Marlin_main.cpp 307 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "cmdqueue.h"
  106. // Macros for bit masks
  107. #define BIT(b) (1<<(b))
  108. #define TEST(n,b) (((n)&BIT(b))!=0)
  109. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  110. //Macro for print fan speed
  111. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  112. #define PRINTING_TYPE_SD 0
  113. #define PRINTING_TYPE_USB 1
  114. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  115. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  116. //Implemented Codes
  117. //-------------------
  118. // PRUSA CODES
  119. // P F - Returns FW versions
  120. // P R - Returns revision of printer
  121. // G0 -> G1
  122. // G1 - Coordinated Movement X Y Z E
  123. // G2 - CW ARC
  124. // G3 - CCW ARC
  125. // G4 - Dwell S<seconds> or P<milliseconds>
  126. // G10 - retract filament according to settings of M207
  127. // G11 - retract recover filament according to settings of M208
  128. // G28 - Home all Axis
  129. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  130. // G30 - Single Z Probe, probes bed at current XY location.
  131. // G31 - Dock sled (Z_PROBE_SLED only)
  132. // G32 - Undock sled (Z_PROBE_SLED only)
  133. // G80 - Automatic mesh bed leveling
  134. // G81 - Print bed profile
  135. // G90 - Use Absolute Coordinates
  136. // G91 - Use Relative Coordinates
  137. // G92 - Set current position to coordinates given
  138. // M Codes
  139. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  140. // M1 - Same as M0
  141. // M17 - Enable/Power all stepper motors
  142. // M18 - Disable all stepper motors; same as M84
  143. // M20 - List SD card
  144. // M21 - Init SD card
  145. // M22 - Release SD card
  146. // M23 - Select SD file (M23 filename.g)
  147. // M24 - Start/resume SD print
  148. // M25 - Pause SD print
  149. // M26 - Set SD position in bytes (M26 S12345)
  150. // M27 - Report SD print status
  151. // M28 - Start SD write (M28 filename.g)
  152. // M29 - Stop SD write
  153. // M30 - Delete file from SD (M30 filename.g)
  154. // M31 - Output time since last M109 or SD card start to serial
  155. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  156. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  157. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  158. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  159. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  160. // M73 - Show percent done and print time remaining
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  169. // M92 - Set axis_steps_per_unit - same syntax as G92
  170. // M104 - Set extruder target temp
  171. // M105 - Read current temp
  172. // M106 - Fan on
  173. // M107 - Fan off
  174. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  175. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  176. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  177. // M112 - Emergency stop
  178. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  179. // M114 - Output current position to serial port
  180. // M115 - Capabilities string
  181. // M117 - display message
  182. // M119 - Output Endstop status to serial port
  183. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  184. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  185. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M140 - Set bed target temp
  188. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  189. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  190. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  191. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  192. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  193. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  194. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  195. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  196. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  197. // M206 - set additional homing offset
  198. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  199. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  200. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  201. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  202. // M220 S<factor in percent>- set speed factor override percentage
  203. // M221 S<factor in percent>- set extrude factor override percentage
  204. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  205. // M240 - Trigger a camera to take a photograph
  206. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  207. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  208. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  209. // M301 - Set PID parameters P I and D
  210. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  211. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  212. // M304 - Set bed PID parameters P I and D
  213. // M400 - Finish all moves
  214. // M401 - Lower z-probe if present
  215. // M402 - Raise z-probe if present
  216. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  217. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  218. // M406 - Turn off Filament Sensor extrusion control
  219. // M407 - Displays measured filament diameter
  220. // M500 - stores parameters in EEPROM
  221. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. // M503 - print the current settings (from memory not from EEPROM)
  224. // M509 - force language selection on next restart
  225. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  226. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  227. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  228. // M860 - Wait for PINDA thermistor to reach target temperature.
  229. // M861 - Set / Read PINDA temperature compensation offsets
  230. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  231. // M907 - Set digital trimpot motor current using axis codes.
  232. // M908 - Control digital trimpot directly.
  233. // M350 - Set microstepping mode.
  234. // M351 - Toggle MS1 MS2 pins directly.
  235. // M928 - Start SD logging (M928 filename.g) - ended by M29
  236. // M999 - Restart after being stopped by error
  237. //Stepper Movement Variables
  238. //===========================================================================
  239. //=============================imported variables============================
  240. //===========================================================================
  241. //===========================================================================
  242. //=============================public variables=============================
  243. //===========================================================================
  244. #ifdef SDSUPPORT
  245. CardReader card;
  246. #endif
  247. unsigned long PingTime = millis();
  248. unsigned long NcTime;
  249. union Data
  250. {
  251. byte b[2];
  252. int value;
  253. };
  254. float homing_feedrate[] = HOMING_FEEDRATE;
  255. // Currently only the extruder axis may be switched to a relative mode.
  256. // Other axes are always absolute or relative based on the common relative_mode flag.
  257. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  258. int feedmultiply=100; //100->1 200->2
  259. int saved_feedmultiply;
  260. int extrudemultiply=100; //100->1 200->2
  261. int extruder_multiply[EXTRUDERS] = {100
  262. #if EXTRUDERS > 1
  263. , 100
  264. #if EXTRUDERS > 2
  265. , 100
  266. #endif
  267. #endif
  268. };
  269. int bowden_length[4] = {385, 385, 385, 385};
  270. bool is_usb_printing = false;
  271. bool homing_flag = false;
  272. bool temp_cal_active = false;
  273. unsigned long kicktime = millis()+100000;
  274. unsigned int usb_printing_counter;
  275. int lcd_change_fil_state = 0;
  276. int feedmultiplyBckp = 100;
  277. float HotendTempBckp = 0;
  278. int fanSpeedBckp = 0;
  279. float pause_lastpos[4];
  280. unsigned long pause_time = 0;
  281. unsigned long start_pause_print = millis();
  282. unsigned long t_fan_rising_edge = millis();
  283. static LongTimer safetyTimer;
  284. static LongTimer crashDetTimer;
  285. //unsigned long load_filament_time;
  286. bool mesh_bed_leveling_flag = false;
  287. bool mesh_bed_run_from_menu = false;
  288. int8_t FarmMode = 0;
  289. bool prusa_sd_card_upload = false;
  290. unsigned int status_number = 0;
  291. unsigned long total_filament_used;
  292. unsigned int heating_status;
  293. unsigned int heating_status_counter;
  294. bool custom_message;
  295. bool loading_flag = false;
  296. unsigned int custom_message_type;
  297. unsigned int custom_message_state;
  298. char snmm_filaments_used = 0;
  299. bool fan_state[2];
  300. int fan_edge_counter[2];
  301. int fan_speed[2];
  302. char dir_names[3][9];
  303. bool sortAlpha = false;
  304. bool volumetric_enabled = false;
  305. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 1
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 2
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #endif
  311. #endif
  312. };
  313. float extruder_multiplier[EXTRUDERS] = {1.0
  314. #if EXTRUDERS > 1
  315. , 1.0
  316. #if EXTRUDERS > 2
  317. , 1.0
  318. #endif
  319. #endif
  320. };
  321. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  322. //shortcuts for more readable code
  323. #define _x current_position[X_AXIS]
  324. #define _y current_position[Y_AXIS]
  325. #define _z current_position[Z_AXIS]
  326. #define _e current_position[E_AXIS]
  327. float add_homing[3]={0,0,0};
  328. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  329. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  330. bool axis_known_position[3] = {false, false, false};
  331. float zprobe_zoffset;
  332. // Extruder offset
  333. #if EXTRUDERS > 1
  334. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  335. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  336. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  337. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  338. #endif
  339. };
  340. #endif
  341. uint8_t active_extruder = 0;
  342. int fanSpeed=0;
  343. #ifdef FWRETRACT
  344. bool autoretract_enabled=false;
  345. bool retracted[EXTRUDERS]={false
  346. #if EXTRUDERS > 1
  347. , false
  348. #if EXTRUDERS > 2
  349. , false
  350. #endif
  351. #endif
  352. };
  353. bool retracted_swap[EXTRUDERS]={false
  354. #if EXTRUDERS > 1
  355. , false
  356. #if EXTRUDERS > 2
  357. , false
  358. #endif
  359. #endif
  360. };
  361. float retract_length = RETRACT_LENGTH;
  362. float retract_length_swap = RETRACT_LENGTH_SWAP;
  363. float retract_feedrate = RETRACT_FEEDRATE;
  364. float retract_zlift = RETRACT_ZLIFT;
  365. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  366. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  367. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  368. #endif
  369. #ifdef PS_DEFAULT_OFF
  370. bool powersupply = false;
  371. #else
  372. bool powersupply = true;
  373. #endif
  374. bool cancel_heatup = false ;
  375. #ifdef HOST_KEEPALIVE_FEATURE
  376. int busy_state = NOT_BUSY;
  377. static long prev_busy_signal_ms = -1;
  378. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  379. #else
  380. #define host_keepalive();
  381. #define KEEPALIVE_STATE(n);
  382. #endif
  383. const char errormagic[] PROGMEM = "Error:";
  384. const char echomagic[] PROGMEM = "echo:";
  385. bool no_response = false;
  386. uint8_t important_status;
  387. uint8_t saved_filament_type;
  388. // save/restore printing
  389. bool saved_printing = false;
  390. // storing estimated time to end of print counted by slicer
  391. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  392. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  393. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. //===========================================================================
  396. //=============================Private Variables=============================
  397. //===========================================================================
  398. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  399. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  400. static float delta[3] = {0.0, 0.0, 0.0};
  401. // For tracing an arc
  402. static float offset[3] = {0.0, 0.0, 0.0};
  403. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  404. // Determines Absolute or Relative Coordinates.
  405. // Also there is bool axis_relative_modes[] per axis flag.
  406. static bool relative_mode = false;
  407. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  408. //static float tt = 0;
  409. //static float bt = 0;
  410. //Inactivity shutdown variables
  411. static unsigned long previous_millis_cmd = 0;
  412. unsigned long max_inactive_time = 0;
  413. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  414. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  415. unsigned long starttime=0;
  416. unsigned long stoptime=0;
  417. unsigned long _usb_timer = 0;
  418. static uint8_t tmp_extruder;
  419. bool extruder_under_pressure = true;
  420. bool Stopped=false;
  421. #if NUM_SERVOS > 0
  422. Servo servos[NUM_SERVOS];
  423. #endif
  424. bool CooldownNoWait = true;
  425. bool target_direction;
  426. //Insert variables if CHDK is defined
  427. #ifdef CHDK
  428. unsigned long chdkHigh = 0;
  429. boolean chdkActive = false;
  430. #endif
  431. // save/restore printing
  432. static uint32_t saved_sdpos = 0;
  433. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  434. static float saved_pos[4] = { 0, 0, 0, 0 };
  435. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  436. static float saved_feedrate2 = 0;
  437. static uint8_t saved_active_extruder = 0;
  438. static bool saved_extruder_under_pressure = false;
  439. static bool saved_extruder_relative_mode = false;
  440. //===========================================================================
  441. //=============================Routines======================================
  442. //===========================================================================
  443. void get_arc_coordinates();
  444. bool setTargetedHotend(int code);
  445. void serial_echopair_P(const char *s_P, float v)
  446. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  447. void serial_echopair_P(const char *s_P, double v)
  448. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  449. void serial_echopair_P(const char *s_P, unsigned long v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. #ifdef SDSUPPORT
  452. #include "SdFatUtil.h"
  453. int freeMemory() { return SdFatUtil::FreeRam(); }
  454. #else
  455. extern "C" {
  456. extern unsigned int __bss_end;
  457. extern unsigned int __heap_start;
  458. extern void *__brkval;
  459. int freeMemory() {
  460. int free_memory;
  461. if ((int)__brkval == 0)
  462. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  463. else
  464. free_memory = ((int)&free_memory) - ((int)__brkval);
  465. return free_memory;
  466. }
  467. }
  468. #endif //!SDSUPPORT
  469. void setup_killpin()
  470. {
  471. #if defined(KILL_PIN) && KILL_PIN > -1
  472. SET_INPUT(KILL_PIN);
  473. WRITE(KILL_PIN,HIGH);
  474. #endif
  475. }
  476. // Set home pin
  477. void setup_homepin(void)
  478. {
  479. #if defined(HOME_PIN) && HOME_PIN > -1
  480. SET_INPUT(HOME_PIN);
  481. WRITE(HOME_PIN,HIGH);
  482. #endif
  483. }
  484. void setup_photpin()
  485. {
  486. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  487. SET_OUTPUT(PHOTOGRAPH_PIN);
  488. WRITE(PHOTOGRAPH_PIN, LOW);
  489. #endif
  490. }
  491. void setup_powerhold()
  492. {
  493. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  494. SET_OUTPUT(SUICIDE_PIN);
  495. WRITE(SUICIDE_PIN, HIGH);
  496. #endif
  497. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  498. SET_OUTPUT(PS_ON_PIN);
  499. #if defined(PS_DEFAULT_OFF)
  500. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  501. #else
  502. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  503. #endif
  504. #endif
  505. }
  506. void suicide()
  507. {
  508. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  509. SET_OUTPUT(SUICIDE_PIN);
  510. WRITE(SUICIDE_PIN, LOW);
  511. #endif
  512. }
  513. void servo_init()
  514. {
  515. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  516. servos[0].attach(SERVO0_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  519. servos[1].attach(SERVO1_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  522. servos[2].attach(SERVO2_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  525. servos[3].attach(SERVO3_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 5)
  528. #error "TODO: enter initalisation code for more servos"
  529. #endif
  530. }
  531. void stop_and_save_print_to_ram(float z_move, float e_move);
  532. void restore_print_from_ram_and_continue(float e_move);
  533. bool fans_check_enabled = true;
  534. #ifdef TMC2130
  535. extern int8_t CrashDetectMenu;
  536. void crashdet_enable()
  537. {
  538. tmc2130_sg_stop_on_crash = true;
  539. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  540. CrashDetectMenu = 1;
  541. }
  542. void crashdet_disable()
  543. {
  544. tmc2130_sg_stop_on_crash = false;
  545. tmc2130_sg_crash = 0;
  546. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  547. CrashDetectMenu = 0;
  548. }
  549. void crashdet_stop_and_save_print()
  550. {
  551. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  552. }
  553. void crashdet_restore_print_and_continue()
  554. {
  555. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  556. // babystep_apply();
  557. }
  558. void crashdet_stop_and_save_print2()
  559. {
  560. cli();
  561. planner_abort_hard(); //abort printing
  562. cmdqueue_reset(); //empty cmdqueue
  563. card.sdprinting = false;
  564. card.closefile();
  565. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  566. st_reset_timer();
  567. sei();
  568. }
  569. void crashdet_detected(uint8_t mask)
  570. {
  571. st_synchronize();
  572. static uint8_t crashDet_counter = 0;
  573. bool automatic_recovery_after_crash = true;
  574. if (crashDet_counter++ == 0) {
  575. crashDetTimer.start();
  576. }
  577. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  578. crashDetTimer.stop();
  579. crashDet_counter = 0;
  580. }
  581. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  582. automatic_recovery_after_crash = false;
  583. crashDetTimer.stop();
  584. crashDet_counter = 0;
  585. }
  586. else {
  587. crashDetTimer.start();
  588. }
  589. lcd_update_enable(true);
  590. lcd_clear();
  591. lcd_update(2);
  592. if (mask & X_AXIS_MASK)
  593. {
  594. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  595. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  596. }
  597. if (mask & Y_AXIS_MASK)
  598. {
  599. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  600. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  601. }
  602. lcd_update_enable(true);
  603. lcd_update(2);
  604. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  605. gcode_G28(true, true, false); //home X and Y
  606. st_synchronize();
  607. if (automatic_recovery_after_crash) {
  608. enquecommand_P(PSTR("CRASH_RECOVER"));
  609. }else{
  610. HotendTempBckp = degTargetHotend(active_extruder);
  611. setTargetHotend(0, active_extruder);
  612. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  613. lcd_update_enable(true);
  614. if (yesno)
  615. {
  616. char cmd1[10];
  617. strcpy(cmd1, "M109 S");
  618. strcat(cmd1, ftostr3(HotendTempBckp));
  619. enquecommand(cmd1);
  620. enquecommand_P(PSTR("CRASH_RECOVER"));
  621. }
  622. else
  623. {
  624. enquecommand_P(PSTR("CRASH_CANCEL"));
  625. }
  626. }
  627. }
  628. void crashdet_recover()
  629. {
  630. crashdet_restore_print_and_continue();
  631. tmc2130_sg_stop_on_crash = true;
  632. }
  633. void crashdet_cancel()
  634. {
  635. tmc2130_sg_stop_on_crash = true;
  636. if (saved_printing_type == PRINTING_TYPE_SD) {
  637. lcd_print_stop();
  638. }else if(saved_printing_type == PRINTING_TYPE_USB){
  639. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  640. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  641. }
  642. }
  643. #endif //TMC2130
  644. void failstats_reset_print()
  645. {
  646. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  647. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  648. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  650. }
  651. #ifdef MESH_BED_LEVELING
  652. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  653. #endif
  654. // Factory reset function
  655. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  656. // Level input parameter sets depth of reset
  657. // Quiet parameter masks all waitings for user interact.
  658. int er_progress = 0;
  659. void factory_reset(char level, bool quiet)
  660. {
  661. lcd_clear();
  662. int cursor_pos = 0;
  663. switch (level) {
  664. // Level 0: Language reset
  665. case 0:
  666. WRITE(BEEPER, HIGH);
  667. _delay_ms(100);
  668. WRITE(BEEPER, LOW);
  669. lang_reset();
  670. break;
  671. //Level 1: Reset statistics
  672. case 1:
  673. WRITE(BEEPER, HIGH);
  674. _delay_ms(100);
  675. WRITE(BEEPER, LOW);
  676. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  677. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  678. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  680. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  681. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  682. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  684. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  685. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  686. lcd_menu_statistics();
  687. break;
  688. // Level 2: Prepare for shipping
  689. case 2:
  690. //lcd_puts_P(PSTR("Factory RESET"));
  691. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  692. // Force language selection at the next boot up.
  693. lang_reset();
  694. // Force the "Follow calibration flow" message at the next boot up.
  695. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  696. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  697. farm_no = 0;
  698. farm_mode = false;
  699. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  700. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  701. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  702. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  703. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  704. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  705. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  706. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  707. #ifdef FILAMENT_SENSOR
  708. fsensor_enable();
  709. fsensor_autoload_set(true);
  710. #endif //FILAMENT_SENSOR
  711. WRITE(BEEPER, HIGH);
  712. _delay_ms(100);
  713. WRITE(BEEPER, LOW);
  714. //_delay_ms(2000);
  715. break;
  716. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  717. case 3:
  718. lcd_puts_P(PSTR("Factory RESET"));
  719. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. er_progress = 0;
  724. lcd_puts_at_P(3, 3, PSTR(" "));
  725. lcd_set_cursor(3, 3);
  726. lcd_print(er_progress);
  727. // Erase EEPROM
  728. for (int i = 0; i < 4096; i++) {
  729. eeprom_write_byte((uint8_t*)i, 0xFF);
  730. if (i % 41 == 0) {
  731. er_progress++;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. lcd_puts_P(PSTR("%"));
  736. }
  737. }
  738. break;
  739. case 4:
  740. bowden_menu();
  741. break;
  742. default:
  743. break;
  744. }
  745. }
  746. FILE _uartout = {0};
  747. int uart_putchar(char c, FILE *stream)
  748. {
  749. MYSERIAL.write(c);
  750. return 0;
  751. }
  752. void lcd_splash()
  753. {
  754. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  755. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  756. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  757. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  758. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  759. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  760. }
  761. void factory_reset()
  762. {
  763. KEEPALIVE_STATE(PAUSED_FOR_USER);
  764. if (!READ(BTN_ENC))
  765. {
  766. _delay_ms(1000);
  767. if (!READ(BTN_ENC))
  768. {
  769. lcd_clear();
  770. lcd_puts_P(PSTR("Factory RESET"));
  771. SET_OUTPUT(BEEPER);
  772. WRITE(BEEPER, HIGH);
  773. while (!READ(BTN_ENC));
  774. WRITE(BEEPER, LOW);
  775. _delay_ms(2000);
  776. char level = reset_menu();
  777. factory_reset(level, false);
  778. switch (level) {
  779. case 0: _delay_ms(0); break;
  780. case 1: _delay_ms(0); break;
  781. case 2: _delay_ms(0); break;
  782. case 3: _delay_ms(0); break;
  783. }
  784. // _delay_ms(100);
  785. /*
  786. #ifdef MESH_BED_LEVELING
  787. _delay_ms(2000);
  788. if (!READ(BTN_ENC))
  789. {
  790. WRITE(BEEPER, HIGH);
  791. _delay_ms(100);
  792. WRITE(BEEPER, LOW);
  793. _delay_ms(200);
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. int _z = 0;
  798. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  799. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  800. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  801. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  802. }
  803. else
  804. {
  805. WRITE(BEEPER, HIGH);
  806. _delay_ms(100);
  807. WRITE(BEEPER, LOW);
  808. }
  809. #endif // mesh */
  810. }
  811. }
  812. else
  813. {
  814. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  815. }
  816. KEEPALIVE_STATE(IN_HANDLER);
  817. }
  818. void show_fw_version_warnings() {
  819. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  820. switch (FW_DEV_VERSION) {
  821. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  822. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  823. case(FW_VERSION_DEVEL):
  824. case(FW_VERSION_DEBUG):
  825. lcd_update_enable(false);
  826. lcd_clear();
  827. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  828. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  829. #else
  830. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  831. #endif
  832. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  833. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  834. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  835. lcd_wait_for_click();
  836. break;
  837. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  838. }
  839. lcd_update_enable(true);
  840. }
  841. uint8_t check_printer_version()
  842. {
  843. uint8_t version_changed = 0;
  844. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  845. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  846. if (printer_type != PRINTER_TYPE) {
  847. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  848. else version_changed |= 0b10;
  849. }
  850. if (motherboard != MOTHERBOARD) {
  851. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  852. else version_changed |= 0b01;
  853. }
  854. return version_changed;
  855. }
  856. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  857. {
  858. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  859. }
  860. #if (LANG_MODE != 0) //secondary language support
  861. #ifdef W25X20CL
  862. #include "bootapp.h" //bootloader support
  863. // language update from external flash
  864. #define LANGBOOT_BLOCKSIZE 0x1000
  865. #define LANGBOOT_RAMBUFFER 0x0800
  866. void update_sec_lang_from_external_flash()
  867. {
  868. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  869. {
  870. uint8_t lang = boot_reserved >> 4;
  871. uint8_t state = boot_reserved & 0xf;
  872. lang_table_header_t header;
  873. uint32_t src_addr;
  874. if (lang_get_header(lang, &header, &src_addr))
  875. {
  876. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  877. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  878. delay(100);
  879. boot_reserved = (state + 1) | (lang << 4);
  880. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  881. {
  882. cli();
  883. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  884. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  885. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  886. if (state == 0)
  887. {
  888. //TODO - check header integrity
  889. }
  890. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  891. }
  892. else
  893. {
  894. //TODO - check sec lang data integrity
  895. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  896. }
  897. }
  898. }
  899. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  900. }
  901. #ifdef DEBUG_W25X20CL
  902. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  903. {
  904. lang_table_header_t header;
  905. uint8_t count = 0;
  906. uint32_t addr = 0x00000;
  907. while (1)
  908. {
  909. printf_P(_n("LANGTABLE%d:"), count);
  910. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  911. if (header.magic != LANG_MAGIC)
  912. {
  913. printf_P(_n("NG!\n"));
  914. break;
  915. }
  916. printf_P(_n("OK\n"));
  917. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  918. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  919. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  920. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  921. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  922. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  923. addr += header.size;
  924. codes[count] = header.code;
  925. count ++;
  926. }
  927. return count;
  928. }
  929. void list_sec_lang_from_external_flash()
  930. {
  931. uint16_t codes[8];
  932. uint8_t count = lang_xflash_enum_codes(codes);
  933. printf_P(_n("XFlash lang count = %hhd\n"), count);
  934. }
  935. #endif //DEBUG_W25X20CL
  936. #endif //W25X20CL
  937. #endif //(LANG_MODE != 0)
  938. // "Setup" function is called by the Arduino framework on startup.
  939. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  940. // are initialized by the main() routine provided by the Arduino framework.
