Marlin_main.cpp 222 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. unsigned long PingTime = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. int bowden_length[4];
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. float HotendTempBckp = 0;
  225. int fanSpeedBckp = 0;
  226. float pause_lastpos[4];
  227. unsigned long pause_time = 0;
  228. unsigned long start_pause_print = millis();
  229. unsigned long load_filament_time;
  230. bool mesh_bed_leveling_flag = false;
  231. bool mesh_bed_run_from_menu = false;
  232. unsigned char lang_selected = 0;
  233. int8_t FarmMode = 0;
  234. bool prusa_sd_card_upload = false;
  235. unsigned int status_number = 0;
  236. unsigned long total_filament_used;
  237. unsigned int heating_status;
  238. unsigned int heating_status_counter;
  239. bool custom_message;
  240. bool loading_flag = false;
  241. unsigned int custom_message_type;
  242. unsigned int custom_message_state;
  243. bool volumetric_enabled = false;
  244. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  245. #if EXTRUDERS > 1
  246. , DEFAULT_NOMINAL_FILAMENT_DIA
  247. #if EXTRUDERS > 2
  248. , DEFAULT_NOMINAL_FILAMENT_DIA
  249. #endif
  250. #endif
  251. };
  252. float volumetric_multiplier[EXTRUDERS] = {1.0
  253. #if EXTRUDERS > 1
  254. , 1.0
  255. #if EXTRUDERS > 2
  256. , 1.0
  257. #endif
  258. #endif
  259. };
  260. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  261. float add_homing[3]={0,0,0};
  262. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  263. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  264. bool axis_known_position[3] = {false, false, false};
  265. float zprobe_zoffset;
  266. // Extruder offset
  267. #if EXTRUDERS > 1
  268. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  269. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  270. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  271. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  272. #endif
  273. };
  274. #endif
  275. uint8_t active_extruder = 0;
  276. int fanSpeed=0;
  277. #ifdef FWRETRACT
  278. bool autoretract_enabled=false;
  279. bool retracted[EXTRUDERS]={false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #endif
  285. #endif
  286. };
  287. bool retracted_swap[EXTRUDERS]={false
  288. #if EXTRUDERS > 1
  289. , false
  290. #if EXTRUDERS > 2
  291. , false
  292. #endif
  293. #endif
  294. };
  295. float retract_length = RETRACT_LENGTH;
  296. float retract_length_swap = RETRACT_LENGTH_SWAP;
  297. float retract_feedrate = RETRACT_FEEDRATE;
  298. float retract_zlift = RETRACT_ZLIFT;
  299. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  300. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  301. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  302. #endif
  303. #ifdef ULTIPANEL
  304. #ifdef PS_DEFAULT_OFF
  305. bool powersupply = false;
  306. #else
  307. bool powersupply = true;
  308. #endif
  309. #endif
  310. bool cancel_heatup = false ;
  311. #ifdef FILAMENT_SENSOR
  312. //Variables for Filament Sensor input
  313. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  314. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  315. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  316. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  317. int delay_index1=0; //index into ring buffer
  318. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  319. float delay_dist=0; //delay distance counter
  320. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  321. #endif
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. //===========================================================================
  325. //=============================Private Variables=============================
  326. //===========================================================================
  327. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  328. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  329. static float delta[3] = {0.0, 0.0, 0.0};
  330. // For tracing an arc
  331. static float offset[3] = {0.0, 0.0, 0.0};
  332. static bool home_all_axis = true;
  333. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  334. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  335. // Determines Absolute or Relative Coordinates.
  336. // Also there is bool axis_relative_modes[] per axis flag.
  337. static bool relative_mode = false;
  338. // String circular buffer. Commands may be pushed to the buffer from both sides:
  339. // Chained commands will be pushed to the front, interactive (from LCD menu)
  340. // and printing commands (from serial line or from SD card) are pushed to the tail.
  341. // First character of each entry indicates the type of the entry:
  342. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  343. // Command in cmdbuffer was sent over USB.
  344. #define CMDBUFFER_CURRENT_TYPE_USB 1
  345. // Command in cmdbuffer was read from SDCARD.
  346. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  347. // Command in cmdbuffer was generated by the UI.
  348. #define CMDBUFFER_CURRENT_TYPE_UI 3
  349. // Command in cmdbuffer was generated by another G-code.
  350. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  351. // How much space to reserve for the chained commands
  352. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  353. // which are pushed to the front of the queue?
  354. // Maximum 5 commands of max length 20 + null terminator.
  355. #define CMDBUFFER_RESERVE_FRONT (5*21)
  356. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  357. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  358. // Head of the circular buffer, where to read.
  359. static int bufindr = 0;
  360. // Tail of the buffer, where to write.
  361. static int bufindw = 0;
  362. // Number of lines in cmdbuffer.
  363. static int buflen = 0;
  364. // Flag for processing the current command inside the main Arduino loop().
  365. // If a new command was pushed to the front of a command buffer while
  366. // processing another command, this replaces the command on the top.
  367. // Therefore don't remove the command from the queue in the loop() function.
  368. static bool cmdbuffer_front_already_processed = false;
  369. // Type of a command, which is to be executed right now.
  370. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  371. // String of a command, which is to be executed right now.
  372. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  373. // Enable debugging of the command buffer.
  374. // Debugging information will be sent to serial line.
  375. // #define CMDBUFFER_DEBUG
  376. static int serial_count = 0; //index of character read from serial line
  377. static boolean comment_mode = false;
  378. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  379. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  380. //static float tt = 0;
  381. //static float bt = 0;
  382. //Inactivity shutdown variables
  383. static unsigned long previous_millis_cmd = 0;
  384. unsigned long max_inactive_time = 0;
  385. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  386. unsigned long starttime=0;
  387. unsigned long stoptime=0;
  388. unsigned long _usb_timer = 0;
  389. static uint8_t tmp_extruder;
  390. bool Stopped=false;
  391. #if NUM_SERVOS > 0
  392. Servo servos[NUM_SERVOS];
  393. #endif
  394. bool CooldownNoWait = true;
  395. bool target_direction;
  396. //Insert variables if CHDK is defined
  397. #ifdef CHDK
  398. unsigned long chdkHigh = 0;
  399. boolean chdkActive = false;
  400. #endif
  401. //===========================================================================
  402. //=============================Routines======================================
  403. //===========================================================================
  404. void get_arc_coordinates();
  405. bool setTargetedHotend(int code);
  406. void serial_echopair_P(const char *s_P, float v)
  407. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  408. void serial_echopair_P(const char *s_P, double v)
  409. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  410. void serial_echopair_P(const char *s_P, unsigned long v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. #ifdef SDSUPPORT
  413. #include "SdFatUtil.h"
  414. int freeMemory() { return SdFatUtil::FreeRam(); }
  415. #else
  416. extern "C" {
  417. extern unsigned int __bss_end;
  418. extern unsigned int __heap_start;
  419. extern void *__brkval;
  420. int freeMemory() {
  421. int free_memory;
  422. if ((int)__brkval == 0)
  423. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  424. else
  425. free_memory = ((int)&free_memory) - ((int)__brkval);
  426. return free_memory;
  427. }
  428. }
  429. #endif //!SDSUPPORT
  430. // Pop the currently processed command from the queue.
  431. // It is expected, that there is at least one command in the queue.
  432. bool cmdqueue_pop_front()
  433. {
  434. if (buflen > 0) {
  435. #ifdef CMDBUFFER_DEBUG
  436. SERIAL_ECHOPGM("Dequeing ");
  437. SERIAL_ECHO(cmdbuffer+bufindr+1);
  438. SERIAL_ECHOLNPGM("");
  439. SERIAL_ECHOPGM("Old indices: buflen ");
  440. SERIAL_ECHO(buflen);
  441. SERIAL_ECHOPGM(", bufindr ");
  442. SERIAL_ECHO(bufindr);
  443. SERIAL_ECHOPGM(", bufindw ");
  444. SERIAL_ECHO(bufindw);
  445. SERIAL_ECHOPGM(", serial_count ");
  446. SERIAL_ECHO(serial_count);
  447. SERIAL_ECHOPGM(", bufsize ");
  448. SERIAL_ECHO(sizeof(cmdbuffer));
  449. SERIAL_ECHOLNPGM("");
  450. #endif /* CMDBUFFER_DEBUG */
  451. if (-- buflen == 0) {
  452. // Empty buffer.
  453. if (serial_count == 0)
  454. // No serial communication is pending. Reset both pointers to zero.
  455. bufindw = 0;
  456. bufindr = bufindw;
  457. } else {
  458. // There is at least one ready line in the buffer.
  459. // First skip the current command ID and iterate up to the end of the string.
  460. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  461. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  462. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  463. // If the end of the buffer was empty,
  464. if (bufindr == sizeof(cmdbuffer)) {
  465. // skip to the start and find the nonzero command.
  466. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  467. }
  468. #ifdef CMDBUFFER_DEBUG
  469. SERIAL_ECHOPGM("New indices: buflen ");
  470. SERIAL_ECHO(buflen);
  471. SERIAL_ECHOPGM(", bufindr ");
  472. SERIAL_ECHO(bufindr);
  473. SERIAL_ECHOPGM(", bufindw ");
  474. SERIAL_ECHO(bufindw);
  475. SERIAL_ECHOPGM(", serial_count ");
  476. SERIAL_ECHO(serial_count);
  477. SERIAL_ECHOPGM(" new command on the top: ");
  478. SERIAL_ECHO(cmdbuffer+bufindr+1);
  479. SERIAL_ECHOLNPGM("");
  480. #endif /* CMDBUFFER_DEBUG */
  481. }
  482. return true;
  483. }
  484. return false;
  485. }
  486. void cmdqueue_reset()
  487. {
  488. while (cmdqueue_pop_front()) ;
  489. }
  490. // How long a string could be pushed to the front of the command queue?
  491. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  492. // len_asked does not contain the zero terminator size.
  493. bool cmdqueue_could_enqueue_front(int len_asked)
  494. {
  495. // MAX_CMD_SIZE has to accommodate the zero terminator.
  496. if (len_asked >= MAX_CMD_SIZE)
  497. return false;
  498. // Remove the currently processed command from the queue.
  499. if (! cmdbuffer_front_already_processed) {
  500. cmdqueue_pop_front();
  501. cmdbuffer_front_already_processed = true;
  502. }
  503. if (bufindr == bufindw && buflen > 0)
  504. // Full buffer.
  505. return false;
  506. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  507. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  508. if (bufindw < bufindr) {
  509. int bufindr_new = bufindr - len_asked - 2;
  510. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  511. if (endw <= bufindr_new) {
  512. bufindr = bufindr_new;
  513. return true;
  514. }
  515. } else {
  516. // Otherwise the free space is split between the start and end.
  517. if (len_asked + 2 <= bufindr) {
  518. // Could fit at the start.
  519. bufindr -= len_asked + 2;
  520. return true;
  521. }
  522. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  523. if (endw <= bufindr_new) {
  524. memset(cmdbuffer, 0, bufindr);
  525. bufindr = bufindr_new;
  526. return true;
  527. }
  528. }
  529. return false;
  530. }
  531. // Could one enqueue a command of lenthg len_asked into the buffer,
  532. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  533. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  534. // len_asked does not contain the zero terminator size.
  535. bool cmdqueue_could_enqueue_back(int len_asked)
  536. {
  537. // MAX_CMD_SIZE has to accommodate the zero terminator.
  538. if (len_asked >= MAX_CMD_SIZE)
  539. return false;
  540. if (bufindr == bufindw && buflen > 0)
  541. // Full buffer.
  542. return false;
  543. if (serial_count > 0) {
  544. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  545. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  546. // serial data.
  547. // How much memory to reserve for the commands pushed to the front?
  548. // End of the queue, when pushing to the end.
  549. int endw = bufindw + len_asked + 2;
  550. if (bufindw < bufindr)
  551. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  552. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  553. // Otherwise the free space is split between the start and end.
  554. if (// Could one fit to the end, including the reserve?
  555. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  556. // Could one fit to the end, and the reserve to the start?
  557. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  558. return true;
  559. // Could one fit both to the start?
  560. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  561. // Mark the rest of the buffer as used.
  562. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  563. // and point to the start.
  564. bufindw = 0;
  565. return true;
  566. }
  567. } else {
  568. // How much memory to reserve for the commands pushed to the front?
  569. // End of the queue, when pushing to the end.
  570. int endw = bufindw + len_asked + 2;
  571. if (bufindw < bufindr)
  572. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  573. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  574. // Otherwise the free space is split between the start and end.
  575. if (// Could one fit to the end, including the reserve?
  576. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  577. // Could one fit to the end, and the reserve to the start?
  578. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  579. return true;
  580. // Could one fit both to the start?
  581. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  582. // Mark the rest of the buffer as used.
  583. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  584. // and point to the start.
  585. bufindw = 0;
  586. return true;
  587. }
  588. }
  589. return false;
  590. }
  591. #ifdef CMDBUFFER_DEBUG
  592. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  593. {
  594. SERIAL_ECHOPGM("Entry nr: ");
  595. SERIAL_ECHO(nr);
  596. SERIAL_ECHOPGM(", type: ");
  597. SERIAL_ECHO(int(*p));
  598. SERIAL_ECHOPGM(", cmd: ");
  599. SERIAL_ECHO(p+1);
  600. SERIAL_ECHOLNPGM("");
  601. }
  602. static void cmdqueue_dump_to_serial()
  603. {
  604. if (buflen == 0) {
  605. SERIAL_ECHOLNPGM("The command buffer is empty.");
  606. } else {
  607. SERIAL_ECHOPGM("Content of the buffer: entries ");
  608. SERIAL_ECHO(buflen);
  609. SERIAL_ECHOPGM(", indr ");
  610. SERIAL_ECHO(bufindr);
  611. SERIAL_ECHOPGM(", indw ");
  612. SERIAL_ECHO(bufindw);
  613. SERIAL_ECHOLNPGM("");
  614. int nr = 0;
  615. if (bufindr < bufindw) {
  616. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  617. cmdqueue_dump_to_serial_single_line(nr, p);
  618. // Skip the command.
  619. for (++p; *p != 0; ++ p);
  620. // Skip the gaps.
  621. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  622. }
  623. } else {
  624. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  625. cmdqueue_dump_to_serial_single_line(nr, p);
  626. // Skip the command.
  627. for (++p; *p != 0; ++ p);
  628. // Skip the gaps.
  629. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  630. }
  631. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  632. cmdqueue_dump_to_serial_single_line(nr, p);
  633. // Skip the command.
  634. for (++p; *p != 0; ++ p);
  635. // Skip the gaps.
  636. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  637. }
  638. }
  639. SERIAL_ECHOLNPGM("End of the buffer.");
  640. }
  641. }
  642. #endif /* CMDBUFFER_DEBUG */
  643. //adds an command to the main command buffer
  644. //thats really done in a non-safe way.
  645. //needs overworking someday
  646. // Currently the maximum length of a command piped through this function is around 20 characters
  647. void enquecommand(const char *cmd, bool from_progmem)
  648. {
  649. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  650. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  651. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  652. if (cmdqueue_could_enqueue_back(len)) {
  653. // This is dangerous if a mixing of serial and this happens
  654. // This may easily be tested: If serial_count > 0, we have a problem.
  655. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  656. if (from_progmem)
  657. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  658. else
  659. strcpy(cmdbuffer + bufindw + 1, cmd);
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHORPGM(MSG_Enqueing);
  662. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  663. SERIAL_ECHOLNPGM("\"");
  664. bufindw += len + 2;
  665. if (bufindw == sizeof(cmdbuffer))
  666. bufindw = 0;
  667. ++ buflen;
  668. #ifdef CMDBUFFER_DEBUG
  669. cmdqueue_dump_to_serial();
  670. #endif /* CMDBUFFER_DEBUG */
  671. } else {
  672. SERIAL_ERROR_START;
  673. SERIAL_ECHORPGM(MSG_Enqueing);
  674. if (from_progmem)
  675. SERIAL_PROTOCOLRPGM(cmd);
  676. else
  677. SERIAL_ECHO(cmd);
  678. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  679. #ifdef CMDBUFFER_DEBUG
  680. cmdqueue_dump_to_serial();
  681. #endif /* CMDBUFFER_DEBUG */
  682. }
  683. }
  684. void enquecommand_front(const char *cmd, bool from_progmem)
  685. {
  686. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  687. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  688. if (cmdqueue_could_enqueue_front(len)) {
  689. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  690. if (from_progmem)
  691. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  692. else
  693. strcpy(cmdbuffer + bufindr + 1, cmd);
  694. ++ buflen;
  695. SERIAL_ECHO_START;
  696. SERIAL_ECHOPGM("Enqueing to the front: \"");
  697. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  698. SERIAL_ECHOLNPGM("\"");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. } else {
  703. SERIAL_ERROR_START;
  704. SERIAL_ECHOPGM("Enqueing to the front: \"");
  705. if (from_progmem)
  706. SERIAL_PROTOCOLRPGM(cmd);
  707. else
  708. SERIAL_ECHO(cmd);
  709. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  710. #ifdef CMDBUFFER_DEBUG
  711. cmdqueue_dump_to_serial();
  712. #endif /* CMDBUFFER_DEBUG */
  713. }
  714. }
  715. // Mark the command at the top of the command queue as new.
  716. // Therefore it will not be removed from the queue.
  717. void repeatcommand_front()
  718. {
  719. cmdbuffer_front_already_processed = true;
  720. }
  721. bool is_buffer_empty()
  722. {
  723. if (buflen == 0) return true;
  724. else return false;
  725. }
  726. void setup_killpin()
  727. {
  728. #if defined(KILL_PIN) && KILL_PIN > -1
  729. SET_INPUT(KILL_PIN);
  730. WRITE(KILL_PIN,HIGH);
  731. #endif
  732. }
  733. // Set home pin
  734. void setup_homepin(void)
  735. {
  736. #if defined(HOME_PIN) && HOME_PIN > -1
  737. SET_INPUT(HOME_PIN);
  738. WRITE(HOME_PIN,HIGH);
  739. #endif
  740. }
  741. void setup_photpin()
  742. {
  743. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  744. SET_OUTPUT(PHOTOGRAPH_PIN);
  745. WRITE(PHOTOGRAPH_PIN, LOW);
  746. #endif
  747. }
  748. void setup_powerhold()
  749. {
  750. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  751. SET_OUTPUT(SUICIDE_PIN);
  752. WRITE(SUICIDE_PIN, HIGH);
  753. #endif
  754. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  755. SET_OUTPUT(PS_ON_PIN);
  756. #if defined(PS_DEFAULT_OFF)
  757. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  758. #else
  759. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  760. #endif
  761. #endif
  762. }
  763. void suicide()
  764. {
  765. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  766. SET_OUTPUT(SUICIDE_PIN);
  767. WRITE(SUICIDE_PIN, LOW);
  768. #endif
  769. }
  770. void servo_init()
  771. {
  772. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  773. servos[0].attach(SERVO0_PIN);
  774. #endif
  775. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  776. servos[1].attach(SERVO1_PIN);
  777. #endif
  778. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  779. servos[2].attach(SERVO2_PIN);
  780. #endif
  781. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  782. servos[3].attach(SERVO3_PIN);
  783. #endif
  784. #if (NUM_SERVOS >= 5)
  785. #error "TODO: enter initalisation code for more servos"
  786. #endif
  787. }
  788. static void lcd_language_menu();
  789. #ifdef MESH_BED_LEVELING
  790. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  791. #endif
  792. // Factory reset function
  793. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  794. // Level input parameter sets depth of reset
  795. // Quiet parameter masks all waitings for user interact.
  796. int er_progress = 0;
  797. void factory_reset(char level, bool quiet)
  798. {
  799. lcd_implementation_clear();
  800. int cursor_pos = 0;
  801. switch (level) {
  802. // Level 0: Language reset
  803. case 0:
  804. WRITE(BEEPER, HIGH);
  805. _delay_ms(100);
  806. WRITE(BEEPER, LOW);
  807. lcd_force_language_selection();
  808. break;
  809. //Level 1: Reset statistics
  810. case 1:
  811. WRITE(BEEPER, HIGH);
  812. _delay_ms(100);
  813. WRITE(BEEPER, LOW);
  814. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  815. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  816. lcd_menu_statistics();
  817. break;
  818. // Level 2: Prepare for shipping
  819. case 2:
  820. //lcd_printPGM(PSTR("Factory RESET"));
  821. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  822. // Force language selection at the next boot up.
  823. lcd_force_language_selection();
  824. // Force the "Follow calibration flow" message at the next boot up.
  825. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  826. farm_no = 0;
  827. farm_mode == false;
  828. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  829. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  830. WRITE(BEEPER, HIGH);
  831. _delay_ms(100);
  832. WRITE(BEEPER, LOW);
  833. //_delay_ms(2000);
  834. break;
  835. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  836. case 3:
  837. lcd_printPGM(PSTR("Factory RESET"));
  838. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  839. WRITE(BEEPER, HIGH);
  840. _delay_ms(100);
  841. WRITE(BEEPER, LOW);
  842. er_progress = 0;
  843. lcd_print_at_PGM(3, 3, PSTR(" "));
  844. lcd_implementation_print_at(3, 3, er_progress);
  845. // Erase EEPROM
  846. for (int i = 0; i < 4096; i++) {
  847. eeprom_write_byte((uint8_t*)i, 0xFF);
  848. if (i % 41 == 0) {
  849. er_progress++;
  850. lcd_print_at_PGM(3, 3, PSTR(" "));
  851. lcd_implementation_print_at(3, 3, er_progress);
  852. lcd_printPGM(PSTR("%"));
  853. }
  854. }
  855. break;
  856. case 4:
  857. bowden_menu();
  858. break;
  859. default:
  860. break;
  861. }
  862. }
  863. // "Setup" function is called by the Arduino framework on startup.
