Marlin_main.cpp 298 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M92 - Set axis_steps_per_unit - same syntax as G92
  169. // M104 - Set extruder target temp
  170. // M105 - Read current temp
  171. // M106 - Fan on
  172. // M107 - Fan off
  173. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  174. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  175. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  176. // M112 - Emergency stop
  177. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  178. // M114 - Output current position to serial port
  179. // M115 - Capabilities string
  180. // M117 - display message
  181. // M119 - Output Endstop status to serial port
  182. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  183. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  184. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M140 - Set bed target temp
  187. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  188. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  189. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  190. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  191. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  192. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  193. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  194. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  195. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  196. // M206 - set additional homing offset
  197. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  198. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  199. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  200. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  201. // M220 S<factor in percent>- set speed factor override percentage
  202. // M221 S<factor in percent>- set extrude factor override percentage
  203. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  204. // M240 - Trigger a camera to take a photograph
  205. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  206. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  207. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  208. // M301 - Set PID parameters P I and D
  209. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  210. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  211. // M304 - Set bed PID parameters P I and D
  212. // M400 - Finish all moves
  213. // M401 - Lower z-probe if present
  214. // M402 - Raise z-probe if present
  215. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  216. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  217. // M406 - Turn off Filament Sensor extrusion control
  218. // M407 - Displays measured filament diameter
  219. // M500 - stores parameters in EEPROM
  220. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. // M503 - print the current settings (from memory not from EEPROM)
  223. // M509 - force language selection on next restart
  224. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. // M860 - Wait for PINDA thermistor to reach target temperature.
  228. // M861 - Set / Read PINDA temperature compensation offsets
  229. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  230. // M907 - Set digital trimpot motor current using axis codes.
  231. // M908 - Control digital trimpot directly.
  232. // M350 - Set microstepping mode.
  233. // M351 - Toggle MS1 MS2 pins directly.
  234. // M928 - Start SD logging (M928 filename.g) - ended by M29
  235. // M999 - Restart after being stopped by error
  236. //Stepper Movement Variables
  237. //===========================================================================
  238. //=============================imported variables============================
  239. //===========================================================================
  240. //===========================================================================
  241. //=============================public variables=============================
  242. //===========================================================================
  243. #ifdef SDSUPPORT
  244. CardReader card;
  245. #endif
  246. unsigned long PingTime = millis();
  247. unsigned long NcTime;
  248. union Data
  249. {
  250. byte b[2];
  251. int value;
  252. };
  253. float homing_feedrate[] = HOMING_FEEDRATE;
  254. // Currently only the extruder axis may be switched to a relative mode.
  255. // Other axes are always absolute or relative based on the common relative_mode flag.
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedmultiply=100; //100->1 200->2
  258. int saved_feedmultiply;
  259. int extrudemultiply=100; //100->1 200->2
  260. int extruder_multiply[EXTRUDERS] = {100
  261. #if EXTRUDERS > 1
  262. , 100
  263. #if EXTRUDERS > 2
  264. , 100
  265. #endif
  266. #endif
  267. };
  268. int bowden_length[4] = {385, 385, 385, 385};
  269. bool is_usb_printing = false;
  270. bool homing_flag = false;
  271. bool temp_cal_active = false;
  272. unsigned long kicktime = millis()+100000;
  273. unsigned int usb_printing_counter;
  274. int lcd_change_fil_state = 0;
  275. int feedmultiplyBckp = 100;
  276. float HotendTempBckp = 0;
  277. int fanSpeedBckp = 0;
  278. float pause_lastpos[4];
  279. unsigned long pause_time = 0;
  280. unsigned long start_pause_print = millis();
  281. unsigned long t_fan_rising_edge = millis();
  282. static LongTimer safetyTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. int8_t FarmMode = 0;
  287. bool prusa_sd_card_upload = false;
  288. unsigned int status_number = 0;
  289. unsigned long total_filament_used;
  290. unsigned int heating_status;
  291. unsigned int heating_status_counter;
  292. bool custom_message;
  293. bool loading_flag = false;
  294. unsigned int custom_message_type;
  295. unsigned int custom_message_state;
  296. char snmm_filaments_used = 0;
  297. bool fan_state[2];
  298. int fan_edge_counter[2];
  299. int fan_speed[2];
  300. char dir_names[3][9];
  301. bool sortAlpha = false;
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 1
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 2
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #endif
  309. #endif
  310. };
  311. float extruder_multiplier[EXTRUDERS] = {1.0
  312. #if EXTRUDERS > 1
  313. , 1.0
  314. #if EXTRUDERS > 2
  315. , 1.0
  316. #endif
  317. #endif
  318. };
  319. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  320. float add_homing[3]={0,0,0};
  321. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  322. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  323. bool axis_known_position[3] = {false, false, false};
  324. float zprobe_zoffset;
  325. // Extruder offset
  326. #if EXTRUDERS > 1
  327. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  328. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  329. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  330. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  331. #endif
  332. };
  333. #endif
  334. uint8_t active_extruder = 0;
  335. int fanSpeed=0;
  336. #ifdef FWRETRACT
  337. bool autoretract_enabled=false;
  338. bool retracted[EXTRUDERS]={false
  339. #if EXTRUDERS > 1
  340. , false
  341. #if EXTRUDERS > 2
  342. , false
  343. #endif
  344. #endif
  345. };
  346. bool retracted_swap[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. float retract_length = RETRACT_LENGTH;
  355. float retract_length_swap = RETRACT_LENGTH_SWAP;
  356. float retract_feedrate = RETRACT_FEEDRATE;
  357. float retract_zlift = RETRACT_ZLIFT;
  358. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  359. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  360. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  361. #endif
  362. #ifdef ULTIPANEL
  363. #ifdef PS_DEFAULT_OFF
  364. bool powersupply = false;
  365. #else
  366. bool powersupply = true;
  367. #endif
  368. #endif
  369. bool cancel_heatup = false ;
  370. #ifdef HOST_KEEPALIVE_FEATURE
  371. int busy_state = NOT_BUSY;
  372. static long prev_busy_signal_ms = -1;
  373. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  374. #else
  375. #define host_keepalive();
  376. #define KEEPALIVE_STATE(n);
  377. #endif
  378. const char errormagic[] PROGMEM = "Error:";
  379. const char echomagic[] PROGMEM = "echo:";
  380. bool no_response = false;
  381. uint8_t important_status;
  382. uint8_t saved_filament_type;
  383. // save/restore printing
  384. bool saved_printing = false;
  385. //===========================================================================
  386. //=============================Private Variables=============================
  387. //===========================================================================
  388. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  389. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  390. static float delta[3] = {0.0, 0.0, 0.0};
  391. // For tracing an arc
  392. static float offset[3] = {0.0, 0.0, 0.0};
  393. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  394. // Determines Absolute or Relative Coordinates.
  395. // Also there is bool axis_relative_modes[] per axis flag.
  396. static bool relative_mode = false;
  397. #ifndef _DISABLE_M42_M226
  398. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  399. #endif //_DISABLE_M42_M226
  400. //static float tt = 0;
  401. //static float bt = 0;
  402. //Inactivity shutdown variables
  403. static unsigned long previous_millis_cmd = 0;
  404. unsigned long max_inactive_time = 0;
  405. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  406. unsigned long starttime=0;
  407. unsigned long stoptime=0;
  408. unsigned long _usb_timer = 0;
  409. static uint8_t tmp_extruder;
  410. bool extruder_under_pressure = true;
  411. bool Stopped=false;
  412. #if NUM_SERVOS > 0
  413. Servo servos[NUM_SERVOS];
  414. #endif
  415. bool CooldownNoWait = true;
  416. bool target_direction;
  417. //Insert variables if CHDK is defined
  418. #ifdef CHDK
  419. unsigned long chdkHigh = 0;
  420. boolean chdkActive = false;
  421. #endif
  422. // save/restore printing
  423. static uint32_t saved_sdpos = 0;
  424. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  425. static float saved_pos[4] = { 0, 0, 0, 0 };
  426. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  427. static float saved_feedrate2 = 0;
  428. static uint8_t saved_active_extruder = 0;
  429. static bool saved_extruder_under_pressure = false;
  430. //===========================================================================
  431. //=============================Routines======================================
  432. //===========================================================================
  433. void get_arc_coordinates();
  434. bool setTargetedHotend(int code);
  435. void serial_echopair_P(const char *s_P, float v)
  436. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  437. void serial_echopair_P(const char *s_P, double v)
  438. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  439. void serial_echopair_P(const char *s_P, unsigned long v)
  440. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  441. #ifdef SDSUPPORT
  442. #include "SdFatUtil.h"
  443. int freeMemory() { return SdFatUtil::FreeRam(); }
  444. #else
  445. extern "C" {
  446. extern unsigned int __bss_end;
  447. extern unsigned int __heap_start;
  448. extern void *__brkval;
  449. int freeMemory() {
  450. int free_memory;
  451. if ((int)__brkval == 0)
  452. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  453. else
  454. free_memory = ((int)&free_memory) - ((int)__brkval);
  455. return free_memory;
  456. }
  457. }
  458. #endif //!SDSUPPORT
  459. void setup_killpin()
  460. {
  461. #if defined(KILL_PIN) && KILL_PIN > -1
  462. SET_INPUT(KILL_PIN);
  463. WRITE(KILL_PIN,HIGH);
  464. #endif
  465. }
  466. // Set home pin
  467. void setup_homepin(void)
  468. {
  469. #if defined(HOME_PIN) && HOME_PIN > -1
  470. SET_INPUT(HOME_PIN);
  471. WRITE(HOME_PIN,HIGH);
  472. #endif
  473. }
  474. void setup_photpin()
  475. {
  476. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  477. SET_OUTPUT(PHOTOGRAPH_PIN);
  478. WRITE(PHOTOGRAPH_PIN, LOW);
  479. #endif
  480. }
  481. void setup_powerhold()
  482. {
  483. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  484. SET_OUTPUT(SUICIDE_PIN);
  485. WRITE(SUICIDE_PIN, HIGH);
  486. #endif
  487. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  488. SET_OUTPUT(PS_ON_PIN);
  489. #if defined(PS_DEFAULT_OFF)
  490. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  491. #else
  492. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  493. #endif
  494. #endif
  495. }
  496. void suicide()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. SET_OUTPUT(SUICIDE_PIN);
  500. WRITE(SUICIDE_PIN, LOW);
  501. #endif
  502. }
  503. void servo_init()
  504. {
  505. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  506. servos[0].attach(SERVO0_PIN);
  507. #endif
  508. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  509. servos[1].attach(SERVO1_PIN);
  510. #endif
  511. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  512. servos[2].attach(SERVO2_PIN);
  513. #endif
  514. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  515. servos[3].attach(SERVO3_PIN);
  516. #endif
  517. #if (NUM_SERVOS >= 5)
  518. #error "TODO: enter initalisation code for more servos"
  519. #endif
  520. }
  521. static void lcd_language_menu();
  522. void stop_and_save_print_to_ram(float z_move, float e_move);
  523. void restore_print_from_ram_and_continue(float e_move);
  524. bool fans_check_enabled = true;
  525. bool filament_autoload_enabled = true;
  526. #ifdef TMC2130
  527. extern int8_t CrashDetectMenu;
  528. void crashdet_enable()
  529. {
  530. // MYSERIAL.println("crashdet_enable");
  531. tmc2130_sg_stop_on_crash = true;
  532. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  533. CrashDetectMenu = 1;
  534. }
  535. void crashdet_disable()
  536. {
  537. // MYSERIAL.println("crashdet_disable");
  538. tmc2130_sg_stop_on_crash = false;
  539. tmc2130_sg_crash = 0;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  541. CrashDetectMenu = 0;
  542. }
  543. void crashdet_stop_and_save_print()
  544. {
  545. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  546. }
  547. void crashdet_restore_print_and_continue()
  548. {
  549. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  550. // babystep_apply();
  551. }
  552. void crashdet_stop_and_save_print2()
  553. {
  554. cli();
  555. planner_abort_hard(); //abort printing
  556. cmdqueue_reset(); //empty cmdqueue
  557. card.sdprinting = false;
  558. card.closefile();
  559. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  560. st_reset_timer();
  561. sei();
  562. }
  563. void crashdet_detected(uint8_t mask)
  564. {
  565. // printf("CRASH_DETECTED");
  566. /* while (!is_buffer_empty())
  567. {
  568. process_commands();
  569. cmdqueue_pop_front();
  570. }*/
  571. st_synchronize();
  572. lcd_update_enable(true);
  573. lcd_implementation_clear();
  574. lcd_update(2);
  575. if (mask & X_AXIS_MASK)
  576. {
  577. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  578. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  579. }
  580. if (mask & Y_AXIS_MASK)
  581. {
  582. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  583. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  584. }
  585. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  586. bool yesno = true;
  587. #else
  588. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  589. #endif
  590. lcd_update_enable(true);
  591. lcd_update(2);
  592. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  593. if (yesno)
  594. {
  595. enquecommand_P(PSTR("G28 X Y"));
  596. enquecommand_P(PSTR("CRASH_RECOVER"));
  597. }
  598. else
  599. {
  600. enquecommand_P(PSTR("CRASH_CANCEL"));
  601. }
  602. }
  603. void crashdet_recover()
  604. {
  605. crashdet_restore_print_and_continue();
  606. tmc2130_sg_stop_on_crash = true;
  607. }
  608. void crashdet_cancel()
  609. {
  610. card.sdprinting = false;
  611. card.closefile();
  612. tmc2130_sg_stop_on_crash = true;
  613. }
  614. #endif //TMC2130
  615. void failstats_reset_print()
  616. {
  617. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  618. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  619. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  620. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  621. }
  622. #ifdef MESH_BED_LEVELING
  623. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  624. #endif
  625. // Factory reset function
  626. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  627. // Level input parameter sets depth of reset
  628. // Quiet parameter masks all waitings for user interact.
  629. int er_progress = 0;
  630. void factory_reset(char level, bool quiet)
  631. {
  632. lcd_implementation_clear();
  633. int cursor_pos = 0;
  634. switch (level) {
  635. // Level 0: Language reset
  636. case 0:
  637. WRITE(BEEPER, HIGH);
  638. _delay_ms(100);
  639. WRITE(BEEPER, LOW);
  640. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  641. break;
  642. //Level 1: Reset statistics
  643. case 1:
  644. WRITE(BEEPER, HIGH);
  645. _delay_ms(100);
  646. WRITE(BEEPER, LOW);
  647. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  648. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  653. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  654. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  655. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  656. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  657. lcd_menu_statistics();
  658. break;
  659. // Level 2: Prepare for shipping
  660. case 2:
  661. //lcd_printPGM(PSTR("Factory RESET"));
  662. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  663. // Force language selection at the next boot up.
  664. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  665. // Force the "Follow calibration flow" message at the next boot up.
  666. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  667. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  668. farm_no = 0;
  669. //*** MaR::180501_01
  670. farm_mode = false;
  671. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  672. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  673. WRITE(BEEPER, HIGH);
  674. _delay_ms(100);
  675. WRITE(BEEPER, LOW);
  676. //_delay_ms(2000);
  677. break;
  678. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  679. case 3:
  680. lcd_printPGM(PSTR("Factory RESET"));
  681. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  682. WRITE(BEEPER, HIGH);
  683. _delay_ms(100);
  684. WRITE(BEEPER, LOW);
  685. er_progress = 0;
  686. lcd_print_at_PGM(3, 3, PSTR(" "));
  687. lcd_implementation_print_at(3, 3, er_progress);
  688. // Erase EEPROM
  689. for (int i = 0; i < 4096; i++) {
  690. eeprom_write_byte((uint8_t*)i, 0xFF);
  691. if (i % 41 == 0) {
  692. er_progress++;
  693. lcd_print_at_PGM(3, 3, PSTR(" "));
  694. lcd_implementation_print_at(3, 3, er_progress);
  695. lcd_printPGM(PSTR("%"));
  696. }
  697. }
  698. break;
  699. case 4:
  700. bowden_menu();
  701. break;
  702. default:
  703. break;
  704. }
  705. }
  706. #include "LiquidCrystal_Prusa.h"
  707. extern LiquidCrystal_Prusa lcd;
  708. FILE _lcdout = {0};
  709. int lcd_putchar(char c, FILE *stream)
  710. {
  711. lcd.write(c);
  712. return 0;
  713. }
  714. FILE _uartout = {0};
  715. int uart_putchar(char c, FILE *stream)
  716. {
  717. MYSERIAL.write(c);
  718. return 0;
  719. }
  720. void lcd_splash()
  721. {
  722. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  723. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  724. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  725. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  726. }
  727. void factory_reset()
  728. {
  729. KEEPALIVE_STATE(PAUSED_FOR_USER);
  730. if (!READ(BTN_ENC))
  731. {
  732. _delay_ms(1000);
  733. if (!READ(BTN_ENC))
  734. {
  735. lcd_implementation_clear();
  736. lcd_printPGM(PSTR("Factory RESET"));
  737. SET_OUTPUT(BEEPER);
  738. WRITE(BEEPER, HIGH);
  739. while (!READ(BTN_ENC));
  740. WRITE(BEEPER, LOW);
  741. _delay_ms(2000);
  742. char level = reset_menu();
  743. factory_reset(level, false);
  744. switch (level) {
  745. case 0: _delay_ms(0); break;
  746. case 1: _delay_ms(0); break;
  747. case 2: _delay_ms(0); break;
  748. case 3: _delay_ms(0); break;
  749. }
  750. // _delay_ms(100);
  751. /*
  752. #ifdef MESH_BED_LEVELING
  753. _delay_ms(2000);
  754. if (!READ(BTN_ENC))
  755. {
  756. WRITE(BEEPER, HIGH);
  757. _delay_ms(100);
  758. WRITE(BEEPER, LOW);
  759. _delay_ms(200);
  760. WRITE(BEEPER, HIGH);
  761. _delay_ms(100);
  762. WRITE(BEEPER, LOW);
  763. int _z = 0;
  764. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  765. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  766. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  767. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  768. }
  769. else
  770. {
  771. WRITE(BEEPER, HIGH);
  772. _delay_ms(100);
  773. WRITE(BEEPER, LOW);
  774. }
  775. #endif // mesh */
  776. }
  777. }
  778. else
  779. {
  780. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  781. }
  782. KEEPALIVE_STATE(IN_HANDLER);
  783. }
  784. void show_fw_version_warnings() {
  785. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  786. switch (FW_DEV_VERSION) {
  787. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  788. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  789. case(FW_VERSION_DEVEL):
  790. case(FW_VERSION_DEBUG):
  791. lcd_update_enable(false);
  792. lcd_implementation_clear();
  793. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  794. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  795. #else
  796. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  797. #endif
  798. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  799. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  800. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  801. lcd_wait_for_click();
  802. break;
  803. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  804. }
  805. lcd_update_enable(true);
  806. }
  807. uint8_t check_printer_version()
  808. {
  809. uint8_t version_changed = 0;
  810. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  811. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  812. if (printer_type != PRINTER_TYPE) {
  813. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  814. else version_changed |= 0b10;
  815. }
  816. if (motherboard != MOTHERBOARD) {
  817. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  818. else version_changed |= 0b01;
  819. }
  820. return version_changed;
  821. }
  822. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  823. {
  824. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  825. }
  826. #include "bootapp.h"
  827. #ifdef W25X20CL
  828. // language upgrade from external flash
  829. #define LANGBOOT_BLOCKSIZE 0x1000
  830. #define LANGBOOT_RAMBUFFER 0x0800
  831. void upgrade_sec_lang_from_external_flash()
  832. {
  833. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  834. {
  835. uint8_t lang = boot_reserved >> 4;
  836. uint8_t state = boot_reserved & 0xf;
  837. lang_table_header_t header;
  838. uint32_t src_addr;
  839. if (lang_get_header(lang, &header, &src_addr))
  840. {
  841. fprintf_P(lcdout, PSTR(ESC_H(1,3) "l=%1hhd s=%1hhx %04x %04x"), lang, state, src_addr, header.size);
  842. delay(1000);
  843. boot_reserved = (state + 1) | (lang << 4);
  844. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  845. {
  846. cli();
  847. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  848. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  849. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  850. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  851. }
  852. else
  853. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  854. }
  855. }
  856. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  857. }
  858. #ifdef DEBUG_W25X20CL
  859. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  860. {
  861. lang_table_header_t header;
  862. uint8_t count = 0;
  863. uint32_t addr = 0x00000;
  864. while (1)
  865. {
  866. printf_P(_n("LANGTABLE%d:"), count);
  867. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  868. if (header.magic != LANG_MAGIC)
  869. {
  870. printf_P(_n("NG!\n"));
  871. break;
  872. }
  873. printf_P(_n("OK\n"));
  874. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  875. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  876. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  877. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  878. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  879. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  880. addr += header.size;
  881. codes[count] = header.code;
  882. count ++;
  883. }
  884. return count;
  885. }
  886. void list_sec_lang_from_external_flash()
  887. {
  888. uint16_t codes[8];
  889. uint8_t count = lang_xflash_enum_codes(codes);
  890. printf_P(_n("XFlash lang count = %hhd\n"), count);
  891. }
  892. #endif //DEBUG_W25X20CL
  893. #endif //W25X20CL
  894. // "Setup" function is called by the Arduino framework on startup.
  895. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  896. // are initialized by the main() routine provided by the Arduino framework.
  897. void setup()
  898. {
  899. lcd_init();
  900. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  901. #ifdef NEW_SPI
  902. spi_init();
  903. #endif //NEW_SPI
  904. lcd_splash();
  905. if (w25x20cl_init())
  906. upgrade_sec_lang_from_external_flash();
  907. else
  908. kill(_i("External SPI flash W25X20CL not responding."));
  909. setup_killpin();
  910. setup_powerhold();
  911. //*** MaR::180501_02b
  912. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  913. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  914. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  915. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  916. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  917. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  918. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  919. if (farm_mode)
  920. {
  921. no_response = true; //we need confirmation by recieving PRUSA thx
  922. important_status = 8;
  923. prusa_statistics(8);
  924. selectedSerialPort = 1;
  925. }
  926. MYSERIAL.begin(BAUDRATE);
  927. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  928. stdout = uartout;
  929. SERIAL_PROTOCOLLNPGM("start");
  930. SERIAL_ECHO_START;
  931. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  932. lang_table_header_t header;
  933. uint32_t src_addr = 0x00000;
  934. if (lang_get_header(3, &header, &src_addr))
  935. {
  936. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  937. #define LT_PRINT_TEST 2
  938. // flash usage
  939. // total p.test
  940. //0 252718 t+c text code
  941. //1 253142 424 170 254
  942. //2 253040 322 164 158
  943. //3 253248 530 135 395
  944. #if (LT_PRINT_TEST==1) //not optimized printf
  945. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  946. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  947. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  948. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  949. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  950. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  951. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  952. #elif (LT_PRINT_TEST==2) //optimized printf
  953. printf_P(
  954. _n(
  955. " _src_addr = 0x%08lx\n"
  956. " _lt_magic = 0x%08lx %S\n"
  957. " _lt_size = 0x%04x (%d)\n"
  958. " _lt_count = 0x%04x (%d)\n"
  959. " _lt_chsum = 0x%04x\n"
  960. " _lt_code = 0x%04x (%c%c)\n"
  961. " _lt_resv1 = 0x%08lx\n"
  962. ),
  963. src_addr,
  964. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  965. header.size, header.size,
  966. header.count, header.count,
  967. header.checksum,
  968. header.code, header.code >> 8, header.code & 0xff,
  969. header.reserved1
  970. );
  971. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  972. MYSERIAL.print(" _src_addr = 0x");
  973. MYSERIAL.println(src_addr, 16);
  974. MYSERIAL.print(" _lt_magic = 0x");
  975. MYSERIAL.print(header.magic, 16);
  976. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  977. MYSERIAL.print(" _lt_size = 0x");
  978. MYSERIAL.print(header.size, 16);
  979. MYSERIAL.print(" (");
  980. MYSERIAL.print(header.size, 10);
  981. MYSERIAL.println(")");
  982. MYSERIAL.print(" _lt_count = 0x");
  983. MYSERIAL.print(header.count, 16);
  984. MYSERIAL.print(" (");
  985. MYSERIAL.print(header.count, 10);
  986. MYSERIAL.println(")");
  987. MYSERIAL.print(" _lt_chsum = 0x");
  988. MYSERIAL.println(header.checksum, 16);
  989. MYSERIAL.print(" _lt_code = 0x");
  990. MYSERIAL.print(header.code, 16);
  991. MYSERIAL.print(" (");
  992. MYSERIAL.print((char)(header.code >> 8), 0);
  993. MYSERIAL.print((char)(header.code & 0xff), 0);
  994. MYSERIAL.println(")");
  995. MYSERIAL.print(" _lt_resv1 = 0x");
  996. MYSERIAL.println(header.reserved1, 16);
  997. #endif //(LT_PRINT_TEST==)
  998. #undef LT_PRINT_TEST
  999. #if 0
  1000. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1001. for (uint16_t i = 0; i < 1024; i++)
  1002. {
  1003. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1004. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1005. if ((i % 16) == 15) putchar('\n');
  1006. }
  1007. #endif
  1008. #if 1
  1009. for (uint16_t i = 0; i < 1024*10; i++)
  1010. {
  1011. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1012. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1013. if ((i % 16) == 15) putchar('\n');
  1014. }
  1015. #endif
  1016. }
  1017. else
  1018. printf_P(_n("lang_get_header failed!\n"));
  1019. #if 0
  1020. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1021. for (int i = 0; i < 4096; ++i) {
  1022. int b = eeprom_read_byte((unsigned char*)i);
  1023. if (b != 255) {
  1024. SERIAL_ECHO(i);
  1025. SERIAL_ECHO(":");
  1026. SERIAL_ECHO(b);
  1027. SERIAL_ECHOLN("");
  1028. }
  1029. }
  1030. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1031. #endif
  1032. // Check startup - does nothing if bootloader sets MCUSR to 0
  1033. byte mcu = MCUSR;
  1034. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1035. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1036. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1037. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1038. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1039. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1040. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1041. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1042. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1043. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1044. MCUSR = 0;
  1045. //SERIAL_ECHORPGM(MSG_MARLIN);
  1046. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1047. #ifdef STRING_VERSION_CONFIG_H
  1048. #ifdef STRING_CONFIG_H_AUTHOR
  1049. SERIAL_ECHO_START;
  1050. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1051. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1052. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1053. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1054. SERIAL_ECHOPGM("Compiled: ");
  1055. SERIAL_ECHOLNPGM(__DATE__);
  1056. #endif
  1057. #endif
  1058. SERIAL_ECHO_START;
  1059. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1060. SERIAL_ECHO(freeMemory());
  1061. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1062. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1063. //lcd_update_enable(false); // why do we need this?? - andre
  1064. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1065. bool previous_settings_retrieved = false;
  1066. uint8_t hw_changed = check_printer_version();
  1067. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1068. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1069. }
  1070. else { //printer version was changed so use default settings
  1071. Config_ResetDefault();
  1072. }
  1073. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1074. tp_init(); // Initialize temperature loop
  1075. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1076. plan_init(); // Initialize planner;
  1077. factory_reset();
  1078. #ifdef TMC2130
  1079. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1080. if (silentMode == 0xff) silentMode = 0;
  1081. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1082. tmc2130_mode = TMC2130_MODE_NORMAL;
  1083. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1084. if (crashdet && !farm_mode)
  1085. {
  1086. crashdet_enable();
  1087. MYSERIAL.println("CrashDetect ENABLED!");
  1088. }
  1089. else
  1090. {
  1091. crashdet_disable();
  1092. MYSERIAL.println("CrashDetect DISABLED");
  1093. }
  1094. #ifdef TMC2130_LINEARITY_CORRECTION
  1095. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1096. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1097. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1098. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1099. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1100. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1101. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1102. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1103. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1104. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1105. #endif //TMC2130_LINEARITY_CORRECTION
  1106. #ifdef TMC2130_VARIABLE_RESOLUTION
  1107. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1108. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1109. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1110. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1111. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1112. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1113. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1114. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1115. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1116. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1117. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1118. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1119. #else //TMC2130_VARIABLE_RESOLUTION
  1120. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1121. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1122. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1123. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1124. #endif //TMC2130_VARIABLE_RESOLUTION
  1125. #endif //TMC2130
  1126. st_init(); // Initialize stepper, this enables interrupts!
  1127. #ifdef TMC2130
  1128. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1129. tmc2130_init();
  1130. #endif //TMC2130
  1131. setup_photpin();
  1132. servo_init();
  1133. // Reset the machine correction matrix.
  1134. // It does not make sense to load the correction matrix until the machine is homed.
  1135. world2machine_reset();
  1136. #ifdef PAT9125
  1137. fsensor_init();
  1138. #endif //PAT9125
  1139. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1140. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1141. #endif
  1142. setup_homepin();
  1143. #ifdef TMC2130
  1144. if (1) {
  1145. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1146. // try to run to zero phase before powering the Z motor.
  1147. // Move in negative direction
  1148. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1149. // Round the current micro-micro steps to micro steps.
  1150. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1151. // Until the phase counter is reset to zero.