  941. void setup()
  942. {
  943. ultralcd_init();
  944. spi_init();
  945. lcd_splash();
  946. #ifdef W25X20CL
  947. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  948. // optiboot_w25x20cl_enter();
  949. #endif
  950. #if (LANG_MODE != 0) //secondary language support
  951. #ifdef W25X20CL
  952. if (w25x20cl_init())
  953. update_sec_lang_from_external_flash();
  954. else
  955. kill(_i("External SPI flash W25X20CL not responding."));
  956. #endif //W25X20CL
  957. #endif //(LANG_MODE != 0)
  958. setup_killpin();
  959. setup_powerhold();
  960. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  961. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  962. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  963. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  964. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  965. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  966. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  967. if (farm_mode)
  968. {
  969. no_response = true; //we need confirmation by recieving PRUSA thx
  970. important_status = 8;
  971. prusa_statistics(8);
  972. selectedSerialPort = 1;
  973. #ifdef TMC2130
  974. //increased extruder current (PFW363)
  975. tmc2130_current_h[E_AXIS] = 36;
  976. tmc2130_current_r[E_AXIS] = 36;
  977. #endif //TMC2130
  978. #ifdef FILAMENT_SENSOR
  979. //disabled filament autoload (PFW360)
  980. fsensor_autoload_set(false);
  981. #endif //FILAMENT_SENSOR
  982. }
  983. MYSERIAL.begin(BAUDRATE);
  984. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  985. stdout = uartout;
  986. SERIAL_PROTOCOLLNPGM("start");
  987. SERIAL_ECHO_START;
  988. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  989. uart2_init();
  990. #ifdef DEBUG_SEC_LANG
  991. lang_table_header_t header;
  992. uint32_t src_addr = 0x00000;
  993. if (lang_get_header(1, &header, &src_addr))
  994. {
  995. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  996. #define LT_PRINT_TEST 2
  997. // flash usage
  998. // total p.test
  999. //0 252718 t+c text code
  1000. //1 253142 424 170 254
  1001. //2 253040 322 164 158
  1002. //3 253248 530 135 395
  1003. #if (LT_PRINT_TEST==1) //not optimized printf
  1004. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1005. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1006. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1007. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1008. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1009. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1010. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1011. #elif (LT_PRINT_TEST==2) //optimized printf
  1012. printf_P(
  1013. _n(
  1014. " _src_addr = 0x%08lx\n"
  1015. " _lt_magic = 0x%08lx %S\n"
  1016. " _lt_size = 0x%04x (%d)\n"
  1017. " _lt_count = 0x%04x (%d)\n"
  1018. " _lt_chsum = 0x%04x\n"
  1019. " _lt_code = 0x%04x (%c%c)\n"
  1020. " _lt_resv1 = 0x%08lx\n"
  1021. ),
  1022. src_addr,
  1023. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1024. header.size, header.size,
  1025. header.count, header.count,
  1026. header.checksum,
  1027. header.code, header.code >> 8, header.code & 0xff,
  1028. header.signature
  1029. );
  1030. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1031. MYSERIAL.print(" _src_addr = 0x");
  1032. MYSERIAL.println(src_addr, 16);
  1033. MYSERIAL.print(" _lt_magic = 0x");
  1034. MYSERIAL.print(header.magic, 16);
  1035. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1036. MYSERIAL.print(" _lt_size = 0x");
  1037. MYSERIAL.print(header.size, 16);
  1038. MYSERIAL.print(" (");
  1039. MYSERIAL.print(header.size, 10);
  1040. MYSERIAL.println(")");
  1041. MYSERIAL.print(" _lt_count = 0x");
  1042. MYSERIAL.print(header.count, 16);
  1043. MYSERIAL.print(" (");
  1044. MYSERIAL.print(header.count, 10);
  1045. MYSERIAL.println(")");
  1046. MYSERIAL.print(" _lt_chsum = 0x");
  1047. MYSERIAL.println(header.checksum, 16);
  1048. MYSERIAL.print(" _lt_code = 0x");
  1049. MYSERIAL.print(header.code, 16);
  1050. MYSERIAL.print(" (");
  1051. MYSERIAL.print((char)(header.code >> 8), 0);
  1052. MYSERIAL.print((char)(header.code & 0xff), 0);
  1053. MYSERIAL.println(")");
  1054. MYSERIAL.print(" _lt_resv1 = 0x");
  1055. MYSERIAL.println(header.signature, 16);
  1056. #endif //(LT_PRINT_TEST==)
  1057. #undef LT_PRINT_TEST
  1058. #if 0
  1059. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1060. for (uint16_t i = 0; i < 1024; i++)
  1061. {
  1062. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1063. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1064. if ((i % 16) == 15) putchar('\n');
  1065. }
  1066. #endif
  1067. uint16_t sum = 0;
  1068. for (uint16_t i = 0; i < header.size; i++)
  1069. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1070. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1071. sum -= header.checksum; //subtract checksum
  1072. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1073. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1074. if (sum == header.checksum)
  1075. printf_P(_n("Checksum OK\n"), sum);
  1076. else
  1077. printf_P(_n("Checksum NG\n"), sum);
  1078. }
  1079. else
  1080. printf_P(_n("lang_get_header failed!\n"));
  1081. #if 0
  1082. for (uint16_t i = 0; i < 1024*10; i++)
  1083. {
  1084. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1085. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1086. if ((i % 16) == 15) putchar('\n');
  1087. }
  1088. #endif
  1089. #if 0
  1090. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1091. for (int i = 0; i < 4096; ++i) {
  1092. int b = eeprom_read_byte((unsigned char*)i);
  1093. if (b != 255) {
  1094. SERIAL_ECHO(i);
  1095. SERIAL_ECHO(":");
  1096. SERIAL_ECHO(b);
  1097. SERIAL_ECHOLN("");
  1098. }
  1099. }
  1100. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1101. #endif
  1102. #endif //DEBUG_SEC_LANG
  1103. // Check startup - does nothing if bootloader sets MCUSR to 0
  1104. byte mcu = MCUSR;
  1105. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1106. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1107. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1108. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1109. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1110. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1111. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1112. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1113. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1114. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1115. MCUSR = 0;
  1116. //SERIAL_ECHORPGM(MSG_MARLIN);
  1117. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1118. #ifdef STRING_VERSION_CONFIG_H
  1119. #ifdef STRING_CONFIG_H_AUTHOR
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1122. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1123. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1124. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1125. SERIAL_ECHOPGM("Compiled: ");
  1126. SERIAL_ECHOLNPGM(__DATE__);
  1127. #endif
  1128. #endif
  1129. SERIAL_ECHO_START;
  1130. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1131. SERIAL_ECHO(freeMemory());
  1132. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1133. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1134. //lcd_update_enable(false); // why do we need this?? - andre
  1135. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1136. bool previous_settings_retrieved = false;
  1137. uint8_t hw_changed = check_printer_version();
  1138. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1139. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1140. }
  1141. else { //printer version was changed so use default settings
  1142. Config_ResetDefault();
  1143. }
  1144. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1145. tp_init(); // Initialize temperature loop
  1146. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1147. plan_init(); // Initialize planner;
  1148. factory_reset();
  1149. #ifdef TMC2130
  1150. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1151. if (silentMode == 0xff) silentMode = 0;
  1152. tmc2130_mode = TMC2130_MODE_NORMAL;
  1153. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1154. if (crashdet && !farm_mode)
  1155. {
  1156. crashdet_enable();
  1157. puts_P(_N("CrashDetect ENABLED!"));
  1158. }
  1159. else
  1160. {
  1161. crashdet_disable();
  1162. puts_P(_N("CrashDetect DISABLED"));
  1163. }
  1164. #ifdef TMC2130_LINEARITY_CORRECTION
  1165. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1166. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1167. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1168. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1169. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1170. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1171. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1172. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1173. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1174. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1175. #endif //TMC2130_LINEARITY_CORRECTION
  1176. #ifdef TMC2130_VARIABLE_RESOLUTION
  1177. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1178. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1179. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1180. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1181. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1182. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1183. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1184. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1185. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1186. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1187. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1188. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1189. #else //TMC2130_VARIABLE_RESOLUTION
  1190. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1191. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1192. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1193. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1194. #endif //TMC2130_VARIABLE_RESOLUTION
  1195. #endif //TMC2130
  1196. st_init(); // Initialize stepper, this enables interrupts!
  1197. #ifdef TMC2130
  1198. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1199. update_mode_profile();
  1200. tmc2130_init();
  1201. #endif //TMC2130
  1202. setup_photpin();
  1203. servo_init();
  1204. // Reset the machine correction matrix.
  1205. // It does not make sense to load the correction matrix until the machine is homed.
  1206. world2machine_reset();
  1207. #ifdef FILAMENT_SENSOR
  1208. fsensor_init();
  1209. #endif //FILAMENT_SENSOR
  1210. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1211. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1212. #endif
  1213. setup_homepin();
  1214. #ifdef TMC2130
  1215. if (1) {
  1216. // try to run to zero phase before powering the Z motor.
  1217. // Move in negative direction
  1218. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1219. // Round the current micro-micro steps to micro steps.
  1220. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1221. // Until the phase counter is reset to zero.
  1222. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1223. delay(2);
  1224. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1225. delay(2);
  1226. }
  1227. }
  1228. #endif //TMC2130
  1229. #if defined(Z_AXIS_ALWAYS_ON)
  1230. enable_z();
  1231. #endif
  1232. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1233. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1234. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1235. if (farm_no == 0xFFFF) farm_no = 0;
  1236. if (farm_mode)
  1237. {
  1238. prusa_statistics(8);
  1239. }
  1240. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1241. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1242. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1243. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1244. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1245. // where all the EEPROM entries are set to 0x0ff.
  1246. // Once a firmware boots up, it forces at least a language selection, which changes
  1247. // EEPROM_LANG to number lower than 0x0ff.
  1248. // 1) Set a high power mode.
  1249. #ifdef TMC2130
  1250. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1251. tmc2130_mode = TMC2130_MODE_NORMAL;
  1252. #endif //TMC2130
  1253. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1254. }
  1255. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1256. // but this times out if a blocking dialog is shown in setup().
  1257. card.initsd();
  1258. #ifdef DEBUG_SD_SPEED_TEST
  1259. if (card.cardOK)
  1260. {
  1261. uint8_t* buff = (uint8_t*)block_buffer;
  1262. uint32_t block = 0;
  1263. uint32_t sumr = 0;
  1264. uint32_t sumw = 0;
  1265. for (int i = 0; i < 1024; i++)
  1266. {
  1267. uint32_t u = micros();
  1268. bool res = card.card.readBlock(i, buff);
  1269. u = micros() - u;
  1270. if (res)
  1271. {
  1272. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1273. sumr += u;
  1274. u = micros();
  1275. res = card.card.writeBlock(i, buff);
  1276. u = micros() - u;
  1277. if (res)
  1278. {
  1279. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1280. sumw += u;
  1281. }
  1282. else
  1283. {
  1284. printf_P(PSTR("writeBlock %4d error\n"), i);
  1285. break;
  1286. }
  1287. }
  1288. else
  1289. {
  1290. printf_P(PSTR("readBlock %4d error\n"), i);
  1291. break;
  1292. }
  1293. }
  1294. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1295. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1296. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1297. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1298. }
  1299. else
  1300. printf_P(PSTR("Card NG!\n"));
  1301. #endif //DEBUG_SD_SPEED_TEST
  1302. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1303. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1304. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1305. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1306. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1307. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1308. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1309. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1310. #ifdef SNMM
  1311. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1312. int _z = BOWDEN_LENGTH;
  1313. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1314. }
  1315. #endif
  1316. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1317. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1318. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1319. #if (LANG_MODE != 0) //secondary language support
  1320. #ifdef DEBUG_W25X20CL
  1321. W25X20CL_SPI_ENTER();
  1322. uint8_t uid[8]; // 64bit unique id
  1323. w25x20cl_rd_uid(uid);
  1324. puts_P(_n("W25X20CL UID="));
  1325. for (uint8_t i = 0; i < 8; i ++)
  1326. printf_P(PSTR("%02hhx"), uid[i]);
  1327. putchar('\n');
  1328. list_sec_lang_from_external_flash();
  1329. #endif //DEBUG_W25X20CL
  1330. // lang_reset();
  1331. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1332. lcd_language();
  1333. #ifdef DEBUG_SEC_LANG
  1334. uint16_t sec_lang_code = lang_get_code(1);
  1335. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1336. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1337. // lang_print_sec_lang(uartout);
  1338. #endif //DEBUG_SEC_LANG
  1339. #endif //(LANG_MODE != 0)
  1340. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1341. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1342. temp_cal_active = false;
  1343. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1344. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1345. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1346. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1347. int16_t z_shift = 0;
  1348. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1349. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1350. temp_cal_active = false;
  1351. }
  1352. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1353. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1354. }
  1355. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1356. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1357. }
  1358. check_babystep(); //checking if Z babystep is in allowed range
  1359. #ifdef UVLO_SUPPORT
  1360. setup_uvlo_interrupt();
  1361. #endif //UVLO_SUPPORT
  1362. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1363. setup_fan_interrupt();
  1364. #endif //DEBUG_DISABLE_FANCHECK
  1365. #ifdef FILAMENT_SENSOR
  1366. fsensor_setup_interrupt();
  1367. #endif //FILAMENT_SENSOR
  1368. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1369. #ifndef DEBUG_DISABLE_STARTMSGS
  1370. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1371. show_fw_version_warnings();
  1372. switch (hw_changed) {
  1373. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1374. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1375. case(0b01):
  1376. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1377. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1378. break;
  1379. case(0b10):
  1380. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1381. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1382. break;
  1383. case(0b11):
  1384. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1385. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1386. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1387. break;
  1388. default: break; //no change, show no message
  1389. }
  1390. if (!previous_settings_retrieved) {
  1391. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1392. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1393. }
  1394. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1395. lcd_wizard(0);
  1396. }
  1397. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1398. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1399. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1400. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1401. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1402. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1403. // Show the message.
  1404. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1405. }
  1406. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1407. // Show the message.
  1408. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1409. lcd_update_enable(true);
  1410. }
  1411. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1412. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1413. lcd_update_enable(true);
  1414. }
  1415. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1416. // Show the message.
  1417. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1418. }
  1419. }
  1420. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1421. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1422. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1423. update_current_firmware_version_to_eeprom();
  1424. lcd_selftest();
  1425. }
  1426. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1427. KEEPALIVE_STATE(IN_PROCESS);
  1428. #endif //DEBUG_DISABLE_STARTMSGS
  1429. lcd_update_enable(true);
  1430. lcd_clear();
  1431. lcd_update(2);
  1432. // Store the currently running firmware into an eeprom,
  1433. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1434. update_current_firmware_version_to_eeprom();
  1435. #ifdef TMC2130
  1436. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1437. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1438. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1439. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1440. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1441. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1442. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1443. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1444. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1445. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1446. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1447. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1448. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1449. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1450. #endif //TMC2130
  1451. #ifdef UVLO_SUPPORT
  1452. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1453. /*
  1454. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1455. else {
  1456. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1457. lcd_update_enable(true);
  1458. lcd_update(2);
  1459. lcd_setstatuspgm(_T(WELCOME_MSG));
  1460. }
  1461. */
  1462. manage_heater(); // Update temperatures
  1463. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1464. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1465. #endif
  1466. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1467. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1468. puts_P(_N("Automatic recovery!"));
  1469. #endif
  1470. recover_print(1);
  1471. }
  1472. else{
  1473. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1474. puts_P(_N("Normal recovery!"));
  1475. #endif
  1476. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1477. else {
  1478. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1479. lcd_update_enable(true);
  1480. lcd_update(2);
  1481. lcd_setstatuspgm(_T(WELCOME_MSG));
  1482. }
  1483. }
  1484. }
  1485. #endif //UVLO_SUPPORT
  1486. KEEPALIVE_STATE(NOT_BUSY);
  1487. #ifdef WATCHDOG
  1488. wdt_enable(WDTO_4S);
  1489. #endif //WATCHDOG
  1490. }
  1491. void trace();
  1492. #define CHUNK_SIZE 64 // bytes
  1493. #define SAFETY_MARGIN 1
  1494. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1495. int chunkHead = 0;
  1496. int serial_read_stream() {
  1497. setTargetHotend(0, 0);
  1498. setTargetBed(0);
  1499. lcd_clear();
  1500. lcd_puts_P(PSTR(" Upload in progress"));
  1501. // first wait for how many bytes we will receive
  1502. uint32_t bytesToReceive;
  1503. // receive the four bytes
  1504. char bytesToReceiveBuffer[4];
  1505. for (int i=0; i<4; i++) {
  1506. int data;
  1507. while ((data = MYSERIAL.read()) == -1) {};
  1508. bytesToReceiveBuffer[i] = data;
  1509. }
  1510. // make it a uint32
  1511. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1512. // we're ready, notify the sender
  1513. MYSERIAL.write('+');
  1514. // lock in the routine
  1515. uint32_t receivedBytes = 0;
  1516. while (prusa_sd_card_upload) {
  1517. int i;
  1518. for (i=0; i<CHUNK_SIZE; i++) {
  1519. int data;
  1520. // check if we're not done
  1521. if (receivedBytes == bytesToReceive) {
  1522. break;
  1523. }
  1524. // read the next byte
  1525. while ((data = MYSERIAL.read()) == -1) {};
  1526. receivedBytes++;
  1527. // save it to the chunk
  1528. chunk[i] = data;
  1529. }
  1530. // write the chunk to SD
  1531. card.write_command_no_newline(&chunk[0]);
  1532. // notify the sender we're ready for more data
  1533. MYSERIAL.write('+');
  1534. // for safety
  1535. manage_heater();
  1536. // check if we're done
  1537. if(receivedBytes == bytesToReceive) {
  1538. trace(); // beep
  1539. card.closefile();
  1540. prusa_sd_card_upload = false;
  1541. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1542. return 0;
  1543. }
  1544. }
  1545. }
  1546. #ifdef HOST_KEEPALIVE_FEATURE
  1547. /**
  1548. * Output a "busy" message at regular intervals
  1549. * while the machine is not accepting commands.
  1550. */
  1551. void host_keepalive() {
  1552. if (farm_mode) return;
  1553. long ms = millis();
  1554. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1555. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1556. switch (busy_state) {
  1557. case IN_HANDLER:
  1558. case IN_PROCESS:
  1559. SERIAL_ECHO_START;
  1560. SERIAL_ECHOLNPGM("busy: processing");
  1561. break;
  1562. case PAUSED_FOR_USER:
  1563. SERIAL_ECHO_START;
  1564. SERIAL_ECHOLNPGM("busy: paused for user");
  1565. break;
  1566. case PAUSED_FOR_INPUT:
  1567. SERIAL_ECHO_START;
  1568. SERIAL_ECHOLNPGM("busy: paused for input");
  1569. break;
  1570. default:
  1571. break;
  1572. }
  1573. }
  1574. prev_busy_signal_ms = ms;
  1575. }
  1576. #endif
  1577. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1578. // Before loop(), the setup() function is called by the main() routine.
  1579. void loop()
  1580. {
  1581. KEEPALIVE_STATE(NOT_BUSY);
  1582. bool stack_integrity = true;
  1583. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1584. {
  1585. is_usb_printing = true;
  1586. usb_printing_counter--;
  1587. _usb_timer = millis();
  1588. }
  1589. if (usb_printing_counter == 0)
  1590. {
  1591. is_usb_printing = false;
  1592. }
  1593. if (prusa_sd_card_upload)
  1594. {
  1595. //we read byte-by byte
  1596. serial_read_stream();
  1597. } else
  1598. {
  1599. get_command();
  1600. #ifdef SDSUPPORT
  1601. card.checkautostart(false);
  1602. #endif
  1603. if(buflen)
  1604. {
  1605. cmdbuffer_front_already_processed = false;
  1606. #ifdef SDSUPPORT
  1607. if(card.saving)
  1608. {
  1609. // Saving a G-code file onto an SD-card is in progress.
  1610. // Saving starts with M28, saving until M29 is seen.
  1611. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1612. card.write_command(CMDBUFFER_CURRENT_STRING);
  1613. if(card.logging)
  1614. process_commands();
  1615. else
  1616. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1617. } else {
  1618. card.closefile();
  1619. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1620. }
  1621. } else {
  1622. process_commands();
  1623. }
  1624. #else
  1625. process_commands();
  1626. #endif //SDSUPPORT
  1627. if (! cmdbuffer_front_already_processed && buflen)
  1628. {
  1629. // ptr points to the start of the block currently being processed.
  1630. // The first character in the block is the block type.
  1631. char *ptr = cmdbuffer + bufindr;
  1632. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1633. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1634. union {
  1635. struct {
  1636. char lo;
  1637. char hi;
  1638. } lohi;
  1639. uint16_t value;
  1640. } sdlen;
  1641. sdlen.value = 0;
  1642. {
  1643. // This block locks the interrupts globally for 3.25 us,
  1644. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1645. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1646. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1647. cli();
  1648. // Reset the command to something, which will be ignored by the power panic routine,
  1649. // so this buffer length will not be counted twice.
  1650. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1651. // Extract the current buffer length.
  1652. sdlen.lohi.lo = *ptr ++;
  1653. sdlen.lohi.hi = *ptr;
  1654. // and pass it to the planner queue.
  1655. planner_add_sd_length(sdlen.value);
  1656. sei();
  1657. }
  1658. }
  1659. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1660. cli();
  1661. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1662. // and one for each command to previous block in the planner queue.
  1663. planner_add_sd_length(1);
  1664. sei();
  1665. }
  1666. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1667. // this block's SD card length will not be counted twice as its command type has been replaced
  1668. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1669. cmdqueue_pop_front();
  1670. }
  1671. host_keepalive();
  1672. }
  1673. }
  1674. //check heater every n milliseconds
  1675. manage_heater();
  1676. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1677. checkHitEndstops();
  1678. lcd_update(0);
  1679. #ifdef FILAMENT_SENSOR
  1680. fsensor_update();
  1681. #endif //FILAMENT_SENSOR
  1682. #ifdef TMC2130
  1683. tmc2130_check_overtemp();
  1684. if (tmc2130_sg_crash)
  1685. {
  1686. uint8_t crash = tmc2130_sg_crash;
  1687. tmc2130_sg_crash = 0;
  1688. // crashdet_stop_and_save_print();
  1689. switch (crash)
  1690. {
  1691. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1692. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1693. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1694. }
  1695. }
  1696. #endif //TMC2130
  1697. }
  1698. #define DEFINE_PGM_READ_ANY(type, reader) \
  1699. static inline type pgm_read_any(const type *p) \
  1700. { return pgm_read_##reader##_near(p); }
  1701. DEFINE_PGM_READ_ANY(float, float);
  1702. DEFINE_PGM_READ_ANY(signed char, byte);
  1703. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1704. static const PROGMEM type array##_P[3] = \
  1705. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1706. static inline type array(int axis) \
  1707. { return pgm_read_any(&array##_P[axis]); } \
  1708. type array##_ext(int axis) \
  1709. { return pgm_read_any(&array##_P[axis]); }
  1710. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1711. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1712. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1713. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1714. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1715. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1716. static void axis_is_at_home(int axis) {
  1717. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1718. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1719. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1720. }
  1721. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1722. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1723. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1724. saved_feedrate = feedrate;
  1725. saved_feedmultiply = feedmultiply;
  1726. feedmultiply = 100;
  1727. previous_millis_cmd = millis();
  1728. enable_endstops(enable_endstops_now);
  1729. }
  1730. static void clean_up_after_endstop_move() {
  1731. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1732. enable_endstops(false);
  1733. #endif
  1734. feedrate = saved_feedrate;
  1735. feedmultiply = saved_feedmultiply;
  1736. previous_millis_cmd = millis();
  1737. }
  1738. #ifdef ENABLE_AUTO_BED_LEVELING
  1739. #ifdef AUTO_BED_LEVELING_GRID
  1740. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1741. {
  1742. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1743. planeNormal.debug("planeNormal");
  1744. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1745. //bedLevel.debug("bedLevel");
  1746. //plan_bed_level_matrix.debug("bed level before");
  1747. //vector_3 uncorrected_position = plan_get_position_mm();
  1748. //uncorrected_position.debug("position before");
  1749. vector_3 corrected_position = plan_get_position();
  1750. // corrected_position.debug("position after");
  1751. current_position[X_AXIS] = corrected_position.x;
  1752. current_position[Y_AXIS] = corrected_position.y;
  1753. current_position[Z_AXIS] = corrected_position.z;
  1754. // put the bed at 0 so we don't go below it.
  1755. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1757. }
  1758. #else // not AUTO_BED_LEVELING_GRID
  1759. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1760. plan_bed_level_matrix.set_to_identity();
  1761. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1762. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1763. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1764. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1765. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1766. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1767. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1768. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1769. vector_3 corrected_position = plan_get_position();
  1770. current_position[X_AXIS] = corrected_position.x;
  1771. current_position[Y_AXIS] = corrected_position.y;
  1772. current_position[Z_AXIS] = corrected_position.z;
  1773. // put the bed at 0 so we don't go below it.
  1774. current_position[Z_AXIS] = zprobe_zoffset;
  1775. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1776. }
  1777. #endif // AUTO_BED_LEVELING_GRID
  1778. static void run_z_probe() {
  1779. plan_bed_level_matrix.set_to_identity();
  1780. feedrate = homing_feedrate[Z_AXIS];
  1781. // move down until you find the bed
  1782. float zPosition = -10;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1784. st_synchronize();
  1785. // we have to let the planner know where we are right now as it is not where we said to go.
  1786. zPosition = st_get_position_mm(Z_AXIS);
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1788. // move up the retract distance
  1789. zPosition += home_retract_mm(Z_AXIS);
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1791. st_synchronize();
  1792. // move back down slowly to find bed
  1793. feedrate = homing_feedrate[Z_AXIS]/4;
  1794. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1796. st_synchronize();
  1797. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1798. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1799. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1800. }
  1801. static void do_blocking_move_to(float x, float y, float z) {
  1802. float oldFeedRate = feedrate;
  1803. feedrate = homing_feedrate[Z_AXIS];
  1804. current_position[Z_AXIS] = z;
  1805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1806. st_synchronize();
  1807. feedrate = XY_TRAVEL_SPEED;
  1808. current_position[X_AXIS] = x;
  1809. current_position[Y_AXIS] = y;
  1810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1811. st_synchronize();
  1812. feedrate = oldFeedRate;
  1813. }
  1814. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1815. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1816. }
  1817. /// Probe bed height at position (x,y), returns the measured z value
  1818. static float probe_pt(float x, float y, float z_before) {
  1819. // move to right place
  1820. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1821. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1822. run_z_probe();
  1823. float measured_z = current_position[Z_AXIS];
  1824. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1825. SERIAL_PROTOCOLPGM(" x: ");
  1826. SERIAL_PROTOCOL(x);
  1827. SERIAL_PROTOCOLPGM(" y: ");
  1828. SERIAL_PROTOCOL(y);
  1829. SERIAL_PROTOCOLPGM(" z: ");
  1830. SERIAL_PROTOCOL(measured_z);
  1831. SERIAL_PROTOCOLPGM("\n");
  1832. return measured_z;
  1833. }
  1834. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1835. #ifdef LIN_ADVANCE
  1836. /**
  1837. * M900: Set and/or Get advance K factor and WH/D ratio
  1838. *
  1839. * K<factor> Set advance K factor
  1840. * R<ratio> Set ratio directly (overrides WH/D)
  1841. * W<width> H<height> D<diam> Set ratio from WH/D
  1842. */
  1843. inline void gcode_M900() {
  1844. st_synchronize();
  1845. const float newK = code_seen('K') ? code_value_float() : -1;
  1846. if (newK >= 0) extruder_advance_k = newK;
  1847. float newR = code_seen('R') ? code_value_float() : -1;
  1848. if (newR < 0) {
  1849. const float newD = code_seen('D') ? code_value_float() : -1,
  1850. newW = code_seen('W') ? code_value_float() : -1,
  1851. newH = code_seen('H') ? code_value_float() : -1;
  1852. if (newD >= 0 && newW >= 0 && newH >= 0)
  1853. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1854. }
  1855. if (newR >= 0) advance_ed_ratio = newR;
  1856. SERIAL_ECHO_START;
  1857. SERIAL_ECHOPGM("Advance K=");
  1858. SERIAL_ECHOLN(extruder_advance_k);
  1859. SERIAL_ECHOPGM(" E/D=");
  1860. const float ratio = advance_ed_ratio;
  1861. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1862. }
  1863. #endif // LIN_ADVANCE
  1864. bool check_commands() {
  1865. bool end_command_found = false;
  1866. while (buflen)
  1867. {
  1868. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1869. if (!cmdbuffer_front_already_processed)
  1870. cmdqueue_pop_front();
  1871. cmdbuffer_front_already_processed = false;
  1872. }
  1873. return end_command_found;
  1874. }
  1875. #ifdef TMC2130
  1876. bool calibrate_z_auto()
  1877. {
  1878. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1879. lcd_clear();
  1880. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1881. bool endstops_enabled = enable_endstops(true);
  1882. int axis_up_dir = -home_dir(Z_AXIS);
  1883. tmc2130_home_enter(Z_AXIS_MASK);
  1884. current_position[Z_AXIS] = 0;
  1885. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1886. set_destination_to_current();
  1887. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1888. feedrate = homing_feedrate[Z_AXIS];
  1889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1890. st_synchronize();
  1891. // current_position[axis] = 0;
  1892. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1893. tmc2130_home_exit();
  1894. enable_endstops(false);
  1895. current_position[Z_AXIS] = 0;
  1896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1897. set_destination_to_current();
  1898. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1899. feedrate = homing_feedrate[Z_AXIS] / 2;
  1900. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1901. st_synchronize();
  1902. enable_endstops(endstops_enabled);
  1903. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1905. return true;
  1906. }
  1907. #endif //TMC2130
  1908. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1909. {
  1910. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1911. #define HOMEAXIS_DO(LETTER) \
  1912. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1913. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1914. {
  1915. int axis_home_dir = home_dir(axis);
  1916. feedrate = homing_feedrate[axis];
  1917. #ifdef TMC2130
  1918. tmc2130_home_enter(X_AXIS_MASK << axis);
  1919. #endif //TMC2130
  1920. // Move right a bit, so that the print head does not touch the left end position,
  1921. // and the following left movement has a chance to achieve the required velocity
  1922. // for the stall guard to work.