  864. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  865. // are initialized by the main() routine provided by the Arduino framework.
  866. void setup()
  867. {
  868. setup_killpin();
  869. setup_powerhold();
  870. MYSERIAL.begin(BAUDRATE);
  871. SERIAL_PROTOCOLLNPGM("start");
  872. SERIAL_ECHO_START;
  873. #if 0
  874. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  875. for (int i = 0; i < 4096; ++i) {
  876. int b = eeprom_read_byte((unsigned char*)i);
  877. if (b != 255) {
  878. SERIAL_ECHO(i);
  879. SERIAL_ECHO(":");
  880. SERIAL_ECHO(b);
  881. SERIAL_ECHOLN("");
  882. }
  883. }
  884. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  885. #endif
  886. // Check startup - does nothing if bootloader sets MCUSR to 0
  887. byte mcu = MCUSR;
  888. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  889. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  890. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  891. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  892. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  893. MCUSR = 0;
  894. //SERIAL_ECHORPGM(MSG_MARLIN);
  895. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  896. #ifdef STRING_VERSION_CONFIG_H
  897. #ifdef STRING_CONFIG_H_AUTHOR
  898. SERIAL_ECHO_START;
  899. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  900. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  901. SERIAL_ECHORPGM(MSG_AUTHOR);
  902. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  903. SERIAL_ECHOPGM("Compiled: ");
  904. SERIAL_ECHOLNPGM(__DATE__);
  905. #endif
  906. #endif
  907. SERIAL_ECHO_START;
  908. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  909. SERIAL_ECHO(freeMemory());
  910. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  911. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  912. lcd_update_enable(false);
  913. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  914. Config_RetrieveSettings();
  915. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  916. tp_init(); // Initialize temperature loop
  917. plan_init(); // Initialize planner;
  918. watchdog_init();
  919. st_init(); // Initialize stepper, this enables interrupts!
  920. setup_photpin();
  921. servo_init();
  922. // Reset the machine correction matrix.
  923. // It does not make sense to load the correction matrix until the machine is homed.
  924. world2machine_reset();
  925. lcd_init();
  926. if (!READ(BTN_ENC))
  927. {
  928. _delay_ms(1000);
  929. if (!READ(BTN_ENC))
  930. {
  931. lcd_implementation_clear();
  932. lcd_printPGM(PSTR("Factory RESET"));
  933. SET_OUTPUT(BEEPER);
  934. WRITE(BEEPER, HIGH);
  935. while (!READ(BTN_ENC));
  936. WRITE(BEEPER, LOW);
  937. _delay_ms(2000);
  938. char level = reset_menu();
  939. factory_reset(level, false);
  940. switch (level) {
  941. case 0: _delay_ms(0); break;
  942. case 1: _delay_ms(0); break;
  943. case 2: _delay_ms(0); break;
  944. case 3: _delay_ms(0); break;
  945. }
  946. // _delay_ms(100);
  947. /*
  948. #ifdef MESH_BED_LEVELING
  949. _delay_ms(2000);
  950. if (!READ(BTN_ENC))
  951. {
  952. WRITE(BEEPER, HIGH);
  953. _delay_ms(100);
  954. WRITE(BEEPER, LOW);
  955. _delay_ms(200);
  956. WRITE(BEEPER, HIGH);
  957. _delay_ms(100);
  958. WRITE(BEEPER, LOW);
  959. int _z = 0;
  960. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  961. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  962. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  963. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  964. }
  965. else
  966. {
  967. WRITE(BEEPER, HIGH);
  968. _delay_ms(100);
  969. WRITE(BEEPER, LOW);
  970. }
  971. #endif // mesh */
  972. }
  973. }
  974. else
  975. {
  976. _delay_ms(1000); // wait 1sec to display the splash screen
  977. }
  978. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  979. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  980. #endif
  981. #ifdef DIGIPOT_I2C
  982. digipot_i2c_init();
  983. #endif
  984. setup_homepin();
  985. #if defined(Z_AXIS_ALWAYS_ON)
  986. enable_z();
  987. #endif
  988. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  989. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  990. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  991. if (farm_no == 0xFFFF) farm_no = 0;
  992. if (farm_mode)
  993. {
  994. prusa_statistics(8);
  995. }
  996. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  997. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  998. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  999. // but this times out if a blocking dialog is shown in setup().
  1000. card.initsd();
  1001. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1002. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1003. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1004. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1005. // where all the EEPROM entries are set to 0x0ff.
  1006. // Once a firmware boots up, it forces at least a language selection, which changes
  1007. // EEPROM_LANG to number lower than 0x0ff.
  1008. // 1) Set a high power mode.
  1009. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1010. }
  1011. #ifdef SNMM
  1012. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1013. int _z = BOWDEN_LENGTH;
  1014. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1015. }
  1016. #endif
  1017. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1018. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1019. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1020. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1021. if (lang_selected >= LANG_NUM){
  1022. lcd_mylang();
  1023. }
  1024. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1025. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1026. temp_cal_active = false;
  1027. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1028. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1029. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1030. }
  1031. check_babystep(); //checking if Z babystep is in allowed range
  1032. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1033. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1034. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1035. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1036. // Show the message.
  1037. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1038. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1039. // Show the message.
  1040. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1041. lcd_update_enable(true);
  1042. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1043. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1044. lcd_update_enable(true);
  1045. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1046. // Show the message.
  1047. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1048. }
  1049. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1050. lcd_update_enable(true);
  1051. // Store the currently running firmware into an eeprom,
  1052. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1053. update_current_firmware_version_to_eeprom();
  1054. }
  1055. void trace();
  1056. #define CHUNK_SIZE 64 // bytes
  1057. #define SAFETY_MARGIN 1
  1058. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1059. int chunkHead = 0;
  1060. int serial_read_stream() {
  1061. setTargetHotend(0, 0);
  1062. setTargetBed(0);
  1063. lcd_implementation_clear();
  1064. lcd_printPGM(PSTR(" Upload in progress"));
  1065. // first wait for how many bytes we will receive
  1066. uint32_t bytesToReceive;
  1067. // receive the four bytes
  1068. char bytesToReceiveBuffer[4];
  1069. for (int i=0; i<4; i++) {
  1070. int data;
  1071. while ((data = MYSERIAL.read()) == -1) {};
  1072. bytesToReceiveBuffer[i] = data;
  1073. }
  1074. // make it a uint32
  1075. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1076. // we're ready, notify the sender
  1077. MYSERIAL.write('+');
  1078. // lock in the routine
  1079. uint32_t receivedBytes = 0;
  1080. while (prusa_sd_card_upload) {
  1081. int i;
  1082. for (i=0; i<CHUNK_SIZE; i++) {
  1083. int data;
  1084. // check if we're not done
  1085. if (receivedBytes == bytesToReceive) {
  1086. break;
  1087. }
  1088. // read the next byte
  1089. while ((data = MYSERIAL.read()) == -1) {};
  1090. receivedBytes++;
  1091. // save it to the chunk
  1092. chunk[i] = data;
  1093. }
  1094. // write the chunk to SD
  1095. card.write_command_no_newline(&chunk[0]);
  1096. // notify the sender we're ready for more data
  1097. MYSERIAL.write('+');
  1098. // for safety
  1099. manage_heater();
  1100. // check if we're done
  1101. if(receivedBytes == bytesToReceive) {
  1102. trace(); // beep
  1103. card.closefile();
  1104. prusa_sd_card_upload = false;
  1105. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1106. return 0;
  1107. }
  1108. }
  1109. }
  1110. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1111. // Before loop(), the setup() function is called by the main() routine.
  1112. void loop()
  1113. {
  1114. bool stack_integrity = true;
  1115. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1116. {
  1117. is_usb_printing = true;
  1118. usb_printing_counter--;
  1119. _usb_timer = millis();
  1120. }
  1121. if (usb_printing_counter == 0)
  1122. {
  1123. is_usb_printing = false;
  1124. }
  1125. if (prusa_sd_card_upload)
  1126. {
  1127. //we read byte-by byte
  1128. serial_read_stream();
  1129. } else
  1130. {
  1131. get_command();
  1132. #ifdef SDSUPPORT
  1133. card.checkautostart(false);
  1134. #endif
  1135. if(buflen)
  1136. {
  1137. #ifdef SDSUPPORT
  1138. if(card.saving)
  1139. {
  1140. // Saving a G-code file onto an SD-card is in progress.
  1141. // Saving starts with M28, saving until M29 is seen.
  1142. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1143. card.write_command(CMDBUFFER_CURRENT_STRING);
  1144. if(card.logging)
  1145. process_commands();
  1146. else
  1147. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1148. } else {
  1149. card.closefile();
  1150. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1151. }
  1152. } else {
  1153. process_commands();
  1154. }
  1155. #else
  1156. process_commands();
  1157. #endif //SDSUPPORT
  1158. if (! cmdbuffer_front_already_processed)
  1159. cmdqueue_pop_front();
  1160. cmdbuffer_front_already_processed = false;
  1161. }
  1162. }
  1163. //check heater every n milliseconds
  1164. manage_heater();
  1165. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1166. checkHitEndstops();
  1167. lcd_update();
  1168. }
  1169. void get_command()
  1170. {
  1171. // Test and reserve space for the new command string.
  1172. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1173. return;
  1174. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1175. while (MYSERIAL.available() > 0) {
  1176. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1177. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1178. rx_buffer_full = true; //sets flag that buffer was full
  1179. }
  1180. char serial_char = MYSERIAL.read();
  1181. TimeSent = millis();
  1182. TimeNow = millis();
  1183. if (serial_char < 0)
  1184. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1185. // and Marlin does not support such file names anyway.
  1186. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1187. // to a hang-up of the print process from an SD card.
  1188. continue;
  1189. if(serial_char == '\n' ||
  1190. serial_char == '\r' ||
  1191. (serial_char == ':' && comment_mode == false) ||
  1192. serial_count >= (MAX_CMD_SIZE - 1) )
  1193. {
  1194. if(!serial_count) { //if empty line
  1195. comment_mode = false; //for new command
  1196. return;
  1197. }
  1198. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1199. if(!comment_mode){
  1200. comment_mode = false; //for new command
  1201. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1202. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1203. {
  1204. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1205. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1206. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1207. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1208. // M110 - set current line number.
  1209. // Line numbers not sent in succession.
  1210. SERIAL_ERROR_START;
  1211. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1212. SERIAL_ERRORLN(gcode_LastN);
  1213. //Serial.println(gcode_N);
  1214. FlushSerialRequestResend();
  1215. serial_count = 0;
  1216. return;
  1217. }
  1218. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1219. {
  1220. byte checksum = 0;
  1221. char *p = cmdbuffer+bufindw+1;
  1222. while (p != strchr_pointer)
  1223. checksum = checksum^(*p++);
  1224. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1225. SERIAL_ERROR_START;
  1226. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1227. SERIAL_ERRORLN(gcode_LastN);
  1228. FlushSerialRequestResend();
  1229. serial_count = 0;
  1230. return;
  1231. }
  1232. // If no errors, remove the checksum and continue parsing.
  1233. *strchr_pointer = 0;
  1234. }
  1235. else
  1236. {
  1237. SERIAL_ERROR_START;
  1238. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1239. SERIAL_ERRORLN(gcode_LastN);
  1240. FlushSerialRequestResend();
  1241. serial_count = 0;
  1242. return;
  1243. }
  1244. gcode_LastN = gcode_N;
  1245. //if no errors, continue parsing
  1246. } // end of 'N' command
  1247. }
  1248. else // if we don't receive 'N' but still see '*'
  1249. {
  1250. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1251. {
  1252. SERIAL_ERROR_START;
  1253. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1254. SERIAL_ERRORLN(gcode_LastN);
  1255. serial_count = 0;
  1256. return;
  1257. }
  1258. } // end of '*' command
  1259. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1260. if (! IS_SD_PRINTING) {
  1261. usb_printing_counter = 10;
  1262. is_usb_printing = true;
  1263. }
  1264. if (Stopped == true) {
  1265. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1266. if (gcode >= 0 && gcode <= 3) {
  1267. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1268. LCD_MESSAGERPGM(MSG_STOPPED);
  1269. }
  1270. }
  1271. } // end of 'G' command
  1272. //If command was e-stop process now
  1273. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1274. kill();
  1275. // Store the current line into buffer, move to the next line.
  1276. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1277. #ifdef CMDBUFFER_DEBUG
  1278. SERIAL_ECHO_START;
  1279. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1280. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1281. SERIAL_ECHOLNPGM("");
  1282. #endif /* CMDBUFFER_DEBUG */
  1283. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1284. if (bufindw == sizeof(cmdbuffer))
  1285. bufindw = 0;
  1286. ++ buflen;
  1287. #ifdef CMDBUFFER_DEBUG
  1288. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1289. SERIAL_ECHO(buflen);
  1290. SERIAL_ECHOLNPGM("");
  1291. #endif /* CMDBUFFER_DEBUG */
  1292. } // end of 'not comment mode'
  1293. serial_count = 0; //clear buffer
  1294. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1295. // in the queue, as this function will reserve the memory.
  1296. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1297. return;
  1298. } // end of "end of line" processing
  1299. else {
  1300. // Not an "end of line" symbol. Store the new character into a buffer.
  1301. if(serial_char == ';') comment_mode = true;
  1302. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1303. }
  1304. } // end of serial line processing loop
  1305. if(farm_mode){
  1306. TimeNow = millis();
  1307. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1308. cmdbuffer[bufindw+serial_count+1] = 0;
  1309. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1310. if (bufindw == sizeof(cmdbuffer))
  1311. bufindw = 0;
  1312. ++ buflen;
  1313. serial_count = 0;
  1314. SERIAL_ECHOPGM("TIMEOUT:");
  1315. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1316. return;
  1317. }
  1318. }
  1319. //add comment
  1320. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1321. rx_buffer_full = false;
  1322. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1323. serial_count = 0;
  1324. }
  1325. #ifdef SDSUPPORT
  1326. if(!card.sdprinting || serial_count!=0){
  1327. // If there is a half filled buffer from serial line, wait until return before
  1328. // continuing with the serial line.
  1329. return;
  1330. }
  1331. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1332. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1333. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1334. static bool stop_buffering=false;
  1335. if(buflen==0) stop_buffering=false;
  1336. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1337. while( !card.eof() && !stop_buffering) {
  1338. int16_t n=card.get();
  1339. char serial_char = (char)n;
  1340. if(serial_char == '\n' ||
  1341. serial_char == '\r' ||
  1342. (serial_char == '#' && comment_mode == false) ||
  1343. (serial_char == ':' && comment_mode == false) ||
  1344. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1345. {
  1346. if(card.eof()){
  1347. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1348. stoptime=millis();
  1349. char time[30];
  1350. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1351. pause_time = 0;
  1352. int hours, minutes;
  1353. minutes=(t/60)%60;
  1354. hours=t/60/60;
  1355. save_statistics(total_filament_used, t);
  1356. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1357. SERIAL_ECHO_START;
  1358. SERIAL_ECHOLN(time);
  1359. lcd_setstatus(time);
  1360. card.printingHasFinished();
  1361. card.checkautostart(true);
  1362. if (farm_mode)
  1363. {
  1364. prusa_statistics(6);
  1365. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1366. }
  1367. }
  1368. if(serial_char=='#')
  1369. stop_buffering=true;
  1370. if(!serial_count)
  1371. {
  1372. comment_mode = false; //for new command
  1373. return; //if empty line
  1374. }
  1375. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1376. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1377. ++ buflen;
  1378. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1379. if (bufindw == sizeof(cmdbuffer))
  1380. bufindw = 0;
  1381. comment_mode = false; //for new command
  1382. serial_count = 0; //clear buffer
  1383. // The following line will reserve buffer space if available.
  1384. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1385. return;
  1386. }
  1387. else
  1388. {
  1389. if(serial_char == ';') comment_mode = true;
  1390. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1391. }
  1392. }
  1393. #endif //SDSUPPORT
  1394. }
  1395. // Return True if a character was found
  1396. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1397. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1398. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1399. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1400. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1401. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1402. #define DEFINE_PGM_READ_ANY(type, reader) \
  1403. static inline type pgm_read_any(const type *p) \
  1404. { return pgm_read_##reader##_near(p); }
  1405. DEFINE_PGM_READ_ANY(float, float);
  1406. DEFINE_PGM_READ_ANY(signed char, byte);
  1407. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1408. static const PROGMEM type array##_P[3] = \
  1409. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1410. static inline type array(int axis) \
  1411. { return pgm_read_any(&array##_P[axis]); } \
  1412. type array##_ext(int axis) \
  1413. { return pgm_read_any(&array##_P[axis]); }
  1414. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1415. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1416. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1417. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1418. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1419. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1420. static void axis_is_at_home(int axis) {
  1421. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1422. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1423. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1424. }
  1425. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1426. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1427. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1428. saved_feedrate = feedrate;
  1429. saved_feedmultiply = feedmultiply;
  1430. feedmultiply = 100;
  1431. previous_millis_cmd = millis();
  1432. enable_endstops(enable_endstops_now);
  1433. }
  1434. static void clean_up_after_endstop_move() {
  1435. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1436. enable_endstops(false);
  1437. #endif
  1438. feedrate = saved_feedrate;
  1439. feedmultiply = saved_feedmultiply;
  1440. previous_millis_cmd = millis();
  1441. }
  1442. #ifdef ENABLE_AUTO_BED_LEVELING
  1443. #ifdef AUTO_BED_LEVELING_GRID
  1444. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1445. {
  1446. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1447. planeNormal.debug("planeNormal");
  1448. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1449. //bedLevel.debug("bedLevel");
  1450. //plan_bed_level_matrix.debug("bed level before");
  1451. //vector_3 uncorrected_position = plan_get_position_mm();
  1452. //uncorrected_position.debug("position before");
  1453. vector_3 corrected_position = plan_get_position();
  1454. // corrected_position.debug("position after");
  1455. current_position[X_AXIS] = corrected_position.x;
  1456. current_position[Y_AXIS] = corrected_position.y;
  1457. current_position[Z_AXIS] = corrected_position.z;
  1458. // put the bed at 0 so we don't go below it.
  1459. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. }
  1462. #else // not AUTO_BED_LEVELING_GRID
  1463. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1464. plan_bed_level_matrix.set_to_identity();
  1465. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1466. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1467. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1468. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1469. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1470. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1471. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1472. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1473. vector_3 corrected_position = plan_get_position();
  1474. current_position[X_AXIS] = corrected_position.x;
  1475. current_position[Y_AXIS] = corrected_position.y;
  1476. current_position[Z_AXIS] = corrected_position.z;
  1477. // put the bed at 0 so we don't go below it.
  1478. current_position[Z_AXIS] = zprobe_zoffset;
  1479. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1480. }
  1481. #endif // AUTO_BED_LEVELING_GRID
  1482. static void run_z_probe() {
  1483. plan_bed_level_matrix.set_to_identity();
  1484. feedrate = homing_feedrate[Z_AXIS];
  1485. // move down until you find the bed
  1486. float zPosition = -10;
  1487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1488. st_synchronize();
  1489. // we have to let the planner know where we are right now as it is not where we said to go.
