
- #endif
- ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
- WRITE_NC(E0_DIR_PIN, dir);
- if (neg)
- // Flip the e_steps counter to be always positive.
- e_steps = - e_steps;
- }
- // Tick min(step_loops, abs(e_steps)).
- estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
- if (step_loops < estep_loops)
- estep_loops = step_loops;
- #ifdef FILAMENT_SENSOR
- if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
- {
- if (count_direction[E_AXIS] == 1)
- fsensor_counter -= estep_loops;
- else
- fsensor_counter += estep_loops;
- }
- else
- {
- if (count_direction[E_AXIS] == 1)
- fsensor_counter += estep_loops;
- else
- fsensor_counter -= estep_loops;
- }
- #endif //FILAMENT_SENSOR
- do {
- WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
- -- e_steps;
- WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
- } while (-- estep_loops != 0);
- //WRITE_NC(LOGIC_ANALYZER_CH7, false);
- MSerial.checkRx(); // Check for serial chars.
- }
- #endif
- // Calculare new timer value
- // 13.38-14.63us for steady state,
- // 25.12us for acceleration / deceleration.
- {
- //WRITE_NC(LOGIC_ANALYZER_CH1, true);
- if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
- // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
- MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += uint16_t(current_block->initial_rate);
- // upper limit
- if(acc_step_rate > uint16_t(current_block->nominal_rate))
- acc_step_rate = current_block->nominal_rate;
- // step_rate to timer interval
- uint16_t timer = calc_timer(acc_step_rate);
- _NEXT_ISR(timer);
- acceleration_time += timer;
- #ifdef LIN_ADVANCE
- if (current_block->use_advance_lead)
- // int32_t = (uint16_t * uint32_t) >> 17
- current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
- else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
- uint16_t step_rate;
- MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
- step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
- if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
- // Result is negative or too small.
- step_rate = uint16_t(current_block->final_rate);
- }
- // Step_rate to timer interval.
- uint16_t timer = calc_timer(step_rate);
- _NEXT_ISR(timer);
- deceleration_time += timer;
- #ifdef LIN_ADVANCE
- if (current_block->use_advance_lead)
- current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
- else {
- if (! step_loops_nominal) {
- // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
- // the initial interrupt blocking.
- OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
- step_loops_nominal = step_loops;
- #ifdef LIN_ADVANCE
- if (current_block->use_advance_lead)
- current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
- _NEXT_ISR(OCR1A_nominal);
- }
- //WRITE_NC(LOGIC_ANALYZER_CH1, false);
- }
- #ifdef LIN_ADVANCE
- if (e_steps && current_block->use_advance_lead) {
- //WRITE_NC(LOGIC_ANALYZER_CH7, true);
- MSerial.checkRx(); // Check for serial chars.
- // Some of the E steps were not ticked yet. Plan additional interrupts.
- uint16_t now = TCNT1;
- // Plan the first linear advance interrupt after 50us from now.
- uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
- eISR_Rate = 0;
- if ((to_go & 0x8000) == 0) {
- // The to_go number is not negative.
- // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
- uint8_t ticks = to_go >> 8;
- if (ticks == 1) {
- // Avoid running the following loop for a very short interval.
- estep_loops = 255;
- eISR_Rate = 1;
- } else if ((e_steps & 0x0ff00) == 0) {
- // e_steps <= 0x0ff
- if (uint8_t(e_steps) <= ticks) {
- // Spread the e_steps along the whole go_to interval.
- eISR_Rate = to_go / uint8_t(e_steps);
- estep_loops = 1;
- } else if (ticks != 0) {
- // At least one tick fits into the to_go interval. Calculate the e-step grouping.
- uint8_t e = uint8_t(e_steps) >> 1;
- estep_loops = 2;
- while (e > ticks) {
- e >>= 1;
- estep_loops <<= 1;
- }
- // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
- // to squeeze enough of Linear Advance ticks until nextMainISR.
- // Calculate the tick rate.
- eISR_Rate = to_go / ticks;
- }
- } else {
- // This is an exterme case with too many e_steps inserted by the linear advance.
