Marlin_main.cpp 248 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #endif //PAT9125
  58. #ifdef TMC2130
  59. #include "tmc2130.h"
  60. #endif //TMC2130
  61. #ifdef BLINKM
  62. #include "BlinkM.h"
  63. #include "Wire.h"
  64. #endif
  65. #ifdef ULTRALCD
  66. #include "ultralcd.h"
  67. #endif
  68. #if NUM_SERVOS > 0
  69. #include "Servo.h"
  70. #endif
  71. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  72. #include <SPI.h>
  73. #endif
  74. #define VERSION_STRING "1.0.2"
  75. #include "ultralcd.h"
  76. #include "cmdqueue.h"
  77. // Macros for bit masks
  78. #define BIT(b) (1<<(b))
  79. #define TEST(n,b) (((n)&BIT(b))!=0)
  80. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  81. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  82. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  83. //Implemented Codes
  84. //-------------------
  85. // PRUSA CODES
  86. // P F - Returns FW versions
  87. // P R - Returns revision of printer
  88. // G0 -> G1
  89. // G1 - Coordinated Movement X Y Z E
  90. // G2 - CW ARC
  91. // G3 - CCW ARC
  92. // G4 - Dwell S<seconds> or P<milliseconds>
  93. // G10 - retract filament according to settings of M207
  94. // G11 - retract recover filament according to settings of M208
  95. // G28 - Home all Axis
  96. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  97. // G30 - Single Z Probe, probes bed at current XY location.
  98. // G31 - Dock sled (Z_PROBE_SLED only)
  99. // G32 - Undock sled (Z_PROBE_SLED only)
  100. // G80 - Automatic mesh bed leveling
  101. // G81 - Print bed profile
  102. // G90 - Use Absolute Coordinates
  103. // G91 - Use Relative Coordinates
  104. // G92 - Set current position to coordinates given
  105. // M Codes
  106. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  107. // M1 - Same as M0
  108. // M17 - Enable/Power all stepper motors
  109. // M18 - Disable all stepper motors; same as M84
  110. // M20 - List SD card
  111. // M21 - Init SD card
  112. // M22 - Release SD card
  113. // M23 - Select SD file (M23 filename.g)
  114. // M24 - Start/resume SD print
  115. // M25 - Pause SD print
  116. // M26 - Set SD position in bytes (M26 S12345)
  117. // M27 - Report SD print status
  118. // M28 - Start SD write (M28 filename.g)
  119. // M29 - Stop SD write
  120. // M30 - Delete file from SD (M30 filename.g)
  121. // M31 - Output time since last M109 or SD card start to serial
  122. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  123. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  124. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  125. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  126. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. // M80 - Turn on Power Supply
  128. // M81 - Turn off Power Supply
  129. // M82 - Set E codes absolute (default)
  130. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  131. // M84 - Disable steppers until next move,
  132. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  133. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  134. // M92 - Set axis_steps_per_unit - same syntax as G92
  135. // M104 - Set extruder target temp
  136. // M105 - Read current temp
  137. // M106 - Fan on
  138. // M107 - Fan off
  139. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  141. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  142. // M112 - Emergency stop
  143. // M114 - Output current position to serial port
  144. // M115 - Capabilities string
  145. // M117 - display message
  146. // M119 - Output Endstop status to serial port
  147. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  148. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  149. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  150. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  151. // M140 - Set bed target temp
  152. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  153. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  154. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  155. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  156. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  157. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  158. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  159. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  160. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  161. // M206 - set additional homing offset
  162. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  163. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  164. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  165. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  166. // M220 S<factor in percent>- set speed factor override percentage
  167. // M221 S<factor in percent>- set extrude factor override percentage
  168. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  169. // M240 - Trigger a camera to take a photograph
  170. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  171. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  172. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  173. // M301 - Set PID parameters P I and D
  174. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  175. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  176. // M304 - Set bed PID parameters P I and D
  177. // M400 - Finish all moves
  178. // M401 - Lower z-probe if present
  179. // M402 - Raise z-probe if present
  180. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  181. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  182. // M406 - Turn off Filament Sensor extrusion control
  183. // M407 - Displays measured filament diameter
  184. // M500 - stores parameters in EEPROM
  185. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. // M503 - print the current settings (from memory not from EEPROM)
  188. // M509 - force language selection on next restart
  189. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  190. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  191. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  192. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  193. // M907 - Set digital trimpot motor current using axis codes.
  194. // M908 - Control digital trimpot directly.
  195. // M350 - Set microstepping mode.
  196. // M351 - Toggle MS1 MS2 pins directly.
  197. // M928 - Start SD logging (M928 filename.g) - ended by M29
  198. // M999 - Restart after being stopped by error
  199. //Stepper Movement Variables
  200. //===========================================================================
  201. //=============================imported variables============================
  202. //===========================================================================
  203. //===========================================================================
  204. //=============================public variables=============================
  205. //===========================================================================
  206. #ifdef SDSUPPORT
  207. CardReader card;
  208. #endif
  209. unsigned long PingTime = millis();
  210. union Data
  211. {
  212. byte b[2];
  213. int value;
  214. };
  215. float homing_feedrate[] = HOMING_FEEDRATE;
  216. // Currently only the extruder axis may be switched to a relative mode.
  217. // Other axes are always absolute or relative based on the common relative_mode flag.
  218. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  219. int feedmultiply=100; //100->1 200->2
  220. int saved_feedmultiply;
  221. int extrudemultiply=100; //100->1 200->2
  222. int extruder_multiply[EXTRUDERS] = {100
  223. #if EXTRUDERS > 1
  224. , 100
  225. #if EXTRUDERS > 2
  226. , 100
  227. #endif
  228. #endif
  229. };
  230. int bowden_length[4];
  231. bool is_usb_printing = false;
  232. bool homing_flag = false;
  233. bool temp_cal_active = false;
  234. unsigned long kicktime = millis()+100000;
  235. unsigned int usb_printing_counter;
  236. int lcd_change_fil_state = 0;
  237. int feedmultiplyBckp = 100;
  238. float HotendTempBckp = 0;
  239. int fanSpeedBckp = 0;
  240. float pause_lastpos[4];
  241. unsigned long pause_time = 0;
  242. unsigned long start_pause_print = millis();
  243. unsigned long load_filament_time;
  244. bool mesh_bed_leveling_flag = false;
  245. bool mesh_bed_run_from_menu = false;
  246. unsigned char lang_selected = 0;
  247. int8_t FarmMode = 0;
  248. bool prusa_sd_card_upload = false;
  249. unsigned int status_number = 0;
  250. unsigned long total_filament_used;
  251. unsigned int heating_status;
  252. unsigned int heating_status_counter;
  253. bool custom_message;
  254. bool loading_flag = false;
  255. unsigned int custom_message_type;
  256. unsigned int custom_message_state;
  257. char snmm_filaments_used = 0;
  258. float distance_from_min[3];
  259. float angleDiff;
  260. bool fan_state[2];
  261. int fan_edge_counter[2];
  262. int fan_speed[2];
  263. bool volumetric_enabled = false;
  264. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  265. #if EXTRUDERS > 1
  266. , DEFAULT_NOMINAL_FILAMENT_DIA
  267. #if EXTRUDERS > 2
  268. , DEFAULT_NOMINAL_FILAMENT_DIA
  269. #endif
  270. #endif
  271. };
  272. float volumetric_multiplier[EXTRUDERS] = {1.0
  273. #if EXTRUDERS > 1
  274. , 1.0
  275. #if EXTRUDERS > 2
  276. , 1.0
  277. #endif
  278. #endif
  279. };
  280. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  281. float add_homing[3]={0,0,0};
  282. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  283. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  284. bool axis_known_position[3] = {false, false, false};
  285. float zprobe_zoffset;
  286. // Extruder offset
  287. #if EXTRUDERS > 1
  288. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  289. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  290. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  291. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  292. #endif
  293. };
  294. #endif
  295. uint8_t active_extruder = 0;
  296. int fanSpeed=0;
  297. #ifdef FWRETRACT
  298. bool autoretract_enabled=false;
  299. bool retracted[EXTRUDERS]={false
  300. #if EXTRUDERS > 1
  301. , false
  302. #if EXTRUDERS > 2
  303. , false
  304. #endif
  305. #endif
  306. };
  307. bool retracted_swap[EXTRUDERS]={false
  308. #if EXTRUDERS > 1
  309. , false
  310. #if EXTRUDERS > 2
  311. , false
  312. #endif
  313. #endif
  314. };
  315. float retract_length = RETRACT_LENGTH;
  316. float retract_length_swap = RETRACT_LENGTH_SWAP;
  317. float retract_feedrate = RETRACT_FEEDRATE;
  318. float retract_zlift = RETRACT_ZLIFT;
  319. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  320. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  321. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  322. #endif
  323. #ifdef ULTIPANEL
  324. #ifdef PS_DEFAULT_OFF
  325. bool powersupply = false;
  326. #else
  327. bool powersupply = true;
  328. #endif
  329. #endif
  330. bool cancel_heatup = false ;
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1=0; //index into ring buffer
  338. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist=0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. const char errormagic[] PROGMEM = "Error:";
  343. const char echomagic[] PROGMEM = "echo:";
  344. //===========================================================================
  345. //=============================Private Variables=============================
  346. //===========================================================================
  347. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  348. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  349. static float delta[3] = {0.0, 0.0, 0.0};
  350. // For tracing an arc
  351. static float offset[3] = {0.0, 0.0, 0.0};
  352. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  353. // Determines Absolute or Relative Coordinates.
  354. // Also there is bool axis_relative_modes[] per axis flag.
  355. static bool relative_mode = false;
  356. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  357. //static float tt = 0;
  358. //static float bt = 0;
  359. //Inactivity shutdown variables
  360. static unsigned long previous_millis_cmd = 0;
  361. unsigned long max_inactive_time = 0;
  362. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  363. unsigned long starttime=0;
  364. unsigned long stoptime=0;
  365. unsigned long _usb_timer = 0;
  366. static uint8_t tmp_extruder;
  367. bool extruder_under_pressure = true;
  368. bool Stopped=false;
  369. #if NUM_SERVOS > 0
  370. Servo servos[NUM_SERVOS];
  371. #endif
  372. bool CooldownNoWait = true;
  373. bool target_direction;
  374. //Insert variables if CHDK is defined
  375. #ifdef CHDK
  376. unsigned long chdkHigh = 0;
  377. boolean chdkActive = false;
  378. #endif
  379. //===========================================================================
  380. //=============================Routines======================================
  381. //===========================================================================
  382. void get_arc_coordinates();
  383. bool setTargetedHotend(int code);
  384. void serial_echopair_P(const char *s_P, float v)
  385. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  386. void serial_echopair_P(const char *s_P, double v)
  387. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  388. void serial_echopair_P(const char *s_P, unsigned long v)
  389. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  390. #ifdef SDSUPPORT
  391. #include "SdFatUtil.h"
  392. int freeMemory() { return SdFatUtil::FreeRam(); }
  393. #else
  394. extern "C" {
  395. extern unsigned int __bss_end;
  396. extern unsigned int __heap_start;
  397. extern void *__brkval;
  398. int freeMemory() {
  399. int free_memory;
  400. if ((int)__brkval == 0)
  401. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  402. else
  403. free_memory = ((int)&free_memory) - ((int)__brkval);
  404. return free_memory;
  405. }
  406. }
  407. #endif //!SDSUPPORT
  408. void setup_killpin()
  409. {
  410. #if defined(KILL_PIN) && KILL_PIN > -1
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN,HIGH);
  413. #endif
  414. }
  415. // Set home pin
  416. void setup_homepin(void)
  417. {
  418. #if defined(HOME_PIN) && HOME_PIN > -1
  419. SET_INPUT(HOME_PIN);
  420. WRITE(HOME_PIN,HIGH);
  421. #endif
  422. }
  423. void setup_photpin()
  424. {
  425. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  426. SET_OUTPUT(PHOTOGRAPH_PIN);
  427. WRITE(PHOTOGRAPH_PIN, LOW);
  428. #endif
  429. }
  430. void setup_powerhold()
  431. {
  432. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  433. SET_OUTPUT(SUICIDE_PIN);
  434. WRITE(SUICIDE_PIN, HIGH);
  435. #endif
  436. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  437. SET_OUTPUT(PS_ON_PIN);
  438. #if defined(PS_DEFAULT_OFF)
  439. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  440. #else
  441. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  442. #endif
  443. #endif
  444. }
  445. void suicide()
  446. {
  447. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  448. SET_OUTPUT(SUICIDE_PIN);
  449. WRITE(SUICIDE_PIN, LOW);
  450. #endif
  451. }
  452. void servo_init()
  453. {
  454. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  455. servos[0].attach(SERVO0_PIN);
  456. #endif
  457. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  458. servos[1].attach(SERVO1_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  461. servos[2].attach(SERVO2_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  464. servos[3].attach(SERVO3_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 5)
  467. #error "TODO: enter initalisation code for more servos"
  468. #endif
  469. }
  470. static void lcd_language_menu();
  471. void stop_and_save_print_to_ram(float z_move, float e_move);
  472. void restore_print_from_ram_and_continue(float e_move);
  473. extern int8_t CrashDetectMenu;
  474. void crashdet_enable()
  475. {
  476. MYSERIAL.println("crashdet_enable");
  477. tmc2130_sg_stop_on_crash = true;
  478. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  479. CrashDetectMenu = 1;
  480. }
  481. void crashdet_disable()
  482. {
  483. MYSERIAL.println("crashdet_disable");
  484. tmc2130_sg_stop_on_crash = false;
  485. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  486. CrashDetectMenu = 0;
  487. }
  488. void crashdet_stop_and_save_print()
  489. {
  490. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  491. }
  492. void crashdet_restore_print_and_continue()
  493. {
  494. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  495. // babystep_apply();
  496. }
  497. void crashdet_stop_and_save_print2()
  498. {
  499. cli();
  500. planner_abort_hard(); //abort printing
  501. cmdqueue_reset(); //empty cmdqueue
  502. card.sdprinting = false;
  503. card.closefile();
  504. sei();
  505. }
  506. #ifdef PAT9125
  507. void fsensor_stop_and_save_print()
  508. {
  509. // stop_and_save_print_to_ram(10, -0.8); //XY - no change, Z 10mm up, E 0.8mm in
  510. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  511. }
  512. void fsensor_restore_print_and_continue()
  513. {
  514. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  515. }
  516. bool fsensor_enabled = true;
  517. bool fsensor_ignore_error = true;
  518. bool fsensor_M600 = false;
  519. long fsensor_prev_pos_e = 0;
  520. uint8_t fsensor_err_cnt = 0;
  521. #define FSENS_ESTEPS 280 //extruder resolution [steps/mm]
  522. //#define FSENS_MINDEL 560 //filament sensor min delta [steps] (3mm)
  523. #define FSENS_MINDEL 280 //filament sensor min delta [steps] (3mm)
  524. #define FSENS_MINFAC 3 //filament sensor minimum factor [count/mm]
  525. //#define FSENS_MAXFAC 50 //filament sensor maximum factor [count/mm]
  526. #define FSENS_MAXFAC 40 //filament sensor maximum factor [count/mm]
  527. //#define FSENS_MAXERR 2 //filament sensor max error count
  528. #define FSENS_MAXERR 5 //filament sensor max error count
  529. extern int8_t FSensorStateMenu;
  530. void fsensor_enable()
  531. {
  532. MYSERIAL.println("fsensor_enable");
  533. pat9125_y = 0;
  534. fsensor_prev_pos_e = st_get_position(E_AXIS);
  535. fsensor_err_cnt = 0;
  536. fsensor_enabled = true;
  537. fsensor_ignore_error = true;
  538. fsensor_M600 = false;
  539. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0xFF);
  540. FSensorStateMenu = 1;
  541. }
  542. void fsensor_disable()
  543. {
  544. MYSERIAL.println("fsensor_disable");
  545. fsensor_enabled = false;
  546. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  547. FSensorStateMenu = 0;
  548. }
  549. void fsensor_update()
  550. {
  551. if (!fsensor_enabled) return;
  552. long pos_e = st_get_position(E_AXIS); //current position
  553. pat9125_update();
  554. long del_e = pos_e - fsensor_prev_pos_e; //delta
  555. if (abs(del_e) < FSENS_MINDEL) return;
  556. float de = ((float)del_e / FSENS_ESTEPS);
  557. int cmin = de * FSENS_MINFAC;
  558. int cmax = de * FSENS_MAXFAC;
  559. int cnt = -pat9125_y;
  560. fsensor_prev_pos_e = pos_e;
  561. pat9125_y = 0;
  562. bool err = false;
  563. if ((del_e > 0) && ((cnt < cmin) || (cnt > cmax))) err = true;
  564. if ((del_e < 0) && ((cnt > cmin) || (cnt < cmax))) err = true;
  565. if (err)
  566. fsensor_err_cnt++;
  567. else
  568. fsensor_err_cnt = 0;
  569. /**/
  570. MYSERIAL.print("pos_e=");
  571. MYSERIAL.print(pos_e);
  572. MYSERIAL.print(" de=");
  573. MYSERIAL.print(de);
  574. MYSERIAL.print(" cmin=");
  575. MYSERIAL.print((int)cmin);
  576. MYSERIAL.print(" cmax=");
  577. MYSERIAL.print((int)cmax);
  578. MYSERIAL.print(" cnt=");
  579. MYSERIAL.print((int)cnt);
  580. MYSERIAL.print(" err=");
  581. MYSERIAL.println((int)fsensor_err_cnt);/**/
  582. // return;
  583. if (fsensor_err_cnt > FSENS_MAXERR)
  584. {
  585. MYSERIAL.println("fsensor_update (fsensor_err_cnt > FSENS_MAXERR)");
  586. if (fsensor_ignore_error)
  587. {
  588. MYSERIAL.println("fsensor_update - error ignored)");
  589. fsensor_ignore_error = false;
  590. }
  591. else
  592. {
  593. MYSERIAL.println("fsensor_update - ERROR!!!");
  594. fsensor_stop_and_save_print();
  595. enquecommand_front_P((PSTR("M600")));
  596. fsensor_M600 = true;
  597. fsensor_enabled = false;
  598. }
  599. }
  600. }
  601. #endif //PAT9125
  602. #ifdef MESH_BED_LEVELING
  603. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  604. #endif
  605. // Factory reset function
  606. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  607. // Level input parameter sets depth of reset
  608. // Quiet parameter masks all waitings for user interact.
  609. int er_progress = 0;
  610. void factory_reset(char level, bool quiet)
  611. {
  612. lcd_implementation_clear();
  613. int cursor_pos = 0;
  614. switch (level) {
  615. // Level 0: Language reset
  616. case 0:
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. lcd_force_language_selection();
  621. break;
  622. //Level 1: Reset statistics
  623. case 1:
  624. WRITE(BEEPER, HIGH);
  625. _delay_ms(100);
  626. WRITE(BEEPER, LOW);
  627. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  628. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  629. lcd_menu_statistics();
  630. break;
  631. // Level 2: Prepare for shipping
  632. case 2:
  633. //lcd_printPGM(PSTR("Factory RESET"));
  634. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  635. // Force language selection at the next boot up.
  636. lcd_force_language_selection();
  637. // Force the "Follow calibration flow" message at the next boot up.
  638. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  639. farm_no = 0;
  640. farm_mode == false;
  641. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  642. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  643. WRITE(BEEPER, HIGH);
  644. _delay_ms(100);
  645. WRITE(BEEPER, LOW);
  646. //_delay_ms(2000);
  647. break;
  648. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  649. case 3:
  650. lcd_printPGM(PSTR("Factory RESET"));
  651. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  652. WRITE(BEEPER, HIGH);
  653. _delay_ms(100);
  654. WRITE(BEEPER, LOW);
  655. er_progress = 0;
  656. lcd_print_at_PGM(3, 3, PSTR(" "));
  657. lcd_implementation_print_at(3, 3, er_progress);
  658. // Erase EEPROM
  659. for (int i = 0; i < 4096; i++) {
  660. eeprom_write_byte((uint8_t*)i, 0xFF);
  661. if (i % 41 == 0) {
  662. er_progress++;
  663. lcd_print_at_PGM(3, 3, PSTR(" "));
  664. lcd_implementation_print_at(3, 3, er_progress);
  665. lcd_printPGM(PSTR("%"));
  666. }
  667. }
  668. break;
  669. case 4:
  670. bowden_menu();
  671. break;
  672. default:
  673. break;
  674. }
  675. }
  676. // "Setup" function is called by the Arduino framework on startup.
  677. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  678. // are initialized by the main() routine provided by the Arduino framework.
  679. void setup()
  680. {
  681. lcd_init();
  682. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  683. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  684. setup_killpin();
  685. setup_powerhold();
  686. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  687. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  688. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  689. if (farm_no == 0xFFFF) farm_no = 0;
  690. if (farm_mode)
  691. {
  692. prusa_statistics(8);
  693. selectedSerialPort = 1;
  694. }
  695. else
  696. selectedSerialPort = 0;
  697. MYSERIAL.begin(BAUDRATE);
  698. SERIAL_PROTOCOLLNPGM("start");
  699. SERIAL_ECHO_START;
  700. #if 0
  701. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  702. for (int i = 0; i < 4096; ++i) {
  703. int b = eeprom_read_byte((unsigned char*)i);
  704. if (b != 255) {
  705. SERIAL_ECHO(i);
  706. SERIAL_ECHO(":");
  707. SERIAL_ECHO(b);
  708. SERIAL_ECHOLN("");
  709. }
  710. }
  711. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  712. #endif
  713. // Check startup - does nothing if bootloader sets MCUSR to 0
  714. byte mcu = MCUSR;
  715. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  716. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  717. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  718. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  719. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  720. MCUSR = 0;
  721. //SERIAL_ECHORPGM(MSG_MARLIN);
  722. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  723. #ifdef STRING_VERSION_CONFIG_H
  724. #ifdef STRING_CONFIG_H_AUTHOR
  725. SERIAL_ECHO_START;
  726. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  727. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  728. SERIAL_ECHORPGM(MSG_AUTHOR);
  729. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  730. SERIAL_ECHOPGM("Compiled: ");
  731. SERIAL_ECHOLNPGM(__DATE__);
  732. #endif
  733. #endif
  734. SERIAL_ECHO_START;
  735. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  736. SERIAL_ECHO(freeMemory());
  737. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  738. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  739. //lcd_update_enable(false); // why do we need this?? - andre
  740. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  741. Config_RetrieveSettings(EEPROM_OFFSET);
  742. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  743. tp_init(); // Initialize temperature loop
  744. plan_init(); // Initialize planner;
  745. watchdog_init();
  746. #ifdef TMC2130
  747. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  748. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  749. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  750. if (crashdet)
  751. {
  752. crashdet_enable();
  753. MYSERIAL.println("CrashDetect ENABLED!");
  754. }
  755. else
  756. {
  757. crashdet_disable();
  758. MYSERIAL.println("CrashDetect DISABLED");
  759. }
  760. #endif //TMC2130
  761. #ifdef PAT9125
  762. MYSERIAL.print("PAT9125_init:");
  763. MYSERIAL.println(pat9125_init(200, 200));
  764. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  765. if (fsensor)
  766. {
  767. fsensor_enable();
  768. MYSERIAL.println("Filament Sensor ENABLED!");
  769. }
  770. else
  771. {
  772. fsensor_disable();
  773. MYSERIAL.println("Filament Sensor DISABLED");
  774. }
  775. #endif //PAT9125
  776. st_init(); // Initialize stepper, this enables interrupts!
  777. setup_photpin();
  778. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  779. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  780. servo_init();
  781. // Reset the machine correction matrix.
  782. // It does not make sense to load the correction matrix until the machine is homed.
  783. world2machine_reset();
  784. if (!READ(BTN_ENC))
  785. {
  786. _delay_ms(1000);
  787. if (!READ(BTN_ENC))
  788. {
  789. lcd_implementation_clear();
  790. lcd_printPGM(PSTR("Factory RESET"));
  791. SET_OUTPUT(BEEPER);
  792. WRITE(BEEPER, HIGH);
  793. while (!READ(BTN_ENC));
  794. WRITE(BEEPER, LOW);
  795. _delay_ms(2000);
  796. char level = reset_menu();
  797. factory_reset(level, false);
  798. switch (level) {
  799. case 0: _delay_ms(0); break;
  800. case 1: _delay_ms(0); break;
  801. case 2: _delay_ms(0); break;
  802. case 3: _delay_ms(0); break;
  803. }
  804. // _delay_ms(100);
  805. /*
  806. #ifdef MESH_BED_LEVELING
  807. _delay_ms(2000);
  808. if (!READ(BTN_ENC))
  809. {
  810. WRITE(BEEPER, HIGH);
  811. _delay_ms(100);
  812. WRITE(BEEPER, LOW);
  813. _delay_ms(200);
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. int _z = 0;
  818. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  819. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  820. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  821. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  822. }
  823. else
  824. {
  825. WRITE(BEEPER, HIGH);
  826. _delay_ms(100);
  827. WRITE(BEEPER, LOW);
  828. }
  829. #endif // mesh */
  830. }
  831. }
  832. else
  833. {
  834. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  835. }
  836. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  837. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  838. #endif
  839. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  840. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  841. #endif
  842. #ifdef DIGIPOT_I2C
  843. digipot_i2c_init();
  844. #endif
  845. setup_homepin();
  846. if (1) {
  847. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  848. // try to run to zero phase before powering the Z motor.
