mmu.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  18. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  19. #define MMU_HWRESET
  20. #define MMU_RST_PIN 76
  21. #define MMU_REQUIRED_FW_BUILDNR 81
  22. bool mmu_enabled = false;
  23. bool mmu_ready = false;
  24. int8_t mmu_state = 0;
  25. uint8_t mmu_cmd = 0;
  26. uint8_t mmu_extruder = 0;
  27. uint8_t tmp_extruder = 0;
  28. int8_t mmu_finda = -1;
  29. int16_t mmu_version = -1;
  30. int16_t mmu_buildnr = -1;
  31. uint32_t mmu_last_request = 0;
  32. uint32_t mmu_last_response = 0;
  33. //clear rx buffer
  34. void mmu_clr_rx_buf(void)
  35. {
  36. while (fgetc(uart2io) >= 0);
  37. }
  38. //send command - puts
  39. int mmu_puts_P(const char* str)
  40. {
  41. mmu_clr_rx_buf(); //clear rx buffer
  42. int r = fputs_P(str, uart2io); //send command
  43. mmu_last_request = millis();
  44. return r;
  45. }
  46. //send command - printf
  47. int mmu_printf_P(const char* format, ...)
  48. {
  49. va_list args;
  50. va_start(args, format);
  51. mmu_clr_rx_buf(); //clear rx buffer
  52. int r = vfprintf_P(uart2io, format, args); //send command
  53. va_end(args);
  54. mmu_last_request = millis();
  55. return r;
  56. }
  57. //check 'ok' response
  58. int8_t mmu_rx_ok(void)
  59. {
  60. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  61. if (res == 1) mmu_last_response = millis();
  62. return res;
  63. }
  64. //check 'start' response
  65. int8_t mmu_rx_start(void)
  66. {
  67. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  68. if (res == 1) mmu_last_response = millis();
  69. return res;
  70. }
  71. //initialize mmu2 unit - first part - should be done at begining of startup process
  72. void mmu_init(void)
  73. {
  74. digitalWrite(MMU_RST_PIN, HIGH);
  75. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  76. uart2_init(); //init uart2
  77. _delay_ms(10); //wait 10ms for sure
  78. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  79. mmu_state = -1;
  80. }
  81. //mmu main loop - state machine processing
  82. void mmu_loop(void)
  83. {
  84. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  85. switch (mmu_state)
  86. {
  87. case 0:
  88. return;
  89. case -1:
  90. if (mmu_rx_start() > 0)
  91. {
  92. puts_P(PSTR("MMU => 'start'"));
  93. puts_P(PSTR("MMU <= 'S1'"));
  94. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  95. mmu_state = -2;
  96. }
  97. else if (millis() > 30000) //30sec after reset disable mmu
  98. {
  99. puts_P(PSTR("MMU not responding - DISABLED"));
  100. mmu_state = 0;
  101. }
  102. return;
  103. case -2:
  104. if (mmu_rx_ok() > 0)
  105. {
  106. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  107. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  108. puts_P(PSTR("MMU <= 'S2'"));
  109. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  110. mmu_state = -3;
  111. }
  112. return;
  113. case -3:
  114. if (mmu_rx_ok() > 0)
  115. {
  116. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  117. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  118. bool version_valid = mmu_check_version();
  119. if (!version_valid) mmu_show_warning();
  120. else puts_P(PSTR("MMU version valid"));
  121. puts_P(PSTR("MMU <= 'P0'"));
  122. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  123. mmu_state = -4;
  124. }
  125. return;
  126. case -4:
  127. if (mmu_rx_ok() > 0)
  128. {
  129. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  130. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  131. puts_P(PSTR("MMU - ENABLED"));
  132. mmu_enabled = true;
  133. mmu_state = 1;
  134. }
  135. return;
  136. case 1:
  137. if (mmu_cmd) //command request ?