- // At least one tick fits into the to_go interval. Calculate the e-step grouping.
- estep_loops = 2;
- uint16_t e = e_steps >> 1;
- while (e & 0x0ff00) {
- e >>= 1;
- estep_loops <<= 1;
- }
- while (uint8_t(e) > ticks) {
- e >>= 1;
- estep_loops <<= 1;
- }
- // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
- // to squeeze enough of Linear Advance ticks until nextMainISR.
- // Calculate the tick rate.
- eISR_Rate = to_go / ticks;
- }
- }
- if (eISR_Rate == 0) {
- // There is not enough time to fit even a single additional tick.
- // Tick all the extruder ticks now.
- MSerial.checkRx(); // Check for serial chars.
- #ifdef FILAMENT_SENSOR
- if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
- {
- if (count_direction[E_AXIS] == 1)
- fsensor_counter -= e_steps;
- else
- fsensor_counter += e_steps;
- }
- else
- {
- if (count_direction[E_AXIS] == 1)
- fsensor_counter += e_steps;
- else
- fsensor_counter -= e_steps;
- }
- #endif //FILAMENT_SENSOR
- do {
- WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
- -- e_steps;
- WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
- } while (e_steps);
- OCR1A = nextMainISR;
- } else {
- // Tick the 1st Linear Advance interrupt after 50us from now.
- nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
- OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
- }
- //WRITE_NC(LOGIC_ANALYZER_CH7, false);
- } else
- OCR1A = nextMainISR;
- #endif
- // If current block is finished, reset pointer
- if (step_events_completed.wide >= current_block->step_event_count.wide) {
- #ifdef FILAMENT_SENSOR
- fsensor_st_block_chunk(current_block, fsensor_counter);
- fsensor_counter = 0;
- #endif //FILAMENT_SENSOR
- current_block = NULL;
- plan_discard_current_block();
- }
- #ifdef FILAMENT_SENSOR
- else if ((fsensor_counter >= fsensor_chunk_len))
- {
- fsensor_st_block_chunk(current_block, fsensor_counter);
- fsensor_counter = 0;
- }
- #endif //FILAMENT_SENSOR
- }
- #ifdef TMC2130
- tmc2130_st_isr(LastStepMask);
- #endif //TMC2130
- //WRITE_NC(LOGIC_ANALYZER_CH0, false);
- }
- #ifdef LIN_ADVANCE
- void clear_current_adv_vars() {
- e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
- current_adv_steps = 0;
- }
- #endif // LIN_ADVANCE
-
- void st_init()
- {
- #ifdef TMC2130
- tmc2130_init();
- #endif //TMC2130
- st_current_init(); //Initialize Digipot Motor Current
- microstep_init(); //Initialize Microstepping Pins
- //Initialize Dir Pins
- #if defined(X_DIR_PIN) && X_DIR_PIN > -1
- SET_OUTPUT(X_DIR_PIN);
- #endif
- #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
- SET_OUTPUT(X2_DIR_PIN);
- #endif
- #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
- SET_OUTPUT(Y_DIR_PIN);
-
- #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
- SET_OUTPUT(Y2_DIR_PIN);
- #endif
- #endif
- #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
- SET_OUTPUT(Z_DIR_PIN);
- #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
- SET_OUTPUT(Z2_DIR_PIN);
- #endif
- #endif
- #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
- SET_OUTPUT(E0_DIR_PIN);
- #endif
- #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
- SET_OUTPUT(E1_DIR_PIN);
- #endif
- #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
- SET_OUTPUT(E2_DIR_PIN);
- #endif
- //Initialize Enable Pins - steppers default to disabled.