  849. // Move in negative direction
  850. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  851. // Round the current micro-micro steps to micro steps.
  852. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  853. // Until the phase counter is reset to zero.
  854. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  855. delay(2);
  856. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  857. delay(2);
  858. }
  859. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  860. }
  861. #if defined(Z_AXIS_ALWAYS_ON)
  862. enable_z();
  863. #endif
  864. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  865. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  866. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  867. if (farm_no == 0xFFFF) farm_no = 0;
  868. if (farm_mode)
  869. {
  870. prusa_statistics(8);
  871. }
  872. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  873. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  874. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  875. // but this times out if a blocking dialog is shown in setup().
  876. card.initsd();
  877. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  878. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  879. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  880. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  881. // where all the EEPROM entries are set to 0x0ff.
  882. // Once a firmware boots up, it forces at least a language selection, which changes
  883. // EEPROM_LANG to number lower than 0x0ff.
  884. // 1) Set a high power mode.
  885. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  886. }
  887. #ifdef SNMM
  888. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  889. int _z = BOWDEN_LENGTH;
  890. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  891. }
  892. #endif
  893. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  894. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  895. // is being written into the EEPROM, so the update procedure will be triggered only once.
  896. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  897. if (lang_selected >= LANG_NUM){
  898. lcd_mylang();
  899. }
  900. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  901. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  902. temp_cal_active = false;
  903. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  904. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  905. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  906. }
  907. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  908. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  909. }
  910. check_babystep(); //checking if Z babystep is in allowed range
  911. setup_uvlo_interrupt();
  912. #ifndef DEBUG_DISABLE_STARTMSGS
  913. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  914. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  915. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  916. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  917. // Show the message.
  918. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  919. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  920. // Show the message.
  921. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  922. lcd_update_enable(true);
  923. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  924. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  925. lcd_update_enable(true);
  926. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  927. // Show the message.
  928. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  929. }
  930. #endif //DEBUG_DISABLE_STARTMSGS
  931. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  932. lcd_update_enable(true);
  933. lcd_implementation_clear();
  934. lcd_update(2);
  935. // Store the currently running firmware into an eeprom,
  936. // so the next time the firmware gets updated, it will know from which version it has been updated.
  937. update_current_firmware_version_to_eeprom();
  938. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  939. /*
  940. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  941. else {
  942. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  943. lcd_update_enable(true);
  944. lcd_update(2);
  945. lcd_setstatuspgm(WELCOME_MSG);
  946. }
  947. */
  948. manage_heater(); // Update temperatures
  949. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  950. MYSERIAL.println("Power panic detected!");
  951. MYSERIAL.print("Current bed temp:");
  952. MYSERIAL.println(degBed());
  953. MYSERIAL.print("Saved bed temp:");
  954. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  955. #endif
  956. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  957. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  958. MYSERIAL.println("Automatic recovery!");
  959. #endif
  960. recover_print(1);
  961. }
  962. else{
  963. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  964. MYSERIAL.println("Normal recovery!");
  965. #endif
  966. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  967. else {
  968. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  969. lcd_update_enable(true);
  970. lcd_update(2);
  971. lcd_setstatuspgm(WELCOME_MSG);
  972. }
  973. }
  974. }
  975. }
  976. void trace();
  977. #define CHUNK_SIZE 64 // bytes
  978. #define SAFETY_MARGIN 1
  979. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  980. int chunkHead = 0;
  981. int serial_read_stream() {
  982. setTargetHotend(0, 0);
  983. setTargetBed(0);
  984. lcd_implementation_clear();
  985. lcd_printPGM(PSTR(" Upload in progress"));
  986. // first wait for how many bytes we will receive
  987. uint32_t bytesToReceive;
  988. // receive the four bytes
  989. char bytesToReceiveBuffer[4];
  990. for (int i=0; i<4; i++) {
  991. int data;
  992. while ((data = MYSERIAL.read()) == -1) {};
  993. bytesToReceiveBuffer[i] = data;
  994. }
  995. // make it a uint32
  996. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  997. // we're ready, notify the sender
  998. MYSERIAL.write('+');
  999. // lock in the routine
  1000. uint32_t receivedBytes = 0;
  1001. while (prusa_sd_card_upload) {
  1002. int i;
  1003. for (i=0; i<CHUNK_SIZE; i++) {
  1004. int data;
  1005. // check if we're not done
  1006. if (receivedBytes == bytesToReceive) {
  1007. break;
  1008. }
  1009. // read the next byte
  1010. while ((data = MYSERIAL.read()) == -1) {};
  1011. receivedBytes++;
  1012. // save it to the chunk
  1013. chunk[i] = data;
  1014. }
  1015. // write the chunk to SD
  1016. card.write_command_no_newline(&chunk[0]);
  1017. // notify the sender we're ready for more data
  1018. MYSERIAL.write('+');
  1019. // for safety
  1020. manage_heater();
  1021. // check if we're done
  1022. if(receivedBytes == bytesToReceive) {
  1023. trace(); // beep
  1024. card.closefile();
  1025. prusa_sd_card_upload = false;
  1026. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1027. return 0;
  1028. }
  1029. }
  1030. }
  1031. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1032. // Before loop(), the setup() function is called by the main() routine.
  1033. void loop()
  1034. {
  1035. bool stack_integrity = true;
  1036. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1037. {
  1038. is_usb_printing = true;
  1039. usb_printing_counter--;
  1040. _usb_timer = millis();
  1041. }
  1042. if (usb_printing_counter == 0)
  1043. {
  1044. is_usb_printing = false;
  1045. }
  1046. if (prusa_sd_card_upload)
  1047. {
  1048. //we read byte-by byte
  1049. serial_read_stream();
  1050. } else
  1051. {
  1052. get_command();
  1053. #ifdef SDSUPPORT
  1054. card.checkautostart(false);
  1055. #endif
  1056. if(buflen)
  1057. {
  1058. cmdbuffer_front_already_processed = false;
  1059. #ifdef SDSUPPORT
  1060. if(card.saving)
  1061. {
  1062. // Saving a G-code file onto an SD-card is in progress.
  1063. // Saving starts with M28, saving until M29 is seen.
  1064. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1065. card.write_command(CMDBUFFER_CURRENT_STRING);
  1066. if(card.logging)
  1067. process_commands();
  1068. else
  1069. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1070. } else {
  1071. card.closefile();
  1072. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1073. }
  1074. } else {
  1075. process_commands();
  1076. }
  1077. #else
  1078. process_commands();
  1079. #endif //SDSUPPORT
  1080. if (! cmdbuffer_front_already_processed && buflen)
  1081. {
  1082. cli();
  1083. union {
  1084. struct {
  1085. char lo;
  1086. char hi;
  1087. } lohi;
  1088. uint16_t value;
  1089. } sdlen;
  1090. sdlen.value = 0;
  1091. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1092. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1093. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1094. }
  1095. cmdqueue_pop_front();
  1096. planner_add_sd_length(sdlen.value);
  1097. sei();
  1098. }
  1099. }
  1100. }
  1101. //check heater every n milliseconds
  1102. manage_heater();
  1103. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1104. checkHitEndstops();
  1105. lcd_update();
  1106. #ifdef PAT9125
  1107. fsensor_update();
  1108. #endif //PAT9125
  1109. #ifdef TMC2130
  1110. tmc2130_check_overtemp();
  1111. if (tmc2130_sg_crash)
  1112. {
  1113. tmc2130_sg_crash = false;
  1114. // crashdet_stop_and_save_print();
  1115. enquecommand_P((PSTR("D999")));
  1116. }
  1117. #endif //TMC2130
  1118. }
  1119. #define DEFINE_PGM_READ_ANY(type, reader) \
  1120. static inline type pgm_read_any(const type *p) \
  1121. { return pgm_read_##reader##_near(p); }
  1122. DEFINE_PGM_READ_ANY(float, float);
  1123. DEFINE_PGM_READ_ANY(signed char, byte);
  1124. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1125. static const PROGMEM type array##_P[3] = \
  1126. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1127. static inline type array(int axis) \
  1128. { return pgm_read_any(&array##_P[axis]); } \
  1129. type array##_ext(int axis) \
  1130. { return pgm_read_any(&array##_P[axis]); }
  1131. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1132. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1133. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1134. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1135. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1136. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1137. static void axis_is_at_home(int axis) {
  1138. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1139. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1140. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1141. }
  1142. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1143. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1144. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1145. saved_feedrate = feedrate;
  1146. saved_feedmultiply = feedmultiply;
  1147. feedmultiply = 100;
  1148. previous_millis_cmd = millis();
  1149. enable_endstops(enable_endstops_now);
  1150. }
  1151. static void clean_up_after_endstop_move() {
  1152. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1153. enable_endstops(false);
  1154. #endif
  1155. feedrate = saved_feedrate;
  1156. feedmultiply = saved_feedmultiply;
  1157. previous_millis_cmd = millis();
  1158. }
  1159. #ifdef ENABLE_AUTO_BED_LEVELING
  1160. #ifdef AUTO_BED_LEVELING_GRID
  1161. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1162. {
  1163. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1164. planeNormal.debug("planeNormal");
  1165. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1166. //bedLevel.debug("bedLevel");
  1167. //plan_bed_level_matrix.debug("bed level before");
  1168. //vector_3 uncorrected_position = plan_get_position_mm();
  1169. //uncorrected_position.debug("position before");
  1170. vector_3 corrected_position = plan_get_position();
  1171. // corrected_position.debug("position after");
  1172. current_position[X_AXIS] = corrected_position.x;
  1173. current_position[Y_AXIS] = corrected_position.y;
  1174. current_position[Z_AXIS] = corrected_position.z;
  1175. // put the bed at 0 so we don't go below it.
  1176. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1178. }
  1179. #else // not AUTO_BED_LEVELING_GRID
  1180. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1181. plan_bed_level_matrix.set_to_identity();
  1182. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1183. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1184. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1185. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1186. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1187. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1188. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1189. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1190. vector_3 corrected_position = plan_get_position();
  1191. current_position[X_AXIS] = corrected_position.x;
  1192. current_position[Y_AXIS] = corrected_position.y;
  1193. current_position[Z_AXIS] = corrected_position.z;
  1194. // put the bed at 0 so we don't go below it.
  1195. current_position[Z_AXIS] = zprobe_zoffset;
  1196. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1197. }
  1198. #endif // AUTO_BED_LEVELING_GRID
  1199. static void run_z_probe() {
  1200. plan_bed_level_matrix.set_to_identity();
  1201. feedrate = homing_feedrate[Z_AXIS];
  1202. // move down until you find the bed
  1203. float zPosition = -10;
  1204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1205. st_synchronize();
  1206. // we have to let the planner know where we are right now as it is not where we said to go.
  1207. zPosition = st_get_position_mm(Z_AXIS);
  1208. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1209. // move up the retract distance
  1210. zPosition += home_retract_mm(Z_AXIS);
  1211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1212. st_synchronize();
  1213. // move back down slowly to find bed
  1214. feedrate = homing_feedrate[Z_AXIS]/4;
  1215. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1217. st_synchronize();
  1218. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1219. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1221. }
  1222. static void do_blocking_move_to(float x, float y, float z) {
  1223. float oldFeedRate = feedrate;
  1224. feedrate = homing_feedrate[Z_AXIS];
  1225. current_position[Z_AXIS] = z;
  1226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1227. st_synchronize();
  1228. feedrate = XY_TRAVEL_SPEED;
  1229. current_position[X_AXIS] = x;
  1230. current_position[Y_AXIS] = y;
  1231. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1232. st_synchronize();
  1233. feedrate = oldFeedRate;
  1234. }
  1235. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1236. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1237. }
  1238. /// Probe bed height at position (x,y), returns the measured z value
  1239. static float probe_pt(float x, float y, float z_before) {
  1240. // move to right place
  1241. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1242. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1243. run_z_probe();
  1244. float measured_z = current_position[Z_AXIS];
  1245. SERIAL_PROTOCOLRPGM(MSG_BED);
  1246. SERIAL_PROTOCOLPGM(" x: ");
  1247. SERIAL_PROTOCOL(x);
  1248. SERIAL_PROTOCOLPGM(" y: ");
  1249. SERIAL_PROTOCOL(y);
  1250. SERIAL_PROTOCOLPGM(" z: ");
  1251. SERIAL_PROTOCOL(measured_z);
  1252. SERIAL_PROTOCOLPGM("\n");
  1253. return measured_z;
  1254. }
  1255. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1256. #ifdef LIN_ADVANCE
  1257. /**
  1258. * M900: Set and/or Get advance K factor and WH/D ratio
  1259. *
  1260. * K<factor> Set advance K factor
  1261. * R<ratio> Set ratio directly (overrides WH/D)
  1262. * W<width> H<height> D<diam> Set ratio from WH/D
  1263. */
  1264. inline void gcode_M900() {
  1265. st_synchronize();
  1266. const float newK = code_seen('K') ? code_value_float() : -1;
  1267. if (newK >= 0) extruder_advance_k = newK;
  1268. float newR = code_seen('R') ? code_value_float() : -1;
  1269. if (newR < 0) {
  1270. const float newD = code_seen('D') ? code_value_float() : -1,
  1271. newW = code_seen('W') ? code_value_float() : -1,
  1272. newH = code_seen('H') ? code_value_float() : -1;
  1273. if (newD >= 0 && newW >= 0 && newH >= 0)
  1274. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1275. }
  1276. if (newR >= 0) advance_ed_ratio = newR;
  1277. SERIAL_ECHO_START;
  1278. SERIAL_ECHOPGM("Advance K=");
  1279. SERIAL_ECHOLN(extruder_advance_k);
  1280. SERIAL_ECHOPGM(" E/D=");
  1281. const float ratio = advance_ed_ratio;
  1282. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1283. }
  1284. #endif // LIN_ADVANCE
  1285. #ifdef TMC2130
  1286. bool calibrate_z_auto()
  1287. {
  1288. lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1289. bool endstops_enabled = enable_endstops(true);
  1290. int axis_up_dir = -home_dir(Z_AXIS);
  1291. tmc2130_home_enter(Z_AXIS_MASK);
  1292. current_position[Z_AXIS] = 0;
  1293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1294. set_destination_to_current();
  1295. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1296. feedrate = homing_feedrate[Z_AXIS];
  1297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1298. tmc2130_home_restart(Z_AXIS);
  1299. st_synchronize();
  1300. // current_position[axis] = 0;
  1301. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1302. tmc2130_home_exit();
  1303. enable_endstops(false);
  1304. current_position[Z_AXIS] = 0;
  1305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1306. set_destination_to_current();
  1307. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1308. feedrate = homing_feedrate[Z_AXIS] / 2;
  1309. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1310. st_synchronize();
  1311. enable_endstops(endstops_enabled);
  1312. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1314. return true;
  1315. }
  1316. #endif //TMC2130
  1317. void homeaxis(int axis)
  1318. {
  1319. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1320. #define HOMEAXIS_DO(LETTER) \
  1321. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1322. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1323. {
  1324. int axis_home_dir = home_dir(axis);
  1325. feedrate = homing_feedrate[axis];
  1326. #ifdef TMC2130
  1327. tmc2130_home_enter(X_AXIS_MASK << axis);
  1328. #endif
  1329. // Move right a bit, so that the print head does not touch the left end position,
  1330. // and the following left movement has a chance to achieve the required velocity
  1331. // for the stall guard to work.
  1332. current_position[axis] = 0;
  1333. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1334. // destination[axis] = 11.f;
  1335. destination[axis] = 3.f;
  1336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1337. st_synchronize();
  1338. // Move left away from the possible collision with the collision detection disabled.
  1339. endstops_hit_on_purpose();
  1340. enable_endstops(false);
  1341. current_position[axis] = 0;
  1342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1343. destination[axis] = - 1.;
  1344. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1345. st_synchronize();
  1346. // Now continue to move up to the left end stop with the collision detection enabled.
  1347. enable_endstops(true);
  1348. destination[axis] = - 1.1 * max_length(axis);
  1349. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1350. st_synchronize();
  1351. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1352. endstops_hit_on_purpose();
  1353. enable_endstops(false);
  1354. current_position[axis] = 0;
  1355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. destination[axis] = 10.f;
  1357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1358. st_synchronize();
  1359. endstops_hit_on_purpose();
  1360. // Now move left up to the collision, this time with a repeatable velocity.
  1361. enable_endstops(true);
  1362. destination[axis] = - 15.f;
  1363. feedrate = homing_feedrate[axis]/2;
  1364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1365. st_synchronize();
  1366. axis_is_at_home(axis);
  1367. axis_known_position[axis] = true;
  1368. #ifdef TMC2130
  1369. tmc2130_home_exit();
  1370. #endif
  1371. // Move the X carriage away from the collision.
  1372. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1373. endstops_hit_on_purpose();
  1374. enable_endstops(false);
  1375. {
  1376. // Two full periods (4 full steps).
  1377. float gap = 0.32f * 2.f;
  1378. current_position[axis] -= gap;
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. current_position[axis] += gap;
  1381. }
  1382. destination[axis] = current_position[axis];
  1383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1384. st_synchronize();
  1385. feedrate = 0.0;
  1386. }
  1387. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1388. {
  1389. int axis_home_dir = home_dir(axis);
  1390. current_position[axis] = 0;
  1391. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1392. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1393. feedrate = homing_feedrate[axis];
  1394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1395. st_synchronize();
  1396. current_position[axis] = 0;
  1397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1398. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1400. st_synchronize();
  1401. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1402. feedrate = homing_feedrate[axis]/2 ;
  1403. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1404. st_synchronize();
  1405. axis_is_at_home(axis);
  1406. destination[axis] = current_position[axis];
  1407. feedrate = 0.0;
  1408. endstops_hit_on_purpose();
  1409. axis_known_position[axis] = true;
  1410. }
  1411. enable_endstops(endstops_enabled);
  1412. }
  1413. /**/
  1414. void home_xy()
  1415. {
  1416. set_destination_to_current();
  1417. homeaxis(X_AXIS);
  1418. homeaxis(Y_AXIS);
  1419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1420. endstops_hit_on_purpose();
  1421. }
  1422. void refresh_cmd_timeout(void)
  1423. {
  1424. previous_millis_cmd = millis();
  1425. }
  1426. #ifdef FWRETRACT
  1427. void retract(bool retracting, bool swapretract = false) {
  1428. if(retracting && !retracted[active_extruder]) {
  1429. destination[X_AXIS]=current_position[X_AXIS];
  1430. destination[Y_AXIS]=current_position[Y_AXIS];
  1431. destination[Z_AXIS]=current_position[Z_AXIS];
  1432. destination[E_AXIS]=current_position[E_AXIS];
  1433. if (swapretract) {
  1434. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1435. } else {
  1436. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1437. }
  1438. plan_set_e_position(current_position[E_AXIS]);
  1439. float oldFeedrate = feedrate;
  1440. feedrate=retract_feedrate*60;
  1441. retracted[active_extruder]=true;
  1442. prepare_move();
  1443. current_position[Z_AXIS]-=retract_zlift;
  1444. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1445. prepare_move();
  1446. feedrate = oldFeedrate;
  1447. } else if(!retracting && retracted[active_extruder]) {
  1448. destination[X_AXIS]=current_position[X_AXIS];
  1449. destination[Y_AXIS]=current_position[Y_AXIS];
  1450. destination[Z_AXIS]=current_position[Z_AXIS];
  1451. destination[E_AXIS]=current_position[E_AXIS];
  1452. current_position[Z_AXIS]+=retract_zlift;
  1453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1454. //prepare_move();
  1455. if (swapretract) {
  1456. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1457. } else {
  1458. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1459. }
  1460. plan_set_e_position(current_position[E_AXIS]);
  1461. float oldFeedrate = feedrate;
  1462. feedrate=retract_recover_feedrate*60;
  1463. retracted[active_extruder]=false;
  1464. prepare_move();
  1465. feedrate = oldFeedrate;
  1466. }
  1467. } //retract
  1468. #endif //FWRETRACT
  1469. void trace() {
  1470. tone(BEEPER, 440);
  1471. delay(25);
  1472. noTone(BEEPER);
  1473. delay(20);
  1474. }
  1475. /*
  1476. void ramming() {
  1477. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1478. if (current_temperature[0] < 230) {
  1479. //PLA
  1480. max_feedrate[E_AXIS] = 50;
  1481. //current_position[E_AXIS] -= 8;
  1482. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1483. //current_position[E_AXIS] += 8;
  1484. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1485. current_position[E_AXIS] += 5.4;
  1486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1487. current_position[E_AXIS] += 3.2;
  1488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1489. current_position[E_AXIS] += 3;
  1490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1491. st_synchronize();
  1492. max_feedrate[E_AXIS] = 80;
  1493. current_position[E_AXIS] -= 82;
  1494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1495. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1496. current_position[E_AXIS] -= 20;
  1497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1498. current_position[E_AXIS] += 5;
  1499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1500. current_position[E_AXIS] += 5;
  1501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1502. current_position[E_AXIS] -= 10;
  1503. st_synchronize();
  1504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1505. current_position[E_AXIS] += 10;
  1506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1507. current_position[E_AXIS] -= 10;
  1508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1509. current_position[E_AXIS] += 10;
  1510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1511. current_position[E_AXIS] -= 10;
  1512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1513. st_synchronize();
  1514. }
  1515. else {
  1516. //ABS
  1517. max_feedrate[E_AXIS] = 50;
  1518. //current_position[E_AXIS] -= 8;
  1519. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1520. //current_position[E_AXIS] += 8;
  1521. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1522. current_position[E_AXIS] += 3.1;
  1523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1524. current_position[E_AXIS] += 3.1;
  1525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1526. current_position[E_AXIS] += 4;
  1527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1528. st_synchronize();
  1529. //current_position[X_AXIS] += 23; //delay
  1530. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1531. //current_position[X_AXIS] -= 23; //delay
  1532. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1533. delay(4700);
  1534. max_feedrate[E_AXIS] = 80;
  1535. current_position[E_AXIS] -= 92;
  1536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1537. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1538. current_position[E_AXIS] -= 5;
  1539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1540. current_position[E_AXIS] += 5;
  1541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1542. current_position[E_AXIS] -= 5;
  1543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1544. st_synchronize();
  1545. current_position[E_AXIS] += 5;
  1546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1547. current_position[E_AXIS] -= 5;
  1548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1549. current_position[E_AXIS] += 5;
  1550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1551. current_position[E_AXIS] -= 5;
  1552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1553. st_synchronize();
  1554. }
  1555. }
  1556. */
  1557. void process_commands()
  1558. {
  1559. #ifdef FILAMENT_RUNOUT_SUPPORT
  1560. SET_INPUT(FR_SENS);
  1561. #endif
  1562. #ifdef CMDBUFFER_DEBUG
  1563. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1564. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1565. SERIAL_ECHOLNPGM("");
  1566. SERIAL_ECHOPGM("In cmdqueue: ");
  1567. SERIAL_ECHO(buflen);
  1568. SERIAL_ECHOLNPGM("");
  1569. #endif /* CMDBUFFER_DEBUG */
  1570. unsigned long codenum; //throw away variable
  1571. char *starpos = NULL;
  1572. #ifdef ENABLE_AUTO_BED_LEVELING
  1573. float x_tmp, y_tmp, z_tmp, real_z;
  1574. #endif
  1575. // PRUSA GCODES
  1576. #ifdef SNMM
  1577. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1578. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1579. int8_t SilentMode;
  1580. #endif
  1581. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1582. starpos = (strchr(strchr_pointer + 5, '*'));
  1583. if (starpos != NULL)
  1584. *(starpos) = '\0';
  1585. lcd_setstatus(strchr_pointer + 5);
  1586. }
  1587. else if(code_seen("PRUSA")){
  1588. if (code_seen("Ping")) { //PRUSA Ping
  1589. if (farm_mode) {
  1590. PingTime = millis();
  1591. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1592. }
  1593. }
  1594. else if (code_seen("PRN")) {
  1595. MYSERIAL.println(status_number);
  1596. }else if (code_seen("fn")) {
  1597. if (farm_mode) {
  1598. MYSERIAL.println(farm_no);
  1599. }
  1600. else {
  1601. MYSERIAL.println("Not in farm mode.");
  1602. }
  1603. }else if (code_seen("fv")) {
  1604. // get file version
  1605. #ifdef SDSUPPORT
  1606. card.openFile(strchr_pointer + 3,true);
  1607. while (true) {
  1608. uint16_t readByte = card.get();
  1609. MYSERIAL.write(readByte);
  1610. if (readByte=='\n') {
  1611. break;
  1612. }
  1613. }
  1614. card.closefile();
  1615. #endif // SDSUPPORT
  1616. } else if (code_seen("M28")) {
  1617. trace();
  1618. prusa_sd_card_upload = true;
  1619. card.openFile(strchr_pointer+4,false);
  1620. } else if (code_seen("SN")) {
  1621. if (farm_mode) {
  1622. selectedSerialPort = 0;
  1623. MSerial.write(";S");
  1624. // S/N is:CZPX0917X003XC13518
  1625. int numbersRead = 0;
  1626. while (numbersRead < 19) {
  1627. while (MSerial.available() > 0) {
  1628. uint8_t serial_char = MSerial.read();
  1629. selectedSerialPort = 1;
  1630. MSerial.write(serial_char);
  1631. numbersRead++;
  1632. selectedSerialPort = 0;
  1633. }
  1634. }
  1635. selectedSerialPort = 1;
  1636. MSerial.write('\n');
  1637. /*for (int b = 0; b < 3; b++) {
  1638. tone(BEEPER, 110);
  1639. delay(50);
  1640. noTone(BEEPER);
  1641. delay(50);
  1642. }*/
  1643. } else {
  1644. MYSERIAL.println("Not in farm mode.");
  1645. }
  1646. } else if(code_seen("Fir")){
  1647. SERIAL_PROTOCOLLN(FW_version);
  1648. } else if(code_seen("Rev")){
  1649. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1650. } else if(code_seen("Lang")) {
  1651. lcd_force_language_selection();
  1652. } else if(code_seen("Lz")) {
  1653. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1654. } else if (code_seen("SERIAL LOW")) {
  1655. MYSERIAL.println("SERIAL LOW");
  1656. MYSERIAL.begin(BAUDRATE);
  1657. return;
  1658. } else if (code_seen("SERIAL HIGH")) {
  1659. MYSERIAL.println("SERIAL HIGH");
  1660. MYSERIAL.begin(1152000);
  1661. return;
  1662. } else if(code_seen("Beat")) {
  1663. // Kick farm link timer
  1664. kicktime = millis();
  1665. } else if(code_seen("FR")) {
  1666. // Factory full reset
  1667. factory_reset(0,true);
  1668. }
  1669. //else if (code_seen('Cal')) {
  1670. // lcd_calibration();
  1671. // }
  1672. }
  1673. else if (code_seen('^')) {
  1674. // nothing, this is a version line
  1675. } else if(code_seen('G'))
  1676. {
  1677. switch((int)code_value())
  1678. {
  1679. case 0: // G0 -> G1
  1680. case 1: // G1
  1681. if(Stopped == false) {
  1682. #ifdef FILAMENT_RUNOUT_SUPPORT
  1683. if(READ(FR_SENS)){
  1684. feedmultiplyBckp=feedmultiply;
  1685. float target[4];
  1686. float lastpos[4];
  1687. target[X_AXIS]=current_position[X_AXIS];
  1688. target[Y_AXIS]=current_position[Y_AXIS];
  1689. target[Z_AXIS]=current_position[Z_AXIS];
  1690. target[E_AXIS]=current_position[E_AXIS];
  1691. lastpos[X_AXIS]=current_position[X_AXIS];
  1692. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1693. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1694. lastpos[E_AXIS]=current_position[E_AXIS];
  1695. //retract by E
  1696. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1697. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1698. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1699. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1700. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1701. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1703. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1705. //finish moves
  1706. st_synchronize();
  1707. //disable extruder steppers so filament can be removed
  1708. disable_e0();
  1709. disable_e1();
  1710. disable_e2();
  1711. delay(100);
  1712. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1713. uint8_t cnt=0;
  1714. int counterBeep = 0;
  1715. lcd_wait_interact();
  1716. while(!lcd_clicked()){
  1717. cnt++;
  1718. manage_heater();
  1719. manage_inactivity(true);
  1720. //lcd_update();
  1721. if(cnt==0)
  1722. {
  1723. #if BEEPER > 0
  1724. if (counterBeep== 500){
  1725. counterBeep = 0;
  1726. }
  1727. SET_OUTPUT(BEEPER);
  1728. if (counterBeep== 0){
  1729. WRITE(BEEPER,HIGH);
  1730. }
  1731. if (counterBeep== 20){
  1732. WRITE(BEEPER,LOW);
  1733. }
  1734. counterBeep++;
  1735. #else
  1736. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1737. lcd_buzz(1000/6,100);
  1738. #else
  1739. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1740. #endif
  1741. #endif
  1742. }
  1743. }
  1744. WRITE(BEEPER,LOW);
  1745. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1747. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1749. lcd_change_fil_state = 0;
  1750. lcd_loading_filament();
  1751. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1752. lcd_change_fil_state = 0;
  1753. lcd_alright();
  1754. switch(lcd_change_fil_state){
  1755. case 2:
  1756. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1758. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1760. lcd_loading_filament();
  1761. break;
  1762. case 3:
  1763. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1765. lcd_loading_color();
  1766. break;
  1767. default:
  1768. lcd_change_success();
  1769. break;
  1770. }
  1771. }
  1772. target[E_AXIS]+= 5;
  1773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1774. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1775. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1776. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1777. //plan_set_e_position(current_position[E_AXIS]);
  1778. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1779. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1780. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1781. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1782. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1783. plan_set_e_position(lastpos[E_AXIS]);
  1784. feedmultiply=feedmultiplyBckp;
  1785. char cmd[9];
  1786. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1787. enquecommand(cmd);
  1788. }
  1789. #endif
  1790. get_coordinates(); // For X Y Z E F
  1791. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1792. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1793. }
  1794. #ifdef FWRETRACT
  1795. if(autoretract_enabled)
  1796. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1797. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1798. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1799. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1800. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1801. retract(!retracted);
  1802. return;
  1803. }
  1804. }
  1805. #endif //FWRETRACT
  1806. prepare_move();
  1807. //ClearToSend();
  1808. }
  1809. break;
  1810. case 2: // G2 - CW ARC
  1811. if(Stopped == false) {
  1812. get_arc_coordinates();
  1813. prepare_arc_move(true);
  1814. }
  1815. break;
  1816. case 3: // G3 - CCW ARC
  1817. if(Stopped == false) {
  1818. get_arc_coordinates();
  1819. prepare_arc_move(false);
  1820. }
  1821. break;
  1822. case 4: // G4 dwell
  1823. codenum = 0;
  1824. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1825. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1826. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1827. st_synchronize();
  1828. codenum += millis(); // keep track of when we started waiting
  1829. previous_millis_cmd = millis();
  1830. while(millis() < codenum) {
  1831. manage_heater();
  1832. manage_inactivity();
  1833. lcd_update();
  1834. }
  1835. break;
  1836. #ifdef FWRETRACT
  1837. case 10: // G10 retract
  1838. #if EXTRUDERS > 1
  1839. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1840. retract(true,retracted_swap[active_extruder]);
  1841. #else
  1842. retract(true);
  1843. #endif
  1844. break;
  1845. case 11: // G11 retract_recover
  1846. #if EXTRUDERS > 1
  1847. retract(false,retracted_swap[active_extruder]);
  1848. #else
  1849. retract(false);
  1850. #endif
  1851. break;
  1852. #endif //FWRETRACT
  1853. case 28: //G28 Home all Axis one at a time
  1854. {
  1855. st_synchronize();
  1856. #if 1
  1857. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1858. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1859. #endif
  1860. // Flag for the display update routine and to disable the print cancelation during homing.