  1152. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1153. delay(2);
  1154. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1155. delay(2);
  1156. }
  1157. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1158. }
  1159. #endif //TMC2130
  1160. #if defined(Z_AXIS_ALWAYS_ON)
  1161. enable_z();
  1162. #endif
  1163. //*** MaR::180501_02
  1164. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1165. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1166. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1167. if (farm_no == 0xFFFF) farm_no = 0;
  1168. if (farm_mode)
  1169. {
  1170. prusa_statistics(8);
  1171. }
  1172. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1173. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1174. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1175. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1176. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1177. // where all the EEPROM entries are set to 0x0ff.
  1178. // Once a firmware boots up, it forces at least a language selection, which changes
  1179. // EEPROM_LANG to number lower than 0x0ff.
  1180. // 1) Set a high power mode.
  1181. #ifdef TMC2130
  1182. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1183. tmc2130_mode = TMC2130_MODE_NORMAL;
  1184. #endif //TMC2130
  1185. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1186. }
  1187. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1188. // but this times out if a blocking dialog is shown in setup().
  1189. card.initsd();
  1190. #ifdef DEBUG_SD_SPEED_TEST
  1191. if (card.cardOK)
  1192. {
  1193. uint8_t* buff = (uint8_t*)block_buffer;
  1194. uint32_t block = 0;
  1195. uint32_t sumr = 0;
  1196. uint32_t sumw = 0;
  1197. for (int i = 0; i < 1024; i++)
  1198. {
  1199. uint32_t u = micros();
  1200. bool res = card.card.readBlock(i, buff);
  1201. u = micros() - u;
  1202. if (res)
  1203. {
  1204. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1205. sumr += u;
  1206. u = micros();
  1207. res = card.card.writeBlock(i, buff);
  1208. u = micros() - u;
  1209. if (res)
  1210. {
  1211. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1212. sumw += u;
  1213. }
  1214. else
  1215. {
  1216. printf_P(PSTR("writeBlock %4d error\n"), i);
  1217. break;
  1218. }
  1219. }
  1220. else
  1221. {
  1222. printf_P(PSTR("readBlock %4d error\n"), i);
  1223. break;
  1224. }
  1225. }
  1226. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1227. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1228. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1229. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1230. }
  1231. else
  1232. printf_P(PSTR("Card NG!\n"));
  1233. #endif //DEBUG_SD_SPEED_TEST
  1234. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1235. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1236. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1237. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1238. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1239. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1240. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1241. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1242. #ifdef SNMM
  1243. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1244. int _z = BOWDEN_LENGTH;
  1245. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1246. }
  1247. #endif
  1248. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1249. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1250. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1251. #ifdef DEBUG_W25X20CL
  1252. W25X20CL_SPI_ENTER();
  1253. uint8_t uid[8]; // 64bit unique id
  1254. w25x20cl_rd_uid(uid);
  1255. puts_P(_n("W25X20CL UID="));
  1256. for (uint8_t i = 0; i < 8; i ++)
  1257. printf_P(PSTR("%02hhx"), uid[i]);
  1258. putchar('\n');
  1259. list_sec_lang_from_external_flash();
  1260. #endif //DEBUG_W25X20CL
  1261. lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG));
  1262. //#ifdef DEBUG_SEC_LANG
  1263. uint16_t sec_lang_code = lang_get_code(1);
  1264. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1265. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1266. // lang_print_sec_lang(uartout);
  1267. //#endif //DEBUG_SEC_LANG
  1268. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1269. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1270. temp_cal_active = false;
  1271. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1272. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1273. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1274. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1275. int16_t z_shift = 0;
  1276. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1277. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1278. temp_cal_active = false;
  1279. }
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1281. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1282. }
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1284. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1285. }
  1286. check_babystep(); //checking if Z babystep is in allowed range
  1287. #ifdef UVLO_SUPPORT
  1288. setup_uvlo_interrupt();
  1289. #endif //UVLO_SUPPORT
  1290. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1291. setup_fan_interrupt();
  1292. #endif //DEBUG_DISABLE_FANCHECK
  1293. #ifdef PAT9125
  1294. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1295. fsensor_setup_interrupt();
  1296. #endif //DEBUG_DISABLE_FSENSORCHECK
  1297. #endif //PAT9125
  1298. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1299. #ifndef DEBUG_DISABLE_STARTMSGS
  1300. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1301. show_fw_version_warnings();
  1302. switch (hw_changed) {
  1303. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1304. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1305. case(0b01):
  1306. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1307. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1308. break;
  1309. case(0b10):
  1310. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1311. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1312. break;
  1313. case(0b11):
  1314. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1315. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1316. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1317. break;
  1318. default: break; //no change, show no message
  1319. }
  1320. if (!previous_settings_retrieved) {
  1321. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1322. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1323. }
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1325. lcd_wizard(0);
  1326. }
  1327. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1328. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1329. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1330. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1331. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1332. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1333. // Show the message.
  1334. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1335. }
  1336. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1337. // Show the message.
  1338. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1339. lcd_update_enable(true);
  1340. }
  1341. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1342. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1343. lcd_update_enable(true);
  1344. }
  1345. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1346. // Show the message.
  1347. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1348. }
  1349. }
  1350. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1351. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1352. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1353. update_current_firmware_version_to_eeprom();
  1354. lcd_selftest();
  1355. }
  1356. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1357. KEEPALIVE_STATE(IN_PROCESS);
  1358. #endif //DEBUG_DISABLE_STARTMSGS
  1359. lcd_update_enable(true);
  1360. lcd_implementation_clear();
  1361. lcd_update(2);
  1362. // Store the currently running firmware into an eeprom,
  1363. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1364. update_current_firmware_version_to_eeprom();
  1365. #ifdef TMC2130
  1366. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1367. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1368. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1369. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1370. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1371. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1372. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1373. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1374. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1375. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1376. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1377. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1378. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1379. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1380. #endif //TMC2130
  1381. #ifdef UVLO_SUPPORT
  1382. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1383. /*
  1384. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1385. else {
  1386. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1387. lcd_update_enable(true);
  1388. lcd_update(2);
  1389. lcd_setstatuspgm(_T(WELCOME_MSG));
  1390. }
  1391. */
  1392. manage_heater(); // Update temperatures
  1393. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1394. MYSERIAL.println("Power panic detected!");
  1395. MYSERIAL.print("Current bed temp:");
  1396. MYSERIAL.println(degBed());
  1397. MYSERIAL.print("Saved bed temp:");
  1398. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1399. #endif
  1400. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1401. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1402. MYSERIAL.println("Automatic recovery!");
  1403. #endif
  1404. recover_print(1);
  1405. }
  1406. else{
  1407. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1408. MYSERIAL.println("Normal recovery!");
  1409. #endif
  1410. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1411. else {
  1412. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1413. lcd_update_enable(true);
  1414. lcd_update(2);
  1415. lcd_setstatuspgm(_T(WELCOME_MSG));
  1416. }
  1417. }
  1418. }
  1419. #endif //UVLO_SUPPORT
  1420. KEEPALIVE_STATE(NOT_BUSY);
  1421. #ifdef WATCHDOG
  1422. wdt_enable(WDTO_4S);
  1423. #endif //WATCHDOG
  1424. }
  1425. #ifdef PAT9125
  1426. void fsensor_init() {
  1427. int pat9125 = pat9125_init();
  1428. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1429. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1430. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1431. if (!pat9125)
  1432. {
  1433. fsensor = 0; //disable sensor
  1434. fsensor_not_responding = true;
  1435. }
  1436. else {
  1437. fsensor_not_responding = false;
  1438. }
  1439. puts_P(PSTR("FSensor "));
  1440. if (fsensor)
  1441. {
  1442. puts_P(PSTR("ENABLED\n"));
  1443. fsensor_enable();
  1444. }
  1445. else
  1446. {
  1447. puts_P(PSTR("DISABLED\n"));
  1448. fsensor_disable();
  1449. }
  1450. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1451. filament_autoload_enabled = false;
  1452. fsensor_disable();
  1453. #endif //DEBUG_DISABLE_FSENSORCHECK
  1454. }
  1455. #endif //PAT9125
  1456. void trace();
  1457. #define CHUNK_SIZE 64 // bytes
  1458. #define SAFETY_MARGIN 1
  1459. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1460. int chunkHead = 0;
  1461. int serial_read_stream() {
  1462. setTargetHotend(0, 0);
  1463. setTargetBed(0);
  1464. lcd_implementation_clear();
  1465. lcd_printPGM(PSTR(" Upload in progress"));
  1466. // first wait for how many bytes we will receive
  1467. uint32_t bytesToReceive;
  1468. // receive the four bytes
  1469. char bytesToReceiveBuffer[4];
  1470. for (int i=0; i<4; i++) {
  1471. int data;
  1472. while ((data = MYSERIAL.read()) == -1) {};
  1473. bytesToReceiveBuffer[i] = data;
  1474. }
  1475. // make it a uint32
  1476. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1477. // we're ready, notify the sender
  1478. MYSERIAL.write('+');
  1479. // lock in the routine
  1480. uint32_t receivedBytes = 0;
  1481. while (prusa_sd_card_upload) {
  1482. int i;
  1483. for (i=0; i<CHUNK_SIZE; i++) {
  1484. int data;
  1485. // check if we're not done
  1486. if (receivedBytes == bytesToReceive) {
  1487. break;
  1488. }
  1489. // read the next byte
  1490. while ((data = MYSERIAL.read()) == -1) {};
  1491. receivedBytes++;
  1492. // save it to the chunk
  1493. chunk[i] = data;
  1494. }
  1495. // write the chunk to SD
  1496. card.write_command_no_newline(&chunk[0]);
  1497. // notify the sender we're ready for more data
  1498. MYSERIAL.write('+');
  1499. // for safety
  1500. manage_heater();
  1501. // check if we're done
  1502. if(receivedBytes == bytesToReceive) {
  1503. trace(); // beep
  1504. card.closefile();
  1505. prusa_sd_card_upload = false;
  1506. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1507. return 0;
  1508. }
  1509. }
  1510. }
  1511. #ifdef HOST_KEEPALIVE_FEATURE
  1512. /**
  1513. * Output a "busy" message at regular intervals
  1514. * while the machine is not accepting commands.
  1515. */
  1516. void host_keepalive() {
  1517. if (farm_mode) return;
  1518. long ms = millis();
  1519. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1520. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1521. switch (busy_state) {
  1522. case IN_HANDLER:
  1523. case IN_PROCESS:
  1524. SERIAL_ECHO_START;
  1525. SERIAL_ECHOLNPGM("busy: processing");
  1526. break;
  1527. case PAUSED_FOR_USER:
  1528. SERIAL_ECHO_START;
  1529. SERIAL_ECHOLNPGM("busy: paused for user");
  1530. break;
  1531. case PAUSED_FOR_INPUT:
  1532. SERIAL_ECHO_START;
  1533. SERIAL_ECHOLNPGM("busy: paused for input");
  1534. break;
  1535. default:
  1536. break;
  1537. }
  1538. }
  1539. prev_busy_signal_ms = ms;
  1540. }
  1541. #endif
  1542. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1543. // Before loop(), the setup() function is called by the main() routine.
  1544. void loop()
  1545. {
  1546. KEEPALIVE_STATE(NOT_BUSY);
  1547. bool stack_integrity = true;
  1548. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1549. {
  1550. is_usb_printing = true;
  1551. usb_printing_counter--;
  1552. _usb_timer = millis();
  1553. }
  1554. if (usb_printing_counter == 0)
  1555. {
  1556. is_usb_printing = false;
  1557. }
  1558. if (prusa_sd_card_upload)
  1559. {
  1560. //we read byte-by byte
  1561. serial_read_stream();
  1562. } else
  1563. {
  1564. get_command();
  1565. #ifdef SDSUPPORT
  1566. card.checkautostart(false);
  1567. #endif
  1568. if(buflen)
  1569. {
  1570. cmdbuffer_front_already_processed = false;
  1571. #ifdef SDSUPPORT
  1572. if(card.saving)
  1573. {
  1574. // Saving a G-code file onto an SD-card is in progress.
  1575. // Saving starts with M28, saving until M29 is seen.
  1576. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1577. card.write_command(CMDBUFFER_CURRENT_STRING);
  1578. if(card.logging)
  1579. process_commands();
  1580. else
  1581. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1582. } else {
  1583. card.closefile();
  1584. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1585. }
  1586. } else {
  1587. process_commands();
  1588. }
  1589. #else
  1590. process_commands();
  1591. #endif //SDSUPPORT
  1592. if (! cmdbuffer_front_already_processed && buflen)
  1593. {
  1594. // ptr points to the start of the block currently being processed.
  1595. // The first character in the block is the block type.
  1596. char *ptr = cmdbuffer + bufindr;
  1597. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1598. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1599. union {
  1600. struct {
  1601. char lo;
  1602. char hi;
  1603. } lohi;
  1604. uint16_t value;
  1605. } sdlen;
  1606. sdlen.value = 0;
  1607. {
  1608. // This block locks the interrupts globally for 3.25 us,
  1609. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1610. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1611. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1612. cli();
  1613. // Reset the command to something, which will be ignored by the power panic routine,
  1614. // so this buffer length will not be counted twice.
  1615. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1616. // Extract the current buffer length.
  1617. sdlen.lohi.lo = *ptr ++;
  1618. sdlen.lohi.hi = *ptr;
  1619. // and pass it to the planner queue.
  1620. planner_add_sd_length(sdlen.value);
  1621. sei();
  1622. }
  1623. }
  1624. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1625. cli();
  1626. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1627. // and one for each command to previous block in the planner queue.
  1628. planner_add_sd_length(1);
  1629. sei();
  1630. }
  1631. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1632. // this block's SD card length will not be counted twice as its command type has been replaced
  1633. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1634. cmdqueue_pop_front();
  1635. }
  1636. host_keepalive();
  1637. }
  1638. }
  1639. //check heater every n milliseconds
  1640. manage_heater();
  1641. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1642. checkHitEndstops();
  1643. lcd_update();
  1644. #ifdef PAT9125
  1645. fsensor_update();
  1646. #endif //PAT9125
  1647. #ifdef TMC2130
  1648. tmc2130_check_overtemp();
  1649. if (tmc2130_sg_crash)
  1650. {
  1651. uint8_t crash = tmc2130_sg_crash;
  1652. tmc2130_sg_crash = 0;
  1653. // crashdet_stop_and_save_print();
  1654. switch (crash)
  1655. {
  1656. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1657. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1658. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1659. }
  1660. }
  1661. #endif //TMC2130
  1662. }
  1663. #define DEFINE_PGM_READ_ANY(type, reader) \
  1664. static inline type pgm_read_any(const type *p) \
  1665. { return pgm_read_##reader##_near(p); }
  1666. DEFINE_PGM_READ_ANY(float, float);
  1667. DEFINE_PGM_READ_ANY(signed char, byte);
  1668. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1669. static const PROGMEM type array##_P[3] = \
  1670. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1671. static inline type array(int axis) \
  1672. { return pgm_read_any(&array##_P[axis]); } \
  1673. type array##_ext(int axis) \
  1674. { return pgm_read_any(&array##_P[axis]); }
  1675. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1676. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1677. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1678. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1679. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1680. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1681. static void axis_is_at_home(int axis) {
  1682. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1683. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1684. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1685. }
  1686. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1687. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1688. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1689. saved_feedrate = feedrate;
  1690. saved_feedmultiply = feedmultiply;
  1691. feedmultiply = 100;
  1692. previous_millis_cmd = millis();
  1693. enable_endstops(enable_endstops_now);
  1694. }
  1695. static void clean_up_after_endstop_move() {
  1696. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1697. enable_endstops(false);
  1698. #endif
  1699. feedrate = saved_feedrate;
  1700. feedmultiply = saved_feedmultiply;
  1701. previous_millis_cmd = millis();
  1702. }
  1703. #ifdef ENABLE_AUTO_BED_LEVELING
  1704. #ifdef AUTO_BED_LEVELING_GRID
  1705. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1706. {
  1707. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1708. planeNormal.debug("planeNormal");
  1709. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1710. //bedLevel.debug("bedLevel");
  1711. //plan_bed_level_matrix.debug("bed level before");
  1712. //vector_3 uncorrected_position = plan_get_position_mm();
  1713. //uncorrected_position.debug("position before");
  1714. vector_3 corrected_position = plan_get_position();
  1715. // corrected_position.debug("position after");
  1716. current_position[X_AXIS] = corrected_position.x;
  1717. current_position[Y_AXIS] = corrected_position.y;
  1718. current_position[Z_AXIS] = corrected_position.z;
  1719. // put the bed at 0 so we don't go below it.
  1720. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1722. }
  1723. #else // not AUTO_BED_LEVELING_GRID
  1724. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1725. plan_bed_level_matrix.set_to_identity();
  1726. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1727. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1728. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1729. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1730. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1731. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1732. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1733. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1734. vector_3 corrected_position = plan_get_position();
  1735. current_position[X_AXIS] = corrected_position.x;
  1736. current_position[Y_AXIS] = corrected_position.y;
  1737. current_position[Z_AXIS] = corrected_position.z;
  1738. // put the bed at 0 so we don't go below it.
  1739. current_position[Z_AXIS] = zprobe_zoffset;
  1740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1741. }
  1742. #endif // AUTO_BED_LEVELING_GRID
  1743. static void run_z_probe() {
  1744. plan_bed_level_matrix.set_to_identity();
  1745. feedrate = homing_feedrate[Z_AXIS];
  1746. // move down until you find the bed
  1747. float zPosition = -10;
  1748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1749. st_synchronize();
  1750. // we have to let the planner know where we are right now as it is not where we said to go.
  1751. zPosition = st_get_position_mm(Z_AXIS);
  1752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1753. // move up the retract distance
  1754. zPosition += home_retract_mm(Z_AXIS);
  1755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1756. st_synchronize();
  1757. // move back down slowly to find bed
  1758. feedrate = homing_feedrate[Z_AXIS]/4;
  1759. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1761. st_synchronize();
  1762. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1763. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1764. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1765. }
  1766. static void do_blocking_move_to(float x, float y, float z) {
  1767. float oldFeedRate = feedrate;
  1768. feedrate = homing_feedrate[Z_AXIS];
  1769. current_position[Z_AXIS] = z;
  1770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1771. st_synchronize();
  1772. feedrate = XY_TRAVEL_SPEED;
  1773. current_position[X_AXIS] = x;
  1774. current_position[Y_AXIS] = y;
  1775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1776. st_synchronize();
  1777. feedrate = oldFeedRate;
  1778. }
  1779. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1780. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1781. }
  1782. /// Probe bed height at position (x,y), returns the measured z value
  1783. static float probe_pt(float x, float y, float z_before) {
  1784. // move to right place
  1785. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1786. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1787. run_z_probe();
  1788. float measured_z = current_position[Z_AXIS];
  1789. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1790. SERIAL_PROTOCOLPGM(" x: ");
  1791. SERIAL_PROTOCOL(x);
  1792. SERIAL_PROTOCOLPGM(" y: ");
  1793. SERIAL_PROTOCOL(y);
  1794. SERIAL_PROTOCOLPGM(" z: ");
  1795. SERIAL_PROTOCOL(measured_z);
  1796. SERIAL_PROTOCOLPGM("\n");
  1797. return measured_z;
  1798. }
  1799. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1800. #ifdef LIN_ADVANCE
  1801. /**
  1802. * M900: Set and/or Get advance K factor and WH/D ratio
  1803. *
  1804. * K<factor> Set advance K factor
  1805. * R<ratio> Set ratio directly (overrides WH/D)
  1806. * W<width> H<height> D<diam> Set ratio from WH/D
  1807. */
  1808. inline void gcode_M900() {
  1809. st_synchronize();
  1810. const float newK = code_seen('K') ? code_value_float() : -1;
  1811. if (newK >= 0) extruder_advance_k = newK;
  1812. float newR = code_seen('R') ? code_value_float() : -1;
  1813. if (newR < 0) {
  1814. const float newD = code_seen('D') ? code_value_float() : -1,
  1815. newW = code_seen('W') ? code_value_float() : -1,
  1816. newH = code_seen('H') ? code_value_float() : -1;
  1817. if (newD >= 0 && newW >= 0 && newH >= 0)
  1818. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1819. }
  1820. if (newR >= 0) advance_ed_ratio = newR;
  1821. SERIAL_ECHO_START;
  1822. SERIAL_ECHOPGM("Advance K=");
  1823. SERIAL_ECHOLN(extruder_advance_k);
  1824. SERIAL_ECHOPGM(" E/D=");
  1825. const float ratio = advance_ed_ratio;
  1826. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1827. }
  1828. #endif // LIN_ADVANCE
  1829. bool check_commands() {
  1830. bool end_command_found = false;
  1831. while (buflen)
  1832. {
  1833. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1834. if (!cmdbuffer_front_already_processed)
  1835. cmdqueue_pop_front();
  1836. cmdbuffer_front_already_processed = false;
  1837. }
  1838. return end_command_found;
  1839. }
  1840. #ifdef TMC2130
  1841. bool calibrate_z_auto()
  1842. {
  1843. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1844. lcd_implementation_clear();
  1845. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1846. bool endstops_enabled = enable_endstops(true);
  1847. int axis_up_dir = -home_dir(Z_AXIS);
  1848. tmc2130_home_enter(Z_AXIS_MASK);
  1849. current_position[Z_AXIS] = 0;
  1850. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1851. set_destination_to_current();
  1852. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1853. feedrate = homing_feedrate[Z_AXIS];
  1854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1855. st_synchronize();
  1856. // current_position[axis] = 0;
  1857. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1858. tmc2130_home_exit();
  1859. enable_endstops(false);
  1860. current_position[Z_AXIS] = 0;
  1861. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1862. set_destination_to_current();
  1863. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1864. feedrate = homing_feedrate[Z_AXIS] / 2;
  1865. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1866. st_synchronize();
  1867. enable_endstops(endstops_enabled);
  1868. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1869. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1870. return true;
  1871. }
  1872. #endif //TMC2130
  1873. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1874. {
  1875. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1876. #define HOMEAXIS_DO(LETTER) \
  1877. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1878. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1879. {
  1880. int axis_home_dir = home_dir(axis);
  1881. feedrate = homing_feedrate[axis];
  1882. #ifdef TMC2130
  1883. tmc2130_home_enter(X_AXIS_MASK << axis);
  1884. #endif //TMC2130
  1885. // Move right a bit, so that the print head does not touch the left end position,
  1886. // and the following left movement has a chance to achieve the required velocity
  1887. // for the stall guard to work.
  1888. current_position[axis] = 0;
  1889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1890. set_destination_to_current();
  1891. // destination[axis] = 11.f;
  1892. destination[axis] = 3.f;
  1893. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1894. st_synchronize();
  1895. // Move left away from the possible collision with the collision detection disabled.
  1896. endstops_hit_on_purpose();
  1897. enable_endstops(false);
  1898. current_position[axis] = 0;
  1899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. destination[axis] = - 1.;
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. // Now continue to move up to the left end stop with the collision detection enabled.
  1904. enable_endstops(true);
  1905. destination[axis] = - 1.1 * max_length(axis);
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. for (uint8_t i = 0; i < cnt; i++)
  1909. {
  1910. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1911. endstops_hit_on_purpose();
  1912. enable_endstops(false);
  1913. current_position[axis] = 0;
  1914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1915. destination[axis] = 10.f;
  1916. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1917. st_synchronize();
  1918. endstops_hit_on_purpose();
  1919. // Now move left up to the collision, this time with a repeatable velocity.
  1920. enable_endstops(true);
  1921. destination[axis] = - 11.f;
  1922. #ifdef TMC2130
  1923. feedrate = homing_feedrate[axis];
  1924. #else //TMC2130
  1925. feedrate = homing_feedrate[axis] / 2;
  1926. #endif //TMC2130
  1927. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1928. st_synchronize();
  1929. #ifdef TMC2130
  1930. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1931. if (pstep) pstep[i] = mscnt >> 4;
  1932. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1933. #endif //TMC2130
  1934. }
  1935. endstops_hit_on_purpose();
  1936. enable_endstops(false);
  1937. #ifdef TMC2130
  1938. uint8_t orig = tmc2130_home_origin[axis];
  1939. uint8_t back = tmc2130_home_bsteps[axis];
  1940. if (tmc2130_home_enabled && (orig <= 63))
  1941. {
  1942. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1943. if (back > 0)
  1944. tmc2130_do_steps(axis, back, 1, 1000);
  1945. }
  1946. else
  1947. tmc2130_do_steps(axis, 8, 2, 1000);
  1948. tmc2130_home_exit();
  1949. #endif //TMC2130
  1950. axis_is_at_home(axis);
  1951. axis_known_position[axis] = true;
  1952. // Move from minimum
  1953. #ifdef TMC2130
  1954. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1955. #else //TMC2130
  1956. float dist = 0.01f * 64;
  1957. #endif //TMC2130
  1958. current_position[axis] -= dist;
  1959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1960. current_position[axis] += dist;
  1961. destination[axis] = current_position[axis];
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. feedrate = 0.0;
  1965. }
  1966. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1967. {
  1968. #ifdef TMC2130
  1969. FORCE_HIGH_POWER_START;
  1970. #endif
  1971. int axis_home_dir = home_dir(axis);
  1972. current_position[axis] = 0;
  1973. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1974. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1975. feedrate = homing_feedrate[axis];
  1976. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1977. st_synchronize();
  1978. #ifdef TMC2130
  1979. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1980. FORCE_HIGH_POWER_END;
  1981. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1982. return;
  1983. }
  1984. #endif //TMC2130
  1985. current_position[axis] = 0;
  1986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1987. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1988. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1989. st_synchronize();
  1990. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1991. feedrate = homing_feedrate[axis]/2 ;
  1992. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1993. st_synchronize();
  1994. #ifdef TMC2130
  1995. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1996. FORCE_HIGH_POWER_END;
  1997. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1998. return;
  1999. }
  2000. #endif //TMC2130
  2001. axis_is_at_home(axis);
  2002. destination[axis] = current_position[axis];
  2003. feedrate = 0.0;
  2004. endstops_hit_on_purpose();
  2005. axis_known_position[axis] = true;
  2006. #ifdef TMC2130
  2007. FORCE_HIGH_POWER_END;
  2008. #endif
  2009. }
  2010. enable_endstops(endstops_enabled);
  2011. }
  2012. /**/
  2013. void home_xy()
  2014. {
  2015. set_destination_to_current();
  2016. homeaxis(X_AXIS);
  2017. homeaxis(Y_AXIS);
  2018. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2019. endstops_hit_on_purpose();
  2020. }
  2021. void refresh_cmd_timeout(void)
  2022. {
  2023. previous_millis_cmd = millis();
  2024. }
  2025. #ifdef FWRETRACT
  2026. void retract(bool retracting, bool swapretract = false) {
  2027. if(retracting && !retracted[active_extruder]) {
  2028. destination[X_AXIS]=current_position[X_AXIS];
  2029. destination[Y_AXIS]=current_position[Y_AXIS];
  2030. destination[Z_AXIS]=current_position[Z_AXIS];
  2031. destination[E_AXIS]=current_position[E_AXIS];
  2032. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2033. plan_set_e_position(current_position[E_AXIS]);
  2034. float oldFeedrate = feedrate;
  2035. feedrate=retract_feedrate*60;
  2036. retracted[active_extruder]=true;
  2037. prepare_move();
  2038. current_position[Z_AXIS]-=retract_zlift;
  2039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2040. prepare_move();
  2041. feedrate = oldFeedrate;
  2042. } else if(!retracting && retracted[active_extruder]) {
  2043. destination[X_AXIS]=current_position[X_AXIS];
  2044. destination[Y_AXIS]=current_position[Y_AXIS];
  2045. destination[Z_AXIS]=current_position[Z_AXIS];
  2046. destination[E_AXIS]=current_position[E_AXIS];
  2047. current_position[Z_AXIS]+=retract_zlift;
  2048. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2049. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2050. plan_set_e_position(current_position[E_AXIS]);
  2051. float oldFeedrate = feedrate;
  2052. feedrate=retract_recover_feedrate*60;
  2053. retracted[active_extruder]=false;
  2054. prepare_move();
  2055. feedrate = oldFeedrate;
  2056. }
  2057. } //retract
  2058. #endif //FWRETRACT
  2059. void trace() {
  2060. tone(BEEPER, 440);
  2061. delay(25);
  2062. noTone(BEEPER);
  2063. delay(20);
  2064. }
  2065. /*
  2066. void ramming() {
  2067. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2068. if (current_temperature[0] < 230) {
  2069. //PLA
  2070. max_feedrate[E_AXIS] = 50;
  2071. //current_position[E_AXIS] -= 8;
  2072. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2073. //current_position[E_AXIS] += 8;
  2074. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2075. current_position[E_AXIS] += 5.4;
  2076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2077. current_position[E_AXIS] += 3.2;
  2078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2079. current_position[E_AXIS] += 3;
  2080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2081. st_synchronize();
  2082. max_feedrate[E_AXIS] = 80;
  2083. current_position[E_AXIS] -= 82;
  2084. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2085. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2086. current_position[E_AXIS] -= 20;
  2087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2088. current_position[E_AXIS] += 5;
  2089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2090. current_position[E_AXIS] += 5;
  2091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2092. current_position[E_AXIS] -= 10;
  2093. st_synchronize();
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2095. current_position[E_AXIS] += 10;
  2096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2097. current_position[E_AXIS] -= 10;
  2098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2099. current_position[E_AXIS] += 10;
  2100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2101. current_position[E_AXIS] -= 10;
  2102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2103. st_synchronize();
  2104. }
  2105. else {
  2106. //ABS
  2107. max_feedrate[E_AXIS] = 50;
  2108. //current_position[E_AXIS] -= 8;
  2109. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2110. //current_position[E_AXIS] += 8;
  2111. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2112. current_position[E_AXIS] += 3.1;
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2114. current_position[E_AXIS] += 3.1;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2116. current_position[E_AXIS] += 4;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2118. st_synchronize();
  2119. //current_position[X_AXIS] += 23; //delay
  2120. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2121. //current_position[X_AXIS] -= 23; //delay
  2122. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2123. delay(4700);
  2124. max_feedrate[E_AXIS] = 80;
  2125. current_position[E_AXIS] -= 92;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2127. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2128. current_position[E_AXIS] -= 5;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2130. current_position[E_AXIS] += 5;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2132. current_position[E_AXIS] -= 5;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2134. st_synchronize();
  2135. current_position[E_AXIS] += 5;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2137. current_position[E_AXIS] -= 5;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2139. current_position[E_AXIS] += 5;
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2141. current_position[E_AXIS] -= 5;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2143. st_synchronize();
  2144. }
  2145. }
  2146. */
  2147. #ifdef TMC2130
  2148. void force_high_power_mode(bool start_high_power_section) {
  2149. uint8_t silent;
  2150. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2151. if (silent == 1) {
  2152. //we are in silent mode, set to normal mode to enable crash detection
  2153. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2154. st_synchronize();
  2155. cli();
  2156. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2157. tmc2130_init();
  2158. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2159. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2160. st_reset_timer();
  2161. sei();
  2162. }
  2163. }
  2164. #endif //TMC2130
  2165. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2166. st_synchronize();
  2167. #if 0
  2168. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2169. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2170. #endif
  2171. // Flag for the display update routine and to disable the print cancelation during homing.