- #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
- SET_OUTPUT(X_ENABLE_PIN);
- if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
- #endif
- #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
- SET_OUTPUT(X2_ENABLE_PIN);
- if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
- #endif
- #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
- SET_OUTPUT(Y_ENABLE_PIN);
- if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
-
- #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
- SET_OUTPUT(Y2_ENABLE_PIN);
- if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
- #endif
- #endif
- #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
- SET_OUTPUT(Z_ENABLE_PIN);
- if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
- #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
- SET_OUTPUT(Z2_ENABLE_PIN);
- if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
- #endif
- #endif
- #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
- SET_OUTPUT(E0_ENABLE_PIN);
- if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
- #endif
- #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
- SET_OUTPUT(E1_ENABLE_PIN);
- if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
- #endif
- #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
- SET_OUTPUT(E2_ENABLE_PIN);
- if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
- #endif
- //endstops and pullups
- #ifdef TMC2130_SG_HOMING
- SET_INPUT(X_TMC2130_DIAG);
- WRITE(X_TMC2130_DIAG,HIGH);
-
- SET_INPUT(Y_TMC2130_DIAG);
- WRITE(Y_TMC2130_DIAG,HIGH);
-
- SET_INPUT(Z_TMC2130_DIAG);
- WRITE(Z_TMC2130_DIAG,HIGH);
- SET_INPUT(E0_TMC2130_DIAG);
- WRITE(E0_TMC2130_DIAG,HIGH);
-
- #endif
-
- #if defined(X_MIN_PIN) && X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- #ifdef ENDSTOPPULLUP_XMIN
- WRITE(X_MIN_PIN,HIGH);
- #endif
- #endif
- #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- #ifdef ENDSTOPPULLUP_YMIN
- WRITE(Y_MIN_PIN,HIGH);
- #endif
- #endif
- #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- #ifdef ENDSTOPPULLUP_ZMIN
- WRITE(Z_MIN_PIN,HIGH);
- #endif
- #endif
- #if defined(X_MAX_PIN) && X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- #ifdef ENDSTOPPULLUP_XMAX
- WRITE(X_MAX_PIN,HIGH);
- #endif
- #endif
- #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- #ifdef ENDSTOPPULLUP_YMAX
- WRITE(Y_MAX_PIN,HIGH);
- #endif
- #endif
- #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- #ifdef ENDSTOPPULLUP_ZMAX
- WRITE(Z_MAX_PIN,HIGH);
- #endif
- #endif
- #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
- SET_INPUT(TACH_0);
- #ifdef TACH0PULLUP
- WRITE(TACH_0, HIGH);
- #endif
- #endif
- //Initialize Step Pins
- #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
- SET_OUTPUT(X_STEP_PIN);
- WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
- #ifdef DEBUG_XSTEP_DUP_PIN
- SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
- WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
- #endif //DEBUG_XSTEP_DUP_PIN
- disable_x();
- #endif
- #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
- SET_OUTPUT(X2_STEP_PIN);
- WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
- disable_x();
- #endif
- #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
- SET_OUTPUT(Y_STEP_PIN);
- WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
- #ifdef DEBUG_YSTEP_DUP_PIN
- SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
- WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
- #endif //DEBUG_YSTEP_DUP_PIN
- #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
- SET_OUTPUT(Y2_STEP_PIN);
- WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
- #endif
- disable_y();
- #endif
- #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
- SET_OUTPUT(Z_STEP_PIN);
- WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
- #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
- SET_OUTPUT(Z2_STEP_PIN);
- WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
- #endif
- disable_z();
- #endif
- #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
- SET_OUTPUT(E0_STEP_PIN);
- WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
- disable_e0();
- #endif
- #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
- SET_OUTPUT(E1_STEP_PIN);
- WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
- disable_e1();
- #endif
- #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
- SET_OUTPUT(E2_STEP_PIN);
- WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
- disable_e2();
- #endif
- // waveform generation = 0100 = CTC
- TCCR1B &= ~(1<<WGM13);
- TCCR1B |= (1<<WGM12);
- TCCR1A &= ~(1<<WGM11);
- TCCR1A &= ~(1<<WGM10);
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3<<COM1A0);
- TCCR1A &= ~(3<<COM1B0);
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
- // Plan the first interrupt after 8ms from now.