  138. {
  139. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  140. {
  141. int extruder = mmu_cmd - MMU_CMD_T0;
  142. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  143. mmu_printf_P(PSTR("T%d\n"), extruder);
  144. mmu_state = 3; // wait for response
  145. }
  146. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  147. {
  148. int filament = mmu_cmd - MMU_CMD_L0;
  149. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  150. mmu_printf_P(PSTR("L%d\n"), filament);
  151. mmu_state = 3; // wait for response
  152. }
  153. else if (mmu_cmd == MMU_CMD_C0)
  154. {
  155. printf_P(PSTR("MMU <= 'C0'\n"));
  156. mmu_puts_P(PSTR("C0\n")); //send continue loading
  157. mmu_state = 3;
  158. }
  159. mmu_cmd = 0;
  160. }
  161. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  162. {
  163. puts_P(PSTR("MMU <= 'P0'"));
  164. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  165. mmu_state = 2;
  166. }
  167. return;
  168. case 2: //response to command P0
  169. if (mmu_rx_ok() > 0)
  170. {
  171. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  172. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  173. mmu_state = 1;
  174. if (mmu_cmd == 0)
  175. mmu_ready = true;
  176. }
  177. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  178. { //resend request after timeout (30s)
  179. mmu_state = 1;
  180. }
  181. return;
  182. case 3: //response to commands T0-T4
  183. if (mmu_rx_ok() > 0)
  184. {
  185. printf_P(PSTR("MMU => 'ok'\n"));
  186. mmu_ready = true;
  187. mmu_state = 1;
  188. }
  189. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  190. { //resend request after timeout (5 min)
  191. mmu_state = 1;
  192. }
  193. return;
  194. }
  195. }
  196. void mmu_reset(void)
  197. {
  198. #ifdef MMU_HWRESET //HW - pulse reset pin
  199. digitalWrite(MMU_RST_PIN, LOW);
  200. _delay_us(100);
  201. digitalWrite(MMU_RST_PIN, HIGH);
  202. #else //SW - send X0 command
  203. mmu_puts_P(PSTR("X0\n"));
  204. #endif
  205. }
  206. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  207. {
  208. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  209. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  210. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  211. while ((mmu_rx_ok() <= 0) && (--timeout))
  212. delay_keep_alive(MMU_TODELAY);
  213. return timeout?1:0;
  214. }
  215. void mmu_command(uint8_t cmd)
  216. {
  217. mmu_cmd = cmd;
  218. mmu_ready = false;
  219. }
  220. bool mmu_get_response(void)
  221. {
  222. // printf_P(PSTR("mmu_get_response - begin\n"));
  223. KEEPALIVE_STATE(IN_PROCESS);
  224. while (mmu_cmd != 0)
  225. {
  226. // mmu_loop();
  227. delay_keep_alive(100);
  228. }
  229. while (!mmu_ready)
  230. {
  231. // mmu_loop();
  232. if (mmu_state != 3)
  233. break;
  234. delay_keep_alive(100);
  235. }
  236. bool ret = mmu_ready;
  237. mmu_ready = false;
  238. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  239. return ret;
  240. /* //waits for "ok" from mmu
  241. //function returns true if "ok" was received
  242. //if timeout is set to true function return false if there is no "ok" received before timeout
  243. bool response = true;
  244. LongTimer mmu_get_reponse_timeout;
  245. KEEPALIVE_STATE(IN_PROCESS);
  246. mmu_get_reponse_timeout.start();
  247. while (mmu_rx_ok() <= 0)
  248. {
  249. delay_keep_alive(100);
  250. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  251. { //5 minutes timeout
  252. response = false;
  253. break;
  254. }
  255. }
  256. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  257. return response;*/
  258. }
  259. void manage_response(bool move_axes, bool turn_off_nozzle)
  260. {
  261. bool response = false;
  262. mmu_print_saved = false;
  263. bool lcd_update_was_enabled = false;
  264. float hotend_temp_bckp = degTargetHotend(active_extruder);
  265. float z_position_bckp = current_position[Z_AXIS];
  266. float x_position_bckp = current_position[X_AXIS];
  267. float y_position_bckp = current_position[Y_AXIS];
  268. while(!response)
  269. {
  270. response = mmu_get_response(); //wait for "ok" from mmu
  271. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  272. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  273. if (lcd_update_enabled) {
  274. lcd_update_was_enabled = true;
  275. lcd_update_enable(false);
  276. }
  277. st_synchronize();
  278. mmu_print_saved = true;
  279. printf_P(PSTR("MMU not responding\n"));
  280. hotend_temp_bckp = degTargetHotend(active_extruder);
  281. if (move_axes) {
  282. z_position_bckp = current_position[Z_AXIS];
  283. x_position_bckp = current_position[X_AXIS];
  284. y_position_bckp = current_position[Y_AXIS];