  1861. homing_flag = true;
  1862. // Which axes should be homed?
  1863. bool home_x = code_seen(axis_codes[X_AXIS]);
  1864. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1865. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1866. // Either all X,Y,Z codes are present, or none of them.
  1867. bool home_all_axes = home_x == home_y && home_x == home_z;
  1868. if (home_all_axes)
  1869. // No X/Y/Z code provided means to home all axes.
  1870. home_x = home_y = home_z = true;
  1871. #ifdef ENABLE_AUTO_BED_LEVELING
  1872. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1873. #endif //ENABLE_AUTO_BED_LEVELING
  1874. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1875. // the planner will not perform any adjustments in the XY plane.
  1876. // Wait for the motors to stop and update the current position with the absolute values.
  1877. world2machine_revert_to_uncorrected();
  1878. // For mesh bed leveling deactivate the matrix temporarily.
  1879. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1880. // in a single axis only.
  1881. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1882. #ifdef MESH_BED_LEVELING
  1883. uint8_t mbl_was_active = mbl.active;
  1884. mbl.active = 0;
  1885. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1886. #endif
  1887. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1888. // consumed during the first movements following this statement.
  1889. if (home_z)
  1890. babystep_undo();
  1891. saved_feedrate = feedrate;
  1892. saved_feedmultiply = feedmultiply;
  1893. feedmultiply = 100;
  1894. previous_millis_cmd = millis();
  1895. enable_endstops(true);
  1896. memcpy(destination, current_position, sizeof(destination));
  1897. feedrate = 0.0;
  1898. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1899. if(home_z)
  1900. homeaxis(Z_AXIS);
  1901. #endif
  1902. #ifdef QUICK_HOME
  1903. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1904. if(home_x && home_y) //first diagonal move
  1905. {
  1906. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1907. int x_axis_home_dir = home_dir(X_AXIS);
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1910. feedrate = homing_feedrate[X_AXIS];
  1911. if(homing_feedrate[Y_AXIS]<feedrate)
  1912. feedrate = homing_feedrate[Y_AXIS];
  1913. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1914. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1915. } else {
  1916. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1917. }
  1918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1919. st_synchronize();
  1920. axis_is_at_home(X_AXIS);
  1921. axis_is_at_home(Y_AXIS);
  1922. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1923. destination[X_AXIS] = current_position[X_AXIS];
  1924. destination[Y_AXIS] = current_position[Y_AXIS];
  1925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1926. feedrate = 0.0;
  1927. st_synchronize();
  1928. endstops_hit_on_purpose();
  1929. current_position[X_AXIS] = destination[X_AXIS];
  1930. current_position[Y_AXIS] = destination[Y_AXIS];
  1931. current_position[Z_AXIS] = destination[Z_AXIS];
  1932. }
  1933. #endif /* QUICK_HOME */
  1934. if(home_x)
  1935. homeaxis(X_AXIS);
  1936. if(home_y)
  1937. homeaxis(Y_AXIS);
  1938. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1939. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1940. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1941. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1942. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1943. #ifndef Z_SAFE_HOMING
  1944. if(home_z) {
  1945. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1946. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1947. feedrate = max_feedrate[Z_AXIS];
  1948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1949. st_synchronize();
  1950. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1951. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1952. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1953. {
  1954. homeaxis(X_AXIS);
  1955. homeaxis(Y_AXIS);
  1956. }
  1957. // 1st mesh bed leveling measurement point, corrected.
  1958. world2machine_initialize();
  1959. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1960. world2machine_reset();
  1961. if (destination[Y_AXIS] < Y_MIN_POS)
  1962. destination[Y_AXIS] = Y_MIN_POS;
  1963. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1964. feedrate = homing_feedrate[Z_AXIS]/10;
  1965. current_position[Z_AXIS] = 0;
  1966. enable_endstops(false);
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1969. st_synchronize();
  1970. current_position[X_AXIS] = destination[X_AXIS];
  1971. current_position[Y_AXIS] = destination[Y_AXIS];
  1972. enable_endstops(true);
  1973. endstops_hit_on_purpose();
  1974. homeaxis(Z_AXIS);
  1975. #else // MESH_BED_LEVELING
  1976. homeaxis(Z_AXIS);
  1977. #endif // MESH_BED_LEVELING
  1978. }
  1979. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1980. if(home_all_axes) {
  1981. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1982. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1983. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1984. feedrate = XY_TRAVEL_SPEED/60;
  1985. current_position[Z_AXIS] = 0;
  1986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1987. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1988. st_synchronize();
  1989. current_position[X_AXIS] = destination[X_AXIS];
  1990. current_position[Y_AXIS] = destination[Y_AXIS];
  1991. homeaxis(Z_AXIS);
  1992. }
  1993. // Let's see if X and Y are homed and probe is inside bed area.
  1994. if(home_z) {
  1995. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1996. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1997. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1998. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1999. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2000. current_position[Z_AXIS] = 0;
  2001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2002. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2003. feedrate = max_feedrate[Z_AXIS];
  2004. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2005. st_synchronize();
  2006. homeaxis(Z_AXIS);
  2007. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2008. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2009. SERIAL_ECHO_START;
  2010. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2011. } else {
  2012. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2013. SERIAL_ECHO_START;
  2014. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2015. }
  2016. }
  2017. #endif // Z_SAFE_HOMING
  2018. #endif // Z_HOME_DIR < 0
  2019. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2020. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2021. #ifdef ENABLE_AUTO_BED_LEVELING
  2022. if(home_z)
  2023. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2024. #endif
  2025. // Set the planner and stepper routine positions.
  2026. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2027. // contains the machine coordinates.
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2030. enable_endstops(false);
  2031. #endif
  2032. feedrate = saved_feedrate;
  2033. feedmultiply = saved_feedmultiply;
  2034. previous_millis_cmd = millis();
  2035. endstops_hit_on_purpose();
  2036. #ifndef MESH_BED_LEVELING
  2037. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2038. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2039. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2040. lcd_adjust_z();
  2041. #endif
  2042. // Load the machine correction matrix
  2043. world2machine_initialize();
  2044. // and correct the current_position XY axes to match the transformed coordinate system.
  2045. world2machine_update_current();
  2046. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2047. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2048. {
  2049. if (! home_z && mbl_was_active) {
  2050. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2051. mbl.active = true;
  2052. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2053. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2054. }
  2055. }
  2056. else
  2057. {
  2058. st_synchronize();
  2059. homing_flag = false;
  2060. // Push the commands to the front of the message queue in the reverse order!
  2061. // There shall be always enough space reserved for these commands.
  2062. // enquecommand_front_P((PSTR("G80")));
  2063. goto case_G80;
  2064. }
  2065. #endif
  2066. if (farm_mode) { prusa_statistics(20); };
  2067. homing_flag = false;
  2068. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2069. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2070. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2071. break;
  2072. }
  2073. #ifdef ENABLE_AUTO_BED_LEVELING
  2074. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2075. {
  2076. #if Z_MIN_PIN == -1
  2077. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2078. #endif
  2079. // Prevent user from running a G29 without first homing in X and Y
  2080. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2081. {
  2082. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2083. SERIAL_ECHO_START;
  2084. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2085. break; // abort G29, since we don't know where we are
  2086. }
  2087. st_synchronize();
  2088. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2089. //vector_3 corrected_position = plan_get_position_mm();
  2090. //corrected_position.debug("position before G29");
  2091. plan_bed_level_matrix.set_to_identity();
  2092. vector_3 uncorrected_position = plan_get_position();
  2093. //uncorrected_position.debug("position durring G29");
  2094. current_position[X_AXIS] = uncorrected_position.x;
  2095. current_position[Y_AXIS] = uncorrected_position.y;
  2096. current_position[Z_AXIS] = uncorrected_position.z;
  2097. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2098. setup_for_endstop_move();
  2099. feedrate = homing_feedrate[Z_AXIS];
  2100. #ifdef AUTO_BED_LEVELING_GRID
  2101. // probe at the points of a lattice grid
  2102. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2103. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2104. // solve the plane equation ax + by + d = z
  2105. // A is the matrix with rows [x y 1] for all the probed points
  2106. // B is the vector of the Z positions
  2107. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2108. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2109. // "A" matrix of the linear system of equations
  2110. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2111. // "B" vector of Z points
  2112. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2113. int probePointCounter = 0;
  2114. bool zig = true;
  2115. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2116. {
  2117. int xProbe, xInc;
  2118. if (zig)
  2119. {
  2120. xProbe = LEFT_PROBE_BED_POSITION;
  2121. //xEnd = RIGHT_PROBE_BED_POSITION;
  2122. xInc = xGridSpacing;
  2123. zig = false;
  2124. } else // zag
  2125. {
  2126. xProbe = RIGHT_PROBE_BED_POSITION;
  2127. //xEnd = LEFT_PROBE_BED_POSITION;
  2128. xInc = -xGridSpacing;
  2129. zig = true;
  2130. }
  2131. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2132. {
  2133. float z_before;
  2134. if (probePointCounter == 0)
  2135. {
  2136. // raise before probing
  2137. z_before = Z_RAISE_BEFORE_PROBING;
  2138. } else
  2139. {
  2140. // raise extruder
  2141. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2142. }
  2143. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2144. eqnBVector[probePointCounter] = measured_z;
  2145. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2146. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2147. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2148. probePointCounter++;
  2149. xProbe += xInc;
  2150. }
  2151. }
  2152. clean_up_after_endstop_move();
  2153. // solve lsq problem
  2154. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2155. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2156. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2157. SERIAL_PROTOCOLPGM(" b: ");
  2158. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2159. SERIAL_PROTOCOLPGM(" d: ");
  2160. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2161. set_bed_level_equation_lsq(plane_equation_coefficients);
  2162. free(plane_equation_coefficients);
  2163. #else // AUTO_BED_LEVELING_GRID not defined
  2164. // Probe at 3 arbitrary points
  2165. // probe 1
  2166. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2167. // probe 2
  2168. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2169. // probe 3
  2170. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2171. clean_up_after_endstop_move();
  2172. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2173. #endif // AUTO_BED_LEVELING_GRID
  2174. st_synchronize();
  2175. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2176. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2177. // When the bed is uneven, this height must be corrected.
  2178. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2179. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2180. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2181. z_tmp = current_position[Z_AXIS];
  2182. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2183. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2184. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2185. }
  2186. break;
  2187. #ifndef Z_PROBE_SLED
  2188. case 30: // G30 Single Z Probe
  2189. {
  2190. st_synchronize();
  2191. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2192. setup_for_endstop_move();
  2193. feedrate = homing_feedrate[Z_AXIS];
  2194. run_z_probe();
  2195. SERIAL_PROTOCOLPGM(MSG_BED);
  2196. SERIAL_PROTOCOLPGM(" X: ");
  2197. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2198. SERIAL_PROTOCOLPGM(" Y: ");
  2199. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2200. SERIAL_PROTOCOLPGM(" Z: ");
  2201. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2202. SERIAL_PROTOCOLPGM("\n");
  2203. clean_up_after_endstop_move();
  2204. }
  2205. break;
  2206. #else
  2207. case 31: // dock the sled
  2208. dock_sled(true);
  2209. break;
  2210. case 32: // undock the sled
  2211. dock_sled(false);
  2212. break;
  2213. #endif // Z_PROBE_SLED
  2214. #endif // ENABLE_AUTO_BED_LEVELING
  2215. #ifdef MESH_BED_LEVELING
  2216. case 30: // G30 Single Z Probe
  2217. {
  2218. st_synchronize();
  2219. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2220. setup_for_endstop_move();
  2221. feedrate = homing_feedrate[Z_AXIS];
  2222. find_bed_induction_sensor_point_z(-10.f, 3);
  2223. SERIAL_PROTOCOLRPGM(MSG_BED);
  2224. SERIAL_PROTOCOLPGM(" X: ");
  2225. MYSERIAL.print(current_position[X_AXIS], 5);
  2226. SERIAL_PROTOCOLPGM(" Y: ");
  2227. MYSERIAL.print(current_position[Y_AXIS], 5);
  2228. SERIAL_PROTOCOLPGM(" Z: ");
  2229. MYSERIAL.print(current_position[Z_AXIS], 5);
  2230. SERIAL_PROTOCOLPGM("\n");
  2231. clean_up_after_endstop_move();
  2232. }
  2233. break;
  2234. case 75:
  2235. {
  2236. for (int i = 40; i <= 110; i++) {
  2237. MYSERIAL.print(i);
  2238. MYSERIAL.print(" ");
  2239. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2240. }
  2241. }
  2242. break;
  2243. case 76: //PINDA probe temperature calibration
  2244. {
  2245. #ifdef PINDA_THERMISTOR
  2246. if (true)
  2247. {
  2248. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2249. // We don't know where we are! HOME!
  2250. // Push the commands to the front of the message queue in the reverse order!
  2251. // There shall be always enough space reserved for these commands.
  2252. repeatcommand_front(); // repeat G76 with all its parameters
  2253. enquecommand_front_P((PSTR("G28 W0")));
  2254. break;
  2255. }
  2256. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2257. float zero_z;
  2258. int z_shift = 0; //unit: steps
  2259. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2260. if (start_temp < 35) start_temp = 35;
  2261. if (start_temp < current_temperature_pinda) start_temp += 5;
  2262. SERIAL_ECHOPGM("start temperature: ");
  2263. MYSERIAL.println(start_temp);
  2264. // setTargetHotend(200, 0);
  2265. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2266. custom_message = true;
  2267. custom_message_type = 4;
  2268. custom_message_state = 1;
  2269. custom_message = MSG_TEMP_CALIBRATION;
  2270. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2271. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2272. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2274. st_synchronize();
  2275. while (current_temperature_pinda < start_temp)
  2276. {
  2277. delay_keep_alive(1000);
  2278. serialecho_temperatures();
  2279. }
  2280. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2281. current_position[Z_AXIS] = 5;
  2282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2283. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2284. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2286. st_synchronize();
  2287. find_bed_induction_sensor_point_z(-1.f);
  2288. zero_z = current_position[Z_AXIS];
  2289. //current_position[Z_AXIS]
  2290. SERIAL_ECHOLNPGM("");
  2291. SERIAL_ECHOPGM("ZERO: ");
  2292. MYSERIAL.print(current_position[Z_AXIS]);
  2293. SERIAL_ECHOLNPGM("");
  2294. int i = -1; for (; i < 5; i++)
  2295. {
  2296. float temp = (40 + i * 5);
  2297. SERIAL_ECHOPGM("Step: ");
  2298. MYSERIAL.print(i + 2);
  2299. SERIAL_ECHOLNPGM("/6 (skipped)");
  2300. SERIAL_ECHOPGM("PINDA temperature: ");
  2301. MYSERIAL.print((40 + i*5));
  2302. SERIAL_ECHOPGM(" Z shift (mm):");
  2303. MYSERIAL.print(0);
  2304. SERIAL_ECHOLNPGM("");
  2305. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2306. if (start_temp <= temp) break;
  2307. }
  2308. for (i++; i < 5; i++)
  2309. {
  2310. float temp = (40 + i * 5);
  2311. SERIAL_ECHOPGM("Step: ");
  2312. MYSERIAL.print(i + 2);
  2313. SERIAL_ECHOLNPGM("/6");
  2314. custom_message_state = i + 2;
  2315. setTargetBed(50 + 10 * (temp - 30) / 5);
  2316. // setTargetHotend(255, 0);
  2317. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2318. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2319. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2321. st_synchronize();
  2322. while (current_temperature_pinda < temp)
  2323. {
  2324. delay_keep_alive(1000);
  2325. serialecho_temperatures();
  2326. }
  2327. current_position[Z_AXIS] = 5;
  2328. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2329. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2330. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2332. st_synchronize();
  2333. find_bed_induction_sensor_point_z(-1.f);
  2334. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2335. SERIAL_ECHOLNPGM("");
  2336. SERIAL_ECHOPGM("PINDA temperature: ");
  2337. MYSERIAL.print(current_temperature_pinda);
  2338. SERIAL_ECHOPGM(" Z shift (mm):");
  2339. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2340. SERIAL_ECHOLNPGM("");
  2341. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2342. }
  2343. custom_message_type = 0;
  2344. custom_message = false;
  2345. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2346. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2347. disable_x();
  2348. disable_y();
  2349. disable_z();
  2350. disable_e0();
  2351. disable_e1();
  2352. disable_e2();
  2353. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2354. lcd_update_enable(true);
  2355. lcd_update(2);
  2356. setTargetBed(0); //set bed target temperature back to 0
  2357. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2358. break;
  2359. }
  2360. #endif //PINDA_THERMISTOR
  2361. setTargetBed(PINDA_MIN_T);
  2362. float zero_z;
  2363. int z_shift = 0; //unit: steps
  2364. int t_c; // temperature
  2365. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2366. // We don't know where we are! HOME!
  2367. // Push the commands to the front of the message queue in the reverse order!
  2368. // There shall be always enough space reserved for these commands.