- OCR1A = 0x4000;
- TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- #ifdef LIN_ADVANCE
- e_steps = 0;
- current_adv_steps = 0;
- #endif
-
- enable_endstops(true); // Start with endstops active. After homing they can be disabled
- sei();
- }
- // Block until all buffered steps are executed
- void st_synchronize()
- {
- while(blocks_queued())
- {
- #ifdef TMC2130
- manage_heater();
- // Vojtech: Don't disable motors inside the planner!
- if (!tmc2130_update_sg())
- {
- manage_inactivity(true);
- lcd_update(0);
- }
- #else //TMC2130
- manage_heater();
- // Vojtech: Don't disable motors inside the planner!
- manage_inactivity(true);
- lcd_update(0);
- #endif //TMC2130
- }
- }
- void st_set_position(const long &x, const long &y, const long &z, const long &e)
- {
- CRITICAL_SECTION_START;
- // Copy 4x4B.
- // This block locks the interrupts globally for 4.56 us,
- // which corresponds to a maximum repeat frequency of 219.18 kHz.
- // This blocking is safe in the context of a 10kHz stepper driver interrupt
- // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
- count_position[X_AXIS] = x;
- count_position[Y_AXIS] = y;
- count_position[Z_AXIS] = z;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
- void st_set_e_position(const long &e)
- {
- CRITICAL_SECTION_START;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
- long st_get_position(uint8_t axis)
- {
- long count_pos;
- CRITICAL_SECTION_START;
- count_pos = count_position[axis];
- CRITICAL_SECTION_END;
- return count_pos;
- }
- void st_get_position_xy(long &x, long &y)
- {
- CRITICAL_SECTION_START;
- x = count_position[X_AXIS];
- y = count_position[Y_AXIS];
- CRITICAL_SECTION_END;
- }
- float st_get_position_mm(uint8_t axis)
- {
- float steper_position_in_steps = st_get_position(axis);
- return steper_position_in_steps / axis_steps_per_unit[axis];
- }
- void finishAndDisableSteppers()
- {
- st_synchronize();
- disable_x();
- disable_y();
- disable_z();
- disable_e0();
- disable_e1();
- disable_e2();
- }
- void quickStop()
- {
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- while (blocks_queued()) plan_discard_current_block();
- current_block = NULL;
- st_reset_timer();
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- #ifdef BABYSTEPPING
- void babystep(const uint8_t axis,const bool direction)
- {
- //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
- //store initial pin states
- switch(axis)
- {
- case X_AXIS:
- {
- enable_x();
- uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
-
- //setup new step
- WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
-
- //perform step
- WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
- LastStepMask |= X_AXIS_MASK;
- #ifdef DEBUG_XSTEP_DUP_PIN
- WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
- #endif //DEBUG_XSTEP_DUP_PIN
- {
- volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
- }
- WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
- #ifdef DEBUG_XSTEP_DUP_PIN
- WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
- #endif //DEBUG_XSTEP_DUP_PIN
- //get old pin state back.
- WRITE(X_DIR_PIN,old_x_dir_pin);
- }
- break;
- case Y_AXIS:
- {
- enable_y();
- uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
-
- //setup new step
- WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
-
- //perform step
- WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
- LastStepMask |= Y_AXIS_MASK;
- #ifdef DEBUG_YSTEP_DUP_PIN
- WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
- #endif //DEBUG_YSTEP_DUP_PIN
- {
- volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
- }
- WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
- #ifdef DEBUG_YSTEP_DUP_PIN
- WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
- #endif //DEBUG_YSTEP_DUP_PIN
- //get old pin state back.
- WRITE(Y_DIR_PIN,old_y_dir_pin);
- }
- break;
-
- case Z_AXIS:
- {
- enable_z();
- uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
- //setup new step
- WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
- #ifdef Z_DUAL_STEPPER_DRIVERS
- WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
- #endif
- //perform step
- WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
- LastStepMask |= Z_AXIS_MASK;
- #ifdef Z_DUAL_STEPPER_DRIVERS
- WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
- #endif
- //wait a tiny bit
- {
- volatile float x=1./float(axis+1); //absolutely useless
- }
- WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
- #ifdef Z_DUAL_STEPPER_DRIVERS
- WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
- #endif
- //get old pin state back.