  1490. zPosition = st_get_position_mm(Z_AXIS);
  1491. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1492. // move up the retract distance
  1493. zPosition += home_retract_mm(Z_AXIS);
  1494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1495. st_synchronize();
  1496. // move back down slowly to find bed
  1497. feedrate = homing_feedrate[Z_AXIS]/4;
  1498. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1500. st_synchronize();
  1501. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1502. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1504. }
  1505. static void do_blocking_move_to(float x, float y, float z) {
  1506. float oldFeedRate = feedrate;
  1507. feedrate = homing_feedrate[Z_AXIS];
  1508. current_position[Z_AXIS] = z;
  1509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1510. st_synchronize();
  1511. feedrate = XY_TRAVEL_SPEED;
  1512. current_position[X_AXIS] = x;
  1513. current_position[Y_AXIS] = y;
  1514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1515. st_synchronize();
  1516. feedrate = oldFeedRate;
  1517. }
  1518. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1519. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1520. }
  1521. /// Probe bed height at position (x,y), returns the measured z value
  1522. static float probe_pt(float x, float y, float z_before) {
  1523. // move to right place
  1524. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1525. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1526. run_z_probe();
  1527. float measured_z = current_position[Z_AXIS];
  1528. SERIAL_PROTOCOLRPGM(MSG_BED);
  1529. SERIAL_PROTOCOLPGM(" x: ");
  1530. SERIAL_PROTOCOL(x);
  1531. SERIAL_PROTOCOLPGM(" y: ");
  1532. SERIAL_PROTOCOL(y);
  1533. SERIAL_PROTOCOLPGM(" z: ");
  1534. SERIAL_PROTOCOL(measured_z);
  1535. SERIAL_PROTOCOLPGM("\n");
  1536. return measured_z;
  1537. }
  1538. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1539. void homeaxis(int axis) {
  1540. #define HOMEAXIS_DO(LETTER) \
  1541. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1542. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1543. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1544. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1545. 0) {
  1546. int axis_home_dir = home_dir(axis);
  1547. current_position[axis] = 0;
  1548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1549. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1550. feedrate = homing_feedrate[axis];
  1551. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1552. st_synchronize();
  1553. current_position[axis] = 0;
  1554. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1555. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1557. st_synchronize();
  1558. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1559. feedrate = homing_feedrate[axis]/2 ;
  1560. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1561. st_synchronize();
  1562. axis_is_at_home(axis);
  1563. destination[axis] = current_position[axis];
  1564. feedrate = 0.0;
  1565. endstops_hit_on_purpose();
  1566. axis_known_position[axis] = true;
  1567. }
  1568. }
  1569. void home_xy()
  1570. {
  1571. set_destination_to_current();
  1572. homeaxis(X_AXIS);
  1573. homeaxis(Y_AXIS);
  1574. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1575. endstops_hit_on_purpose();
  1576. }
  1577. void refresh_cmd_timeout(void)
  1578. {
  1579. previous_millis_cmd = millis();
  1580. }
  1581. #ifdef FWRETRACT
  1582. void retract(bool retracting, bool swapretract = false) {
  1583. if(retracting && !retracted[active_extruder]) {
  1584. destination[X_AXIS]=current_position[X_AXIS];
  1585. destination[Y_AXIS]=current_position[Y_AXIS];
  1586. destination[Z_AXIS]=current_position[Z_AXIS];
  1587. destination[E_AXIS]=current_position[E_AXIS];
  1588. if (swapretract) {
  1589. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1590. } else {
  1591. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1592. }
  1593. plan_set_e_position(current_position[E_AXIS]);
  1594. float oldFeedrate = feedrate;
  1595. feedrate=retract_feedrate*60;
  1596. retracted[active_extruder]=true;
  1597. prepare_move();
  1598. current_position[Z_AXIS]-=retract_zlift;
  1599. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1600. prepare_move();
  1601. feedrate = oldFeedrate;
  1602. } else if(!retracting && retracted[active_extruder]) {
  1603. destination[X_AXIS]=current_position[X_AXIS];
  1604. destination[Y_AXIS]=current_position[Y_AXIS];
  1605. destination[Z_AXIS]=current_position[Z_AXIS];
  1606. destination[E_AXIS]=current_position[E_AXIS];
  1607. current_position[Z_AXIS]+=retract_zlift;
  1608. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1609. //prepare_move();
  1610. if (swapretract) {
  1611. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1612. } else {
  1613. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1614. }
  1615. plan_set_e_position(current_position[E_AXIS]);
  1616. float oldFeedrate = feedrate;
  1617. feedrate=retract_recover_feedrate*60;
  1618. retracted[active_extruder]=false;
  1619. prepare_move();
  1620. feedrate = oldFeedrate;
  1621. }
  1622. } //retract
  1623. #endif //FWRETRACT
  1624. void trace() {
  1625. tone(BEEPER, 440);
  1626. delay(25);
  1627. noTone(BEEPER);
  1628. delay(20);
  1629. }
  1630. /*
  1631. void ramming() {
  1632. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1633. if (current_temperature[0] < 230) {
  1634. //PLA
  1635. max_feedrate[E_AXIS] = 50;
  1636. //current_position[E_AXIS] -= 8;
  1637. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1638. //current_position[E_AXIS] += 8;
  1639. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1640. current_position[E_AXIS] += 5.4;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1642. current_position[E_AXIS] += 3.2;
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1644. current_position[E_AXIS] += 3;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1646. st_synchronize();
  1647. max_feedrate[E_AXIS] = 80;
  1648. current_position[E_AXIS] -= 82;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1650. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1651. current_position[E_AXIS] -= 20;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1653. current_position[E_AXIS] += 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1655. current_position[E_AXIS] += 5;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1657. current_position[E_AXIS] -= 10;
  1658. st_synchronize();
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1660. current_position[E_AXIS] += 10;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1662. current_position[E_AXIS] -= 10;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1664. current_position[E_AXIS] += 10;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1666. current_position[E_AXIS] -= 10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1668. st_synchronize();
  1669. }
  1670. else {
  1671. //ABS
  1672. max_feedrate[E_AXIS] = 50;
  1673. //current_position[E_AXIS] -= 8;
  1674. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1675. //current_position[E_AXIS] += 8;
  1676. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1677. current_position[E_AXIS] += 3.1;
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1679. current_position[E_AXIS] += 3.1;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1681. current_position[E_AXIS] += 4;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1683. st_synchronize();
  1684. //current_position[X_AXIS] += 23; //delay
  1685. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1686. //current_position[X_AXIS] -= 23; //delay
  1687. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1688. delay(4700);
  1689. max_feedrate[E_AXIS] = 80;
  1690. current_position[E_AXIS] -= 92;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1692. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1693. current_position[E_AXIS] -= 5;
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1695. current_position[E_AXIS] += 5;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1697. current_position[E_AXIS] -= 5;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1699. st_synchronize();
  1700. current_position[E_AXIS] += 5;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1702. current_position[E_AXIS] -= 5;
  1703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1704. current_position[E_AXIS] += 5;
  1705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1706. current_position[E_AXIS] -= 5;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1708. st_synchronize();
  1709. }
  1710. }
  1711. */
  1712. void process_commands()
  1713. {
  1714. #ifdef FILAMENT_RUNOUT_SUPPORT
  1715. SET_INPUT(FR_SENS);
  1716. #endif
  1717. #ifdef CMDBUFFER_DEBUG
  1718. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1719. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1720. SERIAL_ECHOLNPGM("");
  1721. SERIAL_ECHOPGM("In cmdqueue: ");
  1722. SERIAL_ECHO(buflen);
  1723. SERIAL_ECHOLNPGM("");
  1724. #endif /* CMDBUFFER_DEBUG */
  1725. unsigned long codenum; //throw away variable
  1726. char *starpos = NULL;
  1727. #ifdef ENABLE_AUTO_BED_LEVELING
  1728. float x_tmp, y_tmp, z_tmp, real_z;
  1729. #endif
  1730. // PRUSA GCODES
  1731. #ifdef SNMM
  1732. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1733. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1734. int8_t SilentMode;
  1735. #endif
  1736. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1737. starpos = (strchr(strchr_pointer + 5, '*'));
  1738. if (starpos != NULL)
  1739. *(starpos) = '\0';
  1740. lcd_setstatus(strchr_pointer + 5);
  1741. }
  1742. else if(code_seen("PRUSA")){
  1743. if (code_seen("Ping")) { //PRUSA Ping
  1744. if (farm_mode) {
  1745. PingTime = millis();
  1746. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1747. }
  1748. }
  1749. else if (code_seen("PRN")) {
  1750. MYSERIAL.println(status_number);
  1751. }else if (code_seen("fn")) {
  1752. if (farm_mode) {
  1753. MYSERIAL.println(farm_no);
  1754. }
  1755. else {
  1756. MYSERIAL.println("Not in farm mode.");
  1757. }
  1758. }else if (code_seen("fv")) {
  1759. // get file version
  1760. #ifdef SDSUPPORT
  1761. card.openFile(strchr_pointer + 3,true);
  1762. while (true) {
  1763. uint16_t readByte = card.get();
  1764. MYSERIAL.write(readByte);
  1765. if (readByte=='\n') {
  1766. break;
  1767. }
  1768. }
  1769. card.closefile();
  1770. #endif // SDSUPPORT
  1771. } else if (code_seen("M28")) {
  1772. trace();
  1773. prusa_sd_card_upload = true;
  1774. card.openFile(strchr_pointer+4,false);
  1775. } else if(code_seen("Fir")){
  1776. SERIAL_PROTOCOLLN(FW_version);
  1777. } else if(code_seen("Rev")){
  1778. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1779. } else if(code_seen("Lang")) {
  1780. lcd_force_language_selection();
  1781. } else if(code_seen("Lz")) {
  1782. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1783. } else if (code_seen("SERIAL LOW")) {
  1784. MYSERIAL.println("SERIAL LOW");
  1785. MYSERIAL.begin(BAUDRATE);
  1786. return;
  1787. } else if (code_seen("SERIAL HIGH")) {
  1788. MYSERIAL.println("SERIAL HIGH");
  1789. MYSERIAL.begin(1152000);
  1790. return;
  1791. } else if(code_seen("Beat")) {
  1792. // Kick farm link timer
  1793. kicktime = millis();
  1794. } else if(code_seen("FR")) {
  1795. // Factory full reset
  1796. factory_reset(0,true);
  1797. }
  1798. //else if (code_seen('Cal')) {
  1799. // lcd_calibration();
  1800. // }
  1801. }
  1802. else if (code_seen('^')) {
  1803. // nothing, this is a version line
  1804. } else if(code_seen('G'))
  1805. {
  1806. switch((int)code_value())
  1807. {
  1808. case 0: // G0 -> G1
  1809. case 1: // G1
  1810. if(Stopped == false) {
  1811. #ifdef FILAMENT_RUNOUT_SUPPORT
  1812. if(READ(FR_SENS)){
  1813. feedmultiplyBckp=feedmultiply;
  1814. float target[4];
  1815. float lastpos[4];
  1816. target[X_AXIS]=current_position[X_AXIS];
  1817. target[Y_AXIS]=current_position[Y_AXIS];
  1818. target[Z_AXIS]=current_position[Z_AXIS];
  1819. target[E_AXIS]=current_position[E_AXIS];
  1820. lastpos[X_AXIS]=current_position[X_AXIS];
  1821. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1822. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1823. lastpos[E_AXIS]=current_position[E_AXIS];
  1824. //retract by E
  1825. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1827. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1829. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1830. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1832. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1833. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1834. //finish moves
  1835. st_synchronize();
  1836. //disable extruder steppers so filament can be removed
  1837. disable_e0();
  1838. disable_e1();
  1839. disable_e2();
  1840. delay(100);
  1841. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1842. uint8_t cnt=0;
  1843. int counterBeep = 0;
  1844. lcd_wait_interact();
  1845. while(!lcd_clicked()){
  1846. cnt++;
  1847. manage_heater();
  1848. manage_inactivity(true);
  1849. //lcd_update();
  1850. if(cnt==0)
  1851. {
  1852. #if BEEPER > 0
  1853. if (counterBeep== 500){
  1854. counterBeep = 0;
  1855. }
  1856. SET_OUTPUT(BEEPER);
  1857. if (counterBeep== 0){
  1858. WRITE(BEEPER,HIGH);
  1859. }
  1860. if (counterBeep== 20){
  1861. WRITE(BEEPER,LOW);
  1862. }
  1863. counterBeep++;
  1864. #else
  1865. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1866. lcd_buzz(1000/6,100);
  1867. #else
  1868. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1869. #endif
  1870. #endif
  1871. }
  1872. }
  1873. WRITE(BEEPER,LOW);
  1874. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1876. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1877. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1878. lcd_change_fil_state = 0;
  1879. lcd_loading_filament();
  1880. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1881. lcd_change_fil_state = 0;
  1882. lcd_alright();
  1883. switch(lcd_change_fil_state){
  1884. case 2:
  1885. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1887. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1888. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1889. lcd_loading_filament();
  1890. break;
  1891. case 3:
  1892. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1893. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1894. lcd_loading_color();
  1895. break;
  1896. default:
  1897. lcd_change_success();
  1898. break;
  1899. }
  1900. }
  1901. target[E_AXIS]+= 5;
  1902. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1903. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1904. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1905. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1906. //plan_set_e_position(current_position[E_AXIS]);
  1907. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1908. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1909. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1910. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1911. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1912. plan_set_e_position(lastpos[E_AXIS]);
  1913. feedmultiply=feedmultiplyBckp;
  1914. char cmd[9];
  1915. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1916. enquecommand(cmd);
  1917. }
  1918. #endif
  1919. get_coordinates(); // For X Y Z E F
  1920. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1921. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1922. }
  1923. #ifdef FWRETRACT
  1924. if(autoretract_enabled)
  1925. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1926. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1927. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1928. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1929. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1930. retract(!retracted);
  1931. return;
  1932. }
  1933. }
  1934. #endif //FWRETRACT
  1935. prepare_move();
  1936. //ClearToSend();
  1937. }
  1938. break;
  1939. case 2: // G2 - CW ARC
  1940. if(Stopped == false) {
  1941. get_arc_coordinates();
  1942. prepare_arc_move(true);
  1943. }
  1944. break;
  1945. case 3: // G3 - CCW ARC
  1946. if(Stopped == false) {
  1947. get_arc_coordinates();
  1948. prepare_arc_move(false);
  1949. }
  1950. break;
  1951. case 4: // G4 dwell
  1952. LCD_MESSAGERPGM(MSG_DWELL);
  1953. codenum = 0;
  1954. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1955. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1956. st_synchronize();
  1957. codenum += millis(); // keep track of when we started waiting
  1958. previous_millis_cmd = millis();
  1959. while(millis() < codenum) {
  1960. manage_heater();
  1961. manage_inactivity();
  1962. lcd_update();
  1963. }
  1964. break;
  1965. #ifdef FWRETRACT
  1966. case 10: // G10 retract
  1967. #if EXTRUDERS > 1
  1968. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1969. retract(true,retracted_swap[active_extruder]);
  1970. #else
  1971. retract(true);
  1972. #endif
  1973. break;
  1974. case 11: // G11 retract_recover
  1975. #if EXTRUDERS > 1
  1976. retract(false,retracted_swap[active_extruder]);
  1977. #else
  1978. retract(false);
  1979. #endif
  1980. break;
  1981. #endif //FWRETRACT
  1982. case 28: //G28 Home all Axis one at a time
  1983. homing_flag = true;
  1984. #ifdef ENABLE_AUTO_BED_LEVELING
  1985. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1986. #endif //ENABLE_AUTO_BED_LEVELING
  1987. // For mesh bed leveling deactivate the matrix temporarily
  1988. #ifdef MESH_BED_LEVELING
  1989. mbl.active = 0;
  1990. #endif
  1991. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1992. // the planner will not perform any adjustments in the XY plane.
  1993. // Wait for the motors to stop and update the current position with the absolute values.
  1994. world2machine_revert_to_uncorrected();
  1995. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1996. // consumed during the first movements following this statement.
  1997. babystep_undo();
  1998. saved_feedrate = feedrate;
  1999. saved_feedmultiply = feedmultiply;
  2000. feedmultiply = 100;
  2001. previous_millis_cmd = millis();
  2002. enable_endstops(true);
  2003. for(int8_t i=0; i < NUM_AXIS; i++)
  2004. destination[i] = current_position[i];
  2005. feedrate = 0.0;
  2006. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2007. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2008. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2009. homeaxis(Z_AXIS);
  2010. }
  2011. #endif
  2012. #ifdef QUICK_HOME
  2013. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2014. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2015. {
  2016. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2017. int x_axis_home_dir = home_dir(X_AXIS);
  2018. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2019. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2020. feedrate = homing_feedrate[X_AXIS];
  2021. if(homing_feedrate[Y_AXIS]<feedrate)
  2022. feedrate = homing_feedrate[Y_AXIS];
  2023. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2024. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2025. } else {
  2026. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2027. }
  2028. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2029. st_synchronize();
  2030. axis_is_at_home(X_AXIS);
  2031. axis_is_at_home(Y_AXIS);
  2032. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2033. destination[X_AXIS] = current_position[X_AXIS];
  2034. destination[Y_AXIS] = current_position[Y_AXIS];
  2035. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2036. feedrate = 0.0;
  2037. st_synchronize();
  2038. endstops_hit_on_purpose();
  2039. current_position[X_AXIS] = destination[X_AXIS];
  2040. current_position[Y_AXIS] = destination[Y_AXIS];
  2041. current_position[Z_AXIS] = destination[Z_AXIS];
  2042. }
  2043. #endif /* QUICK_HOME */
  2044. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2045. homeaxis(X_AXIS);
  2046. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2047. homeaxis(Y_AXIS);
  2048. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2049. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2050. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2051. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2052. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2053. #ifndef Z_SAFE_HOMING
  2054. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2055. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2056. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2057. feedrate = max_feedrate[Z_AXIS];
  2058. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2059. st_synchronize();
  2060. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2061. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2062. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2063. {
  2064. homeaxis(X_AXIS);
  2065. homeaxis(Y_AXIS);
  2066. }
  2067. // 1st mesh bed leveling measurement point, corrected.
  2068. world2machine_initialize();
  2069. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2070. world2machine_reset();
  2071. if (destination[Y_AXIS] < Y_MIN_POS)
  2072. destination[Y_AXIS] = Y_MIN_POS;
  2073. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2074. feedrate = homing_feedrate[Z_AXIS]/10;
  2075. current_position[Z_AXIS] = 0;
  2076. enable_endstops(false);
  2077. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2078. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2079. st_synchronize();
  2080. current_position[X_AXIS] = destination[X_AXIS];
  2081. current_position[Y_AXIS] = destination[Y_AXIS];
  2082. enable_endstops(true);
  2083. endstops_hit_on_purpose();
  2084. homeaxis(Z_AXIS);
  2085. #else // MESH_BED_LEVELING
  2086. homeaxis(Z_AXIS);
  2087. #endif // MESH_BED_LEVELING
  2088. }
  2089. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2090. if(home_all_axis) {
  2091. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2092. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2093. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2094. feedrate = XY_TRAVEL_SPEED/60;
  2095. current_position[Z_AXIS] = 0;
  2096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2097. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2098. st_synchronize();
  2099. current_position[X_AXIS] = destination[X_AXIS];
  2100. current_position[Y_AXIS] = destination[Y_AXIS];
  2101. homeaxis(Z_AXIS);
  2102. }
  2103. // Let's see if X and Y are homed and probe is inside bed area.
  2104. if(code_seen(axis_codes[Z_AXIS])) {
  2105. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2106. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2107. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2108. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2109. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2110. current_position[Z_AXIS] = 0;
  2111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2112. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2113. feedrate = max_feedrate[Z_AXIS];
  2114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2115. st_synchronize();
  2116. homeaxis(Z_AXIS);
  2117. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2118. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2119. SERIAL_ECHO_START;
  2120. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2121. } else {
  2122. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2123. SERIAL_ECHO_START;
  2124. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2125. }
  2126. }
  2127. #endif // Z_SAFE_HOMING
  2128. #endif // Z_HOME_DIR < 0
  2129. if(code_seen(axis_codes[Z_AXIS])) {
  2130. if(code_value_long() != 0) {
  2131. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2132. }
  2133. }
  2134. #ifdef ENABLE_AUTO_BED_LEVELING
  2135. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2136. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2137. }
  2138. #endif
  2139. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2140. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2141. enable_endstops(false);
  2142. #endif
  2143. feedrate = saved_feedrate;
  2144. feedmultiply = saved_feedmultiply;
  2145. previous_millis_cmd = millis();
  2146. endstops_hit_on_purpose();
  2147. #ifndef MESH_BED_LEVELING
  2148. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2149. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2150. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2151. lcd_adjust_z();
  2152. #endif
  2153. // Load the machine correction matrix
  2154. world2machine_initialize();
  2155. // and correct the current_position to match the transformed coordinate system.
  2156. world2machine_update_current();
  2157. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2158. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2159. {
  2160. }
  2161. else
  2162. {
  2163. st_synchronize();
  2164. homing_flag = false;
  2165. // Push the commands to the front of the message queue in the reverse order!
  2166. // There shall be always enough space reserved for these commands.
  2167. // enquecommand_front_P((PSTR("G80")));
  2168. goto case_G80;
  2169. }
  2170. #endif
  2171. if (farm_mode) { prusa_statistics(20); };
  2172. homing_flag = false;
  2173. break;
  2174. #ifdef ENABLE_AUTO_BED_LEVELING
  2175. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2176. {
  2177. #if Z_MIN_PIN == -1
  2178. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2179. #endif
  2180. // Prevent user from running a G29 without first homing in X and Y
  2181. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2182. {
  2183. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2184. SERIAL_ECHO_START;
  2185. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2186. break; // abort G29, since we don't know where we are
  2187. }
  2188. st_synchronize();
  2189. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2190. //vector_3 corrected_position = plan_get_position_mm();
  2191. //corrected_position.debug("position before G29");
  2192. plan_bed_level_matrix.set_to_identity();
  2193. vector_3 uncorrected_position = plan_get_position();
  2194. //uncorrected_position.debug("position durring G29");
  2195. current_position[X_AXIS] = uncorrected_position.x;
  2196. current_position[Y_AXIS] = uncorrected_position.y;
  2197. current_position[Z_AXIS] = uncorrected_position.z;
  2198. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2199. setup_for_endstop_move();
  2200. feedrate = homing_feedrate[Z_AXIS];
  2201. #ifdef AUTO_BED_LEVELING_GRID
  2202. // probe at the points of a lattice grid
  2203. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2204. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2205. // solve the plane equation ax + by + d = z
  2206. // A is the matrix with rows [x y 1] for all the probed points
  2207. // B is the vector of the Z positions
  2208. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2209. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2210. // "A" matrix of the linear system of equations
  2211. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2212. // "B" vector of Z points
  2213. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2214. int probePointCounter = 0;
  2215. bool zig = true;
  2216. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2217. {
  2218. int xProbe, xInc;
  2219. if (zig)
  2220. {
  2221. xProbe = LEFT_PROBE_BED_POSITION;
  2222. //xEnd = RIGHT_PROBE_BED_POSITION;
  2223. xInc = xGridSpacing;
  2224. zig = false;
  2225. } else // zag
  2226. {
  2227. xProbe = RIGHT_PROBE_BED_POSITION;
  2228. //xEnd = LEFT_PROBE_BED_POSITION;
  2229. xInc = -xGridSpacing;
  2230. zig = true;
  2231. }
  2232. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2233. {
  2234. float z_before;
  2235. if (probePointCounter == 0)
  2236. {
  2237. // raise before probing
  2238. z_before = Z_RAISE_BEFORE_PROBING;
  2239. } else
  2240. {
  2241. // raise extruder
  2242. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2243. }
  2244. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2245. eqnBVector[probePointCounter] = measured_z;
  2246. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2247. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2248. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2249. probePointCounter++;
  2250. xProbe += xInc;
  2251. }
  2252. }
  2253. clean_up_after_endstop_move();
  2254. // solve lsq problem
  2255. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2256. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2257. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2258. SERIAL_PROTOCOLPGM(" b: ");
  2259. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2260. SERIAL_PROTOCOLPGM(" d: ");
  2261. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2262. set_bed_level_equation_lsq(plane_equation_coefficients);
  2263. free(plane_equation_coefficients);
  2264. #else // AUTO_BED_LEVELING_GRID not defined
  2265. // Probe at 3 arbitrary points
  2266. // probe 1
  2267. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2268. // probe 2
  2269. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2270. // probe 3
  2271. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2272. clean_up_after_endstop_move();
  2273. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2274. #endif // AUTO_BED_LEVELING_GRID
  2275. st_synchronize();
  2276. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2277. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2278. // When the bed is uneven, this height must be corrected.