  2172. homing_flag = true;
  2173. // Either all X,Y,Z codes are present, or none of them.
  2174. bool home_all_axes = home_x == home_y && home_x == home_z;
  2175. if (home_all_axes)
  2176. // No X/Y/Z code provided means to home all axes.
  2177. home_x = home_y = home_z = true;
  2178. #ifdef ENABLE_AUTO_BED_LEVELING
  2179. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2180. #endif //ENABLE_AUTO_BED_LEVELING
  2181. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2182. // the planner will not perform any adjustments in the XY plane.
  2183. // Wait for the motors to stop and update the current position with the absolute values.
  2184. world2machine_revert_to_uncorrected();
  2185. // For mesh bed leveling deactivate the matrix temporarily.
  2186. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2187. // in a single axis only.
  2188. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2189. #ifdef MESH_BED_LEVELING
  2190. uint8_t mbl_was_active = mbl.active;
  2191. mbl.active = 0;
  2192. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2193. #endif
  2194. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2195. // consumed during the first movements following this statement.
  2196. if (home_z)
  2197. babystep_undo();
  2198. saved_feedrate = feedrate;
  2199. saved_feedmultiply = feedmultiply;
  2200. feedmultiply = 100;
  2201. previous_millis_cmd = millis();
  2202. enable_endstops(true);
  2203. memcpy(destination, current_position, sizeof(destination));
  2204. feedrate = 0.0;
  2205. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2206. if(home_z)
  2207. homeaxis(Z_AXIS);
  2208. #endif
  2209. #ifdef QUICK_HOME
  2210. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2211. if(home_x && home_y) //first diagonal move
  2212. {
  2213. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2214. int x_axis_home_dir = home_dir(X_AXIS);
  2215. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2216. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2217. feedrate = homing_feedrate[X_AXIS];
  2218. if(homing_feedrate[Y_AXIS]<feedrate)
  2219. feedrate = homing_feedrate[Y_AXIS];
  2220. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2221. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2222. } else {
  2223. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2224. }
  2225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2226. st_synchronize();
  2227. axis_is_at_home(X_AXIS);
  2228. axis_is_at_home(Y_AXIS);
  2229. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2230. destination[X_AXIS] = current_position[X_AXIS];
  2231. destination[Y_AXIS] = current_position[Y_AXIS];
  2232. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2233. feedrate = 0.0;
  2234. st_synchronize();
  2235. endstops_hit_on_purpose();
  2236. current_position[X_AXIS] = destination[X_AXIS];
  2237. current_position[Y_AXIS] = destination[Y_AXIS];
  2238. current_position[Z_AXIS] = destination[Z_AXIS];
  2239. }
  2240. #endif /* QUICK_HOME */
  2241. #ifdef TMC2130
  2242. if(home_x)
  2243. {
  2244. if (!calib)
  2245. homeaxis(X_AXIS);
  2246. else
  2247. tmc2130_home_calibrate(X_AXIS);
  2248. }
  2249. if(home_y)
  2250. {
  2251. if (!calib)
  2252. homeaxis(Y_AXIS);
  2253. else
  2254. tmc2130_home_calibrate(Y_AXIS);
  2255. }
  2256. #endif //TMC2130
  2257. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2258. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2259. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2260. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2261. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2262. #ifndef Z_SAFE_HOMING
  2263. if(home_z) {
  2264. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2265. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2266. feedrate = max_feedrate[Z_AXIS];
  2267. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2268. st_synchronize();
  2269. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2270. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2271. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2272. {
  2273. homeaxis(X_AXIS);
  2274. homeaxis(Y_AXIS);
  2275. }
  2276. // 1st mesh bed leveling measurement point, corrected.
  2277. world2machine_initialize();
  2278. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2279. world2machine_reset();
  2280. if (destination[Y_AXIS] < Y_MIN_POS)
  2281. destination[Y_AXIS] = Y_MIN_POS;
  2282. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2283. feedrate = homing_feedrate[Z_AXIS]/10;
  2284. current_position[Z_AXIS] = 0;
  2285. enable_endstops(false);
  2286. #ifdef DEBUG_BUILD
  2287. SERIAL_ECHOLNPGM("plan_set_position()");
  2288. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2289. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2290. #endif
  2291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2292. #ifdef DEBUG_BUILD
  2293. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2294. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2295. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2296. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2297. #endif
  2298. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2299. st_synchronize();
  2300. current_position[X_AXIS] = destination[X_AXIS];
  2301. current_position[Y_AXIS] = destination[Y_AXIS];
  2302. enable_endstops(true);
  2303. endstops_hit_on_purpose();
  2304. homeaxis(Z_AXIS);
  2305. #else // MESH_BED_LEVELING
  2306. homeaxis(Z_AXIS);
  2307. #endif // MESH_BED_LEVELING
  2308. }
  2309. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2310. if(home_all_axes) {
  2311. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2312. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2313. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2314. feedrate = XY_TRAVEL_SPEED/60;
  2315. current_position[Z_AXIS] = 0;
  2316. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2317. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2318. st_synchronize();
  2319. current_position[X_AXIS] = destination[X_AXIS];
  2320. current_position[Y_AXIS] = destination[Y_AXIS];
  2321. homeaxis(Z_AXIS);
  2322. }
  2323. // Let's see if X and Y are homed and probe is inside bed area.
  2324. if(home_z) {
  2325. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2326. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2327. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2328. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2329. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2330. current_position[Z_AXIS] = 0;
  2331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2332. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2333. feedrate = max_feedrate[Z_AXIS];
  2334. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2335. st_synchronize();
  2336. homeaxis(Z_AXIS);
  2337. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2338. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2339. SERIAL_ECHO_START;
  2340. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2341. } else {
  2342. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2343. SERIAL_ECHO_START;
  2344. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2345. }
  2346. }
  2347. #endif // Z_SAFE_HOMING
  2348. #endif // Z_HOME_DIR < 0
  2349. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2350. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2351. #ifdef ENABLE_AUTO_BED_LEVELING
  2352. if(home_z)
  2353. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2354. #endif
  2355. // Set the planner and stepper routine positions.
  2356. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2357. // contains the machine coordinates.
  2358. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2359. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2360. enable_endstops(false);
  2361. #endif
  2362. feedrate = saved_feedrate;
  2363. feedmultiply = saved_feedmultiply;
  2364. previous_millis_cmd = millis();
  2365. endstops_hit_on_purpose();
  2366. #ifndef MESH_BED_LEVELING
  2367. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2368. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2369. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2370. lcd_adjust_z();
  2371. #endif
  2372. // Load the machine correction matrix
  2373. world2machine_initialize();
  2374. // and correct the current_position XY axes to match the transformed coordinate system.
  2375. world2machine_update_current();
  2376. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2377. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2378. {
  2379. if (! home_z && mbl_was_active) {
  2380. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2381. mbl.active = true;
  2382. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2383. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2384. }
  2385. }
  2386. else
  2387. {
  2388. st_synchronize();
  2389. homing_flag = false;
  2390. // Push the commands to the front of the message queue in the reverse order!
  2391. // There shall be always enough space reserved for these commands.
  2392. enquecommand_front_P((PSTR("G80")));
  2393. //goto case_G80;
  2394. }
  2395. #endif
  2396. if (farm_mode) { prusa_statistics(20); };
  2397. homing_flag = false;
  2398. #if 0
  2399. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2400. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2401. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2402. #endif
  2403. }
  2404. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2405. {
  2406. bool final_result = false;
  2407. #ifdef TMC2130
  2408. FORCE_HIGH_POWER_START;
  2409. #endif // TMC2130
  2410. // Only Z calibration?
  2411. if (!onlyZ)
  2412. {
  2413. setTargetBed(0);
  2414. setTargetHotend(0, 0);
  2415. setTargetHotend(0, 1);
  2416. setTargetHotend(0, 2);
  2417. adjust_bed_reset(); //reset bed level correction
  2418. }
  2419. // Disable the default update procedure of the display. We will do a modal dialog.
  2420. lcd_update_enable(false);
  2421. // Let the planner use the uncorrected coordinates.
  2422. mbl.reset();
  2423. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2424. // the planner will not perform any adjustments in the XY plane.
  2425. // Wait for the motors to stop and update the current position with the absolute values.
  2426. world2machine_revert_to_uncorrected();
  2427. // Reset the baby step value applied without moving the axes.
  2428. babystep_reset();
  2429. // Mark all axes as in a need for homing.
  2430. memset(axis_known_position, 0, sizeof(axis_known_position));
  2431. // Home in the XY plane.
  2432. //set_destination_to_current();
  2433. setup_for_endstop_move();
  2434. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2435. home_xy();
  2436. enable_endstops(false);
  2437. current_position[X_AXIS] += 5;
  2438. current_position[Y_AXIS] += 5;
  2439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2440. st_synchronize();
  2441. // Let the user move the Z axes up to the end stoppers.
  2442. #ifdef TMC2130
  2443. if (calibrate_z_auto())
  2444. {
  2445. #else //TMC2130
  2446. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2447. {
  2448. #endif //TMC2130
  2449. refresh_cmd_timeout();
  2450. #ifndef STEEL_SHEET
  2451. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2452. {
  2453. lcd_wait_for_cool_down();
  2454. }
  2455. #endif //STEEL_SHEET
  2456. if(!onlyZ)
  2457. {
  2458. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2459. #ifdef STEEL_SHEET
  2460. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2461. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2462. #endif //STEEL_SHEET
  2463. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2464. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2465. KEEPALIVE_STATE(IN_HANDLER);
  2466. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2467. lcd_implementation_print_at(0, 2, 1);
  2468. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2469. }
  2470. // Move the print head close to the bed.
  2471. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2472. bool endstops_enabled = enable_endstops(true);
  2473. #ifdef TMC2130
  2474. tmc2130_home_enter(Z_AXIS_MASK);
  2475. #endif //TMC2130
  2476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2477. st_synchronize();
  2478. #ifdef TMC2130
  2479. tmc2130_home_exit();
  2480. #endif //TMC2130
  2481. enable_endstops(endstops_enabled);
  2482. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2483. {
  2484. int8_t verbosity_level = 0;
  2485. if (code_seen('V'))
  2486. {
  2487. // Just 'V' without a number counts as V1.
  2488. char c = strchr_pointer[1];
  2489. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2490. }
  2491. if (onlyZ)
  2492. {
  2493. clean_up_after_endstop_move();
  2494. // Z only calibration.
  2495. // Load the machine correction matrix
  2496. world2machine_initialize();
  2497. // and correct the current_position to match the transformed coordinate system.
  2498. world2machine_update_current();
  2499. //FIXME
  2500. bool result = sample_mesh_and_store_reference();
  2501. if (result)
  2502. {
  2503. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2504. // Shipped, the nozzle height has been set already. The user can start printing now.
  2505. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2506. final_result = true;
  2507. // babystep_apply();
  2508. }
  2509. }
  2510. else
  2511. {
  2512. // Reset the baby step value and the baby step applied flag.
  2513. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2514. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2515. // Complete XYZ calibration.
  2516. uint8_t point_too_far_mask = 0;
  2517. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2518. clean_up_after_endstop_move();
  2519. // Print head up.
  2520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2522. st_synchronize();
  2523. //#ifndef NEW_XYZCAL
  2524. if (result >= 0)
  2525. {
  2526. #ifdef HEATBED_V2
  2527. sample_z();
  2528. #else //HEATBED_V2
  2529. point_too_far_mask = 0;
  2530. // Second half: The fine adjustment.
  2531. // Let the planner use the uncorrected coordinates.
  2532. mbl.reset();
  2533. world2machine_reset();
  2534. // Home in the XY plane.
  2535. setup_for_endstop_move();
  2536. home_xy();
  2537. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2538. clean_up_after_endstop_move();
  2539. // Print head up.
  2540. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2542. st_synchronize();
  2543. // if (result >= 0) babystep_apply();
  2544. #endif //HEATBED_V2
  2545. }
  2546. //#endif //NEW_XYZCAL
  2547. lcd_update_enable(true);
  2548. lcd_update(2);
  2549. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2550. if (result >= 0)
  2551. {
  2552. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2553. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2554. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2555. final_result = true;
  2556. }
  2557. }
  2558. #ifdef TMC2130
  2559. tmc2130_home_exit();
  2560. #endif
  2561. }
  2562. else
  2563. {
  2564. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2565. final_result = false;
  2566. }
  2567. }
  2568. else
  2569. {
  2570. // Timeouted.
  2571. }
  2572. lcd_update_enable(true);
  2573. #ifdef TMC2130
  2574. FORCE_HIGH_POWER_END;
  2575. #endif // TMC2130
  2576. return final_result;
  2577. }
  2578. void gcode_M114()
  2579. {
  2580. SERIAL_PROTOCOLPGM("X:");
  2581. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2582. SERIAL_PROTOCOLPGM(" Y:");
  2583. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2584. SERIAL_PROTOCOLPGM(" Z:");
  2585. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2586. SERIAL_PROTOCOLPGM(" E:");
  2587. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2588. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2589. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2590. SERIAL_PROTOCOLPGM(" Y:");
  2591. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2592. SERIAL_PROTOCOLPGM(" Z:");
  2593. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2594. SERIAL_PROTOCOLPGM(" E:");
  2595. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2596. SERIAL_PROTOCOLLN("");
  2597. }
  2598. void gcode_M701()
  2599. {
  2600. #ifdef SNMM
  2601. extr_adj(snmm_extruder);//loads current extruder
  2602. #else
  2603. enable_z();
  2604. custom_message = true;
  2605. custom_message_type = 2;
  2606. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2607. current_position[E_AXIS] += 70;
  2608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2609. current_position[E_AXIS] += 25;
  2610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2611. st_synchronize();
  2612. tone(BEEPER, 500);
  2613. delay_keep_alive(50);
  2614. noTone(BEEPER);
  2615. if (!farm_mode && loading_flag) {
  2616. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2617. while (!clean) {
  2618. lcd_update_enable(true);
  2619. lcd_update(2);
  2620. current_position[E_AXIS] += 25;
  2621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2622. st_synchronize();
  2623. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2624. }
  2625. }
  2626. lcd_update_enable(true);
  2627. lcd_update(2);
  2628. lcd_setstatuspgm(_T(WELCOME_MSG));
  2629. disable_z();
  2630. loading_flag = false;
  2631. custom_message = false;
  2632. custom_message_type = 0;
  2633. #endif
  2634. }
  2635. /**
  2636. * @brief Get serial number from 32U2 processor
  2637. *
  2638. * Typical format of S/N is:CZPX0917X003XC13518
  2639. *
  2640. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2641. *
  2642. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2643. * reply is transmitted to serial port 1 character by character.
  2644. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2645. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2646. * in any case.
  2647. */
  2648. static void gcode_PRUSA_SN()
  2649. {
  2650. if (farm_mode) {
  2651. selectedSerialPort = 0;
  2652. MSerial.write(";S");
  2653. int numbersRead = 0;
  2654. ShortTimer timeout;
  2655. timeout.start();
  2656. while (numbersRead < 19) {
  2657. while (MSerial.available() > 0) {
  2658. uint8_t serial_char = MSerial.read();
  2659. selectedSerialPort = 1;
  2660. MSerial.write(serial_char);
  2661. numbersRead++;
  2662. selectedSerialPort = 0;
  2663. }
  2664. if (timeout.expired(100u)) break;
  2665. }
  2666. selectedSerialPort = 1;
  2667. MSerial.write('\n');
  2668. #if 0
  2669. for (int b = 0; b < 3; b++) {
  2670. tone(BEEPER, 110);
  2671. delay(50);
  2672. noTone(BEEPER);
  2673. delay(50);
  2674. }
  2675. #endif
  2676. } else {
  2677. MYSERIAL.println("Not in farm mode.");
  2678. }
  2679. }
  2680. void process_commands()
  2681. {
  2682. if (!buflen) return; //empty command
  2683. #ifdef FILAMENT_RUNOUT_SUPPORT
  2684. SET_INPUT(FR_SENS);
  2685. #endif
  2686. #ifdef CMDBUFFER_DEBUG
  2687. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2688. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2689. SERIAL_ECHOLNPGM("");
  2690. SERIAL_ECHOPGM("In cmdqueue: ");
  2691. SERIAL_ECHO(buflen);
  2692. SERIAL_ECHOLNPGM("");
  2693. #endif /* CMDBUFFER_DEBUG */
  2694. unsigned long codenum; //throw away variable
  2695. char *starpos = NULL;
  2696. #ifdef ENABLE_AUTO_BED_LEVELING
  2697. float x_tmp, y_tmp, z_tmp, real_z;
  2698. #endif
  2699. // PRUSA GCODES
  2700. KEEPALIVE_STATE(IN_HANDLER);
  2701. #ifdef SNMM
  2702. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2703. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2704. int8_t SilentMode;
  2705. #endif
  2706. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2707. starpos = (strchr(strchr_pointer + 5, '*'));
  2708. if (starpos != NULL)
  2709. *(starpos) = '\0';
  2710. lcd_setstatus(strchr_pointer + 5);
  2711. }
  2712. #ifdef TMC2130
  2713. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2714. {
  2715. if(code_seen("CRASH_DETECTED"))
  2716. {
  2717. uint8_t mask = 0;
  2718. if (code_seen("X")) mask |= X_AXIS_MASK;
  2719. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2720. crashdet_detected(mask);
  2721. }
  2722. else if(code_seen("CRASH_RECOVER"))
  2723. crashdet_recover();
  2724. else if(code_seen("CRASH_CANCEL"))
  2725. crashdet_cancel();
  2726. }
  2727. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2728. {
  2729. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2730. {
  2731. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2732. tmc2130_set_wave(E_AXIS, 247, fac);
  2733. }
  2734. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2735. {
  2736. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2737. uint16_t res = tmc2130_get_res(E_AXIS);
  2738. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2739. }
  2740. }
  2741. #endif //TMC2130
  2742. else if(code_seen("PRUSA")){
  2743. if (code_seen("Ping")) { //PRUSA Ping
  2744. if (farm_mode) {
  2745. PingTime = millis();
  2746. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2747. }
  2748. }
  2749. else if (code_seen("PRN")) {
  2750. MYSERIAL.println(status_number);
  2751. }else if (code_seen("FAN")) {
  2752. MYSERIAL.print("E0:");
  2753. MYSERIAL.print(60*fan_speed[0]);
  2754. MYSERIAL.println(" RPM");
  2755. MYSERIAL.print("PRN0:");
  2756. MYSERIAL.print(60*fan_speed[1]);
  2757. MYSERIAL.println(" RPM");
  2758. }else if (code_seen("fn")) {
  2759. if (farm_mode) {
  2760. MYSERIAL.println(farm_no);
  2761. }
  2762. else {
  2763. MYSERIAL.println("Not in farm mode.");
  2764. }
  2765. }
  2766. else if (code_seen("thx")) {
  2767. no_response = false;
  2768. }else if (code_seen("fv")) {
  2769. // get file version
  2770. #ifdef SDSUPPORT
  2771. card.openFile(strchr_pointer + 3,true);
  2772. while (true) {
  2773. uint16_t readByte = card.get();
  2774. MYSERIAL.write(readByte);
  2775. if (readByte=='\n') {
  2776. break;
  2777. }
  2778. }
  2779. card.closefile();
  2780. #endif // SDSUPPORT
  2781. } else if (code_seen("M28")) {
  2782. trace();
  2783. prusa_sd_card_upload = true;
  2784. card.openFile(strchr_pointer+4,false);
  2785. } else if (code_seen("SN")) {
  2786. gcode_PRUSA_SN();
  2787. } else if(code_seen("Fir")){
  2788. SERIAL_PROTOCOLLN(FW_VERSION);
  2789. } else if(code_seen("Rev")){
  2790. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2791. } else if(code_seen("Lang")) {
  2792. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  2793. } else if(code_seen("Lz")) {
  2794. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2795. } else if(code_seen("Beat")) {
  2796. // Kick farm link timer
  2797. kicktime = millis();
  2798. } else if(code_seen("FR")) {
  2799. // Factory full reset
  2800. factory_reset(0,true);
  2801. }
  2802. //else if (code_seen('Cal')) {
  2803. // lcd_calibration();
  2804. // }
  2805. }
  2806. else if (code_seen('^')) {
  2807. // nothing, this is a version line
  2808. } else if(code_seen('G'))
  2809. {
  2810. switch((int)code_value())
  2811. {
  2812. case 0: // G0 -> G1
  2813. case 1: // G1
  2814. if(Stopped == false) {
  2815. #ifdef FILAMENT_RUNOUT_SUPPORT
  2816. if(READ(FR_SENS)){
  2817. feedmultiplyBckp=feedmultiply;
  2818. float target[4];
  2819. float lastpos[4];
  2820. target[X_AXIS]=current_position[X_AXIS];
  2821. target[Y_AXIS]=current_position[Y_AXIS];
  2822. target[Z_AXIS]=current_position[Z_AXIS];
  2823. target[E_AXIS]=current_position[E_AXIS];
  2824. lastpos[X_AXIS]=current_position[X_AXIS];
  2825. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2826. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2827. lastpos[E_AXIS]=current_position[E_AXIS];
  2828. //retract by E
  2829. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2831. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2832. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2833. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2834. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2836. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2837. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2838. //finish moves
  2839. st_synchronize();
  2840. //disable extruder steppers so filament can be removed
  2841. disable_e0();
  2842. disable_e1();
  2843. disable_e2();
  2844. delay(100);
  2845. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2846. uint8_t cnt=0;
  2847. int counterBeep = 0;
  2848. lcd_wait_interact();
  2849. while(!lcd_clicked()){
  2850. cnt++;
  2851. manage_heater();
  2852. manage_inactivity(true);
  2853. //lcd_update();
  2854. if(cnt==0)
  2855. {
  2856. #if BEEPER > 0
  2857. if (counterBeep== 500){
  2858. counterBeep = 0;
  2859. }
  2860. SET_OUTPUT(BEEPER);
  2861. if (counterBeep== 0){
  2862. WRITE(BEEPER,HIGH);
  2863. }
  2864. if (counterBeep== 20){
  2865. WRITE(BEEPER,LOW);
  2866. }
  2867. counterBeep++;
  2868. #else
  2869. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2870. lcd_buzz(1000/6,100);
  2871. #else
  2872. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2873. #endif
  2874. #endif
  2875. }
  2876. }
  2877. WRITE(BEEPER,LOW);
  2878. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2879. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2880. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2881. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2882. lcd_change_fil_state = 0;
  2883. lcd_loading_filament();
  2884. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2885. lcd_change_fil_state = 0;
  2886. lcd_alright();
  2887. switch(lcd_change_fil_state){
  2888. case 2:
  2889. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2891. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2893. lcd_loading_filament();
  2894. break;
  2895. case 3:
  2896. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2897. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2898. lcd_loading_color();
  2899. break;
  2900. default:
  2901. lcd_change_success();
  2902. break;
  2903. }
  2904. }
  2905. target[E_AXIS]+= 5;
  2906. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2907. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2908. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2909. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2910. //plan_set_e_position(current_position[E_AXIS]);
  2911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2912. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2913. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2914. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2915. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2916. plan_set_e_position(lastpos[E_AXIS]);
  2917. feedmultiply=feedmultiplyBckp;
  2918. char cmd[9];
  2919. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2920. enquecommand(cmd);
  2921. }
  2922. #endif
  2923. get_coordinates(); // For X Y Z E F
  2924. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2925. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2926. }
  2927. #ifdef FWRETRACT
  2928. if(autoretract_enabled)
  2929. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2930. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2931. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2932. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2933. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2934. retract(!retracted[active_extruder]);
  2935. return;
  2936. }
  2937. }
  2938. #endif //FWRETRACT
  2939. prepare_move();
  2940. //ClearToSend();
  2941. }
  2942. break;
  2943. case 2: // G2 - CW ARC
  2944. if(Stopped == false) {
  2945. get_arc_coordinates();
  2946. prepare_arc_move(true);
  2947. }
  2948. break;
  2949. case 3: // G3 - CCW ARC
  2950. if(Stopped == false) {
  2951. get_arc_coordinates();
  2952. prepare_arc_move(false);
  2953. }
  2954. break;
  2955. case 4: // G4 dwell
  2956. codenum = 0;
  2957. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2958. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2959. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2960. st_synchronize();
  2961. codenum += millis(); // keep track of when we started waiting
  2962. previous_millis_cmd = millis();
  2963. while(millis() < codenum) {
  2964. manage_heater();
  2965. manage_inactivity();
  2966. lcd_update();
  2967. }
  2968. break;
  2969. #ifdef FWRETRACT
  2970. case 10: // G10 retract
  2971. #if EXTRUDERS > 1
  2972. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2973. retract(true,retracted_swap[active_extruder]);
  2974. #else
  2975. retract(true);
  2976. #endif
  2977. break;
  2978. case 11: // G11 retract_recover
  2979. #if EXTRUDERS > 1
  2980. retract(false,retracted_swap[active_extruder]);
  2981. #else
  2982. retract(false);
  2983. #endif
  2984. break;
  2985. #endif //FWRETRACT
  2986. case 28: //G28 Home all Axis one at a time
  2987. {
  2988. // Which axes should be homed?
  2989. bool home_x = code_seen(axis_codes[X_AXIS]);
  2990. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2991. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2992. // calibrate?
  2993. bool calib = code_seen('C');
  2994. gcode_G28(home_x, home_y, home_z, calib);
  2995. break;
  2996. }
  2997. #ifdef ENABLE_AUTO_BED_LEVELING
  2998. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2999. {
  3000. #if Z_MIN_PIN == -1
  3001. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3002. #endif
  3003. // Prevent user from running a G29 without first homing in X and Y
  3004. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3005. {
  3006. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3007. SERIAL_ECHO_START;
  3008. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3009. break; // abort G29, since we don't know where we are
  3010. }
  3011. st_synchronize();
  3012. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3013. //vector_3 corrected_position = plan_get_position_mm();
  3014. //corrected_position.debug("position before G29");
  3015. plan_bed_level_matrix.set_to_identity();
  3016. vector_3 uncorrected_position = plan_get_position();
  3017. //uncorrected_position.debug("position durring G29");
  3018. current_position[X_AXIS] = uncorrected_position.x;
  3019. current_position[Y_AXIS] = uncorrected_position.y;
  3020. current_position[Z_AXIS] = uncorrected_position.z;
  3021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3022. setup_for_endstop_move();
  3023. feedrate = homing_feedrate[Z_AXIS];
  3024. #ifdef AUTO_BED_LEVELING_GRID
  3025. // probe at the points of a lattice grid
  3026. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3027. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3028. // solve the plane equation ax + by + d = z
  3029. // A is the matrix with rows [x y 1] for all the probed points
  3030. // B is the vector of the Z positions
  3031. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3032. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3033. // "A" matrix of the linear system of equations
  3034. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3035. // "B" vector of Z points
  3036. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3037. int probePointCounter = 0;
  3038. bool zig = true;
  3039. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3040. {
  3041. int xProbe, xInc;
  3042. if (zig)
  3043. {
  3044. xProbe = LEFT_PROBE_BED_POSITION;
  3045. //xEnd = RIGHT_PROBE_BED_POSITION;
  3046. xInc = xGridSpacing;
  3047. zig = false;
  3048. } else // zag
  3049. {
  3050. xProbe = RIGHT_PROBE_BED_POSITION;
  3051. //xEnd = LEFT_PROBE_BED_POSITION;
  3052. xInc = -xGridSpacing;
  3053. zig = true;
  3054. }
  3055. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3056. {
  3057. float z_before;
  3058. if (probePointCounter == 0)
  3059. {
  3060. // raise before probing
  3061. z_before = Z_RAISE_BEFORE_PROBING;
  3062. } else
  3063. {
  3064. // raise extruder
  3065. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3066. }
  3067. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3068. eqnBVector[probePointCounter] = measured_z;
  3069. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3070. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3071. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3072. probePointCounter++;
  3073. xProbe += xInc;
  3074. }
  3075. }
  3076. clean_up_after_endstop_move();
  3077. // solve lsq problem
  3078. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3079. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3080. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3081. SERIAL_PROTOCOLPGM(" b: ");
  3082. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3083. SERIAL_PROTOCOLPGM(" d: ");
  3084. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3085. set_bed_level_equation_lsq(plane_equation_coefficients);
  3086. free(plane_equation_coefficients);
  3087. #else // AUTO_BED_LEVELING_GRID not defined
  3088. // Probe at 3 arbitrary points
  3089. // probe 1
  3090. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3091. // probe 2
  3092. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3093. // probe 3
  3094. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3095. clean_up_after_endstop_move();
  3096. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3097. #endif // AUTO_BED_LEVELING_GRID
  3098. st_synchronize();
  3099. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3100. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3101. // When the bed is uneven, this height must be corrected.