- WRITE(Z_DIR_PIN,old_z_dir_pin);
- #ifdef Z_DUAL_STEPPER_DRIVERS
- WRITE(Z2_DIR_PIN,old_z_dir_pin);
- #endif
- }
- break;
-
- default: break;
- }
- }
- #endif //BABYSTEPPING
- void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
- {
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
- digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
- SPI.transfer(address); // send in the address and value via SPI:
- SPI.transfer(value);
- digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
- //delay(10);
- #endif
- }
- void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
- {
- do
- {
- *value = eeprom_read_byte((unsigned char*)pos);
- pos++;
- value++;
- }while(--size);
- }
- void st_current_init() //Initialize Digipot Motor Current
- {
- uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
- SilentModeMenu = SilentMode;
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
- pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
- pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
- pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
- if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
- motor_current_setting[0] = motor_current_setting_loud[0];
- motor_current_setting[1] = motor_current_setting_loud[1];
- motor_current_setting[2] = motor_current_setting_loud[2];
- }else{
- motor_current_setting[0] = motor_current_setting_silent[0];
- motor_current_setting[1] = motor_current_setting_silent[1];
- motor_current_setting[2] = motor_current_setting_silent[2];
- }
- st_current_set(0, motor_current_setting[0]);
- st_current_set(1, motor_current_setting[1]);
- st_current_set(2, motor_current_setting[2]);
- //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
- #endif
- }
- void st_current_set(uint8_t driver, int current)
- {
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
- if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
- if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
- if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
- #endif
- }
- void microstep_init()
- {
- const uint8_t microstep_modes[] = MICROSTEP_MODES;
- #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
- pinMode(E1_MS1_PIN,OUTPUT);
- pinMode(E1_MS2_PIN,OUTPUT);
- #endif
- #if defined(X_MS1_PIN) && X_MS1_PIN > -1
- pinMode(X_MS1_PIN,OUTPUT);
- pinMode(X_MS2_PIN,OUTPUT);
- pinMode(Y_MS1_PIN,OUTPUT);
- pinMode(Y_MS2_PIN,OUTPUT);
- pinMode(Z_MS1_PIN,OUTPUT);
- pinMode(Z_MS2_PIN,OUTPUT);
- pinMode(E0_MS1_PIN,OUTPUT);
- pinMode(E0_MS2_PIN,OUTPUT);
- for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
- #endif
- }
- #ifndef TMC2130
- void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
- {
- if(ms1 > -1) switch(driver)
- {
- case 0: digitalWrite( X_MS1_PIN,ms1); break;
- case 1: digitalWrite( Y_MS1_PIN,ms1); break;
- case 2: digitalWrite( Z_MS1_PIN,ms1); break;
- case 3: digitalWrite(E0_MS1_PIN,ms1); break;
- #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
- case 4: digitalWrite(E1_MS1_PIN,ms1); break;
- #endif
- }
- if(ms2 > -1) switch(driver)
- {
- case 0: digitalWrite( X_MS2_PIN,ms2); break;
- case 1: digitalWrite( Y_MS2_PIN,ms2); break;
- case 2: digitalWrite( Z_MS2_PIN,ms2); break;
- case 3: digitalWrite(E0_MS2_PIN,ms2); break;
- #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
- case 4: digitalWrite(E1_MS2_PIN,ms2); break;
- #endif
- }
- }
- void microstep_mode(uint8_t driver, uint8_t stepping_mode)
- {
- switch(stepping_mode)
- {
- case 1: microstep_ms(driver,MICROSTEP1); break;
- case 2: microstep_ms(driver,MICROSTEP2); break;
- case 4: microstep_ms(driver,MICROSTEP4); break;
- case 8: microstep_ms(driver,MICROSTEP8); break;
- case 16: microstep_ms(driver,MICROSTEP16); break;
- }
- }
- void microstep_readings()
- {
- SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
- SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
- SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
- SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
- SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
- #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
- SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
- #endif
- }
- #endif //TMC2130
|