  1923. current_position[axis] = 0;
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. set_destination_to_current();
  1926. // destination[axis] = 11.f;
  1927. destination[axis] = 3.f;
  1928. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1929. st_synchronize();
  1930. // Move left away from the possible collision with the collision detection disabled.
  1931. endstops_hit_on_purpose();
  1932. enable_endstops(false);
  1933. current_position[axis] = 0;
  1934. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1935. destination[axis] = - 1.;
  1936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1937. st_synchronize();
  1938. // Now continue to move up to the left end stop with the collision detection enabled.
  1939. enable_endstops(true);
  1940. destination[axis] = - 1.1 * max_length(axis);
  1941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1942. st_synchronize();
  1943. for (uint8_t i = 0; i < cnt; i++)
  1944. {
  1945. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1946. endstops_hit_on_purpose();
  1947. enable_endstops(false);
  1948. current_position[axis] = 0;
  1949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1950. destination[axis] = 10.f;
  1951. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1952. st_synchronize();
  1953. endstops_hit_on_purpose();
  1954. // Now move left up to the collision, this time with a repeatable velocity.
  1955. enable_endstops(true);
  1956. destination[axis] = - 11.f;
  1957. #ifdef TMC2130
  1958. feedrate = homing_feedrate[axis];
  1959. #else //TMC2130
  1960. feedrate = homing_feedrate[axis] / 2;
  1961. #endif //TMC2130
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. #ifdef TMC2130
  1965. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1966. if (pstep) pstep[i] = mscnt >> 4;
  1967. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1968. #endif //TMC2130
  1969. }
  1970. endstops_hit_on_purpose();
  1971. enable_endstops(false);
  1972. #ifdef TMC2130
  1973. uint8_t orig = tmc2130_home_origin[axis];
  1974. uint8_t back = tmc2130_home_bsteps[axis];
  1975. if (tmc2130_home_enabled && (orig <= 63))
  1976. {
  1977. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1978. if (back > 0)
  1979. tmc2130_do_steps(axis, back, 1, 1000);
  1980. }
  1981. else
  1982. tmc2130_do_steps(axis, 8, 2, 1000);
  1983. tmc2130_home_exit();
  1984. #endif //TMC2130
  1985. axis_is_at_home(axis);
  1986. axis_known_position[axis] = true;
  1987. // Move from minimum
  1988. #ifdef TMC2130
  1989. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1990. #else //TMC2130
  1991. float dist = 0.01f * 64;
  1992. #endif //TMC2130
  1993. current_position[axis] -= dist;
  1994. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1995. current_position[axis] += dist;
  1996. destination[axis] = current_position[axis];
  1997. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1998. st_synchronize();
  1999. feedrate = 0.0;
  2000. }
  2001. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2002. {
  2003. #ifdef TMC2130
  2004. FORCE_HIGH_POWER_START;
  2005. #endif
  2006. int axis_home_dir = home_dir(axis);
  2007. current_position[axis] = 0;
  2008. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2009. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2010. feedrate = homing_feedrate[axis];
  2011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2012. st_synchronize();
  2013. #ifdef TMC2130
  2014. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2015. FORCE_HIGH_POWER_END;
  2016. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2017. return;
  2018. }
  2019. #endif //TMC2130
  2020. current_position[axis] = 0;
  2021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2022. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2023. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2024. st_synchronize();
  2025. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2026. feedrate = homing_feedrate[axis]/2 ;
  2027. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2028. st_synchronize();
  2029. #ifdef TMC2130
  2030. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2031. FORCE_HIGH_POWER_END;
  2032. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2033. return;
  2034. }
  2035. #endif //TMC2130
  2036. axis_is_at_home(axis);
  2037. destination[axis] = current_position[axis];
  2038. feedrate = 0.0;
  2039. endstops_hit_on_purpose();
  2040. axis_known_position[axis] = true;
  2041. #ifdef TMC2130
  2042. FORCE_HIGH_POWER_END;
  2043. #endif
  2044. }
  2045. enable_endstops(endstops_enabled);
  2046. }
  2047. /**/
  2048. void home_xy()
  2049. {
  2050. set_destination_to_current();
  2051. homeaxis(X_AXIS);
  2052. homeaxis(Y_AXIS);
  2053. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2054. endstops_hit_on_purpose();
  2055. }
  2056. void refresh_cmd_timeout(void)
  2057. {
  2058. previous_millis_cmd = millis();
  2059. }
  2060. #ifdef FWRETRACT
  2061. void retract(bool retracting, bool swapretract = false) {
  2062. if(retracting && !retracted[active_extruder]) {
  2063. destination[X_AXIS]=current_position[X_AXIS];
  2064. destination[Y_AXIS]=current_position[Y_AXIS];
  2065. destination[Z_AXIS]=current_position[Z_AXIS];
  2066. destination[E_AXIS]=current_position[E_AXIS];
  2067. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2068. plan_set_e_position(current_position[E_AXIS]);
  2069. float oldFeedrate = feedrate;
  2070. feedrate=retract_feedrate*60;
  2071. retracted[active_extruder]=true;
  2072. prepare_move();
  2073. current_position[Z_AXIS]-=retract_zlift;
  2074. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2075. prepare_move();
  2076. feedrate = oldFeedrate;
  2077. } else if(!retracting && retracted[active_extruder]) {
  2078. destination[X_AXIS]=current_position[X_AXIS];
  2079. destination[Y_AXIS]=current_position[Y_AXIS];
  2080. destination[Z_AXIS]=current_position[Z_AXIS];
  2081. destination[E_AXIS]=current_position[E_AXIS];
  2082. current_position[Z_AXIS]+=retract_zlift;
  2083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2084. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2085. plan_set_e_position(current_position[E_AXIS]);
  2086. float oldFeedrate = feedrate;
  2087. feedrate=retract_recover_feedrate*60;
  2088. retracted[active_extruder]=false;
  2089. prepare_move();
  2090. feedrate = oldFeedrate;
  2091. }
  2092. } //retract
  2093. #endif //FWRETRACT
  2094. void trace() {
  2095. tone(BEEPER, 440);
  2096. delay(25);
  2097. noTone(BEEPER);
  2098. delay(20);
  2099. }
  2100. /*
  2101. void ramming() {
  2102. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2103. if (current_temperature[0] < 230) {
  2104. //PLA
  2105. max_feedrate[E_AXIS] = 50;
  2106. //current_position[E_AXIS] -= 8;
  2107. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2108. //current_position[E_AXIS] += 8;
  2109. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2110. current_position[E_AXIS] += 5.4;
  2111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2112. current_position[E_AXIS] += 3.2;
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2114. current_position[E_AXIS] += 3;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2116. st_synchronize();
  2117. max_feedrate[E_AXIS] = 80;
  2118. current_position[E_AXIS] -= 82;
  2119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2120. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2121. current_position[E_AXIS] -= 20;
  2122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2123. current_position[E_AXIS] += 5;
  2124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2125. current_position[E_AXIS] += 5;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2127. current_position[E_AXIS] -= 10;
  2128. st_synchronize();
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2130. current_position[E_AXIS] += 10;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2132. current_position[E_AXIS] -= 10;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2134. current_position[E_AXIS] += 10;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2136. current_position[E_AXIS] -= 10;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2138. st_synchronize();
  2139. }
  2140. else {
  2141. //ABS
  2142. max_feedrate[E_AXIS] = 50;
  2143. //current_position[E_AXIS] -= 8;
  2144. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2145. //current_position[E_AXIS] += 8;
  2146. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2147. current_position[E_AXIS] += 3.1;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2149. current_position[E_AXIS] += 3.1;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2151. current_position[E_AXIS] += 4;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2153. st_synchronize();
  2154. //current_position[X_AXIS] += 23; //delay
  2155. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2156. //current_position[X_AXIS] -= 23; //delay
  2157. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2158. delay(4700);
  2159. max_feedrate[E_AXIS] = 80;
  2160. current_position[E_AXIS] -= 92;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2162. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2163. current_position[E_AXIS] -= 5;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2165. current_position[E_AXIS] += 5;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2167. current_position[E_AXIS] -= 5;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2169. st_synchronize();
  2170. current_position[E_AXIS] += 5;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2172. current_position[E_AXIS] -= 5;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2174. current_position[E_AXIS] += 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 5;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2178. st_synchronize();
  2179. }
  2180. }
  2181. */
  2182. #ifdef TMC2130
  2183. void force_high_power_mode(bool start_high_power_section) {
  2184. uint8_t silent;
  2185. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2186. if (silent == 1) {
  2187. //we are in silent mode, set to normal mode to enable crash detection
  2188. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2189. st_synchronize();
  2190. cli();
  2191. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2192. update_mode_profile();
  2193. tmc2130_init();
  2194. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2195. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2196. st_reset_timer();
  2197. sei();
  2198. }
  2199. }
  2200. #endif //TMC2130
  2201. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2202. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2203. }
  2204. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2205. st_synchronize();
  2206. #if 0
  2207. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2208. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2209. #endif
  2210. // Flag for the display update routine and to disable the print cancelation during homing.
  2211. homing_flag = true;
  2212. // Which axes should be homed?
  2213. bool home_x = home_x_axis;
  2214. bool home_y = home_y_axis;
  2215. bool home_z = home_z_axis;
  2216. // Either all X,Y,Z codes are present, or none of them.
  2217. bool home_all_axes = home_x == home_y && home_x == home_z;
  2218. if (home_all_axes)
  2219. // No X/Y/Z code provided means to home all axes.
  2220. home_x = home_y = home_z = true;
  2221. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2222. if (home_all_axes) {
  2223. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2224. feedrate = homing_feedrate[Z_AXIS];
  2225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2226. st_synchronize();
  2227. }
  2228. #ifdef ENABLE_AUTO_BED_LEVELING
  2229. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2230. #endif //ENABLE_AUTO_BED_LEVELING
  2231. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2232. // the planner will not perform any adjustments in the XY plane.
  2233. // Wait for the motors to stop and update the current position with the absolute values.
  2234. world2machine_revert_to_uncorrected();
  2235. // For mesh bed leveling deactivate the matrix temporarily.
  2236. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2237. // in a single axis only.
  2238. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2239. #ifdef MESH_BED_LEVELING
  2240. uint8_t mbl_was_active = mbl.active;
  2241. mbl.active = 0;
  2242. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2243. #endif
  2244. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2245. // consumed during the first movements following this statement.
  2246. if (home_z)
  2247. babystep_undo();
  2248. saved_feedrate = feedrate;
  2249. saved_feedmultiply = feedmultiply;
  2250. feedmultiply = 100;
  2251. previous_millis_cmd = millis();
  2252. enable_endstops(true);
  2253. memcpy(destination, current_position, sizeof(destination));
  2254. feedrate = 0.0;
  2255. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2256. if(home_z)
  2257. homeaxis(Z_AXIS);
  2258. #endif
  2259. #ifdef QUICK_HOME
  2260. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2261. if(home_x && home_y) //first diagonal move
  2262. {
  2263. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2264. int x_axis_home_dir = home_dir(X_AXIS);
  2265. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2266. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2267. feedrate = homing_feedrate[X_AXIS];
  2268. if(homing_feedrate[Y_AXIS]<feedrate)
  2269. feedrate = homing_feedrate[Y_AXIS];
  2270. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2271. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2272. } else {
  2273. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2274. }
  2275. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2276. st_synchronize();
  2277. axis_is_at_home(X_AXIS);
  2278. axis_is_at_home(Y_AXIS);
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. destination[X_AXIS] = current_position[X_AXIS];
  2281. destination[Y_AXIS] = current_position[Y_AXIS];
  2282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2283. feedrate = 0.0;
  2284. st_synchronize();
  2285. endstops_hit_on_purpose();
  2286. current_position[X_AXIS] = destination[X_AXIS];
  2287. current_position[Y_AXIS] = destination[Y_AXIS];
  2288. current_position[Z_AXIS] = destination[Z_AXIS];
  2289. }
  2290. #endif /* QUICK_HOME */
  2291. #ifdef TMC2130
  2292. if(home_x)
  2293. {
  2294. if (!calib)
  2295. homeaxis(X_AXIS);
  2296. else
  2297. tmc2130_home_calibrate(X_AXIS);
  2298. }
  2299. if(home_y)
  2300. {
  2301. if (!calib)
  2302. homeaxis(Y_AXIS);
  2303. else
  2304. tmc2130_home_calibrate(Y_AXIS);
  2305. }
  2306. #endif //TMC2130
  2307. if(home_x_axis && home_x_value != 0)
  2308. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2309. if(home_y_axis && home_y_value != 0)
  2310. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2311. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2312. #ifndef Z_SAFE_HOMING
  2313. if(home_z) {
  2314. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2315. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2316. feedrate = max_feedrate[Z_AXIS];
  2317. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2318. st_synchronize();
  2319. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2320. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2321. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2322. {
  2323. homeaxis(X_AXIS);
  2324. homeaxis(Y_AXIS);
  2325. }
  2326. // 1st mesh bed leveling measurement point, corrected.
  2327. world2machine_initialize();
  2328. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2329. world2machine_reset();
  2330. if (destination[Y_AXIS] < Y_MIN_POS)
  2331. destination[Y_AXIS] = Y_MIN_POS;
  2332. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2333. feedrate = homing_feedrate[Z_AXIS]/10;
  2334. current_position[Z_AXIS] = 0;
  2335. enable_endstops(false);
  2336. #ifdef DEBUG_BUILD
  2337. SERIAL_ECHOLNPGM("plan_set_position()");
  2338. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2339. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2340. #endif
  2341. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2342. #ifdef DEBUG_BUILD
  2343. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2344. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2345. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2346. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2347. #endif
  2348. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2349. st_synchronize();
  2350. current_position[X_AXIS] = destination[X_AXIS];
  2351. current_position[Y_AXIS] = destination[Y_AXIS];
  2352. enable_endstops(true);
  2353. endstops_hit_on_purpose();
  2354. homeaxis(Z_AXIS);
  2355. #else // MESH_BED_LEVELING
  2356. homeaxis(Z_AXIS);
  2357. #endif // MESH_BED_LEVELING
  2358. }
  2359. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2360. if(home_all_axes) {
  2361. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2362. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2363. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2364. feedrate = XY_TRAVEL_SPEED/60;
  2365. current_position[Z_AXIS] = 0;
  2366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2367. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2368. st_synchronize();
  2369. current_position[X_AXIS] = destination[X_AXIS];
  2370. current_position[Y_AXIS] = destination[Y_AXIS];
  2371. homeaxis(Z_AXIS);
  2372. }
  2373. // Let's see if X and Y are homed and probe is inside bed area.
  2374. if(home_z) {
  2375. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2376. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2377. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2378. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2379. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2380. current_position[Z_AXIS] = 0;
  2381. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2382. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2383. feedrate = max_feedrate[Z_AXIS];
  2384. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2385. st_synchronize();
  2386. homeaxis(Z_AXIS);
  2387. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2388. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2389. SERIAL_ECHO_START;
  2390. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2391. } else {
  2392. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2393. SERIAL_ECHO_START;
  2394. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2395. }
  2396. }
  2397. #endif // Z_SAFE_HOMING
  2398. #endif // Z_HOME_DIR < 0
  2399. if(home_z_axis && home_z_value != 0)
  2400. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2401. #ifdef ENABLE_AUTO_BED_LEVELING
  2402. if(home_z)
  2403. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2404. #endif
  2405. // Set the planner and stepper routine positions.
  2406. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2407. // contains the machine coordinates.
  2408. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2409. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2410. enable_endstops(false);
  2411. #endif
  2412. feedrate = saved_feedrate;
  2413. feedmultiply = saved_feedmultiply;
  2414. previous_millis_cmd = millis();
  2415. endstops_hit_on_purpose();
  2416. #ifndef MESH_BED_LEVELING
  2417. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2418. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2419. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2420. lcd_adjust_z();
  2421. #endif
  2422. // Load the machine correction matrix
  2423. world2machine_initialize();
  2424. // and correct the current_position XY axes to match the transformed coordinate system.
  2425. world2machine_update_current();
  2426. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2427. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2428. {
  2429. if (! home_z && mbl_was_active) {
  2430. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2431. mbl.active = true;
  2432. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2433. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2434. }
  2435. }
  2436. else
  2437. {
  2438. st_synchronize();
  2439. homing_flag = false;
  2440. }
  2441. #endif
  2442. if (farm_mode) { prusa_statistics(20); };
  2443. homing_flag = false;
  2444. #if 0
  2445. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2446. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2447. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2448. #endif
  2449. }
  2450. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2451. {
  2452. bool final_result = false;
  2453. #ifdef TMC2130
  2454. FORCE_HIGH_POWER_START;
  2455. #endif // TMC2130
  2456. // Only Z calibration?
  2457. if (!onlyZ)
  2458. {
  2459. setTargetBed(0);
  2460. setTargetHotend(0, 0);
  2461. setTargetHotend(0, 1);
  2462. setTargetHotend(0, 2);
  2463. adjust_bed_reset(); //reset bed level correction
  2464. }
  2465. // Disable the default update procedure of the display. We will do a modal dialog.
  2466. lcd_update_enable(false);
  2467. // Let the planner use the uncorrected coordinates.
  2468. mbl.reset();
  2469. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2470. // the planner will not perform any adjustments in the XY plane.
  2471. // Wait for the motors to stop and update the current position with the absolute values.
  2472. world2machine_revert_to_uncorrected();
  2473. // Reset the baby step value applied without moving the axes.
  2474. babystep_reset();
  2475. // Mark all axes as in a need for homing.
  2476. memset(axis_known_position, 0, sizeof(axis_known_position));
  2477. // Home in the XY plane.
  2478. //set_destination_to_current();
  2479. setup_for_endstop_move();
  2480. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2481. home_xy();
  2482. enable_endstops(false);
  2483. current_position[X_AXIS] += 5;
  2484. current_position[Y_AXIS] += 5;
  2485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2486. st_synchronize();
  2487. // Let the user move the Z axes up to the end stoppers.
  2488. #ifdef TMC2130
  2489. if (calibrate_z_auto())
  2490. {
  2491. #else //TMC2130
  2492. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2493. {
  2494. #endif //TMC2130
  2495. refresh_cmd_timeout();
  2496. #ifndef STEEL_SHEET
  2497. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2498. {
  2499. lcd_wait_for_cool_down();
  2500. }
  2501. #endif //STEEL_SHEET
  2502. if(!onlyZ)
  2503. {
  2504. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2505. #ifdef STEEL_SHEET
  2506. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2507. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2508. #endif //STEEL_SHEET
  2509. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2510. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2511. KEEPALIVE_STATE(IN_HANDLER);
  2512. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2513. lcd_set_cursor(0, 2);
  2514. lcd_print(1);
  2515. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2516. }
  2517. // Move the print head close to the bed.
  2518. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2519. bool endstops_enabled = enable_endstops(true);
  2520. #ifdef TMC2130
  2521. tmc2130_home_enter(Z_AXIS_MASK);
  2522. #endif //TMC2130
  2523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2524. st_synchronize();
  2525. #ifdef TMC2130
  2526. tmc2130_home_exit();
  2527. #endif //TMC2130
  2528. enable_endstops(endstops_enabled);
  2529. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2530. {
  2531. int8_t verbosity_level = 0;
  2532. if (code_seen('V'))
  2533. {
  2534. // Just 'V' without a number counts as V1.
  2535. char c = strchr_pointer[1];
  2536. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2537. }
  2538. if (onlyZ)
  2539. {
  2540. clean_up_after_endstop_move();
  2541. // Z only calibration.
  2542. // Load the machine correction matrix
  2543. world2machine_initialize();
  2544. // and correct the current_position to match the transformed coordinate system.
  2545. world2machine_update_current();
  2546. //FIXME
  2547. bool result = sample_mesh_and_store_reference();
  2548. if (result)
  2549. {
  2550. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2551. // Shipped, the nozzle height has been set already. The user can start printing now.
  2552. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2553. final_result = true;
  2554. // babystep_apply();
  2555. }
  2556. }
  2557. else
  2558. {
  2559. // Reset the baby step value and the baby step applied flag.
  2560. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2561. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2562. // Complete XYZ calibration.
  2563. uint8_t point_too_far_mask = 0;
  2564. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2565. clean_up_after_endstop_move();
  2566. // Print head up.
  2567. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2569. st_synchronize();
  2570. //#ifndef NEW_XYZCAL
  2571. if (result >= 0)
  2572. {
  2573. #ifdef HEATBED_V2
  2574. sample_z();
  2575. #else //HEATBED_V2
  2576. point_too_far_mask = 0;
  2577. // Second half: The fine adjustment.
  2578. // Let the planner use the uncorrected coordinates.
  2579. mbl.reset();
  2580. world2machine_reset();
  2581. // Home in the XY plane.
  2582. setup_for_endstop_move();
  2583. home_xy();
  2584. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2585. clean_up_after_endstop_move();
  2586. // Print head up.
  2587. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2589. st_synchronize();
  2590. // if (result >= 0) babystep_apply();
  2591. #endif //HEATBED_V2
  2592. }
  2593. //#endif //NEW_XYZCAL
  2594. lcd_update_enable(true);
  2595. lcd_update(2);
  2596. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2597. if (result >= 0)
  2598. {
  2599. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2600. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2601. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2602. final_result = true;
  2603. }
  2604. }
  2605. #ifdef TMC2130
  2606. tmc2130_home_exit();
  2607. #endif
  2608. }
  2609. else
  2610. {
  2611. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2612. final_result = false;
  2613. }
  2614. }
  2615. else
  2616. {
  2617. // Timeouted.
  2618. }
  2619. lcd_update_enable(true);
  2620. #ifdef TMC2130
  2621. FORCE_HIGH_POWER_END;
  2622. #endif // TMC2130
  2623. return final_result;
  2624. }
  2625. void gcode_M114()
  2626. {
  2627. SERIAL_PROTOCOLPGM("X:");
  2628. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2629. SERIAL_PROTOCOLPGM(" Y:");
  2630. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" Z:");
  2632. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2633. SERIAL_PROTOCOLPGM(" E:");
  2634. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2635. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2636. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2637. SERIAL_PROTOCOLPGM(" Y:");
  2638. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2639. SERIAL_PROTOCOLPGM(" Z:");
  2640. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2641. SERIAL_PROTOCOLPGM(" E:");
  2642. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2643. SERIAL_PROTOCOLLN("");
  2644. }
  2645. void gcode_M701()
  2646. {
  2647. printf_P(PSTR("gcode_M701 begin\n"));
  2648. #if defined (SNMM) || defined (SNMM_V2)
  2649. extr_adj(snmm_extruder);//loads current extruder
  2650. #else //defined (SNMM) || defined (SNMM_V2)
  2651. enable_z();
  2652. custom_message = true;
  2653. custom_message_type = 2;
  2654. #ifdef FILAMENT_SENSOR
  2655. fsensor_oq_meassure_start(40);
  2656. #endif //FILAMENT_SENSOR
  2657. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2658. current_position[E_AXIS] += 40;
  2659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2660. st_synchronize();
  2661. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2662. current_position[E_AXIS] += 30;
  2663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2664. st_synchronize();
  2665. current_position[E_AXIS] += 25;
  2666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2667. st_synchronize();
  2668. tone(BEEPER, 500);
  2669. delay_keep_alive(50);
  2670. noTone(BEEPER);
  2671. if (!farm_mode && loading_flag) {
  2672. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2673. while (!clean) {
  2674. lcd_update_enable(true);
  2675. lcd_update(2);
  2676. current_position[E_AXIS] += 25;
  2677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2678. st_synchronize();
  2679. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2680. }
  2681. }
  2682. lcd_update_enable(true);
  2683. lcd_update(2);
  2684. lcd_setstatuspgm(_T(WELCOME_MSG));
  2685. disable_z();
  2686. loading_flag = false;
  2687. custom_message = false;
  2688. custom_message_type = 0;
  2689. #ifdef FILAMENT_SENSOR
  2690. fsensor_oq_meassure_stop();
  2691. if (!fsensor_oq_result())
  2692. {
  2693. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2694. lcd_update_enable(true);
  2695. lcd_update(2);
  2696. if (disable)
  2697. fsensor_disable();
  2698. }
  2699. #endif //FILAMENT_SENSOR
  2700. #endif //defined (SNMM) || defined (SNMM_V2)
  2701. }
  2702. /**
  2703. * @brief Get serial number from 32U2 processor
  2704. *
  2705. * Typical format of S/N is:CZPX0917X003XC13518
  2706. *
  2707. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2708. *
  2709. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2710. * reply is transmitted to serial port 1 character by character.