  2369. repeatcommand_front(); // repeat G76 with all its parameters
  2370. enquecommand_front_P((PSTR("G28 W0")));
  2371. break;
  2372. }
  2373. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2374. custom_message = true;
  2375. custom_message_type = 4;
  2376. custom_message_state = 1;
  2377. custom_message = MSG_TEMP_CALIBRATION;
  2378. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2379. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2380. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2382. st_synchronize();
  2383. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2384. delay_keep_alive(1000);
  2385. serialecho_temperatures();
  2386. }
  2387. //enquecommand_P(PSTR("M190 S50"));
  2388. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2389. delay_keep_alive(1000);
  2390. serialecho_temperatures();
  2391. }
  2392. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2393. current_position[Z_AXIS] = 5;
  2394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2395. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2396. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2398. st_synchronize();
  2399. find_bed_induction_sensor_point_z(-1.f);
  2400. zero_z = current_position[Z_AXIS];
  2401. //current_position[Z_AXIS]
  2402. SERIAL_ECHOLNPGM("");
  2403. SERIAL_ECHOPGM("ZERO: ");
  2404. MYSERIAL.print(current_position[Z_AXIS]);
  2405. SERIAL_ECHOLNPGM("");
  2406. for (int i = 0; i<5; i++) {
  2407. SERIAL_ECHOPGM("Step: ");
  2408. MYSERIAL.print(i+2);
  2409. SERIAL_ECHOLNPGM("/6");
  2410. custom_message_state = i + 2;
  2411. t_c = 60 + i * 10;
  2412. setTargetBed(t_c);
  2413. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2414. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2415. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2417. st_synchronize();
  2418. while (degBed() < t_c) {
  2419. delay_keep_alive(1000);
  2420. serialecho_temperatures();
  2421. }
  2422. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2423. delay_keep_alive(1000);
  2424. serialecho_temperatures();
  2425. }
  2426. current_position[Z_AXIS] = 5;
  2427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2428. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2429. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2431. st_synchronize();
  2432. find_bed_induction_sensor_point_z(-1.f);
  2433. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2434. SERIAL_ECHOLNPGM("");
  2435. SERIAL_ECHOPGM("Temperature: ");
  2436. MYSERIAL.print(t_c);
  2437. SERIAL_ECHOPGM(" Z shift (mm):");
  2438. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2439. SERIAL_ECHOLNPGM("");
  2440. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2441. }
  2442. custom_message_type = 0;
  2443. custom_message = false;
  2444. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2445. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2446. disable_x();
  2447. disable_y();
  2448. disable_z();
  2449. disable_e0();
  2450. disable_e1();
  2451. disable_e2();
  2452. setTargetBed(0); //set bed target temperature back to 0
  2453. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2454. lcd_update_enable(true);
  2455. lcd_update(2);
  2456. }
  2457. break;
  2458. #ifdef DIS
  2459. case 77:
  2460. {
  2461. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2462. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2463. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2464. float dimension_x = 40;
  2465. float dimension_y = 40;
  2466. int points_x = 40;
  2467. int points_y = 40;
  2468. float offset_x = 74;
  2469. float offset_y = 33;
  2470. if (code_seen('X')) dimension_x = code_value();
  2471. if (code_seen('Y')) dimension_y = code_value();
  2472. if (code_seen('XP')) points_x = code_value();
  2473. if (code_seen('YP')) points_y = code_value();
  2474. if (code_seen('XO')) offset_x = code_value();
  2475. if (code_seen('YO')) offset_y = code_value();
  2476. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2477. } break;
  2478. #endif
  2479. case 79: {
  2480. for (int i = 255; i > 0; i = i - 5) {
  2481. fanSpeed = i;
  2482. //delay_keep_alive(2000);
  2483. for (int j = 0; j < 100; j++) {
  2484. delay_keep_alive(100);
  2485. }
  2486. fan_speed[1];
  2487. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2488. }
  2489. }break;
  2490. /**
  2491. * G80: Mesh-based Z probe, probes a grid and produces a
  2492. * mesh to compensate for variable bed height
  2493. *
  2494. * The S0 report the points as below
  2495. *
  2496. * +----> X-axis
  2497. * |
  2498. * |
  2499. * v Y-axis
  2500. *
  2501. */
  2502. case 80:
  2503. #ifdef MK1BP
  2504. break;
  2505. #endif //MK1BP
  2506. case_G80:
  2507. {
  2508. mesh_bed_leveling_flag = true;
  2509. int8_t verbosity_level = 0;
  2510. static bool run = false;
  2511. if (code_seen('V')) {
  2512. // Just 'V' without a number counts as V1.
  2513. char c = strchr_pointer[1];
  2514. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2515. }
  2516. // Firstly check if we know where we are
  2517. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2518. // We don't know where we are! HOME!
  2519. // Push the commands to the front of the message queue in the reverse order!
  2520. // There shall be always enough space reserved for these commands.
  2521. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2522. repeatcommand_front(); // repeat G80 with all its parameters
  2523. enquecommand_front_P((PSTR("G28 W0")));
  2524. }
  2525. else {
  2526. mesh_bed_leveling_flag = false;
  2527. }
  2528. break;
  2529. }
  2530. bool temp_comp_start = true;
  2531. #ifdef PINDA_THERMISTOR
  2532. temp_comp_start = false;
  2533. #endif //PINDA_THERMISTOR
  2534. if (temp_comp_start)
  2535. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2536. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2537. temp_compensation_start();
  2538. run = true;
  2539. repeatcommand_front(); // repeat G80 with all its parameters
  2540. enquecommand_front_P((PSTR("G28 W0")));
  2541. }
  2542. else {
  2543. mesh_bed_leveling_flag = false;
  2544. }
  2545. break;
  2546. }
  2547. run = false;
  2548. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2549. mesh_bed_leveling_flag = false;
  2550. break;
  2551. }
  2552. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2553. bool custom_message_old = custom_message;
  2554. unsigned int custom_message_type_old = custom_message_type;
  2555. unsigned int custom_message_state_old = custom_message_state;
  2556. custom_message = true;
  2557. custom_message_type = 1;
  2558. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2559. lcd_update(1);
  2560. mbl.reset(); //reset mesh bed leveling
  2561. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2562. // consumed during the first movements following this statement.
  2563. babystep_undo();
  2564. // Cycle through all points and probe them
  2565. // First move up. During this first movement, the babystepping will be reverted.
  2566. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2568. // The move to the first calibration point.
  2569. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2570. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2571. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2572. if (verbosity_level >= 1) {
  2573. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2574. }
  2575. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2577. // Wait until the move is finished.
  2578. st_synchronize();
  2579. int mesh_point = 0; //index number of calibration point
  2580. int ix = 0;
  2581. int iy = 0;
  2582. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2583. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2584. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2585. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2586. if (verbosity_level >= 1) {
  2587. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2588. }
  2589. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2590. const char *kill_message = NULL;
  2591. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2592. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2593. // Get coords of a measuring point.
  2594. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2595. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2596. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2597. float z0 = 0.f;
  2598. if (has_z && mesh_point > 0) {
  2599. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2600. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2601. //#if 0
  2602. if (verbosity_level >= 1) {
  2603. SERIAL_ECHOPGM("Bed leveling, point: ");
  2604. MYSERIAL.print(mesh_point);
  2605. SERIAL_ECHOPGM(", calibration z: ");
  2606. MYSERIAL.print(z0, 5);
  2607. SERIAL_ECHOLNPGM("");
  2608. }
  2609. //#endif
  2610. }
  2611. // Move Z up to MESH_HOME_Z_SEARCH.
  2612. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2614. st_synchronize();
  2615. // Move to XY position of the sensor point.
  2616. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2617. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2618. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2619. if (verbosity_level >= 1) {
  2620. SERIAL_PROTOCOL(mesh_point);
  2621. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2622. }
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2624. st_synchronize();
  2625. // Go down until endstop is hit
  2626. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2627. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2628. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2629. break;
  2630. }
  2631. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2632. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2633. break;
  2634. }
  2635. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2636. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2637. break;
  2638. }
  2639. if (verbosity_level >= 10) {
  2640. SERIAL_ECHOPGM("X: ");
  2641. MYSERIAL.print(current_position[X_AXIS], 5);
  2642. SERIAL_ECHOLNPGM("");
  2643. SERIAL_ECHOPGM("Y: ");
  2644. MYSERIAL.print(current_position[Y_AXIS], 5);
  2645. SERIAL_PROTOCOLPGM("\n");
  2646. }
  2647. float offset_z = 0;
  2648. #ifdef PINDA_THERMISTOR
  2649. offset_z = temp_compensation_pinda_thermistor_offset();
  2650. #endif //PINDA_THERMISTOR
  2651. if (verbosity_level >= 1) {
  2652. SERIAL_ECHOPGM("mesh bed leveling: ");
  2653. MYSERIAL.print(current_position[Z_AXIS], 5);
  2654. SERIAL_ECHOPGM(" offset: ");
  2655. MYSERIAL.print(offset_z, 5);
  2656. SERIAL_ECHOLNPGM("");
  2657. }
  2658. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2659. custom_message_state--;
  2660. mesh_point++;
  2661. lcd_update(1);
  2662. }
  2663. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2664. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2665. if (verbosity_level >= 20) {
  2666. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2667. MYSERIAL.print(current_position[Z_AXIS], 5);
  2668. }
  2669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2670. st_synchronize();
  2671. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2672. kill(kill_message);
  2673. SERIAL_ECHOLNPGM("killed");
  2674. }
  2675. clean_up_after_endstop_move();
  2676. SERIAL_ECHOLNPGM("clean up finished ");
  2677. bool apply_temp_comp = true;
  2678. #ifdef PINDA_THERMISTOR
  2679. apply_temp_comp = false;
  2680. #endif
  2681. if (apply_temp_comp)
  2682. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2683. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2684. SERIAL_ECHOLNPGM("babystep applied");
  2685. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2686. if (verbosity_level >= 1) {
  2687. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2688. }
  2689. for (uint8_t i = 0; i < 4; ++i) {
  2690. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2691. long correction = 0;
  2692. if (code_seen(codes[i]))
  2693. correction = code_value_long();
  2694. else if (eeprom_bed_correction_valid) {
  2695. unsigned char *addr = (i < 2) ?
  2696. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2697. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2698. correction = eeprom_read_int8(addr);
  2699. }
  2700. if (correction == 0)
  2701. continue;
  2702. float offset = float(correction) * 0.001f;
  2703. if (fabs(offset) > 0.101f) {
  2704. SERIAL_ERROR_START;
  2705. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2706. SERIAL_ECHO(offset);
  2707. SERIAL_ECHOLNPGM(" microns");
  2708. }
  2709. else {
  2710. switch (i) {
  2711. case 0:
  2712. for (uint8_t row = 0; row < 3; ++row) {
  2713. mbl.z_values[row][1] += 0.5f * offset;
  2714. mbl.z_values[row][0] += offset;
  2715. }
  2716. break;
  2717. case 1:
  2718. for (uint8_t row = 0; row < 3; ++row) {
  2719. mbl.z_values[row][1] += 0.5f * offset;
  2720. mbl.z_values[row][2] += offset;
  2721. }
  2722. break;
  2723. case 2:
  2724. for (uint8_t col = 0; col < 3; ++col) {
  2725. mbl.z_values[1][col] += 0.5f * offset;
  2726. mbl.z_values[0][col] += offset;
  2727. }
  2728. break;
  2729. case 3:
  2730. for (uint8_t col = 0; col < 3; ++col) {
  2731. mbl.z_values[1][col] += 0.5f * offset;
  2732. mbl.z_values[2][col] += offset;
  2733. }
  2734. break;
  2735. }
  2736. }
  2737. }
  2738. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2739. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2740. SERIAL_ECHOLNPGM("Upsample finished");
  2741. mbl.active = 1; //activate mesh bed leveling
  2742. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2743. go_home_with_z_lift();
  2744. SERIAL_ECHOLNPGM("Go home finished");
  2745. //unretract (after PINDA preheat retraction)
  2746. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2747. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2749. }
  2750. // Restore custom message state
  2751. custom_message = custom_message_old;
  2752. custom_message_type = custom_message_type_old;
  2753. custom_message_state = custom_message_state_old;
  2754. mesh_bed_leveling_flag = false;
  2755. mesh_bed_run_from_menu = false;
  2756. lcd_update(2);
  2757. }
  2758. break;
  2759. /**
  2760. * G81: Print mesh bed leveling status and bed profile if activated
  2761. */
  2762. case 81:
  2763. if (mbl.active) {
  2764. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2765. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2766. SERIAL_PROTOCOLPGM(",");
  2767. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2768. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2769. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2770. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2771. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2772. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2773. SERIAL_PROTOCOLPGM(" ");
  2774. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2775. }
  2776. SERIAL_PROTOCOLPGM("\n");
  2777. }
  2778. }
  2779. else
  2780. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2781. break;
  2782. #if 0
  2783. /**
  2784. * G82: Single Z probe at current location
  2785. *
  2786. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2787. *
  2788. */
  2789. case 82:
  2790. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2791. setup_for_endstop_move();
  2792. find_bed_induction_sensor_point_z();
  2793. clean_up_after_endstop_move();
  2794. SERIAL_PROTOCOLPGM("Bed found at: ");
  2795. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2796. SERIAL_PROTOCOLPGM("\n");
  2797. break;
  2798. /**
  2799. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2800. */
  2801. case 83:
  2802. {
  2803. int babystepz = code_seen('S') ? code_value() : 0;
  2804. int BabyPosition = code_seen('P') ? code_value() : 0;
  2805. if (babystepz != 0) {
  2806. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2807. // Is the axis indexed starting with zero or one?
  2808. if (BabyPosition > 4) {
  2809. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2810. }else{
  2811. // Save it to the eeprom
  2812. babystepLoadZ = babystepz;
  2813. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2814. // adjust the Z
  2815. babystepsTodoZadd(babystepLoadZ);
  2816. }
  2817. }
  2818. }
  2819. break;
  2820. /**
  2821. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2822. */
  2823. case 84:
  2824. babystepsTodoZsubtract(babystepLoadZ);
  2825. // babystepLoadZ = 0;
  2826. break;
  2827. /**
  2828. * G85: Prusa3D specific: Pick best babystep
  2829. */
  2830. case 85:
  2831. lcd_pick_babystep();
  2832. break;
  2833. #endif
  2834. /**
  2835. * G86: Prusa3D specific: Disable babystep correction after home.
  2836. * This G-code will be performed at the start of a calibration script.
  2837. */
  2838. case 86:
  2839. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2840. break;
  2841. /**
  2842. * G87: Prusa3D specific: Enable babystep correction after home
  2843. * This G-code will be performed at the end of a calibration script.
  2844. */
  2845. case 87:
  2846. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2847. break;
  2848. /**
  2849. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2850. */
  2851. case 88:
  2852. break;
  2853. #endif // ENABLE_MESH_BED_LEVELING
  2854. case 90: // G90
  2855. relative_mode = false;
  2856. break;
  2857. case 91: // G91
  2858. relative_mode = true;
  2859. break;
  2860. case 92: // G92
  2861. if(!code_seen(axis_codes[E_AXIS]))
  2862. st_synchronize();
  2863. for(int8_t i=0; i < NUM_AXIS; i++) {
  2864. if(code_seen(axis_codes[i])) {
  2865. if(i == E_AXIS) {
  2866. current_position[i] = code_value();
  2867. plan_set_e_position(current_position[E_AXIS]);
  2868. }
  2869. else {
  2870. current_position[i] = code_value()+add_homing[i];
  2871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2872. }
  2873. }
  2874. }
  2875. break;
  2876. case 98: //activate farm mode
  2877. farm_mode = 1;
  2878. PingTime = millis();
  2879. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2880. break;
  2881. case 99: //deactivate farm mode
  2882. farm_mode = 0;
  2883. lcd_printer_connected();
  2884. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2885. lcd_update(2);
  2886. break;
  2887. }
  2888. } // end if(code_seen('G'))
  2889. else if(code_seen('M'))
  2890. {
  2891. int index;
  2892. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2893. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2894. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2895. SERIAL_ECHOLNPGM("Invalid M code");
  2896. } else
  2897. switch((int)code_value())
  2898. {
  2899. #ifdef ULTIPANEL
  2900. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2901. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2902. {
  2903. char *src = strchr_pointer + 2;
  2904. codenum = 0;
  2905. bool hasP = false, hasS = false;
  2906. if (code_seen('P')) {
  2907. codenum = code_value(); // milliseconds to wait
  2908. hasP = codenum > 0;
  2909. }
  2910. if (code_seen('S')) {
  2911. codenum = code_value() * 1000; // seconds to wait
  2912. hasS = codenum > 0;
  2913. }
  2914. starpos = strchr(src, '*');
  2915. if (starpos != NULL) *(starpos) = '\0';
  2916. while (*src == ' ') ++src;
  2917. if (!hasP && !hasS && *src != '\0') {
  2918. lcd_setstatus(src);
  2919. } else {
  2920. LCD_MESSAGERPGM(MSG_USERWAIT);
  2921. }
  2922. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2923. st_synchronize();
  2924. previous_millis_cmd = millis();
  2925. if (codenum > 0){
  2926. codenum += millis(); // keep track of when we started waiting
  2927. while(millis() < codenum && !lcd_clicked()){
  2928. manage_heater();
  2929. manage_inactivity(true);
  2930. lcd_update();
  2931. }
  2932. lcd_ignore_click(false);
  2933. }else{
  2934. if (!lcd_detected())
  2935. break;
  2936. while(!lcd_clicked()){
  2937. manage_heater();
  2938. manage_inactivity(true);
  2939. lcd_update();
  2940. }
  2941. }
  2942. if (IS_SD_PRINTING)
  2943. LCD_MESSAGERPGM(MSG_RESUMING);
  2944. else
  2945. LCD_MESSAGERPGM(WELCOME_MSG);
  2946. }
  2947. break;
  2948. #endif
  2949. case 17:
  2950. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2951. enable_x();
  2952. enable_y();
  2953. enable_z();
  2954. enable_e0();
  2955. enable_e1();
  2956. enable_e2();
  2957. break;
  2958. #ifdef SDSUPPORT
  2959. case 20: // M20 - list SD card
  2960. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2961. card.ls();
  2962. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2963. break;
  2964. case 21: // M21 - init SD card
  2965. card.initsd();
  2966. break;
  2967. case 22: //M22 - release SD card
  2968. card.release();
  2969. break;
  2970. case 23: //M23 - Select file
  2971. starpos = (strchr(strchr_pointer + 4,'*'));
  2972. if(starpos!=NULL)
  2973. *(starpos)='\0';
  2974. card.openFile(strchr_pointer + 4,true);
  2975. break;
  2976. case 24: //M24 - Start SD print
  2977. card.startFileprint();
  2978. starttime=millis();
  2979. break;
  2980. case 25: //M25 - Pause SD print
  2981. card.pauseSDPrint();
  2982. break;
  2983. case 26: //M26 - Set SD index
  2984. if(card.cardOK && code_seen('S')) {
  2985. card.setIndex(code_value_long());
  2986. }
  2987. break;
  2988. case 27: //M27 - Get SD status
  2989. card.getStatus();
  2990. break;
  2991. case 28: //M28 - Start SD write
  2992. starpos = (strchr(strchr_pointer + 4,'*'));
  2993. if(starpos != NULL){
  2994. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2995. strchr_pointer = strchr(npos,' ') + 1;
  2996. *(starpos) = '\0';
  2997. }
  2998. card.openFile(strchr_pointer+4,false);
  2999. break;
  3000. case 29: //M29 - Stop SD write
  3001. //processed in write to file routine above
  3002. //card,saving = false;
  3003. break;
  3004. case 30: //M30 <filename> Delete File
  3005. if (card.cardOK){
  3006. card.closefile();
  3007. starpos = (strchr(strchr_pointer + 4,'*'));
  3008. if(starpos != NULL){
  3009. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3010. strchr_pointer = strchr(npos,' ') + 1;
  3011. *(starpos) = '\0';
  3012. }
  3013. card.removeFile(strchr_pointer + 4);
  3014. }
  3015. break;
  3016. case 32: //M32 - Select file and start SD print
  3017. {
  3018. if(card.sdprinting) {
  3019. st_synchronize();
  3020. }
  3021. starpos = (strchr(strchr_pointer + 4,'*'));
  3022. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3023. if(namestartpos==NULL)
  3024. {
  3025. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3026. }
  3027. else
  3028. namestartpos++; //to skip the '!'
  3029. if(starpos!=NULL)
  3030. *(starpos)='\0';
  3031. bool call_procedure=(code_seen('P'));
  3032. if(strchr_pointer>namestartpos)
  3033. call_procedure=false; //false alert, 'P' found within filename
  3034. if( card.cardOK )
  3035. {
  3036. card.openFile(namestartpos,true,!call_procedure);
  3037. if(code_seen('S'))
  3038. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3039. card.setIndex(code_value_long());
  3040. card.startFileprint();
  3041. if(!call_procedure)
  3042. starttime=millis(); //procedure calls count as normal print time.
  3043. }
  3044. } break;
  3045. case 928: //M928 - Start SD write
  3046. starpos = (strchr(strchr_pointer + 5,'*'));
  3047. if(starpos != NULL){
  3048. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3049. strchr_pointer = strchr(npos,' ') + 1;
  3050. *(starpos) = '\0';
  3051. }
  3052. card.openLogFile(strchr_pointer+5);
  3053. break;
  3054. #endif //SDSUPPORT
  3055. case 31: //M31 take time since the start of the SD print or an M109 command
  3056. {
  3057. stoptime=millis();
  3058. char time[30];
  3059. unsigned long t=(stoptime-starttime)/1000;
  3060. int sec,min;
  3061. min=t/60;
  3062. sec=t%60;
  3063. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3064. SERIAL_ECHO_START;
  3065. SERIAL_ECHOLN(time);
  3066. lcd_setstatus(time);
  3067. autotempShutdown();
  3068. }
  3069. break;
  3070. case 42: //M42 -Change pin status via gcode
  3071. if (code_seen('S'))
  3072. {
  3073. int pin_status = code_value();
  3074. int pin_number = LED_PIN;
  3075. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3076. pin_number = code_value();
  3077. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3078. {
  3079. if (sensitive_pins[i] == pin_number)
  3080. {
  3081. pin_number = -1;
  3082. break;
  3083. }
  3084. }
  3085. #if defined(FAN_PIN) && FAN_PIN > -1
  3086. if (pin_number == FAN_PIN)
  3087. fanSpeed = pin_status;
  3088. #endif
  3089. if (pin_number > -1)
  3090. {
  3091. pinMode(pin_number, OUTPUT);
  3092. digitalWrite(pin_number, pin_status);
  3093. analogWrite(pin_number, pin_status);
  3094. }
  3095. }
  3096. break;
  3097. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3098. // Reset the baby step value and the baby step applied flag.
  3099. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3100. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3101. // Reset the skew and offset in both RAM and EEPROM.
  3102. reset_bed_offset_and_skew();
  3103. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3104. // the planner will not perform any adjustments in the XY plane.
  3105. // Wait for the motors to stop and update the current position with the absolute values.
  3106. world2machine_revert_to_uncorrected();
  3107. break;
  3108. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3109. {
  3110. // Only Z calibration?
  3111. bool onlyZ = code_seen('Z');
  3112. if (!onlyZ) {
  3113. setTargetBed(0);
  3114. setTargetHotend(0, 0);
  3115. setTargetHotend(0, 1);
  3116. setTargetHotend(0, 2);
  3117. adjust_bed_reset(); //reset bed level correction
  3118. }
  3119. // Disable the default update procedure of the display. We will do a modal dialog.
  3120. lcd_update_enable(false);
  3121. // Let the planner use the uncorrected coordinates.
  3122. mbl.reset();
  3123. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3124. // the planner will not perform any adjustments in the XY plane.
  3125. // Wait for the motors to stop and update the current position with the absolute values.
  3126. world2machine_revert_to_uncorrected();
  3127. // Reset the baby step value applied without moving the axes.
  3128. babystep_reset();
  3129. // Mark all axes as in a need for homing.
  3130. memset(axis_known_position, 0, sizeof(axis_known_position));
  3131. // Home in the XY plane.
  3132. //set_destination_to_current();
  3133. setup_for_endstop_move();
  3134. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3135. home_xy();
  3136. // Let the user move the Z axes up to the end stoppers.
  3137. #ifdef TMC2130
  3138. if (calibrate_z_auto()) {
  3139. #else //TMC2130
  3140. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3141. #endif //TMC2130
  3142. refresh_cmd_timeout();
  3143. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3144. lcd_wait_for_cool_down();
  3145. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3146. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3147. lcd_implementation_print_at(0, 2, 1);
  3148. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3149. }
  3150. // Move the print head close to the bed.
  3151. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3153. st_synchronize();
  3154. //#ifdef TMC2130
  3155. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3156. //#endif
  3157. int8_t verbosity_level = 0;
  3158. if (code_seen('V')) {
  3159. // Just 'V' without a number counts as V1.
  3160. char c = strchr_pointer[1];
  3161. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3162. }
  3163. if (onlyZ) {
  3164. clean_up_after_endstop_move();
  3165. // Z only calibration.
  3166. // Load the machine correction matrix
  3167. world2machine_initialize();
  3168. // and correct the current_position to match the transformed coordinate system.
  3169. world2machine_update_current();
  3170. //FIXME
  3171. bool result = sample_mesh_and_store_reference();
  3172. if (result) {
  3173. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3174. // Shipped, the nozzle height has been set already. The user can start printing now.
  3175. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3176. // babystep_apply();
  3177. }
  3178. } else {
  3179. // Reset the baby step value and the baby step applied flag.
  3180. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3181. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3182. // Complete XYZ calibration.
  3183. uint8_t point_too_far_mask = 0;
  3184. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3185. clean_up_after_endstop_move();
  3186. // Print head up.
  3187. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3189. st_synchronize();
  3190. if (result >= 0) {
  3191. point_too_far_mask = 0;
  3192. // Second half: The fine adjustment.
  3193. // Let the planner use the uncorrected coordinates.
  3194. mbl.reset();
  3195. world2machine_reset();
  3196. // Home in the XY plane.
  3197. setup_for_endstop_move();
  3198. home_xy();
  3199. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3200. clean_up_after_endstop_move();
  3201. // Print head up.
  3202. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3204. st_synchronize();
  3205. // if (result >= 0) babystep_apply();
  3206. }
  3207. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3208. if (result >= 0) {
  3209. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3210. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3211. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3212. }
  3213. }
  3214. #ifdef TMC2130
  3215. tmc2130_home_exit();
  3216. #endif
  3217. } else {
  3218. // Timeouted.