  3102. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3103. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3104. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3105. z_tmp = current_position[Z_AXIS];
  3106. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3107. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3108. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3109. }
  3110. break;
  3111. #ifndef Z_PROBE_SLED
  3112. case 30: // G30 Single Z Probe
  3113. {
  3114. st_synchronize();
  3115. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3116. setup_for_endstop_move();
  3117. feedrate = homing_feedrate[Z_AXIS];
  3118. run_z_probe();
  3119. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3120. SERIAL_PROTOCOLPGM(" X: ");
  3121. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3122. SERIAL_PROTOCOLPGM(" Y: ");
  3123. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3124. SERIAL_PROTOCOLPGM(" Z: ");
  3125. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3126. SERIAL_PROTOCOLPGM("\n");
  3127. clean_up_after_endstop_move();
  3128. }
  3129. break;
  3130. #else
  3131. case 31: // dock the sled
  3132. dock_sled(true);
  3133. break;
  3134. case 32: // undock the sled
  3135. dock_sled(false);
  3136. break;
  3137. #endif // Z_PROBE_SLED
  3138. #endif // ENABLE_AUTO_BED_LEVELING
  3139. #ifdef MESH_BED_LEVELING
  3140. case 30: // G30 Single Z Probe
  3141. {
  3142. st_synchronize();
  3143. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3144. setup_for_endstop_move();
  3145. feedrate = homing_feedrate[Z_AXIS];
  3146. find_bed_induction_sensor_point_z(-10.f, 3);
  3147. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3148. SERIAL_PROTOCOLPGM(" X: ");
  3149. MYSERIAL.print(current_position[X_AXIS], 5);
  3150. SERIAL_PROTOCOLPGM(" Y: ");
  3151. MYSERIAL.print(current_position[Y_AXIS], 5);
  3152. SERIAL_PROTOCOLPGM(" Z: ");
  3153. MYSERIAL.print(current_position[Z_AXIS], 5);
  3154. SERIAL_PROTOCOLPGM("\n");
  3155. clean_up_after_endstop_move();
  3156. }
  3157. break;
  3158. case 75:
  3159. {
  3160. for (int i = 40; i <= 110; i++) {
  3161. MYSERIAL.print(i);
  3162. MYSERIAL.print(" ");
  3163. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3164. }
  3165. }
  3166. break;
  3167. case 76: //PINDA probe temperature calibration
  3168. {
  3169. #ifdef PINDA_THERMISTOR
  3170. if (true)
  3171. {
  3172. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3173. //we need to know accurate position of first calibration point
  3174. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3175. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3176. break;
  3177. }
  3178. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3179. {
  3180. // We don't know where we are! HOME!
  3181. // Push the commands to the front of the message queue in the reverse order!
  3182. // There shall be always enough space reserved for these commands.
  3183. repeatcommand_front(); // repeat G76 with all its parameters
  3184. enquecommand_front_P((PSTR("G28 W0")));
  3185. break;
  3186. }
  3187. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3188. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3189. if (result)
  3190. {
  3191. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3193. current_position[Z_AXIS] = 50;
  3194. current_position[Y_AXIS] = 180;
  3195. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3196. st_synchronize();
  3197. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3198. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3199. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3201. st_synchronize();
  3202. gcode_G28(false, false, true, false);
  3203. }
  3204. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3205. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3206. current_position[Z_AXIS] = 100;
  3207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3208. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3209. lcd_temp_cal_show_result(false);
  3210. break;
  3211. }
  3212. }
  3213. lcd_update_enable(true);
  3214. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3215. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3216. float zero_z;
  3217. int z_shift = 0; //unit: steps
  3218. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3219. if (start_temp < 35) start_temp = 35;
  3220. if (start_temp < current_temperature_pinda) start_temp += 5;
  3221. SERIAL_ECHOPGM("start temperature: ");
  3222. MYSERIAL.println(start_temp);
  3223. // setTargetHotend(200, 0);
  3224. setTargetBed(70 + (start_temp - 30));
  3225. custom_message = true;
  3226. custom_message_type = 4;
  3227. custom_message_state = 1;
  3228. custom_message = _T(MSG_TEMP_CALIBRATION);
  3229. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3230. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3231. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3232. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3233. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3234. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3236. st_synchronize();
  3237. while (current_temperature_pinda < start_temp)
  3238. {
  3239. delay_keep_alive(1000);
  3240. serialecho_temperatures();
  3241. }
  3242. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3243. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3244. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3245. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3246. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3247. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3248. st_synchronize();
  3249. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3250. if (find_z_result == false) {
  3251. lcd_temp_cal_show_result(find_z_result);
  3252. break;
  3253. }
  3254. zero_z = current_position[Z_AXIS];
  3255. //current_position[Z_AXIS]
  3256. SERIAL_ECHOLNPGM("");
  3257. SERIAL_ECHOPGM("ZERO: ");
  3258. MYSERIAL.print(current_position[Z_AXIS]);
  3259. SERIAL_ECHOLNPGM("");
  3260. int i = -1; for (; i < 5; i++)
  3261. {
  3262. float temp = (40 + i * 5);
  3263. SERIAL_ECHOPGM("Step: ");
  3264. MYSERIAL.print(i + 2);
  3265. SERIAL_ECHOLNPGM("/6 (skipped)");
  3266. SERIAL_ECHOPGM("PINDA temperature: ");
  3267. MYSERIAL.print((40 + i*5));
  3268. SERIAL_ECHOPGM(" Z shift (mm):");
  3269. MYSERIAL.print(0);
  3270. SERIAL_ECHOLNPGM("");
  3271. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3272. if (start_temp <= temp) break;
  3273. }
  3274. for (i++; i < 5; i++)
  3275. {
  3276. float temp = (40 + i * 5);
  3277. SERIAL_ECHOPGM("Step: ");
  3278. MYSERIAL.print(i + 2);
  3279. SERIAL_ECHOLNPGM("/6");
  3280. custom_message_state = i + 2;
  3281. setTargetBed(50 + 10 * (temp - 30) / 5);
  3282. // setTargetHotend(255, 0);
  3283. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3285. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3286. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3287. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3288. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3290. st_synchronize();
  3291. while (current_temperature_pinda < temp)
  3292. {
  3293. delay_keep_alive(1000);
  3294. serialecho_temperatures();
  3295. }
  3296. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3297. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3298. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3299. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3301. st_synchronize();
  3302. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3303. if (find_z_result == false) {
  3304. lcd_temp_cal_show_result(find_z_result);
  3305. break;
  3306. }
  3307. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3308. SERIAL_ECHOLNPGM("");
  3309. SERIAL_ECHOPGM("PINDA temperature: ");
  3310. MYSERIAL.print(current_temperature_pinda);
  3311. SERIAL_ECHOPGM(" Z shift (mm):");
  3312. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3313. SERIAL_ECHOLNPGM("");
  3314. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3315. }
  3316. lcd_temp_cal_show_result(true);
  3317. break;
  3318. }
  3319. #endif //PINDA_THERMISTOR
  3320. setTargetBed(PINDA_MIN_T);
  3321. float zero_z;
  3322. int z_shift = 0; //unit: steps
  3323. int t_c; // temperature
  3324. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3325. // We don't know where we are! HOME!
  3326. // Push the commands to the front of the message queue in the reverse order!
  3327. // There shall be always enough space reserved for these commands.
  3328. repeatcommand_front(); // repeat G76 with all its parameters
  3329. enquecommand_front_P((PSTR("G28 W0")));
  3330. break;
  3331. }
  3332. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3333. custom_message = true;
  3334. custom_message_type = 4;
  3335. custom_message_state = 1;
  3336. custom_message = _T(MSG_TEMP_CALIBRATION);
  3337. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3338. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3339. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3341. st_synchronize();
  3342. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3343. delay_keep_alive(1000);
  3344. serialecho_temperatures();
  3345. }
  3346. //enquecommand_P(PSTR("M190 S50"));
  3347. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3348. delay_keep_alive(1000);
  3349. serialecho_temperatures();
  3350. }
  3351. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3352. current_position[Z_AXIS] = 5;
  3353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3354. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3355. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3357. st_synchronize();
  3358. find_bed_induction_sensor_point_z(-1.f);
  3359. zero_z = current_position[Z_AXIS];
  3360. //current_position[Z_AXIS]
  3361. SERIAL_ECHOLNPGM("");
  3362. SERIAL_ECHOPGM("ZERO: ");
  3363. MYSERIAL.print(current_position[Z_AXIS]);
  3364. SERIAL_ECHOLNPGM("");
  3365. for (int i = 0; i<5; i++) {
  3366. SERIAL_ECHOPGM("Step: ");
  3367. MYSERIAL.print(i+2);
  3368. SERIAL_ECHOLNPGM("/6");
  3369. custom_message_state = i + 2;
  3370. t_c = 60 + i * 10;
  3371. setTargetBed(t_c);
  3372. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3373. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3374. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3376. st_synchronize();
  3377. while (degBed() < t_c) {
  3378. delay_keep_alive(1000);
  3379. serialecho_temperatures();
  3380. }
  3381. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3382. delay_keep_alive(1000);
  3383. serialecho_temperatures();
  3384. }
  3385. current_position[Z_AXIS] = 5;
  3386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3387. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3388. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3390. st_synchronize();
  3391. find_bed_induction_sensor_point_z(-1.f);
  3392. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3393. SERIAL_ECHOLNPGM("");
  3394. SERIAL_ECHOPGM("Temperature: ");
  3395. MYSERIAL.print(t_c);
  3396. SERIAL_ECHOPGM(" Z shift (mm):");
  3397. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3398. SERIAL_ECHOLNPGM("");
  3399. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3400. }
  3401. custom_message_type = 0;
  3402. custom_message = false;
  3403. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3404. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3405. disable_x();
  3406. disable_y();
  3407. disable_z();
  3408. disable_e0();
  3409. disable_e1();
  3410. disable_e2();
  3411. setTargetBed(0); //set bed target temperature back to 0
  3412. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3413. temp_cal_active = true;
  3414. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3415. lcd_update_enable(true);
  3416. lcd_update(2);
  3417. }
  3418. break;
  3419. #ifdef DIS
  3420. case 77:
  3421. {
  3422. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3423. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3424. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3425. float dimension_x = 40;
  3426. float dimension_y = 40;
  3427. int points_x = 40;
  3428. int points_y = 40;
  3429. float offset_x = 74;
  3430. float offset_y = 33;
  3431. if (code_seen('X')) dimension_x = code_value();
  3432. if (code_seen('Y')) dimension_y = code_value();
  3433. if (code_seen('XP')) points_x = code_value();
  3434. if (code_seen('YP')) points_y = code_value();
  3435. if (code_seen('XO')) offset_x = code_value();
  3436. if (code_seen('YO')) offset_y = code_value();
  3437. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3438. } break;
  3439. #endif
  3440. case 79: {
  3441. for (int i = 255; i > 0; i = i - 5) {
  3442. fanSpeed = i;
  3443. //delay_keep_alive(2000);
  3444. for (int j = 0; j < 100; j++) {
  3445. delay_keep_alive(100);
  3446. }
  3447. fan_speed[1];
  3448. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3449. }
  3450. }break;
  3451. /**
  3452. * G80: Mesh-based Z probe, probes a grid and produces a
  3453. * mesh to compensate for variable bed height
  3454. *
  3455. * The S0 report the points as below
  3456. *
  3457. * +----> X-axis
  3458. * |
  3459. * |
  3460. * v Y-axis
  3461. *
  3462. */
  3463. case 80:
  3464. #ifdef MK1BP
  3465. break;
  3466. #endif //MK1BP
  3467. case_G80:
  3468. {
  3469. mesh_bed_leveling_flag = true;
  3470. int8_t verbosity_level = 0;
  3471. static bool run = false;
  3472. if (code_seen('V')) {
  3473. // Just 'V' without a number counts as V1.
  3474. char c = strchr_pointer[1];
  3475. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3476. }
  3477. // Firstly check if we know where we are
  3478. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3479. // We don't know where we are! HOME!
  3480. // Push the commands to the front of the message queue in the reverse order!
  3481. // There shall be always enough space reserved for these commands.
  3482. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3483. repeatcommand_front(); // repeat G80 with all its parameters
  3484. enquecommand_front_P((PSTR("G28 W0")));
  3485. }
  3486. else {
  3487. mesh_bed_leveling_flag = false;
  3488. }
  3489. break;
  3490. }
  3491. bool temp_comp_start = true;
  3492. #ifdef PINDA_THERMISTOR
  3493. temp_comp_start = false;
  3494. #endif //PINDA_THERMISTOR
  3495. if (temp_comp_start)
  3496. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3497. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3498. temp_compensation_start();
  3499. run = true;
  3500. repeatcommand_front(); // repeat G80 with all its parameters
  3501. enquecommand_front_P((PSTR("G28 W0")));
  3502. }
  3503. else {
  3504. mesh_bed_leveling_flag = false;
  3505. }
  3506. break;
  3507. }
  3508. run = false;
  3509. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3510. mesh_bed_leveling_flag = false;
  3511. break;
  3512. }
  3513. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3514. bool custom_message_old = custom_message;
  3515. unsigned int custom_message_type_old = custom_message_type;
  3516. unsigned int custom_message_state_old = custom_message_state;
  3517. custom_message = true;
  3518. custom_message_type = 1;
  3519. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3520. lcd_update(1);
  3521. mbl.reset(); //reset mesh bed leveling
  3522. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3523. // consumed during the first movements following this statement.
  3524. babystep_undo();
  3525. // Cycle through all points and probe them
  3526. // First move up. During this first movement, the babystepping will be reverted.
  3527. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3529. // The move to the first calibration point.
  3530. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3531. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3532. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3533. #ifdef SUPPORT_VERBOSITY
  3534. if (verbosity_level >= 1) {
  3535. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3536. }
  3537. #endif //SUPPORT_VERBOSITY
  3538. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3540. // Wait until the move is finished.
  3541. st_synchronize();
  3542. int mesh_point = 0; //index number of calibration point
  3543. int ix = 0;
  3544. int iy = 0;
  3545. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3546. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3547. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3548. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3549. #ifdef SUPPORT_VERBOSITY
  3550. if (verbosity_level >= 1) {
  3551. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3552. }
  3553. #endif // SUPPORT_VERBOSITY
  3554. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3555. const char *kill_message = NULL;
  3556. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3557. // Get coords of a measuring point.
  3558. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3559. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3560. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3561. float z0 = 0.f;
  3562. if (has_z && mesh_point > 0) {
  3563. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3564. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3565. //#if 0
  3566. #ifdef SUPPORT_VERBOSITY
  3567. if (verbosity_level >= 1) {
  3568. SERIAL_ECHOLNPGM("");
  3569. SERIAL_ECHOPGM("Bed leveling, point: ");
  3570. MYSERIAL.print(mesh_point);
  3571. SERIAL_ECHOPGM(", calibration z: ");
  3572. MYSERIAL.print(z0, 5);
  3573. SERIAL_ECHOLNPGM("");
  3574. }
  3575. #endif // SUPPORT_VERBOSITY
  3576. //#endif
  3577. }
  3578. // Move Z up to MESH_HOME_Z_SEARCH.
  3579. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3581. st_synchronize();
  3582. // Move to XY position of the sensor point.
  3583. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3584. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3585. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3586. #ifdef SUPPORT_VERBOSITY
  3587. if (verbosity_level >= 1) {
  3588. SERIAL_PROTOCOL(mesh_point);
  3589. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3590. }
  3591. #endif // SUPPORT_VERBOSITY
  3592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3593. st_synchronize();
  3594. // Go down until endstop is hit
  3595. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3596. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3597. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3598. break;
  3599. }
  3600. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3601. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3602. break;
  3603. }
  3604. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3605. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3606. break;
  3607. }
  3608. #ifdef SUPPORT_VERBOSITY
  3609. if (verbosity_level >= 10) {
  3610. SERIAL_ECHOPGM("X: ");
  3611. MYSERIAL.print(current_position[X_AXIS], 5);
  3612. SERIAL_ECHOLNPGM("");
  3613. SERIAL_ECHOPGM("Y: ");
  3614. MYSERIAL.print(current_position[Y_AXIS], 5);
  3615. SERIAL_PROTOCOLPGM("\n");
  3616. }
  3617. #endif // SUPPORT_VERBOSITY
  3618. float offset_z = 0;
  3619. #ifdef PINDA_THERMISTOR
  3620. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3621. #endif //PINDA_THERMISTOR
  3622. // #ifdef SUPPORT_VERBOSITY
  3623. /* if (verbosity_level >= 1)
  3624. {
  3625. SERIAL_ECHOPGM("mesh bed leveling: ");
  3626. MYSERIAL.print(current_position[Z_AXIS], 5);
  3627. SERIAL_ECHOPGM(" offset: ");
  3628. MYSERIAL.print(offset_z, 5);
  3629. SERIAL_ECHOLNPGM("");
  3630. }*/
  3631. // #endif // SUPPORT_VERBOSITY
  3632. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3633. custom_message_state--;
  3634. mesh_point++;
  3635. lcd_update(1);
  3636. }
  3637. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3638. #ifdef SUPPORT_VERBOSITY
  3639. if (verbosity_level >= 20) {
  3640. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3641. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3642. MYSERIAL.print(current_position[Z_AXIS], 5);
  3643. }
  3644. #endif // SUPPORT_VERBOSITY
  3645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3646. st_synchronize();
  3647. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3648. kill(kill_message);
  3649. SERIAL_ECHOLNPGM("killed");
  3650. }
  3651. clean_up_after_endstop_move();
  3652. // SERIAL_ECHOLNPGM("clean up finished ");
  3653. bool apply_temp_comp = true;
  3654. #ifdef PINDA_THERMISTOR
  3655. apply_temp_comp = false;
  3656. #endif
  3657. if (apply_temp_comp)
  3658. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3659. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3660. // SERIAL_ECHOLNPGM("babystep applied");
  3661. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3662. #ifdef SUPPORT_VERBOSITY
  3663. if (verbosity_level >= 1) {
  3664. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3665. }
  3666. #endif // SUPPORT_VERBOSITY
  3667. for (uint8_t i = 0; i < 4; ++i) {
  3668. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3669. long correction = 0;
  3670. if (code_seen(codes[i]))
  3671. correction = code_value_long();
  3672. else if (eeprom_bed_correction_valid) {
  3673. unsigned char *addr = (i < 2) ?
  3674. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3675. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3676. correction = eeprom_read_int8(addr);
  3677. }
  3678. if (correction == 0)
  3679. continue;
  3680. float offset = float(correction) * 0.001f;
  3681. if (fabs(offset) > 0.101f) {
  3682. SERIAL_ERROR_START;
  3683. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3684. SERIAL_ECHO(offset);
  3685. SERIAL_ECHOLNPGM(" microns");
  3686. }
  3687. else {
  3688. switch (i) {
  3689. case 0:
  3690. for (uint8_t row = 0; row < 3; ++row) {
  3691. mbl.z_values[row][1] += 0.5f * offset;
  3692. mbl.z_values[row][0] += offset;
  3693. }
  3694. break;
  3695. case 1:
  3696. for (uint8_t row = 0; row < 3; ++row) {
  3697. mbl.z_values[row][1] += 0.5f * offset;
  3698. mbl.z_values[row][2] += offset;
  3699. }
  3700. break;
  3701. case 2:
  3702. for (uint8_t col = 0; col < 3; ++col) {
  3703. mbl.z_values[1][col] += 0.5f * offset;
  3704. mbl.z_values[0][col] += offset;
  3705. }
  3706. break;
  3707. case 3:
  3708. for (uint8_t col = 0; col < 3; ++col) {
  3709. mbl.z_values[1][col] += 0.5f * offset;
  3710. mbl.z_values[2][col] += offset;
  3711. }
  3712. break;
  3713. }
  3714. }
  3715. }
  3716. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3717. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3718. // SERIAL_ECHOLNPGM("Upsample finished");
  3719. mbl.active = 1; //activate mesh bed leveling
  3720. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3721. go_home_with_z_lift();
  3722. // SERIAL_ECHOLNPGM("Go home finished");
  3723. //unretract (after PINDA preheat retraction)
  3724. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3725. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3727. }
  3728. KEEPALIVE_STATE(NOT_BUSY);
  3729. // Restore custom message state
  3730. custom_message = custom_message_old;
  3731. custom_message_type = custom_message_type_old;
  3732. custom_message_state = custom_message_state_old;
  3733. mesh_bed_leveling_flag = false;
  3734. mesh_bed_run_from_menu = false;
  3735. lcd_update(2);
  3736. }
  3737. break;
  3738. /**
  3739. * G81: Print mesh bed leveling status and bed profile if activated
  3740. */
  3741. case 81:
  3742. if (mbl.active) {
  3743. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3744. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3745. SERIAL_PROTOCOLPGM(",");
  3746. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3747. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3748. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3749. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3750. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3751. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3752. SERIAL_PROTOCOLPGM(" ");
  3753. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3754. }
  3755. SERIAL_PROTOCOLPGM("\n");
  3756. }
  3757. }
  3758. else
  3759. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3760. break;
  3761. #if 0
  3762. /**
  3763. * G82: Single Z probe at current location
  3764. *
  3765. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3766. *
  3767. */
  3768. case 82:
  3769. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3770. setup_for_endstop_move();
  3771. find_bed_induction_sensor_point_z();
  3772. clean_up_after_endstop_move();
  3773. SERIAL_PROTOCOLPGM("Bed found at: ");
  3774. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3775. SERIAL_PROTOCOLPGM("\n");
  3776. break;
  3777. /**
  3778. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3779. */
  3780. case 83:
  3781. {
  3782. int babystepz = code_seen('S') ? code_value() : 0;
  3783. int BabyPosition = code_seen('P') ? code_value() : 0;
  3784. if (babystepz != 0) {
  3785. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3786. // Is the axis indexed starting with zero or one?
  3787. if (BabyPosition > 4) {
  3788. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3789. }else{
  3790. // Save it to the eeprom
  3791. babystepLoadZ = babystepz;
  3792. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3793. // adjust the Z
  3794. babystepsTodoZadd(babystepLoadZ);
  3795. }
  3796. }
  3797. }
  3798. break;
  3799. /**
  3800. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3801. */
  3802. case 84:
  3803. babystepsTodoZsubtract(babystepLoadZ);
  3804. // babystepLoadZ = 0;
  3805. break;
  3806. /**
  3807. * G85: Prusa3D specific: Pick best babystep
  3808. */
  3809. case 85:
  3810. lcd_pick_babystep();
  3811. break;
  3812. #endif
  3813. /**
  3814. * G86: Prusa3D specific: Disable babystep correction after home.
  3815. * This G-code will be performed at the start of a calibration script.
  3816. */
  3817. case 86:
  3818. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3819. break;
  3820. /**
  3821. * G87: Prusa3D specific: Enable babystep correction after home
  3822. * This G-code will be performed at the end of a calibration script.
  3823. */
  3824. case 87:
  3825. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3826. break;
  3827. /**
  3828. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3829. */
  3830. case 88:
  3831. break;
  3832. #endif // ENABLE_MESH_BED_LEVELING
  3833. case 90: // G90
  3834. relative_mode = false;
  3835. break;
  3836. case 91: // G91
  3837. relative_mode = true;
  3838. break;
  3839. case 92: // G92
  3840. if(!code_seen(axis_codes[E_AXIS]))
  3841. st_synchronize();
  3842. for(int8_t i=0; i < NUM_AXIS; i++) {
  3843. if(code_seen(axis_codes[i])) {
  3844. if(i == E_AXIS) {
  3845. current_position[i] = code_value();
  3846. plan_set_e_position(current_position[E_AXIS]);
  3847. }
  3848. else {
  3849. current_position[i] = code_value()+add_homing[i];
  3850. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3851. }
  3852. }
  3853. }
  3854. break;
  3855. case 98: // G98 (activate farm mode)
  3856. farm_mode = 1;
  3857. PingTime = millis();
  3858. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3859. SilentModeMenu = SILENT_MODE_OFF;
  3860. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3861. break;
  3862. case 99: // G99 (deactivate farm mode)
  3863. farm_mode = 0;
  3864. lcd_printer_connected();
  3865. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3866. lcd_update(2);
  3867. break;
  3868. default:
  3869. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3870. }
  3871. } // end if(code_seen('G'))
  3872. else if(code_seen('M'))
  3873. {
  3874. int index;
  3875. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3876. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3877. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3878. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3879. } else
  3880. switch((int)code_value())
  3881. {
  3882. #ifdef ULTIPANEL
  3883. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3884. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3885. {
  3886. char *src = strchr_pointer + 2;
  3887. codenum = 0;
  3888. bool hasP = false, hasS = false;
  3889. if (code_seen('P')) {
  3890. codenum = code_value(); // milliseconds to wait
  3891. hasP = codenum > 0;
  3892. }
  3893. if (code_seen('S')) {
  3894. codenum = code_value() * 1000; // seconds to wait
  3895. hasS = codenum > 0;
  3896. }
  3897. starpos = strchr(src, '*');
  3898. if (starpos != NULL) *(starpos) = '\0';
  3899. while (*src == ' ') ++src;
  3900. if (!hasP && !hasS && *src != '\0') {
  3901. lcd_setstatus(src);
  3902. } else {
  3903. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3904. }
  3905. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3906. st_synchronize();
  3907. previous_millis_cmd = millis();
  3908. if (codenum > 0){
  3909. codenum += millis(); // keep track of when we started waiting
  3910. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3911. while(millis() < codenum && !lcd_clicked()){
  3912. manage_heater();
  3913. manage_inactivity(true);
  3914. lcd_update();
  3915. }
  3916. KEEPALIVE_STATE(IN_HANDLER);
  3917. lcd_ignore_click(false);
  3918. }else{
  3919. if (!lcd_detected())
  3920. break;
  3921. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3922. while(!lcd_clicked()){
  3923. manage_heater();
  3924. manage_inactivity(true);
  3925. lcd_update();
  3926. }
  3927. KEEPALIVE_STATE(IN_HANDLER);
  3928. }
  3929. if (IS_SD_PRINTING)
  3930. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3931. else
  3932. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3933. }
  3934. break;
  3935. #endif
  3936. case 17:
  3937. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3938. enable_x();
  3939. enable_y();
  3940. enable_z();
  3941. enable_e0();
  3942. enable_e1();
  3943. enable_e2();
  3944. break;
  3945. #ifdef SDSUPPORT
  3946. case 20: // M20 - list SD card
  3947. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3948. card.ls();
  3949. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3950. break;
  3951. case 21: // M21 - init SD card
  3952. card.initsd();
  3953. break;
  3954. case 22: //M22 - release SD card
  3955. card.release();
  3956. break;
  3957. case 23: //M23 - Select file
  3958. starpos = (strchr(strchr_pointer + 4,'*'));
  3959. if(starpos!=NULL)
  3960. *(starpos)='\0';
  3961. card.openFile(strchr_pointer + 4,true);
  3962. break;
  3963. case 24: //M24 - Start SD print
  3964. if (!card.paused)
  3965. failstats_reset_print();
  3966. card.startFileprint();
  3967. starttime=millis();
  3968. break;
  3969. case 25: //M25 - Pause SD print
  3970. card.pauseSDPrint();
  3971. break;
  3972. case 26: //M26 - Set SD index
  3973. if(card.cardOK && code_seen('S')) {
  3974. card.setIndex(code_value_long());
  3975. }
  3976. break;
  3977. case 27: //M27 - Get SD status
  3978. card.getStatus();
  3979. break;
  3980. case 28: //M28 - Start SD write
  3981. starpos = (strchr(strchr_pointer + 4,'*'));
  3982. if(starpos != NULL){
  3983. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3984. strchr_pointer = strchr(npos,' ') + 1;
  3985. *(starpos) = '\0';
  3986. }
  3987. card.openFile(strchr_pointer+4,false);
  3988. break;
  3989. case 29: //M29 - Stop SD write
  3990. //processed in write to file routine above
  3991. //card,saving = false;
  3992. break;
  3993. case 30: //M30 <filename> Delete File
  3994. if (card.cardOK){
  3995. card.closefile();
  3996. starpos = (strchr(strchr_pointer + 4,'*'));
  3997. if(starpos != NULL){
  3998. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3999. strchr_pointer = strchr(npos,' ') + 1;
  4000. *(starpos) = '\0';
  4001. }
  4002. card.removeFile(strchr_pointer + 4);
  4003. }
  4004. break;
  4005. case 32: //M32 - Select file and start SD print
  4006. {
  4007. if(card.sdprinting) {
  4008. st_synchronize();
  4009. }
  4010. starpos = (strchr(strchr_pointer + 4,'*'));
  4011. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4012. if(namestartpos==NULL)
  4013. {
  4014. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4015. }
  4016. else
  4017. namestartpos++; //to skip the '!'