  2711. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2712. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2713. * in any case.
  2714. */
  2715. static void gcode_PRUSA_SN()
  2716. {
  2717. if (farm_mode) {
  2718. selectedSerialPort = 0;
  2719. putchar(';');
  2720. putchar('S');
  2721. int numbersRead = 0;
  2722. ShortTimer timeout;
  2723. timeout.start();
  2724. while (numbersRead < 19) {
  2725. while (MSerial.available() > 0) {
  2726. uint8_t serial_char = MSerial.read();
  2727. selectedSerialPort = 1;
  2728. putchar(serial_char);
  2729. numbersRead++;
  2730. selectedSerialPort = 0;
  2731. }
  2732. if (timeout.expired(100u)) break;
  2733. }
  2734. selectedSerialPort = 1;
  2735. putchar('\n');
  2736. #if 0
  2737. for (int b = 0; b < 3; b++) {
  2738. tone(BEEPER, 110);
  2739. delay(50);
  2740. noTone(BEEPER);
  2741. delay(50);
  2742. }
  2743. #endif
  2744. } else {
  2745. puts_P(_N("Not in farm mode."));
  2746. }
  2747. }
  2748. #ifdef BACKLASH_X
  2749. extern uint8_t st_backlash_x;
  2750. #endif //BACKLASH_X
  2751. #ifdef BACKLASH_Y
  2752. extern uint8_t st_backlash_y;
  2753. #endif //BACKLASH_Y
  2754. uint16_t gcode_in_progress = 0;
  2755. uint16_t mcode_in_progress = 0;
  2756. void process_commands()
  2757. {
  2758. if (!buflen) return; //empty command
  2759. #ifdef FILAMENT_RUNOUT_SUPPORT
  2760. SET_INPUT(FR_SENS);
  2761. #endif
  2762. #ifdef CMDBUFFER_DEBUG
  2763. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2764. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2765. SERIAL_ECHOLNPGM("");
  2766. SERIAL_ECHOPGM("In cmdqueue: ");
  2767. SERIAL_ECHO(buflen);
  2768. SERIAL_ECHOLNPGM("");
  2769. #endif /* CMDBUFFER_DEBUG */
  2770. unsigned long codenum; //throw away variable
  2771. char *starpos = NULL;
  2772. #ifdef ENABLE_AUTO_BED_LEVELING
  2773. float x_tmp, y_tmp, z_tmp, real_z;
  2774. #endif
  2775. // PRUSA GCODES
  2776. KEEPALIVE_STATE(IN_HANDLER);
  2777. #ifdef SNMM
  2778. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2779. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2780. int8_t SilentMode;
  2781. #endif
  2782. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2783. starpos = (strchr(strchr_pointer + 5, '*'));
  2784. if (starpos != NULL)
  2785. *(starpos) = '\0';
  2786. lcd_setstatus(strchr_pointer + 5);
  2787. }
  2788. #ifdef TMC2130
  2789. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2790. {
  2791. if(code_seen("CRASH_DETECTED"))
  2792. {
  2793. uint8_t mask = 0;
  2794. if (code_seen("X")) mask |= X_AXIS_MASK;
  2795. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2796. crashdet_detected(mask);
  2797. }
  2798. else if(code_seen("CRASH_RECOVER"))
  2799. crashdet_recover();
  2800. else if(code_seen("CRASH_CANCEL"))
  2801. crashdet_cancel();
  2802. }
  2803. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2804. {
  2805. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2806. {
  2807. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2808. axis = (axis == 'E')?3:(axis - 'X');
  2809. if (axis < 4)
  2810. {
  2811. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2812. tmc2130_set_wave(axis, 247, fac);
  2813. }
  2814. }
  2815. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2816. {
  2817. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2818. axis = (axis == 'E')?3:(axis - 'X');
  2819. if (axis < 4)
  2820. {
  2821. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2822. uint16_t res = tmc2130_get_res(axis);
  2823. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2824. }
  2825. }
  2826. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2827. {
  2828. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2829. axis = (axis == 'E')?3:(axis - 'X');
  2830. if (axis < 4)
  2831. {
  2832. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2833. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2834. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2835. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2836. char* str_end = 0;
  2837. if (CMDBUFFER_CURRENT_STRING[14])
  2838. {
  2839. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2840. if (str_end && *str_end)
  2841. {
  2842. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2843. if (str_end && *str_end)
  2844. {
  2845. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2846. if (str_end && *str_end)
  2847. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2848. }
  2849. }
  2850. }
  2851. tmc2130_chopper_config[axis].toff = chop0;
  2852. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2853. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2854. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2855. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2856. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2857. }
  2858. }
  2859. }
  2860. #ifdef BACKLASH_X
  2861. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2862. {
  2863. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2864. st_backlash_x = bl;
  2865. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2866. }
  2867. #endif //BACKLASH_X
  2868. #ifdef BACKLASH_Y
  2869. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2870. {
  2871. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2872. st_backlash_y = bl;
  2873. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2874. }
  2875. #endif //BACKLASH_Y
  2876. #endif //TMC2130
  2877. else if(code_seen("PRUSA")){
  2878. if (code_seen("Ping")) { //PRUSA Ping
  2879. if (farm_mode) {
  2880. PingTime = millis();
  2881. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2882. }
  2883. }
  2884. else if (code_seen("PRN")) {
  2885. printf_P(_N("%d"), status_number);
  2886. }else if (code_seen("FAN")) {
  2887. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2888. }else if (code_seen("fn")) {
  2889. if (farm_mode) {
  2890. printf_P(_N("%d"), farm_no);
  2891. }
  2892. else {
  2893. puts_P(_N("Not in farm mode."));
  2894. }
  2895. }
  2896. else if (code_seen("thx")) {
  2897. no_response = false;
  2898. }
  2899. else if (code_seen("MMURES")) {
  2900. fprintf_P(uart2io, PSTR("X0"));
  2901. bool response = mmu_get_reponse();
  2902. if (!response) mmu_not_responding();
  2903. }
  2904. else if (code_seen("RESET")) {
  2905. // careful!
  2906. if (farm_mode) {
  2907. #ifdef WATCHDOG
  2908. boot_app_magic = BOOT_APP_MAGIC;
  2909. boot_app_flags = BOOT_APP_FLG_RUN;
  2910. wdt_enable(WDTO_15MS);
  2911. cli();
  2912. while(1);
  2913. #else //WATCHDOG
  2914. asm volatile("jmp 0x3E000");
  2915. #endif //WATCHDOG
  2916. }
  2917. else {
  2918. MYSERIAL.println("Not in farm mode.");
  2919. }
  2920. }else if (code_seen("fv")) {
  2921. // get file version
  2922. #ifdef SDSUPPORT
  2923. card.openFile(strchr_pointer + 3,true);
  2924. while (true) {
  2925. uint16_t readByte = card.get();
  2926. MYSERIAL.write(readByte);
  2927. if (readByte=='\n') {
  2928. break;
  2929. }
  2930. }
  2931. card.closefile();
  2932. #endif // SDSUPPORT
  2933. } else if (code_seen("M28")) {
  2934. trace();
  2935. prusa_sd_card_upload = true;
  2936. card.openFile(strchr_pointer+4,false);
  2937. } else if (code_seen("SN")) {
  2938. gcode_PRUSA_SN();
  2939. } else if(code_seen("Fir")){
  2940. SERIAL_PROTOCOLLN(FW_VERSION);
  2941. } else if(code_seen("Rev")){
  2942. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2943. } else if(code_seen("Lang")) {
  2944. lang_reset();
  2945. } else if(code_seen("Lz")) {
  2946. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2947. } else if(code_seen("Beat")) {
  2948. // Kick farm link timer
  2949. kicktime = millis();
  2950. } else if(code_seen("FR")) {
  2951. // Factory full reset
  2952. factory_reset(0,true);
  2953. }
  2954. //else if (code_seen('Cal')) {
  2955. // lcd_calibration();
  2956. // }
  2957. }
  2958. else if (code_seen('^')) {
  2959. // nothing, this is a version line
  2960. } else if(code_seen('G'))
  2961. {
  2962. gcode_in_progress = (int)code_value();
  2963. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  2964. switch (gcode_in_progress)
  2965. {
  2966. case 0: // G0 -> G1
  2967. case 1: // G1
  2968. if(Stopped == false) {
  2969. #ifdef FILAMENT_RUNOUT_SUPPORT
  2970. if(READ(FR_SENS)){
  2971. feedmultiplyBckp=feedmultiply;
  2972. float target[4];
  2973. float lastpos[4];
  2974. target[X_AXIS]=current_position[X_AXIS];
  2975. target[Y_AXIS]=current_position[Y_AXIS];
  2976. target[Z_AXIS]=current_position[Z_AXIS];
  2977. target[E_AXIS]=current_position[E_AXIS];
  2978. lastpos[X_AXIS]=current_position[X_AXIS];
  2979. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2980. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2981. lastpos[E_AXIS]=current_position[E_AXIS];
  2982. //retract by E
  2983. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2984. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2985. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2986. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2987. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2988. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2990. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2992. //finish moves
  2993. st_synchronize();
  2994. //disable extruder steppers so filament can be removed
  2995. disable_e0();
  2996. disable_e1();
  2997. disable_e2();
  2998. delay(100);
  2999. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3000. uint8_t cnt=0;
  3001. int counterBeep = 0;
  3002. lcd_wait_interact();
  3003. while(!lcd_clicked()){
  3004. cnt++;
  3005. manage_heater();
  3006. manage_inactivity(true);
  3007. //lcd_update(0);
  3008. if(cnt==0)
  3009. {
  3010. #if BEEPER > 0
  3011. if (counterBeep== 500){
  3012. counterBeep = 0;
  3013. }
  3014. SET_OUTPUT(BEEPER);
  3015. if (counterBeep== 0){
  3016. WRITE(BEEPER,HIGH);
  3017. }
  3018. if (counterBeep== 20){
  3019. WRITE(BEEPER,LOW);
  3020. }
  3021. counterBeep++;
  3022. #else
  3023. #endif
  3024. }
  3025. }
  3026. WRITE(BEEPER,LOW);
  3027. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3028. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3029. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3030. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3031. lcd_change_fil_state = 0;
  3032. lcd_loading_filament();
  3033. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3034. lcd_change_fil_state = 0;
  3035. lcd_alright();
  3036. switch(lcd_change_fil_state){
  3037. case 2:
  3038. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3040. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3042. lcd_loading_filament();
  3043. break;
  3044. case 3:
  3045. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3047. lcd_loading_color();
  3048. break;
  3049. default:
  3050. lcd_change_success();
  3051. break;
  3052. }
  3053. }
  3054. target[E_AXIS]+= 5;
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3056. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3058. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3059. //plan_set_e_position(current_position[E_AXIS]);
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3061. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3062. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3063. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3064. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3065. plan_set_e_position(lastpos[E_AXIS]);
  3066. feedmultiply=feedmultiplyBckp;
  3067. char cmd[9];
  3068. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3069. enquecommand(cmd);
  3070. }
  3071. #endif
  3072. get_coordinates(); // For X Y Z E F
  3073. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3074. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3075. }
  3076. #ifdef FWRETRACT
  3077. if(autoretract_enabled)
  3078. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3079. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3080. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3081. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3082. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3083. retract(!retracted[active_extruder]);
  3084. return;
  3085. }
  3086. }
  3087. #endif //FWRETRACT
  3088. prepare_move();
  3089. //ClearToSend();
  3090. }
  3091. break;
  3092. case 2: // G2 - CW ARC
  3093. if(Stopped == false) {
  3094. get_arc_coordinates();
  3095. prepare_arc_move(true);
  3096. }
  3097. break;
  3098. case 3: // G3 - CCW ARC
  3099. if(Stopped == false) {
  3100. get_arc_coordinates();
  3101. prepare_arc_move(false);
  3102. }
  3103. break;
  3104. case 4: // G4 dwell
  3105. codenum = 0;
  3106. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3107. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3108. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3109. st_synchronize();
  3110. codenum += millis(); // keep track of when we started waiting
  3111. previous_millis_cmd = millis();
  3112. while(millis() < codenum) {
  3113. manage_heater();
  3114. manage_inactivity();
  3115. lcd_update(0);
  3116. }
  3117. break;
  3118. #ifdef FWRETRACT
  3119. case 10: // G10 retract
  3120. #if EXTRUDERS > 1
  3121. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3122. retract(true,retracted_swap[active_extruder]);
  3123. #else
  3124. retract(true);
  3125. #endif
  3126. break;
  3127. case 11: // G11 retract_recover
  3128. #if EXTRUDERS > 1
  3129. retract(false,retracted_swap[active_extruder]);
  3130. #else
  3131. retract(false);
  3132. #endif
  3133. break;
  3134. #endif //FWRETRACT
  3135. case 28: //G28 Home all Axis one at a time
  3136. {
  3137. long home_x_value = 0;
  3138. long home_y_value = 0;
  3139. long home_z_value = 0;
  3140. // Which axes should be homed?
  3141. bool home_x = code_seen(axis_codes[X_AXIS]);
  3142. home_x_value = code_value_long();
  3143. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3144. home_y_value = code_value_long();
  3145. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3146. home_z_value = code_value_long();
  3147. bool without_mbl = code_seen('W');
  3148. // calibrate?
  3149. bool calib = code_seen('C');
  3150. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3151. if ((home_x || home_y || without_mbl || home_z) == false) {
  3152. // Push the commands to the front of the message queue in the reverse order!
  3153. // There shall be always enough space reserved for these commands.
  3154. goto case_G80;
  3155. }
  3156. break;
  3157. }
  3158. #ifdef ENABLE_AUTO_BED_LEVELING
  3159. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3160. {
  3161. #if Z_MIN_PIN == -1
  3162. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3163. #endif
  3164. // Prevent user from running a G29 without first homing in X and Y
  3165. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3166. {
  3167. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3168. SERIAL_ECHO_START;
  3169. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3170. break; // abort G29, since we don't know where we are
  3171. }
  3172. st_synchronize();
  3173. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3174. //vector_3 corrected_position = plan_get_position_mm();
  3175. //corrected_position.debug("position before G29");
  3176. plan_bed_level_matrix.set_to_identity();
  3177. vector_3 uncorrected_position = plan_get_position();
  3178. //uncorrected_position.debug("position durring G29");
  3179. current_position[X_AXIS] = uncorrected_position.x;
  3180. current_position[Y_AXIS] = uncorrected_position.y;
  3181. current_position[Z_AXIS] = uncorrected_position.z;
  3182. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3183. setup_for_endstop_move();
  3184. feedrate = homing_feedrate[Z_AXIS];
  3185. #ifdef AUTO_BED_LEVELING_GRID
  3186. // probe at the points of a lattice grid
  3187. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3188. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3189. // solve the plane equation ax + by + d = z
  3190. // A is the matrix with rows [x y 1] for all the probed points
  3191. // B is the vector of the Z positions
  3192. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3193. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3194. // "A" matrix of the linear system of equations
  3195. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3196. // "B" vector of Z points
  3197. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3198. int probePointCounter = 0;
  3199. bool zig = true;
  3200. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3201. {
  3202. int xProbe, xInc;
  3203. if (zig)
  3204. {
  3205. xProbe = LEFT_PROBE_BED_POSITION;
  3206. //xEnd = RIGHT_PROBE_BED_POSITION;
  3207. xInc = xGridSpacing;
  3208. zig = false;
  3209. } else // zag
  3210. {
  3211. xProbe = RIGHT_PROBE_BED_POSITION;
  3212. //xEnd = LEFT_PROBE_BED_POSITION;
  3213. xInc = -xGridSpacing;
  3214. zig = true;
  3215. }
  3216. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3217. {
  3218. float z_before;
  3219. if (probePointCounter == 0)
  3220. {
  3221. // raise before probing
  3222. z_before = Z_RAISE_BEFORE_PROBING;
  3223. } else
  3224. {
  3225. // raise extruder
  3226. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3227. }
  3228. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3229. eqnBVector[probePointCounter] = measured_z;
  3230. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3231. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3232. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3233. probePointCounter++;
  3234. xProbe += xInc;
  3235. }
  3236. }
  3237. clean_up_after_endstop_move();
  3238. // solve lsq problem
  3239. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3240. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3241. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3242. SERIAL_PROTOCOLPGM(" b: ");
  3243. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3244. SERIAL_PROTOCOLPGM(" d: ");
  3245. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3246. set_bed_level_equation_lsq(plane_equation_coefficients);
  3247. free(plane_equation_coefficients);
  3248. #else // AUTO_BED_LEVELING_GRID not defined
  3249. // Probe at 3 arbitrary points
  3250. // probe 1
  3251. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3252. // probe 2
  3253. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3254. // probe 3
  3255. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3256. clean_up_after_endstop_move();
  3257. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3258. #endif // AUTO_BED_LEVELING_GRID
  3259. st_synchronize();
  3260. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3261. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3262. // When the bed is uneven, this height must be corrected.
  3263. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3264. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3265. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3266. z_tmp = current_position[Z_AXIS];
  3267. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3268. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3270. }
  3271. break;
  3272. #ifndef Z_PROBE_SLED
  3273. case 30: // G30 Single Z Probe
  3274. {
  3275. st_synchronize();
  3276. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3277. setup_for_endstop_move();
  3278. feedrate = homing_feedrate[Z_AXIS];
  3279. run_z_probe();
  3280. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3281. SERIAL_PROTOCOLPGM(" X: ");
  3282. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3283. SERIAL_PROTOCOLPGM(" Y: ");
  3284. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3285. SERIAL_PROTOCOLPGM(" Z: ");
  3286. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3287. SERIAL_PROTOCOLPGM("\n");
  3288. clean_up_after_endstop_move();
  3289. }
  3290. break;
  3291. #else
  3292. case 31: // dock the sled
  3293. dock_sled(true);
  3294. break;
  3295. case 32: // undock the sled
  3296. dock_sled(false);
  3297. break;
  3298. #endif // Z_PROBE_SLED
  3299. #endif // ENABLE_AUTO_BED_LEVELING
  3300. #ifdef MESH_BED_LEVELING
  3301. case 30: // G30 Single Z Probe
  3302. {
  3303. st_synchronize();
  3304. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3305. setup_for_endstop_move();
  3306. feedrate = homing_feedrate[Z_AXIS];
  3307. find_bed_induction_sensor_point_z(-10.f, 3);
  3308. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3309. clean_up_after_endstop_move();
  3310. }
  3311. break;
  3312. case 75:
  3313. {
  3314. for (int i = 40; i <= 110; i++)
  3315. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3316. }
  3317. break;
  3318. case 76: //PINDA probe temperature calibration
  3319. {
  3320. #ifdef PINDA_THERMISTOR
  3321. if (true)
  3322. {
  3323. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3324. //we need to know accurate position of first calibration point
  3325. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3326. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3327. break;
  3328. }
  3329. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3330. {
  3331. // We don't know where we are! HOME!
  3332. // Push the commands to the front of the message queue in the reverse order!
  3333. // There shall be always enough space reserved for these commands.
  3334. repeatcommand_front(); // repeat G76 with all its parameters
  3335. enquecommand_front_P((PSTR("G28 W0")));
  3336. break;
  3337. }
  3338. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3339. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3340. if (result)
  3341. {
  3342. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3344. current_position[Z_AXIS] = 50;
  3345. current_position[Y_AXIS] = 180;
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3347. st_synchronize();
  3348. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3349. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3350. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3352. st_synchronize();
  3353. gcode_G28(false, false, true);
  3354. }
  3355. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3356. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3357. current_position[Z_AXIS] = 100;
  3358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3359. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3360. lcd_temp_cal_show_result(false);
  3361. break;
  3362. }
  3363. }
  3364. lcd_update_enable(true);
  3365. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3366. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3367. float zero_z;
  3368. int z_shift = 0; //unit: steps
  3369. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3370. if (start_temp < 35) start_temp = 35;
  3371. if (start_temp < current_temperature_pinda) start_temp += 5;
  3372. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3373. // setTargetHotend(200, 0);
  3374. setTargetBed(70 + (start_temp - 30));
  3375. custom_message = true;
  3376. custom_message_type = 4;
  3377. custom_message_state = 1;
  3378. custom_message = _T(MSG_TEMP_CALIBRATION);
  3379. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3381. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3382. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3384. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3386. st_synchronize();
  3387. while (current_temperature_pinda < start_temp)
  3388. {
  3389. delay_keep_alive(1000);
  3390. serialecho_temperatures();
  3391. }
  3392. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3393. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3395. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3396. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3398. st_synchronize();
  3399. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3400. if (find_z_result == false) {
  3401. lcd_temp_cal_show_result(find_z_result);
  3402. break;
  3403. }
  3404. zero_z = current_position[Z_AXIS];
  3405. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3406. int i = -1; for (; i < 5; i++)
  3407. {
  3408. float temp = (40 + i * 5);
  3409. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3410. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3411. if (start_temp <= temp) break;
  3412. }
  3413. for (i++; i < 5; i++)
  3414. {
  3415. float temp = (40 + i * 5);
  3416. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3417. custom_message_state = i + 2;
  3418. setTargetBed(50 + 10 * (temp - 30) / 5);
  3419. // setTargetHotend(255, 0);
  3420. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3422. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3423. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3425. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3427. st_synchronize();
  3428. while (current_temperature_pinda < temp)
  3429. {
  3430. delay_keep_alive(1000);
  3431. serialecho_temperatures();
  3432. }
  3433. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3435. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3436. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3438. st_synchronize();
  3439. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3440. if (find_z_result == false) {
  3441. lcd_temp_cal_show_result(find_z_result);
  3442. break;
  3443. }
  3444. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3445. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3446. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3447. }
  3448. lcd_temp_cal_show_result(true);
  3449. break;
  3450. }
  3451. #endif //PINDA_THERMISTOR
  3452. setTargetBed(PINDA_MIN_T);
  3453. float zero_z;
  3454. int z_shift = 0; //unit: steps
  3455. int t_c; // temperature
  3456. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3457. // We don't know where we are! HOME!
  3458. // Push the commands to the front of the message queue in the reverse order!
  3459. // There shall be always enough space reserved for these commands.
  3460. repeatcommand_front(); // repeat G76 with all its parameters
  3461. enquecommand_front_P((PSTR("G28 W0")));
  3462. break;
  3463. }
  3464. puts_P(_N("PINDA probe calibration start"));
  3465. custom_message = true;
  3466. custom_message_type = 4;
  3467. custom_message_state = 1;
  3468. custom_message = _T(MSG_TEMP_CALIBRATION);
  3469. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3470. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3471. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3473. st_synchronize();
  3474. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3475. delay_keep_alive(1000);
  3476. serialecho_temperatures();
  3477. }
  3478. //enquecommand_P(PSTR("M190 S50"));
  3479. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3480. delay_keep_alive(1000);
  3481. serialecho_temperatures();
  3482. }
  3483. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3484. current_position[Z_AXIS] = 5;
  3485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3486. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3487. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3489. st_synchronize();
  3490. find_bed_induction_sensor_point_z(-1.f);
  3491. zero_z = current_position[Z_AXIS];
  3492. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3493. for (int i = 0; i<5; i++) {
  3494. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3495. custom_message_state = i + 2;
  3496. t_c = 60 + i * 10;
  3497. setTargetBed(t_c);
  3498. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3499. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3500. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3502. st_synchronize();
  3503. while (degBed() < t_c) {
  3504. delay_keep_alive(1000);
  3505. serialecho_temperatures();
  3506. }
  3507. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3508. delay_keep_alive(1000);
  3509. serialecho_temperatures();
  3510. }
  3511. current_position[Z_AXIS] = 5;
  3512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3513. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3514. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3516. st_synchronize();
  3517. find_bed_induction_sensor_point_z(-1.f);
  3518. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3519. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3520. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3521. }
  3522. custom_message_type = 0;
  3523. custom_message = false;
  3524. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3525. puts_P(_N("Temperature calibration done."));
  3526. disable_x();
  3527. disable_y();
  3528. disable_z();
  3529. disable_e0();
  3530. disable_e1();
  3531. disable_e2();
  3532. setTargetBed(0); //set bed target temperature back to 0
  3533. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3534. temp_cal_active = true;
  3535. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3536. lcd_update_enable(true);
  3537. lcd_update(2);
  3538. }
  3539. break;
  3540. #ifdef DIS
  3541. case 77:
  3542. {
  3543. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3544. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3545. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3546. float dimension_x = 40;
  3547. float dimension_y = 40;
  3548. int points_x = 40;
  3549. int points_y = 40;
  3550. float offset_x = 74;
  3551. float offset_y = 33;
  3552. if (code_seen('X')) dimension_x = code_value();
  3553. if (code_seen('Y')) dimension_y = code_value();
  3554. if (code_seen('XP')) points_x = code_value();
  3555. if (code_seen('YP')) points_y = code_value();
  3556. if (code_seen('XO')) offset_x = code_value();
  3557. if (code_seen('YO')) offset_y = code_value();
  3558. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3559. } break;
  3560. #endif
  3561. case 79: {
  3562. for (int i = 255; i > 0; i = i - 5) {
  3563. fanSpeed = i;
  3564. //delay_keep_alive(2000);
  3565. for (int j = 0; j < 100; j++) {
  3566. delay_keep_alive(100);
  3567. }
  3568. fan_speed[1];
  3569. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3570. }
  3571. }break;
  3572. /**
  3573. * G80: Mesh-based Z probe, probes a grid and produces a
  3574. * mesh to compensate for variable bed height
  3575. *
  3576. * The S0 report the points as below
  3577. *
  3578. * +----> X-axis
  3579. * |
  3580. * |
  3581. * v Y-axis
  3582. *
  3583. */
  3584. case 80:
  3585. #ifdef MK1BP
  3586. break;
  3587. #endif //MK1BP
  3588. case_G80:
  3589. {
  3590. mesh_bed_leveling_flag = true;
  3591. int8_t verbosity_level = 0;
  3592. static bool run = false;
  3593. if (code_seen('V')) {
  3594. // Just 'V' without a number counts as V1.