  3219. }
  3220. lcd_update_enable(true);
  3221. break;
  3222. }
  3223. /*
  3224. case 46:
  3225. {
  3226. // M46: Prusa3D: Show the assigned IP address.
  3227. uint8_t ip[4];
  3228. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3229. if (hasIP) {
  3230. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3231. SERIAL_ECHO(int(ip[0]));
  3232. SERIAL_ECHOPGM(".");
  3233. SERIAL_ECHO(int(ip[1]));
  3234. SERIAL_ECHOPGM(".");
  3235. SERIAL_ECHO(int(ip[2]));
  3236. SERIAL_ECHOPGM(".");
  3237. SERIAL_ECHO(int(ip[3]));
  3238. SERIAL_ECHOLNPGM("");
  3239. } else {
  3240. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3241. }
  3242. break;
  3243. }
  3244. */
  3245. case 47:
  3246. // M47: Prusa3D: Show end stops dialog on the display.
  3247. lcd_diag_show_end_stops();
  3248. break;
  3249. #if 0
  3250. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3251. {
  3252. // Disable the default update procedure of the display. We will do a modal dialog.
  3253. lcd_update_enable(false);
  3254. // Let the planner use the uncorrected coordinates.
  3255. mbl.reset();
  3256. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3257. // the planner will not perform any adjustments in the XY plane.
  3258. // Wait for the motors to stop and update the current position with the absolute values.
  3259. world2machine_revert_to_uncorrected();
  3260. // Move the print head close to the bed.
  3261. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3263. st_synchronize();
  3264. // Home in the XY plane.
  3265. set_destination_to_current();
  3266. setup_for_endstop_move();
  3267. home_xy();
  3268. int8_t verbosity_level = 0;
  3269. if (code_seen('V')) {
  3270. // Just 'V' without a number counts as V1.
  3271. char c = strchr_pointer[1];
  3272. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3273. }
  3274. bool success = scan_bed_induction_points(verbosity_level);
  3275. clean_up_after_endstop_move();
  3276. // Print head up.
  3277. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3278. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3279. st_synchronize();
  3280. lcd_update_enable(true);
  3281. break;
  3282. }
  3283. #endif
  3284. // M48 Z-Probe repeatability measurement function.
  3285. //
  3286. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3287. //
  3288. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3289. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3290. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3291. // regenerated.
  3292. //
  3293. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3294. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3295. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3296. //
  3297. #ifdef ENABLE_AUTO_BED_LEVELING
  3298. #ifdef Z_PROBE_REPEATABILITY_TEST
  3299. case 48: // M48 Z-Probe repeatability
  3300. {
  3301. #if Z_MIN_PIN == -1
  3302. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3303. #endif
  3304. double sum=0.0;
  3305. double mean=0.0;
  3306. double sigma=0.0;
  3307. double sample_set[50];
  3308. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3309. double X_current, Y_current, Z_current;
  3310. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3311. if (code_seen('V') || code_seen('v')) {
  3312. verbose_level = code_value();
  3313. if (verbose_level<0 || verbose_level>4 ) {
  3314. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3315. goto Sigma_Exit;
  3316. }
  3317. }
  3318. if (verbose_level > 0) {
  3319. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3320. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3321. }
  3322. if (code_seen('n')) {
  3323. n_samples = code_value();
  3324. if (n_samples<4 || n_samples>50 ) {
  3325. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3326. goto Sigma_Exit;
  3327. }
  3328. }
  3329. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3330. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3331. Z_current = st_get_position_mm(Z_AXIS);
  3332. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3333. ext_position = st_get_position_mm(E_AXIS);
  3334. if (code_seen('X') || code_seen('x') ) {
  3335. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3336. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3337. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3338. goto Sigma_Exit;
  3339. }
  3340. }
  3341. if (code_seen('Y') || code_seen('y') ) {
  3342. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3343. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3344. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3345. goto Sigma_Exit;
  3346. }
  3347. }
  3348. if (code_seen('L') || code_seen('l') ) {
  3349. n_legs = code_value();
  3350. if ( n_legs==1 )
  3351. n_legs = 2;
  3352. if ( n_legs<0 || n_legs>15 ) {
  3353. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3354. goto Sigma_Exit;
  3355. }
  3356. }
  3357. //
  3358. // Do all the preliminary setup work. First raise the probe.
  3359. //
  3360. st_synchronize();
  3361. plan_bed_level_matrix.set_to_identity();
  3362. plan_buffer_line( X_current, Y_current, Z_start_location,
  3363. ext_position,
  3364. homing_feedrate[Z_AXIS]/60,
  3365. active_extruder);
  3366. st_synchronize();
  3367. //
  3368. // Now get everything to the specified probe point So we can safely do a probe to
  3369. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3370. // use that as a starting point for each probe.
  3371. //
  3372. if (verbose_level > 2)
  3373. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3374. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3375. ext_position,
  3376. homing_feedrate[X_AXIS]/60,
  3377. active_extruder);
  3378. st_synchronize();
  3379. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3380. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3381. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3382. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3383. //
  3384. // OK, do the inital probe to get us close to the bed.
  3385. // Then retrace the right amount and use that in subsequent probes
  3386. //
  3387. setup_for_endstop_move();
  3388. run_z_probe();
  3389. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3390. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3391. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3392. ext_position,
  3393. homing_feedrate[X_AXIS]/60,
  3394. active_extruder);
  3395. st_synchronize();
  3396. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3397. for( n=0; n<n_samples; n++) {
  3398. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3399. if ( n_legs) {
  3400. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3401. int rotational_direction, l;
  3402. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3403. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3404. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3405. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3406. //SERIAL_ECHOPAIR(" theta: ",theta);
  3407. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3408. //SERIAL_PROTOCOLLNPGM("");
  3409. for( l=0; l<n_legs-1; l++) {
  3410. if (rotational_direction==1)
  3411. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3412. else
  3413. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3414. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3415. if ( radius<0.0 )
  3416. radius = -radius;
  3417. X_current = X_probe_location + cos(theta) * radius;
  3418. Y_current = Y_probe_location + sin(theta) * radius;
  3419. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3420. X_current = X_MIN_POS;
  3421. if ( X_current>X_MAX_POS)
  3422. X_current = X_MAX_POS;
  3423. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3424. Y_current = Y_MIN_POS;
  3425. if ( Y_current>Y_MAX_POS)
  3426. Y_current = Y_MAX_POS;
  3427. if (verbose_level>3 ) {
  3428. SERIAL_ECHOPAIR("x: ", X_current);
  3429. SERIAL_ECHOPAIR("y: ", Y_current);
  3430. SERIAL_PROTOCOLLNPGM("");
  3431. }
  3432. do_blocking_move_to( X_current, Y_current, Z_current );
  3433. }
  3434. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3435. }
  3436. setup_for_endstop_move();
  3437. run_z_probe();
  3438. sample_set[n] = current_position[Z_AXIS];
  3439. //
  3440. // Get the current mean for the data points we have so far
  3441. //
  3442. sum=0.0;
  3443. for( j=0; j<=n; j++) {
  3444. sum = sum + sample_set[j];
  3445. }
  3446. mean = sum / (double (n+1));
  3447. //
  3448. // Now, use that mean to calculate the standard deviation for the
  3449. // data points we have so far
  3450. //
  3451. sum=0.0;
  3452. for( j=0; j<=n; j++) {
  3453. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3454. }
  3455. sigma = sqrt( sum / (double (n+1)) );
  3456. if (verbose_level > 1) {
  3457. SERIAL_PROTOCOL(n+1);
  3458. SERIAL_PROTOCOL(" of ");
  3459. SERIAL_PROTOCOL(n_samples);
  3460. SERIAL_PROTOCOLPGM(" z: ");
  3461. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3462. }
  3463. if (verbose_level > 2) {
  3464. SERIAL_PROTOCOL(" mean: ");
  3465. SERIAL_PROTOCOL_F(mean,6);
  3466. SERIAL_PROTOCOL(" sigma: ");
  3467. SERIAL_PROTOCOL_F(sigma,6);
  3468. }
  3469. if (verbose_level > 0)
  3470. SERIAL_PROTOCOLPGM("\n");
  3471. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3472. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3473. st_synchronize();
  3474. }
  3475. delay(1000);
  3476. clean_up_after_endstop_move();
  3477. // enable_endstops(true);
  3478. if (verbose_level > 0) {
  3479. SERIAL_PROTOCOLPGM("Mean: ");
  3480. SERIAL_PROTOCOL_F(mean, 6);
  3481. SERIAL_PROTOCOLPGM("\n");
  3482. }
  3483. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3484. SERIAL_PROTOCOL_F(sigma, 6);
  3485. SERIAL_PROTOCOLPGM("\n\n");
  3486. Sigma_Exit:
  3487. break;
  3488. }
  3489. #endif // Z_PROBE_REPEATABILITY_TEST
  3490. #endif // ENABLE_AUTO_BED_LEVELING
  3491. case 104: // M104
  3492. if(setTargetedHotend(104)){
  3493. break;
  3494. }
  3495. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3496. setWatch();
  3497. break;
  3498. case 112: // M112 -Emergency Stop
  3499. kill("", 3);
  3500. break;
  3501. case 140: // M140 set bed temp
  3502. if (code_seen('S')) setTargetBed(code_value());
  3503. break;
  3504. case 105 : // M105
  3505. if(setTargetedHotend(105)){
  3506. break;
  3507. }
  3508. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3509. SERIAL_PROTOCOLPGM("ok T:");
  3510. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3511. SERIAL_PROTOCOLPGM(" /");
  3512. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3513. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3514. SERIAL_PROTOCOLPGM(" B:");
  3515. SERIAL_PROTOCOL_F(degBed(),1);
  3516. SERIAL_PROTOCOLPGM(" /");
  3517. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3518. #endif //TEMP_BED_PIN
  3519. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3520. SERIAL_PROTOCOLPGM(" T");
  3521. SERIAL_PROTOCOL(cur_extruder);
  3522. SERIAL_PROTOCOLPGM(":");
  3523. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3524. SERIAL_PROTOCOLPGM(" /");
  3525. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3526. }
  3527. #else
  3528. SERIAL_ERROR_START;
  3529. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3530. #endif
  3531. SERIAL_PROTOCOLPGM(" @:");
  3532. #ifdef EXTRUDER_WATTS
  3533. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3534. SERIAL_PROTOCOLPGM("W");
  3535. #else
  3536. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3537. #endif
  3538. SERIAL_PROTOCOLPGM(" B@:");
  3539. #ifdef BED_WATTS
  3540. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3541. SERIAL_PROTOCOLPGM("W");
  3542. #else
  3543. SERIAL_PROTOCOL(getHeaterPower(-1));
  3544. #endif
  3545. #ifdef PINDA_THERMISTOR
  3546. SERIAL_PROTOCOLPGM(" P:");
  3547. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3548. #endif //PINDA_THERMISTOR
  3549. #ifdef AMBIENT_THERMISTOR
  3550. SERIAL_PROTOCOLPGM(" A:");
  3551. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3552. #endif //AMBIENT_THERMISTOR
  3553. #ifdef SHOW_TEMP_ADC_VALUES
  3554. {float raw = 0.0;
  3555. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3556. SERIAL_PROTOCOLPGM(" ADC B:");
  3557. SERIAL_PROTOCOL_F(degBed(),1);
  3558. SERIAL_PROTOCOLPGM("C->");
  3559. raw = rawBedTemp();
  3560. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3561. SERIAL_PROTOCOLPGM(" Rb->");
  3562. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3563. SERIAL_PROTOCOLPGM(" Rxb->");
  3564. SERIAL_PROTOCOL_F(raw, 5);
  3565. #endif
  3566. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3567. SERIAL_PROTOCOLPGM(" T");
  3568. SERIAL_PROTOCOL(cur_extruder);
  3569. SERIAL_PROTOCOLPGM(":");
  3570. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3571. SERIAL_PROTOCOLPGM("C->");
  3572. raw = rawHotendTemp(cur_extruder);
  3573. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3574. SERIAL_PROTOCOLPGM(" Rt");
  3575. SERIAL_PROTOCOL(cur_extruder);
  3576. SERIAL_PROTOCOLPGM("->");
  3577. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3578. SERIAL_PROTOCOLPGM(" Rx");
  3579. SERIAL_PROTOCOL(cur_extruder);
  3580. SERIAL_PROTOCOLPGM("->");
  3581. SERIAL_PROTOCOL_F(raw, 5);
  3582. }}
  3583. #endif
  3584. SERIAL_PROTOCOLLN("");
  3585. return;
  3586. break;
  3587. case 109:
  3588. {// M109 - Wait for extruder heater to reach target.
  3589. if(setTargetedHotend(109)){
  3590. break;
  3591. }
  3592. LCD_MESSAGERPGM(MSG_HEATING);
  3593. heating_status = 1;
  3594. if (farm_mode) { prusa_statistics(1); };
  3595. #ifdef AUTOTEMP
  3596. autotemp_enabled=false;
  3597. #endif
  3598. if (code_seen('S')) {
  3599. setTargetHotend(code_value(), tmp_extruder);
  3600. CooldownNoWait = true;
  3601. } else if (code_seen('R')) {
  3602. setTargetHotend(code_value(), tmp_extruder);
  3603. CooldownNoWait = false;
  3604. }
  3605. #ifdef AUTOTEMP
  3606. if (code_seen('S')) autotemp_min=code_value();
  3607. if (code_seen('B')) autotemp_max=code_value();
  3608. if (code_seen('F'))
  3609. {
  3610. autotemp_factor=code_value();
  3611. autotemp_enabled=true;
  3612. }
  3613. #endif
  3614. setWatch();
  3615. codenum = millis();
  3616. /* See if we are heating up or cooling down */
  3617. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3618. cancel_heatup = false;
  3619. wait_for_heater(codenum); //loops until target temperature is reached
  3620. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3621. heating_status = 2;
  3622. if (farm_mode) { prusa_statistics(2); };
  3623. //starttime=millis();
  3624. previous_millis_cmd = millis();
  3625. }
  3626. break;
  3627. case 190: // M190 - Wait for bed heater to reach target.
  3628. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3629. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3630. heating_status = 3;
  3631. if (farm_mode) { prusa_statistics(1); };
  3632. if (code_seen('S'))
  3633. {
  3634. setTargetBed(code_value());
  3635. CooldownNoWait = true;
  3636. }
  3637. else if (code_seen('R'))
  3638. {
  3639. setTargetBed(code_value());
  3640. CooldownNoWait = false;
  3641. }
  3642. codenum = millis();
  3643. cancel_heatup = false;
  3644. target_direction = isHeatingBed(); // true if heating, false if cooling
  3645. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3646. {
  3647. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3648. {
  3649. if (!farm_mode) {
  3650. float tt = degHotend(active_extruder);
  3651. SERIAL_PROTOCOLPGM("T:");
  3652. SERIAL_PROTOCOL(tt);
  3653. SERIAL_PROTOCOLPGM(" E:");
  3654. SERIAL_PROTOCOL((int)active_extruder);
  3655. SERIAL_PROTOCOLPGM(" B:");
  3656. SERIAL_PROTOCOL_F(degBed(), 1);
  3657. SERIAL_PROTOCOLLN("");
  3658. }
  3659. codenum = millis();
  3660. }
  3661. manage_heater();
  3662. manage_inactivity();
  3663. lcd_update();
  3664. }
  3665. LCD_MESSAGERPGM(MSG_BED_DONE);
  3666. heating_status = 4;
  3667. previous_millis_cmd = millis();
  3668. #endif
  3669. break;
  3670. #if defined(FAN_PIN) && FAN_PIN > -1
  3671. case 106: //M106 Fan On
  3672. if (code_seen('S')){
  3673. fanSpeed=constrain(code_value(),0,255);
  3674. }
  3675. else {
  3676. fanSpeed=255;
  3677. }
  3678. break;
  3679. case 107: //M107 Fan Off
  3680. fanSpeed = 0;
  3681. break;
  3682. #endif //FAN_PIN
  3683. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3684. case 80: // M80 - Turn on Power Supply
  3685. SET_OUTPUT(PS_ON_PIN); //GND
  3686. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3687. // If you have a switch on suicide pin, this is useful
  3688. // if you want to start another print with suicide feature after
  3689. // a print without suicide...
  3690. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3691. SET_OUTPUT(SUICIDE_PIN);
  3692. WRITE(SUICIDE_PIN, HIGH);
  3693. #endif
  3694. #ifdef ULTIPANEL
  3695. powersupply = true;
  3696. LCD_MESSAGERPGM(WELCOME_MSG);
  3697. lcd_update();
  3698. #endif
  3699. break;
  3700. #endif
  3701. case 81: // M81 - Turn off Power Supply
  3702. disable_heater();
  3703. st_synchronize();
  3704. disable_e0();
  3705. disable_e1();
  3706. disable_e2();
  3707. finishAndDisableSteppers();
  3708. fanSpeed = 0;
  3709. delay(1000); // Wait a little before to switch off
  3710. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3711. st_synchronize();
  3712. suicide();
  3713. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3714. SET_OUTPUT(PS_ON_PIN);
  3715. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3716. #endif
  3717. #ifdef ULTIPANEL
  3718. powersupply = false;
  3719. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3720. /*
  3721. MACHNAME = "Prusa i3"
  3722. MSGOFF = "Vypnuto"
  3723. "Prusai3"" ""vypnuto""."
  3724. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3725. */
  3726. lcd_update();
  3727. #endif
  3728. break;
  3729. case 82:
  3730. axis_relative_modes[3] = false;
  3731. break;
  3732. case 83:
  3733. axis_relative_modes[3] = true;
  3734. break;
  3735. case 18: //compatibility
  3736. case 84: // M84
  3737. if(code_seen('S')){
  3738. stepper_inactive_time = code_value() * 1000;
  3739. }
  3740. else
  3741. {
  3742. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3743. if(all_axis)
  3744. {
  3745. st_synchronize();
  3746. disable_e0();
  3747. disable_e1();
  3748. disable_e2();
  3749. finishAndDisableSteppers();
  3750. }
  3751. else
  3752. {
  3753. st_synchronize();
  3754. if (code_seen('X')) disable_x();
  3755. if (code_seen('Y')) disable_y();
  3756. if (code_seen('Z')) disable_z();
  3757. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3758. if (code_seen('E')) {
  3759. disable_e0();
  3760. disable_e1();
  3761. disable_e2();
  3762. }
  3763. #endif
  3764. }
  3765. }
  3766. snmm_filaments_used = 0;
  3767. break;
  3768. case 85: // M85
  3769. if(code_seen('S')) {
  3770. max_inactive_time = code_value() * 1000;
  3771. }
  3772. break;
  3773. case 92: // M92
  3774. for(int8_t i=0; i < NUM_AXIS; i++)
  3775. {
  3776. if(code_seen(axis_codes[i]))
  3777. {
  3778. if(i == 3) { // E
  3779. float value = code_value();
  3780. if(value < 20.0) {
  3781. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3782. max_jerk[E_AXIS] *= factor;
  3783. max_feedrate[i] *= factor;
  3784. axis_steps_per_sqr_second[i] *= factor;
  3785. }
  3786. axis_steps_per_unit[i] = value;
  3787. }
  3788. else {
  3789. axis_steps_per_unit[i] = code_value();
  3790. }
  3791. }
  3792. }
  3793. break;
  3794. case 115: // M115
  3795. if (code_seen('V')) {
  3796. // Report the Prusa version number.
  3797. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3798. } else if (code_seen('U')) {
  3799. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3800. // pause the print and ask the user to upgrade the firmware.