  2279. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2280. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2281. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2282. z_tmp = current_position[Z_AXIS];
  2283. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2284. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2286. }
  2287. break;
  2288. #ifndef Z_PROBE_SLED
  2289. case 30: // G30 Single Z Probe
  2290. {
  2291. st_synchronize();
  2292. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2293. setup_for_endstop_move();
  2294. feedrate = homing_feedrate[Z_AXIS];
  2295. run_z_probe();
  2296. SERIAL_PROTOCOLPGM(MSG_BED);
  2297. SERIAL_PROTOCOLPGM(" X: ");
  2298. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2299. SERIAL_PROTOCOLPGM(" Y: ");
  2300. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2301. SERIAL_PROTOCOLPGM(" Z: ");
  2302. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2303. SERIAL_PROTOCOLPGM("\n");
  2304. clean_up_after_endstop_move();
  2305. }
  2306. break;
  2307. #else
  2308. case 31: // dock the sled
  2309. dock_sled(true);
  2310. break;
  2311. case 32: // undock the sled
  2312. dock_sled(false);
  2313. break;
  2314. #endif // Z_PROBE_SLED
  2315. #endif // ENABLE_AUTO_BED_LEVELING
  2316. #ifdef MESH_BED_LEVELING
  2317. case 30: // G30 Single Z Probe
  2318. {
  2319. st_synchronize();
  2320. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2321. setup_for_endstop_move();
  2322. feedrate = homing_feedrate[Z_AXIS];
  2323. find_bed_induction_sensor_point_z(-10.f, 3);
  2324. SERIAL_PROTOCOLRPGM(MSG_BED);
  2325. SERIAL_PROTOCOLPGM(" X: ");
  2326. MYSERIAL.print(current_position[X_AXIS], 5);
  2327. SERIAL_PROTOCOLPGM(" Y: ");
  2328. MYSERIAL.print(current_position[Y_AXIS], 5);
  2329. SERIAL_PROTOCOLPGM(" Z: ");
  2330. MYSERIAL.print(current_position[Z_AXIS], 5);
  2331. SERIAL_PROTOCOLPGM("\n");
  2332. clean_up_after_endstop_move();
  2333. }
  2334. break;
  2335. case 75:
  2336. {
  2337. for (int i = 40; i <= 110; i++) {
  2338. MYSERIAL.print(i);
  2339. MYSERIAL.print(" ");
  2340. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2341. }
  2342. }
  2343. break;
  2344. case 76: //PINDA probe temperature calibration
  2345. {
  2346. setTargetBed(PINDA_MIN_T);
  2347. float zero_z;
  2348. int z_shift = 0; //unit: steps
  2349. int t_c; // temperature
  2350. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2351. // We don't know where we are! HOME!
  2352. // Push the commands to the front of the message queue in the reverse order!
  2353. // There shall be always enough space reserved for these commands.
  2354. repeatcommand_front(); // repeat G76 with all its parameters
  2355. enquecommand_front_P((PSTR("G28 W0")));
  2356. break;
  2357. }
  2358. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2359. custom_message = true;
  2360. custom_message_type = 4;
  2361. custom_message_state = 1;
  2362. custom_message = MSG_TEMP_CALIBRATION;
  2363. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2364. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2365. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2367. st_synchronize();
  2368. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2369. delay_keep_alive(1000);
  2370. serialecho_temperatures();
  2371. }
  2372. //enquecommand_P(PSTR("M190 S50"));
  2373. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2374. delay_keep_alive(1000);
  2375. serialecho_temperatures();
  2376. }
  2377. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2378. current_position[Z_AXIS] = 5;
  2379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2380. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2381. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2383. st_synchronize();
  2384. find_bed_induction_sensor_point_z(-1.f);
  2385. zero_z = current_position[Z_AXIS];
  2386. //current_position[Z_AXIS]
  2387. SERIAL_ECHOLNPGM("");
  2388. SERIAL_ECHOPGM("ZERO: ");
  2389. MYSERIAL.print(current_position[Z_AXIS]);
  2390. SERIAL_ECHOLNPGM("");
  2391. for (int i = 0; i<5; i++) {
  2392. SERIAL_ECHOPGM("Step: ");
  2393. MYSERIAL.print(i+2);
  2394. SERIAL_ECHOLNPGM("/6");
  2395. custom_message_state = i + 2;
  2396. t_c = 60 + i * 10;
  2397. setTargetBed(t_c);
  2398. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2399. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2400. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2402. st_synchronize();
  2403. while (degBed() < t_c) {
  2404. delay_keep_alive(1000);
  2405. serialecho_temperatures();
  2406. }
  2407. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2408. delay_keep_alive(1000);
  2409. serialecho_temperatures();
  2410. }
  2411. current_position[Z_AXIS] = 5;
  2412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2413. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2414. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2416. st_synchronize();
  2417. find_bed_induction_sensor_point_z(-1.f);
  2418. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2419. SERIAL_ECHOLNPGM("");
  2420. SERIAL_ECHOPGM("Temperature: ");
  2421. MYSERIAL.print(t_c);
  2422. SERIAL_ECHOPGM(" Z shift (mm):");
  2423. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2424. SERIAL_ECHOLNPGM("");
  2425. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2426. }
  2427. custom_message_type = 0;
  2428. custom_message = false;
  2429. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2430. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2431. disable_x();
  2432. disable_y();
  2433. disable_z();
  2434. disable_e0();
  2435. disable_e1();
  2436. disable_e2();
  2437. setTargetBed(0); //set bed target temperature back to 0
  2438. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2439. lcd_update_enable(true);
  2440. lcd_update(2);
  2441. }
  2442. break;
  2443. #ifdef DIS
  2444. case 77:
  2445. {
  2446. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2447. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2448. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2449. float dimension_x = 40;
  2450. float dimension_y = 40;
  2451. int points_x = 40;
  2452. int points_y = 40;
  2453. float offset_x = 74;
  2454. float offset_y = 33;
  2455. if (code_seen('X')) dimension_x = code_value();
  2456. if (code_seen('Y')) dimension_y = code_value();
  2457. if (code_seen('XP')) points_x = code_value();
  2458. if (code_seen('YP')) points_y = code_value();
  2459. if (code_seen('XO')) offset_x = code_value();
  2460. if (code_seen('YO')) offset_y = code_value();
  2461. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2462. } break;
  2463. #endif
  2464. /**
  2465. * G80: Mesh-based Z probe, probes a grid and produces a
  2466. * mesh to compensate for variable bed height
  2467. *
  2468. * The S0 report the points as below
  2469. *
  2470. * +----> X-axis
  2471. * |
  2472. * |
  2473. * v Y-axis
  2474. *
  2475. */
  2476. case 80:
  2477. #ifdef MK1BP
  2478. break;
  2479. #endif //MK1BP
  2480. case_G80:
  2481. {
  2482. mesh_bed_leveling_flag = true;
  2483. int8_t verbosity_level = 0;
  2484. static bool run = false;
  2485. if (code_seen('V')) {
  2486. // Just 'V' without a number counts as V1.
  2487. char c = strchr_pointer[1];
  2488. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2489. }
  2490. // Firstly check if we know where we are
  2491. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2492. // We don't know where we are! HOME!
  2493. // Push the commands to the front of the message queue in the reverse order!
  2494. // There shall be always enough space reserved for these commands.
  2495. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2496. repeatcommand_front(); // repeat G80 with all its parameters
  2497. enquecommand_front_P((PSTR("G28 W0")));
  2498. }
  2499. else {
  2500. mesh_bed_leveling_flag = false;
  2501. }
  2502. break;
  2503. }
  2504. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2505. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2506. temp_compensation_start();
  2507. run = true;
  2508. repeatcommand_front(); // repeat G80 with all its parameters
  2509. enquecommand_front_P((PSTR("G28 W0")));
  2510. }
  2511. else {
  2512. mesh_bed_leveling_flag = false;
  2513. }
  2514. break;
  2515. }
  2516. run = false;
  2517. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2518. mesh_bed_leveling_flag = false;
  2519. break;
  2520. }
  2521. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2522. bool custom_message_old = custom_message;
  2523. unsigned int custom_message_type_old = custom_message_type;
  2524. unsigned int custom_message_state_old = custom_message_state;
  2525. custom_message = true;
  2526. custom_message_type = 1;
  2527. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2528. lcd_update(1);
  2529. mbl.reset(); //reset mesh bed leveling
  2530. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2531. // consumed during the first movements following this statement.
  2532. babystep_undo();
  2533. // Cycle through all points and probe them
  2534. // First move up. During this first movement, the babystepping will be reverted.
  2535. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2537. // The move to the first calibration point.
  2538. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2539. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2540. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2541. if (verbosity_level >= 1) {
  2542. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2543. }
  2544. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2546. // Wait until the move is finished.
  2547. st_synchronize();
  2548. int mesh_point = 0; //index number of calibration point
  2549. int ix = 0;
  2550. int iy = 0;
  2551. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2552. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2553. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2554. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2555. if (verbosity_level >= 1) {
  2556. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2557. }
  2558. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2559. const char *kill_message = NULL;
  2560. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2561. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2562. // Get coords of a measuring point.
  2563. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2564. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2565. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2566. float z0 = 0.f;
  2567. if (has_z && mesh_point > 0) {
  2568. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2569. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2570. //#if 0
  2571. if (verbosity_level >= 1) {
  2572. SERIAL_ECHOPGM("Bed leveling, point: ");
  2573. MYSERIAL.print(mesh_point);
  2574. SERIAL_ECHOPGM(", calibration z: ");
  2575. MYSERIAL.print(z0, 5);
  2576. SERIAL_ECHOLNPGM("");
  2577. }
  2578. //#endif
  2579. }
  2580. // Move Z up to MESH_HOME_Z_SEARCH.
  2581. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2583. st_synchronize();
  2584. // Move to XY position of the sensor point.
  2585. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2586. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2587. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2588. if (verbosity_level >= 1) {
  2589. SERIAL_PROTOCOL(mesh_point);
  2590. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2591. }
  2592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2593. st_synchronize();
  2594. // Go down until endstop is hit
  2595. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2596. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2597. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2598. break;
  2599. }
  2600. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2601. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2602. break;
  2603. }
  2604. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2605. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2606. break;
  2607. }
  2608. if (verbosity_level >= 10) {
  2609. SERIAL_ECHOPGM("X: ");
  2610. MYSERIAL.print(current_position[X_AXIS], 5);
  2611. SERIAL_ECHOLNPGM("");
  2612. SERIAL_ECHOPGM("Y: ");
  2613. MYSERIAL.print(current_position[Y_AXIS], 5);
  2614. SERIAL_PROTOCOLPGM("\n");
  2615. }
  2616. if (verbosity_level >= 1) {
  2617. SERIAL_ECHOPGM("mesh bed leveling: ");
  2618. MYSERIAL.print(current_position[Z_AXIS], 5);
  2619. SERIAL_ECHOLNPGM("");
  2620. }
  2621. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2622. custom_message_state--;
  2623. mesh_point++;
  2624. lcd_update(1);
  2625. }
  2626. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2627. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2628. if (verbosity_level >= 20) {
  2629. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2630. MYSERIAL.print(current_position[Z_AXIS], 5);
  2631. }
  2632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2633. st_synchronize();
  2634. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2635. kill(kill_message);
  2636. SERIAL_ECHOLNPGM("killed");
  2637. }
  2638. clean_up_after_endstop_move();
  2639. SERIAL_ECHOLNPGM("clean up finished ");
  2640. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2641. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2642. SERIAL_ECHOLNPGM("babystep applied");
  2643. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2644. if (verbosity_level >= 1) {
  2645. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2646. }
  2647. for (uint8_t i = 0; i < 4; ++i) {
  2648. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2649. long correction = 0;
  2650. if (code_seen(codes[i]))
  2651. correction = code_value_long();
  2652. else if (eeprom_bed_correction_valid) {
  2653. unsigned char *addr = (i < 2) ?
  2654. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2655. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2656. correction = eeprom_read_int8(addr);
  2657. }
  2658. if (correction == 0)
  2659. continue;
  2660. float offset = float(correction) * 0.001f;
  2661. if (fabs(offset) > 0.101f) {
  2662. SERIAL_ERROR_START;
  2663. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2664. SERIAL_ECHO(offset);
  2665. SERIAL_ECHOLNPGM(" microns");
  2666. }
  2667. else {
  2668. switch (i) {
  2669. case 0:
  2670. for (uint8_t row = 0; row < 3; ++row) {
  2671. mbl.z_values[row][1] += 0.5f * offset;
  2672. mbl.z_values[row][0] += offset;
  2673. }
  2674. break;
  2675. case 1:
  2676. for (uint8_t row = 0; row < 3; ++row) {
  2677. mbl.z_values[row][1] += 0.5f * offset;
  2678. mbl.z_values[row][2] += offset;
  2679. }
  2680. break;
  2681. case 2:
  2682. for (uint8_t col = 0; col < 3; ++col) {
  2683. mbl.z_values[1][col] += 0.5f * offset;
  2684. mbl.z_values[0][col] += offset;
  2685. }
  2686. break;
  2687. case 3:
  2688. for (uint8_t col = 0; col < 3; ++col) {
  2689. mbl.z_values[1][col] += 0.5f * offset;
  2690. mbl.z_values[2][col] += offset;
  2691. }
  2692. break;
  2693. }
  2694. }
  2695. }
  2696. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2697. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2698. SERIAL_ECHOLNPGM("Upsample finished");
  2699. mbl.active = 1; //activate mesh bed leveling
  2700. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2701. go_home_with_z_lift();
  2702. SERIAL_ECHOLNPGM("Go home finished");
  2703. //unretract (after PINDA preheat retraction)
  2704. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2705. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2707. }
  2708. // Restore custom message state
  2709. custom_message = custom_message_old;
  2710. custom_message_type = custom_message_type_old;
  2711. custom_message_state = custom_message_state_old;
  2712. mesh_bed_leveling_flag = false;
  2713. mesh_bed_run_from_menu = false;
  2714. lcd_update(2);
  2715. }
  2716. break;
  2717. /**
  2718. * G81: Print mesh bed leveling status and bed profile if activated
  2719. */
  2720. case 81:
  2721. if (mbl.active) {
  2722. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2723. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2724. SERIAL_PROTOCOLPGM(",");
  2725. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2726. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2727. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2728. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2729. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2730. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2731. SERIAL_PROTOCOLPGM(" ");
  2732. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2733. }
  2734. SERIAL_PROTOCOLPGM("\n");
  2735. }
  2736. }
  2737. else
  2738. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2739. break;
  2740. #if 0
  2741. /**
  2742. * G82: Single Z probe at current location
  2743. *
  2744. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2745. *
  2746. */
  2747. case 82:
  2748. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2749. setup_for_endstop_move();
  2750. find_bed_induction_sensor_point_z();
  2751. clean_up_after_endstop_move();
  2752. SERIAL_PROTOCOLPGM("Bed found at: ");
  2753. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2754. SERIAL_PROTOCOLPGM("\n");
  2755. break;
  2756. /**
  2757. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2758. */
  2759. case 83:
  2760. {
  2761. int babystepz = code_seen('S') ? code_value() : 0;
  2762. int BabyPosition = code_seen('P') ? code_value() : 0;
  2763. if (babystepz != 0) {
  2764. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2765. // Is the axis indexed starting with zero or one?
  2766. if (BabyPosition > 4) {
  2767. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2768. }else{
  2769. // Save it to the eeprom
  2770. babystepLoadZ = babystepz;
  2771. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2772. // adjust the Z
  2773. babystepsTodoZadd(babystepLoadZ);
  2774. }
  2775. }
  2776. }
  2777. break;
  2778. /**
  2779. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2780. */
  2781. case 84:
  2782. babystepsTodoZsubtract(babystepLoadZ);
  2783. // babystepLoadZ = 0;
  2784. break;
  2785. /**
  2786. * G85: Prusa3D specific: Pick best babystep
  2787. */
  2788. case 85:
  2789. lcd_pick_babystep();
  2790. break;
  2791. #endif
  2792. /**
  2793. * G86: Prusa3D specific: Disable babystep correction after home.
  2794. * This G-code will be performed at the start of a calibration script.
  2795. */
  2796. case 86:
  2797. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2798. break;
  2799. /**
  2800. * G87: Prusa3D specific: Enable babystep correction after home
  2801. * This G-code will be performed at the end of a calibration script.
  2802. */
  2803. case 87:
  2804. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2805. break;
  2806. /**
  2807. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2808. */
  2809. case 88:
  2810. break;
  2811. #endif // ENABLE_MESH_BED_LEVELING
  2812. case 90: // G90
  2813. relative_mode = false;
  2814. break;
  2815. case 91: // G91
  2816. relative_mode = true;
  2817. break;
  2818. case 92: // G92
  2819. if(!code_seen(axis_codes[E_AXIS]))
  2820. st_synchronize();
  2821. for(int8_t i=0; i < NUM_AXIS; i++) {
  2822. if(code_seen(axis_codes[i])) {
  2823. if(i == E_AXIS) {
  2824. current_position[i] = code_value();
  2825. plan_set_e_position(current_position[E_AXIS]);
  2826. }
  2827. else {
  2828. current_position[i] = code_value()+add_homing[i];
  2829. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2830. }
  2831. }
  2832. }
  2833. break;
  2834. case 98: //activate farm mode
  2835. farm_mode = 1;
  2836. PingTime = millis();
  2837. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2838. break;
  2839. case 99: //deactivate farm mode
  2840. farm_mode = 0;
  2841. lcd_printer_connected();
  2842. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2843. lcd_update(2);
  2844. break;
  2845. }
  2846. } // end if(code_seen('G'))
  2847. else if(code_seen('M'))
  2848. {
  2849. int index;
  2850. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2851. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2852. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2853. SERIAL_ECHOLNPGM("Invalid M code");
  2854. } else
  2855. switch((int)code_value())
  2856. {
  2857. #ifdef ULTIPANEL
  2858. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2859. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2860. {
  2861. char *src = strchr_pointer + 2;
  2862. codenum = 0;
  2863. bool hasP = false, hasS = false;
  2864. if (code_seen('P')) {
  2865. codenum = code_value(); // milliseconds to wait
  2866. hasP = codenum > 0;
  2867. }
  2868. if (code_seen('S')) {
  2869. codenum = code_value() * 1000; // seconds to wait
  2870. hasS = codenum > 0;
  2871. }
  2872. starpos = strchr(src, '*');
  2873. if (starpos != NULL) *(starpos) = '\0';
  2874. while (*src == ' ') ++src;
  2875. if (!hasP && !hasS && *src != '\0') {
  2876. lcd_setstatus(src);
  2877. } else {
  2878. LCD_MESSAGERPGM(MSG_USERWAIT);
  2879. }
  2880. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2881. st_synchronize();
  2882. previous_millis_cmd = millis();
  2883. if (codenum > 0){
  2884. codenum += millis(); // keep track of when we started waiting
  2885. while(millis() < codenum && !lcd_clicked()){
  2886. manage_heater();
  2887. manage_inactivity(true);
  2888. lcd_update();
  2889. }
  2890. lcd_ignore_click(false);
  2891. }else{
  2892. if (!lcd_detected())
  2893. break;
  2894. while(!lcd_clicked()){
  2895. manage_heater();
  2896. manage_inactivity(true);
  2897. lcd_update();
  2898. }
  2899. }
  2900. if (IS_SD_PRINTING)
  2901. LCD_MESSAGERPGM(MSG_RESUMING);
  2902. else
  2903. LCD_MESSAGERPGM(WELCOME_MSG);
  2904. }
  2905. break;
  2906. #endif
  2907. case 17:
  2908. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2909. enable_x();
  2910. enable_y();
  2911. enable_z();
  2912. enable_e0();
  2913. enable_e1();
  2914. enable_e2();
  2915. break;
  2916. #ifdef SDSUPPORT
  2917. case 20: // M20 - list SD card
  2918. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2919. card.ls();
  2920. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2921. break;
  2922. case 21: // M21 - init SD card
  2923. card.initsd();
  2924. break;
  2925. case 22: //M22 - release SD card
  2926. card.release();
  2927. break;
  2928. case 23: //M23 - Select file
  2929. starpos = (strchr(strchr_pointer + 4,'*'));
  2930. if(starpos!=NULL)
  2931. *(starpos)='\0';
  2932. card.openFile(strchr_pointer + 4,true);
  2933. break;
  2934. case 24: //M24 - Start SD print
  2935. card.startFileprint();
  2936. starttime=millis();
  2937. break;
  2938. case 25: //M25 - Pause SD print
  2939. card.pauseSDPrint();
  2940. break;
  2941. case 26: //M26 - Set SD index
  2942. if(card.cardOK && code_seen('S')) {
  2943. card.setIndex(code_value_long());
  2944. }
  2945. break;
  2946. case 27: //M27 - Get SD status
  2947. card.getStatus();
  2948. break;
  2949. case 28: //M28 - Start SD write
  2950. starpos = (strchr(strchr_pointer + 4,'*'));
  2951. if(starpos != NULL){
  2952. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2953. strchr_pointer = strchr(npos,' ') + 1;
  2954. *(starpos) = '\0';
  2955. }
  2956. card.openFile(strchr_pointer+4,false);
  2957. break;
  2958. case 29: //M29 - Stop SD write
  2959. //processed in write to file routine above
  2960. //card,saving = false;
  2961. break;
  2962. case 30: //M30 <filename> Delete File
  2963. if (card.cardOK){
  2964. card.closefile();
  2965. starpos = (strchr(strchr_pointer + 4,'*'));
  2966. if(starpos != NULL){
  2967. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2968. strchr_pointer = strchr(npos,' ') + 1;
  2969. *(starpos) = '\0';
  2970. }
  2971. card.removeFile(strchr_pointer + 4);
  2972. }
  2973. break;
  2974. case 32: //M32 - Select file and start SD print
  2975. {
  2976. if(card.sdprinting) {
  2977. st_synchronize();
  2978. }
  2979. starpos = (strchr(strchr_pointer + 4,'*'));
  2980. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2981. if(namestartpos==NULL)
  2982. {
  2983. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2984. }
  2985. else
  2986. namestartpos++; //to skip the '!'