  285. //lift z
  286. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  287. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  289. st_synchronize();
  290. //Move XY to side
  291. current_position[X_AXIS] = X_PAUSE_POS;
  292. current_position[Y_AXIS] = Y_PAUSE_POS;
  293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  294. st_synchronize();
  295. }
  296. if (turn_off_nozzle) {
  297. //set nozzle target temperature to 0
  298. setAllTargetHotends(0);
  299. }
  300. }
  301. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  302. delay_keep_alive(1000);
  303. }
  304. else if (mmu_print_saved) {
  305. printf_P(PSTR("MMU starts responding\n"));
  306. if (turn_off_nozzle)
  307. {
  308. lcd_clear();
  309. setTargetHotend(hotend_temp_bckp, active_extruder);
  310. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  311. delay_keep_alive(3000);
  312. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  313. {
  314. delay_keep_alive(1000);
  315. lcd_wait_for_heater();
  316. }
  317. }
  318. if (move_axes) {
  319. lcd_clear();
  320. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  321. current_position[X_AXIS] = x_position_bckp;
  322. current_position[Y_AXIS] = y_position_bckp;
  323. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  324. st_synchronize();
  325. current_position[Z_AXIS] = z_position_bckp;
  326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  327. st_synchronize();
  328. }
  329. else {
  330. lcd_clear();
  331. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  332. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  333. }
  334. }
  335. }
  336. if (lcd_update_was_enabled) lcd_update_enable(true);
  337. }
  338. void mmu_load_to_nozzle()
  339. {
  340. st_synchronize();
  341. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  342. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  343. current_position[E_AXIS] += 7.2f;
  344. float feedrate = 562;
  345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  346. st_synchronize();
  347. current_position[E_AXIS] += 14.4f;
  348. feedrate = 871;
  349. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  350. st_synchronize();
  351. current_position[E_AXIS] += 36.0f;
  352. feedrate = 1393;
  353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  354. st_synchronize();
  355. current_position[E_AXIS] += 14.4f;
  356. feedrate = 871;
  357. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  358. st_synchronize();
  359. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  360. }
  361. void mmu_M600_load_filament(bool automatic)
  362. {
  363. //load filament for mmu v2
  364. bool response = false;
  365. bool yes = false;
  366. if (!automatic) {
  367. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  368. if(yes) tmp_extruder = choose_extruder_menu();
  369. else tmp_extruder = mmu_extruder;
  370. }
  371. else {
  372. tmp_extruder = (tmp_extruder+1)%5;
  373. }
  374. lcd_update_enable(false);
  375. lcd_clear();
  376. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  377. lcd_print(" ");
  378. lcd_print(tmp_extruder + 1);
  379. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  380. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  381. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  382. mmu_command(MMU_CMD_T0 + tmp_extruder);
  383. manage_response(false, true);
  384. mmu_command(MMU_CMD_C0);
  385. mmu_extruder = tmp_extruder; //filament change is finished
  386. mmu_load_to_nozzle();
  387. st_synchronize();
  388. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  390. }
  391. void extr_mov(float shift, float feed_rate)
  392. { //move extruder no matter what the current heater temperature is
  393. set_extrude_min_temp(.0);
  394. current_position[E_AXIS] += shift;
  395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  396. set_extrude_min_temp(EXTRUDE_MINTEMP);
  397. }
  398. void change_extr(int extr) { //switches multiplexer for extruders
  399. #ifdef SNMM
  400. st_synchronize();
  401. delay(100);
  402. disable_e0();
  403. disable_e1();
  404. disable_e2();
  405. mmu_extruder = extr;
  406. pinMode(E_MUX0_PIN, OUTPUT);
  407. pinMode(E_MUX1_PIN, OUTPUT);
  408. switch (extr) {
  409. case 1:
  410. WRITE(E_MUX0_PIN, HIGH);
  411. WRITE(E_MUX1_PIN, LOW);
  412. break;
  413. case 2:
  414. WRITE(E_MUX0_PIN, LOW);
  415. WRITE(E_MUX1_PIN, HIGH);
  416. break;
  417. case 3:
  418. WRITE(E_MUX0_PIN, HIGH);
  419. WRITE(E_MUX1_PIN, HIGH);
  420. break;
  421. default:
  422. WRITE(E_MUX0_PIN, LOW);
  423. WRITE(E_MUX1_PIN, LOW);
  424. break;
  425. }
  426. delay(100);
  427. #endif
  428. }
  429. int get_ext_nr()