  4018. if(starpos!=NULL)
  4019. *(starpos)='\0';
  4020. bool call_procedure=(code_seen('P'));
  4021. if(strchr_pointer>namestartpos)
  4022. call_procedure=false; //false alert, 'P' found within filename
  4023. if( card.cardOK )
  4024. {
  4025. card.openFile(namestartpos,true,!call_procedure);
  4026. if(code_seen('S'))
  4027. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4028. card.setIndex(code_value_long());
  4029. card.startFileprint();
  4030. if(!call_procedure)
  4031. starttime=millis(); //procedure calls count as normal print time.
  4032. }
  4033. } break;
  4034. case 928: //M928 - Start SD write
  4035. starpos = (strchr(strchr_pointer + 5,'*'));
  4036. if(starpos != NULL){
  4037. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4038. strchr_pointer = strchr(npos,' ') + 1;
  4039. *(starpos) = '\0';
  4040. }
  4041. card.openLogFile(strchr_pointer+5);
  4042. break;
  4043. #endif //SDSUPPORT
  4044. case 31: //M31 take time since the start of the SD print or an M109 command
  4045. {
  4046. stoptime=millis();
  4047. char time[30];
  4048. unsigned long t=(stoptime-starttime)/1000;
  4049. int sec,min;
  4050. min=t/60;
  4051. sec=t%60;
  4052. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4053. SERIAL_ECHO_START;
  4054. SERIAL_ECHOLN(time);
  4055. lcd_setstatus(time);
  4056. autotempShutdown();
  4057. }
  4058. break;
  4059. #ifndef _DISABLE_M42_M226
  4060. case 42: //M42 -Change pin status via gcode
  4061. if (code_seen('S'))
  4062. {
  4063. int pin_status = code_value();
  4064. int pin_number = LED_PIN;
  4065. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4066. pin_number = code_value();
  4067. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4068. {
  4069. if (sensitive_pins[i] == pin_number)
  4070. {
  4071. pin_number = -1;
  4072. break;
  4073. }
  4074. }
  4075. #if defined(FAN_PIN) && FAN_PIN > -1
  4076. if (pin_number == FAN_PIN)
  4077. fanSpeed = pin_status;
  4078. #endif
  4079. if (pin_number > -1)
  4080. {
  4081. pinMode(pin_number, OUTPUT);
  4082. digitalWrite(pin_number, pin_status);
  4083. analogWrite(pin_number, pin_status);
  4084. }
  4085. }
  4086. break;
  4087. #endif //_DISABLE_M42_M226
  4088. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4089. // Reset the baby step value and the baby step applied flag.
  4090. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4091. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4092. // Reset the skew and offset in both RAM and EEPROM.
  4093. reset_bed_offset_and_skew();
  4094. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4095. // the planner will not perform any adjustments in the XY plane.
  4096. // Wait for the motors to stop and update the current position with the absolute values.
  4097. world2machine_revert_to_uncorrected();
  4098. break;
  4099. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4100. {
  4101. int8_t verbosity_level = 0;
  4102. bool only_Z = code_seen('Z');
  4103. #ifdef SUPPORT_VERBOSITY
  4104. if (code_seen('V'))
  4105. {
  4106. // Just 'V' without a number counts as V1.
  4107. char c = strchr_pointer[1];
  4108. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4109. }
  4110. #endif //SUPPORT_VERBOSITY
  4111. gcode_M45(only_Z, verbosity_level);
  4112. }
  4113. break;
  4114. /*
  4115. case 46:
  4116. {
  4117. // M46: Prusa3D: Show the assigned IP address.
  4118. uint8_t ip[4];
  4119. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4120. if (hasIP) {
  4121. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4122. SERIAL_ECHO(int(ip[0]));
  4123. SERIAL_ECHOPGM(".");
  4124. SERIAL_ECHO(int(ip[1]));
  4125. SERIAL_ECHOPGM(".");
  4126. SERIAL_ECHO(int(ip[2]));
  4127. SERIAL_ECHOPGM(".");
  4128. SERIAL_ECHO(int(ip[3]));
  4129. SERIAL_ECHOLNPGM("");
  4130. } else {
  4131. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4132. }
  4133. break;
  4134. }
  4135. */
  4136. case 47:
  4137. // M47: Prusa3D: Show end stops dialog on the display.
  4138. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4139. lcd_diag_show_end_stops();
  4140. KEEPALIVE_STATE(IN_HANDLER);
  4141. break;
  4142. #if 0
  4143. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4144. {
  4145. // Disable the default update procedure of the display. We will do a modal dialog.
  4146. lcd_update_enable(false);
  4147. // Let the planner use the uncorrected coordinates.
  4148. mbl.reset();
  4149. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4150. // the planner will not perform any adjustments in the XY plane.
  4151. // Wait for the motors to stop and update the current position with the absolute values.
  4152. world2machine_revert_to_uncorrected();
  4153. // Move the print head close to the bed.
  4154. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4156. st_synchronize();
  4157. // Home in the XY plane.
  4158. set_destination_to_current();
  4159. setup_for_endstop_move();
  4160. home_xy();
  4161. int8_t verbosity_level = 0;
  4162. if (code_seen('V')) {
  4163. // Just 'V' without a number counts as V1.
  4164. char c = strchr_pointer[1];
  4165. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4166. }
  4167. bool success = scan_bed_induction_points(verbosity_level);
  4168. clean_up_after_endstop_move();
  4169. // Print head up.
  4170. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4172. st_synchronize();
  4173. lcd_update_enable(true);
  4174. break;
  4175. }
  4176. #endif
  4177. // M48 Z-Probe repeatability measurement function.
  4178. //
  4179. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4180. //
  4181. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4182. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4183. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4184. // regenerated.
  4185. //
  4186. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4187. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4188. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4189. //
  4190. #ifdef ENABLE_AUTO_BED_LEVELING
  4191. #ifdef Z_PROBE_REPEATABILITY_TEST
  4192. case 48: // M48 Z-Probe repeatability
  4193. {
  4194. #if Z_MIN_PIN == -1
  4195. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4196. #endif
  4197. double sum=0.0;
  4198. double mean=0.0;
  4199. double sigma=0.0;
  4200. double sample_set[50];
  4201. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4202. double X_current, Y_current, Z_current;
  4203. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4204. if (code_seen('V') || code_seen('v')) {
  4205. verbose_level = code_value();
  4206. if (verbose_level<0 || verbose_level>4 ) {
  4207. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4208. goto Sigma_Exit;
  4209. }
  4210. }
  4211. if (verbose_level > 0) {
  4212. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4213. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4214. }
  4215. if (code_seen('n')) {
  4216. n_samples = code_value();
  4217. if (n_samples<4 || n_samples>50 ) {
  4218. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4219. goto Sigma_Exit;
  4220. }
  4221. }
  4222. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4223. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4224. Z_current = st_get_position_mm(Z_AXIS);
  4225. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4226. ext_position = st_get_position_mm(E_AXIS);
  4227. if (code_seen('X') || code_seen('x') ) {
  4228. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4229. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4230. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4231. goto Sigma_Exit;
  4232. }
  4233. }
  4234. if (code_seen('Y') || code_seen('y') ) {
  4235. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4236. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4237. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4238. goto Sigma_Exit;
  4239. }
  4240. }
  4241. if (code_seen('L') || code_seen('l') ) {
  4242. n_legs = code_value();
  4243. if ( n_legs==1 )
  4244. n_legs = 2;
  4245. if ( n_legs<0 || n_legs>15 ) {
  4246. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4247. goto Sigma_Exit;
  4248. }
  4249. }
  4250. //
  4251. // Do all the preliminary setup work. First raise the probe.
  4252. //
  4253. st_synchronize();
  4254. plan_bed_level_matrix.set_to_identity();
  4255. plan_buffer_line( X_current, Y_current, Z_start_location,
  4256. ext_position,
  4257. homing_feedrate[Z_AXIS]/60,
  4258. active_extruder);
  4259. st_synchronize();
  4260. //
  4261. // Now get everything to the specified probe point So we can safely do a probe to
  4262. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4263. // use that as a starting point for each probe.
  4264. //
  4265. if (verbose_level > 2)
  4266. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4267. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4268. ext_position,
  4269. homing_feedrate[X_AXIS]/60,
  4270. active_extruder);
  4271. st_synchronize();
  4272. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4273. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4274. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4275. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4276. //
  4277. // OK, do the inital probe to get us close to the bed.
  4278. // Then retrace the right amount and use that in subsequent probes
  4279. //
  4280. setup_for_endstop_move();
  4281. run_z_probe();
  4282. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4283. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4284. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4285. ext_position,
  4286. homing_feedrate[X_AXIS]/60,
  4287. active_extruder);
  4288. st_synchronize();
  4289. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4290. for( n=0; n<n_samples; n++) {
  4291. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4292. if ( n_legs) {
  4293. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4294. int rotational_direction, l;
  4295. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4296. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4297. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4298. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4299. //SERIAL_ECHOPAIR(" theta: ",theta);
  4300. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4301. //SERIAL_PROTOCOLLNPGM("");
  4302. for( l=0; l<n_legs-1; l++) {
  4303. if (rotational_direction==1)
  4304. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4305. else
  4306. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4307. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4308. if ( radius<0.0 )
  4309. radius = -radius;
  4310. X_current = X_probe_location + cos(theta) * radius;
  4311. Y_current = Y_probe_location + sin(theta) * radius;
  4312. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4313. X_current = X_MIN_POS;
  4314. if ( X_current>X_MAX_POS)
  4315. X_current = X_MAX_POS;
  4316. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4317. Y_current = Y_MIN_POS;
  4318. if ( Y_current>Y_MAX_POS)
  4319. Y_current = Y_MAX_POS;
  4320. if (verbose_level>3 ) {
  4321. SERIAL_ECHOPAIR("x: ", X_current);
  4322. SERIAL_ECHOPAIR("y: ", Y_current);
  4323. SERIAL_PROTOCOLLNPGM("");
  4324. }
  4325. do_blocking_move_to( X_current, Y_current, Z_current );
  4326. }
  4327. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4328. }
  4329. setup_for_endstop_move();
  4330. run_z_probe();
  4331. sample_set[n] = current_position[Z_AXIS];
  4332. //
  4333. // Get the current mean for the data points we have so far
  4334. //
  4335. sum=0.0;
  4336. for( j=0; j<=n; j++) {
  4337. sum = sum + sample_set[j];
  4338. }
  4339. mean = sum / (double (n+1));
  4340. //
  4341. // Now, use that mean to calculate the standard deviation for the
  4342. // data points we have so far
  4343. //
  4344. sum=0.0;
  4345. for( j=0; j<=n; j++) {
  4346. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4347. }
  4348. sigma = sqrt( sum / (double (n+1)) );
  4349. if (verbose_level > 1) {
  4350. SERIAL_PROTOCOL(n+1);
  4351. SERIAL_PROTOCOL(" of ");
  4352. SERIAL_PROTOCOL(n_samples);
  4353. SERIAL_PROTOCOLPGM(" z: ");
  4354. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4355. }
  4356. if (verbose_level > 2) {
  4357. SERIAL_PROTOCOL(" mean: ");
  4358. SERIAL_PROTOCOL_F(mean,6);
  4359. SERIAL_PROTOCOL(" sigma: ");
  4360. SERIAL_PROTOCOL_F(sigma,6);
  4361. }
  4362. if (verbose_level > 0)
  4363. SERIAL_PROTOCOLPGM("\n");
  4364. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4365. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4366. st_synchronize();
  4367. }
  4368. delay(1000);
  4369. clean_up_after_endstop_move();
  4370. // enable_endstops(true);
  4371. if (verbose_level > 0) {
  4372. SERIAL_PROTOCOLPGM("Mean: ");
  4373. SERIAL_PROTOCOL_F(mean, 6);
  4374. SERIAL_PROTOCOLPGM("\n");
  4375. }
  4376. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4377. SERIAL_PROTOCOL_F(sigma, 6);
  4378. SERIAL_PROTOCOLPGM("\n\n");
  4379. Sigma_Exit:
  4380. break;
  4381. }
  4382. #endif // Z_PROBE_REPEATABILITY_TEST
  4383. #endif // ENABLE_AUTO_BED_LEVELING
  4384. case 104: // M104
  4385. if(setTargetedHotend(104)){
  4386. break;
  4387. }
  4388. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4389. setWatch();
  4390. break;
  4391. case 112: // M112 -Emergency Stop
  4392. kill(_n(""), 3);
  4393. break;
  4394. case 140: // M140 set bed temp
  4395. if (code_seen('S')) setTargetBed(code_value());
  4396. break;
  4397. case 105 : // M105
  4398. if(setTargetedHotend(105)){
  4399. break;
  4400. }
  4401. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4402. SERIAL_PROTOCOLPGM("ok T:");
  4403. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4404. SERIAL_PROTOCOLPGM(" /");
  4405. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4406. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4407. SERIAL_PROTOCOLPGM(" B:");
  4408. SERIAL_PROTOCOL_F(degBed(),1);
  4409. SERIAL_PROTOCOLPGM(" /");
  4410. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4411. #endif //TEMP_BED_PIN
  4412. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4413. SERIAL_PROTOCOLPGM(" T");
  4414. SERIAL_PROTOCOL(cur_extruder);
  4415. SERIAL_PROTOCOLPGM(":");
  4416. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4417. SERIAL_PROTOCOLPGM(" /");
  4418. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4419. }
  4420. #else
  4421. SERIAL_ERROR_START;
  4422. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4423. #endif
  4424. SERIAL_PROTOCOLPGM(" @:");
  4425. #ifdef EXTRUDER_WATTS
  4426. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4427. SERIAL_PROTOCOLPGM("W");
  4428. #else
  4429. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4430. #endif
  4431. SERIAL_PROTOCOLPGM(" B@:");
  4432. #ifdef BED_WATTS
  4433. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4434. SERIAL_PROTOCOLPGM("W");
  4435. #else
  4436. SERIAL_PROTOCOL(getHeaterPower(-1));
  4437. #endif
  4438. #ifdef PINDA_THERMISTOR
  4439. SERIAL_PROTOCOLPGM(" P:");
  4440. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4441. #endif //PINDA_THERMISTOR
  4442. #ifdef AMBIENT_THERMISTOR
  4443. SERIAL_PROTOCOLPGM(" A:");
  4444. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4445. #endif //AMBIENT_THERMISTOR
  4446. #ifdef SHOW_TEMP_ADC_VALUES
  4447. {float raw = 0.0;
  4448. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4449. SERIAL_PROTOCOLPGM(" ADC B:");
  4450. SERIAL_PROTOCOL_F(degBed(),1);
  4451. SERIAL_PROTOCOLPGM("C->");
  4452. raw = rawBedTemp();
  4453. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4454. SERIAL_PROTOCOLPGM(" Rb->");
  4455. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4456. SERIAL_PROTOCOLPGM(" Rxb->");
  4457. SERIAL_PROTOCOL_F(raw, 5);
  4458. #endif
  4459. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4460. SERIAL_PROTOCOLPGM(" T");
  4461. SERIAL_PROTOCOL(cur_extruder);
  4462. SERIAL_PROTOCOLPGM(":");
  4463. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4464. SERIAL_PROTOCOLPGM("C->");
  4465. raw = rawHotendTemp(cur_extruder);
  4466. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4467. SERIAL_PROTOCOLPGM(" Rt");
  4468. SERIAL_PROTOCOL(cur_extruder);
  4469. SERIAL_PROTOCOLPGM("->");
  4470. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4471. SERIAL_PROTOCOLPGM(" Rx");
  4472. SERIAL_PROTOCOL(cur_extruder);
  4473. SERIAL_PROTOCOLPGM("->");
  4474. SERIAL_PROTOCOL_F(raw, 5);
  4475. }}
  4476. #endif
  4477. SERIAL_PROTOCOLLN("");
  4478. KEEPALIVE_STATE(NOT_BUSY);
  4479. return;
  4480. break;
  4481. case 109:
  4482. {// M109 - Wait for extruder heater to reach target.
  4483. if(setTargetedHotend(109)){
  4484. break;
  4485. }
  4486. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4487. heating_status = 1;
  4488. if (farm_mode) { prusa_statistics(1); };
  4489. #ifdef AUTOTEMP
  4490. autotemp_enabled=false;
  4491. #endif
  4492. if (code_seen('S')) {
  4493. setTargetHotend(code_value(), tmp_extruder);
  4494. CooldownNoWait = true;
  4495. } else if (code_seen('R')) {
  4496. setTargetHotend(code_value(), tmp_extruder);
  4497. CooldownNoWait = false;
  4498. }
  4499. #ifdef AUTOTEMP
  4500. if (code_seen('S')) autotemp_min=code_value();
  4501. if (code_seen('B')) autotemp_max=code_value();
  4502. if (code_seen('F'))
  4503. {
  4504. autotemp_factor=code_value();
  4505. autotemp_enabled=true;
  4506. }
  4507. #endif
  4508. setWatch();
  4509. codenum = millis();
  4510. /* See if we are heating up or cooling down */
  4511. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4512. KEEPALIVE_STATE(NOT_BUSY);
  4513. cancel_heatup = false;
  4514. wait_for_heater(codenum); //loops until target temperature is reached
  4515. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4516. KEEPALIVE_STATE(IN_HANDLER);
  4517. heating_status = 2;
  4518. if (farm_mode) { prusa_statistics(2); };
  4519. //starttime=millis();
  4520. previous_millis_cmd = millis();
  4521. }
  4522. break;
  4523. case 190: // M190 - Wait for bed heater to reach target.
  4524. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4525. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4526. heating_status = 3;
  4527. if (farm_mode) { prusa_statistics(1); };
  4528. if (code_seen('S'))
  4529. {
  4530. setTargetBed(code_value());
  4531. CooldownNoWait = true;
  4532. }
  4533. else if (code_seen('R'))
  4534. {
  4535. setTargetBed(code_value());
  4536. CooldownNoWait = false;
  4537. }
  4538. codenum = millis();
  4539. cancel_heatup = false;
  4540. target_direction = isHeatingBed(); // true if heating, false if cooling
  4541. KEEPALIVE_STATE(NOT_BUSY);
  4542. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4543. {
  4544. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4545. {
  4546. if (!farm_mode) {
  4547. float tt = degHotend(active_extruder);
  4548. SERIAL_PROTOCOLPGM("T:");
  4549. SERIAL_PROTOCOL(tt);
  4550. SERIAL_PROTOCOLPGM(" E:");
  4551. SERIAL_PROTOCOL((int)active_extruder);
  4552. SERIAL_PROTOCOLPGM(" B:");
  4553. SERIAL_PROTOCOL_F(degBed(), 1);
  4554. SERIAL_PROTOCOLLN("");
  4555. }
  4556. codenum = millis();
  4557. }
  4558. manage_heater();
  4559. manage_inactivity();
  4560. lcd_update();
  4561. }
  4562. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4563. KEEPALIVE_STATE(IN_HANDLER);
  4564. heating_status = 4;
  4565. previous_millis_cmd = millis();
  4566. #endif
  4567. break;
  4568. #if defined(FAN_PIN) && FAN_PIN > -1
  4569. case 106: //M106 Fan On
  4570. if (code_seen('S')){
  4571. fanSpeed=constrain(code_value(),0,255);
  4572. }
  4573. else {
  4574. fanSpeed=255;
  4575. }
  4576. break;
  4577. case 107: //M107 Fan Off
  4578. fanSpeed = 0;
  4579. break;
  4580. #endif //FAN_PIN
  4581. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4582. case 80: // M80 - Turn on Power Supply
  4583. SET_OUTPUT(PS_ON_PIN); //GND
  4584. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4585. // If you have a switch on suicide pin, this is useful
  4586. // if you want to start another print with suicide feature after
  4587. // a print without suicide...
  4588. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4589. SET_OUTPUT(SUICIDE_PIN);
  4590. WRITE(SUICIDE_PIN, HIGH);
  4591. #endif
  4592. #ifdef ULTIPANEL
  4593. powersupply = true;
  4594. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4595. lcd_update();
  4596. #endif
  4597. break;
  4598. #endif
  4599. case 81: // M81 - Turn off Power Supply
  4600. disable_heater();
  4601. st_synchronize();
  4602. disable_e0();
  4603. disable_e1();
  4604. disable_e2();
  4605. finishAndDisableSteppers();
  4606. fanSpeed = 0;
  4607. delay(1000); // Wait a little before to switch off
  4608. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4609. st_synchronize();
  4610. suicide();
  4611. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4612. SET_OUTPUT(PS_ON_PIN);
  4613. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4614. #endif
  4615. #ifdef ULTIPANEL
  4616. powersupply = false;
  4617. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4618. lcd_update();
  4619. #endif
  4620. break;
  4621. case 82:
  4622. axis_relative_modes[3] = false;
  4623. break;
  4624. case 83:
  4625. axis_relative_modes[3] = true;
  4626. break;
  4627. case 18: //compatibility
  4628. case 84: // M84
  4629. if(code_seen('S')){
  4630. stepper_inactive_time = code_value() * 1000;
  4631. }
  4632. else
  4633. {
  4634. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4635. if(all_axis)
  4636. {
  4637. st_synchronize();
  4638. disable_e0();
  4639. disable_e1();
  4640. disable_e2();
  4641. finishAndDisableSteppers();
  4642. }
  4643. else
  4644. {
  4645. st_synchronize();
  4646. if (code_seen('X')) disable_x();
  4647. if (code_seen('Y')) disable_y();
  4648. if (code_seen('Z')) disable_z();
  4649. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4650. if (code_seen('E')) {
  4651. disable_e0();
  4652. disable_e1();
  4653. disable_e2();
  4654. }
  4655. #endif
  4656. }
  4657. }
  4658. snmm_filaments_used = 0;
  4659. break;
  4660. case 85: // M85
  4661. if(code_seen('S')) {
  4662. max_inactive_time = code_value() * 1000;
  4663. }
  4664. break;
  4665. case 92: // M92
  4666. for(int8_t i=0; i < NUM_AXIS; i++)
  4667. {
  4668. if(code_seen(axis_codes[i]))
  4669. {
  4670. if(i == 3) { // E
  4671. float value = code_value();
  4672. if(value < 20.0) {
  4673. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4674. max_jerk[E_AXIS] *= factor;
  4675. max_feedrate[i] *= factor;
  4676. axis_steps_per_sqr_second[i] *= factor;
  4677. }
  4678. axis_steps_per_unit[i] = value;
  4679. }
  4680. else {
  4681. axis_steps_per_unit[i] = code_value();
  4682. }
  4683. }
  4684. }
  4685. break;
  4686. case 110: // M110 - reset line pos
  4687. if (code_seen('N'))
  4688. gcode_LastN = code_value_long();
  4689. break;
  4690. #ifdef HOST_KEEPALIVE_FEATURE
  4691. case 113: // M113 - Get or set Host Keepalive interval
  4692. if (code_seen('S')) {
  4693. host_keepalive_interval = (uint8_t)code_value_short();
  4694. // NOMORE(host_keepalive_interval, 60);
  4695. }
  4696. else {
  4697. SERIAL_ECHO_START;
  4698. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4699. SERIAL_PROTOCOLLN("");
  4700. }
  4701. break;
  4702. #endif
  4703. case 115: // M115
  4704. if (code_seen('V')) {
  4705. // Report the Prusa version number.
  4706. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4707. } else if (code_seen('U')) {
  4708. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4709. // pause the print and ask the user to upgrade the firmware.