  2987. if(starpos!=NULL)
  2988. *(starpos)='\0';
  2989. bool call_procedure=(code_seen('P'));
  2990. if(strchr_pointer>namestartpos)
  2991. call_procedure=false; //false alert, 'P' found within filename
  2992. if( card.cardOK )
  2993. {
  2994. card.openFile(namestartpos,true,!call_procedure);
  2995. if(code_seen('S'))
  2996. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2997. card.setIndex(code_value_long());
  2998. card.startFileprint();
  2999. if(!call_procedure)
  3000. starttime=millis(); //procedure calls count as normal print time.
  3001. }
  3002. } break;
  3003. case 928: //M928 - Start SD write
  3004. starpos = (strchr(strchr_pointer + 5,'*'));
  3005. if(starpos != NULL){
  3006. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3007. strchr_pointer = strchr(npos,' ') + 1;
  3008. *(starpos) = '\0';
  3009. }
  3010. card.openLogFile(strchr_pointer+5);
  3011. break;
  3012. #endif //SDSUPPORT
  3013. case 31: //M31 take time since the start of the SD print or an M109 command
  3014. {
  3015. stoptime=millis();
  3016. char time[30];
  3017. unsigned long t=(stoptime-starttime)/1000;
  3018. int sec,min;
  3019. min=t/60;
  3020. sec=t%60;
  3021. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3022. SERIAL_ECHO_START;
  3023. SERIAL_ECHOLN(time);
  3024. lcd_setstatus(time);
  3025. autotempShutdown();
  3026. }
  3027. break;
  3028. case 42: //M42 -Change pin status via gcode
  3029. if (code_seen('S'))
  3030. {
  3031. int pin_status = code_value();
  3032. int pin_number = LED_PIN;
  3033. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3034. pin_number = code_value();
  3035. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3036. {
  3037. if (sensitive_pins[i] == pin_number)
  3038. {
  3039. pin_number = -1;
  3040. break;
  3041. }
  3042. }
  3043. #if defined(FAN_PIN) && FAN_PIN > -1
  3044. if (pin_number == FAN_PIN)
  3045. fanSpeed = pin_status;
  3046. #endif
  3047. if (pin_number > -1)
  3048. {
  3049. pinMode(pin_number, OUTPUT);
  3050. digitalWrite(pin_number, pin_status);
  3051. analogWrite(pin_number, pin_status);
  3052. }
  3053. }
  3054. break;
  3055. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3056. // Reset the baby step value and the baby step applied flag.
  3057. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3058. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3059. // Reset the skew and offset in both RAM and EEPROM.
  3060. reset_bed_offset_and_skew();
  3061. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3062. // the planner will not perform any adjustments in the XY plane.
  3063. // Wait for the motors to stop and update the current position with the absolute values.
  3064. world2machine_revert_to_uncorrected();
  3065. break;
  3066. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3067. {
  3068. // Only Z calibration?
  3069. bool onlyZ = code_seen('Z');
  3070. if (!onlyZ) {
  3071. setTargetBed(0);
  3072. setTargetHotend(0, 0);
  3073. setTargetHotend(0, 1);
  3074. setTargetHotend(0, 2);
  3075. adjust_bed_reset(); //reset bed level correction
  3076. }
  3077. // Disable the default update procedure of the display. We will do a modal dialog.
  3078. lcd_update_enable(false);
  3079. // Let the planner use the uncorrected coordinates.
  3080. mbl.reset();
  3081. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3082. // the planner will not perform any adjustments in the XY plane.
  3083. // Wait for the motors to stop and update the current position with the absolute values.
  3084. world2machine_revert_to_uncorrected();
  3085. // Reset the baby step value applied without moving the axes.
  3086. babystep_reset();
  3087. // Mark all axes as in a need for homing.
  3088. memset(axis_known_position, 0, sizeof(axis_known_position));
  3089. // Let the user move the Z axes up to the end stoppers.
  3090. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3091. refresh_cmd_timeout();
  3092. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3093. lcd_wait_for_cool_down();
  3094. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3095. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3096. lcd_implementation_print_at(0, 2, 1);
  3097. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3098. }
  3099. // Move the print head close to the bed.
  3100. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3102. st_synchronize();
  3103. // Home in the XY plane.
  3104. set_destination_to_current();
  3105. setup_for_endstop_move();
  3106. home_xy();
  3107. int8_t verbosity_level = 0;
  3108. if (code_seen('V')) {
  3109. // Just 'V' without a number counts as V1.
  3110. char c = strchr_pointer[1];
  3111. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3112. }
  3113. if (onlyZ) {
  3114. clean_up_after_endstop_move();
  3115. // Z only calibration.
  3116. // Load the machine correction matrix
  3117. world2machine_initialize();
  3118. // and correct the current_position to match the transformed coordinate system.
  3119. world2machine_update_current();
  3120. //FIXME
  3121. bool result = sample_mesh_and_store_reference();
  3122. if (result) {
  3123. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3124. // Shipped, the nozzle height has been set already. The user can start printing now.
  3125. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3126. // babystep_apply();
  3127. }
  3128. } else {
  3129. // Reset the baby step value and the baby step applied flag.
  3130. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3131. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3132. // Complete XYZ calibration.
  3133. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3134. uint8_t point_too_far_mask = 0;
  3135. clean_up_after_endstop_move();
  3136. // Print head up.
  3137. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3139. st_synchronize();
  3140. if (result >= 0) {
  3141. // Second half: The fine adjustment.
  3142. // Let the planner use the uncorrected coordinates.
  3143. mbl.reset();
  3144. world2machine_reset();
  3145. // Home in the XY plane.
  3146. setup_for_endstop_move();
  3147. home_xy();
  3148. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3149. clean_up_after_endstop_move();
  3150. // Print head up.
  3151. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3153. st_synchronize();
  3154. // if (result >= 0) babystep_apply();
  3155. }
  3156. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3157. if (result >= 0) {
  3158. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3159. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3160. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3161. }
  3162. }
  3163. } else {
  3164. // Timeouted.
  3165. }
  3166. lcd_update_enable(true);
  3167. break;
  3168. }
  3169. /*
  3170. case 46:
  3171. {
  3172. // M46: Prusa3D: Show the assigned IP address.
  3173. uint8_t ip[4];
  3174. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3175. if (hasIP) {
  3176. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3177. SERIAL_ECHO(int(ip[0]));
  3178. SERIAL_ECHOPGM(".");
  3179. SERIAL_ECHO(int(ip[1]));
  3180. SERIAL_ECHOPGM(".");
  3181. SERIAL_ECHO(int(ip[2]));
  3182. SERIAL_ECHOPGM(".");
  3183. SERIAL_ECHO(int(ip[3]));
  3184. SERIAL_ECHOLNPGM("");
  3185. } else {
  3186. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3187. }
  3188. break;
  3189. }
  3190. */
  3191. case 47:
  3192. // M47: Prusa3D: Show end stops dialog on the display.
  3193. lcd_diag_show_end_stops();
  3194. break;
  3195. #if 0
  3196. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3197. {
  3198. // Disable the default update procedure of the display. We will do a modal dialog.
  3199. lcd_update_enable(false);
  3200. // Let the planner use the uncorrected coordinates.
  3201. mbl.reset();
  3202. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3203. // the planner will not perform any adjustments in the XY plane.
  3204. // Wait for the motors to stop and update the current position with the absolute values.
  3205. world2machine_revert_to_uncorrected();
  3206. // Move the print head close to the bed.
  3207. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3209. st_synchronize();
  3210. // Home in the XY plane.
  3211. set_destination_to_current();
  3212. setup_for_endstop_move();
  3213. home_xy();
  3214. int8_t verbosity_level = 0;
  3215. if (code_seen('V')) {
  3216. // Just 'V' without a number counts as V1.
  3217. char c = strchr_pointer[1];
  3218. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3219. }
  3220. bool success = scan_bed_induction_points(verbosity_level);
  3221. clean_up_after_endstop_move();
  3222. // Print head up.
  3223. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3225. st_synchronize();
  3226. lcd_update_enable(true);
  3227. break;
  3228. }
  3229. #endif
  3230. // M48 Z-Probe repeatability measurement function.
  3231. //
  3232. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3233. //
  3234. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3235. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3236. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3237. // regenerated.
  3238. //
  3239. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3240. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3241. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3242. //
  3243. #ifdef ENABLE_AUTO_BED_LEVELING
  3244. #ifdef Z_PROBE_REPEATABILITY_TEST
  3245. case 48: // M48 Z-Probe repeatability
  3246. {
  3247. #if Z_MIN_PIN == -1
  3248. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3249. #endif
  3250. double sum=0.0;
  3251. double mean=0.0;
  3252. double sigma=0.0;
  3253. double sample_set[50];
  3254. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3255. double X_current, Y_current, Z_current;
  3256. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3257. if (code_seen('V') || code_seen('v')) {
  3258. verbose_level = code_value();
  3259. if (verbose_level<0 || verbose_level>4 ) {
  3260. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3261. goto Sigma_Exit;
  3262. }
  3263. }
  3264. if (verbose_level > 0) {
  3265. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3266. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3267. }
  3268. if (code_seen('n')) {
  3269. n_samples = code_value();
  3270. if (n_samples<4 || n_samples>50 ) {
  3271. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3272. goto Sigma_Exit;
  3273. }
  3274. }
  3275. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3276. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3277. Z_current = st_get_position_mm(Z_AXIS);
  3278. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3279. ext_position = st_get_position_mm(E_AXIS);
  3280. if (code_seen('X') || code_seen('x') ) {
  3281. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3282. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3283. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3284. goto Sigma_Exit;
  3285. }
  3286. }
  3287. if (code_seen('Y') || code_seen('y') ) {
  3288. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3289. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3290. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3291. goto Sigma_Exit;
  3292. }
  3293. }
  3294. if (code_seen('L') || code_seen('l') ) {
  3295. n_legs = code_value();
  3296. if ( n_legs==1 )
  3297. n_legs = 2;
  3298. if ( n_legs<0 || n_legs>15 ) {
  3299. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3300. goto Sigma_Exit;
  3301. }
  3302. }
  3303. //
  3304. // Do all the preliminary setup work. First raise the probe.
  3305. //
  3306. st_synchronize();
  3307. plan_bed_level_matrix.set_to_identity();
  3308. plan_buffer_line( X_current, Y_current, Z_start_location,
  3309. ext_position,
  3310. homing_feedrate[Z_AXIS]/60,
  3311. active_extruder);
  3312. st_synchronize();
  3313. //
  3314. // Now get everything to the specified probe point So we can safely do a probe to
  3315. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3316. // use that as a starting point for each probe.
  3317. //
  3318. if (verbose_level > 2)
  3319. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3320. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3321. ext_position,
  3322. homing_feedrate[X_AXIS]/60,
  3323. active_extruder);
  3324. st_synchronize();
  3325. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3326. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3327. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3328. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3329. //
  3330. // OK, do the inital probe to get us close to the bed.
  3331. // Then retrace the right amount and use that in subsequent probes
  3332. //
  3333. setup_for_endstop_move();
  3334. run_z_probe();
  3335. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3336. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3337. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3338. ext_position,
  3339. homing_feedrate[X_AXIS]/60,
  3340. active_extruder);
  3341. st_synchronize();
  3342. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3343. for( n=0; n<n_samples; n++) {
  3344. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3345. if ( n_legs) {
  3346. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3347. int rotational_direction, l;
  3348. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3349. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3350. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3351. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3352. //SERIAL_ECHOPAIR(" theta: ",theta);
  3353. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3354. //SERIAL_PROTOCOLLNPGM("");
  3355. for( l=0; l<n_legs-1; l++) {
  3356. if (rotational_direction==1)
  3357. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3358. else
  3359. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3360. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3361. if ( radius<0.0 )
  3362. radius = -radius;
  3363. X_current = X_probe_location + cos(theta) * radius;
  3364. Y_current = Y_probe_location + sin(theta) * radius;
  3365. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3366. X_current = X_MIN_POS;
  3367. if ( X_current>X_MAX_POS)
  3368. X_current = X_MAX_POS;
  3369. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3370. Y_current = Y_MIN_POS;
  3371. if ( Y_current>Y_MAX_POS)
  3372. Y_current = Y_MAX_POS;
  3373. if (verbose_level>3 ) {
  3374. SERIAL_ECHOPAIR("x: ", X_current);
  3375. SERIAL_ECHOPAIR("y: ", Y_current);
  3376. SERIAL_PROTOCOLLNPGM("");
  3377. }
  3378. do_blocking_move_to( X_current, Y_current, Z_current );
  3379. }
  3380. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3381. }
  3382. setup_for_endstop_move();
  3383. run_z_probe();
  3384. sample_set[n] = current_position[Z_AXIS];
  3385. //
  3386. // Get the current mean for the data points we have so far
  3387. //
  3388. sum=0.0;
  3389. for( j=0; j<=n; j++) {
  3390. sum = sum + sample_set[j];
  3391. }
  3392. mean = sum / (double (n+1));
  3393. //
  3394. // Now, use that mean to calculate the standard deviation for the
  3395. // data points we have so far
  3396. //
  3397. sum=0.0;
  3398. for( j=0; j<=n; j++) {
  3399. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3400. }
  3401. sigma = sqrt( sum / (double (n+1)) );
  3402. if (verbose_level > 1) {
  3403. SERIAL_PROTOCOL(n+1);
  3404. SERIAL_PROTOCOL(" of ");
  3405. SERIAL_PROTOCOL(n_samples);
  3406. SERIAL_PROTOCOLPGM(" z: ");
  3407. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3408. }
  3409. if (verbose_level > 2) {
  3410. SERIAL_PROTOCOL(" mean: ");
  3411. SERIAL_PROTOCOL_F(mean,6);
  3412. SERIAL_PROTOCOL(" sigma: ");
  3413. SERIAL_PROTOCOL_F(sigma,6);
  3414. }
  3415. if (verbose_level > 0)
  3416. SERIAL_PROTOCOLPGM("\n");
  3417. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3418. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3419. st_synchronize();
  3420. }
  3421. delay(1000);
  3422. clean_up_after_endstop_move();
  3423. // enable_endstops(true);
  3424. if (verbose_level > 0) {
  3425. SERIAL_PROTOCOLPGM("Mean: ");
  3426. SERIAL_PROTOCOL_F(mean, 6);
  3427. SERIAL_PROTOCOLPGM("\n");
  3428. }
  3429. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3430. SERIAL_PROTOCOL_F(sigma, 6);
  3431. SERIAL_PROTOCOLPGM("\n\n");
  3432. Sigma_Exit:
  3433. break;
  3434. }
  3435. #endif // Z_PROBE_REPEATABILITY_TEST
  3436. #endif // ENABLE_AUTO_BED_LEVELING
  3437. case 104: // M104
  3438. if(setTargetedHotend(104)){
  3439. break;
  3440. }
  3441. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3442. setWatch();
  3443. break;
  3444. case 112: // M112 -Emergency Stop
  3445. kill();
  3446. break;
  3447. case 140: // M140 set bed temp
  3448. if (code_seen('S')) setTargetBed(code_value());
  3449. break;
  3450. case 105 : // M105
  3451. if(setTargetedHotend(105)){
  3452. break;
  3453. }
  3454. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3455. SERIAL_PROTOCOLPGM("ok T:");
  3456. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3457. SERIAL_PROTOCOLPGM(" /");
  3458. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3459. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3460. SERIAL_PROTOCOLPGM(" B:");
  3461. SERIAL_PROTOCOL_F(degBed(),1);
  3462. SERIAL_PROTOCOLPGM(" /");
  3463. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3464. #endif //TEMP_BED_PIN
  3465. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3466. SERIAL_PROTOCOLPGM(" T");
  3467. SERIAL_PROTOCOL(cur_extruder);
  3468. SERIAL_PROTOCOLPGM(":");
  3469. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3470. SERIAL_PROTOCOLPGM(" /");
  3471. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3472. }
  3473. #else
  3474. SERIAL_ERROR_START;
  3475. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3476. #endif
  3477. SERIAL_PROTOCOLPGM(" @:");
  3478. #ifdef EXTRUDER_WATTS
  3479. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3480. SERIAL_PROTOCOLPGM("W");
  3481. #else
  3482. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3483. #endif
  3484. SERIAL_PROTOCOLPGM(" B@:");
  3485. #ifdef BED_WATTS
  3486. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3487. SERIAL_PROTOCOLPGM("W");
  3488. #else
  3489. SERIAL_PROTOCOL(getHeaterPower(-1));
  3490. #endif
  3491. #ifdef SHOW_TEMP_ADC_VALUES
  3492. {float raw = 0.0;
  3493. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3494. SERIAL_PROTOCOLPGM(" ADC B:");
  3495. SERIAL_PROTOCOL_F(degBed(),1);
  3496. SERIAL_PROTOCOLPGM("C->");
  3497. raw = rawBedTemp();
  3498. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3499. SERIAL_PROTOCOLPGM(" Rb->");
  3500. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3501. SERIAL_PROTOCOLPGM(" Rxb->");
  3502. SERIAL_PROTOCOL_F(raw, 5);
  3503. #endif
  3504. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3505. SERIAL_PROTOCOLPGM(" T");
  3506. SERIAL_PROTOCOL(cur_extruder);
  3507. SERIAL_PROTOCOLPGM(":");
  3508. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3509. SERIAL_PROTOCOLPGM("C->");
  3510. raw = rawHotendTemp(cur_extruder);
  3511. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3512. SERIAL_PROTOCOLPGM(" Rt");
  3513. SERIAL_PROTOCOL(cur_extruder);
  3514. SERIAL_PROTOCOLPGM("->");
  3515. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3516. SERIAL_PROTOCOLPGM(" Rx");
  3517. SERIAL_PROTOCOL(cur_extruder);
  3518. SERIAL_PROTOCOLPGM("->");
  3519. SERIAL_PROTOCOL_F(raw, 5);
  3520. }}
  3521. #endif
  3522. SERIAL_PROTOCOLLN("");
  3523. return;
  3524. break;
  3525. case 109:
  3526. {// M109 - Wait for extruder heater to reach target.
  3527. if(setTargetedHotend(109)){
  3528. break;
  3529. }
  3530. LCD_MESSAGERPGM(MSG_HEATING);
  3531. heating_status = 1;
  3532. if (farm_mode) { prusa_statistics(1); };
  3533. #ifdef AUTOTEMP
  3534. autotemp_enabled=false;
  3535. #endif
  3536. if (code_seen('S')) {
  3537. setTargetHotend(code_value(), tmp_extruder);
  3538. CooldownNoWait = true;
  3539. } else if (code_seen('R')) {
  3540. setTargetHotend(code_value(), tmp_extruder);
  3541. CooldownNoWait = false;
  3542. }
  3543. #ifdef AUTOTEMP
  3544. if (code_seen('S')) autotemp_min=code_value();
  3545. if (code_seen('B')) autotemp_max=code_value();
  3546. if (code_seen('F'))
  3547. {
  3548. autotemp_factor=code_value();
  3549. autotemp_enabled=true;
  3550. }
  3551. #endif
  3552. setWatch();
  3553. codenum = millis();
  3554. /* See if we are heating up or cooling down */
  3555. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3556. cancel_heatup = false;
  3557. wait_for_heater(codenum); //loops until target temperature is reached
  3558. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3559. heating_status = 2;
  3560. if (farm_mode) { prusa_statistics(2); };
  3561. //starttime=millis();
  3562. previous_millis_cmd = millis();
  3563. }
  3564. break;
  3565. case 190: // M190 - Wait for bed heater to reach target.