  430. { //reads multiplexer input pins and return current extruder number (counted from 0)
  431. #ifndef SNMM
  432. return(mmu_extruder); //update needed
  433. #else
  434. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  435. #endif
  436. }
  437. void display_loading()
  438. {
  439. switch (mmu_extruder)
  440. {
  441. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  442. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  443. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  444. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  445. }
  446. }
  447. void extr_adj(int extruder) //loading filament for SNMM
  448. {
  449. #ifndef SNMM
  450. uint8_t cmd = MMU_CMD_L0 + extruder;
  451. if (cmd > MMU_CMD_L4)
  452. {
  453. printf_P(PSTR("Filament out of range %d \n"),extruder);
  454. return;
  455. }
  456. mmu_command(cmd);
  457. //show which filament is currently loaded
  458. lcd_update_enable(false);
  459. lcd_clear();
  460. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  461. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  462. //else lcd.print(" ");
  463. lcd_print(" ");
  464. lcd_print(extruder + 1);
  465. // get response
  466. manage_response(false, false);
  467. lcd_update_enable(true);
  468. //lcd_return_to_status();
  469. #else
  470. bool correct;
  471. max_feedrate[E_AXIS] =80;
  472. //max_feedrate[E_AXIS] = 50;
  473. START:
  474. lcd_clear();
  475. lcd_set_cursor(0, 0);
  476. switch (extruder) {
  477. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  478. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  479. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  480. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  481. }
  482. KEEPALIVE_STATE(PAUSED_FOR_USER);
  483. do{
  484. extr_mov(0.001,1000);
  485. delay_keep_alive(2);
  486. } while (!lcd_clicked());
  487. //delay_keep_alive(500);
  488. KEEPALIVE_STATE(IN_HANDLER);
  489. st_synchronize();
  490. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  491. //if (!correct) goto START;
  492. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  493. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  494. extr_mov(bowden_length[extruder], 500);
  495. lcd_clear();
  496. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  497. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  498. else lcd_print(" ");
  499. lcd_print(mmu_extruder + 1);
  500. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  501. st_synchronize();
  502. max_feedrate[E_AXIS] = 50;
  503. lcd_update_enable(true);
  504. lcd_return_to_status();
  505. lcdDrawUpdate = 2;
  506. #endif
  507. }
  508. void extr_unload()
  509. { //unload just current filament for multimaterial printers
  510. #ifdef SNMM
  511. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  512. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  513. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  514. #endif
  515. if (degHotend0() > EXTRUDE_MINTEMP)
  516. {
  517. #ifndef SNMM
  518. st_synchronize();
  519. //show which filament is currently unloaded
  520. lcd_update_enable(false);
  521. lcd_clear();
  522. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  523. lcd_print(" ");
  524. lcd_print(mmu_extruder + 1);
  525. current_position[E_AXIS] -= 80;
  526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  527. st_synchronize();
  528. printf_P(PSTR("U0\n"));
  529. fprintf_P(uart2io, PSTR("U0\n"));
  530. // get response
  531. manage_response(false, true);
  532. lcd_update_enable(true);
  533. #else //SNMM
  534. lcd_clear();
  535. lcd_display_message_fullscreen_P(PSTR(""));
  536. max_feedrate[E_AXIS] = 50;
  537. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  538. lcd_print(" ");
  539. lcd_print(mmu_extruder + 1);
  540. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  541. if (current_position[Z_AXIS] < 15) {
  542. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  544. }
  545. current_position[E_AXIS] += 10; //extrusion
  546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  547. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  548. if (current_temperature[0] < 230) { //PLA & all other filaments
  549. current_position[E_AXIS] += 5.4;
  550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  551. current_position[E_AXIS] += 3.2;
  552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  553. current_position[E_AXIS] += 3;
  554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  555. }
  556. else { //ABS
  557. current_position[E_AXIS] += 3.1;
  558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  559. current_position[E_AXIS] += 3.1;