  4710. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4711. } else {
  4712. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4713. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4714. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4715. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4716. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4717. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4718. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4719. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4720. SERIAL_ECHOPGM(" UUID:");
  4721. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4722. }
  4723. break;
  4724. /* case 117: // M117 display message
  4725. starpos = (strchr(strchr_pointer + 5,'*'));
  4726. if(starpos!=NULL)
  4727. *(starpos)='\0';
  4728. lcd_setstatus(strchr_pointer + 5);
  4729. break;*/
  4730. case 114: // M114
  4731. gcode_M114();
  4732. break;
  4733. case 120: // M120
  4734. enable_endstops(false) ;
  4735. break;
  4736. case 121: // M121
  4737. enable_endstops(true) ;
  4738. break;
  4739. case 119: // M119
  4740. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4741. SERIAL_PROTOCOLLN("");
  4742. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4743. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4744. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4745. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4746. }else{
  4747. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4748. }
  4749. SERIAL_PROTOCOLLN("");
  4750. #endif
  4751. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4752. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4753. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4754. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4755. }else{
  4756. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4757. }
  4758. SERIAL_PROTOCOLLN("");
  4759. #endif
  4760. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4761. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4762. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4763. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4764. }else{
  4765. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4766. }
  4767. SERIAL_PROTOCOLLN("");
  4768. #endif
  4769. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4770. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4771. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4772. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4773. }else{
  4774. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4775. }
  4776. SERIAL_PROTOCOLLN("");
  4777. #endif
  4778. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4779. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4780. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4781. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4782. }else{
  4783. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4784. }
  4785. SERIAL_PROTOCOLLN("");
  4786. #endif
  4787. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4788. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4789. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4790. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4791. }else{
  4792. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4793. }
  4794. SERIAL_PROTOCOLLN("");
  4795. #endif
  4796. break;
  4797. //TODO: update for all axis, use for loop
  4798. #ifdef BLINKM
  4799. case 150: // M150
  4800. {
  4801. byte red;
  4802. byte grn;
  4803. byte blu;
  4804. if(code_seen('R')) red = code_value();
  4805. if(code_seen('U')) grn = code_value();
  4806. if(code_seen('B')) blu = code_value();
  4807. SendColors(red,grn,blu);
  4808. }
  4809. break;
  4810. #endif //BLINKM
  4811. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4812. {
  4813. tmp_extruder = active_extruder;
  4814. if(code_seen('T')) {
  4815. tmp_extruder = code_value();
  4816. if(tmp_extruder >= EXTRUDERS) {
  4817. SERIAL_ECHO_START;
  4818. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4819. break;
  4820. }
  4821. }
  4822. float area = .0;
  4823. if(code_seen('D')) {
  4824. float diameter = (float)code_value();
  4825. if (diameter == 0.0) {
  4826. // setting any extruder filament size disables volumetric on the assumption that
  4827. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4828. // for all extruders
  4829. volumetric_enabled = false;
  4830. } else {
  4831. filament_size[tmp_extruder] = (float)code_value();
  4832. // make sure all extruders have some sane value for the filament size
  4833. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4834. #if EXTRUDERS > 1
  4835. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4836. #if EXTRUDERS > 2
  4837. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4838. #endif
  4839. #endif
  4840. volumetric_enabled = true;
  4841. }
  4842. } else {
  4843. //reserved for setting filament diameter via UFID or filament measuring device
  4844. break;
  4845. }
  4846. calculate_extruder_multipliers();
  4847. }
  4848. break;
  4849. case 201: // M201
  4850. for(int8_t i=0; i < NUM_AXIS; i++)
  4851. {
  4852. if(code_seen(axis_codes[i]))
  4853. {
  4854. max_acceleration_units_per_sq_second[i] = code_value();
  4855. }
  4856. }
  4857. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4858. reset_acceleration_rates();
  4859. break;
  4860. #if 0 // Not used for Sprinter/grbl gen6
  4861. case 202: // M202
  4862. for(int8_t i=0; i < NUM_AXIS; i++) {
  4863. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4864. }
  4865. break;
  4866. #endif
  4867. case 203: // M203 max feedrate mm/sec
  4868. for(int8_t i=0; i < NUM_AXIS; i++) {
  4869. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4870. }
  4871. break;
  4872. case 204: // M204 acclereration S normal moves T filmanent only moves
  4873. {
  4874. if(code_seen('S')) acceleration = code_value() ;
  4875. if(code_seen('T')) retract_acceleration = code_value() ;
  4876. }
  4877. break;
  4878. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4879. {
  4880. if(code_seen('S')) minimumfeedrate = code_value();
  4881. if(code_seen('T')) mintravelfeedrate = code_value();
  4882. if(code_seen('B')) minsegmenttime = code_value() ;
  4883. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4884. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4885. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4886. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4887. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4888. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4889. }
  4890. break;
  4891. case 206: // M206 additional homing offset
  4892. for(int8_t i=0; i < 3; i++)
  4893. {
  4894. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4895. }
  4896. break;
  4897. #ifdef FWRETRACT
  4898. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4899. {
  4900. if(code_seen('S'))
  4901. {
  4902. retract_length = code_value() ;
  4903. }
  4904. if(code_seen('F'))
  4905. {
  4906. retract_feedrate = code_value()/60 ;
  4907. }
  4908. if(code_seen('Z'))
  4909. {
  4910. retract_zlift = code_value() ;
  4911. }
  4912. }break;
  4913. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4914. {
  4915. if(code_seen('S'))
  4916. {
  4917. retract_recover_length = code_value() ;
  4918. }
  4919. if(code_seen('F'))
  4920. {
  4921. retract_recover_feedrate = code_value()/60 ;
  4922. }
  4923. }break;
  4924. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4925. {
  4926. if(code_seen('S'))
  4927. {
  4928. int t= code_value() ;
  4929. switch(t)
  4930. {
  4931. case 0:
  4932. {
  4933. autoretract_enabled=false;
  4934. retracted[0]=false;
  4935. #if EXTRUDERS > 1
  4936. retracted[1]=false;
  4937. #endif
  4938. #if EXTRUDERS > 2
  4939. retracted[2]=false;
  4940. #endif
  4941. }break;
  4942. case 1:
  4943. {
  4944. autoretract_enabled=true;
  4945. retracted[0]=false;
  4946. #if EXTRUDERS > 1
  4947. retracted[1]=false;
  4948. #endif
  4949. #if EXTRUDERS > 2
  4950. retracted[2]=false;
  4951. #endif
  4952. }break;
  4953. default:
  4954. SERIAL_ECHO_START;
  4955. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4956. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4957. SERIAL_ECHOLNPGM("\"(1)");
  4958. }
  4959. }
  4960. }break;
  4961. #endif // FWRETRACT
  4962. #if EXTRUDERS > 1
  4963. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4964. {
  4965. if(setTargetedHotend(218)){
  4966. break;
  4967. }
  4968. if(code_seen('X'))
  4969. {
  4970. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4971. }
  4972. if(code_seen('Y'))
  4973. {
  4974. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4975. }
  4976. SERIAL_ECHO_START;
  4977. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4978. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4979. {
  4980. SERIAL_ECHO(" ");
  4981. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4982. SERIAL_ECHO(",");
  4983. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4984. }
  4985. SERIAL_ECHOLN("");
  4986. }break;
  4987. #endif
  4988. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4989. {
  4990. if(code_seen('S'))
  4991. {
  4992. feedmultiply = code_value() ;
  4993. }
  4994. }
  4995. break;
  4996. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4997. {
  4998. if(code_seen('S'))
  4999. {
  5000. int tmp_code = code_value();
  5001. if (code_seen('T'))
  5002. {
  5003. if(setTargetedHotend(221)){
  5004. break;
  5005. }
  5006. extruder_multiply[tmp_extruder] = tmp_code;
  5007. }
  5008. else
  5009. {
  5010. extrudemultiply = tmp_code ;
  5011. }
  5012. }
  5013. calculate_extruder_multipliers();
  5014. }
  5015. break;
  5016. #ifndef _DISABLE_M42_M226
  5017. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5018. {
  5019. if(code_seen('P')){
  5020. int pin_number = code_value(); // pin number
  5021. int pin_state = -1; // required pin state - default is inverted
  5022. if(code_seen('S')) pin_state = code_value(); // required pin state
  5023. if(pin_state >= -1 && pin_state <= 1){
  5024. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5025. {
  5026. if (sensitive_pins[i] == pin_number)
  5027. {
  5028. pin_number = -1;
  5029. break;
  5030. }
  5031. }
  5032. if (pin_number > -1)
  5033. {
  5034. int target = LOW;
  5035. st_synchronize();
  5036. pinMode(pin_number, INPUT);
  5037. switch(pin_state){
  5038. case 1:
  5039. target = HIGH;
  5040. break;
  5041. case 0:
  5042. target = LOW;
  5043. break;
  5044. case -1:
  5045. target = !digitalRead(pin_number);
  5046. break;
  5047. }
  5048. while(digitalRead(pin_number) != target){
  5049. manage_heater();
  5050. manage_inactivity();
  5051. lcd_update();
  5052. }
  5053. }
  5054. }
  5055. }
  5056. }
  5057. break;
  5058. #endif //_DISABLE_M42_M226
  5059. #if NUM_SERVOS > 0
  5060. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5061. {
  5062. int servo_index = -1;
  5063. int servo_position = 0;
  5064. if (code_seen('P'))
  5065. servo_index = code_value();
  5066. if (code_seen('S')) {
  5067. servo_position = code_value();
  5068. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5069. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5070. servos[servo_index].attach(0);
  5071. #endif
  5072. servos[servo_index].write(servo_position);
  5073. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5074. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5075. servos[servo_index].detach();
  5076. #endif
  5077. }
  5078. else {
  5079. SERIAL_ECHO_START;
  5080. SERIAL_ECHO("Servo ");
  5081. SERIAL_ECHO(servo_index);
  5082. SERIAL_ECHOLN(" out of range");
  5083. }
  5084. }
  5085. else if (servo_index >= 0) {
  5086. SERIAL_PROTOCOL(_T(MSG_OK));
  5087. SERIAL_PROTOCOL(" Servo ");
  5088. SERIAL_PROTOCOL(servo_index);
  5089. SERIAL_PROTOCOL(": ");
  5090. SERIAL_PROTOCOL(servos[servo_index].read());
  5091. SERIAL_PROTOCOLLN("");
  5092. }
  5093. }
  5094. break;
  5095. #endif // NUM_SERVOS > 0
  5096. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5097. case 300: // M300
  5098. {
  5099. int beepS = code_seen('S') ? code_value() : 110;
  5100. int beepP = code_seen('P') ? code_value() : 1000;
  5101. if (beepS > 0)
  5102. {
  5103. #if BEEPER > 0
  5104. tone(BEEPER, beepS);
  5105. delay(beepP);
  5106. noTone(BEEPER);
  5107. #elif defined(ULTRALCD)
  5108. lcd_buzz(beepS, beepP);
  5109. #elif defined(LCD_USE_I2C_BUZZER)
  5110. lcd_buzz(beepP, beepS);
  5111. #endif
  5112. }
  5113. else
  5114. {
  5115. delay(beepP);
  5116. }
  5117. }
  5118. break;
  5119. #endif // M300
  5120. #ifdef PIDTEMP
  5121. case 301: // M301
  5122. {
  5123. if(code_seen('P')) Kp = code_value();
  5124. if(code_seen('I')) Ki = scalePID_i(code_value());
  5125. if(code_seen('D')) Kd = scalePID_d(code_value());
  5126. #ifdef PID_ADD_EXTRUSION_RATE
  5127. if(code_seen('C')) Kc = code_value();
  5128. #endif
  5129. updatePID();
  5130. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5131. SERIAL_PROTOCOL(" p:");
  5132. SERIAL_PROTOCOL(Kp);
  5133. SERIAL_PROTOCOL(" i:");
  5134. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5135. SERIAL_PROTOCOL(" d:");
  5136. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5137. #ifdef PID_ADD_EXTRUSION_RATE
  5138. SERIAL_PROTOCOL(" c:");
  5139. //Kc does not have scaling applied above, or in resetting defaults
  5140. SERIAL_PROTOCOL(Kc);
  5141. #endif
  5142. SERIAL_PROTOCOLLN("");
  5143. }
  5144. break;
  5145. #endif //PIDTEMP
  5146. #ifdef PIDTEMPBED
  5147. case 304: // M304
  5148. {
  5149. if(code_seen('P')) bedKp = code_value();
  5150. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5151. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5152. updatePID();
  5153. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5154. SERIAL_PROTOCOL(" p:");
  5155. SERIAL_PROTOCOL(bedKp);
  5156. SERIAL_PROTOCOL(" i:");
  5157. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5158. SERIAL_PROTOCOL(" d:");
  5159. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5160. SERIAL_PROTOCOLLN("");
  5161. }
  5162. break;
  5163. #endif //PIDTEMP
  5164. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5165. {
  5166. #ifdef CHDK
  5167. SET_OUTPUT(CHDK);
  5168. WRITE(CHDK, HIGH);
  5169. chdkHigh = millis();
  5170. chdkActive = true;
  5171. #else
  5172. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5173. const uint8_t NUM_PULSES=16;
  5174. const float PULSE_LENGTH=0.01524;
  5175. for(int i=0; i < NUM_PULSES; i++) {
  5176. WRITE(PHOTOGRAPH_PIN, HIGH);
  5177. _delay_ms(PULSE_LENGTH);
  5178. WRITE(PHOTOGRAPH_PIN, LOW);
  5179. _delay_ms(PULSE_LENGTH);
  5180. }
  5181. delay(7.33);
  5182. for(int i=0; i < NUM_PULSES; i++) {
  5183. WRITE(PHOTOGRAPH_PIN, HIGH);
  5184. _delay_ms(PULSE_LENGTH);
  5185. WRITE(PHOTOGRAPH_PIN, LOW);
  5186. _delay_ms(PULSE_LENGTH);
  5187. }
  5188. #endif
  5189. #endif //chdk end if
  5190. }
  5191. break;
  5192. #ifdef DOGLCD
  5193. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5194. {
  5195. if (code_seen('C')) {
  5196. lcd_setcontrast( ((int)code_value())&63 );
  5197. }
  5198. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5199. SERIAL_PROTOCOL(lcd_contrast);
  5200. SERIAL_PROTOCOLLN("");
  5201. }
  5202. break;
  5203. #endif
  5204. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5205. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5206. {
  5207. float temp = .0;
  5208. if (code_seen('S')) temp=code_value();
  5209. set_extrude_min_temp(temp);
  5210. }
  5211. break;
  5212. #endif
  5213. case 303: // M303 PID autotune
  5214. {
  5215. float temp = 150.0;
  5216. int e=0;
  5217. int c=5;
  5218. if (code_seen('E')) e=code_value();
  5219. if (e<0)
  5220. temp=70;
  5221. if (code_seen('S')) temp=code_value();
  5222. if (code_seen('C')) c=code_value();
  5223. PID_autotune(temp, e, c);
  5224. }
  5225. break;
  5226. case 400: // M400 finish all moves
  5227. {
  5228. st_synchronize();
  5229. }
  5230. break;
  5231. case 500: // M500 Store settings in EEPROM
  5232. {
  5233. Config_StoreSettings(EEPROM_OFFSET);
  5234. }
  5235. break;
  5236. case 501: // M501 Read settings from EEPROM
  5237. {
  5238. Config_RetrieveSettings(EEPROM_OFFSET);
  5239. }
  5240. break;
  5241. case 502: // M502 Revert to default settings
  5242. {
  5243. Config_ResetDefault();
  5244. }
  5245. break;
  5246. case 503: // M503 print settings currently in memory
  5247. {
  5248. Config_PrintSettings();
  5249. }
  5250. break;
  5251. case 509: //M509 Force language selection
  5252. {
  5253. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  5254. SERIAL_ECHO_START;
  5255. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5256. }
  5257. break;
  5258. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5259. case 540:
  5260. {
  5261. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5262. }
  5263. break;
  5264. #endif
  5265. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5266. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5267. {
  5268. float value;
  5269. if (code_seen('Z'))
  5270. {
  5271. value = code_value();
  5272. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5273. {
  5274. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5275. SERIAL_ECHO_START;
  5276. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5277. SERIAL_PROTOCOLLN("");
  5278. }
  5279. else
  5280. {
  5281. SERIAL_ECHO_START;
  5282. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5283. SERIAL_ECHORPGM(MSG_Z_MIN);
  5284. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5285. SERIAL_ECHORPGM(MSG_Z_MAX);
  5286. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5287. SERIAL_PROTOCOLLN("");
  5288. }
  5289. }
  5290. else
  5291. {
  5292. SERIAL_ECHO_START;
  5293. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5294. SERIAL_ECHO(-zprobe_zoffset);
  5295. SERIAL_PROTOCOLLN("");
  5296. }
  5297. break;
  5298. }
  5299. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5300. #ifdef FILAMENTCHANGEENABLE
  5301. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5302. {
  5303. #ifdef PAT9125
  5304. bool old_fsensor_enabled = fsensor_enabled;
  5305. fsensor_enabled = false; //temporary solution for unexpected restarting
  5306. #endif //PAT9125
  5307. st_synchronize();
  5308. float target[4];
  5309. float lastpos[4];
  5310. if (farm_mode)
  5311. {
  5312. prusa_statistics(22);
  5313. }
  5314. feedmultiplyBckp=feedmultiply;
  5315. int8_t TooLowZ = 0;
  5316. float HotendTempBckp = degTargetHotend(active_extruder);
  5317. int fanSpeedBckp = fanSpeed;
  5318. target[X_AXIS]=current_position[X_AXIS];
  5319. target[Y_AXIS]=current_position[Y_AXIS];
  5320. target[Z_AXIS]=current_position[Z_AXIS];
  5321. target[E_AXIS]=current_position[E_AXIS];
  5322. lastpos[X_AXIS]=current_position[X_AXIS];
  5323. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5324. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5325. lastpos[E_AXIS]=current_position[E_AXIS];
  5326. //Restract extruder
  5327. if(code_seen('E'))
  5328. {
  5329. target[E_AXIS]+= code_value();
  5330. }
  5331. else
  5332. {
  5333. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5334. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5335. #endif
  5336. }
  5337. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5338. //Lift Z
  5339. if(code_seen('Z'))
  5340. {
  5341. target[Z_AXIS]+= code_value();
  5342. }
  5343. else
  5344. {
  5345. #ifdef FILAMENTCHANGE_ZADD
  5346. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5347. if(target[Z_AXIS] < 10){
  5348. target[Z_AXIS]+= 10 ;
  5349. TooLowZ = 1;
  5350. }else{
  5351. TooLowZ = 0;
  5352. }
  5353. #endif
  5354. }
  5355. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5356. //Move XY to side
  5357. if(code_seen('X'))
  5358. {
  5359. target[X_AXIS]+= code_value();
  5360. }
  5361. else
  5362. {
  5363. #ifdef FILAMENTCHANGE_XPOS
  5364. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5365. #endif
  5366. }
  5367. if(code_seen('Y'))
  5368. {
  5369. target[Y_AXIS]= code_value();
  5370. }
  5371. else
  5372. {
  5373. #ifdef FILAMENTCHANGE_YPOS
  5374. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5375. #endif
  5376. }
  5377. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5378. st_synchronize();
  5379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5380. uint8_t cnt = 0;
  5381. int counterBeep = 0;
  5382. fanSpeed = 0;
  5383. unsigned long waiting_start_time = millis();
  5384. uint8_t wait_for_user_state = 0;
  5385. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5386. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5387. //cnt++;
  5388. manage_heater();
  5389. manage_inactivity(true);
  5390. /*#ifdef SNMM
  5391. target[E_AXIS] += 0.002;
  5392. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5393. #endif // SNMM*/
  5394. //if (cnt == 0)
  5395. {
  5396. #if BEEPER > 0
  5397. if (counterBeep == 500) {
  5398. counterBeep = 0;
  5399. }
  5400. SET_OUTPUT(BEEPER);
  5401. if (counterBeep == 0) {
  5402. WRITE(BEEPER, HIGH);
  5403. }
  5404. if (counterBeep == 20) {
  5405. WRITE(BEEPER, LOW);
  5406. }
  5407. counterBeep++;
  5408. #else
  5409. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5410. lcd_buzz(1000 / 6, 100);
  5411. #else
  5412. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5413. #endif
  5414. #endif
  5415. }
  5416. switch (wait_for_user_state) {
  5417. case 0:
  5418. delay_keep_alive(4);
  5419. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5420. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5421. wait_for_user_state = 1;
  5422. setTargetHotend(0, 0);
  5423. setTargetHotend(0, 1);
  5424. setTargetHotend(0, 2);
  5425. st_synchronize();
  5426. disable_e0();
  5427. disable_e1();
  5428. disable_e2();
  5429. }
  5430. break;
  5431. case 1:
  5432. delay_keep_alive(4);
  5433. if (lcd_clicked()) {
  5434. setTargetHotend(HotendTempBckp, active_extruder);
  5435. lcd_wait_for_heater();
  5436. wait_for_user_state = 2;
  5437. }
  5438. break;
  5439. case 2:
  5440. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5441. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5442. waiting_start_time = millis();
  5443. wait_for_user_state = 0;
  5444. }
  5445. else {
  5446. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5447. lcd.setCursor(1, 4);
  5448. lcd.print(ftostr3(degHotend(active_extruder)));
  5449. }
  5450. break;
  5451. }
  5452. }
  5453. WRITE(BEEPER, LOW);
  5454. lcd_change_fil_state = 0;
  5455. // Unload filament
  5456. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5457. KEEPALIVE_STATE(IN_HANDLER);
  5458. custom_message = true;
  5459. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5460. if (code_seen('L'))
  5461. {
  5462. target[E_AXIS] += code_value();
  5463. }
  5464. else
  5465. {
  5466. #ifdef SNMM
  5467. #else
  5468. #ifdef FILAMENTCHANGE_FINALRETRACT
  5469. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5470. #endif
  5471. #endif // SNMM
  5472. }
  5473. #ifdef SNMM
  5474. target[E_AXIS] += 12;
  5475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5476. target[E_AXIS] += 6;
  5477. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5478. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5479. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5480. st_synchronize();
  5481. target[E_AXIS] += (FIL_COOLING);
  5482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5483. target[E_AXIS] += (FIL_COOLING*-1);
  5484. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5485. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5487. st_synchronize();
  5488. #else
  5489. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5490. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5491. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5492. st_synchronize();
  5493. #ifdef TMC2130
  5494. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5495. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5496. #else
  5497. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5498. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5499. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5500. #endif //TMC2130
  5501. target[E_AXIS] -= 45;
  5502. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5503. st_synchronize();
  5504. target[E_AXIS] -= 15;
  5505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5506. st_synchronize();
  5507. target[E_AXIS] -= 20;
  5508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5509. st_synchronize();
  5510. #ifdef TMC2130
  5511. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5512. #else
  5513. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5514. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5515. else st_current_set(2, tmp_motor_loud[2]);
  5516. #endif //TMC2130
  5517. #endif // SNMM
  5518. //finish moves
  5519. st_synchronize();
  5520. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5521. //disable extruder steppers so filament can be removed
  5522. disable_e0();
  5523. disable_e1();
  5524. disable_e2();
  5525. delay(100);
  5526. WRITE(BEEPER, HIGH);
  5527. counterBeep = 0;
  5528. while(!lcd_clicked() && (counterBeep < 50)) {
  5529. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5530. delay_keep_alive(100);
  5531. counterBeep++;
  5532. }
  5533. WRITE(BEEPER, LOW);
  5534. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5535. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5536. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5537. //lcd_return_to_status();
  5538. lcd_update_enable(true);
  5539. //Wait for user to insert filament
  5540. lcd_wait_interact();
  5541. //load_filament_time = millis();
  5542. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5543. #ifdef PAT9125
  5544. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5545. #endif //PAT9125
  5546. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5547. while(!lcd_clicked())
  5548. {
  5549. manage_heater();
  5550. manage_inactivity(true);
  5551. #ifdef PAT9125
  5552. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5553. {
  5554. tone(BEEPER, 1000);
  5555. delay_keep_alive(50);
  5556. noTone(BEEPER);
  5557. break;
  5558. }
  5559. #endif //PAT9125
  5560. /*#ifdef SNMM
  5561. target[E_AXIS] += 0.002;
  5562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5563. #endif // SNMM*/
  5564. }
  5565. #ifdef PAT9125
  5566. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5567. #endif //PAT9125
  5568. //WRITE(BEEPER, LOW);
  5569. KEEPALIVE_STATE(IN_HANDLER);
  5570. #ifdef SNMM
  5571. display_loading();
  5572. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5573. do {
  5574. target[E_AXIS] += 0.002;
  5575. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5576. delay_keep_alive(2);
  5577. } while (!lcd_clicked());
  5578. KEEPALIVE_STATE(IN_HANDLER);
  5579. /*if (millis() - load_filament_time > 2) {
  5580. load_filament_time = millis();
  5581. target[E_AXIS] += 0.001;
  5582. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5583. }*/
  5584. //Filament inserted
  5585. //Feed the filament to the end of nozzle quickly
  5586. st_synchronize();
  5587. target[E_AXIS] += bowden_length[snmm_extruder];
  5588. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5589. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5591. target[E_AXIS] += 40;
  5592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5593. target[E_AXIS] += 10;
  5594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5595. #else
  5596. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5598. #endif // SNMM
  5599. //Extrude some filament
  5600. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5601. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5602. //Wait for user to check the state
  5603. lcd_change_fil_state = 0;
  5604. lcd_loading_filament();
  5605. tone(BEEPER, 500);
  5606. delay_keep_alive(50);
  5607. noTone(BEEPER);
  5608. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5609. lcd_change_fil_state = 0;
  5610. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5611. lcd_alright();
  5612. KEEPALIVE_STATE(IN_HANDLER);
  5613. switch(lcd_change_fil_state){
  5614. // Filament failed to load so load it again
  5615. case 2:
  5616. #ifdef SNMM
  5617. display_loading();
  5618. do {
  5619. target[E_AXIS] += 0.002;
  5620. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5621. delay_keep_alive(2);
  5622. } while (!lcd_clicked());
  5623. st_synchronize();
  5624. target[E_AXIS] += bowden_length[snmm_extruder];
  5625. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5626. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5627. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5628. target[E_AXIS] += 40;
  5629. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5630. target[E_AXIS] += 10;
  5631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5632. #else
  5633. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5634. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5635. #endif
  5636. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5638. lcd_loading_filament();
  5639. break;
  5640. // Filament loaded properly but color is not clear
  5641. case 3:
  5642. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5643. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5644. lcd_loading_color();
  5645. break;
  5646. // Everything good
  5647. default:
  5648. lcd_change_success();
  5649. lcd_update_enable(true);
  5650. break;
  5651. }
  5652. }
  5653. //Not let's go back to print
  5654. fanSpeed = fanSpeedBckp;
  5655. //Feed a little of filament to stabilize pressure
  5656. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5658. //Retract
  5659. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5660. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5661. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5662. //Move XY back
  5663. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5664. //Move Z back
  5665. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5666. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5667. //Unretract
  5668. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5669. //Set E position to original
  5670. plan_set_e_position(lastpos[E_AXIS]);
  5671. //Recover feed rate
  5672. feedmultiply=feedmultiplyBckp;
  5673. char cmd[9];
  5674. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5675. enquecommand(cmd);
  5676. lcd_setstatuspgm(_T(WELCOME_MSG));
  5677. custom_message = false;
  5678. custom_message_type = 0;
  5679. #ifdef PAT9125
  5680. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5681. if (fsensor_M600)
  5682. {
  5683. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5684. st_synchronize();
  5685. while (!is_buffer_empty())
  5686. {
  5687. process_commands();
  5688. cmdqueue_pop_front();
  5689. }
  5690. fsensor_enable();
  5691. fsensor_restore_print_and_continue();
  5692. }
  5693. #endif //PAT9125
  5694. }
  5695. break;
  5696. #endif //FILAMENTCHANGEENABLE
  5697. case 601: {
  5698. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5699. }
  5700. break;
  5701. case 602: {
  5702. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5703. }
  5704. break;
  5705. #ifdef PINDA_THERMISTOR
  5706. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5707. {
  5708. int set_target_pinda = 0;
  5709. if (code_seen('S')) {
  5710. set_target_pinda = code_value();
  5711. }
  5712. else {
  5713. break;
  5714. }
  5715. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5716. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5717. SERIAL_PROTOCOL(set_target_pinda);
  5718. SERIAL_PROTOCOLLN("");
  5719. codenum = millis();
  5720. cancel_heatup = false;
  5721. bool is_pinda_cooling = false;
  5722. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5723. is_pinda_cooling = true;
  5724. }
  5725. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5726. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5727. {
  5728. SERIAL_PROTOCOLPGM("P:");
  5729. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5730. SERIAL_PROTOCOLPGM("/");
  5731. SERIAL_PROTOCOL(set_target_pinda);
  5732. SERIAL_PROTOCOLLN("");
  5733. codenum = millis();
  5734. }
  5735. manage_heater();
  5736. manage_inactivity();
  5737. lcd_update();
  5738. }
  5739. LCD_MESSAGERPGM(_T(MSG_OK));
  5740. break;
  5741. }
  5742. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5743. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5744. uint8_t cal_status = calibration_status_pinda();
  5745. int16_t usteps = 0;
  5746. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5747. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5748. for (uint8_t i = 0; i < 6; i++)
  5749. {
  5750. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5751. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5752. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5753. SERIAL_PROTOCOLPGM(", ");
  5754. SERIAL_PROTOCOL(35 + (i * 5));
  5755. SERIAL_PROTOCOLPGM(", ");
  5756. SERIAL_PROTOCOL(usteps);
  5757. SERIAL_PROTOCOLPGM(", ");
  5758. SERIAL_PROTOCOL(mm * 1000);
  5759. SERIAL_PROTOCOLLN("");
  5760. }
  5761. }
  5762. else if (code_seen('!')) { // ! - Set factory default values
  5763. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5764. int16_t z_shift = 8; //40C - 20um - 8usteps
  5765. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5766. z_shift = 24; //45C - 60um - 24usteps
  5767. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5768. z_shift = 48; //50C - 120um - 48usteps
  5769. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5770. z_shift = 80; //55C - 200um - 80usteps
  5771. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5772. z_shift = 120; //60C - 300um - 120usteps
  5773. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5774. SERIAL_PROTOCOLLN("factory restored");
  5775. }
  5776. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5777. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5778. int16_t z_shift = 0;
  5779. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5780. SERIAL_PROTOCOLLN("zerorized");
  5781. }
  5782. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5783. int16_t usteps = code_value();
  5784. if (code_seen('I')) {
  5785. byte index = code_value();
  5786. if ((index >= 0) && (index < 5)) {
  5787. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5788. SERIAL_PROTOCOLLN("OK");
  5789. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5790. for (uint8_t i = 0; i < 6; i++)
  5791. {
  5792. usteps = 0;
  5793. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5794. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5795. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5796. SERIAL_PROTOCOLPGM(", ");
  5797. SERIAL_PROTOCOL(35 + (i * 5));
  5798. SERIAL_PROTOCOLPGM(", ");
  5799. SERIAL_PROTOCOL(usteps);
  5800. SERIAL_PROTOCOLPGM(", ");
  5801. SERIAL_PROTOCOL(mm * 1000);
  5802. SERIAL_PROTOCOLLN("");
  5803. }
  5804. }
  5805. }
  5806. }
  5807. else {
  5808. SERIAL_PROTOCOLPGM("no valid command");
  5809. }
  5810. break;
  5811. #endif //PINDA_THERMISTOR
  5812. #ifdef LIN_ADVANCE
  5813. case 900: // M900: Set LIN_ADVANCE options.
  5814. gcode_M900();
  5815. break;
  5816. #endif
  5817. case 907: // M907 Set digital trimpot motor current using axis codes.
  5818. {
  5819. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5820. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5821. if(code_seen('B')) st_current_set(4,code_value());
  5822. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5823. #endif
  5824. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5825. if(code_seen('X')) st_current_set(0, code_value());
  5826. #endif
  5827. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5828. if(code_seen('Z')) st_current_set(1, code_value());
  5829. #endif
  5830. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5831. if(code_seen('E')) st_current_set(2, code_value());
  5832. #endif
  5833. }
  5834. break;
  5835. case 908: // M908 Control digital trimpot directly.