  3801. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3802. } else {
  3803. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3804. }
  3805. break;
  3806. /* case 117: // M117 display message
  3807. starpos = (strchr(strchr_pointer + 5,'*'));
  3808. if(starpos!=NULL)
  3809. *(starpos)='\0';
  3810. lcd_setstatus(strchr_pointer + 5);
  3811. break;*/
  3812. case 114: // M114
  3813. SERIAL_PROTOCOLPGM("X:");
  3814. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3815. SERIAL_PROTOCOLPGM(" Y:");
  3816. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3817. SERIAL_PROTOCOLPGM(" Z:");
  3818. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3819. SERIAL_PROTOCOLPGM(" E:");
  3820. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3821. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3822. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3823. SERIAL_PROTOCOLPGM(" Y:");
  3824. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3825. SERIAL_PROTOCOLPGM(" Z:");
  3826. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3827. SERIAL_PROTOCOLLN("");
  3828. break;
  3829. case 120: // M120
  3830. enable_endstops(false) ;
  3831. break;
  3832. case 121: // M121
  3833. enable_endstops(true) ;
  3834. break;
  3835. case 119: // M119
  3836. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3837. SERIAL_PROTOCOLLN("");
  3838. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3839. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3840. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3841. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3842. }else{
  3843. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3844. }
  3845. SERIAL_PROTOCOLLN("");
  3846. #endif
  3847. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3848. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3849. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3850. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3851. }else{
  3852. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3853. }
  3854. SERIAL_PROTOCOLLN("");
  3855. #endif
  3856. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3857. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3858. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3859. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3860. }else{
  3861. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3862. }
  3863. SERIAL_PROTOCOLLN("");
  3864. #endif
  3865. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3866. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3867. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3868. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3869. }else{
  3870. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3871. }
  3872. SERIAL_PROTOCOLLN("");
  3873. #endif
  3874. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3875. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3876. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3877. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3878. }else{
  3879. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3880. }
  3881. SERIAL_PROTOCOLLN("");
  3882. #endif
  3883. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3884. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3885. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3886. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3887. }else{
  3888. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3889. }
  3890. SERIAL_PROTOCOLLN("");
  3891. #endif
  3892. break;
  3893. //TODO: update for all axis, use for loop
  3894. #ifdef BLINKM
  3895. case 150: // M150
  3896. {
  3897. byte red;
  3898. byte grn;
  3899. byte blu;
  3900. if(code_seen('R')) red = code_value();
  3901. if(code_seen('U')) grn = code_value();
  3902. if(code_seen('B')) blu = code_value();
  3903. SendColors(red,grn,blu);
  3904. }
  3905. break;
  3906. #endif //BLINKM
  3907. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3908. {
  3909. tmp_extruder = active_extruder;
  3910. if(code_seen('T')) {
  3911. tmp_extruder = code_value();
  3912. if(tmp_extruder >= EXTRUDERS) {
  3913. SERIAL_ECHO_START;
  3914. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3915. break;
  3916. }
  3917. }
  3918. float area = .0;
  3919. if(code_seen('D')) {
  3920. float diameter = (float)code_value();
  3921. if (diameter == 0.0) {
  3922. // setting any extruder filament size disables volumetric on the assumption that
  3923. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3924. // for all extruders
  3925. volumetric_enabled = false;
  3926. } else {
  3927. filament_size[tmp_extruder] = (float)code_value();
  3928. // make sure all extruders have some sane value for the filament size
  3929. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3930. #if EXTRUDERS > 1
  3931. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3932. #if EXTRUDERS > 2
  3933. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3934. #endif
  3935. #endif
  3936. volumetric_enabled = true;
  3937. }
  3938. } else {
  3939. //reserved for setting filament diameter via UFID or filament measuring device
  3940. break;
  3941. }
  3942. calculate_volumetric_multipliers();
  3943. }
  3944. break;
  3945. case 201: // M201
  3946. for(int8_t i=0; i < NUM_AXIS; i++)
  3947. {
  3948. if(code_seen(axis_codes[i]))
  3949. {
  3950. max_acceleration_units_per_sq_second[i] = code_value();
  3951. }
  3952. }
  3953. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3954. reset_acceleration_rates();
  3955. break;
  3956. #if 0 // Not used for Sprinter/grbl gen6
  3957. case 202: // M202
  3958. for(int8_t i=0; i < NUM_AXIS; i++) {
  3959. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3960. }
  3961. break;
  3962. #endif
  3963. case 203: // M203 max feedrate mm/sec
  3964. for(int8_t i=0; i < NUM_AXIS; i++) {
  3965. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3966. }
  3967. break;
  3968. case 204: // M204 acclereration S normal moves T filmanent only moves
  3969. {
  3970. if(code_seen('S')) acceleration = code_value() ;
  3971. if(code_seen('T')) retract_acceleration = code_value() ;
  3972. }
  3973. break;
  3974. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3975. {
  3976. if(code_seen('S')) minimumfeedrate = code_value();
  3977. if(code_seen('T')) mintravelfeedrate = code_value();
  3978. if(code_seen('B')) minsegmenttime = code_value() ;
  3979. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3980. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3981. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3982. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3983. }
  3984. break;
  3985. case 206: // M206 additional homing offset
  3986. for(int8_t i=0; i < 3; i++)
  3987. {
  3988. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3989. }
  3990. break;
  3991. #ifdef FWRETRACT
  3992. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3993. {
  3994. if(code_seen('S'))
  3995. {
  3996. retract_length = code_value() ;
  3997. }
  3998. if(code_seen('F'))
  3999. {
  4000. retract_feedrate = code_value()/60 ;
  4001. }
  4002. if(code_seen('Z'))
  4003. {
  4004. retract_zlift = code_value() ;
  4005. }
  4006. }break;
  4007. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4008. {
  4009. if(code_seen('S'))
  4010. {
  4011. retract_recover_length = code_value() ;
  4012. }
  4013. if(code_seen('F'))
  4014. {
  4015. retract_recover_feedrate = code_value()/60 ;
  4016. }
  4017. }break;
  4018. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4019. {
  4020. if(code_seen('S'))
  4021. {
  4022. int t= code_value() ;
  4023. switch(t)
  4024. {
  4025. case 0:
  4026. {
  4027. autoretract_enabled=false;
  4028. retracted[0]=false;
  4029. #if EXTRUDERS > 1
  4030. retracted[1]=false;
  4031. #endif
  4032. #if EXTRUDERS > 2
  4033. retracted[2]=false;
  4034. #endif
  4035. }break;
  4036. case 1:
  4037. {
  4038. autoretract_enabled=true;
  4039. retracted[0]=false;
  4040. #if EXTRUDERS > 1
  4041. retracted[1]=false;
  4042. #endif
  4043. #if EXTRUDERS > 2
  4044. retracted[2]=false;
  4045. #endif
  4046. }break;
  4047. default:
  4048. SERIAL_ECHO_START;
  4049. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4050. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4051. SERIAL_ECHOLNPGM("\"(1)");
  4052. }
  4053. }
  4054. }break;
  4055. #endif // FWRETRACT
  4056. #if EXTRUDERS > 1
  4057. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4058. {
  4059. if(setTargetedHotend(218)){
  4060. break;
  4061. }
  4062. if(code_seen('X'))
  4063. {
  4064. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4065. }
  4066. if(code_seen('Y'))
  4067. {
  4068. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4069. }
  4070. SERIAL_ECHO_START;
  4071. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4072. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4073. {
  4074. SERIAL_ECHO(" ");
  4075. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4076. SERIAL_ECHO(",");
  4077. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4078. }
  4079. SERIAL_ECHOLN("");
  4080. }break;
  4081. #endif
  4082. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4083. {
  4084. if(code_seen('S'))
  4085. {
  4086. feedmultiply = code_value() ;
  4087. }
  4088. }
  4089. break;
  4090. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4091. {
  4092. if(code_seen('S'))
  4093. {
  4094. int tmp_code = code_value();
  4095. if (code_seen('T'))
  4096. {
  4097. if(setTargetedHotend(221)){
  4098. break;
  4099. }
  4100. extruder_multiply[tmp_extruder] = tmp_code;
  4101. }
  4102. else
  4103. {
  4104. extrudemultiply = tmp_code ;
  4105. }
  4106. }
  4107. }
  4108. break;
  4109. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4110. {
  4111. if(code_seen('P')){
  4112. int pin_number = code_value(); // pin number
  4113. int pin_state = -1; // required pin state - default is inverted
  4114. if(code_seen('S')) pin_state = code_value(); // required pin state
  4115. if(pin_state >= -1 && pin_state <= 1){
  4116. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4117. {
  4118. if (sensitive_pins[i] == pin_number)
  4119. {
  4120. pin_number = -1;
  4121. break;
  4122. }
  4123. }
  4124. if (pin_number > -1)
  4125. {
  4126. int target = LOW;
  4127. st_synchronize();
  4128. pinMode(pin_number, INPUT);
  4129. switch(pin_state){
  4130. case 1:
  4131. target = HIGH;
  4132. break;
  4133. case 0:
  4134. target = LOW;
  4135. break;
  4136. case -1:
  4137. target = !digitalRead(pin_number);
  4138. break;
  4139. }
  4140. while(digitalRead(pin_number) != target){
  4141. manage_heater();
  4142. manage_inactivity();
  4143. lcd_update();
  4144. }
  4145. }
  4146. }
  4147. }
  4148. }
  4149. break;
  4150. #if NUM_SERVOS > 0
  4151. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4152. {
  4153. int servo_index = -1;
  4154. int servo_position = 0;
  4155. if (code_seen('P'))
  4156. servo_index = code_value();
  4157. if (code_seen('S')) {
  4158. servo_position = code_value();
  4159. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4160. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4161. servos[servo_index].attach(0);
  4162. #endif
  4163. servos[servo_index].write(servo_position);
  4164. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4165. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4166. servos[servo_index].detach();
  4167. #endif
  4168. }
  4169. else {
  4170. SERIAL_ECHO_START;
  4171. SERIAL_ECHO("Servo ");
  4172. SERIAL_ECHO(servo_index);
  4173. SERIAL_ECHOLN(" out of range");
  4174. }
  4175. }
  4176. else if (servo_index >= 0) {
  4177. SERIAL_PROTOCOL(MSG_OK);
  4178. SERIAL_PROTOCOL(" Servo ");
  4179. SERIAL_PROTOCOL(servo_index);
  4180. SERIAL_PROTOCOL(": ");
  4181. SERIAL_PROTOCOL(servos[servo_index].read());
  4182. SERIAL_PROTOCOLLN("");
  4183. }
  4184. }
  4185. break;
  4186. #endif // NUM_SERVOS > 0
  4187. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4188. case 300: // M300
  4189. {
  4190. int beepS = code_seen('S') ? code_value() : 110;
  4191. int beepP = code_seen('P') ? code_value() : 1000;
  4192. if (beepS > 0)
  4193. {
  4194. #if BEEPER > 0
  4195. tone(BEEPER, beepS);
  4196. delay(beepP);
  4197. noTone(BEEPER);
  4198. #elif defined(ULTRALCD)
  4199. lcd_buzz(beepS, beepP);
  4200. #elif defined(LCD_USE_I2C_BUZZER)
  4201. lcd_buzz(beepP, beepS);
  4202. #endif
  4203. }
  4204. else
  4205. {
  4206. delay(beepP);
  4207. }
  4208. }
  4209. break;
  4210. #endif // M300
  4211. #ifdef PIDTEMP
  4212. case 301: // M301
  4213. {
  4214. if(code_seen('P')) Kp = code_value();
  4215. if(code_seen('I')) Ki = scalePID_i(code_value());
  4216. if(code_seen('D')) Kd = scalePID_d(code_value());
  4217. #ifdef PID_ADD_EXTRUSION_RATE
  4218. if(code_seen('C')) Kc = code_value();
  4219. #endif
  4220. updatePID();
  4221. SERIAL_PROTOCOLRPGM(MSG_OK);
  4222. SERIAL_PROTOCOL(" p:");
  4223. SERIAL_PROTOCOL(Kp);
  4224. SERIAL_PROTOCOL(" i:");
  4225. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4226. SERIAL_PROTOCOL(" d:");
  4227. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4228. #ifdef PID_ADD_EXTRUSION_RATE
  4229. SERIAL_PROTOCOL(" c:");
  4230. //Kc does not have scaling applied above, or in resetting defaults
  4231. SERIAL_PROTOCOL(Kc);
  4232. #endif
  4233. SERIAL_PROTOCOLLN("");
  4234. }
  4235. break;
  4236. #endif //PIDTEMP
  4237. #ifdef PIDTEMPBED
  4238. case 304: // M304
  4239. {
  4240. if(code_seen('P')) bedKp = code_value();
  4241. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4242. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4243. updatePID();
  4244. SERIAL_PROTOCOLRPGM(MSG_OK);
  4245. SERIAL_PROTOCOL(" p:");
  4246. SERIAL_PROTOCOL(bedKp);
  4247. SERIAL_PROTOCOL(" i:");
  4248. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4249. SERIAL_PROTOCOL(" d:");
  4250. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4251. SERIAL_PROTOCOLLN("");
  4252. }
  4253. break;
  4254. #endif //PIDTEMP
  4255. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4256. {
  4257. #ifdef CHDK
  4258. SET_OUTPUT(CHDK);
  4259. WRITE(CHDK, HIGH);
  4260. chdkHigh = millis();
  4261. chdkActive = true;
  4262. #else
  4263. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4264. const uint8_t NUM_PULSES=16;
  4265. const float PULSE_LENGTH=0.01524;
  4266. for(int i=0; i < NUM_PULSES; i++) {
  4267. WRITE(PHOTOGRAPH_PIN, HIGH);
  4268. _delay_ms(PULSE_LENGTH);
  4269. WRITE(PHOTOGRAPH_PIN, LOW);
  4270. _delay_ms(PULSE_LENGTH);
  4271. }
  4272. delay(7.33);
  4273. for(int i=0; i < NUM_PULSES; i++) {
  4274. WRITE(PHOTOGRAPH_PIN, HIGH);
  4275. _delay_ms(PULSE_LENGTH);
  4276. WRITE(PHOTOGRAPH_PIN, LOW);
  4277. _delay_ms(PULSE_LENGTH);
  4278. }
  4279. #endif
  4280. #endif //chdk end if
  4281. }
  4282. break;
  4283. #ifdef DOGLCD
  4284. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4285. {
  4286. if (code_seen('C')) {
  4287. lcd_setcontrast( ((int)code_value())&63 );
  4288. }
  4289. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4290. SERIAL_PROTOCOL(lcd_contrast);
  4291. SERIAL_PROTOCOLLN("");
  4292. }
  4293. break;
  4294. #endif
  4295. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4296. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4297. {
  4298. float temp = .0;
  4299. if (code_seen('S')) temp=code_value();
  4300. set_extrude_min_temp(temp);
  4301. }
  4302. break;
  4303. #endif
  4304. case 303: // M303 PID autotune
  4305. {
  4306. float temp = 150.0;
  4307. int e=0;
  4308. int c=5;
  4309. if (code_seen('E')) e=code_value();
  4310. if (e<0)
  4311. temp=70;
  4312. if (code_seen('S')) temp=code_value();
  4313. if (code_seen('C')) c=code_value();
  4314. PID_autotune(temp, e, c);
  4315. }
  4316. break;
  4317. case 400: // M400 finish all moves
  4318. {
  4319. st_synchronize();
  4320. }
  4321. break;
  4322. #ifdef FILAMENT_SENSOR
  4323. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4324. {
  4325. #if (FILWIDTH_PIN > -1)
  4326. if(code_seen('N')) filament_width_nominal=code_value();
  4327. else{
  4328. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4329. SERIAL_PROTOCOLLN(filament_width_nominal);
  4330. }
  4331. #endif
  4332. }
  4333. break;
  4334. case 405: //M405 Turn on filament sensor for control
  4335. {
  4336. if(code_seen('D')) meas_delay_cm=code_value();
  4337. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4338. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4339. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4340. {
  4341. int temp_ratio = widthFil_to_size_ratio();
  4342. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4343. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4344. }
  4345. delay_index1=0;
  4346. delay_index2=0;
  4347. }
  4348. filament_sensor = true ;
  4349. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4350. //SERIAL_PROTOCOL(filament_width_meas);
  4351. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4352. //SERIAL_PROTOCOL(extrudemultiply);
  4353. }
  4354. break;
  4355. case 406: //M406 Turn off filament sensor for control
  4356. {
  4357. filament_sensor = false ;
  4358. }
  4359. break;
  4360. case 407: //M407 Display measured filament diameter
  4361. {
  4362. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4363. SERIAL_PROTOCOLLN(filament_width_meas);
  4364. }
  4365. break;
  4366. #endif
  4367. case 500: // M500 Store settings in EEPROM
  4368. {
  4369. Config_StoreSettings(EEPROM_OFFSET);
  4370. }
  4371. break;
  4372. case 501: // M501 Read settings from EEPROM
  4373. {
  4374. Config_RetrieveSettings(EEPROM_OFFSET);
  4375. }
  4376. break;
  4377. case 502: // M502 Revert to default settings
  4378. {
  4379. Config_ResetDefault();
  4380. }
  4381. break;
  4382. case 503: // M503 print settings currently in memory
  4383. {
  4384. Config_PrintSettings();
  4385. }
  4386. break;
  4387. case 509: //M509 Force language selection
  4388. {
  4389. lcd_force_language_selection();
  4390. SERIAL_ECHO_START;
  4391. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4392. }
  4393. break;
  4394. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4395. case 540:
  4396. {
  4397. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4398. }
  4399. break;
  4400. #endif
  4401. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4402. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4403. {
  4404. float value;
  4405. if (code_seen('Z'))
  4406. {
  4407. value = code_value();
  4408. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4409. {
  4410. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4411. SERIAL_ECHO_START;
  4412. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4413. SERIAL_PROTOCOLLN("");
  4414. }
  4415. else
  4416. {
  4417. SERIAL_ECHO_START;
  4418. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4419. SERIAL_ECHORPGM(MSG_Z_MIN);
  4420. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4421. SERIAL_ECHORPGM(MSG_Z_MAX);
  4422. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4423. SERIAL_PROTOCOLLN("");
  4424. }
  4425. }
  4426. else
  4427. {
  4428. SERIAL_ECHO_START;
  4429. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4430. SERIAL_ECHO(-zprobe_zoffset);
  4431. SERIAL_PROTOCOLLN("");
  4432. }
  4433. break;
  4434. }
  4435. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4436. #ifdef FILAMENTCHANGEENABLE
  4437. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4438. {
  4439. MYSERIAL.println("!!!!M600!!!!");
  4440. st_synchronize();
  4441. float target[4];
  4442. float lastpos[4];
  4443. if (farm_mode)
  4444. {
  4445. prusa_statistics(22);
  4446. }
  4447. feedmultiplyBckp=feedmultiply;
  4448. int8_t TooLowZ = 0;
  4449. target[X_AXIS]=current_position[X_AXIS];
  4450. target[Y_AXIS]=current_position[Y_AXIS];
  4451. target[Z_AXIS]=current_position[Z_AXIS];
  4452. target[E_AXIS]=current_position[E_AXIS];
  4453. lastpos[X_AXIS]=current_position[X_AXIS];
  4454. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4455. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4456. lastpos[E_AXIS]=current_position[E_AXIS];
  4457. //Restract extruder
  4458. if(code_seen('E'))
  4459. {
  4460. target[E_AXIS]+= code_value();
  4461. }
  4462. else
  4463. {
  4464. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4465. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4466. #endif
  4467. }
  4468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4469. //Lift Z
  4470. if(code_seen('Z'))
  4471. {
  4472. target[Z_AXIS]+= code_value();
  4473. }
  4474. else
  4475. {
  4476. #ifdef FILAMENTCHANGE_ZADD
  4477. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4478. if(target[Z_AXIS] < 10){
  4479. target[Z_AXIS]+= 10 ;
  4480. TooLowZ = 1;
  4481. }else{
  4482. TooLowZ = 0;
  4483. }
  4484. #endif
  4485. }
  4486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4487. //Move XY to side
  4488. if(code_seen('X'))
  4489. {
  4490. target[X_AXIS]+= code_value();
  4491. }
  4492. else
  4493. {
  4494. #ifdef FILAMENTCHANGE_XPOS
  4495. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4496. #endif
  4497. }
  4498. if(code_seen('Y'))
  4499. {
  4500. target[Y_AXIS]= code_value();
  4501. }
  4502. else
  4503. {
  4504. #ifdef FILAMENTCHANGE_YPOS
  4505. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4506. #endif
  4507. }
  4508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4509. st_synchronize();
  4510. custom_message = true;
  4511. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4512. // Unload filament
  4513. if(code_seen('L'))
  4514. {
  4515. target[E_AXIS]+= code_value();
  4516. }
  4517. else
  4518. {
  4519. #ifdef SNMM
  4520. #else
  4521. #ifdef FILAMENTCHANGE_FINALRETRACT
  4522. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4523. #endif
  4524. #endif // SNMM
  4525. }
  4526. #ifdef SNMM
  4527. target[E_AXIS] += 12;
  4528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4529. target[E_AXIS] += 6;
  4530. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4531. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4532. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4533. st_synchronize();
  4534. target[E_AXIS] += (FIL_COOLING);
  4535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4536. target[E_AXIS] += (FIL_COOLING*-1);
  4537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4538. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4540. st_synchronize();
  4541. #else
  4542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4543. #endif // SNMM
  4544. //finish moves
  4545. st_synchronize();
  4546. //disable extruder steppers so filament can be removed
  4547. disable_e0();
  4548. disable_e1();
  4549. disable_e2();
  4550. delay(100);
  4551. //Wait for user to insert filament
  4552. uint8_t cnt=0;
  4553. int counterBeep = 0;
  4554. lcd_wait_interact();
  4555. load_filament_time = millis();
  4556. while(!lcd_clicked()){
  4557. cnt++;
  4558. manage_heater();
  4559. manage_inactivity(true);
  4560. /*#ifdef SNMM
  4561. target[E_AXIS] += 0.002;
  4562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4563. #endif // SNMM*/
  4564. if(cnt==0)
  4565. {
  4566. #if BEEPER > 0
  4567. if (counterBeep== 500){
  4568. counterBeep = 0;
  4569. }
  4570. SET_OUTPUT(BEEPER);
  4571. if (counterBeep== 0){
  4572. WRITE(BEEPER,HIGH);
  4573. }
  4574. if (counterBeep== 20){
  4575. WRITE(BEEPER,LOW);
  4576. }
  4577. counterBeep++;
  4578. #else
  4579. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4580. lcd_buzz(1000/6,100);
  4581. #else
  4582. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4583. #endif
  4584. #endif
  4585. }
  4586. }
  4587. #ifdef SNMM
  4588. display_loading();
  4589. do {
  4590. target[E_AXIS] += 0.002;
  4591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4592. delay_keep_alive(2);
  4593. } while (!lcd_clicked());
  4594. /*if (millis() - load_filament_time > 2) {
  4595. load_filament_time = millis();
  4596. target[E_AXIS] += 0.001;
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4598. }*/
  4599. #endif
  4600. //Filament inserted
  4601. WRITE(BEEPER,LOW);
  4602. //Feed the filament to the end of nozzle quickly
  4603. #ifdef SNMM
  4604. st_synchronize();
  4605. target[E_AXIS] += bowden_length[snmm_extruder];
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4607. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4609. target[E_AXIS] += 40;
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4611. target[E_AXIS] += 10;
  4612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4613. #else
  4614. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4616. #endif // SNMM
  4617. //Extrude some filament
  4618. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4619. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4620. //Wait for user to check the state
  4621. lcd_change_fil_state = 0;
  4622. lcd_loading_filament();
  4623. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4624. lcd_change_fil_state = 0;
  4625. lcd_alright();
  4626. switch(lcd_change_fil_state){
  4627. // Filament failed to load so load it again
  4628. case 2:
  4629. #ifdef SNMM
  4630. display_loading();
  4631. do {
  4632. target[E_AXIS] += 0.002;
  4633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4634. delay_keep_alive(2);
  4635. } while (!lcd_clicked());
  4636. st_synchronize();
  4637. target[E_AXIS] += bowden_length[snmm_extruder];
  4638. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4639. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4640. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4641. target[E_AXIS] += 40;
  4642. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4643. target[E_AXIS] += 10;
  4644. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4645. #else
  4646. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4647. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4648. #endif
  4649. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4651. lcd_loading_filament();
  4652. break;
  4653. // Filament loaded properly but color is not clear
  4654. case 3:
  4655. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4656. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4657. lcd_loading_color();
  4658. break;
  4659. // Everything good
  4660. default:
  4661. lcd_change_success();
  4662. lcd_update_enable(true);
  4663. break;
  4664. }
  4665. }
  4666. //Not let's go back to print
  4667. //Feed a little of filament to stabilize pressure
  4668. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4669. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4670. //Retract
  4671. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4673. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4674. //Move XY back
  4675. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4676. //Move Z back
  4677. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4678. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4679. //Unretract
  4680. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4681. //Set E position to original
  4682. plan_set_e_position(lastpos[E_AXIS]);
  4683. //Recover feed rate
  4684. feedmultiply=feedmultiplyBckp;
  4685. char cmd[9];
  4686. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4687. enquecommand(cmd);
  4688. lcd_setstatuspgm(WELCOME_MSG);
  4689. custom_message = false;
  4690. custom_message_type = 0;
  4691. #ifdef PAT9125
  4692. if (fsensor_M600)
  4693. {
  4694. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4695. st_synchronize();
  4696. while (!is_buffer_empty())
  4697. {
  4698. process_commands();
  4699. cmdqueue_pop_front();
  4700. }
  4701. fsensor_enable();
  4702. fsensor_restore_print_and_continue();
  4703. }
  4704. #endif //PAT9125
  4705. }
  4706. break;
  4707. #endif //FILAMENTCHANGEENABLE
  4708. case 601: {
  4709. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4710. }
  4711. break;
  4712. case 602: {
  4713. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4714. }
  4715. break;
  4716. #ifdef LIN_ADVANCE
  4717. case 900: // M900: Set LIN_ADVANCE options.
  4718. gcode_M900();
  4719. break;
  4720. #endif
  4721. case 907: // M907 Set digital trimpot motor current using axis codes.
  4722. {
  4723. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4724. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4725. if(code_seen('B')) digipot_current(4,code_value());
  4726. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4727. #endif
  4728. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4729. if(code_seen('X')) digipot_current(0, code_value());
  4730. #endif
  4731. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4732. if(code_seen('Z')) digipot_current(1, code_value());
  4733. #endif
  4734. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4735. if(code_seen('E')) digipot_current(2, code_value());
  4736. #endif
  4737. #ifdef DIGIPOT_I2C
  4738. // this one uses actual amps in floating point
  4739. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4740. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4741. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4742. #endif
  4743. }
  4744. break;
  4745. case 908: // M908 Control digital trimpot directly.