  3595. char c = strchr_pointer[1];
  3596. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3597. }
  3598. // Firstly check if we know where we are
  3599. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3600. // We don't know where we are! HOME!
  3601. // Push the commands to the front of the message queue in the reverse order!
  3602. // There shall be always enough space reserved for these commands.
  3603. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3604. repeatcommand_front(); // repeat G80 with all its parameters
  3605. enquecommand_front_P((PSTR("G28 W0")));
  3606. }
  3607. else {
  3608. mesh_bed_leveling_flag = false;
  3609. }
  3610. break;
  3611. }
  3612. bool temp_comp_start = true;
  3613. #ifdef PINDA_THERMISTOR
  3614. temp_comp_start = false;
  3615. #endif //PINDA_THERMISTOR
  3616. if (temp_comp_start)
  3617. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3618. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3619. temp_compensation_start();
  3620. run = true;
  3621. repeatcommand_front(); // repeat G80 with all its parameters
  3622. enquecommand_front_P((PSTR("G28 W0")));
  3623. }
  3624. else {
  3625. mesh_bed_leveling_flag = false;
  3626. }
  3627. break;
  3628. }
  3629. run = false;
  3630. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3631. mesh_bed_leveling_flag = false;
  3632. break;
  3633. }
  3634. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3635. bool custom_message_old = custom_message;
  3636. unsigned int custom_message_type_old = custom_message_type;
  3637. unsigned int custom_message_state_old = custom_message_state;
  3638. custom_message = true;
  3639. custom_message_type = 1;
  3640. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3641. lcd_update(1);
  3642. mbl.reset(); //reset mesh bed leveling
  3643. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3644. // consumed during the first movements following this statement.
  3645. babystep_undo();
  3646. // Cycle through all points and probe them
  3647. // First move up. During this first movement, the babystepping will be reverted.
  3648. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3650. // The move to the first calibration point.
  3651. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3652. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3653. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3654. #ifdef SUPPORT_VERBOSITY
  3655. if (verbosity_level >= 1) {
  3656. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3657. }
  3658. #endif //SUPPORT_VERBOSITY
  3659. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3661. // Wait until the move is finished.
  3662. st_synchronize();
  3663. int mesh_point = 0; //index number of calibration point
  3664. int ix = 0;
  3665. int iy = 0;
  3666. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3667. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3668. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3669. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3670. #ifdef SUPPORT_VERBOSITY
  3671. if (verbosity_level >= 1) {
  3672. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3673. }
  3674. #endif // SUPPORT_VERBOSITY
  3675. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3676. const char *kill_message = NULL;
  3677. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3678. // Get coords of a measuring point.
  3679. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3680. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3681. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3682. float z0 = 0.f;
  3683. if (has_z && mesh_point > 0) {
  3684. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3685. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3686. //#if 0
  3687. #ifdef SUPPORT_VERBOSITY
  3688. if (verbosity_level >= 1) {
  3689. SERIAL_ECHOLNPGM("");
  3690. SERIAL_ECHOPGM("Bed leveling, point: ");
  3691. MYSERIAL.print(mesh_point);
  3692. SERIAL_ECHOPGM(", calibration z: ");
  3693. MYSERIAL.print(z0, 5);
  3694. SERIAL_ECHOLNPGM("");
  3695. }
  3696. #endif // SUPPORT_VERBOSITY
  3697. //#endif
  3698. }
  3699. // Move Z up to MESH_HOME_Z_SEARCH.
  3700. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3702. st_synchronize();
  3703. // Move to XY position of the sensor point.
  3704. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3705. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3706. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3707. #ifdef SUPPORT_VERBOSITY
  3708. if (verbosity_level >= 1) {
  3709. SERIAL_PROTOCOL(mesh_point);
  3710. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3711. }
  3712. #endif // SUPPORT_VERBOSITY
  3713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3714. st_synchronize();
  3715. // Go down until endstop is hit
  3716. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3717. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3718. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3719. break;
  3720. }
  3721. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3722. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3723. break;
  3724. }
  3725. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3726. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3727. break;
  3728. }
  3729. #ifdef SUPPORT_VERBOSITY
  3730. if (verbosity_level >= 10) {
  3731. SERIAL_ECHOPGM("X: ");
  3732. MYSERIAL.print(current_position[X_AXIS], 5);
  3733. SERIAL_ECHOLNPGM("");
  3734. SERIAL_ECHOPGM("Y: ");
  3735. MYSERIAL.print(current_position[Y_AXIS], 5);
  3736. SERIAL_PROTOCOLPGM("\n");
  3737. }
  3738. #endif // SUPPORT_VERBOSITY
  3739. float offset_z = 0;
  3740. #ifdef PINDA_THERMISTOR
  3741. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3742. #endif //PINDA_THERMISTOR
  3743. // #ifdef SUPPORT_VERBOSITY
  3744. /* if (verbosity_level >= 1)
  3745. {
  3746. SERIAL_ECHOPGM("mesh bed leveling: ");
  3747. MYSERIAL.print(current_position[Z_AXIS], 5);
  3748. SERIAL_ECHOPGM(" offset: ");
  3749. MYSERIAL.print(offset_z, 5);
  3750. SERIAL_ECHOLNPGM("");
  3751. }*/
  3752. // #endif // SUPPORT_VERBOSITY
  3753. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3754. custom_message_state--;
  3755. mesh_point++;
  3756. lcd_update(1);
  3757. }
  3758. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3759. #ifdef SUPPORT_VERBOSITY
  3760. if (verbosity_level >= 20) {
  3761. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3762. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3763. MYSERIAL.print(current_position[Z_AXIS], 5);
  3764. }
  3765. #endif // SUPPORT_VERBOSITY
  3766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3767. st_synchronize();
  3768. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3769. kill(kill_message);
  3770. SERIAL_ECHOLNPGM("killed");
  3771. }
  3772. clean_up_after_endstop_move();
  3773. // SERIAL_ECHOLNPGM("clean up finished ");
  3774. bool apply_temp_comp = true;
  3775. #ifdef PINDA_THERMISTOR
  3776. apply_temp_comp = false;
  3777. #endif
  3778. if (apply_temp_comp)
  3779. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3780. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3781. // SERIAL_ECHOLNPGM("babystep applied");
  3782. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3783. #ifdef SUPPORT_VERBOSITY
  3784. if (verbosity_level >= 1) {
  3785. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3786. }
  3787. #endif // SUPPORT_VERBOSITY
  3788. for (uint8_t i = 0; i < 4; ++i) {
  3789. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3790. long correction = 0;
  3791. if (code_seen(codes[i]))
  3792. correction = code_value_long();
  3793. else if (eeprom_bed_correction_valid) {
  3794. unsigned char *addr = (i < 2) ?
  3795. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3796. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3797. correction = eeprom_read_int8(addr);
  3798. }
  3799. if (correction == 0)
  3800. continue;
  3801. float offset = float(correction) * 0.001f;
  3802. if (fabs(offset) > 0.101f) {
  3803. SERIAL_ERROR_START;
  3804. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3805. SERIAL_ECHO(offset);
  3806. SERIAL_ECHOLNPGM(" microns");
  3807. }
  3808. else {
  3809. switch (i) {
  3810. case 0:
  3811. for (uint8_t row = 0; row < 3; ++row) {
  3812. mbl.z_values[row][1] += 0.5f * offset;
  3813. mbl.z_values[row][0] += offset;
  3814. }
  3815. break;
  3816. case 1:
  3817. for (uint8_t row = 0; row < 3; ++row) {
  3818. mbl.z_values[row][1] += 0.5f * offset;
  3819. mbl.z_values[row][2] += offset;
  3820. }
  3821. break;
  3822. case 2:
  3823. for (uint8_t col = 0; col < 3; ++col) {
  3824. mbl.z_values[1][col] += 0.5f * offset;
  3825. mbl.z_values[0][col] += offset;
  3826. }
  3827. break;
  3828. case 3:
  3829. for (uint8_t col = 0; col < 3; ++col) {
  3830. mbl.z_values[1][col] += 0.5f * offset;
  3831. mbl.z_values[2][col] += offset;
  3832. }
  3833. break;
  3834. }
  3835. }
  3836. }
  3837. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3838. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3839. // SERIAL_ECHOLNPGM("Upsample finished");
  3840. mbl.active = 1; //activate mesh bed leveling
  3841. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3842. go_home_with_z_lift();
  3843. // SERIAL_ECHOLNPGM("Go home finished");
  3844. //unretract (after PINDA preheat retraction)
  3845. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3846. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3848. }
  3849. KEEPALIVE_STATE(NOT_BUSY);
  3850. // Restore custom message state
  3851. lcd_setstatuspgm(_T(WELCOME_MSG));
  3852. custom_message = custom_message_old;
  3853. custom_message_type = custom_message_type_old;
  3854. custom_message_state = custom_message_state_old;
  3855. mesh_bed_leveling_flag = false;
  3856. mesh_bed_run_from_menu = false;
  3857. lcd_update(2);
  3858. }
  3859. break;
  3860. /**
  3861. * G81: Print mesh bed leveling status and bed profile if activated
  3862. */
  3863. case 81:
  3864. if (mbl.active) {
  3865. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3866. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3867. SERIAL_PROTOCOLPGM(",");
  3868. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3869. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3870. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3871. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3872. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3873. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3874. SERIAL_PROTOCOLPGM(" ");
  3875. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3876. }
  3877. SERIAL_PROTOCOLPGM("\n");
  3878. }
  3879. }
  3880. else
  3881. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3882. break;
  3883. #if 0
  3884. /**
  3885. * G82: Single Z probe at current location
  3886. *
  3887. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3888. *
  3889. */
  3890. case 82:
  3891. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3892. setup_for_endstop_move();
  3893. find_bed_induction_sensor_point_z();
  3894. clean_up_after_endstop_move();
  3895. SERIAL_PROTOCOLPGM("Bed found at: ");
  3896. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3897. SERIAL_PROTOCOLPGM("\n");
  3898. break;
  3899. /**
  3900. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3901. */
  3902. case 83:
  3903. {
  3904. int babystepz = code_seen('S') ? code_value() : 0;
  3905. int BabyPosition = code_seen('P') ? code_value() : 0;
  3906. if (babystepz != 0) {
  3907. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3908. // Is the axis indexed starting with zero or one?
  3909. if (BabyPosition > 4) {
  3910. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3911. }else{
  3912. // Save it to the eeprom
  3913. babystepLoadZ = babystepz;
  3914. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3915. // adjust the Z
  3916. babystepsTodoZadd(babystepLoadZ);
  3917. }
  3918. }
  3919. }
  3920. break;
  3921. /**
  3922. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3923. */
  3924. case 84:
  3925. babystepsTodoZsubtract(babystepLoadZ);
  3926. // babystepLoadZ = 0;
  3927. break;
  3928. /**
  3929. * G85: Prusa3D specific: Pick best babystep
  3930. */
  3931. case 85:
  3932. lcd_pick_babystep();
  3933. break;
  3934. #endif
  3935. /**
  3936. * G86: Prusa3D specific: Disable babystep correction after home.
  3937. * This G-code will be performed at the start of a calibration script.
  3938. */
  3939. case 86:
  3940. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3941. break;
  3942. /**
  3943. * G87: Prusa3D specific: Enable babystep correction after home
  3944. * This G-code will be performed at the end of a calibration script.
  3945. */
  3946. case 87:
  3947. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3948. break;
  3949. /**
  3950. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3951. */
  3952. case 88:
  3953. break;
  3954. #endif // ENABLE_MESH_BED_LEVELING
  3955. case 90: // G90
  3956. relative_mode = false;
  3957. break;
  3958. case 91: // G91
  3959. relative_mode = true;
  3960. break;
  3961. case 92: // G92
  3962. if(!code_seen(axis_codes[E_AXIS]))
  3963. st_synchronize();
  3964. for(int8_t i=0; i < NUM_AXIS; i++) {
  3965. if(code_seen(axis_codes[i])) {
  3966. if(i == E_AXIS) {
  3967. current_position[i] = code_value();
  3968. plan_set_e_position(current_position[E_AXIS]);
  3969. }
  3970. else {
  3971. current_position[i] = code_value()+add_homing[i];
  3972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3973. }
  3974. }
  3975. }
  3976. break;
  3977. case 98: // G98 (activate farm mode)
  3978. farm_mode = 1;
  3979. PingTime = millis();
  3980. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3981. SilentModeMenu = SILENT_MODE_OFF;
  3982. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3983. break;
  3984. case 99: // G99 (deactivate farm mode)
  3985. farm_mode = 0;
  3986. lcd_printer_connected();
  3987. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3988. lcd_update(2);
  3989. break;
  3990. default:
  3991. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3992. }
  3993. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  3994. gcode_in_progress = 0;
  3995. } // end if(code_seen('G'))
  3996. else if(code_seen('M'))
  3997. {
  3998. int index;
  3999. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4000. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4001. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4002. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4003. } else
  4004. {
  4005. mcode_in_progress = (int)code_value();
  4006. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4007. switch(mcode_in_progress)
  4008. {
  4009. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4010. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4011. {
  4012. char *src = strchr_pointer + 2;
  4013. codenum = 0;
  4014. bool hasP = false, hasS = false;
  4015. if (code_seen('P')) {
  4016. codenum = code_value(); // milliseconds to wait
  4017. hasP = codenum > 0;
  4018. }
  4019. if (code_seen('S')) {
  4020. codenum = code_value() * 1000; // seconds to wait
  4021. hasS = codenum > 0;
  4022. }
  4023. starpos = strchr(src, '*');
  4024. if (starpos != NULL) *(starpos) = '\0';
  4025. while (*src == ' ') ++src;
  4026. if (!hasP && !hasS && *src != '\0') {
  4027. lcd_setstatus(src);
  4028. } else {
  4029. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4030. }
  4031. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4032. st_synchronize();
  4033. previous_millis_cmd = millis();
  4034. if (codenum > 0){
  4035. codenum += millis(); // keep track of when we started waiting
  4036. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4037. while(millis() < codenum && !lcd_clicked()){
  4038. manage_heater();
  4039. manage_inactivity(true);
  4040. lcd_update(0);
  4041. }
  4042. KEEPALIVE_STATE(IN_HANDLER);
  4043. lcd_ignore_click(false);
  4044. }else{
  4045. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4046. while(!lcd_clicked()){
  4047. manage_heater();
  4048. manage_inactivity(true);
  4049. lcd_update(0);
  4050. }
  4051. KEEPALIVE_STATE(IN_HANDLER);
  4052. }
  4053. if (IS_SD_PRINTING)
  4054. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4055. else
  4056. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4057. }
  4058. break;
  4059. case 17:
  4060. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4061. enable_x();
  4062. enable_y();
  4063. enable_z();
  4064. enable_e0();
  4065. enable_e1();
  4066. enable_e2();
  4067. break;
  4068. #ifdef SDSUPPORT
  4069. case 20: // M20 - list SD card
  4070. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4071. card.ls();
  4072. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4073. break;
  4074. case 21: // M21 - init SD card
  4075. card.initsd();
  4076. break;
  4077. case 22: //M22 - release SD card
  4078. card.release();
  4079. break;
  4080. case 23: //M23 - Select file
  4081. starpos = (strchr(strchr_pointer + 4,'*'));
  4082. if(starpos!=NULL)
  4083. *(starpos)='\0';
  4084. card.openFile(strchr_pointer + 4,true);
  4085. break;
  4086. case 24: //M24 - Start SD print
  4087. if (!card.paused)
  4088. failstats_reset_print();
  4089. card.startFileprint();
  4090. starttime=millis();
  4091. break;
  4092. case 25: //M25 - Pause SD print
  4093. card.pauseSDPrint();
  4094. break;
  4095. case 26: //M26 - Set SD index
  4096. if(card.cardOK && code_seen('S')) {
  4097. card.setIndex(code_value_long());
  4098. }
  4099. break;
  4100. case 27: //M27 - Get SD status
  4101. card.getStatus();
  4102. break;
  4103. case 28: //M28 - Start SD write
  4104. starpos = (strchr(strchr_pointer + 4,'*'));
  4105. if(starpos != NULL){
  4106. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4107. strchr_pointer = strchr(npos,' ') + 1;
  4108. *(starpos) = '\0';
  4109. }
  4110. card.openFile(strchr_pointer+4,false);
  4111. break;
  4112. case 29: //M29 - Stop SD write
  4113. //processed in write to file routine above
  4114. //card,saving = false;
  4115. break;
  4116. case 30: //M30 <filename> Delete File
  4117. if (card.cardOK){
  4118. card.closefile();
  4119. starpos = (strchr(strchr_pointer + 4,'*'));
  4120. if(starpos != NULL){
  4121. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4122. strchr_pointer = strchr(npos,' ') + 1;
  4123. *(starpos) = '\0';
  4124. }
  4125. card.removeFile(strchr_pointer + 4);
  4126. }
  4127. break;
  4128. case 32: //M32 - Select file and start SD print
  4129. {
  4130. if(card.sdprinting) {
  4131. st_synchronize();
  4132. }
  4133. starpos = (strchr(strchr_pointer + 4,'*'));
  4134. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4135. if(namestartpos==NULL)
  4136. {
  4137. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4138. }
  4139. else
  4140. namestartpos++; //to skip the '!'
  4141. if(starpos!=NULL)
  4142. *(starpos)='\0';
  4143. bool call_procedure=(code_seen('P'));
  4144. if(strchr_pointer>namestartpos)
  4145. call_procedure=false; //false alert, 'P' found within filename
  4146. if( card.cardOK )
  4147. {
  4148. card.openFile(namestartpos,true,!call_procedure);
  4149. if(code_seen('S'))
  4150. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4151. card.setIndex(code_value_long());
  4152. card.startFileprint();
  4153. if(!call_procedure)
  4154. starttime=millis(); //procedure calls count as normal print time.
  4155. }
  4156. } break;
  4157. case 928: //M928 - Start SD write
  4158. starpos = (strchr(strchr_pointer + 5,'*'));
  4159. if(starpos != NULL){
  4160. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4161. strchr_pointer = strchr(npos,' ') + 1;
  4162. *(starpos) = '\0';
  4163. }
  4164. card.openLogFile(strchr_pointer+5);
  4165. break;
  4166. #endif //SDSUPPORT
  4167. case 31: //M31 take time since the start of the SD print or an M109 command
  4168. {
  4169. stoptime=millis();
  4170. char time[30];
  4171. unsigned long t=(stoptime-starttime)/1000;
  4172. int sec,min;
  4173. min=t/60;
  4174. sec=t%60;
  4175. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4176. SERIAL_ECHO_START;
  4177. SERIAL_ECHOLN(time);
  4178. lcd_setstatus(time);
  4179. autotempShutdown();
  4180. }
  4181. break;
  4182. case 42: //M42 -Change pin status via gcode
  4183. if (code_seen('S'))
  4184. {
  4185. int pin_status = code_value();
  4186. int pin_number = LED_PIN;
  4187. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4188. pin_number = code_value();
  4189. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4190. {
  4191. if (sensitive_pins[i] == pin_number)
  4192. {
  4193. pin_number = -1;
  4194. break;
  4195. }
  4196. }
  4197. #if defined(FAN_PIN) && FAN_PIN > -1
  4198. if (pin_number == FAN_PIN)
  4199. fanSpeed = pin_status;
  4200. #endif
  4201. if (pin_number > -1)
  4202. {
  4203. pinMode(pin_number, OUTPUT);
  4204. digitalWrite(pin_number, pin_status);
  4205. analogWrite(pin_number, pin_status);
  4206. }
  4207. }
  4208. break;
  4209. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4210. // Reset the baby step value and the baby step applied flag.
  4211. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4212. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4213. // Reset the skew and offset in both RAM and EEPROM.
  4214. reset_bed_offset_and_skew();
  4215. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4216. // the planner will not perform any adjustments in the XY plane.
  4217. // Wait for the motors to stop and update the current position with the absolute values.
  4218. world2machine_revert_to_uncorrected();
  4219. break;
  4220. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4221. {
  4222. int8_t verbosity_level = 0;
  4223. bool only_Z = code_seen('Z');
  4224. #ifdef SUPPORT_VERBOSITY
  4225. if (code_seen('V'))
  4226. {
  4227. // Just 'V' without a number counts as V1.
  4228. char c = strchr_pointer[1];
  4229. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4230. }
  4231. #endif //SUPPORT_VERBOSITY
  4232. gcode_M45(only_Z, verbosity_level);
  4233. }
  4234. break;
  4235. /*
  4236. case 46:
  4237. {
  4238. // M46: Prusa3D: Show the assigned IP address.
  4239. uint8_t ip[4];
  4240. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4241. if (hasIP) {
  4242. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4243. SERIAL_ECHO(int(ip[0]));
  4244. SERIAL_ECHOPGM(".");
  4245. SERIAL_ECHO(int(ip[1]));
  4246. SERIAL_ECHOPGM(".");
  4247. SERIAL_ECHO(int(ip[2]));
  4248. SERIAL_ECHOPGM(".");
  4249. SERIAL_ECHO(int(ip[3]));
  4250. SERIAL_ECHOLNPGM("");
  4251. } else {
  4252. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4253. }
  4254. break;
  4255. }
  4256. */
  4257. case 47:
  4258. // M47: Prusa3D: Show end stops dialog on the display.
  4259. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4260. lcd_diag_show_end_stops();
  4261. KEEPALIVE_STATE(IN_HANDLER);
  4262. break;
  4263. #if 0
  4264. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4265. {
  4266. // Disable the default update procedure of the display. We will do a modal dialog.
  4267. lcd_update_enable(false);
  4268. // Let the planner use the uncorrected coordinates.
  4269. mbl.reset();
  4270. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4271. // the planner will not perform any adjustments in the XY plane.
  4272. // Wait for the motors to stop and update the current position with the absolute values.
  4273. world2machine_revert_to_uncorrected();
  4274. // Move the print head close to the bed.
  4275. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4277. st_synchronize();
  4278. // Home in the XY plane.
  4279. set_destination_to_current();
  4280. setup_for_endstop_move();
  4281. home_xy();
  4282. int8_t verbosity_level = 0;
  4283. if (code_seen('V')) {
  4284. // Just 'V' without a number counts as V1.
  4285. char c = strchr_pointer[1];
  4286. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4287. }
  4288. bool success = scan_bed_induction_points(verbosity_level);
  4289. clean_up_after_endstop_move();
  4290. // Print head up.
  4291. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4293. st_synchronize();
  4294. lcd_update_enable(true);
  4295. break;
  4296. }
  4297. #endif
  4298. // M48 Z-Probe repeatability measurement function.
  4299. //
  4300. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4301. //
  4302. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4303. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4304. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4305. // regenerated.
  4306. //
  4307. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4308. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4309. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4310. //
  4311. #ifdef ENABLE_AUTO_BED_LEVELING
  4312. #ifdef Z_PROBE_REPEATABILITY_TEST
  4313. case 48: // M48 Z-Probe repeatability
  4314. {
  4315. #if Z_MIN_PIN == -1
  4316. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4317. #endif
  4318. double sum=0.0;
  4319. double mean=0.0;
  4320. double sigma=0.0;
  4321. double sample_set[50];
  4322. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4323. double X_current, Y_current, Z_current;
  4324. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4325. if (code_seen('V') || code_seen('v')) {
  4326. verbose_level = code_value();
  4327. if (verbose_level<0 || verbose_level>4 ) {
  4328. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4329. goto Sigma_Exit;
  4330. }
  4331. }
  4332. if (verbose_level > 0) {
  4333. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4334. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4335. }
  4336. if (code_seen('n')) {
  4337. n_samples = code_value();
  4338. if (n_samples<4 || n_samples>50 ) {
  4339. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4340. goto Sigma_Exit;
  4341. }
  4342. }
  4343. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4344. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4345. Z_current = st_get_position_mm(Z_AXIS);
  4346. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4347. ext_position = st_get_position_mm(E_AXIS);
  4348. if (code_seen('X') || code_seen('x') ) {
  4349. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4350. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4351. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4352. goto Sigma_Exit;
  4353. }
  4354. }
  4355. if (code_seen('Y') || code_seen('y') ) {
  4356. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4357. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4358. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4359. goto Sigma_Exit;
  4360. }
  4361. }
  4362. if (code_seen('L') || code_seen('l') ) {
  4363. n_legs = code_value();
  4364. if ( n_legs==1 )
  4365. n_legs = 2;
  4366. if ( n_legs<0 || n_legs>15 ) {
  4367. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4368. goto Sigma_Exit;
  4369. }
  4370. }
  4371. //
  4372. // Do all the preliminary setup work. First raise the probe.
  4373. //
  4374. st_synchronize();
  4375. plan_bed_level_matrix.set_to_identity();
  4376. plan_buffer_line( X_current, Y_current, Z_start_location,
  4377. ext_position,
  4378. homing_feedrate[Z_AXIS]/60,
  4379. active_extruder);
  4380. st_synchronize();
  4381. //
  4382. // Now get everything to the specified probe point So we can safely do a probe to
  4383. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4384. // use that as a starting point for each probe.
  4385. //
  4386. if (verbose_level > 2)
  4387. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4388. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4389. ext_position,
  4390. homing_feedrate[X_AXIS]/60,
  4391. active_extruder);
  4392. st_synchronize();
  4393. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4394. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4395. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4396. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4397. //
  4398. // OK, do the inital probe to get us close to the bed.