  3566. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3567. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3568. heating_status = 3;
  3569. if (farm_mode) { prusa_statistics(1); };
  3570. if (code_seen('S'))
  3571. {
  3572. setTargetBed(code_value());
  3573. CooldownNoWait = true;
  3574. }
  3575. else if (code_seen('R'))
  3576. {
  3577. setTargetBed(code_value());
  3578. CooldownNoWait = false;
  3579. }
  3580. codenum = millis();
  3581. cancel_heatup = false;
  3582. target_direction = isHeatingBed(); // true if heating, false if cooling
  3583. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3584. {
  3585. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3586. {
  3587. if (!farm_mode) {
  3588. float tt = degHotend(active_extruder);
  3589. SERIAL_PROTOCOLPGM("T:");
  3590. SERIAL_PROTOCOL(tt);
  3591. SERIAL_PROTOCOLPGM(" E:");
  3592. SERIAL_PROTOCOL((int)active_extruder);
  3593. SERIAL_PROTOCOLPGM(" B:");
  3594. SERIAL_PROTOCOL_F(degBed(), 1);
  3595. SERIAL_PROTOCOLLN("");
  3596. }
  3597. codenum = millis();
  3598. }
  3599. manage_heater();
  3600. manage_inactivity();
  3601. lcd_update();
  3602. }
  3603. LCD_MESSAGERPGM(MSG_BED_DONE);
  3604. heating_status = 4;
  3605. previous_millis_cmd = millis();
  3606. #endif
  3607. break;
  3608. #if defined(FAN_PIN) && FAN_PIN > -1
  3609. case 106: //M106 Fan On
  3610. if (code_seen('S')){
  3611. fanSpeed=constrain(code_value(),0,255);
  3612. }
  3613. else {
  3614. fanSpeed=255;
  3615. }
  3616. break;
  3617. case 107: //M107 Fan Off
  3618. fanSpeed = 0;
  3619. break;
  3620. #endif //FAN_PIN
  3621. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3622. case 80: // M80 - Turn on Power Supply
  3623. SET_OUTPUT(PS_ON_PIN); //GND
  3624. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3625. // If you have a switch on suicide pin, this is useful
  3626. // if you want to start another print with suicide feature after
  3627. // a print without suicide...
  3628. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3629. SET_OUTPUT(SUICIDE_PIN);
  3630. WRITE(SUICIDE_PIN, HIGH);
  3631. #endif
  3632. #ifdef ULTIPANEL
  3633. powersupply = true;
  3634. LCD_MESSAGERPGM(WELCOME_MSG);
  3635. lcd_update();
  3636. #endif
  3637. break;
  3638. #endif
  3639. case 81: // M81 - Turn off Power Supply
  3640. disable_heater();
  3641. st_synchronize();
  3642. disable_e0();
  3643. disable_e1();
  3644. disable_e2();
  3645. finishAndDisableSteppers();
  3646. fanSpeed = 0;
  3647. delay(1000); // Wait a little before to switch off
  3648. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3649. st_synchronize();
  3650. suicide();
  3651. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3652. SET_OUTPUT(PS_ON_PIN);
  3653. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3654. #endif
  3655. #ifdef ULTIPANEL
  3656. powersupply = false;
  3657. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3658. /*
  3659. MACHNAME = "Prusa i3"
  3660. MSGOFF = "Vypnuto"
  3661. "Prusai3"" ""vypnuto""."
  3662. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3663. */
  3664. lcd_update();
  3665. #endif
  3666. break;
  3667. case 82:
  3668. axis_relative_modes[3] = false;
  3669. break;
  3670. case 83:
  3671. axis_relative_modes[3] = true;
  3672. break;
  3673. case 18: //compatibility
  3674. case 84: // M84
  3675. if(code_seen('S')){
  3676. stepper_inactive_time = code_value() * 1000;
  3677. }
  3678. else
  3679. {
  3680. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3681. if(all_axis)
  3682. {
  3683. st_synchronize();
  3684. disable_e0();
  3685. disable_e1();
  3686. disable_e2();
  3687. finishAndDisableSteppers();
  3688. }
  3689. else
  3690. {
  3691. st_synchronize();
  3692. if (code_seen('X')) disable_x();
  3693. if (code_seen('Y')) disable_y();
  3694. if (code_seen('Z')) disable_z();
  3695. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3696. if (code_seen('E')) {
  3697. disable_e0();
  3698. disable_e1();
  3699. disable_e2();
  3700. }
  3701. #endif
  3702. }
  3703. }
  3704. break;
  3705. case 85: // M85
  3706. if(code_seen('S')) {
  3707. max_inactive_time = code_value() * 1000;
  3708. }
  3709. break;
  3710. case 92: // M92
  3711. for(int8_t i=0; i < NUM_AXIS; i++)
  3712. {
  3713. if(code_seen(axis_codes[i]))
  3714. {
  3715. if(i == 3) { // E
  3716. float value = code_value();
  3717. if(value < 20.0) {
  3718. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3719. max_jerk[E_AXIS] *= factor;
  3720. max_feedrate[i] *= factor;
  3721. axis_steps_per_sqr_second[i] *= factor;
  3722. }
  3723. axis_steps_per_unit[i] = value;
  3724. }
  3725. else {
  3726. axis_steps_per_unit[i] = code_value();
  3727. }
  3728. }
  3729. }
  3730. break;
  3731. case 115: // M115
  3732. if (code_seen('V')) {
  3733. // Report the Prusa version number.
  3734. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3735. } else if (code_seen('U')) {
  3736. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3737. // pause the print and ask the user to upgrade the firmware.
  3738. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3739. } else {
  3740. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3741. }
  3742. break;
  3743. /* case 117: // M117 display message
  3744. starpos = (strchr(strchr_pointer + 5,'*'));
  3745. if(starpos!=NULL)
  3746. *(starpos)='\0';
  3747. lcd_setstatus(strchr_pointer + 5);
  3748. break;*/
  3749. case 114: // M114
  3750. SERIAL_PROTOCOLPGM("X:");
  3751. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3752. SERIAL_PROTOCOLPGM(" Y:");
  3753. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3754. SERIAL_PROTOCOLPGM(" Z:");
  3755. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3756. SERIAL_PROTOCOLPGM(" E:");
  3757. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3758. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3759. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3760. SERIAL_PROTOCOLPGM(" Y:");
  3761. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3762. SERIAL_PROTOCOLPGM(" Z:");
  3763. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3764. SERIAL_PROTOCOLLN("");
  3765. break;
  3766. case 120: // M120
  3767. enable_endstops(false) ;
  3768. break;
  3769. case 121: // M121
  3770. enable_endstops(true) ;
  3771. break;
  3772. case 119: // M119
  3773. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3774. SERIAL_PROTOCOLLN("");
  3775. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3776. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3777. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3778. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3779. }else{
  3780. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3781. }
  3782. SERIAL_PROTOCOLLN("");
  3783. #endif
  3784. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3785. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3786. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3787. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3788. }else{
  3789. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3790. }
  3791. SERIAL_PROTOCOLLN("");
  3792. #endif
  3793. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3794. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3795. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3796. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3797. }else{
  3798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3799. }
  3800. SERIAL_PROTOCOLLN("");
  3801. #endif
  3802. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3803. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3804. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3805. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3806. }else{
  3807. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3808. }
  3809. SERIAL_PROTOCOLLN("");
  3810. #endif
  3811. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3812. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3813. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3814. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3815. }else{
  3816. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3817. }
  3818. SERIAL_PROTOCOLLN("");
  3819. #endif
  3820. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3821. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3822. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3823. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3824. }else{
  3825. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3826. }
  3827. SERIAL_PROTOCOLLN("");
  3828. #endif
  3829. break;
  3830. //TODO: update for all axis, use for loop
  3831. #ifdef BLINKM
  3832. case 150: // M150
  3833. {
  3834. byte red;
  3835. byte grn;
  3836. byte blu;
  3837. if(code_seen('R')) red = code_value();
  3838. if(code_seen('U')) grn = code_value();
  3839. if(code_seen('B')) blu = code_value();
  3840. SendColors(red,grn,blu);
  3841. }
  3842. break;
  3843. #endif //BLINKM
  3844. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3845. {
  3846. tmp_extruder = active_extruder;
  3847. if(code_seen('T')) {
  3848. tmp_extruder = code_value();
  3849. if(tmp_extruder >= EXTRUDERS) {
  3850. SERIAL_ECHO_START;
  3851. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3852. break;
  3853. }
  3854. }
  3855. float area = .0;
  3856. if(code_seen('D')) {
  3857. float diameter = (float)code_value();
  3858. if (diameter == 0.0) {
  3859. // setting any extruder filament size disables volumetric on the assumption that
  3860. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3861. // for all extruders
  3862. volumetric_enabled = false;
  3863. } else {
  3864. filament_size[tmp_extruder] = (float)code_value();
  3865. // make sure all extruders have some sane value for the filament size
  3866. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3867. #if EXTRUDERS > 1
  3868. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3869. #if EXTRUDERS > 2
  3870. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3871. #endif
  3872. #endif
  3873. volumetric_enabled = true;
  3874. }
  3875. } else {
  3876. //reserved for setting filament diameter via UFID or filament measuring device
  3877. break;
  3878. }
  3879. calculate_volumetric_multipliers();
  3880. }
  3881. break;
  3882. case 201: // M201
  3883. for(int8_t i=0; i < NUM_AXIS; i++)
  3884. {
  3885. if(code_seen(axis_codes[i]))
  3886. {
  3887. max_acceleration_units_per_sq_second[i] = code_value();
  3888. }
  3889. }
  3890. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3891. reset_acceleration_rates();
  3892. break;
  3893. #if 0 // Not used for Sprinter/grbl gen6
  3894. case 202: // M202
  3895. for(int8_t i=0; i < NUM_AXIS; i++) {
  3896. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3897. }
  3898. break;
  3899. #endif
  3900. case 203: // M203 max feedrate mm/sec
  3901. for(int8_t i=0; i < NUM_AXIS; i++) {
  3902. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3903. }
  3904. break;
  3905. case 204: // M204 acclereration S normal moves T filmanent only moves
  3906. {
  3907. if(code_seen('S')) acceleration = code_value() ;
  3908. if(code_seen('T')) retract_acceleration = code_value() ;
  3909. }
  3910. break;
  3911. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3912. {
  3913. if(code_seen('S')) minimumfeedrate = code_value();
  3914. if(code_seen('T')) mintravelfeedrate = code_value();
  3915. if(code_seen('B')) minsegmenttime = code_value() ;
  3916. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3917. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3918. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3919. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3920. }
  3921. break;
  3922. case 206: // M206 additional homing offset
  3923. for(int8_t i=0; i < 3; i++)
  3924. {
  3925. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3926. }
  3927. break;
  3928. #ifdef FWRETRACT
  3929. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3930. {
  3931. if(code_seen('S'))
  3932. {
  3933. retract_length = code_value() ;
  3934. }
  3935. if(code_seen('F'))
  3936. {
  3937. retract_feedrate = code_value()/60 ;
  3938. }
  3939. if(code_seen('Z'))
  3940. {
  3941. retract_zlift = code_value() ;
  3942. }
  3943. }break;
  3944. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3945. {
  3946. if(code_seen('S'))
  3947. {
  3948. retract_recover_length = code_value() ;
  3949. }
  3950. if(code_seen('F'))
  3951. {
  3952. retract_recover_feedrate = code_value()/60 ;
  3953. }
  3954. }break;
  3955. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3956. {
  3957. if(code_seen('S'))
  3958. {
  3959. int t= code_value() ;
  3960. switch(t)
  3961. {
  3962. case 0:
  3963. {
  3964. autoretract_enabled=false;
  3965. retracted[0]=false;
  3966. #if EXTRUDERS > 1
  3967. retracted[1]=false;
  3968. #endif
  3969. #if EXTRUDERS > 2
  3970. retracted[2]=false;
  3971. #endif
  3972. }break;
  3973. case 1:
  3974. {
  3975. autoretract_enabled=true;
  3976. retracted[0]=false;
  3977. #if EXTRUDERS > 1
  3978. retracted[1]=false;
  3979. #endif
  3980. #if EXTRUDERS > 2
  3981. retracted[2]=false;
  3982. #endif
  3983. }break;
  3984. default:
  3985. SERIAL_ECHO_START;
  3986. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3987. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3988. SERIAL_ECHOLNPGM("\"");
  3989. }
  3990. }
  3991. }break;
  3992. #endif // FWRETRACT
  3993. #if EXTRUDERS > 1
  3994. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3995. {
  3996. if(setTargetedHotend(218)){
  3997. break;
  3998. }
  3999. if(code_seen('X'))
  4000. {
  4001. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4002. }
  4003. if(code_seen('Y'))
  4004. {
  4005. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4006. }
  4007. SERIAL_ECHO_START;
  4008. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4009. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4010. {
  4011. SERIAL_ECHO(" ");
  4012. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4013. SERIAL_ECHO(",");
  4014. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4015. }
  4016. SERIAL_ECHOLN("");
  4017. }break;
  4018. #endif
  4019. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4020. {
  4021. if(code_seen('S'))
  4022. {
  4023. feedmultiply = code_value() ;
  4024. }
  4025. }
  4026. break;
  4027. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4028. {
  4029. if(code_seen('S'))
  4030. {
  4031. int tmp_code = code_value();
  4032. if (code_seen('T'))
  4033. {
  4034. if(setTargetedHotend(221)){
  4035. break;
  4036. }
  4037. extruder_multiply[tmp_extruder] = tmp_code;
  4038. }
  4039. else
  4040. {
  4041. extrudemultiply = tmp_code ;
  4042. }
  4043. }
  4044. }
  4045. break;
  4046. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4047. {
  4048. if(code_seen('P')){
  4049. int pin_number = code_value(); // pin number
  4050. int pin_state = -1; // required pin state - default is inverted
  4051. if(code_seen('S')) pin_state = code_value(); // required pin state
  4052. if(pin_state >= -1 && pin_state <= 1){
  4053. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4054. {
  4055. if (sensitive_pins[i] == pin_number)
  4056. {
  4057. pin_number = -1;
  4058. break;
  4059. }
  4060. }
  4061. if (pin_number > -1)
  4062. {
  4063. int target = LOW;
  4064. st_synchronize();
  4065. pinMode(pin_number, INPUT);
  4066. switch(pin_state){
  4067. case 1:
  4068. target = HIGH;
  4069. break;
  4070. case 0:
  4071. target = LOW;
  4072. break;
  4073. case -1:
  4074. target = !digitalRead(pin_number);
  4075. break;
  4076. }
  4077. while(digitalRead(pin_number) != target){
  4078. manage_heater();
  4079. manage_inactivity();
  4080. lcd_update();
  4081. }
  4082. }
  4083. }
  4084. }
  4085. }
  4086. break;
  4087. #if NUM_SERVOS > 0
  4088. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4089. {
  4090. int servo_index = -1;
  4091. int servo_position = 0;
  4092. if (code_seen('P'))
  4093. servo_index = code_value();
  4094. if (code_seen('S')) {
  4095. servo_position = code_value();
  4096. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4097. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4098. servos[servo_index].attach(0);
  4099. #endif
  4100. servos[servo_index].write(servo_position);
  4101. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4102. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4103. servos[servo_index].detach();
  4104. #endif
  4105. }
  4106. else {
  4107. SERIAL_ECHO_START;
  4108. SERIAL_ECHO("Servo ");
  4109. SERIAL_ECHO(servo_index);
  4110. SERIAL_ECHOLN(" out of range");
  4111. }
  4112. }
  4113. else if (servo_index >= 0) {
  4114. SERIAL_PROTOCOL(MSG_OK);
  4115. SERIAL_PROTOCOL(" Servo ");
  4116. SERIAL_PROTOCOL(servo_index);
  4117. SERIAL_PROTOCOL(": ");
  4118. SERIAL_PROTOCOL(servos[servo_index].read());
  4119. SERIAL_PROTOCOLLN("");
  4120. }
  4121. }
  4122. break;
  4123. #endif // NUM_SERVOS > 0
  4124. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4125. case 300: // M300
  4126. {
  4127. int beepS = code_seen('S') ? code_value() : 110;
  4128. int beepP = code_seen('P') ? code_value() : 1000;
  4129. if (beepS > 0)
  4130. {
  4131. #if BEEPER > 0
  4132. tone(BEEPER, beepS);
  4133. delay(beepP);
  4134. noTone(BEEPER);
  4135. #elif defined(ULTRALCD)
  4136. lcd_buzz(beepS, beepP);
  4137. #elif defined(LCD_USE_I2C_BUZZER)
  4138. lcd_buzz(beepP, beepS);
  4139. #endif
  4140. }
  4141. else
  4142. {
  4143. delay(beepP);
  4144. }
  4145. }
  4146. break;
  4147. #endif // M300
  4148. #ifdef PIDTEMP
  4149. case 301: // M301
  4150. {
  4151. if(code_seen('P')) Kp = code_value();
  4152. if(code_seen('I')) Ki = scalePID_i(code_value());
  4153. if(code_seen('D')) Kd = scalePID_d(code_value());
  4154. #ifdef PID_ADD_EXTRUSION_RATE
  4155. if(code_seen('C')) Kc = code_value();
  4156. #endif
  4157. updatePID();
  4158. SERIAL_PROTOCOLRPGM(MSG_OK);
  4159. SERIAL_PROTOCOL(" p:");
  4160. SERIAL_PROTOCOL(Kp);
  4161. SERIAL_PROTOCOL(" i:");
  4162. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4163. SERIAL_PROTOCOL(" d:");
  4164. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4165. #ifdef PID_ADD_EXTRUSION_RATE
  4166. SERIAL_PROTOCOL(" c:");
  4167. //Kc does not have scaling applied above, or in resetting defaults
  4168. SERIAL_PROTOCOL(Kc);
  4169. #endif
  4170. SERIAL_PROTOCOLLN("");
  4171. }
  4172. break;
  4173. #endif //PIDTEMP
  4174. #ifdef PIDTEMPBED
  4175. case 304: // M304
  4176. {
  4177. if(code_seen('P')) bedKp = code_value();
  4178. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4179. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4180. updatePID();
  4181. SERIAL_PROTOCOLRPGM(MSG_OK);
  4182. SERIAL_PROTOCOL(" p:");
  4183. SERIAL_PROTOCOL(bedKp);
  4184. SERIAL_PROTOCOL(" i:");
  4185. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4186. SERIAL_PROTOCOL(" d:");
  4187. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4188. SERIAL_PROTOCOLLN("");
  4189. }
  4190. break;
  4191. #endif //PIDTEMP
  4192. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4193. {
  4194. #ifdef CHDK
  4195. SET_OUTPUT(CHDK);
  4196. WRITE(CHDK, HIGH);
  4197. chdkHigh = millis();
  4198. chdkActive = true;
  4199. #else
  4200. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4201. const uint8_t NUM_PULSES=16;
  4202. const float PULSE_LENGTH=0.01524;
  4203. for(int i=0; i < NUM_PULSES; i++) {
  4204. WRITE(PHOTOGRAPH_PIN, HIGH);
  4205. _delay_ms(PULSE_LENGTH);
  4206. WRITE(PHOTOGRAPH_PIN, LOW);
  4207. _delay_ms(PULSE_LENGTH);
  4208. }
  4209. delay(7.33);
  4210. for(int i=0; i < NUM_PULSES; i++) {
  4211. WRITE(PHOTOGRAPH_PIN, HIGH);
  4212. _delay_ms(PULSE_LENGTH);
  4213. WRITE(PHOTOGRAPH_PIN, LOW);
  4214. _delay_ms(PULSE_LENGTH);
  4215. }
  4216. #endif
  4217. #endif //chdk end if
  4218. }
  4219. break;
  4220. #ifdef DOGLCD
  4221. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4222. {
  4223. if (code_seen('C')) {
  4224. lcd_setcontrast( ((int)code_value())&63 );
  4225. }
  4226. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4227. SERIAL_PROTOCOL(lcd_contrast);
  4228. SERIAL_PROTOCOLLN("");
  4229. }
  4230. break;
  4231. #endif
  4232. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4233. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4234. {
  4235. float temp = .0;
  4236. if (code_seen('S')) temp=code_value();
  4237. set_extrude_min_temp(temp);
  4238. }
  4239. break;
  4240. #endif
  4241. case 303: // M303 PID autotune
  4242. {
  4243. float temp = 150.0;
  4244. int e=0;
  4245. int c=5;
  4246. if (code_seen('E')) e=code_value();
  4247. if (e<0)
  4248. temp=70;
  4249. if (code_seen('S')) temp=code_value();
  4250. if (code_seen('C')) c=code_value();
  4251. PID_autotune(temp, e, c);
  4252. }
  4253. break;
  4254. case 400: // M400 finish all moves
  4255. {
  4256. st_synchronize();
  4257. }
  4258. break;
  4259. #ifdef FILAMENT_SENSOR
  4260. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4261. {
  4262. #if (FILWIDTH_PIN > -1)
  4263. if(code_seen('N')) filament_width_nominal=code_value();
  4264. else{
  4265. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4266. SERIAL_PROTOCOLLN(filament_width_nominal);
  4267. }
  4268. #endif
  4269. }
  4270. break;
  4271. case 405: //M405 Turn on filament sensor for control
  4272. {
  4273. if(code_seen('D')) meas_delay_cm=code_value();
  4274. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4275. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4276. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4277. {
  4278. int temp_ratio = widthFil_to_size_ratio();
  4279. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4280. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4281. }
  4282. delay_index1=0;
  4283. delay_index2=0;
  4284. }
  4285. filament_sensor = true ;
  4286. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4287. //SERIAL_PROTOCOL(filament_width_meas);
  4288. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4289. //SERIAL_PROTOCOL(extrudemultiply);
  4290. }