  4746. {
  4747. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4748. uint8_t channel,current;
  4749. if(code_seen('P')) channel=code_value();
  4750. if(code_seen('S')) current=code_value();
  4751. digitalPotWrite(channel, current);
  4752. #endif
  4753. }
  4754. break;
  4755. case 910: // M910 TMC2130 init
  4756. {
  4757. tmc2130_init();
  4758. }
  4759. break;
  4760. case 911: // M911 Set TMC2130 holding currents
  4761. {
  4762. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4763. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4764. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4765. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4766. }
  4767. break;
  4768. case 912: // M912 Set TMC2130 running currents
  4769. {
  4770. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4771. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4772. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4773. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4774. }
  4775. break;
  4776. case 913: // M913 Print TMC2130 currents
  4777. {
  4778. tmc2130_print_currents();
  4779. }
  4780. break;
  4781. case 914: // M914 Set normal mode
  4782. {
  4783. tmc2130_mode = TMC2130_MODE_NORMAL;
  4784. tmc2130_init();
  4785. }
  4786. break;
  4787. case 915: // M915 Set silent mode
  4788. {
  4789. tmc2130_mode = TMC2130_MODE_SILENT;
  4790. tmc2130_init();
  4791. }
  4792. break;
  4793. case 916: // M916 Set sg_thrs
  4794. {
  4795. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4796. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4797. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4798. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4799. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4800. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4801. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4802. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4803. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4804. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4805. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4806. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4807. }
  4808. break;
  4809. case 917: // M917 Set TMC2130 pwm_ampl
  4810. {
  4811. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4812. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4813. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4814. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4815. }
  4816. break;
  4817. case 918: // M918 Set TMC2130 pwm_grad
  4818. {
  4819. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4820. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4821. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4822. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4823. }
  4824. break;
  4825. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4826. {
  4827. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4828. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4829. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4830. if(code_seen('B')) microstep_mode(4,code_value());
  4831. microstep_readings();
  4832. #endif
  4833. }
  4834. break;
  4835. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4836. {
  4837. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4838. if(code_seen('S')) switch((int)code_value())
  4839. {
  4840. case 1:
  4841. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4842. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4843. break;
  4844. case 2:
  4845. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4846. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4847. break;
  4848. }
  4849. microstep_readings();
  4850. #endif
  4851. }
  4852. break;
  4853. case 701: //M701: load filament
  4854. {
  4855. enable_z();
  4856. custom_message = true;
  4857. custom_message_type = 2;
  4858. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4859. current_position[E_AXIS] += 70;
  4860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4861. current_position[E_AXIS] += 25;
  4862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4863. st_synchronize();
  4864. if (!farm_mode && loading_flag) {
  4865. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4866. while (!clean) {
  4867. lcd_update_enable(true);
  4868. lcd_update(2);
  4869. current_position[E_AXIS] += 25;
  4870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4871. st_synchronize();
  4872. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4873. }
  4874. }
  4875. lcd_update_enable(true);
  4876. lcd_update(2);
  4877. lcd_setstatuspgm(WELCOME_MSG);
  4878. disable_z();
  4879. loading_flag = false;
  4880. custom_message = false;
  4881. custom_message_type = 0;
  4882. }
  4883. break;
  4884. case 702:
  4885. {
  4886. #ifdef SNMM
  4887. if (code_seen('U')) {
  4888. extr_unload_used(); //unload all filaments which were used in current print
  4889. }
  4890. else if (code_seen('C')) {
  4891. extr_unload(); //unload just current filament
  4892. }
  4893. else {
  4894. extr_unload_all(); //unload all filaments
  4895. }
  4896. #else
  4897. custom_message = true;
  4898. custom_message_type = 2;
  4899. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4900. current_position[E_AXIS] -= 80;
  4901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4902. st_synchronize();
  4903. lcd_setstatuspgm(WELCOME_MSG);
  4904. custom_message = false;
  4905. custom_message_type = 0;
  4906. #endif
  4907. }
  4908. break;
  4909. case 999: // M999: Restart after being stopped
  4910. Stopped = false;
  4911. lcd_reset_alert_level();
  4912. gcode_LastN = Stopped_gcode_LastN;
  4913. FlushSerialRequestResend();
  4914. break;
  4915. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4916. }
  4917. } // end if(code_seen('M')) (end of M codes)
  4918. else if(code_seen('T'))
  4919. {
  4920. int index;
  4921. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4922. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4923. SERIAL_ECHOLNPGM("Invalid T code.");
  4924. }
  4925. else {
  4926. if (*(strchr_pointer + index) == '?') {
  4927. tmp_extruder = choose_extruder_menu();
  4928. }
  4929. else {
  4930. tmp_extruder = code_value();
  4931. }
  4932. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4933. #ifdef SNMM
  4934. #ifdef LIN_ADVANCE
  4935. if (snmm_extruder != tmp_extruder)
  4936. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4937. #endif
  4938. snmm_extruder = tmp_extruder;
  4939. st_synchronize();
  4940. delay(100);
  4941. disable_e0();
  4942. disable_e1();
  4943. disable_e2();
  4944. pinMode(E_MUX0_PIN, OUTPUT);
  4945. pinMode(E_MUX1_PIN, OUTPUT);
  4946. pinMode(E_MUX2_PIN, OUTPUT);
  4947. delay(100);
  4948. SERIAL_ECHO_START;
  4949. SERIAL_ECHO("T:");
  4950. SERIAL_ECHOLN((int)tmp_extruder);
  4951. switch (tmp_extruder) {
  4952. case 1:
  4953. WRITE(E_MUX0_PIN, HIGH);
  4954. WRITE(E_MUX1_PIN, LOW);
  4955. WRITE(E_MUX2_PIN, LOW);
  4956. break;
  4957. case 2:
  4958. WRITE(E_MUX0_PIN, LOW);
  4959. WRITE(E_MUX1_PIN, HIGH);
  4960. WRITE(E_MUX2_PIN, LOW);
  4961. break;
  4962. case 3:
  4963. WRITE(E_MUX0_PIN, HIGH);
  4964. WRITE(E_MUX1_PIN, HIGH);
  4965. WRITE(E_MUX2_PIN, LOW);
  4966. break;
  4967. default:
  4968. WRITE(E_MUX0_PIN, LOW);
  4969. WRITE(E_MUX1_PIN, LOW);
  4970. WRITE(E_MUX2_PIN, LOW);
  4971. break;
  4972. }
  4973. delay(100);
  4974. #else
  4975. if (tmp_extruder >= EXTRUDERS) {
  4976. SERIAL_ECHO_START;
  4977. SERIAL_ECHOPGM("T");
  4978. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4979. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4980. }
  4981. else {
  4982. boolean make_move = false;
  4983. if (code_seen('F')) {
  4984. make_move = true;
  4985. next_feedrate = code_value();
  4986. if (next_feedrate > 0.0) {
  4987. feedrate = next_feedrate;
  4988. }
  4989. }
  4990. #if EXTRUDERS > 1
  4991. if (tmp_extruder != active_extruder) {
  4992. // Save current position to return to after applying extruder offset
  4993. memcpy(destination, current_position, sizeof(destination));
  4994. // Offset extruder (only by XY)
  4995. int i;
  4996. for (i = 0; i < 2; i++) {
  4997. current_position[i] = current_position[i] -
  4998. extruder_offset[i][active_extruder] +
  4999. extruder_offset[i][tmp_extruder];
  5000. }
  5001. // Set the new active extruder and position
  5002. active_extruder = tmp_extruder;
  5003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5004. // Move to the old position if 'F' was in the parameters
  5005. if (make_move && Stopped == false) {
  5006. prepare_move();
  5007. }
  5008. }
  5009. #endif
  5010. SERIAL_ECHO_START;
  5011. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5012. SERIAL_PROTOCOLLN((int)active_extruder);
  5013. }
  5014. #endif
  5015. }
  5016. } // end if(code_seen('T')) (end of T codes)
  5017. #ifdef DEBUG_DCODES
  5018. else if (code_seen('D')) // D codes (debug)
  5019. {
  5020. switch((int)code_value())
  5021. {
  5022. case 0: // D0 - Reset
  5023. dcode_0(); break;
  5024. case 1: // D1 - Clear EEPROM
  5025. dcode_1(); break;
  5026. case 2: // D2 - Read/Write RAM
  5027. dcode_2(); break;
  5028. case 3: // D3 - Read/Write EEPROM
  5029. dcode_3(); break;
  5030. case 4: // D4 - Read/Write PIN
  5031. dcode_4(); break;
  5032. case 5:
  5033. MYSERIAL.println("D5 - Test");
  5034. if (code_seen('P'))
  5035. selectedSerialPort = (int)code_value();
  5036. MYSERIAL.print("selectedSerialPort = ");
  5037. MYSERIAL.println(selectedSerialPort, DEC);
  5038. break;
  5039. case 10: // D10 - Tell the printer that XYZ calibration went OK
  5040. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  5041. break;
  5042. case 999:
  5043. {
  5044. MYSERIAL.println("D999 - crash");
  5045. /* while (!is_buffer_empty())
  5046. {
  5047. process_commands();
  5048. cmdqueue_pop_front();
  5049. }*/
  5050. st_synchronize();
  5051. lcd_update_enable(true);
  5052. lcd_implementation_clear();
  5053. lcd_update(2);
  5054. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  5055. bool yesno = true;
  5056. #else
  5057. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  5058. #endif
  5059. lcd_update_enable(true);
  5060. lcd_update(2);
  5061. lcd_setstatuspgm(WELCOME_MSG);
  5062. if (yesno)
  5063. {
  5064. enquecommand_P(PSTR("G28 X"));
  5065. enquecommand_P(PSTR("G28 Y"));
  5066. enquecommand_P(PSTR("D1000"));
  5067. }
  5068. else
  5069. {
  5070. enquecommand_P(PSTR("D1001"));
  5071. }
  5072. }
  5073. break;
  5074. case 1000:
  5075. crashdet_restore_print_and_continue();
  5076. tmc2130_sg_stop_on_crash = true;
  5077. break;
  5078. case 1001:
  5079. card.sdprinting = false;
  5080. card.closefile();
  5081. tmc2130_sg_stop_on_crash = true;
  5082. break;
  5083. /* case 4:
  5084. {
  5085. MYSERIAL.println("D4 - Test");
  5086. uint8_t data[16];
  5087. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5088. MYSERIAL.println(cnt, DEC);
  5089. for (int i = 0; i < cnt; i++)
  5090. {
  5091. serial_print_hex_byte(data[i]);
  5092. MYSERIAL.write(' ');
  5093. }
  5094. MYSERIAL.write('\n');
  5095. }
  5096. break;
  5097. /* case 3:
  5098. if (code_seen('L')) // lcd pwm (0-255)
  5099. {
  5100. lcdSoftPwm = (int)code_value();
  5101. }
  5102. if (code_seen('B')) // lcd blink delay (0-255)
  5103. {
  5104. lcdBlinkDelay = (int)code_value();
  5105. }
  5106. // calibrate_z_auto();
  5107. /* MYSERIAL.print("fsensor_enable()");
  5108. #ifdef PAT9125
  5109. fsensor_enable();
  5110. #endif*/
  5111. break;
  5112. // case 4:
  5113. // lcdBlinkDelay = 10;
  5114. /* MYSERIAL.print("fsensor_disable()");
  5115. #ifdef PAT9125
  5116. fsensor_disable();
  5117. #endif
  5118. break;*/
  5119. // break;
  5120. /* case 5:
  5121. {
  5122. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5123. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5124. MYSERIAL.println(val);
  5125. homeaxis(0);
  5126. }
  5127. break;*/
  5128. case 6:
  5129. {
  5130. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5131. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5132. MYSERIAL.println(val);*/
  5133. homeaxis(1);
  5134. }
  5135. break;
  5136. case 7:
  5137. {
  5138. MYSERIAL.print("pat9125_init=");
  5139. MYSERIAL.println(pat9125_init(200, 200));
  5140. }
  5141. break;
  5142. case 8:
  5143. {
  5144. MYSERIAL.print("swi2c_check=");
  5145. MYSERIAL.println(swi2c_check(0x75));
  5146. }
  5147. break;
  5148. }
  5149. }
  5150. #endif //DEBUG_DCODES
  5151. else
  5152. {
  5153. SERIAL_ECHO_START;
  5154. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5155. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5156. SERIAL_ECHOLNPGM("\"(2)");
  5157. }
  5158. ClearToSend();
  5159. }
  5160. void FlushSerialRequestResend()
  5161. {
  5162. //char cmdbuffer[bufindr][100]="Resend:";
  5163. MYSERIAL.flush();
  5164. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5165. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5166. ClearToSend();
  5167. }
  5168. // Confirm the execution of a command, if sent from a serial line.
  5169. // Execution of a command from a SD card will not be confirmed.
  5170. void ClearToSend()
  5171. {
  5172. previous_millis_cmd = millis();
  5173. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5174. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5175. }
  5176. void get_coordinates()
  5177. {
  5178. bool seen[4]={false,false,false,false};
  5179. for(int8_t i=0; i < NUM_AXIS; i++) {
  5180. if(code_seen(axis_codes[i]))
  5181. {
  5182. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5183. seen[i]=true;
  5184. }
  5185. else destination[i] = current_position[i]; //Are these else lines really needed?
  5186. }
  5187. if(code_seen('F')) {
  5188. next_feedrate = code_value();
  5189. #ifdef MAX_SILENT_FEEDRATE
  5190. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5191. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5192. #endif //MAX_SILENT_FEEDRATE
  5193. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5194. }
  5195. }
  5196. void get_arc_coordinates()
  5197. {
  5198. #ifdef SF_ARC_FIX
  5199. bool relative_mode_backup = relative_mode;
  5200. relative_mode = true;
  5201. #endif
  5202. get_coordinates();
  5203. #ifdef SF_ARC_FIX
  5204. relative_mode=relative_mode_backup;
  5205. #endif
  5206. if(code_seen('I')) {
  5207. offset[0] = code_value();
  5208. }
  5209. else {
  5210. offset[0] = 0.0;
  5211. }
  5212. if(code_seen('J')) {
  5213. offset[1] = code_value();
  5214. }
  5215. else {
  5216. offset[1] = 0.0;
  5217. }
  5218. }
  5219. void clamp_to_software_endstops(float target[3])
  5220. {
  5221. #ifdef DEBUG_DISABLE_SWLIMITS
  5222. return;
  5223. #endif //DEBUG_DISABLE_SWLIMITS
  5224. world2machine_clamp(target[0], target[1]);
  5225. // Clamp the Z coordinate.
  5226. if (min_software_endstops) {
  5227. float negative_z_offset = 0;
  5228. #ifdef ENABLE_AUTO_BED_LEVELING
  5229. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5230. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5231. #endif
  5232. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5233. }
  5234. if (max_software_endstops) {
  5235. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5236. }
  5237. }
  5238. #ifdef MESH_BED_LEVELING
  5239. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5240. float dx = x - current_position[X_AXIS];
  5241. float dy = y - current_position[Y_AXIS];
  5242. float dz = z - current_position[Z_AXIS];
  5243. int n_segments = 0;
  5244. if (mbl.active) {
  5245. float len = abs(dx) + abs(dy);
  5246. if (len > 0)
  5247. // Split to 3cm segments or shorter.
  5248. n_segments = int(ceil(len / 30.f));
  5249. }
  5250. if (n_segments > 1) {
  5251. float de = e - current_position[E_AXIS];
  5252. for (int i = 1; i < n_segments; ++ i) {
  5253. float t = float(i) / float(n_segments);
  5254. plan_buffer_line(
  5255. current_position[X_AXIS] + t * dx,
  5256. current_position[Y_AXIS] + t * dy,
  5257. current_position[Z_AXIS] + t * dz,
  5258. current_position[E_AXIS] + t * de,
  5259. feed_rate, extruder);
  5260. }
  5261. }
  5262. // The rest of the path.
  5263. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5264. current_position[X_AXIS] = x;
  5265. current_position[Y_AXIS] = y;
  5266. current_position[Z_AXIS] = z;
  5267. current_position[E_AXIS] = e;
  5268. }
  5269. #endif // MESH_BED_LEVELING
  5270. void prepare_move()
  5271. {
  5272. clamp_to_software_endstops(destination);
  5273. previous_millis_cmd = millis();
  5274. // Do not use feedmultiply for E or Z only moves
  5275. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5277. }
  5278. else {
  5279. #ifdef MESH_BED_LEVELING
  5280. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5281. #else
  5282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5283. #endif
  5284. }
  5285. for(int8_t i=0; i < NUM_AXIS; i++) {
  5286. current_position[i] = destination[i];
  5287. }
  5288. }
  5289. void prepare_arc_move(char isclockwise) {
  5290. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5291. // Trace the arc
  5292. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5293. // As far as the parser is concerned, the position is now == target. In reality the
  5294. // motion control system might still be processing the action and the real tool position
  5295. // in any intermediate location.
  5296. for(int8_t i=0; i < NUM_AXIS; i++) {
  5297. current_position[i] = destination[i];
  5298. }
  5299. previous_millis_cmd = millis();
  5300. }
  5301. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5302. #if defined(FAN_PIN)
  5303. #if CONTROLLERFAN_PIN == FAN_PIN
  5304. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5305. #endif
  5306. #endif
  5307. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5308. unsigned long lastMotorCheck = 0;
  5309. void controllerFan()
  5310. {
  5311. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5312. {
  5313. lastMotorCheck = millis();
  5314. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5315. #if EXTRUDERS > 2
  5316. || !READ(E2_ENABLE_PIN)
  5317. #endif
  5318. #if EXTRUDER > 1
  5319. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5320. || !READ(X2_ENABLE_PIN)
  5321. #endif
  5322. || !READ(E1_ENABLE_PIN)
  5323. #endif
  5324. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5325. {
  5326. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5327. }
  5328. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5329. {
  5330. digitalWrite(CONTROLLERFAN_PIN, 0);
  5331. analogWrite(CONTROLLERFAN_PIN, 0);
  5332. }
  5333. else
  5334. {
  5335. // allows digital or PWM fan output to be used (see M42 handling)
  5336. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5337. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5338. }
  5339. }
  5340. }
  5341. #endif
  5342. #ifdef TEMP_STAT_LEDS
  5343. static bool blue_led = false;
  5344. static bool red_led = false;
  5345. static uint32_t stat_update = 0;
  5346. void handle_status_leds(void) {
  5347. float max_temp = 0.0;
  5348. if(millis() > stat_update) {
  5349. stat_update += 500; // Update every 0.5s
  5350. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5351. max_temp = max(max_temp, degHotend(cur_extruder));
  5352. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5353. }
  5354. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5355. max_temp = max(max_temp, degTargetBed());
  5356. max_temp = max(max_temp, degBed());
  5357. #endif
  5358. if((max_temp > 55.0) && (red_led == false)) {
  5359. digitalWrite(STAT_LED_RED, 1);
  5360. digitalWrite(STAT_LED_BLUE, 0);
  5361. red_led = true;
  5362. blue_led = false;
  5363. }
  5364. if((max_temp < 54.0) && (blue_led == false)) {
  5365. digitalWrite(STAT_LED_RED, 0);
  5366. digitalWrite(STAT_LED_BLUE, 1);
  5367. red_led = false;
  5368. blue_led = true;
  5369. }
  5370. }
  5371. }
  5372. #endif
  5373. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5374. {
  5375. #if defined(KILL_PIN) && KILL_PIN > -1
  5376. static int killCount = 0; // make the inactivity button a bit less responsive
  5377. const int KILL_DELAY = 10000;
  5378. #endif
  5379. if(buflen < (BUFSIZE-1)){
  5380. get_command();
  5381. }
  5382. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5383. if(max_inactive_time)
  5384. kill("", 4);
  5385. if(stepper_inactive_time) {
  5386. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5387. {
  5388. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5389. disable_x();
  5390. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5391. disable_y();
  5392. disable_z();
  5393. disable_e0();
  5394. disable_e1();
  5395. disable_e2();
  5396. }
  5397. }
  5398. }
  5399. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5400. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5401. {
  5402. chdkActive = false;
  5403. WRITE(CHDK, LOW);
  5404. }
  5405. #endif
  5406. #if defined(KILL_PIN) && KILL_PIN > -1
  5407. // Check if the kill button was pressed and wait just in case it was an accidental
  5408. // key kill key press
  5409. // -------------------------------------------------------------------------------
  5410. if( 0 == READ(KILL_PIN) )
  5411. {
  5412. killCount++;
  5413. }
  5414. else if (killCount > 0)
  5415. {
  5416. killCount--;
  5417. }
  5418. // Exceeded threshold and we can confirm that it was not accidental
  5419. // KILL the machine
  5420. // ----------------------------------------------------------------
  5421. if ( killCount >= KILL_DELAY)
  5422. {
  5423. kill("", 5);
  5424. }
  5425. #endif
  5426. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5427. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5428. #endif
  5429. #ifdef EXTRUDER_RUNOUT_PREVENT
  5430. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5431. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5432. {
  5433. bool oldstatus=READ(E0_ENABLE_PIN);
  5434. enable_e0();
  5435. float oldepos=current_position[E_AXIS];
  5436. float oldedes=destination[E_AXIS];
  5437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5438. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5439. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5440. current_position[E_AXIS]=oldepos;
  5441. destination[E_AXIS]=oldedes;
  5442. plan_set_e_position(oldepos);
  5443. previous_millis_cmd=millis();
  5444. st_synchronize();
  5445. WRITE(E0_ENABLE_PIN,oldstatus);
  5446. }
  5447. #endif
  5448. #ifdef TEMP_STAT_LEDS
  5449. handle_status_leds();
  5450. #endif
  5451. check_axes_activity();
  5452. }
  5453. void kill(const char *full_screen_message, unsigned char id)
  5454. {
  5455. SERIAL_ECHOPGM("KILL: ");
  5456. MYSERIAL.println(int(id));
  5457. //return;
  5458. cli(); // Stop interrupts
  5459. disable_heater();
  5460. disable_x();
  5461. // SERIAL_ECHOLNPGM("kill - disable Y");
  5462. disable_y();
  5463. disable_z();
  5464. disable_e0();
  5465. disable_e1();
  5466. disable_e2();
  5467. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5468. pinMode(PS_ON_PIN,INPUT);
  5469. #endif
  5470. SERIAL_ERROR_START;
  5471. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5472. if (full_screen_message != NULL) {
  5473. SERIAL_ERRORLNRPGM(full_screen_message);
  5474. lcd_display_message_fullscreen_P(full_screen_message);
  5475. } else {
  5476. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5477. }
  5478. // FMC small patch to update the LCD before ending
  5479. sei(); // enable interrupts
  5480. for ( int i=5; i--; lcd_update())
  5481. {
  5482. delay(200);
  5483. }
  5484. cli(); // disable interrupts
  5485. suicide();
  5486. while(1) { /* Intentionally left empty */ } // Wait for reset
  5487. }
  5488. void Stop()
  5489. {
  5490. disable_heater();
  5491. if(Stopped == false) {
  5492. Stopped = true;
  5493. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5494. SERIAL_ERROR_START;
  5495. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5496. LCD_MESSAGERPGM(MSG_STOPPED);
  5497. }
  5498. }
  5499. bool IsStopped() { return Stopped; };
  5500. #ifdef FAST_PWM_FAN
  5501. void setPwmFrequency(uint8_t pin, int val)
  5502. {
  5503. val &= 0x07;
  5504. switch(digitalPinToTimer(pin))
  5505. {
  5506. #if defined(TCCR0A)
  5507. case TIMER0A:
  5508. case TIMER0B:
  5509. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5510. // TCCR0B |= val;
  5511. break;
  5512. #endif
  5513. #if defined(TCCR1A)
  5514. case TIMER1A:
  5515. case TIMER1B:
  5516. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5517. // TCCR1B |= val;
  5518. break;
  5519. #endif
  5520. #if defined(TCCR2)
  5521. case TIMER2:
  5522. case TIMER2:
  5523. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5524. TCCR2 |= val;
  5525. break;
  5526. #endif
  5527. #if defined(TCCR2A)
  5528. case TIMER2A:
  5529. case TIMER2B:
  5530. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5531. TCCR2B |= val;
  5532. break;
  5533. #endif
  5534. #if defined(TCCR3A)
  5535. case TIMER3A:
  5536. case TIMER3B:
  5537. case TIMER3C:
  5538. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5539. TCCR3B |= val;
  5540. break;
  5541. #endif
  5542. #if defined(TCCR4A)
  5543. case TIMER4A:
  5544. case TIMER4B:
  5545. case TIMER4C:
  5546. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5547. TCCR4B |= val;
  5548. break;
  5549. #endif
  5550. #if defined(TCCR5A)
  5551. case TIMER5A:
  5552. case TIMER5B:
  5553. case TIMER5C:
  5554. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5555. TCCR5B |= val;
  5556. break;
  5557. #endif
  5558. }
  5559. }
  5560. #endif //FAST_PWM_FAN
  5561. bool setTargetedHotend(int code){
  5562. tmp_extruder = active_extruder;
  5563. if(code_seen('T')) {
  5564. tmp_extruder = code_value();
  5565. if(tmp_extruder >= EXTRUDERS) {
  5566. SERIAL_ECHO_START;
  5567. switch(code){
  5568. case 104:
  5569. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5570. break;
  5571. case 105:
  5572. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5573. break;
  5574. case 109:
  5575. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5576. break;
  5577. case 218:
  5578. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5579. break;
  5580. case 221:
  5581. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5582. break;
  5583. }
  5584. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5585. return true;
  5586. }
  5587. }
  5588. return false;
  5589. }
  5590. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5591. {
  5592. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5593. {
  5594. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5595. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5596. }
  5597. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5598. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5599. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5600. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5601. total_filament_used = 0;
  5602. }
  5603. float calculate_volumetric_multiplier(float diameter) {
  5604. float area = .0;
  5605. float radius = .0;
  5606. radius = diameter * .5;
  5607. if (! volumetric_enabled || radius == 0) {
  5608. area = 1;
  5609. }
  5610. else {
  5611. area = M_PI * pow(radius, 2);
  5612. }
  5613. return 1.0 / area;
  5614. }
  5615. void calculate_volumetric_multipliers() {
  5616. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5617. #if EXTRUDERS > 1
  5618. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5619. #if EXTRUDERS > 2
  5620. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5621. #endif
  5622. #endif
  5623. }
  5624. void delay_keep_alive(unsigned int ms)
  5625. {
  5626. for (;;) {
  5627. manage_heater();
  5628. // Manage inactivity, but don't disable steppers on timeout.
  5629. manage_inactivity(true);
  5630. lcd_update();
  5631. if (ms == 0)
  5632. break;
  5633. else if (ms >= 50) {
  5634. delay(50);
  5635. ms -= 50;
  5636. } else {
  5637. delay(ms);
  5638. ms = 0;
  5639. }
  5640. }
  5641. }
  5642. void wait_for_heater(long codenum) {
  5643. #ifdef TEMP_RESIDENCY_TIME
  5644. long residencyStart;
  5645. residencyStart = -1;
  5646. /* continue to loop until we have reached the target temp
  5647. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5648. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5649. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5650. #else
  5651. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5652. #endif //TEMP_RESIDENCY_TIME
  5653. if ((millis() - codenum) > 1000UL)
  5654. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5655. if (!farm_mode) {
  5656. SERIAL_PROTOCOLPGM("T:");
  5657. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5658. SERIAL_PROTOCOLPGM(" E:");
  5659. SERIAL_PROTOCOL((int)tmp_extruder);
  5660. #ifdef TEMP_RESIDENCY_TIME
  5661. SERIAL_PROTOCOLPGM(" W:");
  5662. if (residencyStart > -1)
  5663. {
  5664. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5665. SERIAL_PROTOCOLLN(codenum);
  5666. }
  5667. else
  5668. {
  5669. SERIAL_PROTOCOLLN("?");
  5670. }
  5671. }
  5672. #else
  5673. SERIAL_PROTOCOLLN("");
  5674. #endif
  5675. codenum = millis();
  5676. }
  5677. manage_heater();
  5678. manage_inactivity();
  5679. lcd_update();
  5680. #ifdef TEMP_RESIDENCY_TIME
  5681. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5682. or when current temp falls outside the hysteresis after target temp was reached */
  5683. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5684. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5685. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5686. {
  5687. residencyStart = millis();
  5688. }
  5689. #endif //TEMP_RESIDENCY_TIME
  5690. }
  5691. }
  5692. void check_babystep() {
  5693. int babystep_z;
  5694. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5695. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5696. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5697. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5698. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5699. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5700. lcd_update_enable(true);
  5701. }
  5702. }
  5703. #ifdef DIS
  5704. void d_setup()
  5705. {
  5706. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5707. pinMode(D_DATA, INPUT_PULLUP);
  5708. pinMode(D_REQUIRE, OUTPUT);
  5709. digitalWrite(D_REQUIRE, HIGH);
  5710. }
  5711. float d_ReadData()
  5712. {
  5713. int digit[13];
  5714. String mergeOutput;
  5715. float output;
  5716. digitalWrite(D_REQUIRE, HIGH);
  5717. for (int i = 0; i<13; i++)
  5718. {
  5719. for (int j = 0; j < 4; j++)
  5720. {
  5721. while (digitalRead(D_DATACLOCK) == LOW) {}
  5722. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5723. bitWrite(digit[i], j, digitalRead(D_DATA));
  5724. }
  5725. }
  5726. digitalWrite(D_REQUIRE, LOW);
  5727. mergeOutput = "";
  5728. output = 0;
  5729. for (int r = 5; r <= 10; r++) //Merge digits
  5730. {
  5731. mergeOutput += digit[r];
  5732. }
  5733. output = mergeOutput.toFloat();
  5734. if (digit[4] == 8) //Handle sign
  5735. {
  5736. output *= -1;
  5737. }
  5738. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5739. {
  5740. output /= 10;
  5741. }
  5742. return output;
  5743. }
  5744. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5745. int t1 = 0;
  5746. int t_delay = 0;
  5747. int digit[13];
  5748. int m;
  5749. char str[3];
  5750. //String mergeOutput;
  5751. char mergeOutput[15];
  5752. float output;
  5753. int mesh_point = 0; //index number of calibration point
  5754. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5755. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5756. float mesh_home_z_search = 4;
  5757. float row[x_points_num];
  5758. int ix = 0;
  5759. int iy = 0;
  5760. char* filename_wldsd = "wldsd.txt";
  5761. char data_wldsd[70];
  5762. char numb_wldsd[10];
  5763. d_setup();
  5764. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5765. // We don't know where we are! HOME!