  5836. {
  5837. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5838. uint8_t channel,current;
  5839. if(code_seen('P')) channel=code_value();
  5840. if(code_seen('S')) current=code_value();
  5841. digitalPotWrite(channel, current);
  5842. #endif
  5843. }
  5844. break;
  5845. #ifdef TMC2130
  5846. case 910: // M910 TMC2130 init
  5847. {
  5848. tmc2130_init();
  5849. }
  5850. break;
  5851. case 911: // M911 Set TMC2130 holding currents
  5852. {
  5853. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5854. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5855. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5856. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5857. }
  5858. break;
  5859. case 912: // M912 Set TMC2130 running currents
  5860. {
  5861. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5862. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5863. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5864. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5865. }
  5866. break;
  5867. case 913: // M913 Print TMC2130 currents
  5868. {
  5869. tmc2130_print_currents();
  5870. }
  5871. break;
  5872. case 914: // M914 Set normal mode
  5873. {
  5874. tmc2130_mode = TMC2130_MODE_NORMAL;
  5875. tmc2130_init();
  5876. }
  5877. break;
  5878. case 915: // M915 Set silent mode
  5879. {
  5880. tmc2130_mode = TMC2130_MODE_SILENT;
  5881. tmc2130_init();
  5882. }
  5883. break;
  5884. case 916: // M916 Set sg_thrs
  5885. {
  5886. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5887. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5888. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5889. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5890. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5891. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5892. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5893. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5894. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5895. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5896. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5897. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5898. }
  5899. break;
  5900. case 917: // M917 Set TMC2130 pwm_ampl
  5901. {
  5902. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5903. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5904. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5905. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5906. }
  5907. break;
  5908. case 918: // M918 Set TMC2130 pwm_grad
  5909. {
  5910. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5911. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5912. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5913. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5914. }
  5915. break;
  5916. #endif //TMC2130
  5917. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5918. {
  5919. #ifdef TMC2130
  5920. if(code_seen('E'))
  5921. {
  5922. uint16_t res_new = code_value();
  5923. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5924. {
  5925. st_synchronize();
  5926. uint8_t axis = E_AXIS;
  5927. uint16_t res = tmc2130_get_res(axis);
  5928. tmc2130_set_res(axis, res_new);
  5929. if (res_new > res)
  5930. {
  5931. uint16_t fac = (res_new / res);
  5932. axis_steps_per_unit[axis] *= fac;
  5933. position[E_AXIS] *= fac;
  5934. }
  5935. else
  5936. {
  5937. uint16_t fac = (res / res_new);
  5938. axis_steps_per_unit[axis] /= fac;
  5939. position[E_AXIS] /= fac;
  5940. }
  5941. }
  5942. }
  5943. #else //TMC2130
  5944. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5945. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5946. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5947. if(code_seen('B')) microstep_mode(4,code_value());
  5948. microstep_readings();
  5949. #endif
  5950. #endif //TMC2130
  5951. }
  5952. break;
  5953. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5954. {
  5955. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5956. if(code_seen('S')) switch((int)code_value())
  5957. {
  5958. case 1:
  5959. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5960. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5961. break;
  5962. case 2:
  5963. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5964. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5965. break;
  5966. }
  5967. microstep_readings();
  5968. #endif
  5969. }
  5970. break;
  5971. case 701: //M701: load filament
  5972. {
  5973. gcode_M701();
  5974. }
  5975. break;
  5976. case 702:
  5977. {
  5978. #ifdef SNMM
  5979. if (code_seen('U')) {
  5980. extr_unload_used(); //unload all filaments which were used in current print
  5981. }
  5982. else if (code_seen('C')) {
  5983. extr_unload(); //unload just current filament
  5984. }
  5985. else {
  5986. extr_unload_all(); //unload all filaments
  5987. }
  5988. #else
  5989. #ifdef PAT9125
  5990. bool old_fsensor_enabled = fsensor_enabled;
  5991. fsensor_enabled = false;
  5992. #endif //PAT9125
  5993. custom_message = true;
  5994. custom_message_type = 2;
  5995. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5996. // extr_unload2();
  5997. current_position[E_AXIS] -= 45;
  5998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5999. st_synchronize();
  6000. current_position[E_AXIS] -= 15;
  6001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6002. st_synchronize();
  6003. current_position[E_AXIS] -= 20;
  6004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6005. st_synchronize();
  6006. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6007. //disable extruder steppers so filament can be removed
  6008. disable_e0();
  6009. disable_e1();
  6010. disable_e2();
  6011. delay(100);
  6012. WRITE(BEEPER, HIGH);
  6013. uint8_t counterBeep = 0;
  6014. while (!lcd_clicked() && (counterBeep < 50)) {
  6015. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6016. delay_keep_alive(100);
  6017. counterBeep++;
  6018. }
  6019. WRITE(BEEPER, LOW);
  6020. st_synchronize();
  6021. while (lcd_clicked()) delay_keep_alive(100);
  6022. lcd_update_enable(true);
  6023. lcd_setstatuspgm(_T(WELCOME_MSG));
  6024. custom_message = false;
  6025. custom_message_type = 0;
  6026. #ifdef PAT9125
  6027. fsensor_enabled = old_fsensor_enabled;
  6028. #endif //PAT9125
  6029. #endif
  6030. }
  6031. break;
  6032. case 999: // M999: Restart after being stopped
  6033. Stopped = false;
  6034. lcd_reset_alert_level();
  6035. gcode_LastN = Stopped_gcode_LastN;
  6036. FlushSerialRequestResend();
  6037. break;
  6038. default:
  6039. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6040. }
  6041. } // end if(code_seen('M')) (end of M codes)
  6042. else if(code_seen('T'))
  6043. {
  6044. int index;
  6045. st_synchronize();
  6046. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6047. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6048. SERIAL_ECHOLNPGM("Invalid T code.");
  6049. }
  6050. else {
  6051. if (*(strchr_pointer + index) == '?') {
  6052. tmp_extruder = choose_extruder_menu();
  6053. }
  6054. else {
  6055. tmp_extruder = code_value();
  6056. }
  6057. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6058. #ifdef SNMM
  6059. #ifdef LIN_ADVANCE
  6060. if (snmm_extruder != tmp_extruder)
  6061. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6062. #endif
  6063. snmm_extruder = tmp_extruder;
  6064. delay(100);
  6065. disable_e0();
  6066. disable_e1();
  6067. disable_e2();
  6068. pinMode(E_MUX0_PIN, OUTPUT);
  6069. pinMode(E_MUX1_PIN, OUTPUT);
  6070. delay(100);
  6071. SERIAL_ECHO_START;
  6072. SERIAL_ECHO("T:");
  6073. SERIAL_ECHOLN((int)tmp_extruder);
  6074. switch (tmp_extruder) {
  6075. case 1:
  6076. WRITE(E_MUX0_PIN, HIGH);
  6077. WRITE(E_MUX1_PIN, LOW);
  6078. break;
  6079. case 2:
  6080. WRITE(E_MUX0_PIN, LOW);
  6081. WRITE(E_MUX1_PIN, HIGH);
  6082. break;
  6083. case 3:
  6084. WRITE(E_MUX0_PIN, HIGH);
  6085. WRITE(E_MUX1_PIN, HIGH);
  6086. break;
  6087. default:
  6088. WRITE(E_MUX0_PIN, LOW);
  6089. WRITE(E_MUX1_PIN, LOW);
  6090. break;
  6091. }
  6092. delay(100);
  6093. #else
  6094. if (tmp_extruder >= EXTRUDERS) {
  6095. SERIAL_ECHO_START;
  6096. SERIAL_ECHOPGM("T");
  6097. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6098. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6099. }
  6100. else {
  6101. boolean make_move = false;
  6102. if (code_seen('F')) {
  6103. make_move = true;
  6104. next_feedrate = code_value();
  6105. if (next_feedrate > 0.0) {
  6106. feedrate = next_feedrate;
  6107. }
  6108. }
  6109. #if EXTRUDERS > 1
  6110. if (tmp_extruder != active_extruder) {
  6111. // Save current position to return to after applying extruder offset
  6112. memcpy(destination, current_position, sizeof(destination));
  6113. // Offset extruder (only by XY)
  6114. int i;
  6115. for (i = 0; i < 2; i++) {
  6116. current_position[i] = current_position[i] -
  6117. extruder_offset[i][active_extruder] +
  6118. extruder_offset[i][tmp_extruder];
  6119. }
  6120. // Set the new active extruder and position
  6121. active_extruder = tmp_extruder;
  6122. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6123. // Move to the old position if 'F' was in the parameters
  6124. if (make_move && Stopped == false) {
  6125. prepare_move();
  6126. }
  6127. }
  6128. #endif
  6129. SERIAL_ECHO_START;
  6130. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6131. SERIAL_PROTOCOLLN((int)active_extruder);
  6132. }
  6133. #endif
  6134. }
  6135. } // end if(code_seen('T')) (end of T codes)
  6136. #ifdef DEBUG_DCODES
  6137. else if (code_seen('D')) // D codes (debug)
  6138. {
  6139. switch((int)code_value())
  6140. {
  6141. case -1: // D-1 - Endless loop
  6142. dcode__1(); break;
  6143. case 0: // D0 - Reset
  6144. dcode_0(); break;
  6145. case 1: // D1 - Clear EEPROM
  6146. dcode_1(); break;
  6147. case 2: // D2 - Read/Write RAM
  6148. dcode_2(); break;
  6149. case 3: // D3 - Read/Write EEPROM
  6150. dcode_3(); break;
  6151. case 4: // D4 - Read/Write PIN
  6152. dcode_4(); break;
  6153. case 5: // D5 - Read/Write FLASH
  6154. // dcode_5(); break;
  6155. break;
  6156. case 6: // D6 - Read/Write external FLASH
  6157. dcode_6(); break;
  6158. case 7: // D7 - Read/Write Bootloader
  6159. dcode_7(); break;
  6160. case 8: // D8 - Read/Write PINDA
  6161. dcode_8(); break;
  6162. case 9: // D9 - Read/Write ADC
  6163. dcode_9(); break;
  6164. case 10: // D10 - XYZ calibration = OK
  6165. dcode_10(); break;
  6166. #ifdef TMC2130
  6167. case 2130: // D9125 - TMC2130
  6168. dcode_2130(); break;
  6169. #endif //TMC2130
  6170. #ifdef PAT9125
  6171. case 9125: // D9125 - PAT9125
  6172. dcode_9125(); break;
  6173. #endif //PAT9125
  6174. }
  6175. }
  6176. #endif //DEBUG_DCODES
  6177. else
  6178. {
  6179. SERIAL_ECHO_START;
  6180. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6181. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6182. SERIAL_ECHOLNPGM("\"(2)");
  6183. }
  6184. KEEPALIVE_STATE(NOT_BUSY);
  6185. ClearToSend();
  6186. }
  6187. void FlushSerialRequestResend()
  6188. {
  6189. //char cmdbuffer[bufindr][100]="Resend:";
  6190. MYSERIAL.flush();
  6191. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6192. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6193. previous_millis_cmd = millis();
  6194. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6195. }
  6196. // Confirm the execution of a command, if sent from a serial line.
  6197. // Execution of a command from a SD card will not be confirmed.
  6198. void ClearToSend()
  6199. {
  6200. previous_millis_cmd = millis();
  6201. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6202. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6203. }
  6204. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6205. void update_currents() {
  6206. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6207. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6208. float tmp_motor[3];
  6209. //SERIAL_ECHOLNPGM("Currents updated: ");
  6210. if (destination[Z_AXIS] < Z_SILENT) {
  6211. //SERIAL_ECHOLNPGM("LOW");
  6212. for (uint8_t i = 0; i < 3; i++) {
  6213. st_current_set(i, current_low[i]);
  6214. /*MYSERIAL.print(int(i));
  6215. SERIAL_ECHOPGM(": ");
  6216. MYSERIAL.println(current_low[i]);*/
  6217. }
  6218. }
  6219. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6220. //SERIAL_ECHOLNPGM("HIGH");
  6221. for (uint8_t i = 0; i < 3; i++) {
  6222. st_current_set(i, current_high[i]);
  6223. /*MYSERIAL.print(int(i));
  6224. SERIAL_ECHOPGM(": ");
  6225. MYSERIAL.println(current_high[i]);*/
  6226. }
  6227. }
  6228. else {
  6229. for (uint8_t i = 0; i < 3; i++) {
  6230. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6231. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6232. st_current_set(i, tmp_motor[i]);
  6233. /*MYSERIAL.print(int(i));
  6234. SERIAL_ECHOPGM(": ");
  6235. MYSERIAL.println(tmp_motor[i]);*/
  6236. }
  6237. }
  6238. }
  6239. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6240. void get_coordinates()
  6241. {
  6242. bool seen[4]={false,false,false,false};
  6243. for(int8_t i=0; i < NUM_AXIS; i++) {
  6244. if(code_seen(axis_codes[i]))
  6245. {
  6246. bool relative = axis_relative_modes[i] || relative_mode;
  6247. destination[i] = (float)code_value();
  6248. if (i == E_AXIS) {
  6249. float emult = extruder_multiplier[active_extruder];
  6250. if (emult != 1.) {
  6251. if (! relative) {
  6252. destination[i] -= current_position[i];
  6253. relative = true;
  6254. }
  6255. destination[i] *= emult;
  6256. }
  6257. }
  6258. if (relative)
  6259. destination[i] += current_position[i];
  6260. seen[i]=true;
  6261. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6262. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6263. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6264. }
  6265. else destination[i] = current_position[i]; //Are these else lines really needed?
  6266. }
  6267. if(code_seen('F')) {
  6268. next_feedrate = code_value();
  6269. #ifdef MAX_SILENT_FEEDRATE
  6270. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6271. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6272. #endif //MAX_SILENT_FEEDRATE
  6273. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6274. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6275. {
  6276. // float e_max_speed =
  6277. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6278. }
  6279. }
  6280. }
  6281. void get_arc_coordinates()
  6282. {
  6283. #ifdef SF_ARC_FIX
  6284. bool relative_mode_backup = relative_mode;
  6285. relative_mode = true;
  6286. #endif
  6287. get_coordinates();
  6288. #ifdef SF_ARC_FIX
  6289. relative_mode=relative_mode_backup;
  6290. #endif
  6291. if(code_seen('I')) {
  6292. offset[0] = code_value();
  6293. }
  6294. else {
  6295. offset[0] = 0.0;
  6296. }
  6297. if(code_seen('J')) {
  6298. offset[1] = code_value();
  6299. }
  6300. else {
  6301. offset[1] = 0.0;
  6302. }
  6303. }
  6304. void clamp_to_software_endstops(float target[3])
  6305. {
  6306. #ifdef DEBUG_DISABLE_SWLIMITS
  6307. return;
  6308. #endif //DEBUG_DISABLE_SWLIMITS
  6309. world2machine_clamp(target[0], target[1]);
  6310. // Clamp the Z coordinate.
  6311. if (min_software_endstops) {
  6312. float negative_z_offset = 0;
  6313. #ifdef ENABLE_AUTO_BED_LEVELING
  6314. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6315. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6316. #endif
  6317. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6318. }
  6319. if (max_software_endstops) {
  6320. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6321. }
  6322. }
  6323. #ifdef MESH_BED_LEVELING
  6324. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6325. float dx = x - current_position[X_AXIS];
  6326. float dy = y - current_position[Y_AXIS];
  6327. float dz = z - current_position[Z_AXIS];
  6328. int n_segments = 0;
  6329. if (mbl.active) {
  6330. float len = abs(dx) + abs(dy);
  6331. if (len > 0)
  6332. // Split to 3cm segments or shorter.
  6333. n_segments = int(ceil(len / 30.f));
  6334. }
  6335. if (n_segments > 1) {
  6336. float de = e - current_position[E_AXIS];
  6337. for (int i = 1; i < n_segments; ++ i) {
  6338. float t = float(i) / float(n_segments);
  6339. plan_buffer_line(
  6340. current_position[X_AXIS] + t * dx,
  6341. current_position[Y_AXIS] + t * dy,
  6342. current_position[Z_AXIS] + t * dz,
  6343. current_position[E_AXIS] + t * de,
  6344. feed_rate, extruder);
  6345. }
  6346. }
  6347. // The rest of the path.
  6348. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6349. current_position[X_AXIS] = x;
  6350. current_position[Y_AXIS] = y;
  6351. current_position[Z_AXIS] = z;
  6352. current_position[E_AXIS] = e;
  6353. }
  6354. #endif // MESH_BED_LEVELING
  6355. void prepare_move()
  6356. {
  6357. clamp_to_software_endstops(destination);
  6358. previous_millis_cmd = millis();
  6359. // Do not use feedmultiply for E or Z only moves
  6360. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6361. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6362. }
  6363. else {
  6364. #ifdef MESH_BED_LEVELING
  6365. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6366. #else
  6367. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6368. #endif
  6369. }
  6370. for(int8_t i=0; i < NUM_AXIS; i++) {
  6371. current_position[i] = destination[i];
  6372. }
  6373. }
  6374. void prepare_arc_move(char isclockwise) {
  6375. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6376. // Trace the arc
  6377. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6378. // As far as the parser is concerned, the position is now == target. In reality the
  6379. // motion control system might still be processing the action and the real tool position
  6380. // in any intermediate location.
  6381. for(int8_t i=0; i < NUM_AXIS; i++) {
  6382. current_position[i] = destination[i];
  6383. }
  6384. previous_millis_cmd = millis();
  6385. }
  6386. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6387. #if defined(FAN_PIN)
  6388. #if CONTROLLERFAN_PIN == FAN_PIN
  6389. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6390. #endif
  6391. #endif
  6392. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6393. unsigned long lastMotorCheck = 0;
  6394. void controllerFan()
  6395. {
  6396. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6397. {
  6398. lastMotorCheck = millis();
  6399. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6400. #if EXTRUDERS > 2
  6401. || !READ(E2_ENABLE_PIN)
  6402. #endif
  6403. #if EXTRUDER > 1
  6404. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6405. || !READ(X2_ENABLE_PIN)
  6406. #endif
  6407. || !READ(E1_ENABLE_PIN)
  6408. #endif
  6409. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6410. {
  6411. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6412. }
  6413. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6414. {
  6415. digitalWrite(CONTROLLERFAN_PIN, 0);
  6416. analogWrite(CONTROLLERFAN_PIN, 0);
  6417. }
  6418. else
  6419. {
  6420. // allows digital or PWM fan output to be used (see M42 handling)
  6421. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6422. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6423. }
  6424. }
  6425. }
  6426. #endif
  6427. #ifdef TEMP_STAT_LEDS
  6428. static bool blue_led = false;
  6429. static bool red_led = false;
  6430. static uint32_t stat_update = 0;
  6431. void handle_status_leds(void) {
  6432. float max_temp = 0.0;
  6433. if(millis() > stat_update) {
  6434. stat_update += 500; // Update every 0.5s
  6435. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6436. max_temp = max(max_temp, degHotend(cur_extruder));
  6437. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6438. }
  6439. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6440. max_temp = max(max_temp, degTargetBed());
  6441. max_temp = max(max_temp, degBed());
  6442. #endif
  6443. if((max_temp > 55.0) && (red_led == false)) {
  6444. digitalWrite(STAT_LED_RED, 1);
  6445. digitalWrite(STAT_LED_BLUE, 0);
  6446. red_led = true;
  6447. blue_led = false;
  6448. }
  6449. if((max_temp < 54.0) && (blue_led == false)) {
  6450. digitalWrite(STAT_LED_RED, 0);
  6451. digitalWrite(STAT_LED_BLUE, 1);
  6452. red_led = false;
  6453. blue_led = true;
  6454. }
  6455. }
  6456. }
  6457. #endif
  6458. #ifdef SAFETYTIMER
  6459. /**
  6460. * @brief Turn off heating after 30 minutes of inactivity
  6461. *
  6462. * Full screen blocking notification message is shown after heater turning off.
  6463. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6464. * damage print.
  6465. */
  6466. static void handleSafetyTimer()
  6467. {
  6468. #if (EXTRUDERS > 1)
  6469. #error Implemented only for one extruder.
  6470. #endif //(EXTRUDERS > 1)
  6471. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6472. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6473. {
  6474. safetyTimer.stop();
  6475. }
  6476. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6477. {
  6478. safetyTimer.start();
  6479. }
  6480. else if (safetyTimer.expired(1800000ul)) //30 min
  6481. {
  6482. setTargetBed(0);
  6483. setTargetHotend(0, 0);
  6484. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6485. }
  6486. }
  6487. #endif //SAFETYTIMER
  6488. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6489. {
  6490. #ifdef PAT9125
  6491. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6492. {
  6493. if (fsensor_autoload_enabled)
  6494. {
  6495. if (fsensor_check_autoload())
  6496. {
  6497. if (degHotend0() > EXTRUDE_MINTEMP)
  6498. {
  6499. fsensor_autoload_check_stop();
  6500. tone(BEEPER, 1000);
  6501. delay_keep_alive(50);
  6502. noTone(BEEPER);
  6503. loading_flag = true;
  6504. enquecommand_front_P((PSTR("M701")));
  6505. }
  6506. else
  6507. {
  6508. lcd_update_enable(false);
  6509. lcd_implementation_clear();
  6510. lcd.setCursor(0, 0);
  6511. lcd_printPGM(_T(MSG_ERROR));
  6512. lcd.setCursor(0, 2);
  6513. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6514. delay(2000);
  6515. lcd_implementation_clear();
  6516. lcd_update_enable(true);
  6517. }
  6518. }
  6519. }
  6520. else
  6521. fsensor_autoload_check_start();
  6522. }
  6523. else
  6524. if (fsensor_autoload_enabled)
  6525. fsensor_autoload_check_stop();
  6526. #endif //PAT9125
  6527. #ifdef SAFETYTIMER
  6528. handleSafetyTimer();
  6529. #endif //SAFETYTIMER
  6530. #if defined(KILL_PIN) && KILL_PIN > -1
  6531. static int killCount = 0; // make the inactivity button a bit less responsive
  6532. const int KILL_DELAY = 10000;
  6533. #endif
  6534. if(buflen < (BUFSIZE-1)){
  6535. get_command();
  6536. }
  6537. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6538. if(max_inactive_time)
  6539. kill(_n(""), 4);
  6540. if(stepper_inactive_time) {
  6541. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6542. {
  6543. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6544. disable_x();
  6545. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6546. disable_y();
  6547. disable_z();
  6548. disable_e0();
  6549. disable_e1();
  6550. disable_e2();
  6551. }
  6552. }
  6553. }
  6554. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6555. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6556. {
  6557. chdkActive = false;
  6558. WRITE(CHDK, LOW);
  6559. }
  6560. #endif
  6561. #if defined(KILL_PIN) && KILL_PIN > -1
  6562. // Check if the kill button was pressed and wait just in case it was an accidental
  6563. // key kill key press
  6564. // -------------------------------------------------------------------------------
  6565. if( 0 == READ(KILL_PIN) )
  6566. {
  6567. killCount++;
  6568. }
  6569. else if (killCount > 0)
  6570. {
  6571. killCount--;
  6572. }
  6573. // Exceeded threshold and we can confirm that it was not accidental
  6574. // KILL the machine
  6575. // ----------------------------------------------------------------
  6576. if ( killCount >= KILL_DELAY)
  6577. {
  6578. kill("", 5);
  6579. }
  6580. #endif
  6581. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6582. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6583. #endif
  6584. #ifdef EXTRUDER_RUNOUT_PREVENT
  6585. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6586. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6587. {
  6588. bool oldstatus=READ(E0_ENABLE_PIN);
  6589. enable_e0();
  6590. float oldepos=current_position[E_AXIS];
  6591. float oldedes=destination[E_AXIS];
  6592. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6593. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6594. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6595. current_position[E_AXIS]=oldepos;
  6596. destination[E_AXIS]=oldedes;
  6597. plan_set_e_position(oldepos);
  6598. previous_millis_cmd=millis();
  6599. st_synchronize();
  6600. WRITE(E0_ENABLE_PIN,oldstatus);
  6601. }
  6602. #endif
  6603. #ifdef TEMP_STAT_LEDS
  6604. handle_status_leds();
  6605. #endif
  6606. check_axes_activity();
  6607. }
  6608. void kill(const char *full_screen_message, unsigned char id)
  6609. {
  6610. SERIAL_ECHOPGM("KILL: ");
  6611. MYSERIAL.println(int(id));
  6612. //return;
  6613. cli(); // Stop interrupts
  6614. disable_heater();
  6615. disable_x();
  6616. // SERIAL_ECHOLNPGM("kill - disable Y");
  6617. disable_y();
  6618. disable_z();
  6619. disable_e0();
  6620. disable_e1();
  6621. disable_e2();
  6622. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6623. pinMode(PS_ON_PIN,INPUT);
  6624. #endif
  6625. SERIAL_ERROR_START;
  6626. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6627. if (full_screen_message != NULL) {
  6628. SERIAL_ERRORLNRPGM(full_screen_message);
  6629. lcd_display_message_fullscreen_P(full_screen_message);
  6630. } else {
  6631. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6632. }
  6633. // FMC small patch to update the LCD before ending
  6634. sei(); // enable interrupts
  6635. for ( int i=5; i--; lcd_update())
  6636. {
  6637. delay(200);
  6638. }
  6639. cli(); // disable interrupts
  6640. suicide();
  6641. while(1)
  6642. {
  6643. #ifdef WATCHDOG
  6644. wdt_reset();
  6645. #endif //WATCHDOG
  6646. /* Intentionally left empty */
  6647. } // Wait for reset
  6648. }
  6649. void Stop()
  6650. {
  6651. disable_heater();
  6652. if(Stopped == false) {
  6653. Stopped = true;
  6654. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6655. SERIAL_ERROR_START;
  6656. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6657. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6658. }
  6659. }
  6660. bool IsStopped() { return Stopped; };
  6661. #ifdef FAST_PWM_FAN
  6662. void setPwmFrequency(uint8_t pin, int val)
  6663. {
  6664. val &= 0x07;
  6665. switch(digitalPinToTimer(pin))
  6666. {
  6667. #if defined(TCCR0A)
  6668. case TIMER0A:
  6669. case TIMER0B:
  6670. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6671. // TCCR0B |= val;
  6672. break;
  6673. #endif
  6674. #if defined(TCCR1A)
  6675. case TIMER1A:
  6676. case TIMER1B:
  6677. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6678. // TCCR1B |= val;
  6679. break;
  6680. #endif
  6681. #if defined(TCCR2)
  6682. case TIMER2:
  6683. case TIMER2:
  6684. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6685. TCCR2 |= val;
  6686. break;
  6687. #endif
  6688. #if defined(TCCR2A)
  6689. case TIMER2A:
  6690. case TIMER2B:
  6691. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6692. TCCR2B |= val;
  6693. break;
  6694. #endif
  6695. #if defined(TCCR3A)
  6696. case TIMER3A:
  6697. case TIMER3B:
  6698. case TIMER3C:
  6699. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6700. TCCR3B |= val;
  6701. break;
  6702. #endif
  6703. #if defined(TCCR4A)
  6704. case TIMER4A:
  6705. case TIMER4B:
  6706. case TIMER4C:
  6707. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6708. TCCR4B |= val;
  6709. break;
  6710. #endif
  6711. #if defined(TCCR5A)
  6712. case TIMER5A:
  6713. case TIMER5B:
  6714. case TIMER5C:
  6715. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6716. TCCR5B |= val;
  6717. break;
  6718. #endif
  6719. }
  6720. }
  6721. #endif //FAST_PWM_FAN
  6722. bool setTargetedHotend(int code){
  6723. tmp_extruder = active_extruder;
  6724. if(code_seen('T')) {
  6725. tmp_extruder = code_value();
  6726. if(tmp_extruder >= EXTRUDERS) {
  6727. SERIAL_ECHO_START;
  6728. switch(code){
  6729. case 104:
  6730. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6731. break;
  6732. case 105:
  6733. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6734. break;
  6735. case 109:
  6736. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6737. break;
  6738. case 218:
  6739. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6740. break;
  6741. case 221:
  6742. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6743. break;
  6744. }
  6745. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6746. return true;
  6747. }
  6748. }
  6749. return false;
  6750. }
  6751. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6752. {
  6753. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6754. {
  6755. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6756. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6757. }
  6758. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6759. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6760. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6761. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6762. total_filament_used = 0;
  6763. }
  6764. float calculate_extruder_multiplier(float diameter) {
  6765. float out = 1.f;
  6766. if (volumetric_enabled && diameter > 0.f) {
  6767. float area = M_PI * diameter * diameter * 0.25;
  6768. out = 1.f / area;
  6769. }
  6770. if (extrudemultiply != 100)
  6771. out *= float(extrudemultiply) * 0.01f;
  6772. return out;
  6773. }
  6774. void calculate_extruder_multipliers() {
  6775. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6776. #if EXTRUDERS > 1
  6777. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6778. #if EXTRUDERS > 2
  6779. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6780. #endif
  6781. #endif
  6782. }
  6783. void delay_keep_alive(unsigned int ms)
  6784. {
  6785. for (;;) {
  6786. manage_heater();
  6787. // Manage inactivity, but don't disable steppers on timeout.
  6788. manage_inactivity(true);
  6789. lcd_update();
  6790. if (ms == 0)
  6791. break;
  6792. else if (ms >= 50) {
  6793. delay(50);
  6794. ms -= 50;
  6795. } else {
  6796. delay(ms);
  6797. ms = 0;
  6798. }
  6799. }
  6800. }
  6801. void wait_for_heater(long codenum) {
  6802. #ifdef TEMP_RESIDENCY_TIME
  6803. long residencyStart;
  6804. residencyStart = -1;
  6805. /* continue to loop until we have reached the target temp
  6806. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6807. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6808. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6809. #else
  6810. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6811. #endif //TEMP_RESIDENCY_TIME
  6812. if ((millis() - codenum) > 1000UL)
  6813. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6814. if (!farm_mode) {
  6815. SERIAL_PROTOCOLPGM("T:");
  6816. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6817. SERIAL_PROTOCOLPGM(" E:");
  6818. SERIAL_PROTOCOL((int)tmp_extruder);
  6819. #ifdef TEMP_RESIDENCY_TIME
  6820. SERIAL_PROTOCOLPGM(" W:");
  6821. if (residencyStart > -1)
  6822. {
  6823. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6824. SERIAL_PROTOCOLLN(codenum);
  6825. }
  6826. else
  6827. {
  6828. SERIAL_PROTOCOLLN("?");
  6829. }
  6830. }
  6831. #else
  6832. SERIAL_PROTOCOLLN("");
  6833. #endif
  6834. codenum = millis();
  6835. }
  6836. manage_heater();
  6837. manage_inactivity();
  6838. lcd_update();
  6839. #ifdef TEMP_RESIDENCY_TIME
  6840. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6841. or when current temp falls outside the hysteresis after target temp was reached */
  6842. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6843. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6844. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6845. {
  6846. residencyStart = millis();
  6847. }
  6848. #endif //TEMP_RESIDENCY_TIME
  6849. }
  6850. }
  6851. void check_babystep() {
  6852. int babystep_z;
  6853. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6854. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6855. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6856. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6857. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6858. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6859. lcd_update_enable(true);
  6860. }
  6861. }
  6862. #ifdef DIS
  6863. void d_setup()
  6864. {
  6865. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6866. pinMode(D_DATA, INPUT_PULLUP);
  6867. pinMode(D_REQUIRE, OUTPUT);
  6868. digitalWrite(D_REQUIRE, HIGH);
  6869. }
  6870. float d_ReadData()
  6871. {
  6872. int digit[13];
  6873. String mergeOutput;
  6874. float output;
  6875. digitalWrite(D_REQUIRE, HIGH);
  6876. for (int i = 0; i<13; i++)
  6877. {
  6878. for (int j = 0; j < 4; j++)
  6879. {
  6880. while (digitalRead(D_DATACLOCK) == LOW) {}
  6881. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6882. bitWrite(digit[i], j, digitalRead(D_DATA));
  6883. }
  6884. }
  6885. digitalWrite(D_REQUIRE, LOW);
  6886. mergeOutput = "";
  6887. output = 0;
  6888. for (int r = 5; r <= 10; r++) //Merge digits
  6889. {
  6890. mergeOutput += digit[r];
  6891. }
  6892. output = mergeOutput.toFloat();
  6893. if (digit[4] == 8) //Handle sign
  6894. {
  6895. output *= -1;
  6896. }
  6897. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6898. {
  6899. output /= 10;
  6900. }
  6901. return output;
  6902. }
  6903. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6904. int t1 = 0;
  6905. int t_delay = 0;
  6906. int digit[13];
  6907. int m;
  6908. char str[3];
  6909. //String mergeOutput;
  6910. char mergeOutput[15];
  6911. float output;
  6912. int mesh_point = 0; //index number of calibration point
  6913. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6914. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6915. float mesh_home_z_search = 4;
  6916. float row[x_points_num];
  6917. int ix = 0;
  6918. int iy = 0;
  6919. char* filename_wldsd = "wldsd.txt";
  6920. char data_wldsd[70];
  6921. char numb_wldsd[10];
  6922. d_setup();
  6923. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6924. // We don't know where we are! HOME!