  4399. // Then retrace the right amount and use that in subsequent probes
  4400. //
  4401. setup_for_endstop_move();
  4402. run_z_probe();
  4403. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4404. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4405. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4406. ext_position,
  4407. homing_feedrate[X_AXIS]/60,
  4408. active_extruder);
  4409. st_synchronize();
  4410. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4411. for( n=0; n<n_samples; n++) {
  4412. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4413. if ( n_legs) {
  4414. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4415. int rotational_direction, l;
  4416. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4417. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4418. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4419. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4420. //SERIAL_ECHOPAIR(" theta: ",theta);
  4421. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4422. //SERIAL_PROTOCOLLNPGM("");
  4423. for( l=0; l<n_legs-1; l++) {
  4424. if (rotational_direction==1)
  4425. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4426. else
  4427. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4428. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4429. if ( radius<0.0 )
  4430. radius = -radius;
  4431. X_current = X_probe_location + cos(theta) * radius;
  4432. Y_current = Y_probe_location + sin(theta) * radius;
  4433. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4434. X_current = X_MIN_POS;
  4435. if ( X_current>X_MAX_POS)
  4436. X_current = X_MAX_POS;
  4437. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4438. Y_current = Y_MIN_POS;
  4439. if ( Y_current>Y_MAX_POS)
  4440. Y_current = Y_MAX_POS;
  4441. if (verbose_level>3 ) {
  4442. SERIAL_ECHOPAIR("x: ", X_current);
  4443. SERIAL_ECHOPAIR("y: ", Y_current);
  4444. SERIAL_PROTOCOLLNPGM("");
  4445. }
  4446. do_blocking_move_to( X_current, Y_current, Z_current );
  4447. }
  4448. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4449. }
  4450. setup_for_endstop_move();
  4451. run_z_probe();
  4452. sample_set[n] = current_position[Z_AXIS];
  4453. //
  4454. // Get the current mean for the data points we have so far
  4455. //
  4456. sum=0.0;
  4457. for( j=0; j<=n; j++) {
  4458. sum = sum + sample_set[j];
  4459. }
  4460. mean = sum / (double (n+1));
  4461. //
  4462. // Now, use that mean to calculate the standard deviation for the
  4463. // data points we have so far
  4464. //
  4465. sum=0.0;
  4466. for( j=0; j<=n; j++) {
  4467. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4468. }
  4469. sigma = sqrt( sum / (double (n+1)) );
  4470. if (verbose_level > 1) {
  4471. SERIAL_PROTOCOL(n+1);
  4472. SERIAL_PROTOCOL(" of ");
  4473. SERIAL_PROTOCOL(n_samples);
  4474. SERIAL_PROTOCOLPGM(" z: ");
  4475. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4476. }
  4477. if (verbose_level > 2) {
  4478. SERIAL_PROTOCOL(" mean: ");
  4479. SERIAL_PROTOCOL_F(mean,6);
  4480. SERIAL_PROTOCOL(" sigma: ");
  4481. SERIAL_PROTOCOL_F(sigma,6);
  4482. }
  4483. if (verbose_level > 0)
  4484. SERIAL_PROTOCOLPGM("\n");
  4485. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4486. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4487. st_synchronize();
  4488. }
  4489. delay(1000);
  4490. clean_up_after_endstop_move();
  4491. // enable_endstops(true);
  4492. if (verbose_level > 0) {
  4493. SERIAL_PROTOCOLPGM("Mean: ");
  4494. SERIAL_PROTOCOL_F(mean, 6);
  4495. SERIAL_PROTOCOLPGM("\n");
  4496. }
  4497. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4498. SERIAL_PROTOCOL_F(sigma, 6);
  4499. SERIAL_PROTOCOLPGM("\n\n");
  4500. Sigma_Exit:
  4501. break;
  4502. }
  4503. #endif // Z_PROBE_REPEATABILITY_TEST
  4504. #endif // ENABLE_AUTO_BED_LEVELING
  4505. case 73: //M73 show percent done and time remaining
  4506. if(code_seen('P')) print_percent_done_normal = code_value();
  4507. if(code_seen('R')) print_time_remaining_normal = code_value();
  4508. if(code_seen('Q')) print_percent_done_silent = code_value();
  4509. if(code_seen('S')) print_time_remaining_silent = code_value();
  4510. {
  4511. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4512. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4513. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4514. }
  4515. break;
  4516. case 104: // M104
  4517. if(setTargetedHotend(104)){
  4518. break;
  4519. }
  4520. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4521. setWatch();
  4522. break;
  4523. case 112: // M112 -Emergency Stop
  4524. kill(_n(""), 3);
  4525. break;
  4526. case 140: // M140 set bed temp
  4527. if (code_seen('S')) setTargetBed(code_value());
  4528. break;
  4529. case 105 : // M105
  4530. if(setTargetedHotend(105)){
  4531. break;
  4532. }
  4533. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4534. SERIAL_PROTOCOLPGM("ok T:");
  4535. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4536. SERIAL_PROTOCOLPGM(" /");
  4537. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4538. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4539. SERIAL_PROTOCOLPGM(" B:");
  4540. SERIAL_PROTOCOL_F(degBed(),1);
  4541. SERIAL_PROTOCOLPGM(" /");
  4542. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4543. #endif //TEMP_BED_PIN
  4544. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4545. SERIAL_PROTOCOLPGM(" T");
  4546. SERIAL_PROTOCOL(cur_extruder);
  4547. SERIAL_PROTOCOLPGM(":");
  4548. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4549. SERIAL_PROTOCOLPGM(" /");
  4550. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4551. }
  4552. #else
  4553. SERIAL_ERROR_START;
  4554. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4555. #endif
  4556. SERIAL_PROTOCOLPGM(" @:");
  4557. #ifdef EXTRUDER_WATTS
  4558. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4559. SERIAL_PROTOCOLPGM("W");
  4560. #else
  4561. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4562. #endif
  4563. SERIAL_PROTOCOLPGM(" B@:");
  4564. #ifdef BED_WATTS
  4565. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4566. SERIAL_PROTOCOLPGM("W");
  4567. #else
  4568. SERIAL_PROTOCOL(getHeaterPower(-1));
  4569. #endif
  4570. #ifdef PINDA_THERMISTOR
  4571. SERIAL_PROTOCOLPGM(" P:");
  4572. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4573. #endif //PINDA_THERMISTOR
  4574. #ifdef AMBIENT_THERMISTOR
  4575. SERIAL_PROTOCOLPGM(" A:");
  4576. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4577. #endif //AMBIENT_THERMISTOR
  4578. #ifdef SHOW_TEMP_ADC_VALUES
  4579. {float raw = 0.0;
  4580. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4581. SERIAL_PROTOCOLPGM(" ADC B:");
  4582. SERIAL_PROTOCOL_F(degBed(),1);
  4583. SERIAL_PROTOCOLPGM("C->");
  4584. raw = rawBedTemp();
  4585. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4586. SERIAL_PROTOCOLPGM(" Rb->");
  4587. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4588. SERIAL_PROTOCOLPGM(" Rxb->");
  4589. SERIAL_PROTOCOL_F(raw, 5);
  4590. #endif
  4591. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4592. SERIAL_PROTOCOLPGM(" T");
  4593. SERIAL_PROTOCOL(cur_extruder);
  4594. SERIAL_PROTOCOLPGM(":");
  4595. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4596. SERIAL_PROTOCOLPGM("C->");
  4597. raw = rawHotendTemp(cur_extruder);
  4598. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4599. SERIAL_PROTOCOLPGM(" Rt");
  4600. SERIAL_PROTOCOL(cur_extruder);
  4601. SERIAL_PROTOCOLPGM("->");
  4602. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4603. SERIAL_PROTOCOLPGM(" Rx");
  4604. SERIAL_PROTOCOL(cur_extruder);
  4605. SERIAL_PROTOCOLPGM("->");
  4606. SERIAL_PROTOCOL_F(raw, 5);
  4607. }}
  4608. #endif
  4609. SERIAL_PROTOCOLLN("");
  4610. KEEPALIVE_STATE(NOT_BUSY);
  4611. return;
  4612. break;
  4613. case 109:
  4614. {// M109 - Wait for extruder heater to reach target.
  4615. if(setTargetedHotend(109)){
  4616. break;
  4617. }
  4618. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4619. heating_status = 1;
  4620. if (farm_mode) { prusa_statistics(1); };
  4621. #ifdef AUTOTEMP
  4622. autotemp_enabled=false;
  4623. #endif
  4624. if (code_seen('S')) {
  4625. setTargetHotend(code_value(), tmp_extruder);
  4626. CooldownNoWait = true;
  4627. } else if (code_seen('R')) {
  4628. setTargetHotend(code_value(), tmp_extruder);
  4629. CooldownNoWait = false;
  4630. }
  4631. #ifdef AUTOTEMP
  4632. if (code_seen('S')) autotemp_min=code_value();
  4633. if (code_seen('B')) autotemp_max=code_value();
  4634. if (code_seen('F'))
  4635. {
  4636. autotemp_factor=code_value();
  4637. autotemp_enabled=true;
  4638. }
  4639. #endif
  4640. setWatch();
  4641. codenum = millis();
  4642. /* See if we are heating up or cooling down */
  4643. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4644. KEEPALIVE_STATE(NOT_BUSY);
  4645. cancel_heatup = false;
  4646. wait_for_heater(codenum); //loops until target temperature is reached
  4647. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4648. KEEPALIVE_STATE(IN_HANDLER);
  4649. heating_status = 2;
  4650. if (farm_mode) { prusa_statistics(2); };
  4651. //starttime=millis();
  4652. previous_millis_cmd = millis();
  4653. }
  4654. break;
  4655. case 190: // M190 - Wait for bed heater to reach target.
  4656. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4657. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4658. heating_status = 3;
  4659. if (farm_mode) { prusa_statistics(1); };
  4660. if (code_seen('S'))
  4661. {
  4662. setTargetBed(code_value());
  4663. CooldownNoWait = true;
  4664. }
  4665. else if (code_seen('R'))
  4666. {
  4667. setTargetBed(code_value());
  4668. CooldownNoWait = false;
  4669. }
  4670. codenum = millis();
  4671. cancel_heatup = false;
  4672. target_direction = isHeatingBed(); // true if heating, false if cooling
  4673. KEEPALIVE_STATE(NOT_BUSY);
  4674. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4675. {
  4676. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4677. {
  4678. if (!farm_mode) {
  4679. float tt = degHotend(active_extruder);
  4680. SERIAL_PROTOCOLPGM("T:");
  4681. SERIAL_PROTOCOL(tt);
  4682. SERIAL_PROTOCOLPGM(" E:");
  4683. SERIAL_PROTOCOL((int)active_extruder);
  4684. SERIAL_PROTOCOLPGM(" B:");
  4685. SERIAL_PROTOCOL_F(degBed(), 1);
  4686. SERIAL_PROTOCOLLN("");
  4687. }
  4688. codenum = millis();
  4689. }
  4690. manage_heater();
  4691. manage_inactivity();
  4692. lcd_update(0);
  4693. }
  4694. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4695. KEEPALIVE_STATE(IN_HANDLER);
  4696. heating_status = 4;
  4697. previous_millis_cmd = millis();
  4698. #endif
  4699. break;
  4700. #if defined(FAN_PIN) && FAN_PIN > -1
  4701. case 106: //M106 Fan On
  4702. if (code_seen('S')){
  4703. fanSpeed=constrain(code_value(),0,255);
  4704. }
  4705. else {
  4706. fanSpeed=255;
  4707. }
  4708. break;
  4709. case 107: //M107 Fan Off
  4710. fanSpeed = 0;
  4711. break;
  4712. #endif //FAN_PIN
  4713. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4714. case 80: // M80 - Turn on Power Supply
  4715. SET_OUTPUT(PS_ON_PIN); //GND
  4716. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4717. // If you have a switch on suicide pin, this is useful
  4718. // if you want to start another print with suicide feature after
  4719. // a print without suicide...
  4720. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4721. SET_OUTPUT(SUICIDE_PIN);
  4722. WRITE(SUICIDE_PIN, HIGH);
  4723. #endif
  4724. powersupply = true;
  4725. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4726. lcd_update(0);
  4727. break;
  4728. #endif
  4729. case 81: // M81 - Turn off Power Supply
  4730. disable_heater();
  4731. st_synchronize();
  4732. disable_e0();
  4733. disable_e1();
  4734. disable_e2();
  4735. finishAndDisableSteppers();
  4736. fanSpeed = 0;
  4737. delay(1000); // Wait a little before to switch off
  4738. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4739. st_synchronize();
  4740. suicide();
  4741. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4742. SET_OUTPUT(PS_ON_PIN);
  4743. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4744. #endif
  4745. powersupply = false;
  4746. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4747. lcd_update(0);
  4748. break;
  4749. case 82:
  4750. axis_relative_modes[3] = false;
  4751. break;
  4752. case 83:
  4753. axis_relative_modes[3] = true;
  4754. break;
  4755. case 18: //compatibility
  4756. case 84: // M84
  4757. if(code_seen('S')){
  4758. stepper_inactive_time = code_value() * 1000;
  4759. }
  4760. else
  4761. {
  4762. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4763. if(all_axis)
  4764. {
  4765. st_synchronize();
  4766. disable_e0();
  4767. disable_e1();
  4768. disable_e2();
  4769. finishAndDisableSteppers();
  4770. }
  4771. else
  4772. {
  4773. st_synchronize();
  4774. if (code_seen('X')) disable_x();
  4775. if (code_seen('Y')) disable_y();
  4776. if (code_seen('Z')) disable_z();
  4777. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4778. if (code_seen('E')) {
  4779. disable_e0();
  4780. disable_e1();
  4781. disable_e2();
  4782. }
  4783. #endif
  4784. }
  4785. }
  4786. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4787. print_time_remaining_init();
  4788. snmm_filaments_used = 0;
  4789. break;
  4790. case 85: // M85
  4791. if(code_seen('S')) {
  4792. max_inactive_time = code_value() * 1000;
  4793. }
  4794. break;
  4795. #ifdef SAFETYTIMER
  4796. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4797. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4798. if (code_seen('S')) {
  4799. safetytimer_inactive_time = code_value() * 1000;
  4800. safetyTimer.start();
  4801. }
  4802. break;
  4803. #endif
  4804. case 92: // M92
  4805. for(int8_t i=0; i < NUM_AXIS; i++)
  4806. {
  4807. if(code_seen(axis_codes[i]))
  4808. {
  4809. if(i == 3) { // E
  4810. float value = code_value();
  4811. if(value < 20.0) {
  4812. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4813. max_jerk[E_AXIS] *= factor;
  4814. max_feedrate[i] *= factor;
  4815. axis_steps_per_sqr_second[i] *= factor;
  4816. }
  4817. axis_steps_per_unit[i] = value;
  4818. }
  4819. else {
  4820. axis_steps_per_unit[i] = code_value();
  4821. }
  4822. }
  4823. }
  4824. break;
  4825. case 110: // M110 - reset line pos
  4826. if (code_seen('N'))
  4827. gcode_LastN = code_value_long();
  4828. break;
  4829. #ifdef HOST_KEEPALIVE_FEATURE
  4830. case 113: // M113 - Get or set Host Keepalive interval
  4831. if (code_seen('S')) {
  4832. host_keepalive_interval = (uint8_t)code_value_short();
  4833. // NOMORE(host_keepalive_interval, 60);
  4834. }
  4835. else {
  4836. SERIAL_ECHO_START;
  4837. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4838. SERIAL_PROTOCOLLN("");
  4839. }
  4840. break;
  4841. #endif
  4842. case 115: // M115
  4843. if (code_seen('V')) {
  4844. // Report the Prusa version number.
  4845. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4846. } else if (code_seen('U')) {
  4847. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4848. // pause the print and ask the user to upgrade the firmware.
  4849. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4850. } else {
  4851. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4852. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4853. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4854. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4855. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4856. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4857. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4858. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4859. SERIAL_ECHOPGM(" UUID:");
  4860. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4861. }
  4862. break;
  4863. /* case 117: // M117 display message
  4864. starpos = (strchr(strchr_pointer + 5,'*'));
  4865. if(starpos!=NULL)
  4866. *(starpos)='\0';
  4867. lcd_setstatus(strchr_pointer + 5);
  4868. break;*/
  4869. case 114: // M114
  4870. gcode_M114();
  4871. break;
  4872. case 120: // M120
  4873. enable_endstops(false) ;
  4874. break;
  4875. case 121: // M121
  4876. enable_endstops(true) ;
  4877. break;
  4878. case 119: // M119
  4879. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4880. SERIAL_PROTOCOLLN("");
  4881. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4882. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4883. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4884. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4885. }else{
  4886. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4887. }
  4888. SERIAL_PROTOCOLLN("");
  4889. #endif
  4890. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4891. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4892. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4893. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4894. }else{
  4895. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4896. }
  4897. SERIAL_PROTOCOLLN("");
  4898. #endif
  4899. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4900. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4901. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4902. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4903. }else{
  4904. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4905. }
  4906. SERIAL_PROTOCOLLN("");
  4907. #endif
  4908. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4909. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4910. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4911. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4912. }else{
  4913. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4914. }
  4915. SERIAL_PROTOCOLLN("");
  4916. #endif
  4917. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4918. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4919. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4920. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4921. }else{
  4922. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4923. }
  4924. SERIAL_PROTOCOLLN("");
  4925. #endif
  4926. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4927. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4928. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4929. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4930. }else{
  4931. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4932. }
  4933. SERIAL_PROTOCOLLN("");
  4934. #endif
  4935. break;
  4936. //TODO: update for all axis, use for loop
  4937. #ifdef BLINKM
  4938. case 150: // M150
  4939. {
  4940. byte red;
  4941. byte grn;
  4942. byte blu;
  4943. if(code_seen('R')) red = code_value();
  4944. if(code_seen('U')) grn = code_value();
  4945. if(code_seen('B')) blu = code_value();
  4946. SendColors(red,grn,blu);
  4947. }
  4948. break;
  4949. #endif //BLINKM
  4950. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4951. {
  4952. tmp_extruder = active_extruder;
  4953. if(code_seen('T')) {
  4954. tmp_extruder = code_value();
  4955. if(tmp_extruder >= EXTRUDERS) {
  4956. SERIAL_ECHO_START;
  4957. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4958. break;
  4959. }
  4960. }
  4961. float area = .0;
  4962. if(code_seen('D')) {
  4963. float diameter = (float)code_value();
  4964. if (diameter == 0.0) {
  4965. // setting any extruder filament size disables volumetric on the assumption that
  4966. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4967. // for all extruders
  4968. volumetric_enabled = false;
  4969. } else {
  4970. filament_size[tmp_extruder] = (float)code_value();
  4971. // make sure all extruders have some sane value for the filament size
  4972. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4973. #if EXTRUDERS > 1
  4974. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4975. #if EXTRUDERS > 2
  4976. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4977. #endif
  4978. #endif
  4979. volumetric_enabled = true;
  4980. }
  4981. } else {
  4982. //reserved for setting filament diameter via UFID or filament measuring device
  4983. break;
  4984. }
  4985. calculate_extruder_multipliers();
  4986. }
  4987. break;
  4988. case 201: // M201
  4989. for (int8_t i = 0; i < NUM_AXIS; i++)
  4990. {
  4991. if (code_seen(axis_codes[i]))
  4992. {
  4993. int val = code_value();
  4994. #ifdef TMC2130
  4995. int val_silent = val;
  4996. if ((i == X_AXIS) || (i == Y_AXIS))
  4997. {
  4998. if (val > NORMAL_MAX_ACCEL_XY)
  4999. val = NORMAL_MAX_ACCEL_XY;
  5000. if (val_silent > SILENT_MAX_ACCEL_XY)
  5001. val_silent = SILENT_MAX_ACCEL_XY;
  5002. }
  5003. max_acceleration_units_per_sq_second_normal[i] = val;
  5004. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5005. #else //TMC2130
  5006. max_acceleration_units_per_sq_second[i] = val;
  5007. #endif //TMC2130
  5008. }
  5009. }
  5010. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5011. reset_acceleration_rates();
  5012. break;
  5013. #if 0 // Not used for Sprinter/grbl gen6
  5014. case 202: // M202
  5015. for(int8_t i=0; i < NUM_AXIS; i++) {
  5016. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5017. }
  5018. break;
  5019. #endif
  5020. case 203: // M203 max feedrate mm/sec
  5021. for (int8_t i = 0; i < NUM_AXIS; i++)
  5022. {
  5023. if (code_seen(axis_codes[i]))
  5024. {
  5025. float val = code_value();
  5026. #ifdef TMC2130
  5027. float val_silent = val;
  5028. if ((i == X_AXIS) || (i == Y_AXIS))
  5029. {
  5030. if (val > NORMAL_MAX_FEEDRATE_XY)
  5031. val = NORMAL_MAX_FEEDRATE_XY;
  5032. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5033. val_silent = SILENT_MAX_FEEDRATE_XY;
  5034. }
  5035. max_feedrate_normal[i] = val;
  5036. max_feedrate_silent[i] = val_silent;
  5037. #else //TMC2130
  5038. max_feedrate[i] = val;
  5039. #endif //TMC2130
  5040. }
  5041. }
  5042. break;
  5043. case 204: // M204 acclereration S normal moves T filmanent only moves
  5044. {
  5045. if(code_seen('S')) acceleration = code_value() ;
  5046. if(code_seen('T')) retract_acceleration = code_value() ;
  5047. }
  5048. break;
  5049. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5050. {
  5051. if(code_seen('S')) minimumfeedrate = code_value();
  5052. if(code_seen('T')) mintravelfeedrate = code_value();
  5053. if(code_seen('B')) minsegmenttime = code_value() ;
  5054. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5055. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5056. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5057. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5058. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5059. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5060. }
  5061. break;
  5062. case 206: // M206 additional homing offset
  5063. for(int8_t i=0; i < 3; i++)
  5064. {
  5065. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5066. }
  5067. break;
  5068. #ifdef FWRETRACT
  5069. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5070. {
  5071. if(code_seen('S'))
  5072. {
  5073. retract_length = code_value() ;
  5074. }
  5075. if(code_seen('F'))
  5076. {
  5077. retract_feedrate = code_value()/60 ;
  5078. }
  5079. if(code_seen('Z'))
  5080. {
  5081. retract_zlift = code_value() ;
  5082. }
  5083. }break;
  5084. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5085. {
  5086. if(code_seen('S'))
  5087. {
  5088. retract_recover_length = code_value() ;
  5089. }
  5090. if(code_seen('F'))
  5091. {
  5092. retract_recover_feedrate = code_value()/60 ;
  5093. }
  5094. }break;
  5095. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5096. {
  5097. if(code_seen('S'))
  5098. {
  5099. int t= code_value() ;
  5100. switch(t)
  5101. {
  5102. case 0:
  5103. {
  5104. autoretract_enabled=false;
  5105. retracted[0]=false;
  5106. #if EXTRUDERS > 1
  5107. retracted[1]=false;
  5108. #endif
  5109. #if EXTRUDERS > 2
  5110. retracted[2]=false;
  5111. #endif
  5112. }break;
  5113. case 1:
  5114. {
  5115. autoretract_enabled=true;
  5116. retracted[0]=false;
  5117. #if EXTRUDERS > 1
  5118. retracted[1]=false;
  5119. #endif
  5120. #if EXTRUDERS > 2
  5121. retracted[2]=false;
  5122. #endif
  5123. }break;
  5124. default:
  5125. SERIAL_ECHO_START;
  5126. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5127. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5128. SERIAL_ECHOLNPGM("\"(1)");
  5129. }
  5130. }
  5131. }break;
  5132. #endif // FWRETRACT
  5133. #if EXTRUDERS > 1
  5134. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5135. {
  5136. if(setTargetedHotend(218)){
  5137. break;
  5138. }
  5139. if(code_seen('X'))
  5140. {
  5141. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5142. }
  5143. if(code_seen('Y'))
  5144. {
  5145. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5146. }
  5147. SERIAL_ECHO_START;
  5148. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5149. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5150. {
  5151. SERIAL_ECHO(" ");
  5152. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5153. SERIAL_ECHO(",");
  5154. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5155. }
  5156. SERIAL_ECHOLN("");
  5157. }break;
  5158. #endif
  5159. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5160. {
  5161. if(code_seen('S'))
  5162. {
  5163. feedmultiply = code_value() ;
  5164. }
  5165. }
  5166. break;
  5167. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5168. {
  5169. if(code_seen('S'))
  5170. {
  5171. int tmp_code = code_value();
  5172. if (code_seen('T'))
  5173. {
  5174. if(setTargetedHotend(221)){
  5175. break;
  5176. }
  5177. extruder_multiply[tmp_extruder] = tmp_code;
  5178. }
  5179. else
  5180. {
  5181. extrudemultiply = tmp_code ;
  5182. }
  5183. }
  5184. calculate_extruder_multipliers();
  5185. }
  5186. break;
  5187. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5188. {
  5189. if(code_seen('P')){
  5190. int pin_number = code_value(); // pin number
  5191. int pin_state = -1; // required pin state - default is inverted
  5192. if(code_seen('S')) pin_state = code_value(); // required pin state
  5193. if(pin_state >= -1 && pin_state <= 1){
  5194. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5195. {
  5196. if (sensitive_pins[i] == pin_number)
  5197. {
  5198. pin_number = -1;
  5199. break;
  5200. }
  5201. }
  5202. if (pin_number > -1)
  5203. {
  5204. int target = LOW;
  5205. st_synchronize();
  5206. pinMode(pin_number, INPUT);
  5207. switch(pin_state){
  5208. case 1:
  5209. target = HIGH;
  5210. break;
  5211. case 0:
  5212. target = LOW;
  5213. break;
  5214. case -1:
  5215. target = !digitalRead(pin_number);
  5216. break;
  5217. }
  5218. while(digitalRead(pin_number) != target){
  5219. manage_heater();
  5220. manage_inactivity();
  5221. lcd_update(0);
  5222. }
  5223. }
  5224. }
  5225. }
  5226. }
  5227. break;
  5228. #if NUM_SERVOS > 0
  5229. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5230. {
  5231. int servo_index = -1;
  5232. int servo_position = 0;
  5233. if (code_seen('P'))
  5234. servo_index = code_value();
  5235. if (code_seen('S')) {
  5236. servo_position = code_value();
  5237. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5238. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5239. servos[servo_index].attach(0);
  5240. #endif
  5241. servos[servo_index].write(servo_position);
  5242. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5243. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5244. servos[servo_index].detach();
  5245. #endif
  5246. }
  5247. else {
  5248. SERIAL_ECHO_START;
  5249. SERIAL_ECHO("Servo ");
  5250. SERIAL_ECHO(servo_index);
  5251. SERIAL_ECHOLN(" out of range");
  5252. }
  5253. }
  5254. else if (servo_index >= 0) {
  5255. SERIAL_PROTOCOL(_T(MSG_OK));
  5256. SERIAL_PROTOCOL(" Servo ");
  5257. SERIAL_PROTOCOL(servo_index);
  5258. SERIAL_PROTOCOL(": ");
  5259. SERIAL_PROTOCOL(servos[servo_index].read());
  5260. SERIAL_PROTOCOLLN("");
  5261. }
  5262. }
  5263. break;
  5264. #endif // NUM_SERVOS > 0
  5265. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5266. case 300: // M300
  5267. {
  5268. int beepS = code_seen('S') ? code_value() : 110;
  5269. int beepP = code_seen('P') ? code_value() : 1000;
  5270. if (beepS > 0)
  5271. {
  5272. #if BEEPER > 0
  5273. tone(BEEPER, beepS);
  5274. delay(beepP);
  5275. noTone(BEEPER);
  5276. #endif
  5277. }
  5278. else
  5279. {
  5280. delay(beepP);
  5281. }
  5282. }
  5283. break;
  5284. #endif // M300
  5285. #ifdef PIDTEMP
  5286. case 301: // M301
  5287. {
  5288. if(code_seen('P')) Kp = code_value();
  5289. if(code_seen('I')) Ki = scalePID_i(code_value());
  5290. if(code_seen('D')) Kd = scalePID_d(code_value());
  5291. #ifdef PID_ADD_EXTRUSION_RATE
  5292. if(code_seen('C')) Kc = code_value();
  5293. #endif
  5294. updatePID();
  5295. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5296. SERIAL_PROTOCOL(" p:");
  5297. SERIAL_PROTOCOL(Kp);
  5298. SERIAL_PROTOCOL(" i:");
  5299. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5300. SERIAL_PROTOCOL(" d:");
  5301. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5302. #ifdef PID_ADD_EXTRUSION_RATE
  5303. SERIAL_PROTOCOL(" c:");
  5304. //Kc does not have scaling applied above, or in resetting defaults
  5305. SERIAL_PROTOCOL(Kc);
  5306. #endif
  5307. SERIAL_PROTOCOLLN("");
  5308. }
  5309. break;
  5310. #endif //PIDTEMP
  5311. #ifdef PIDTEMPBED
  5312. case 304: // M304
  5313. {
  5314. if(code_seen('P')) bedKp = code_value();
  5315. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5316. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5317. updatePID();
  5318. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5319. SERIAL_PROTOCOL(" p:");
  5320. SERIAL_PROTOCOL(bedKp);
  5321. SERIAL_PROTOCOL(" i:");