  4291. break;
  4292. case 406: //M406 Turn off filament sensor for control
  4293. {
  4294. filament_sensor = false ;
  4295. }
  4296. break;
  4297. case 407: //M407 Display measured filament diameter
  4298. {
  4299. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4300. SERIAL_PROTOCOLLN(filament_width_meas);
  4301. }
  4302. break;
  4303. #endif
  4304. case 500: // M500 Store settings in EEPROM
  4305. {
  4306. Config_StoreSettings();
  4307. }
  4308. break;
  4309. case 501: // M501 Read settings from EEPROM
  4310. {
  4311. Config_RetrieveSettings();
  4312. }
  4313. break;
  4314. case 502: // M502 Revert to default settings
  4315. {
  4316. Config_ResetDefault();
  4317. }
  4318. break;
  4319. case 503: // M503 print settings currently in memory
  4320. {
  4321. Config_PrintSettings();
  4322. }
  4323. break;
  4324. case 509: //M509 Force language selection
  4325. {
  4326. lcd_force_language_selection();
  4327. SERIAL_ECHO_START;
  4328. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4329. }
  4330. break;
  4331. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4332. case 540:
  4333. {
  4334. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4335. }
  4336. break;
  4337. #endif
  4338. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4339. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4340. {
  4341. float value;
  4342. if (code_seen('Z'))
  4343. {
  4344. value = code_value();
  4345. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4346. {
  4347. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4348. SERIAL_ECHO_START;
  4349. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4350. SERIAL_PROTOCOLLN("");
  4351. }
  4352. else
  4353. {
  4354. SERIAL_ECHO_START;
  4355. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4356. SERIAL_ECHORPGM(MSG_Z_MIN);
  4357. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4358. SERIAL_ECHORPGM(MSG_Z_MAX);
  4359. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4360. SERIAL_PROTOCOLLN("");
  4361. }
  4362. }
  4363. else
  4364. {
  4365. SERIAL_ECHO_START;
  4366. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4367. SERIAL_ECHO(-zprobe_zoffset);
  4368. SERIAL_PROTOCOLLN("");
  4369. }
  4370. break;
  4371. }
  4372. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4373. #ifdef FILAMENTCHANGEENABLE
  4374. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4375. {
  4376. st_synchronize();
  4377. float target[4];
  4378. float lastpos[4];
  4379. if (farm_mode)
  4380. {
  4381. prusa_statistics(22);
  4382. }
  4383. feedmultiplyBckp=feedmultiply;
  4384. int8_t TooLowZ = 0;
  4385. target[X_AXIS]=current_position[X_AXIS];
  4386. target[Y_AXIS]=current_position[Y_AXIS];
  4387. target[Z_AXIS]=current_position[Z_AXIS];
  4388. target[E_AXIS]=current_position[E_AXIS];
  4389. lastpos[X_AXIS]=current_position[X_AXIS];
  4390. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4391. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4392. lastpos[E_AXIS]=current_position[E_AXIS];
  4393. //Restract extruder
  4394. if(code_seen('E'))
  4395. {
  4396. target[E_AXIS]+= code_value();
  4397. }
  4398. else
  4399. {
  4400. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4401. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4402. #endif
  4403. }
  4404. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4405. //Lift Z
  4406. if(code_seen('Z'))
  4407. {
  4408. target[Z_AXIS]+= code_value();
  4409. }
  4410. else
  4411. {
  4412. #ifdef FILAMENTCHANGE_ZADD
  4413. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4414. if(target[Z_AXIS] < 10){
  4415. target[Z_AXIS]+= 10 ;
  4416. TooLowZ = 1;
  4417. }else{
  4418. TooLowZ = 0;
  4419. }
  4420. #endif
  4421. }
  4422. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4423. //Move XY to side
  4424. if(code_seen('X'))
  4425. {
  4426. target[X_AXIS]+= code_value();
  4427. }
  4428. else
  4429. {
  4430. #ifdef FILAMENTCHANGE_XPOS
  4431. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4432. #endif
  4433. }
  4434. if(code_seen('Y'))
  4435. {
  4436. target[Y_AXIS]= code_value();
  4437. }
  4438. else
  4439. {
  4440. #ifdef FILAMENTCHANGE_YPOS
  4441. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4442. #endif
  4443. }
  4444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4445. st_synchronize();
  4446. custom_message = true;
  4447. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4448. // Unload filament
  4449. if(code_seen('L'))
  4450. {
  4451. target[E_AXIS]+= code_value();
  4452. }
  4453. else
  4454. {
  4455. #ifdef SNMM
  4456. #else
  4457. #ifdef FILAMENTCHANGE_FINALRETRACT
  4458. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4459. #endif
  4460. #endif // SNMM
  4461. }
  4462. #ifdef SNMM
  4463. target[E_AXIS] += 12;
  4464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4465. target[E_AXIS] += 6;
  4466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4467. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4469. st_synchronize();
  4470. target[E_AXIS] += (FIL_COOLING);
  4471. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4472. target[E_AXIS] += (FIL_COOLING*-1);
  4473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4474. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4476. st_synchronize();
  4477. #else
  4478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4479. #endif // SNMM
  4480. //finish moves
  4481. st_synchronize();
  4482. //disable extruder steppers so filament can be removed
  4483. disable_e0();
  4484. disable_e1();
  4485. disable_e2();
  4486. delay(100);
  4487. //Wait for user to insert filament
  4488. uint8_t cnt=0;
  4489. int counterBeep = 0;
  4490. lcd_wait_interact();
  4491. load_filament_time = millis();
  4492. while(!lcd_clicked()){
  4493. cnt++;
  4494. manage_heater();
  4495. manage_inactivity(true);
  4496. /*#ifdef SNMM
  4497. target[E_AXIS] += 0.002;
  4498. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4499. #endif // SNMM*/
  4500. if(cnt==0)
  4501. {
  4502. #if BEEPER > 0
  4503. if (counterBeep== 500){
  4504. counterBeep = 0;
  4505. }
  4506. SET_OUTPUT(BEEPER);
  4507. if (counterBeep== 0){
  4508. WRITE(BEEPER,HIGH);
  4509. }
  4510. if (counterBeep== 20){
  4511. WRITE(BEEPER,LOW);
  4512. }
  4513. counterBeep++;
  4514. #else
  4515. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4516. lcd_buzz(1000/6,100);
  4517. #else
  4518. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4519. #endif
  4520. #endif
  4521. }
  4522. }
  4523. #ifdef SNMM
  4524. display_loading();
  4525. do {
  4526. target[E_AXIS] += 0.002;
  4527. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4528. delay_keep_alive(2);
  4529. } while (!lcd_clicked());
  4530. /*if (millis() - load_filament_time > 2) {
  4531. load_filament_time = millis();
  4532. target[E_AXIS] += 0.001;
  4533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4534. }*/
  4535. #endif
  4536. //Filament inserted
  4537. WRITE(BEEPER,LOW);
  4538. //Feed the filament to the end of nozzle quickly
  4539. #ifdef SNMM
  4540. st_synchronize();
  4541. target[E_AXIS] += bowden_length[snmm_extruder];
  4542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4543. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4544. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4545. target[E_AXIS] += 40;
  4546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4547. target[E_AXIS] += 10;
  4548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4549. #else
  4550. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4551. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4552. #endif // SNMM
  4553. //Extrude some filament
  4554. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4555. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4556. //Wait for user to check the state
  4557. lcd_change_fil_state = 0;
  4558. lcd_loading_filament();
  4559. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4560. lcd_change_fil_state = 0;
  4561. lcd_alright();
  4562. switch(lcd_change_fil_state){
  4563. // Filament failed to load so load it again
  4564. case 2:
  4565. #ifdef SNMM
  4566. display_loading();
  4567. do {
  4568. target[E_AXIS] += 0.002;
  4569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4570. delay_keep_alive(2);
  4571. } while (!lcd_clicked());
  4572. st_synchronize();
  4573. target[E_AXIS] += bowden_length[snmm_extruder];
  4574. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4575. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4576. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4577. target[E_AXIS] += 40;
  4578. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4579. target[E_AXIS] += 10;
  4580. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4581. #else
  4582. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4583. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4584. #endif
  4585. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4586. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4587. lcd_loading_filament();
  4588. break;
  4589. // Filament loaded properly but color is not clear
  4590. case 3:
  4591. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4593. lcd_loading_color();
  4594. break;
  4595. // Everything good
  4596. default:
  4597. lcd_change_success();
  4598. lcd_update_enable(true);
  4599. break;
  4600. }
  4601. }
  4602. //Not let's go back to print
  4603. //Feed a little of filament to stabilize pressure
  4604. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4606. //Retract
  4607. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4609. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4610. //Move XY back
  4611. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4612. //Move Z back
  4613. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4614. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4615. //Unretract
  4616. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4617. //Set E position to original
  4618. plan_set_e_position(lastpos[E_AXIS]);
  4619. //Recover feed rate
  4620. feedmultiply=feedmultiplyBckp;
  4621. char cmd[9];
  4622. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4623. enquecommand(cmd);
  4624. lcd_setstatuspgm(WELCOME_MSG);
  4625. custom_message = false;
  4626. custom_message_type = 0;
  4627. }
  4628. break;
  4629. #endif //FILAMENTCHANGEENABLE
  4630. case 601: {
  4631. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4632. }
  4633. break;
  4634. case 602: {
  4635. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4636. }
  4637. break;
  4638. case 907: // M907 Set digital trimpot motor current using axis codes.
  4639. {
  4640. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4641. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4642. if(code_seen('B')) digipot_current(4,code_value());
  4643. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4644. #endif
  4645. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4646. if(code_seen('X')) digipot_current(0, code_value());
  4647. #endif
  4648. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4649. if(code_seen('Z')) digipot_current(1, code_value());
  4650. #endif
  4651. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4652. if(code_seen('E')) digipot_current(2, code_value());
  4653. #endif
  4654. #ifdef DIGIPOT_I2C
  4655. // this one uses actual amps in floating point
  4656. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4657. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4658. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4659. #endif
  4660. }
  4661. break;
  4662. case 908: // M908 Control digital trimpot directly.
  4663. {
  4664. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4665. uint8_t channel,current;
  4666. if(code_seen('P')) channel=code_value();
  4667. if(code_seen('S')) current=code_value();
  4668. digitalPotWrite(channel, current);
  4669. #endif
  4670. }
  4671. break;
  4672. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4673. {
  4674. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4675. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4676. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4677. if(code_seen('B')) microstep_mode(4,code_value());
  4678. microstep_readings();
  4679. #endif
  4680. }
  4681. break;
  4682. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4683. {
  4684. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4685. if(code_seen('S')) switch((int)code_value())
  4686. {
  4687. case 1:
  4688. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4689. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4690. break;
  4691. case 2:
  4692. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4693. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4694. break;
  4695. }
  4696. microstep_readings();
  4697. #endif
  4698. }
  4699. break;
  4700. case 701: //M701: load filament
  4701. {
  4702. enable_z();
  4703. custom_message = true;
  4704. custom_message_type = 2;
  4705. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4706. current_position[E_AXIS] += 70;
  4707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4708. current_position[E_AXIS] += 25;
  4709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4710. st_synchronize();
  4711. if (!farm_mode && loading_flag) {
  4712. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4713. while (!clean) {
  4714. lcd_update_enable(true);
  4715. lcd_update(2);
  4716. current_position[E_AXIS] += 25;
  4717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4718. st_synchronize();
  4719. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4720. }
  4721. }
  4722. lcd_update_enable(true);
  4723. lcd_update(2);
  4724. lcd_setstatuspgm(WELCOME_MSG);
  4725. disable_z();
  4726. loading_flag = false;
  4727. custom_message = false;
  4728. custom_message_type = 0;
  4729. }
  4730. break;
  4731. case 702:
  4732. {
  4733. #ifdef SNMM
  4734. extr_unload_all();
  4735. #else
  4736. custom_message = true;
  4737. custom_message_type = 2;
  4738. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4739. current_position[E_AXIS] += 3;
  4740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  4741. current_position[E_AXIS] -= 80;
  4742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4743. st_synchronize();
  4744. lcd_setstatuspgm(WELCOME_MSG);
  4745. custom_message = false;
  4746. custom_message_type = 0;
  4747. #endif
  4748. }
  4749. break;
  4750. case 999: // M999: Restart after being stopped
  4751. Stopped = false;
  4752. lcd_reset_alert_level();
  4753. gcode_LastN = Stopped_gcode_LastN;
  4754. FlushSerialRequestResend();
  4755. break;
  4756. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4757. }
  4758. } // end if(code_seen('M')) (end of M codes)
  4759. else if(code_seen('T'))
  4760. {
  4761. int index;
  4762. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4763. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4764. SERIAL_ECHOLNPGM("Invalid T code.");
  4765. }
  4766. else {
  4767. tmp_extruder = code_value();
  4768. #ifdef SNMM
  4769. snmm_extruder = tmp_extruder;
  4770. st_synchronize();
  4771. delay(100);
  4772. disable_e0();
  4773. disable_e1();
  4774. disable_e2();
  4775. pinMode(E_MUX0_PIN, OUTPUT);
  4776. pinMode(E_MUX1_PIN, OUTPUT);
  4777. pinMode(E_MUX2_PIN, OUTPUT);
  4778. delay(100);
  4779. SERIAL_ECHO_START;
  4780. SERIAL_ECHO("T:");
  4781. SERIAL_ECHOLN((int)tmp_extruder);
  4782. switch (tmp_extruder) {
  4783. case 1:
  4784. WRITE(E_MUX0_PIN, HIGH);
  4785. WRITE(E_MUX1_PIN, LOW);
  4786. WRITE(E_MUX2_PIN, LOW);
  4787. break;
  4788. case 2:
  4789. WRITE(E_MUX0_PIN, LOW);
  4790. WRITE(E_MUX1_PIN, HIGH);
  4791. WRITE(E_MUX2_PIN, LOW);
  4792. break;
  4793. case 3:
  4794. WRITE(E_MUX0_PIN, HIGH);
  4795. WRITE(E_MUX1_PIN, HIGH);
  4796. WRITE(E_MUX2_PIN, LOW);
  4797. break;
  4798. default:
  4799. WRITE(E_MUX0_PIN, LOW);
  4800. WRITE(E_MUX1_PIN, LOW);
  4801. WRITE(E_MUX2_PIN, LOW);
  4802. break;
  4803. }
  4804. delay(100);
  4805. #else
  4806. if (tmp_extruder >= EXTRUDERS) {
  4807. SERIAL_ECHO_START;
  4808. SERIAL_ECHOPGM("T");
  4809. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4810. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4811. }
  4812. else {
  4813. boolean make_move = false;
  4814. if (code_seen('F')) {
  4815. make_move = true;
  4816. next_feedrate = code_value();
  4817. if (next_feedrate > 0.0) {
  4818. feedrate = next_feedrate;
  4819. }
  4820. }
  4821. #if EXTRUDERS > 1
  4822. if (tmp_extruder != active_extruder) {
  4823. // Save current position to return to after applying extruder offset
  4824. memcpy(destination, current_position, sizeof(destination));
  4825. // Offset extruder (only by XY)
  4826. int i;
  4827. for (i = 0; i < 2; i++) {
  4828. current_position[i] = current_position[i] -
  4829. extruder_offset[i][active_extruder] +
  4830. extruder_offset[i][tmp_extruder];
  4831. }
  4832. // Set the new active extruder and position
  4833. active_extruder = tmp_extruder;
  4834. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4835. // Move to the old position if 'F' was in the parameters
  4836. if (make_move && Stopped == false) {
  4837. prepare_move();
  4838. }
  4839. }
  4840. #endif
  4841. SERIAL_ECHO_START;
  4842. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4843. SERIAL_PROTOCOLLN((int)active_extruder);
  4844. }
  4845. #endif
  4846. }
  4847. } // end if(code_seen('T')) (end of T codes)
  4848. else
  4849. {
  4850. SERIAL_ECHO_START;
  4851. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4852. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4853. SERIAL_ECHOLNPGM("\"");
  4854. }
  4855. ClearToSend();
  4856. }
  4857. void FlushSerialRequestResend()
  4858. {
  4859. //char cmdbuffer[bufindr][100]="Resend:";
  4860. MYSERIAL.flush();
  4861. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4862. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4863. ClearToSend();
  4864. }
  4865. // Confirm the execution of a command, if sent from a serial line.
  4866. // Execution of a command from a SD card will not be confirmed.
  4867. void ClearToSend()
  4868. {
  4869. previous_millis_cmd = millis();
  4870. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4871. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4872. }
  4873. void get_coordinates()
  4874. {
  4875. bool seen[4]={false,false,false,false};
  4876. for(int8_t i=0; i < NUM_AXIS; i++) {
  4877. if(code_seen(axis_codes[i]))
  4878. {
  4879. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4880. seen[i]=true;
  4881. }
  4882. else destination[i] = current_position[i]; //Are these else lines really needed?
  4883. }
  4884. if(code_seen('F')) {
  4885. next_feedrate = code_value();
  4886. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4887. }
  4888. }
  4889. void get_arc_coordinates()
  4890. {
  4891. #ifdef SF_ARC_FIX
  4892. bool relative_mode_backup = relative_mode;
  4893. relative_mode = true;
  4894. #endif
  4895. get_coordinates();
  4896. #ifdef SF_ARC_FIX
  4897. relative_mode=relative_mode_backup;
  4898. #endif
  4899. if(code_seen('I')) {
  4900. offset[0] = code_value();
  4901. }
  4902. else {
  4903. offset[0] = 0.0;
  4904. }
  4905. if(code_seen('J')) {
  4906. offset[1] = code_value();
  4907. }
  4908. else {
  4909. offset[1] = 0.0;
  4910. }
  4911. }
  4912. void clamp_to_software_endstops(float target[3])
  4913. {
  4914. world2machine_clamp(target[0], target[1]);
  4915. // Clamp the Z coordinate.
  4916. if (min_software_endstops) {
  4917. float negative_z_offset = 0;
  4918. #ifdef ENABLE_AUTO_BED_LEVELING
  4919. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4920. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4921. #endif
  4922. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4923. }
  4924. if (max_software_endstops) {
  4925. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4926. }
  4927. }
  4928. #ifdef MESH_BED_LEVELING
  4929. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4930. float dx = x - current_position[X_AXIS];
  4931. float dy = y - current_position[Y_AXIS];
  4932. float dz = z - current_position[Z_AXIS];
  4933. int n_segments = 0;
  4934. if (mbl.active) {
  4935. float len = abs(dx) + abs(dy);
  4936. if (len > 0)
  4937. // Split to 3cm segments or shorter.
  4938. n_segments = int(ceil(len / 30.f));
  4939. }
  4940. if (n_segments > 1) {
  4941. float de = e - current_position[E_AXIS];
  4942. for (int i = 1; i < n_segments; ++ i) {
  4943. float t = float(i) / float(n_segments);
  4944. plan_buffer_line(
  4945. current_position[X_AXIS] + t * dx,
  4946. current_position[Y_AXIS] + t * dy,
  4947. current_position[Z_AXIS] + t * dz,
  4948. current_position[E_AXIS] + t * de,
  4949. feed_rate, extruder);
  4950. }
  4951. }
  4952. // The rest of the path.
  4953. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4954. current_position[X_AXIS] = x;
  4955. current_position[Y_AXIS] = y;
  4956. current_position[Z_AXIS] = z;
  4957. current_position[E_AXIS] = e;
  4958. }
  4959. #endif // MESH_BED_LEVELING
  4960. void prepare_move()
  4961. {
  4962. clamp_to_software_endstops(destination);
  4963. previous_millis_cmd = millis();
  4964. // Do not use feedmultiply for E or Z only moves
  4965. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4967. }
  4968. else {
  4969. #ifdef MESH_BED_LEVELING
  4970. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4971. #else
  4972. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4973. #endif
  4974. }
  4975. for(int8_t i=0; i < NUM_AXIS; i++) {
  4976. current_position[i] = destination[i];
  4977. }
  4978. }
  4979. void prepare_arc_move(char isclockwise) {
  4980. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4981. // Trace the arc
  4982. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4983. // As far as the parser is concerned, the position is now == target. In reality the
  4984. // motion control system might still be processing the action and the real tool position
  4985. // in any intermediate location.