  6925. // Push the commands to the front of the message queue in the reverse order!
  6926. // There shall be always enough space reserved for these commands.
  6927. repeatcommand_front(); // repeat G80 with all its parameters
  6928. enquecommand_front_P((PSTR("G28 W0")));
  6929. enquecommand_front_P((PSTR("G1 Z5")));
  6930. return;
  6931. }
  6932. bool custom_message_old = custom_message;
  6933. unsigned int custom_message_type_old = custom_message_type;
  6934. unsigned int custom_message_state_old = custom_message_state;
  6935. custom_message = true;
  6936. custom_message_type = 1;
  6937. custom_message_state = (x_points_num * y_points_num) + 10;
  6938. lcd_update(1);
  6939. mbl.reset();
  6940. babystep_undo();
  6941. card.openFile(filename_wldsd, false);
  6942. current_position[Z_AXIS] = mesh_home_z_search;
  6943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6944. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6945. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6946. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6947. setup_for_endstop_move(false);
  6948. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6949. SERIAL_PROTOCOL(x_points_num);
  6950. SERIAL_PROTOCOLPGM(",");
  6951. SERIAL_PROTOCOL(y_points_num);
  6952. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6953. SERIAL_PROTOCOL(mesh_home_z_search);
  6954. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6955. SERIAL_PROTOCOL(x_dimension);
  6956. SERIAL_PROTOCOLPGM(",");
  6957. SERIAL_PROTOCOL(y_dimension);
  6958. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6959. while (mesh_point != x_points_num * y_points_num) {
  6960. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6961. iy = mesh_point / x_points_num;
  6962. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6963. float z0 = 0.f;
  6964. current_position[Z_AXIS] = mesh_home_z_search;
  6965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6966. st_synchronize();
  6967. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6968. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6970. st_synchronize();
  6971. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6972. break;
  6973. card.closefile();
  6974. }
  6975. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6976. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6977. //strcat(data_wldsd, numb_wldsd);
  6978. //MYSERIAL.println(data_wldsd);
  6979. //delay(1000);
  6980. //delay(3000);
  6981. //t1 = millis();
  6982. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6983. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6984. memset(digit, 0, sizeof(digit));
  6985. //cli();
  6986. digitalWrite(D_REQUIRE, LOW);
  6987. for (int i = 0; i<13; i++)
  6988. {
  6989. //t1 = millis();
  6990. for (int j = 0; j < 4; j++)
  6991. {
  6992. while (digitalRead(D_DATACLOCK) == LOW) {}
  6993. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6994. bitWrite(digit[i], j, digitalRead(D_DATA));
  6995. }
  6996. //t_delay = (millis() - t1);
  6997. //SERIAL_PROTOCOLPGM(" ");
  6998. //SERIAL_PROTOCOL_F(t_delay, 5);
  6999. //SERIAL_PROTOCOLPGM(" ");
  7000. }
  7001. //sei();
  7002. digitalWrite(D_REQUIRE, HIGH);
  7003. mergeOutput[0] = '\0';
  7004. output = 0;
  7005. for (int r = 5; r <= 10; r++) //Merge digits
  7006. {
  7007. sprintf(str, "%d", digit[r]);
  7008. strcat(mergeOutput, str);
  7009. }
  7010. output = atof(mergeOutput);
  7011. if (digit[4] == 8) //Handle sign
  7012. {
  7013. output *= -1;
  7014. }
  7015. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7016. {
  7017. output *= 0.1;
  7018. }
  7019. //output = d_ReadData();
  7020. //row[ix] = current_position[Z_AXIS];
  7021. memset(data_wldsd, 0, sizeof(data_wldsd));
  7022. for (int i = 0; i <3; i++) {
  7023. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7024. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7025. strcat(data_wldsd, numb_wldsd);
  7026. strcat(data_wldsd, ";");
  7027. }
  7028. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7029. dtostrf(output, 8, 5, numb_wldsd);
  7030. strcat(data_wldsd, numb_wldsd);
  7031. //strcat(data_wldsd, ";");
  7032. card.write_command(data_wldsd);
  7033. //row[ix] = d_ReadData();
  7034. row[ix] = output; // current_position[Z_AXIS];
  7035. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7036. for (int i = 0; i < x_points_num; i++) {
  7037. SERIAL_PROTOCOLPGM(" ");
  7038. SERIAL_PROTOCOL_F(row[i], 5);
  7039. }
  7040. SERIAL_PROTOCOLPGM("\n");
  7041. }
  7042. custom_message_state--;
  7043. mesh_point++;
  7044. lcd_update(1);
  7045. }
  7046. card.closefile();
  7047. }
  7048. #endif
  7049. void temp_compensation_start() {
  7050. custom_message = true;
  7051. custom_message_type = 5;
  7052. custom_message_state = PINDA_HEAT_T + 1;
  7053. lcd_update(2);
  7054. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7055. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7056. }
  7057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7058. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7059. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7060. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7062. st_synchronize();
  7063. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7064. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7065. delay_keep_alive(1000);
  7066. custom_message_state = PINDA_HEAT_T - i;
  7067. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7068. else lcd_update(1);
  7069. }
  7070. custom_message_type = 0;
  7071. custom_message_state = 0;
  7072. custom_message = false;
  7073. }
  7074. void temp_compensation_apply() {
  7075. int i_add;
  7076. int compensation_value;
  7077. int z_shift = 0;
  7078. float z_shift_mm;
  7079. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7080. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7081. i_add = (target_temperature_bed - 60) / 10;
  7082. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7083. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7084. }else {
  7085. //interpolation
  7086. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7087. }
  7088. SERIAL_PROTOCOLPGM("\n");
  7089. SERIAL_PROTOCOLPGM("Z shift applied:");
  7090. MYSERIAL.print(z_shift_mm);
  7091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7092. st_synchronize();
  7093. plan_set_z_position(current_position[Z_AXIS]);
  7094. }
  7095. else {
  7096. //we have no temp compensation data
  7097. }
  7098. }
  7099. float temp_comp_interpolation(float inp_temperature) {
  7100. //cubic spline interpolation
  7101. int n, i, j, k;
  7102. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7103. int shift[10];
  7104. int temp_C[10];
  7105. n = 6; //number of measured points
  7106. shift[0] = 0;
  7107. for (i = 0; i < n; i++) {
  7108. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7109. temp_C[i] = 50 + i * 10; //temperature in C
  7110. #ifdef PINDA_THERMISTOR
  7111. temp_C[i] = 35 + i * 5; //temperature in C
  7112. #else
  7113. temp_C[i] = 50 + i * 10; //temperature in C
  7114. #endif
  7115. x[i] = (float)temp_C[i];
  7116. f[i] = (float)shift[i];
  7117. }
  7118. if (inp_temperature < x[0]) return 0;
  7119. for (i = n - 1; i>0; i--) {
  7120. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7121. h[i - 1] = x[i] - x[i - 1];
  7122. }
  7123. //*********** formation of h, s , f matrix **************
  7124. for (i = 1; i<n - 1; i++) {
  7125. m[i][i] = 2 * (h[i - 1] + h[i]);
  7126. if (i != 1) {
  7127. m[i][i - 1] = h[i - 1];
  7128. m[i - 1][i] = h[i - 1];
  7129. }
  7130. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7131. }
  7132. //*********** forward elimination **************
  7133. for (i = 1; i<n - 2; i++) {
  7134. temp = (m[i + 1][i] / m[i][i]);
  7135. for (j = 1; j <= n - 1; j++)
  7136. m[i + 1][j] -= temp*m[i][j];
  7137. }
  7138. //*********** backward substitution *********
  7139. for (i = n - 2; i>0; i--) {
  7140. sum = 0;
  7141. for (j = i; j <= n - 2; j++)
  7142. sum += m[i][j] * s[j];
  7143. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7144. }
  7145. for (i = 0; i<n - 1; i++)
  7146. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7147. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7148. b = s[i] / 2;
  7149. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7150. d = f[i];
  7151. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7152. }
  7153. return sum;
  7154. }
  7155. #ifdef PINDA_THERMISTOR
  7156. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7157. {
  7158. if (!temp_cal_active) return 0;
  7159. if (!calibration_status_pinda()) return 0;
  7160. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7161. }
  7162. #endif //PINDA_THERMISTOR
  7163. void long_pause() //long pause print
  7164. {
  7165. st_synchronize();
  7166. //save currently set parameters to global variables
  7167. saved_feedmultiply = feedmultiply;
  7168. HotendTempBckp = degTargetHotend(active_extruder);
  7169. fanSpeedBckp = fanSpeed;
  7170. start_pause_print = millis();
  7171. //save position
  7172. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7173. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7174. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7175. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7176. //retract
  7177. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7179. //lift z
  7180. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7181. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7183. //set nozzle target temperature to 0
  7184. setTargetHotend(0, 0);
  7185. setTargetHotend(0, 1);
  7186. setTargetHotend(0, 2);
  7187. //Move XY to side
  7188. current_position[X_AXIS] = X_PAUSE_POS;
  7189. current_position[Y_AXIS] = Y_PAUSE_POS;
  7190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7191. // Turn off the print fan
  7192. fanSpeed = 0;
  7193. st_synchronize();
  7194. }
  7195. void serialecho_temperatures() {
  7196. float tt = degHotend(active_extruder);
  7197. SERIAL_PROTOCOLPGM("T:");
  7198. SERIAL_PROTOCOL(tt);
  7199. SERIAL_PROTOCOLPGM(" E:");
  7200. SERIAL_PROTOCOL((int)active_extruder);
  7201. SERIAL_PROTOCOLPGM(" B:");
  7202. SERIAL_PROTOCOL_F(degBed(), 1);
  7203. SERIAL_PROTOCOLLN("");
  7204. }
  7205. extern uint32_t sdpos_atomic;
  7206. #ifdef UVLO_SUPPORT
  7207. void uvlo_()
  7208. {
  7209. unsigned long time_start = millis();
  7210. bool sd_print = card.sdprinting;
  7211. // Conserve power as soon as possible.
  7212. disable_x();
  7213. disable_y();
  7214. #ifdef TMC2130
  7215. tmc2130_set_current_h(Z_AXIS, 20);
  7216. tmc2130_set_current_r(Z_AXIS, 20);
  7217. tmc2130_set_current_h(E_AXIS, 20);
  7218. tmc2130_set_current_r(E_AXIS, 20);
  7219. #endif //TMC2130
  7220. // Indicate that the interrupt has been triggered.
  7221. // SERIAL_ECHOLNPGM("UVLO");
  7222. // Read out the current Z motor microstep counter. This will be later used
  7223. // for reaching the zero full step before powering off.
  7224. uint16_t z_microsteps = 0;
  7225. #ifdef TMC2130
  7226. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7227. #endif //TMC2130
  7228. // Calculate the file position, from which to resume this print.
  7229. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7230. {
  7231. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7232. sd_position -= sdlen_planner;
  7233. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7234. sd_position -= sdlen_cmdqueue;
  7235. if (sd_position < 0) sd_position = 0;
  7236. }
  7237. // Backup the feedrate in mm/min.
  7238. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7239. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7240. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7241. // are in action.
  7242. planner_abort_hard();
  7243. // Store the current extruder position.
  7244. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7245. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7246. // Clean the input command queue.
  7247. cmdqueue_reset();
  7248. card.sdprinting = false;
  7249. // card.closefile();
  7250. // Enable stepper driver interrupt to move Z axis.
  7251. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7252. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7253. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7254. sei();
  7255. plan_buffer_line(
  7256. current_position[X_AXIS],
  7257. current_position[Y_AXIS],
  7258. current_position[Z_AXIS],
  7259. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7260. 95, active_extruder);
  7261. st_synchronize();
  7262. disable_e0();
  7263. plan_buffer_line(
  7264. current_position[X_AXIS],
  7265. current_position[Y_AXIS],
  7266. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7267. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7268. 40, active_extruder);
  7269. st_synchronize();
  7270. disable_e0();
  7271. plan_buffer_line(
  7272. current_position[X_AXIS],
  7273. current_position[Y_AXIS],
  7274. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7275. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7276. 40, active_extruder);
  7277. st_synchronize();
  7278. disable_e0();
  7279. disable_z();
  7280. // Move Z up to the next 0th full step.
  7281. // Write the file position.
  7282. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7283. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7284. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7285. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7286. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7287. // Scale the z value to 1u resolution.
  7288. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7289. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7290. }
  7291. // Read out the current Z motor microstep counter. This will be later used
  7292. // for reaching the zero full step before powering off.
  7293. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7294. // Store the current position.
  7295. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7296. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7297. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7298. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7299. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7300. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7301. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7302. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7303. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7304. #if EXTRUDERS > 1
  7305. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7306. #if EXTRUDERS > 2
  7307. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7308. #endif
  7309. #endif
  7310. // Finaly store the "power outage" flag.
  7311. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7312. st_synchronize();
  7313. SERIAL_ECHOPGM("stps");
  7314. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7315. disable_z();
  7316. // Increment power failure counter
  7317. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7318. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7319. SERIAL_ECHOLNPGM("UVLO - end");
  7320. MYSERIAL.println(millis() - time_start);
  7321. #if 0
  7322. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7323. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7325. st_synchronize();
  7326. #endif
  7327. cli();
  7328. volatile unsigned int ppcount = 0;
  7329. SET_OUTPUT(BEEPER);
  7330. WRITE(BEEPER, HIGH);
  7331. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7332. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7333. }
  7334. WRITE(BEEPER, LOW);
  7335. while(1){
  7336. #if 1
  7337. WRITE(BEEPER, LOW);
  7338. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7339. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7340. }
  7341. #endif
  7342. };
  7343. }
  7344. #endif //UVLO_SUPPORT
  7345. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7346. void setup_fan_interrupt() {
  7347. //INT7
  7348. DDRE &= ~(1 << 7); //input pin
  7349. PORTE &= ~(1 << 7); //no internal pull-up
  7350. //start with sensing rising edge
  7351. EICRB &= ~(1 << 6);
  7352. EICRB |= (1 << 7);
  7353. //enable INT7 interrupt
  7354. EIMSK |= (1 << 7);
  7355. }
  7356. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7357. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7358. ISR(INT7_vect) {
  7359. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7360. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7361. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7362. t_fan_rising_edge = millis_nc();
  7363. }
  7364. else { //interrupt was triggered by falling edge
  7365. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7366. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7367. }
  7368. }
  7369. EICRB ^= (1 << 6); //change edge
  7370. }
  7371. #endif
  7372. #ifdef UVLO_SUPPORT
  7373. void setup_uvlo_interrupt() {
  7374. DDRE &= ~(1 << 4); //input pin
  7375. PORTE &= ~(1 << 4); //no internal pull-up
  7376. //sensing falling edge
  7377. EICRB |= (1 << 0);
  7378. EICRB &= ~(1 << 1);
  7379. //enable INT4 interrupt
  7380. EIMSK |= (1 << 4);
  7381. }
  7382. ISR(INT4_vect) {
  7383. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7384. SERIAL_ECHOLNPGM("INT4");
  7385. if (IS_SD_PRINTING) uvlo_();
  7386. }
  7387. void recover_print(uint8_t automatic) {
  7388. char cmd[30];
  7389. lcd_update_enable(true);
  7390. lcd_update(2);
  7391. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7392. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7393. // Lift the print head, so one may remove the excess priming material.
  7394. if (current_position[Z_AXIS] < 25)
  7395. enquecommand_P(PSTR("G1 Z25 F800"));
  7396. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7397. enquecommand_P(PSTR("G28 X Y"));
  7398. // Set the target bed and nozzle temperatures and wait.
  7399. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7400. enquecommand(cmd);
  7401. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7402. enquecommand(cmd);
  7403. enquecommand_P(PSTR("M83")); //E axis relative mode
  7404. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7405. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7406. if(automatic == 0){
  7407. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7408. }
  7409. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7410. // Mark the power panic status as inactive.
  7411. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7412. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7413. delay_keep_alive(1000);
  7414. }*/
  7415. SERIAL_ECHOPGM("After waiting for temp:");
  7416. SERIAL_ECHOPGM("Current position X_AXIS:");
  7417. MYSERIAL.println(current_position[X_AXIS]);
  7418. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7419. MYSERIAL.println(current_position[Y_AXIS]);
  7420. // Restart the print.
  7421. restore_print_from_eeprom();
  7422. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7423. MYSERIAL.print(current_position[Z_AXIS]);
  7424. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7425. MYSERIAL.print(current_position[E_AXIS]);
  7426. }
  7427. void recover_machine_state_after_power_panic()
  7428. {
  7429. char cmd[30];
  7430. // 1) Recover the logical cordinates at the time of the power panic.
  7431. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7432. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7433. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7434. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7435. // The current position after power panic is moved to the next closest 0th full step.
  7436. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7437. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7438. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7439. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7440. sprintf_P(cmd, PSTR("G92 E"));
  7441. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7442. enquecommand(cmd);
  7443. }
  7444. memcpy(destination, current_position, sizeof(destination));
  7445. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7446. print_world_coordinates();
  7447. // 2) Initialize the logical to physical coordinate system transformation.
  7448. world2machine_initialize();
  7449. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7450. mbl.active = false;
  7451. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7452. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7453. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7454. // Scale the z value to 10u resolution.
  7455. int16_t v;
  7456. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7457. if (v != 0)
  7458. mbl.active = true;
  7459. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7460. }
  7461. if (mbl.active)
  7462. mbl.upsample_3x3();
  7463. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7464. // print_mesh_bed_leveling_table();
  7465. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7466. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7467. babystep_load();
  7468. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7470. // 6) Power up the motors, mark their positions as known.
  7471. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7472. axis_known_position[X_AXIS] = true; enable_x();
  7473. axis_known_position[Y_AXIS] = true; enable_y();
  7474. axis_known_position[Z_AXIS] = true; enable_z();
  7475. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7476. print_physical_coordinates();
  7477. // 7) Recover the target temperatures.
  7478. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7479. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7480. // 8) Recover extruder multipilers
  7481. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7482. #if EXTRUDERS > 1
  7483. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7484. #if EXTRUDERS > 2
  7485. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7486. #endif
  7487. #endif
  7488. }
  7489. void restore_print_from_eeprom() {
  7490. float x_rec, y_rec, z_pos;
  7491. int feedrate_rec;
  7492. uint8_t fan_speed_rec;
  7493. char cmd[30];
  7494. char* c;
  7495. char filename[13];
  7496. uint8_t depth = 0;
  7497. char dir_name[9];
  7498. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7499. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7500. SERIAL_ECHOPGM("Feedrate:");
  7501. MYSERIAL.println(feedrate_rec);
  7502. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7503. MYSERIAL.println(int(depth));
  7504. for (int i = 0; i < depth; i++) {
  7505. for (int j = 0; j < 8; j++) {
  7506. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7507. }
  7508. dir_name[8] = '\0';
  7509. MYSERIAL.println(dir_name);
  7510. card.chdir(dir_name);
  7511. }
  7512. for (int i = 0; i < 8; i++) {
  7513. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7514. }
  7515. filename[8] = '\0';
  7516. MYSERIAL.print(filename);
  7517. strcat_P(filename, PSTR(".gco"));
  7518. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7519. for (c = &cmd[4]; *c; c++)
  7520. *c = tolower(*c);
  7521. enquecommand(cmd);
  7522. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7523. SERIAL_ECHOPGM("Position read from eeprom:");
  7524. MYSERIAL.println(position);
  7525. // E axis relative mode.
  7526. enquecommand_P(PSTR("M83"));
  7527. // Move to the XY print position in logical coordinates, where the print has been killed.
  7528. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7529. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7530. strcat_P(cmd, PSTR(" F2000"));
  7531. enquecommand(cmd);
  7532. // Move the Z axis down to the print, in logical coordinates.
  7533. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7534. enquecommand(cmd);
  7535. // Unretract.
  7536. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7537. // Set the feedrate saved at the power panic.
  7538. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7539. enquecommand(cmd);
  7540. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7541. {
  7542. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7543. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7544. }
  7545. // Set the fan speed saved at the power panic.
  7546. strcpy_P(cmd, PSTR("M106 S"));
  7547. strcat(cmd, itostr3(int(fan_speed_rec)));
  7548. enquecommand(cmd);
  7549. // Set a position in the file.
  7550. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7551. enquecommand(cmd);
  7552. // Start SD print.
  7553. enquecommand_P(PSTR("M24"));
  7554. }
  7555. #endif //UVLO_SUPPORT
  7556. ////////////////////////////////////////////////////////////////////////////////
  7557. // save/restore printing
  7558. void stop_and_save_print_to_ram(float z_move, float e_move)
  7559. {
  7560. if (saved_printing) return;
  7561. unsigned char nplanner_blocks;
  7562. unsigned char nlines;
  7563. uint16_t sdlen_planner;
  7564. uint16_t sdlen_cmdqueue;
  7565. cli();
  7566. if (card.sdprinting) {
  7567. nplanner_blocks = number_of_blocks();
  7568. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7569. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7570. saved_sdpos -= sdlen_planner;
  7571. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7572. saved_sdpos -= sdlen_cmdqueue;
  7573. saved_printing_type = PRINTING_TYPE_SD;
  7574. }
  7575. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7576. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7577. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7578. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7579. saved_sdpos -= nlines;
  7580. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7581. saved_printing_type = PRINTING_TYPE_USB;
  7582. }
  7583. else {
  7584. //not sd printing nor usb printing
  7585. }
  7586. #if 0
  7587. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7588. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7589. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7590. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7591. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7592. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7593. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7594. {
  7595. card.setIndex(saved_sdpos);
  7596. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7597. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7598. MYSERIAL.print(char(card.get()));
  7599. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7600. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7601. MYSERIAL.print(char(card.get()));
  7602. SERIAL_ECHOLNPGM("End of command buffer");
  7603. }
  7604. {
  7605. // Print the content of the planner buffer, line by line:
  7606. card.setIndex(saved_sdpos);
  7607. int8_t iline = 0;
  7608. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7609. SERIAL_ECHOPGM("Planner line (from file): ");
  7610. MYSERIAL.print(int(iline), DEC);
  7611. SERIAL_ECHOPGM(", length: ");
  7612. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7613. SERIAL_ECHOPGM(", steps: (");
  7614. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7615. SERIAL_ECHOPGM(",");
  7616. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7617. SERIAL_ECHOPGM(",");
  7618. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7619. SERIAL_ECHOPGM(",");
  7620. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7621. SERIAL_ECHOPGM("), events: ");
  7622. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7623. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7624. MYSERIAL.print(char(card.get()));
  7625. }
  7626. }
  7627. {
  7628. // Print the content of the command buffer, line by line:
  7629. int8_t iline = 0;
  7630. union {
  7631. struct {
  7632. char lo;
  7633. char hi;
  7634. } lohi;
  7635. uint16_t value;
  7636. } sdlen_single;
  7637. int _bufindr = bufindr;
  7638. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7639. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7640. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7641. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7642. }
  7643. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7644. MYSERIAL.print(int(iline), DEC);
  7645. SERIAL_ECHOPGM(", type: ");
  7646. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7647. SERIAL_ECHOPGM(", len: ");
  7648. MYSERIAL.println(sdlen_single.value, DEC);
  7649. // Print the content of the buffer line.
  7650. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7651. SERIAL_ECHOPGM("Buffer line (from file): ");
  7652. MYSERIAL.print(int(iline), DEC);
  7653. MYSERIAL.println(int(iline), DEC);
  7654. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7655. MYSERIAL.print(char(card.get()));
  7656. if (-- _buflen == 0)
  7657. break;
  7658. // First skip the current command ID and iterate up to the end of the string.
  7659. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7660. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7661. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7662. // If the end of the buffer was empty,
  7663. if (_bufindr == sizeof(cmdbuffer)) {
  7664. // skip to the start and find the nonzero command.
  7665. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7666. }
  7667. }
  7668. }
  7669. #endif
  7670. #if 0
  7671. saved_feedrate2 = feedrate; //save feedrate
  7672. #else
  7673. // Try to deduce the feedrate from the first block of the planner.
  7674. // Speed is in mm/min.
  7675. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7676. #endif
  7677. planner_abort_hard(); //abort printing
  7678. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7679. saved_active_extruder = active_extruder; //save active_extruder
  7680. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7681. cmdqueue_reset(); //empty cmdqueue
  7682. card.sdprinting = false;
  7683. // card.closefile();
  7684. saved_printing = true;
  7685. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7686. st_reset_timer();
  7687. sei();
  7688. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7689. #if 1
  7690. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7691. char buf[48];
  7692. // First unretract (relative extrusion)
  7693. strcpy_P(buf, PSTR("G1 E"));
  7694. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7695. strcat_P(buf, PSTR(" F"));
  7696. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7697. enquecommand(buf, false);
  7698. // Then lift Z axis
  7699. strcpy_P(buf, PSTR("G1 Z"));
  7700. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7701. strcat_P(buf, PSTR(" F"));
  7702. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7703. // At this point the command queue is empty.
  7704. enquecommand(buf, false);
  7705. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7706. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7707. repeatcommand_front();
  7708. #else
  7709. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7710. st_synchronize(); //wait moving
  7711. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7712. memcpy(destination, current_position, sizeof(destination));
  7713. #endif
  7714. }
  7715. }
  7716. void restore_print_from_ram_and_continue(float e_move)
  7717. {
  7718. if (!saved_printing) return;
  7719. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7720. // current_position[axis] = st_get_position_mm(axis);
  7721. active_extruder = saved_active_extruder; //restore active_extruder
  7722. feedrate = saved_feedrate2; //restore feedrate
  7723. float e = saved_pos[E_AXIS] - e_move;
  7724. plan_set_e_position(e);
  7725. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7726. st_synchronize();
  7727. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7728. memcpy(destination, current_position, sizeof(destination));
  7729. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7730. card.setIndex(saved_sdpos);
  7731. sdpos_atomic = saved_sdpos;
  7732. card.sdprinting = true;
  7733. }
  7734. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7735. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7736. FlushSerialRequestResend();
  7737. }
  7738. else {
  7739. //not sd printing nor usb printing
  7740. }
  7741. saved_printing = false;
  7742. }
  7743. void print_world_coordinates()
  7744. {
  7745. SERIAL_ECHOPGM("world coordinates: (");
  7746. MYSERIAL.print(current_position[X_AXIS], 3);
  7747. SERIAL_ECHOPGM(", ");
  7748. MYSERIAL.print(current_position[Y_AXIS], 3);
  7749. SERIAL_ECHOPGM(", ");
  7750. MYSERIAL.print(current_position[Z_AXIS], 3);
  7751. SERIAL_ECHOLNPGM(")");
  7752. }
  7753. void print_physical_coordinates()
  7754. {
  7755. SERIAL_ECHOPGM("physical coordinates: (");
  7756. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7757. SERIAL_ECHOPGM(", ");
  7758. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7759. SERIAL_ECHOPGM(", ");
  7760. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7761. SERIAL_ECHOLNPGM(")");
  7762. }
  7763. void print_mesh_bed_leveling_table()
  7764. {
  7765. SERIAL_ECHOPGM("mesh bed leveling: ");
  7766. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7767. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7768. MYSERIAL.print(mbl.z_values[y][x], 3);
  7769. SERIAL_ECHOPGM(" ");
  7770. }
  7771. SERIAL_ECHOLNPGM("");
  7772. }
  7773. #define FIL_LOAD_LENGTH 60