  5322. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5323. SERIAL_PROTOCOL(" d:");
  5324. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5325. SERIAL_PROTOCOLLN("");
  5326. }
  5327. break;
  5328. #endif //PIDTEMP
  5329. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5330. {
  5331. #ifdef CHDK
  5332. SET_OUTPUT(CHDK);
  5333. WRITE(CHDK, HIGH);
  5334. chdkHigh = millis();
  5335. chdkActive = true;
  5336. #else
  5337. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5338. const uint8_t NUM_PULSES=16;
  5339. const float PULSE_LENGTH=0.01524;
  5340. for(int i=0; i < NUM_PULSES; i++) {
  5341. WRITE(PHOTOGRAPH_PIN, HIGH);
  5342. _delay_ms(PULSE_LENGTH);
  5343. WRITE(PHOTOGRAPH_PIN, LOW);
  5344. _delay_ms(PULSE_LENGTH);
  5345. }
  5346. delay(7.33);
  5347. for(int i=0; i < NUM_PULSES; i++) {
  5348. WRITE(PHOTOGRAPH_PIN, HIGH);
  5349. _delay_ms(PULSE_LENGTH);
  5350. WRITE(PHOTOGRAPH_PIN, LOW);
  5351. _delay_ms(PULSE_LENGTH);
  5352. }
  5353. #endif
  5354. #endif //chdk end if
  5355. }
  5356. break;
  5357. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5358. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5359. {
  5360. float temp = .0;
  5361. if (code_seen('S')) temp=code_value();
  5362. set_extrude_min_temp(temp);
  5363. }
  5364. break;
  5365. #endif
  5366. case 303: // M303 PID autotune
  5367. {
  5368. float temp = 150.0;
  5369. int e=0;
  5370. int c=5;
  5371. if (code_seen('E')) e=code_value();
  5372. if (e<0)
  5373. temp=70;
  5374. if (code_seen('S')) temp=code_value();
  5375. if (code_seen('C')) c=code_value();
  5376. PID_autotune(temp, e, c);
  5377. }
  5378. break;
  5379. case 400: // M400 finish all moves
  5380. {
  5381. st_synchronize();
  5382. }
  5383. break;
  5384. case 500: // M500 Store settings in EEPROM
  5385. {
  5386. Config_StoreSettings(EEPROM_OFFSET);
  5387. }
  5388. break;
  5389. case 501: // M501 Read settings from EEPROM
  5390. {
  5391. Config_RetrieveSettings(EEPROM_OFFSET);
  5392. }
  5393. break;
  5394. case 502: // M502 Revert to default settings
  5395. {
  5396. Config_ResetDefault();
  5397. }
  5398. break;
  5399. case 503: // M503 print settings currently in memory
  5400. {
  5401. Config_PrintSettings();
  5402. }
  5403. break;
  5404. case 509: //M509 Force language selection
  5405. {
  5406. lang_reset();
  5407. SERIAL_ECHO_START;
  5408. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5409. }
  5410. break;
  5411. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5412. case 540:
  5413. {
  5414. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5415. }
  5416. break;
  5417. #endif
  5418. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5419. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5420. {
  5421. float value;
  5422. if (code_seen('Z'))
  5423. {
  5424. value = code_value();
  5425. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5426. {
  5427. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5428. SERIAL_ECHO_START;
  5429. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5430. SERIAL_PROTOCOLLN("");
  5431. }
  5432. else
  5433. {
  5434. SERIAL_ECHO_START;
  5435. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5436. SERIAL_ECHORPGM(MSG_Z_MIN);
  5437. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5438. SERIAL_ECHORPGM(MSG_Z_MAX);
  5439. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5440. SERIAL_PROTOCOLLN("");
  5441. }
  5442. }
  5443. else
  5444. {
  5445. SERIAL_ECHO_START;
  5446. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5447. SERIAL_ECHO(-zprobe_zoffset);
  5448. SERIAL_PROTOCOLLN("");
  5449. }
  5450. break;
  5451. }
  5452. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5453. #ifdef FILAMENTCHANGEENABLE
  5454. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5455. {
  5456. st_synchronize();
  5457. float lastpos[4];
  5458. if (farm_mode)
  5459. {
  5460. prusa_statistics(22);
  5461. }
  5462. feedmultiplyBckp=feedmultiply;
  5463. int8_t TooLowZ = 0;
  5464. float HotendTempBckp = degTargetHotend(active_extruder);
  5465. int fanSpeedBckp = fanSpeed;
  5466. lastpos[X_AXIS]=current_position[X_AXIS];
  5467. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5468. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5469. lastpos[E_AXIS]=current_position[E_AXIS];
  5470. //Restract extruder
  5471. if(code_seen('E'))
  5472. {
  5473. current_position[E_AXIS]+= code_value();
  5474. }
  5475. else
  5476. {
  5477. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5478. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5479. #endif
  5480. }
  5481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5482. //Lift Z
  5483. if(code_seen('Z'))
  5484. {
  5485. current_position[Z_AXIS]+= code_value();
  5486. }
  5487. else
  5488. {
  5489. #ifdef FILAMENTCHANGE_ZADD
  5490. current_position[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5491. if(current_position[Z_AXIS] < 10){
  5492. current_position[Z_AXIS]+= 10 ;
  5493. TooLowZ = 1;
  5494. }else{
  5495. TooLowZ = 0;
  5496. }
  5497. #endif
  5498. }
  5499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5500. //Move XY to side
  5501. if(code_seen('X'))
  5502. {
  5503. current_position[X_AXIS]+= code_value();
  5504. }
  5505. else
  5506. {
  5507. #ifdef FILAMENTCHANGE_XPOS
  5508. current_position[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5509. #endif
  5510. }
  5511. if(code_seen('Y'))
  5512. {
  5513. current_position[Y_AXIS]= code_value();
  5514. }
  5515. else
  5516. {
  5517. #ifdef FILAMENTCHANGE_YPOS
  5518. current_position[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5519. #endif
  5520. }
  5521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5522. st_synchronize();
  5523. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5524. uint8_t cnt = 0;
  5525. int counterBeep = 0;
  5526. fanSpeed = 0;
  5527. unsigned long waiting_start_time = millis();
  5528. uint8_t wait_for_user_state = 0;
  5529. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5530. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5531. //cnt++;
  5532. manage_heater();
  5533. manage_inactivity(true);
  5534. #if BEEPER > 0
  5535. if (counterBeep == 500) {
  5536. counterBeep = 0;
  5537. }
  5538. SET_OUTPUT(BEEPER);
  5539. if (counterBeep == 0) {
  5540. WRITE(BEEPER, HIGH);
  5541. }
  5542. if (counterBeep == 20) {
  5543. WRITE(BEEPER, LOW);
  5544. }
  5545. counterBeep++;
  5546. #endif
  5547. switch (wait_for_user_state) {
  5548. case 0:
  5549. delay_keep_alive(4);
  5550. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5551. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5552. wait_for_user_state = 1;
  5553. setTargetHotend(0, 0);
  5554. setTargetHotend(0, 1);
  5555. setTargetHotend(0, 2);
  5556. st_synchronize();
  5557. disable_e0();
  5558. disable_e1();
  5559. disable_e2();
  5560. }
  5561. break;
  5562. case 1:
  5563. delay_keep_alive(4);
  5564. if (lcd_clicked()) {
  5565. setTargetHotend(HotendTempBckp, active_extruder);
  5566. lcd_wait_for_heater();
  5567. wait_for_user_state = 2;
  5568. }
  5569. break;
  5570. case 2:
  5571. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5572. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5573. waiting_start_time = millis();
  5574. wait_for_user_state = 0;
  5575. }
  5576. else {
  5577. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5578. lcd_set_cursor(1, 4);
  5579. lcd_print(ftostr3(degHotend(active_extruder)));
  5580. }
  5581. break;
  5582. }
  5583. }
  5584. WRITE(BEEPER, LOW);
  5585. lcd_change_fil_state = 0;
  5586. // Unload filament
  5587. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5588. KEEPALIVE_STATE(IN_HANDLER);
  5589. custom_message = true;
  5590. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5591. if (code_seen('L'))
  5592. {
  5593. current_position[E_AXIS] += code_value();
  5594. }
  5595. else
  5596. {
  5597. #ifdef SNMM
  5598. #else
  5599. #ifdef FILAMENTCHANGE_FINALRETRACT
  5600. current_position[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5601. #endif
  5602. #endif // SNMM
  5603. }
  5604. #ifdef SNMM
  5605. current_position[E_AXIS] += 12;
  5606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500, active_extruder);
  5607. current_position[E_AXIS] += 6;
  5608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5609. current_position[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5611. st_synchronize();
  5612. current_position[E_AXIS] += (FIL_COOLING);
  5613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5614. current_position[E_AXIS] += (FIL_COOLING*-1);
  5615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5616. current_position[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  5618. st_synchronize();
  5619. #else
  5620. // plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5621. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500 / 60, active_extruder);
  5622. current_position[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5623. st_synchronize();
  5624. #ifdef TMC2130
  5625. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5626. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5627. #else
  5628. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5629. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5630. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5631. #endif //TMC2130
  5632. current_position[E_AXIS] -= 45;
  5633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5634. st_synchronize();
  5635. current_position[E_AXIS] -= 15;
  5636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5637. st_synchronize();
  5638. current_position[E_AXIS] -= 20;
  5639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5640. st_synchronize();
  5641. #ifdef TMC2130
  5642. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5643. #else
  5644. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5645. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5646. else st_current_set(2, tmp_motor_loud[2]);
  5647. #endif //TMC2130
  5648. #endif // SNMM
  5649. //finish moves
  5650. st_synchronize();
  5651. //disable extruder steppers so filament can be removed
  5652. disable_e0();
  5653. disable_e1();
  5654. disable_e2();
  5655. delay(100);
  5656. #ifdef SNMM_V2
  5657. fprintf_P(uart2io, PSTR("U0\n"));
  5658. // get response
  5659. bool response = mmu_get_reponse();
  5660. if (!response) mmu_not_responding();
  5661. #else
  5662. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5663. WRITE(BEEPER, HIGH);
  5664. counterBeep = 0;
  5665. while(!lcd_clicked() && (counterBeep < 50)) {
  5666. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5667. delay_keep_alive(100);
  5668. counterBeep++;
  5669. }
  5670. WRITE(BEEPER, LOW);
  5671. #endif
  5672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5673. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5674. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5675. //lcd_return_to_status();
  5676. lcd_update_enable(true);
  5677. #ifdef SNMM_V2
  5678. mmu_M600_load_filament();
  5679. #else
  5680. M600_load_filament();
  5681. #endif
  5682. //Wait for user to check the state
  5683. lcd_change_fil_state = 0;
  5684. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5685. lcd_change_fil_state = 0;
  5686. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5687. lcd_alright();
  5688. KEEPALIVE_STATE(IN_HANDLER);
  5689. switch(lcd_change_fil_state){
  5690. // Filament failed to load so load it again
  5691. case 2:
  5692. #ifdef SNMM_V2
  5693. mmu_M600_load_filament(); //change to "wrong filament loaded" option?
  5694. #else
  5695. M600_load_filament_movements();
  5696. #endif
  5697. break;
  5698. // Filament loaded properly but color is not clear
  5699. case 3:
  5700. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  5702. lcd_loading_color();
  5703. break;
  5704. // Everything good
  5705. default:
  5706. lcd_change_success();
  5707. lcd_update_enable(true);
  5708. break;
  5709. }
  5710. }
  5711. //Not let's go back to print
  5712. fanSpeed = fanSpeedBckp;
  5713. //Feed a little of filament to stabilize pressure
  5714. current_position[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5716. //Retract
  5717. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5719. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 70, active_extruder); //should do nothing
  5720. //Move XY back
  5721. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5722. //Move Z back
  5723. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5724. current_position[E_AXIS]= current_position[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5725. //Unretract
  5726. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5727. //Set E position to original
  5728. plan_set_e_position(lastpos[E_AXIS]);
  5729. memcpy(current_position, lastpos, sizeof(lastpos));
  5730. memcpy(destination, current_position, sizeof(current_position));
  5731. //Recover feed rate
  5732. feedmultiply=feedmultiplyBckp;
  5733. char cmd[9];
  5734. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5735. enquecommand(cmd);
  5736. lcd_setstatuspgm(_T(WELCOME_MSG));
  5737. custom_message = false;
  5738. custom_message_type = 0;
  5739. }
  5740. break;
  5741. #endif //FILAMENTCHANGEENABLE
  5742. case 601: {
  5743. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5744. }
  5745. break;
  5746. case 602: {
  5747. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5748. }
  5749. break;
  5750. #ifdef PINDA_THERMISTOR
  5751. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5752. {
  5753. int set_target_pinda = 0;
  5754. if (code_seen('S')) {
  5755. set_target_pinda = code_value();
  5756. }
  5757. else {
  5758. break;
  5759. }
  5760. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5761. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5762. SERIAL_PROTOCOL(set_target_pinda);
  5763. SERIAL_PROTOCOLLN("");
  5764. codenum = millis();
  5765. cancel_heatup = false;
  5766. bool is_pinda_cooling = false;
  5767. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5768. is_pinda_cooling = true;
  5769. }
  5770. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5771. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5772. {
  5773. SERIAL_PROTOCOLPGM("P:");
  5774. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5775. SERIAL_PROTOCOLPGM("/");
  5776. SERIAL_PROTOCOL(set_target_pinda);
  5777. SERIAL_PROTOCOLLN("");
  5778. codenum = millis();
  5779. }
  5780. manage_heater();
  5781. manage_inactivity();
  5782. lcd_update(0);
  5783. }
  5784. LCD_MESSAGERPGM(_T(MSG_OK));
  5785. break;
  5786. }
  5787. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5788. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5789. uint8_t cal_status = calibration_status_pinda();
  5790. int16_t usteps = 0;
  5791. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5792. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5793. for (uint8_t i = 0; i < 6; i++)
  5794. {
  5795. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5796. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5797. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5798. SERIAL_PROTOCOLPGM(", ");
  5799. SERIAL_PROTOCOL(35 + (i * 5));
  5800. SERIAL_PROTOCOLPGM(", ");
  5801. SERIAL_PROTOCOL(usteps);
  5802. SERIAL_PROTOCOLPGM(", ");
  5803. SERIAL_PROTOCOL(mm * 1000);
  5804. SERIAL_PROTOCOLLN("");
  5805. }
  5806. }
  5807. else if (code_seen('!')) { // ! - Set factory default values
  5808. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5809. int16_t z_shift = 8; //40C - 20um - 8usteps
  5810. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5811. z_shift = 24; //45C - 60um - 24usteps
  5812. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5813. z_shift = 48; //50C - 120um - 48usteps
  5814. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5815. z_shift = 80; //55C - 200um - 80usteps
  5816. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5817. z_shift = 120; //60C - 300um - 120usteps
  5818. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5819. SERIAL_PROTOCOLLN("factory restored");
  5820. }
  5821. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5822. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5823. int16_t z_shift = 0;
  5824. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5825. SERIAL_PROTOCOLLN("zerorized");
  5826. }
  5827. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5828. int16_t usteps = code_value();
  5829. if (code_seen('I')) {
  5830. byte index = code_value();
  5831. if ((index >= 0) && (index < 5)) {
  5832. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5833. SERIAL_PROTOCOLLN("OK");
  5834. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5835. for (uint8_t i = 0; i < 6; i++)
  5836. {
  5837. usteps = 0;
  5838. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5839. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5840. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5841. SERIAL_PROTOCOLPGM(", ");
  5842. SERIAL_PROTOCOL(35 + (i * 5));
  5843. SERIAL_PROTOCOLPGM(", ");
  5844. SERIAL_PROTOCOL(usteps);
  5845. SERIAL_PROTOCOLPGM(", ");
  5846. SERIAL_PROTOCOL(mm * 1000);
  5847. SERIAL_PROTOCOLLN("");
  5848. }
  5849. }
  5850. }
  5851. }
  5852. else {
  5853. SERIAL_PROTOCOLPGM("no valid command");
  5854. }
  5855. break;
  5856. #endif //PINDA_THERMISTOR
  5857. #ifdef LIN_ADVANCE
  5858. case 900: // M900: Set LIN_ADVANCE options.
  5859. gcode_M900();
  5860. break;
  5861. #endif
  5862. case 907: // M907 Set digital trimpot motor current using axis codes.
  5863. {
  5864. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5865. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5866. if(code_seen('B')) st_current_set(4,code_value());
  5867. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5868. #endif
  5869. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5870. if(code_seen('X')) st_current_set(0, code_value());
  5871. #endif
  5872. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5873. if(code_seen('Z')) st_current_set(1, code_value());
  5874. #endif
  5875. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5876. if(code_seen('E')) st_current_set(2, code_value());
  5877. #endif
  5878. }
  5879. break;
  5880. case 908: // M908 Control digital trimpot directly.
  5881. {
  5882. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5883. uint8_t channel,current;
  5884. if(code_seen('P')) channel=code_value();
  5885. if(code_seen('S')) current=code_value();
  5886. digitalPotWrite(channel, current);
  5887. #endif
  5888. }
  5889. break;
  5890. #ifdef TMC2130
  5891. case 910: // M910 TMC2130 init
  5892. {
  5893. tmc2130_init();
  5894. }
  5895. break;
  5896. case 911: // M911 Set TMC2130 holding currents
  5897. {
  5898. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5899. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5900. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5901. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5902. }
  5903. break;
  5904. case 912: // M912 Set TMC2130 running currents
  5905. {
  5906. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5907. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5908. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5909. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5910. }
  5911. break;
  5912. case 913: // M913 Print TMC2130 currents
  5913. {
  5914. tmc2130_print_currents();
  5915. }
  5916. break;
  5917. case 914: // M914 Set normal mode
  5918. {
  5919. tmc2130_mode = TMC2130_MODE_NORMAL;
  5920. update_mode_profile();
  5921. tmc2130_init();
  5922. }
  5923. break;
  5924. case 915: // M915 Set silent mode
  5925. {
  5926. tmc2130_mode = TMC2130_MODE_SILENT;
  5927. update_mode_profile();
  5928. tmc2130_init();
  5929. }
  5930. break;
  5931. case 916: // M916 Set sg_thrs
  5932. {
  5933. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5934. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5935. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5936. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5937. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5938. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5939. }
  5940. break;
  5941. case 917: // M917 Set TMC2130 pwm_ampl
  5942. {
  5943. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5944. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5945. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5946. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5947. }
  5948. break;
  5949. case 918: // M918 Set TMC2130 pwm_grad
  5950. {
  5951. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5952. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5953. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5954. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5955. }
  5956. break;
  5957. #endif //TMC2130
  5958. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5959. {
  5960. #ifdef TMC2130
  5961. if(code_seen('E'))
  5962. {
  5963. uint16_t res_new = code_value();
  5964. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5965. {
  5966. st_synchronize();
  5967. uint8_t axis = E_AXIS;
  5968. uint16_t res = tmc2130_get_res(axis);
  5969. tmc2130_set_res(axis, res_new);
  5970. if (res_new > res)
  5971. {
  5972. uint16_t fac = (res_new / res);
  5973. axis_steps_per_unit[axis] *= fac;
  5974. position[E_AXIS] *= fac;
  5975. }
  5976. else
  5977. {
  5978. uint16_t fac = (res / res_new);
  5979. axis_steps_per_unit[axis] /= fac;
  5980. position[E_AXIS] /= fac;
  5981. }
  5982. }
  5983. }
  5984. #else //TMC2130
  5985. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5986. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5987. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5988. if(code_seen('B')) microstep_mode(4,code_value());
  5989. microstep_readings();
  5990. #endif
  5991. #endif //TMC2130
  5992. }
  5993. break;
  5994. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5995. {
  5996. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5997. if(code_seen('S')) switch((int)code_value())
  5998. {
  5999. case 1:
  6000. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6001. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6002. break;
  6003. case 2:
  6004. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6005. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6006. break;
  6007. }
  6008. microstep_readings();
  6009. #endif
  6010. }
  6011. break;
  6012. case 701: //M701: load filament
  6013. {
  6014. #ifdef SNMM_V2
  6015. if (code_seen('E'))
  6016. {
  6017. snmm_extruder = code_value();
  6018. }
  6019. #endif
  6020. gcode_M701();
  6021. }
  6022. break;
  6023. case 702:
  6024. {
  6025. #if defined (SNMM) || defined (SNMM_V2)
  6026. if (code_seen('U')) {
  6027. extr_unload_used(); //unload all filaments which were used in current print
  6028. }
  6029. else if (code_seen('C')) {
  6030. extr_unload(); //unload just current filament
  6031. }
  6032. else {
  6033. extr_unload_all(); //unload all filaments
  6034. }
  6035. #else
  6036. custom_message = true;
  6037. custom_message_type = 2;
  6038. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6039. // extr_unload2();
  6040. current_position[E_AXIS] -= 45;
  6041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6042. st_synchronize();
  6043. current_position[E_AXIS] -= 15;
  6044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6045. st_synchronize();
  6046. current_position[E_AXIS] -= 20;
  6047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6048. st_synchronize();
  6049. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6050. //disable extruder steppers so filament can be removed
  6051. disable_e0();
  6052. disable_e1();
  6053. disable_e2();
  6054. delay(100);
  6055. WRITE(BEEPER, HIGH);
  6056. uint8_t counterBeep = 0;
  6057. while (!lcd_clicked() && (counterBeep < 50)) {
  6058. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6059. delay_keep_alive(100);
  6060. counterBeep++;
  6061. }
  6062. WRITE(BEEPER, LOW);
  6063. st_synchronize();
  6064. while (lcd_clicked()) delay_keep_alive(100);
  6065. lcd_update_enable(true);
  6066. lcd_setstatuspgm(_T(WELCOME_MSG));
  6067. custom_message = false;
  6068. custom_message_type = 0;
  6069. #endif
  6070. }
  6071. break;
  6072. case 999: // M999: Restart after being stopped
  6073. Stopped = false;
  6074. lcd_reset_alert_level();
  6075. gcode_LastN = Stopped_gcode_LastN;
  6076. FlushSerialRequestResend();
  6077. break;
  6078. default:
  6079. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6080. }
  6081. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6082. mcode_in_progress = 0;
  6083. }
  6084. } // end if(code_seen('M')) (end of M codes)
  6085. else if(code_seen('T'))
  6086. {
  6087. int index;
  6088. st_synchronize();
  6089. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6090. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6091. SERIAL_ECHOLNPGM("Invalid T code.");
  6092. }
  6093. else {
  6094. if (*(strchr_pointer + index) == '?') {
  6095. tmp_extruder = choose_extruder_menu();
  6096. }
  6097. else {
  6098. tmp_extruder = code_value();
  6099. }
  6100. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6101. #ifdef SNMM_V2
  6102. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6103. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  6104. bool response = mmu_get_reponse();
  6105. if (!response) mmu_not_responding();
  6106. snmm_extruder = tmp_extruder; //filament change is finished
  6107. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  6108. mmu_load_to_nozzle();
  6109. }
  6110. #endif
  6111. #ifdef SNMM
  6112. #ifdef LIN_ADVANCE
  6113. if (snmm_extruder != tmp_extruder)
  6114. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6115. #endif
  6116. snmm_extruder = tmp_extruder;
  6117. delay(100);
  6118. disable_e0();
  6119. disable_e1();
  6120. disable_e2();
  6121. pinMode(E_MUX0_PIN, OUTPUT);
  6122. pinMode(E_MUX1_PIN, OUTPUT);
  6123. delay(100);
  6124. SERIAL_ECHO_START;
  6125. SERIAL_ECHO("T:");
  6126. SERIAL_ECHOLN((int)tmp_extruder);
  6127. switch (tmp_extruder) {
  6128. case 1:
  6129. WRITE(E_MUX0_PIN, HIGH);
  6130. WRITE(E_MUX1_PIN, LOW);
  6131. break;
  6132. case 2:
  6133. WRITE(E_MUX0_PIN, LOW);
  6134. WRITE(E_MUX1_PIN, HIGH);
  6135. break;
  6136. case 3:
  6137. WRITE(E_MUX0_PIN, HIGH);
  6138. WRITE(E_MUX1_PIN, HIGH);
  6139. break;
  6140. default:
  6141. WRITE(E_MUX0_PIN, LOW);
  6142. WRITE(E_MUX1_PIN, LOW);
  6143. break;
  6144. }
  6145. delay(100);
  6146. #else
  6147. if (tmp_extruder >= EXTRUDERS) {
  6148. SERIAL_ECHO_START;
  6149. SERIAL_ECHOPGM("T");
  6150. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6151. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6152. }
  6153. else {
  6154. boolean make_move = false;
  6155. if (code_seen('F')) {
  6156. make_move = true;
  6157. next_feedrate = code_value();
  6158. if (next_feedrate > 0.0) {
  6159. feedrate = next_feedrate;
  6160. }
  6161. }
  6162. #if EXTRUDERS > 1
  6163. if (tmp_extruder != active_extruder) {
  6164. // Save current position to return to after applying extruder offset
  6165. memcpy(destination, current_position, sizeof(destination));
  6166. // Offset extruder (only by XY)
  6167. int i;
  6168. for (i = 0; i < 2; i++) {
  6169. current_position[i] = current_position[i] -
  6170. extruder_offset[i][active_extruder] +
  6171. extruder_offset[i][tmp_extruder];
  6172. }
  6173. // Set the new active extruder and position
  6174. active_extruder = tmp_extruder;
  6175. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6176. // Move to the old position if 'F' was in the parameters
  6177. if (make_move && Stopped == false) {
  6178. prepare_move();
  6179. }
  6180. }
  6181. #endif
  6182. SERIAL_ECHO_START;
  6183. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6184. SERIAL_PROTOCOLLN((int)active_extruder);
  6185. }
  6186. #endif
  6187. }
  6188. } // end if(code_seen('T')) (end of T codes)
  6189. #ifdef DEBUG_DCODES
  6190. else if (code_seen('D')) // D codes (debug)
  6191. {
  6192. switch((int)code_value())
  6193. {
  6194. case -1: // D-1 - Endless loop
  6195. dcode__1(); break;
  6196. case 0: // D0 - Reset
  6197. dcode_0(); break;
  6198. case 1: // D1 - Clear EEPROM
  6199. dcode_1(); break;
  6200. case 2: // D2 - Read/Write RAM
  6201. dcode_2(); break;
  6202. case 3: // D3 - Read/Write EEPROM
  6203. dcode_3(); break;
  6204. case 4: // D4 - Read/Write PIN
  6205. dcode_4(); break;
  6206. case 5: // D5 - Read/Write FLASH
  6207. // dcode_5(); break;
  6208. break;
  6209. case 6: // D6 - Read/Write external FLASH
  6210. dcode_6(); break;
  6211. case 7: // D7 - Read/Write Bootloader
  6212. dcode_7(); break;
  6213. case 8: // D8 - Read/Write PINDA
  6214. dcode_8(); break;
  6215. case 9: // D9 - Read/Write ADC
  6216. dcode_9(); break;
  6217. case 10: // D10 - XYZ calibration = OK
  6218. dcode_10(); break;
  6219. #ifdef TMC2130
  6220. case 2130: // D9125 - TMC2130
  6221. dcode_2130(); break;
  6222. #endif //TMC2130
  6223. #ifdef FILAMENT_SENSOR
  6224. case 9125: // D9125 - FILAMENT_SENSOR
  6225. dcode_9125(); break;
  6226. #endif //FILAMENT_SENSOR
  6227. }
  6228. }
  6229. #endif //DEBUG_DCODES
  6230. else
  6231. {
  6232. SERIAL_ECHO_START;
  6233. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6234. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6235. SERIAL_ECHOLNPGM("\"(2)");
  6236. }
  6237. KEEPALIVE_STATE(NOT_BUSY);
  6238. ClearToSend();
  6239. }
  6240. void FlushSerialRequestResend()
  6241. {
  6242. //char cmdbuffer[bufindr][100]="Resend:";
  6243. MYSERIAL.flush();
  6244. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6245. }
  6246. // Confirm the execution of a command, if sent from a serial line.