  560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  561. current_position[E_AXIS] += 4;
  562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  563. /*current_position[X_AXIS] += 23; //delay
  564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  565. current_position[X_AXIS] -= 23; //delay
  566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  567. delay_keep_alive(4700);
  568. }
  569. max_feedrate[E_AXIS] = 80;
  570. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  572. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  574. st_synchronize();
  575. //st_current_init();
  576. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  577. else st_current_set(2, tmp_motor_loud[2]);
  578. lcd_update_enable(true);
  579. lcd_return_to_status();
  580. max_feedrate[E_AXIS] = 50;
  581. #endif //SNMM
  582. }
  583. else
  584. {
  585. lcd_clear();
  586. lcd_set_cursor(0, 0);
  587. lcd_puts_P(_T(MSG_ERROR));
  588. lcd_set_cursor(0, 2);
  589. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  590. delay(2000);
  591. lcd_clear();
  592. }
  593. //lcd_return_to_status();
  594. }
  595. //wrapper functions for loading filament
  596. void extr_adj_0()
  597. {
  598. #ifndef SNMM
  599. enquecommand_P(PSTR("M701 E0"));
  600. #else
  601. change_extr(0);
  602. extr_adj(0);
  603. #endif
  604. }
  605. void extr_adj_1()
  606. {
  607. #ifndef SNMM
  608. enquecommand_P(PSTR("M701 E1"));
  609. #else
  610. change_extr(1);
  611. extr_adj(1);
  612. #endif
  613. }
  614. void extr_adj_2()
  615. {
  616. #ifndef SNMM
  617. enquecommand_P(PSTR("M701 E2"));
  618. #else
  619. change_extr(2);
  620. extr_adj(2);
  621. #endif
  622. }
  623. void extr_adj_3()
  624. {
  625. #ifndef SNMM
  626. enquecommand_P(PSTR("M701 E3"));
  627. #else
  628. change_extr(3);
  629. extr_adj(3);
  630. #endif
  631. }
  632. void extr_adj_4()
  633. {
  634. #ifndef SNMM
  635. enquecommand_P(PSTR("M701 E4"));
  636. #else
  637. change_extr(4);
  638. extr_adj(4);
  639. #endif
  640. }
  641. void load_all()
  642. {
  643. #ifndef SNMM
  644. enquecommand_P(PSTR("M701 E0"));
  645. enquecommand_P(PSTR("M701 E1"));
  646. enquecommand_P(PSTR("M701 E2"));
  647. enquecommand_P(PSTR("M701 E3"));
  648. enquecommand_P(PSTR("M701 E4"));
  649. #else
  650. for (int i = 0; i < 4; i++)
  651. {
  652. change_extr(i);
  653. extr_adj(i);
  654. }
  655. #endif
  656. }
  657. //wrapper functions for changing extruders
  658. void extr_change_0()
  659. {
  660. change_extr(0);
  661. lcd_return_to_status();
  662. }
  663. void extr_change_1()
  664. {
  665. change_extr(1);
  666. lcd_return_to_status();
  667. }
  668. void extr_change_2()
  669. {
  670. change_extr(2);
  671. lcd_return_to_status();
  672. }
  673. void extr_change_3()
  674. {
  675. change_extr(3);
  676. lcd_return_to_status();
  677. }
  678. //wrapper functions for unloading filament
  679. void extr_unload_all()
  680. {
  681. if (degHotend0() > EXTRUDE_MINTEMP)
  682. {
  683. for (int i = 0; i < 4; i++)
  684. {
  685. change_extr(i);
  686. extr_unload();
  687. }
  688. }
  689. else
  690. {
  691. lcd_clear();
  692. lcd_set_cursor(0, 0);
  693. lcd_puts_P(_T(MSG_ERROR));
  694. lcd_set_cursor(0, 2);
  695. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  696. delay(2000);
  697. lcd_clear();
  698. lcd_return_to_status();
  699. }
  700. }
  701. //unloading just used filament (for snmm)
  702. void extr_unload_used()
  703. {
  704. if (degHotend0() > EXTRUDE_MINTEMP) {
  705. for (int i = 0; i < 4; i++) {
  706. if (snmm_filaments_used & (1 << i)) {
  707. change_extr(i);
  708. extr_unload();
  709. }
  710. }
  711. snmm_filaments_used = 0;
  712. }
  713. else {
  714. lcd_clear();
  715. lcd_set_cursor(0, 0);
  716. lcd_puts_P(_T(MSG_ERROR));
  717. lcd_set_cursor(0, 2);
  718. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  719. delay(2000);
  720. lcd_clear();
  721. lcd_return_to_status();
  722. }
  723. }
  724. void extr_unload_0()
  725. {
  726. change_extr(0);
  727. extr_unload();
  728. }
  729. void extr_unload_1()
  730. {
  731. change_extr(1);
  732. extr_unload();
  733. }
  734. void extr_unload_2()
  735. {
  736. change_extr(2);
  737. extr_unload();
  738. }
  739. void extr_unload_3()
  740. {
  741. change_extr(3);
  742. extr_unload();
  743. }
  744. void extr_unload_4()
  745. {
  746. change_extr(4);
  747. extr_unload();
  748. }
  749. bool mmu_check_version()
  750. {
  751. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  752. }
  753. void mmu_show_warning()
  754. {
  755. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  756. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  757. }