  5766. // Push the commands to the front of the message queue in the reverse order!
  5767. // There shall be always enough space reserved for these commands.
  5768. repeatcommand_front(); // repeat G80 with all its parameters
  5769. enquecommand_front_P((PSTR("G28 W0")));
  5770. enquecommand_front_P((PSTR("G1 Z5")));
  5771. return;
  5772. }
  5773. bool custom_message_old = custom_message;
  5774. unsigned int custom_message_type_old = custom_message_type;
  5775. unsigned int custom_message_state_old = custom_message_state;
  5776. custom_message = true;
  5777. custom_message_type = 1;
  5778. custom_message_state = (x_points_num * y_points_num) + 10;
  5779. lcd_update(1);
  5780. mbl.reset();
  5781. babystep_undo();
  5782. card.openFile(filename_wldsd, false);
  5783. current_position[Z_AXIS] = mesh_home_z_search;
  5784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5785. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5786. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5787. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5788. setup_for_endstop_move(false);
  5789. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5790. SERIAL_PROTOCOL(x_points_num);
  5791. SERIAL_PROTOCOLPGM(",");
  5792. SERIAL_PROTOCOL(y_points_num);
  5793. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5794. SERIAL_PROTOCOL(mesh_home_z_search);
  5795. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5796. SERIAL_PROTOCOL(x_dimension);
  5797. SERIAL_PROTOCOLPGM(",");
  5798. SERIAL_PROTOCOL(y_dimension);
  5799. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5800. while (mesh_point != x_points_num * y_points_num) {
  5801. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5802. iy = mesh_point / x_points_num;
  5803. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5804. float z0 = 0.f;
  5805. current_position[Z_AXIS] = mesh_home_z_search;
  5806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5807. st_synchronize();
  5808. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5809. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5811. st_synchronize();
  5812. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5813. break;
  5814. card.closefile();
  5815. }
  5816. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5817. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5818. //strcat(data_wldsd, numb_wldsd);
  5819. //MYSERIAL.println(data_wldsd);
  5820. //delay(1000);
  5821. //delay(3000);
  5822. //t1 = millis();
  5823. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5824. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5825. memset(digit, 0, sizeof(digit));
  5826. //cli();
  5827. digitalWrite(D_REQUIRE, LOW);
  5828. for (int i = 0; i<13; i++)
  5829. {
  5830. //t1 = millis();
  5831. for (int j = 0; j < 4; j++)
  5832. {
  5833. while (digitalRead(D_DATACLOCK) == LOW) {}
  5834. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5835. bitWrite(digit[i], j, digitalRead(D_DATA));
  5836. }
  5837. //t_delay = (millis() - t1);
  5838. //SERIAL_PROTOCOLPGM(" ");
  5839. //SERIAL_PROTOCOL_F(t_delay, 5);
  5840. //SERIAL_PROTOCOLPGM(" ");
  5841. }
  5842. //sei();
  5843. digitalWrite(D_REQUIRE, HIGH);
  5844. mergeOutput[0] = '\0';
  5845. output = 0;
  5846. for (int r = 5; r <= 10; r++) //Merge digits
  5847. {
  5848. sprintf(str, "%d", digit[r]);
  5849. strcat(mergeOutput, str);
  5850. }
  5851. output = atof(mergeOutput);
  5852. if (digit[4] == 8) //Handle sign
  5853. {
  5854. output *= -1;
  5855. }
  5856. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5857. {
  5858. output *= 0.1;
  5859. }
  5860. //output = d_ReadData();
  5861. //row[ix] = current_position[Z_AXIS];
  5862. memset(data_wldsd, 0, sizeof(data_wldsd));
  5863. for (int i = 0; i <3; i++) {
  5864. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5865. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5866. strcat(data_wldsd, numb_wldsd);
  5867. strcat(data_wldsd, ";");
  5868. }
  5869. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5870. dtostrf(output, 8, 5, numb_wldsd);
  5871. strcat(data_wldsd, numb_wldsd);
  5872. //strcat(data_wldsd, ";");
  5873. card.write_command(data_wldsd);
  5874. //row[ix] = d_ReadData();
  5875. row[ix] = output; // current_position[Z_AXIS];
  5876. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5877. for (int i = 0; i < x_points_num; i++) {
  5878. SERIAL_PROTOCOLPGM(" ");
  5879. SERIAL_PROTOCOL_F(row[i], 5);
  5880. }
  5881. SERIAL_PROTOCOLPGM("\n");
  5882. }
  5883. custom_message_state--;
  5884. mesh_point++;
  5885. lcd_update(1);
  5886. }
  5887. card.closefile();
  5888. }
  5889. #endif
  5890. void temp_compensation_start() {
  5891. custom_message = true;
  5892. custom_message_type = 5;
  5893. custom_message_state = PINDA_HEAT_T + 1;
  5894. lcd_update(2);
  5895. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5896. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5897. }
  5898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5899. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5900. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5901. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5903. st_synchronize();
  5904. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5905. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5906. delay_keep_alive(1000);
  5907. custom_message_state = PINDA_HEAT_T - i;
  5908. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5909. else lcd_update(1);
  5910. }
  5911. custom_message_type = 0;
  5912. custom_message_state = 0;
  5913. custom_message = false;
  5914. }
  5915. void temp_compensation_apply() {
  5916. int i_add;
  5917. int compensation_value;
  5918. int z_shift = 0;
  5919. float z_shift_mm;
  5920. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5921. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5922. i_add = (target_temperature_bed - 60) / 10;
  5923. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5924. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5925. }else {
  5926. //interpolation
  5927. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5928. }
  5929. SERIAL_PROTOCOLPGM("\n");
  5930. SERIAL_PROTOCOLPGM("Z shift applied:");
  5931. MYSERIAL.print(z_shift_mm);
  5932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5933. st_synchronize();
  5934. plan_set_z_position(current_position[Z_AXIS]);
  5935. }
  5936. else {
  5937. //we have no temp compensation data
  5938. }
  5939. }
  5940. float temp_comp_interpolation(float inp_temperature) {
  5941. //cubic spline interpolation
  5942. int n, i, j, k;
  5943. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5944. int shift[10];
  5945. int temp_C[10];
  5946. n = 6; //number of measured points
  5947. shift[0] = 0;
  5948. for (i = 0; i < n; i++) {
  5949. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5950. temp_C[i] = 50 + i * 10; //temperature in C
  5951. #ifdef PINDA_THERMISTOR
  5952. temp_C[i] = 35 + i * 5; //temperature in C
  5953. #else
  5954. temp_C[i] = 50 + i * 10; //temperature in C
  5955. #endif
  5956. x[i] = (float)temp_C[i];
  5957. f[i] = (float)shift[i];
  5958. }
  5959. if (inp_temperature < x[0]) return 0;
  5960. for (i = n - 1; i>0; i--) {
  5961. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5962. h[i - 1] = x[i] - x[i - 1];
  5963. }
  5964. //*********** formation of h, s , f matrix **************
  5965. for (i = 1; i<n - 1; i++) {
  5966. m[i][i] = 2 * (h[i - 1] + h[i]);
  5967. if (i != 1) {
  5968. m[i][i - 1] = h[i - 1];
  5969. m[i - 1][i] = h[i - 1];
  5970. }
  5971. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5972. }
  5973. //*********** forward elimination **************
  5974. for (i = 1; i<n - 2; i++) {
  5975. temp = (m[i + 1][i] / m[i][i]);
  5976. for (j = 1; j <= n - 1; j++)
  5977. m[i + 1][j] -= temp*m[i][j];
  5978. }
  5979. //*********** backward substitution *********
  5980. for (i = n - 2; i>0; i--) {
  5981. sum = 0;
  5982. for (j = i; j <= n - 2; j++)
  5983. sum += m[i][j] * s[j];
  5984. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5985. }
  5986. for (i = 0; i<n - 1; i++)
  5987. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5988. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5989. b = s[i] / 2;
  5990. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5991. d = f[i];
  5992. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5993. }
  5994. return sum;
  5995. }
  5996. #ifdef PINDA_THERMISTOR
  5997. float temp_compensation_pinda_thermistor_offset()
  5998. {
  5999. if (!temp_cal_active) return 0;
  6000. if (!calibration_status_pinda()) return 0;
  6001. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6002. }
  6003. #endif //PINDA_THERMISTOR
  6004. void long_pause() //long pause print
  6005. {
  6006. st_synchronize();
  6007. //save currently set parameters to global variables
  6008. saved_feedmultiply = feedmultiply;
  6009. HotendTempBckp = degTargetHotend(active_extruder);
  6010. fanSpeedBckp = fanSpeed;
  6011. start_pause_print = millis();
  6012. //save position
  6013. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6014. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6015. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6016. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6017. //retract
  6018. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6020. //lift z
  6021. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6022. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6024. //set nozzle target temperature to 0
  6025. setTargetHotend(0, 0);
  6026. setTargetHotend(0, 1);
  6027. setTargetHotend(0, 2);
  6028. //Move XY to side
  6029. current_position[X_AXIS] = X_PAUSE_POS;
  6030. current_position[Y_AXIS] = Y_PAUSE_POS;
  6031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6032. // Turn off the print fan
  6033. fanSpeed = 0;
  6034. st_synchronize();
  6035. }
  6036. void serialecho_temperatures() {
  6037. float tt = degHotend(active_extruder);
  6038. SERIAL_PROTOCOLPGM("T:");
  6039. SERIAL_PROTOCOL(tt);
  6040. SERIAL_PROTOCOLPGM(" E:");
  6041. SERIAL_PROTOCOL((int)active_extruder);
  6042. SERIAL_PROTOCOLPGM(" B:");
  6043. SERIAL_PROTOCOL_F(degBed(), 1);
  6044. SERIAL_PROTOCOLLN("");
  6045. }
  6046. extern uint32_t sdpos_atomic;
  6047. void uvlo_()
  6048. {
  6049. // Conserve power as soon as possible.
  6050. disable_x();
  6051. disable_y();
  6052. // Indicate that the interrupt has been triggered.
  6053. SERIAL_ECHOLNPGM("UVLO");
  6054. // Read out the current Z motor microstep counter. This will be later used
  6055. // for reaching the zero full step before powering off.
  6056. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6057. // Calculate the file position, from which to resume this print.
  6058. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6059. {
  6060. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6061. sd_position -= sdlen_planner;
  6062. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6063. sd_position -= sdlen_cmdqueue;
  6064. if (sd_position < 0) sd_position = 0;
  6065. }
  6066. // Backup the feedrate in mm/min.
  6067. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6068. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6069. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6070. // are in action.
  6071. planner_abort_hard();
  6072. // Clean the input command queue.
  6073. cmdqueue_reset();
  6074. card.sdprinting = false;
  6075. // card.closefile();
  6076. // Enable stepper driver interrupt to move Z axis.
  6077. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6078. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6079. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6080. sei();
  6081. plan_buffer_line(
  6082. current_position[X_AXIS],
  6083. current_position[Y_AXIS],
  6084. current_position[Z_AXIS],
  6085. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6086. 400, active_extruder);
  6087. plan_buffer_line(
  6088. current_position[X_AXIS],
  6089. current_position[Y_AXIS],
  6090. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6091. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6092. 40, active_extruder);
  6093. // Move Z up to the next 0th full step.
  6094. // Write the file position.
  6095. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6096. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6097. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6098. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6099. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6100. // Scale the z value to 1u resolution.
  6101. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6102. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6103. }
  6104. // Read out the current Z motor microstep counter. This will be later used
  6105. // for reaching the zero full step before powering off.
  6106. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6107. // Store the current position.
  6108. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6109. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6110. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6111. // Store the current feed rate, temperatures and fan speed.
  6112. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6113. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6114. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6115. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6116. // Finaly store the "power outage" flag.
  6117. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6118. st_synchronize();
  6119. SERIAL_ECHOPGM("stps");
  6120. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6121. #if 0
  6122. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6123. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6125. st_synchronize();
  6126. #endif
  6127. disable_z();
  6128. SERIAL_ECHOLNPGM("UVLO - end");
  6129. cli();
  6130. while(1);
  6131. }
  6132. void setup_uvlo_interrupt() {
  6133. DDRE &= ~(1 << 4); //input pin
  6134. PORTE &= ~(1 << 4); //no internal pull-up
  6135. //sensing falling edge
  6136. EICRB |= (1 << 0);
  6137. EICRB &= ~(1 << 1);
  6138. //enable INT4 interrupt
  6139. EIMSK |= (1 << 4);
  6140. }
  6141. ISR(INT4_vect) {
  6142. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6143. SERIAL_ECHOLNPGM("INT4");
  6144. if (IS_SD_PRINTING) uvlo_();
  6145. }
  6146. void recover_print(uint8_t automatic) {
  6147. char cmd[30];
  6148. lcd_update_enable(true);
  6149. lcd_update(2);
  6150. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6151. recover_machine_state_after_power_panic();
  6152. // Set the target bed and nozzle temperatures.
  6153. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6154. enquecommand(cmd);
  6155. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6156. enquecommand(cmd);
  6157. // Lift the print head, so one may remove the excess priming material.
  6158. if (current_position[Z_AXIS] < 25)
  6159. enquecommand_P(PSTR("G1 Z25 F800"));
  6160. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6161. enquecommand_P(PSTR("G28 X Y"));
  6162. // Set the target bed and nozzle temperatures and wait.
  6163. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6164. enquecommand(cmd);
  6165. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6166. enquecommand(cmd);
  6167. enquecommand_P(PSTR("M83")); //E axis relative mode
  6168. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6169. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6170. if(automatic == 0){
  6171. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6172. }
  6173. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6174. // Mark the power panic status as inactive.
  6175. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6176. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6177. delay_keep_alive(1000);
  6178. }*/
  6179. SERIAL_ECHOPGM("After waiting for temp:");
  6180. SERIAL_ECHOPGM("Current position X_AXIS:");
  6181. MYSERIAL.println(current_position[X_AXIS]);
  6182. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6183. MYSERIAL.println(current_position[Y_AXIS]);
  6184. // Restart the print.
  6185. restore_print_from_eeprom();
  6186. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6187. MYSERIAL.print(current_position[Z_AXIS]);
  6188. }
  6189. void recover_machine_state_after_power_panic()
  6190. {
  6191. // 1) Recover the logical cordinates at the time of the power panic.
  6192. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6193. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6194. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6195. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6196. // The current position after power panic is moved to the next closest 0th full step.
  6197. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6198. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6199. memcpy(destination, current_position, sizeof(destination));
  6200. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6201. print_world_coordinates();
  6202. // 2) Initialize the logical to physical coordinate system transformation.
  6203. world2machine_initialize();
  6204. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6205. mbl.active = false;
  6206. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6207. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6208. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6209. // Scale the z value to 10u resolution.
  6210. int16_t v;
  6211. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6212. if (v != 0)
  6213. mbl.active = true;
  6214. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6215. }
  6216. if (mbl.active)
  6217. mbl.upsample_3x3();
  6218. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6219. print_mesh_bed_leveling_table();
  6220. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6221. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6222. babystep_load();
  6223. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6224. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6225. // 6) Power up the motors, mark their positions as known.
  6226. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6227. axis_known_position[X_AXIS] = true; enable_x();
  6228. axis_known_position[Y_AXIS] = true; enable_y();
  6229. axis_known_position[Z_AXIS] = true; enable_z();
  6230. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6231. print_physical_coordinates();
  6232. // 7) Recover the target temperatures.
  6233. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6234. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6235. }
  6236. void restore_print_from_eeprom() {
  6237. float x_rec, y_rec, z_pos;
  6238. int feedrate_rec;
  6239. uint8_t fan_speed_rec;
  6240. char cmd[30];
  6241. char* c;
  6242. char filename[13];
  6243. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6244. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6245. SERIAL_ECHOPGM("Feedrate:");
  6246. MYSERIAL.println(feedrate_rec);
  6247. for (int i = 0; i < 8; i++) {
  6248. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6249. }
  6250. filename[8] = '\0';
  6251. MYSERIAL.print(filename);
  6252. strcat_P(filename, PSTR(".gco"));
  6253. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6254. for (c = &cmd[4]; *c; c++)
  6255. *c = tolower(*c);
  6256. enquecommand(cmd);
  6257. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6258. SERIAL_ECHOPGM("Position read from eeprom:");
  6259. MYSERIAL.println(position);
  6260. // E axis relative mode.
  6261. enquecommand_P(PSTR("M83"));
  6262. // Move to the XY print position in logical coordinates, where the print has been killed.
  6263. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6264. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6265. strcat_P(cmd, PSTR(" F2000"));
  6266. enquecommand(cmd);
  6267. // Move the Z axis down to the print, in logical coordinates.
  6268. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6269. enquecommand(cmd);
  6270. // Unretract.
  6271. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6272. // Set the feedrate saved at the power panic.
  6273. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6274. enquecommand(cmd);
  6275. // Set the fan speed saved at the power panic.
  6276. strcpy_P(cmd, PSTR("M106 S"));
  6277. strcat(cmd, itostr3(int(fan_speed_rec)));
  6278. enquecommand(cmd);
  6279. // Set a position in the file.
  6280. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6281. enquecommand(cmd);
  6282. // Start SD print.
  6283. enquecommand_P(PSTR("M24"));
  6284. }
  6285. ////////////////////////////////////////////////////////////////////////////////
  6286. // new save/restore printing
  6287. //extern uint32_t sdpos_atomic;
  6288. bool saved_printing = false;
  6289. uint32_t saved_sdpos = 0;
  6290. float saved_pos[4] = {0, 0, 0, 0};
  6291. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6292. float saved_feedrate2 = 0;
  6293. uint8_t saved_active_extruder = 0;
  6294. bool saved_extruder_under_pressure = false;
  6295. void stop_and_save_print_to_ram(float z_move, float e_move)
  6296. {
  6297. if (saved_printing) return;
  6298. cli();
  6299. unsigned char nplanner_blocks = number_of_blocks();
  6300. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6301. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6302. saved_sdpos -= sdlen_planner;
  6303. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6304. saved_sdpos -= sdlen_cmdqueue;
  6305. #if 0
  6306. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6307. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6308. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6309. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6310. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6311. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6312. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6313. {
  6314. card.setIndex(saved_sdpos);
  6315. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6316. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6317. MYSERIAL.print(char(card.get()));
  6318. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6319. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6320. MYSERIAL.print(char(card.get()));
  6321. SERIAL_ECHOLNPGM("End of command buffer");
  6322. }
  6323. {
  6324. // Print the content of the planner buffer, line by line:
  6325. card.setIndex(saved_sdpos);
  6326. int8_t iline = 0;
  6327. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6328. SERIAL_ECHOPGM("Planner line (from file): ");
  6329. MYSERIAL.print(int(iline), DEC);
  6330. SERIAL_ECHOPGM(", length: ");
  6331. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6332. SERIAL_ECHOPGM(", steps: (");
  6333. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6334. SERIAL_ECHOPGM(",");
  6335. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6336. SERIAL_ECHOPGM(",");
  6337. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6338. SERIAL_ECHOPGM(",");
  6339. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6340. SERIAL_ECHOPGM("), events: ");
  6341. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6342. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6343. MYSERIAL.print(char(card.get()));
  6344. }
  6345. }
  6346. {
  6347. // Print the content of the command buffer, line by line:
  6348. int8_t iline = 0;
  6349. union {
  6350. struct {
  6351. char lo;
  6352. char hi;
  6353. } lohi;
  6354. uint16_t value;
  6355. } sdlen_single;
  6356. int _bufindr = bufindr;
  6357. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6358. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6359. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6360. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6361. }
  6362. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6363. MYSERIAL.print(int(iline), DEC);
  6364. SERIAL_ECHOPGM(", type: ");
  6365. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6366. SERIAL_ECHOPGM(", len: ");
  6367. MYSERIAL.println(sdlen_single.value, DEC);
  6368. // Print the content of the buffer line.
  6369. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6370. SERIAL_ECHOPGM("Buffer line (from file): ");
  6371. MYSERIAL.print(int(iline), DEC);
  6372. MYSERIAL.println(int(iline), DEC);
  6373. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6374. MYSERIAL.print(char(card.get()));
  6375. if (-- _buflen == 0)
  6376. break;
  6377. // First skip the current command ID and iterate up to the end of the string.
  6378. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6379. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6380. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6381. // If the end of the buffer was empty,
  6382. if (_bufindr == sizeof(cmdbuffer)) {
  6383. // skip to the start and find the nonzero command.
  6384. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6385. }
  6386. }
  6387. }
  6388. #endif
  6389. #if 0
  6390. saved_feedrate2 = feedrate; //save feedrate
  6391. #else
  6392. // Try to deduce the feedrate from the first block of the planner.
  6393. // Speed is in mm/min.
  6394. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6395. #endif
  6396. planner_abort_hard(); //abort printing
  6397. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6398. saved_active_extruder = active_extruder; //save active_extruder
  6399. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6400. cmdqueue_reset(); //empty cmdqueue
  6401. card.sdprinting = false;
  6402. // card.closefile();
  6403. saved_printing = true;
  6404. sei();
  6405. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6406. #if 1
  6407. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6408. char buf[48];
  6409. strcpy_P(buf, PSTR("G1 Z"));
  6410. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6411. strcat_P(buf, PSTR(" E"));
  6412. // Relative extrusion
  6413. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6414. strcat_P(buf, PSTR(" F"));
  6415. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6416. // At this point the command queue is empty.
  6417. enquecommand(buf, false);
  6418. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6419. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6420. repeatcommand_front();
  6421. #else
  6422. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6423. st_synchronize(); //wait moving
  6424. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6425. memcpy(destination, current_position, sizeof(destination));
  6426. #endif
  6427. }
  6428. }
  6429. void restore_print_from_ram_and_continue(float e_move)
  6430. {
  6431. if (!saved_printing) return;
  6432. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6433. // current_position[axis] = st_get_position_mm(axis);
  6434. active_extruder = saved_active_extruder; //restore active_extruder
  6435. feedrate = saved_feedrate2; //restore feedrate
  6436. float e = saved_pos[E_AXIS] - e_move;
  6437. plan_set_e_position(e);
  6438. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6439. st_synchronize();
  6440. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6441. memcpy(destination, current_position, sizeof(destination));
  6442. card.setIndex(saved_sdpos);
  6443. sdpos_atomic = saved_sdpos;
  6444. card.sdprinting = true;
  6445. saved_printing = false;
  6446. }
  6447. void print_world_coordinates()
  6448. {
  6449. SERIAL_ECHOPGM("world coordinates: (");
  6450. MYSERIAL.print(current_position[X_AXIS], 3);
  6451. SERIAL_ECHOPGM(", ");
  6452. MYSERIAL.print(current_position[Y_AXIS], 3);
  6453. SERIAL_ECHOPGM(", ");
  6454. MYSERIAL.print(current_position[Z_AXIS], 3);
  6455. SERIAL_ECHOLNPGM(")");
  6456. }
  6457. void print_physical_coordinates()
  6458. {
  6459. SERIAL_ECHOPGM("physical coordinates: (");
  6460. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6461. SERIAL_ECHOPGM(", ");
  6462. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6463. SERIAL_ECHOPGM(", ");
  6464. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6465. SERIAL_ECHOLNPGM(")");
  6466. }
  6467. void print_mesh_bed_leveling_table()
  6468. {
  6469. SERIAL_ECHOPGM("mesh bed leveling: ");
  6470. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6471. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6472. MYSERIAL.print(mbl.z_values[y][x], 3);
  6473. SERIAL_ECHOPGM(" ");
  6474. }
  6475. SERIAL_ECHOLNPGM("");
  6476. }