  4986. for(int8_t i=0; i < NUM_AXIS; i++) {
  4987. current_position[i] = destination[i];
  4988. }
  4989. previous_millis_cmd = millis();
  4990. }
  4991. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4992. #if defined(FAN_PIN)
  4993. #if CONTROLLERFAN_PIN == FAN_PIN
  4994. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4995. #endif
  4996. #endif
  4997. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4998. unsigned long lastMotorCheck = 0;
  4999. void controllerFan()
  5000. {
  5001. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5002. {
  5003. lastMotorCheck = millis();
  5004. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5005. #if EXTRUDERS > 2
  5006. || !READ(E2_ENABLE_PIN)
  5007. #endif
  5008. #if EXTRUDER > 1
  5009. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5010. || !READ(X2_ENABLE_PIN)
  5011. #endif
  5012. || !READ(E1_ENABLE_PIN)
  5013. #endif
  5014. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5015. {
  5016. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5017. }
  5018. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5019. {
  5020. digitalWrite(CONTROLLERFAN_PIN, 0);
  5021. analogWrite(CONTROLLERFAN_PIN, 0);
  5022. }
  5023. else
  5024. {
  5025. // allows digital or PWM fan output to be used (see M42 handling)
  5026. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5027. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5028. }
  5029. }
  5030. }
  5031. #endif
  5032. #ifdef TEMP_STAT_LEDS
  5033. static bool blue_led = false;
  5034. static bool red_led = false;
  5035. static uint32_t stat_update = 0;
  5036. void handle_status_leds(void) {
  5037. float max_temp = 0.0;
  5038. if(millis() > stat_update) {
  5039. stat_update += 500; // Update every 0.5s
  5040. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5041. max_temp = max(max_temp, degHotend(cur_extruder));
  5042. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5043. }
  5044. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5045. max_temp = max(max_temp, degTargetBed());
  5046. max_temp = max(max_temp, degBed());
  5047. #endif
  5048. if((max_temp > 55.0) && (red_led == false)) {
  5049. digitalWrite(STAT_LED_RED, 1);
  5050. digitalWrite(STAT_LED_BLUE, 0);
  5051. red_led = true;
  5052. blue_led = false;
  5053. }
  5054. if((max_temp < 54.0) && (blue_led == false)) {
  5055. digitalWrite(STAT_LED_RED, 0);
  5056. digitalWrite(STAT_LED_BLUE, 1);
  5057. red_led = false;
  5058. blue_led = true;
  5059. }
  5060. }
  5061. }
  5062. #endif
  5063. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5064. {
  5065. #if defined(KILL_PIN) && KILL_PIN > -1
  5066. static int killCount = 0; // make the inactivity button a bit less responsive
  5067. const int KILL_DELAY = 10000;
  5068. #endif
  5069. if(buflen < (BUFSIZE-1)){
  5070. get_command();
  5071. }
  5072. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5073. if(max_inactive_time)
  5074. kill();
  5075. if(stepper_inactive_time) {
  5076. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5077. {
  5078. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5079. disable_x();
  5080. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5081. disable_y();
  5082. disable_z();
  5083. disable_e0();
  5084. disable_e1();
  5085. disable_e2();
  5086. }
  5087. }
  5088. }
  5089. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5090. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5091. {
  5092. chdkActive = false;
  5093. WRITE(CHDK, LOW);
  5094. }
  5095. #endif
  5096. #if defined(KILL_PIN) && KILL_PIN > -1
  5097. // Check if the kill button was pressed and wait just in case it was an accidental
  5098. // key kill key press
  5099. // -------------------------------------------------------------------------------
  5100. if( 0 == READ(KILL_PIN) )
  5101. {
  5102. killCount++;
  5103. }
  5104. else if (killCount > 0)
  5105. {
  5106. killCount--;
  5107. }
  5108. // Exceeded threshold and we can confirm that it was not accidental
  5109. // KILL the machine
  5110. // ----------------------------------------------------------------
  5111. if ( killCount >= KILL_DELAY)
  5112. {
  5113. kill();
  5114. }
  5115. #endif
  5116. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5117. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5118. #endif
  5119. #ifdef EXTRUDER_RUNOUT_PREVENT
  5120. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5121. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5122. {
  5123. bool oldstatus=READ(E0_ENABLE_PIN);
  5124. enable_e0();
  5125. float oldepos=current_position[E_AXIS];
  5126. float oldedes=destination[E_AXIS];
  5127. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5128. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5129. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5130. current_position[E_AXIS]=oldepos;
  5131. destination[E_AXIS]=oldedes;
  5132. plan_set_e_position(oldepos);
  5133. previous_millis_cmd=millis();
  5134. st_synchronize();
  5135. WRITE(E0_ENABLE_PIN,oldstatus);
  5136. }
  5137. #endif
  5138. #ifdef TEMP_STAT_LEDS
  5139. handle_status_leds();
  5140. #endif
  5141. check_axes_activity();
  5142. }
  5143. void kill(const char *full_screen_message)
  5144. {
  5145. cli(); // Stop interrupts
  5146. disable_heater();
  5147. disable_x();
  5148. // SERIAL_ECHOLNPGM("kill - disable Y");
  5149. disable_y();
  5150. disable_z();
  5151. disable_e0();
  5152. disable_e1();
  5153. disable_e2();
  5154. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5155. pinMode(PS_ON_PIN,INPUT);
  5156. #endif
  5157. SERIAL_ERROR_START;
  5158. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5159. if (full_screen_message != NULL) {
  5160. SERIAL_ERRORLNRPGM(full_screen_message);
  5161. lcd_display_message_fullscreen_P(full_screen_message);
  5162. } else {
  5163. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5164. }
  5165. // FMC small patch to update the LCD before ending
  5166. sei(); // enable interrupts
  5167. for ( int i=5; i--; lcd_update())
  5168. {
  5169. delay(200);
  5170. }
  5171. cli(); // disable interrupts
  5172. suicide();
  5173. while(1) { /* Intentionally left empty */ } // Wait for reset
  5174. }
  5175. void Stop()
  5176. {
  5177. disable_heater();
  5178. if(Stopped == false) {
  5179. Stopped = true;
  5180. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5181. SERIAL_ERROR_START;
  5182. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5183. LCD_MESSAGERPGM(MSG_STOPPED);
  5184. }
  5185. }
  5186. bool IsStopped() { return Stopped; };
  5187. #ifdef FAST_PWM_FAN
  5188. void setPwmFrequency(uint8_t pin, int val)
  5189. {
  5190. val &= 0x07;
  5191. switch(digitalPinToTimer(pin))
  5192. {
  5193. #if defined(TCCR0A)
  5194. case TIMER0A:
  5195. case TIMER0B:
  5196. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5197. // TCCR0B |= val;
  5198. break;
  5199. #endif
  5200. #if defined(TCCR1A)
  5201. case TIMER1A:
  5202. case TIMER1B:
  5203. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5204. // TCCR1B |= val;
  5205. break;
  5206. #endif
  5207. #if defined(TCCR2)
  5208. case TIMER2:
  5209. case TIMER2:
  5210. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5211. TCCR2 |= val;
  5212. break;
  5213. #endif
  5214. #if defined(TCCR2A)
  5215. case TIMER2A:
  5216. case TIMER2B:
  5217. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5218. TCCR2B |= val;
  5219. break;
  5220. #endif
  5221. #if defined(TCCR3A)
  5222. case TIMER3A:
  5223. case TIMER3B:
  5224. case TIMER3C:
  5225. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5226. TCCR3B |= val;
  5227. break;
  5228. #endif
  5229. #if defined(TCCR4A)
  5230. case TIMER4A:
  5231. case TIMER4B:
  5232. case TIMER4C:
  5233. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5234. TCCR4B |= val;
  5235. break;
  5236. #endif
  5237. #if defined(TCCR5A)
  5238. case TIMER5A:
  5239. case TIMER5B:
  5240. case TIMER5C:
  5241. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5242. TCCR5B |= val;
  5243. break;
  5244. #endif
  5245. }
  5246. }
  5247. #endif //FAST_PWM_FAN
  5248. bool setTargetedHotend(int code){
  5249. tmp_extruder = active_extruder;
  5250. if(code_seen('T')) {
  5251. tmp_extruder = code_value();
  5252. if(tmp_extruder >= EXTRUDERS) {
  5253. SERIAL_ECHO_START;
  5254. switch(code){
  5255. case 104:
  5256. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5257. break;
  5258. case 105:
  5259. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5260. break;
  5261. case 109:
  5262. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5263. break;
  5264. case 218:
  5265. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5266. break;
  5267. case 221:
  5268. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5269. break;
  5270. }
  5271. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5272. return true;
  5273. }
  5274. }
  5275. return false;
  5276. }
  5277. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5278. {
  5279. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5280. {
  5281. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5282. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5283. }
  5284. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5285. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5286. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5287. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5288. total_filament_used = 0;
  5289. }
  5290. float calculate_volumetric_multiplier(float diameter) {
  5291. float area = .0;
  5292. float radius = .0;
  5293. radius = diameter * .5;
  5294. if (! volumetric_enabled || radius == 0) {
  5295. area = 1;
  5296. }
  5297. else {
  5298. area = M_PI * pow(radius, 2);
  5299. }
  5300. return 1.0 / area;
  5301. }
  5302. void calculate_volumetric_multipliers() {
  5303. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5304. #if EXTRUDERS > 1
  5305. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5306. #if EXTRUDERS > 2
  5307. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5308. #endif
  5309. #endif
  5310. }
  5311. void delay_keep_alive(unsigned int ms)
  5312. {
  5313. for (;;) {
  5314. manage_heater();
  5315. // Manage inactivity, but don't disable steppers on timeout.
  5316. manage_inactivity(true);
  5317. lcd_update();
  5318. if (ms == 0)
  5319. break;
  5320. else if (ms >= 50) {
  5321. delay(50);
  5322. ms -= 50;
  5323. } else {
  5324. delay(ms);
  5325. ms = 0;
  5326. }
  5327. }
  5328. }
  5329. void wait_for_heater(long codenum) {
  5330. #ifdef TEMP_RESIDENCY_TIME
  5331. long residencyStart;
  5332. residencyStart = -1;
  5333. /* continue to loop until we have reached the target temp
  5334. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5335. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5336. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5337. #else
  5338. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5339. #endif //TEMP_RESIDENCY_TIME
  5340. if ((millis() - codenum) > 1000UL)
  5341. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5342. if (!farm_mode) {
  5343. SERIAL_PROTOCOLPGM("T:");
  5344. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5345. SERIAL_PROTOCOLPGM(" E:");
  5346. SERIAL_PROTOCOL((int)tmp_extruder);
  5347. #ifdef TEMP_RESIDENCY_TIME
  5348. SERIAL_PROTOCOLPGM(" W:");
  5349. if (residencyStart > -1)
  5350. {
  5351. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5352. SERIAL_PROTOCOLLN(codenum);
  5353. }
  5354. else
  5355. {
  5356. SERIAL_PROTOCOLLN("?");
  5357. }
  5358. }
  5359. #else
  5360. SERIAL_PROTOCOLLN("");
  5361. #endif
  5362. codenum = millis();
  5363. }
  5364. manage_heater();
  5365. manage_inactivity();
  5366. lcd_update();
  5367. #ifdef TEMP_RESIDENCY_TIME
  5368. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5369. or when current temp falls outside the hysteresis after target temp was reached */
  5370. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5371. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5372. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5373. {
  5374. residencyStart = millis();
  5375. }
  5376. #endif //TEMP_RESIDENCY_TIME
  5377. }
  5378. }
  5379. void check_babystep() {
  5380. int babystep_z;
  5381. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5382. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5383. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5384. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5385. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5386. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5387. lcd_update_enable(true);
  5388. }
  5389. }
  5390. #ifdef DIS
  5391. void d_setup()
  5392. {
  5393. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5394. pinMode(D_DATA, INPUT_PULLUP);
  5395. pinMode(D_REQUIRE, OUTPUT);
  5396. digitalWrite(D_REQUIRE, HIGH);
  5397. }
  5398. float d_ReadData()
  5399. {
  5400. int digit[13];
  5401. String mergeOutput;
  5402. float output;
  5403. digitalWrite(D_REQUIRE, HIGH);
  5404. for (int i = 0; i<13; i++)
  5405. {
  5406. for (int j = 0; j < 4; j++)
  5407. {
  5408. while (digitalRead(D_DATACLOCK) == LOW) {}
  5409. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5410. bitWrite(digit[i], j, digitalRead(D_DATA));
  5411. }
  5412. }
  5413. digitalWrite(D_REQUIRE, LOW);
  5414. mergeOutput = "";
  5415. output = 0;
  5416. for (int r = 5; r <= 10; r++) //Merge digits
  5417. {
  5418. mergeOutput += digit[r];
  5419. }
  5420. output = mergeOutput.toFloat();
  5421. if (digit[4] == 8) //Handle sign
  5422. {
  5423. output *= -1;
  5424. }
  5425. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5426. {
  5427. output /= 10;
  5428. }
  5429. return output;
  5430. }
  5431. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5432. int t1 = 0;
  5433. int t_delay = 0;
  5434. int digit[13];
  5435. int m;
  5436. char str[3];
  5437. //String mergeOutput;
  5438. char mergeOutput[15];
  5439. float output;
  5440. int mesh_point = 0; //index number of calibration point
  5441. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5442. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5443. float mesh_home_z_search = 4;
  5444. float row[x_points_num];
  5445. int ix = 0;
  5446. int iy = 0;
  5447. char* filename_wldsd = "wldsd.txt";
  5448. char data_wldsd[70];
  5449. char numb_wldsd[10];
  5450. d_setup();
  5451. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5452. // We don't know where we are! HOME!
  5453. // Push the commands to the front of the message queue in the reverse order!
  5454. // There shall be always enough space reserved for these commands.
  5455. repeatcommand_front(); // repeat G80 with all its parameters
  5456. enquecommand_front_P((PSTR("G28 W0")));
  5457. enquecommand_front_P((PSTR("G1 Z5")));
  5458. return;
  5459. }
  5460. bool custom_message_old = custom_message;
  5461. unsigned int custom_message_type_old = custom_message_type;
  5462. unsigned int custom_message_state_old = custom_message_state;
  5463. custom_message = true;
  5464. custom_message_type = 1;
  5465. custom_message_state = (x_points_num * y_points_num) + 10;
  5466. lcd_update(1);
  5467. mbl.reset();
  5468. babystep_undo();
  5469. card.openFile(filename_wldsd, false);
  5470. current_position[Z_AXIS] = mesh_home_z_search;
  5471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5472. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5473. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5474. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5475. setup_for_endstop_move(false);
  5476. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5477. SERIAL_PROTOCOL(x_points_num);
  5478. SERIAL_PROTOCOLPGM(",");
  5479. SERIAL_PROTOCOL(y_points_num);
  5480. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5481. SERIAL_PROTOCOL(mesh_home_z_search);
  5482. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5483. SERIAL_PROTOCOL(x_dimension);
  5484. SERIAL_PROTOCOLPGM(",");
  5485. SERIAL_PROTOCOL(y_dimension);
  5486. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5487. while (mesh_point != x_points_num * y_points_num) {
  5488. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5489. iy = mesh_point / x_points_num;
  5490. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5491. float z0 = 0.f;
  5492. current_position[Z_AXIS] = mesh_home_z_search;
  5493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5494. st_synchronize();
  5495. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5496. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5498. st_synchronize();
  5499. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5500. break;
  5501. card.closefile();
  5502. }
  5503. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5504. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5505. //strcat(data_wldsd, numb_wldsd);
  5506. //MYSERIAL.println(data_wldsd);
  5507. //delay(1000);
  5508. //delay(3000);
  5509. //t1 = millis();
  5510. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5511. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5512. memset(digit, 0, sizeof(digit));
  5513. //cli();
  5514. digitalWrite(D_REQUIRE, LOW);
  5515. for (int i = 0; i<13; i++)
  5516. {
  5517. //t1 = millis();
  5518. for (int j = 0; j < 4; j++)
  5519. {
  5520. while (digitalRead(D_DATACLOCK) == LOW) {}
  5521. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5522. bitWrite(digit[i], j, digitalRead(D_DATA));
  5523. }
  5524. //t_delay = (millis() - t1);
  5525. //SERIAL_PROTOCOLPGM(" ");
  5526. //SERIAL_PROTOCOL_F(t_delay, 5);
  5527. //SERIAL_PROTOCOLPGM(" ");
  5528. }
  5529. //sei();
  5530. digitalWrite(D_REQUIRE, HIGH);
  5531. mergeOutput[0] = '\0';
  5532. output = 0;
  5533. for (int r = 5; r <= 10; r++) //Merge digits
  5534. {
  5535. sprintf(str, "%d", digit[r]);
  5536. strcat(mergeOutput, str);
  5537. }
  5538. output = atof(mergeOutput);
  5539. if (digit[4] == 8) //Handle sign
  5540. {
  5541. output *= -1;
  5542. }
  5543. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5544. {
  5545. output *= 0.1;
  5546. }
  5547. //output = d_ReadData();
  5548. //row[ix] = current_position[Z_AXIS];
  5549. memset(data_wldsd, 0, sizeof(data_wldsd));
  5550. for (int i = 0; i <3; i++) {
  5551. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5552. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5553. strcat(data_wldsd, numb_wldsd);
  5554. strcat(data_wldsd, ";");
  5555. }
  5556. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5557. dtostrf(output, 8, 5, numb_wldsd);
  5558. strcat(data_wldsd, numb_wldsd);
  5559. //strcat(data_wldsd, ";");
  5560. card.write_command(data_wldsd);
  5561. //row[ix] = d_ReadData();
  5562. row[ix] = output; // current_position[Z_AXIS];
  5563. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5564. for (int i = 0; i < x_points_num; i++) {
  5565. SERIAL_PROTOCOLPGM(" ");
  5566. SERIAL_PROTOCOL_F(row[i], 5);
  5567. }
  5568. SERIAL_PROTOCOLPGM("\n");
  5569. }
  5570. custom_message_state--;
  5571. mesh_point++;
  5572. lcd_update(1);
  5573. }
  5574. card.closefile();
  5575. }
  5576. #endif
  5577. void temp_compensation_start() {
  5578. custom_message = true;
  5579. custom_message_type = 5;
  5580. custom_message_state = PINDA_HEAT_T + 1;
  5581. lcd_update(2);
  5582. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5583. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5584. }
  5585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5586. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5587. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5588. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5590. st_synchronize();
  5591. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5592. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5593. delay_keep_alive(1000);
  5594. custom_message_state = PINDA_HEAT_T - i;
  5595. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5596. else lcd_update(1);
  5597. }
  5598. custom_message_type = 0;
  5599. custom_message_state = 0;
  5600. custom_message = false;
  5601. }
  5602. void temp_compensation_apply() {
  5603. int i_add;
  5604. int compensation_value;
  5605. int z_shift = 0;
  5606. float z_shift_mm;
  5607. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5608. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5609. i_add = (target_temperature_bed - 60) / 10;
  5610. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5611. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5612. }else {
  5613. //interpolation
  5614. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5615. }
  5616. SERIAL_PROTOCOLPGM("\n");
  5617. SERIAL_PROTOCOLPGM("Z shift applied:");
  5618. MYSERIAL.print(z_shift_mm);
  5619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5620. st_synchronize();
  5621. plan_set_z_position(current_position[Z_AXIS]);
  5622. }
  5623. else {
  5624. //we have no temp compensation data
  5625. }
  5626. }
  5627. float temp_comp_interpolation(float inp_temperature) {
  5628. //cubic spline interpolation
  5629. int n, i, j, k;
  5630. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5631. int shift[10];
  5632. int temp_C[10];
  5633. n = 6; //number of measured points
  5634. shift[0] = 0;
  5635. for (i = 0; i < n; i++) {
  5636. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5637. temp_C[i] = 50 + i * 10; //temperature in C
  5638. x[i] = (float)temp_C[i];
  5639. f[i] = (float)shift[i];
  5640. }
  5641. if (inp_temperature < x[0]) return 0;
  5642. for (i = n - 1; i>0; i--) {
  5643. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5644. h[i - 1] = x[i] - x[i - 1];
  5645. }
  5646. //*********** formation of h, s , f matrix **************
  5647. for (i = 1; i<n - 1; i++) {
  5648. m[i][i] = 2 * (h[i - 1] + h[i]);
  5649. if (i != 1) {
  5650. m[i][i - 1] = h[i - 1];
  5651. m[i - 1][i] = h[i - 1];
  5652. }
  5653. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5654. }
  5655. //*********** forward elimination **************
  5656. for (i = 1; i<n - 2; i++) {
  5657. temp = (m[i + 1][i] / m[i][i]);
  5658. for (j = 1; j <= n - 1; j++)
  5659. m[i + 1][j] -= temp*m[i][j];
  5660. }
  5661. //*********** backward substitution *********
  5662. for (i = n - 2; i>0; i--) {
  5663. sum = 0;
  5664. for (j = i; j <= n - 2; j++)
  5665. sum += m[i][j] * s[j];
  5666. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5667. }
  5668. for (i = 0; i<n - 1; i++)
  5669. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5670. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5671. b = s[i] / 2;
  5672. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5673. d = f[i];
  5674. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5675. }
  5676. return sum;
  5677. }
  5678. void long_pause() //long pause print
  5679. {
  5680. st_synchronize();
  5681. //save currently set parameters to global variables
  5682. saved_feedmultiply = feedmultiply;
  5683. HotendTempBckp = degTargetHotend(active_extruder);
  5684. fanSpeedBckp = fanSpeed;
  5685. start_pause_print = millis();
  5686. //save position
  5687. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5688. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5689. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5690. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5691. //retract
  5692. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5694. //lift z
  5695. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5696. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5698. //set nozzle target temperature to 0
  5699. setTargetHotend(0, 0);
  5700. setTargetHotend(0, 1);
  5701. setTargetHotend(0, 2);
  5702. //Move XY to side
  5703. current_position[X_AXIS] = X_PAUSE_POS;
  5704. current_position[Y_AXIS] = Y_PAUSE_POS;
  5705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5706. // Turn off the print fan
  5707. fanSpeed = 0;
  5708. st_synchronize();
  5709. }
  5710. void serialecho_temperatures() {
  5711. float tt = degHotend(active_extruder);
  5712. SERIAL_PROTOCOLPGM("T:");
  5713. SERIAL_PROTOCOL(tt);
  5714. SERIAL_PROTOCOLPGM(" E:");
  5715. SERIAL_PROTOCOL((int)active_extruder);
  5716. SERIAL_PROTOCOLPGM(" B:");
  5717. SERIAL_PROTOCOL_F(degBed(), 1);
  5718. SERIAL_PROTOCOLLN("");
  5719. }