  6247. // Execution of a command from a SD card will not be confirmed.
  6248. void ClearToSend()
  6249. {
  6250. previous_millis_cmd = millis();
  6251. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6252. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6253. }
  6254. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6255. void update_currents() {
  6256. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6257. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6258. float tmp_motor[3];
  6259. //SERIAL_ECHOLNPGM("Currents updated: ");
  6260. if (destination[Z_AXIS] < Z_SILENT) {
  6261. //SERIAL_ECHOLNPGM("LOW");
  6262. for (uint8_t i = 0; i < 3; i++) {
  6263. st_current_set(i, current_low[i]);
  6264. /*MYSERIAL.print(int(i));
  6265. SERIAL_ECHOPGM(": ");
  6266. MYSERIAL.println(current_low[i]);*/
  6267. }
  6268. }
  6269. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6270. //SERIAL_ECHOLNPGM("HIGH");
  6271. for (uint8_t i = 0; i < 3; i++) {
  6272. st_current_set(i, current_high[i]);
  6273. /*MYSERIAL.print(int(i));
  6274. SERIAL_ECHOPGM(": ");
  6275. MYSERIAL.println(current_high[i]);*/
  6276. }
  6277. }
  6278. else {
  6279. for (uint8_t i = 0; i < 3; i++) {
  6280. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6281. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6282. st_current_set(i, tmp_motor[i]);
  6283. /*MYSERIAL.print(int(i));
  6284. SERIAL_ECHOPGM(": ");
  6285. MYSERIAL.println(tmp_motor[i]);*/
  6286. }
  6287. }
  6288. }
  6289. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6290. void get_coordinates()
  6291. {
  6292. bool seen[4]={false,false,false,false};
  6293. for(int8_t i=0; i < NUM_AXIS; i++) {
  6294. if(code_seen(axis_codes[i]))
  6295. {
  6296. bool relative = axis_relative_modes[i] || relative_mode;
  6297. destination[i] = (float)code_value();
  6298. if (i == E_AXIS) {
  6299. float emult = extruder_multiplier[active_extruder];
  6300. if (emult != 1.) {
  6301. if (! relative) {
  6302. destination[i] -= current_position[i];
  6303. relative = true;
  6304. }
  6305. destination[i] *= emult;
  6306. }
  6307. }
  6308. if (relative)
  6309. destination[i] += current_position[i];
  6310. seen[i]=true;
  6311. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6312. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6313. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6314. }
  6315. else destination[i] = current_position[i]; //Are these else lines really needed?
  6316. }
  6317. if(code_seen('F')) {
  6318. next_feedrate = code_value();
  6319. #ifdef MAX_SILENT_FEEDRATE
  6320. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6321. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6322. #endif //MAX_SILENT_FEEDRATE
  6323. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6324. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6325. {
  6326. // float e_max_speed =
  6327. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6328. }
  6329. }
  6330. }
  6331. void get_arc_coordinates()
  6332. {
  6333. #ifdef SF_ARC_FIX
  6334. bool relative_mode_backup = relative_mode;
  6335. relative_mode = true;
  6336. #endif
  6337. get_coordinates();
  6338. #ifdef SF_ARC_FIX
  6339. relative_mode=relative_mode_backup;
  6340. #endif
  6341. if(code_seen('I')) {
  6342. offset[0] = code_value();
  6343. }
  6344. else {
  6345. offset[0] = 0.0;
  6346. }
  6347. if(code_seen('J')) {
  6348. offset[1] = code_value();
  6349. }
  6350. else {
  6351. offset[1] = 0.0;
  6352. }
  6353. }
  6354. void clamp_to_software_endstops(float target[3])
  6355. {
  6356. #ifdef DEBUG_DISABLE_SWLIMITS
  6357. return;
  6358. #endif //DEBUG_DISABLE_SWLIMITS
  6359. world2machine_clamp(target[0], target[1]);
  6360. // Clamp the Z coordinate.
  6361. if (min_software_endstops) {
  6362. float negative_z_offset = 0;
  6363. #ifdef ENABLE_AUTO_BED_LEVELING
  6364. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6365. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6366. #endif
  6367. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6368. }
  6369. if (max_software_endstops) {
  6370. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6371. }
  6372. }
  6373. #ifdef MESH_BED_LEVELING
  6374. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6375. float dx = x - current_position[X_AXIS];
  6376. float dy = y - current_position[Y_AXIS];
  6377. float dz = z - current_position[Z_AXIS];
  6378. int n_segments = 0;
  6379. if (mbl.active) {
  6380. float len = abs(dx) + abs(dy);
  6381. if (len > 0)
  6382. // Split to 3cm segments or shorter.
  6383. n_segments = int(ceil(len / 30.f));
  6384. }
  6385. if (n_segments > 1) {
  6386. float de = e - current_position[E_AXIS];
  6387. for (int i = 1; i < n_segments; ++ i) {
  6388. float t = float(i) / float(n_segments);
  6389. if (saved_printing || (mbl.active == false)) return;
  6390. plan_buffer_line(
  6391. current_position[X_AXIS] + t * dx,
  6392. current_position[Y_AXIS] + t * dy,
  6393. current_position[Z_AXIS] + t * dz,
  6394. current_position[E_AXIS] + t * de,
  6395. feed_rate, extruder);
  6396. }
  6397. }
  6398. // The rest of the path.
  6399. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6400. current_position[X_AXIS] = x;
  6401. current_position[Y_AXIS] = y;
  6402. current_position[Z_AXIS] = z;
  6403. current_position[E_AXIS] = e;
  6404. }
  6405. #endif // MESH_BED_LEVELING
  6406. void prepare_move()
  6407. {
  6408. clamp_to_software_endstops(destination);
  6409. previous_millis_cmd = millis();
  6410. // Do not use feedmultiply for E or Z only moves
  6411. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6412. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6413. }
  6414. else {
  6415. #ifdef MESH_BED_LEVELING
  6416. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6417. #else
  6418. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6419. #endif
  6420. }
  6421. for(int8_t i=0; i < NUM_AXIS; i++) {
  6422. current_position[i] = destination[i];
  6423. }
  6424. }
  6425. void prepare_arc_move(char isclockwise) {
  6426. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6427. // Trace the arc
  6428. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6429. // As far as the parser is concerned, the position is now == target. In reality the
  6430. // motion control system might still be processing the action and the real tool position
  6431. // in any intermediate location.
  6432. for(int8_t i=0; i < NUM_AXIS; i++) {
  6433. current_position[i] = destination[i];
  6434. }
  6435. previous_millis_cmd = millis();
  6436. }
  6437. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6438. #if defined(FAN_PIN)
  6439. #if CONTROLLERFAN_PIN == FAN_PIN
  6440. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6441. #endif
  6442. #endif
  6443. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6444. unsigned long lastMotorCheck = 0;
  6445. void controllerFan()
  6446. {
  6447. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6448. {
  6449. lastMotorCheck = millis();
  6450. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6451. #if EXTRUDERS > 2
  6452. || !READ(E2_ENABLE_PIN)
  6453. #endif
  6454. #if EXTRUDER > 1
  6455. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6456. || !READ(X2_ENABLE_PIN)
  6457. #endif
  6458. || !READ(E1_ENABLE_PIN)
  6459. #endif
  6460. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6461. {
  6462. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6463. }
  6464. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6465. {
  6466. digitalWrite(CONTROLLERFAN_PIN, 0);
  6467. analogWrite(CONTROLLERFAN_PIN, 0);
  6468. }
  6469. else
  6470. {
  6471. // allows digital or PWM fan output to be used (see M42 handling)
  6472. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6473. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6474. }
  6475. }
  6476. }
  6477. #endif
  6478. #ifdef TEMP_STAT_LEDS
  6479. static bool blue_led = false;
  6480. static bool red_led = false;
  6481. static uint32_t stat_update = 0;
  6482. void handle_status_leds(void) {
  6483. float max_temp = 0.0;
  6484. if(millis() > stat_update) {
  6485. stat_update += 500; // Update every 0.5s
  6486. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6487. max_temp = max(max_temp, degHotend(cur_extruder));
  6488. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6489. }
  6490. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6491. max_temp = max(max_temp, degTargetBed());
  6492. max_temp = max(max_temp, degBed());
  6493. #endif
  6494. if((max_temp > 55.0) && (red_led == false)) {
  6495. digitalWrite(STAT_LED_RED, 1);
  6496. digitalWrite(STAT_LED_BLUE, 0);
  6497. red_led = true;
  6498. blue_led = false;
  6499. }
  6500. if((max_temp < 54.0) && (blue_led == false)) {
  6501. digitalWrite(STAT_LED_RED, 0);
  6502. digitalWrite(STAT_LED_BLUE, 1);
  6503. red_led = false;
  6504. blue_led = true;
  6505. }
  6506. }
  6507. }
  6508. #endif
  6509. #ifdef SAFETYTIMER
  6510. /**
  6511. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6512. *
  6513. * Full screen blocking notification message is shown after heater turning off.
  6514. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6515. * damage print.
  6516. *
  6517. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6518. */
  6519. static void handleSafetyTimer()
  6520. {
  6521. #if (EXTRUDERS > 1)
  6522. #error Implemented only for one extruder.
  6523. #endif //(EXTRUDERS > 1)
  6524. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6525. {
  6526. safetyTimer.stop();
  6527. }
  6528. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6529. {
  6530. safetyTimer.start();
  6531. }
  6532. else if (safetyTimer.expired(safetytimer_inactive_time))
  6533. {
  6534. setTargetBed(0);
  6535. setTargetHotend(0, 0);
  6536. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6537. }
  6538. }
  6539. #endif //SAFETYTIMER
  6540. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6541. {
  6542. #ifdef FILAMENT_SENSOR
  6543. if (mcode_in_progress != 600) //M600 not in progress
  6544. {
  6545. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6546. {
  6547. if (fsensor_check_autoload())
  6548. {
  6549. fsensor_autoload_check_stop();
  6550. if (degHotend0() > EXTRUDE_MINTEMP)
  6551. {
  6552. tone(BEEPER, 1000);
  6553. delay_keep_alive(50);
  6554. noTone(BEEPER);
  6555. loading_flag = true;
  6556. enquecommand_front_P((PSTR("M701")));
  6557. }
  6558. else
  6559. {
  6560. lcd_update_enable(false);
  6561. lcd_clear();
  6562. lcd_set_cursor(0, 0);
  6563. lcd_puts_P(_T(MSG_ERROR));
  6564. lcd_set_cursor(0, 2);
  6565. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6566. delay(2000);
  6567. lcd_clear();
  6568. lcd_update_enable(true);
  6569. }
  6570. }
  6571. }
  6572. else
  6573. fsensor_autoload_check_stop();
  6574. }
  6575. #endif //FILAMENT_SENSOR
  6576. #ifdef SAFETYTIMER
  6577. handleSafetyTimer();
  6578. #endif //SAFETYTIMER
  6579. #if defined(KILL_PIN) && KILL_PIN > -1
  6580. static int killCount = 0; // make the inactivity button a bit less responsive
  6581. const int KILL_DELAY = 10000;
  6582. #endif
  6583. if(buflen < (BUFSIZE-1)){
  6584. get_command();
  6585. }
  6586. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6587. if(max_inactive_time)
  6588. kill(_n(""), 4);
  6589. if(stepper_inactive_time) {
  6590. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6591. {
  6592. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6593. disable_x();
  6594. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6595. disable_y();
  6596. disable_z();
  6597. disable_e0();
  6598. disable_e1();
  6599. disable_e2();
  6600. }
  6601. }
  6602. }
  6603. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6604. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6605. {
  6606. chdkActive = false;
  6607. WRITE(CHDK, LOW);
  6608. }
  6609. #endif
  6610. #if defined(KILL_PIN) && KILL_PIN > -1
  6611. // Check if the kill button was pressed and wait just in case it was an accidental
  6612. // key kill key press
  6613. // -------------------------------------------------------------------------------
  6614. if( 0 == READ(KILL_PIN) )
  6615. {
  6616. killCount++;
  6617. }
  6618. else if (killCount > 0)
  6619. {
  6620. killCount--;
  6621. }
  6622. // Exceeded threshold and we can confirm that it was not accidental
  6623. // KILL the machine
  6624. // ----------------------------------------------------------------
  6625. if ( killCount >= KILL_DELAY)
  6626. {
  6627. kill("", 5);
  6628. }
  6629. #endif
  6630. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6631. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6632. #endif
  6633. #ifdef EXTRUDER_RUNOUT_PREVENT
  6634. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6635. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6636. {
  6637. bool oldstatus=READ(E0_ENABLE_PIN);
  6638. enable_e0();
  6639. float oldepos=current_position[E_AXIS];
  6640. float oldedes=destination[E_AXIS];
  6641. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6642. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6643. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6644. current_position[E_AXIS]=oldepos;
  6645. destination[E_AXIS]=oldedes;
  6646. plan_set_e_position(oldepos);
  6647. previous_millis_cmd=millis();
  6648. st_synchronize();
  6649. WRITE(E0_ENABLE_PIN,oldstatus);
  6650. }
  6651. #endif
  6652. #ifdef TEMP_STAT_LEDS
  6653. handle_status_leds();
  6654. #endif
  6655. check_axes_activity();
  6656. }
  6657. void kill(const char *full_screen_message, unsigned char id)
  6658. {
  6659. printf_P(_N("KILL: %d\n"), id);
  6660. //return;
  6661. cli(); // Stop interrupts
  6662. disable_heater();
  6663. disable_x();
  6664. // SERIAL_ECHOLNPGM("kill - disable Y");
  6665. disable_y();
  6666. disable_z();
  6667. disable_e0();
  6668. disable_e1();
  6669. disable_e2();
  6670. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6671. pinMode(PS_ON_PIN,INPUT);
  6672. #endif
  6673. SERIAL_ERROR_START;
  6674. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6675. if (full_screen_message != NULL) {
  6676. SERIAL_ERRORLNRPGM(full_screen_message);
  6677. lcd_display_message_fullscreen_P(full_screen_message);
  6678. } else {
  6679. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6680. }
  6681. // FMC small patch to update the LCD before ending
  6682. sei(); // enable interrupts
  6683. for ( int i=5; i--; lcd_update(0))
  6684. {
  6685. delay(200);
  6686. }
  6687. cli(); // disable interrupts
  6688. suicide();
  6689. while(1)
  6690. {
  6691. #ifdef WATCHDOG
  6692. wdt_reset();
  6693. #endif //WATCHDOG
  6694. /* Intentionally left empty */
  6695. } // Wait for reset
  6696. }
  6697. void Stop()
  6698. {
  6699. disable_heater();
  6700. if(Stopped == false) {
  6701. Stopped = true;
  6702. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6703. SERIAL_ERROR_START;
  6704. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6705. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6706. }
  6707. }
  6708. bool IsStopped() { return Stopped; };
  6709. #ifdef FAST_PWM_FAN
  6710. void setPwmFrequency(uint8_t pin, int val)
  6711. {
  6712. val &= 0x07;
  6713. switch(digitalPinToTimer(pin))
  6714. {
  6715. #if defined(TCCR0A)
  6716. case TIMER0A:
  6717. case TIMER0B:
  6718. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6719. // TCCR0B |= val;
  6720. break;
  6721. #endif
  6722. #if defined(TCCR1A)
  6723. case TIMER1A:
  6724. case TIMER1B:
  6725. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6726. // TCCR1B |= val;
  6727. break;
  6728. #endif
  6729. #if defined(TCCR2)
  6730. case TIMER2:
  6731. case TIMER2:
  6732. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6733. TCCR2 |= val;
  6734. break;
  6735. #endif
  6736. #if defined(TCCR2A)
  6737. case TIMER2A:
  6738. case TIMER2B:
  6739. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6740. TCCR2B |= val;
  6741. break;
  6742. #endif
  6743. #if defined(TCCR3A)
  6744. case TIMER3A:
  6745. case TIMER3B:
  6746. case TIMER3C:
  6747. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6748. TCCR3B |= val;
  6749. break;
  6750. #endif
  6751. #if defined(TCCR4A)
  6752. case TIMER4A:
  6753. case TIMER4B:
  6754. case TIMER4C:
  6755. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6756. TCCR4B |= val;
  6757. break;
  6758. #endif
  6759. #if defined(TCCR5A)
  6760. case TIMER5A:
  6761. case TIMER5B:
  6762. case TIMER5C:
  6763. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6764. TCCR5B |= val;
  6765. break;
  6766. #endif
  6767. }
  6768. }
  6769. #endif //FAST_PWM_FAN
  6770. bool setTargetedHotend(int code){
  6771. tmp_extruder = active_extruder;
  6772. if(code_seen('T')) {
  6773. tmp_extruder = code_value();
  6774. if(tmp_extruder >= EXTRUDERS) {
  6775. SERIAL_ECHO_START;
  6776. switch(code){
  6777. case 104:
  6778. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6779. break;
  6780. case 105:
  6781. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6782. break;
  6783. case 109:
  6784. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6785. break;
  6786. case 218:
  6787. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6788. break;
  6789. case 221:
  6790. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6791. break;
  6792. }
  6793. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6794. return true;
  6795. }
  6796. }
  6797. return false;
  6798. }
  6799. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6800. {
  6801. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6802. {
  6803. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6804. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6805. }
  6806. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6807. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6808. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6809. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6810. total_filament_used = 0;
  6811. }
  6812. float calculate_extruder_multiplier(float diameter) {
  6813. float out = 1.f;
  6814. if (volumetric_enabled && diameter > 0.f) {
  6815. float area = M_PI * diameter * diameter * 0.25;
  6816. out = 1.f / area;
  6817. }
  6818. if (extrudemultiply != 100)
  6819. out *= float(extrudemultiply) * 0.01f;
  6820. return out;
  6821. }
  6822. void calculate_extruder_multipliers() {
  6823. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6824. #if EXTRUDERS > 1
  6825. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6826. #if EXTRUDERS > 2
  6827. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6828. #endif
  6829. #endif
  6830. }
  6831. void delay_keep_alive(unsigned int ms)
  6832. {
  6833. for (;;) {
  6834. manage_heater();
  6835. // Manage inactivity, but don't disable steppers on timeout.
  6836. manage_inactivity(true);
  6837. lcd_update(0);
  6838. if (ms == 0)
  6839. break;
  6840. else if (ms >= 50) {
  6841. delay(50);
  6842. ms -= 50;
  6843. } else {
  6844. delay(ms);
  6845. ms = 0;
  6846. }
  6847. }
  6848. }
  6849. void wait_for_heater(long codenum) {
  6850. #ifdef TEMP_RESIDENCY_TIME
  6851. long residencyStart;
  6852. residencyStart = -1;
  6853. /* continue to loop until we have reached the target temp
  6854. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6855. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6856. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6857. #else
  6858. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6859. #endif //TEMP_RESIDENCY_TIME
  6860. if ((millis() - codenum) > 1000UL)
  6861. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6862. if (!farm_mode) {
  6863. SERIAL_PROTOCOLPGM("T:");
  6864. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6865. SERIAL_PROTOCOLPGM(" E:");
  6866. SERIAL_PROTOCOL((int)tmp_extruder);
  6867. #ifdef TEMP_RESIDENCY_TIME
  6868. SERIAL_PROTOCOLPGM(" W:");
  6869. if (residencyStart > -1)
  6870. {
  6871. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6872. SERIAL_PROTOCOLLN(codenum);
  6873. }
  6874. else
  6875. {
  6876. SERIAL_PROTOCOLLN("?");
  6877. }
  6878. }
  6879. #else
  6880. SERIAL_PROTOCOLLN("");
  6881. #endif
  6882. codenum = millis();
  6883. }
  6884. manage_heater();
  6885. manage_inactivity();
  6886. lcd_update(0);
  6887. #ifdef TEMP_RESIDENCY_TIME
  6888. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6889. or when current temp falls outside the hysteresis after target temp was reached */
  6890. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6891. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6892. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6893. {
  6894. residencyStart = millis();
  6895. }
  6896. #endif //TEMP_RESIDENCY_TIME
  6897. }
  6898. }
  6899. void check_babystep() {
  6900. int babystep_z;
  6901. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6902. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6903. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6904. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6905. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6906. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6907. lcd_update_enable(true);
  6908. }
  6909. }
  6910. #ifdef DIS
  6911. void d_setup()
  6912. {
  6913. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6914. pinMode(D_DATA, INPUT_PULLUP);
  6915. pinMode(D_REQUIRE, OUTPUT);
  6916. digitalWrite(D_REQUIRE, HIGH);
  6917. }
  6918. float d_ReadData()
  6919. {
  6920. int digit[13];
  6921. String mergeOutput;
  6922. float output;
  6923. digitalWrite(D_REQUIRE, HIGH);
  6924. for (int i = 0; i<13; i++)
  6925. {
  6926. for (int j = 0; j < 4; j++)
  6927. {
  6928. while (digitalRead(D_DATACLOCK) == LOW) {}
  6929. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6930. bitWrite(digit[i], j, digitalRead(D_DATA));
  6931. }
  6932. }
  6933. digitalWrite(D_REQUIRE, LOW);
  6934. mergeOutput = "";
  6935. output = 0;
  6936. for (int r = 5; r <= 10; r++) //Merge digits
  6937. {
  6938. mergeOutput += digit[r];
  6939. }
  6940. output = mergeOutput.toFloat();
  6941. if (digit[4] == 8) //Handle sign
  6942. {
  6943. output *= -1;
  6944. }
  6945. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6946. {
  6947. output /= 10;
  6948. }
  6949. return output;
  6950. }
  6951. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6952. int t1 = 0;
  6953. int t_delay = 0;
  6954. int digit[13];
  6955. int m;
  6956. char str[3];
  6957. //String mergeOutput;
  6958. char mergeOutput[15];
  6959. float output;
  6960. int mesh_point = 0; //index number of calibration point
  6961. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6962. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6963. float mesh_home_z_search = 4;
  6964. float row[x_points_num];
  6965. int ix = 0;
  6966. int iy = 0;
  6967. char* filename_wldsd = "wldsd.txt";
  6968. char data_wldsd[70];
  6969. char numb_wldsd[10];
  6970. d_setup();
  6971. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6972. // We don't know where we are! HOME!
  6973. // Push the commands to the front of the message queue in the reverse order!
  6974. // There shall be always enough space reserved for these commands.
  6975. repeatcommand_front(); // repeat G80 with all its parameters
  6976. enquecommand_front_P((PSTR("G28 W0")));
  6977. enquecommand_front_P((PSTR("G1 Z5")));
  6978. return;
  6979. }
  6980. bool custom_message_old = custom_message;
  6981. unsigned int custom_message_type_old = custom_message_type;
  6982. unsigned int custom_message_state_old = custom_message_state;
  6983. custom_message = true;
  6984. custom_message_type = 1;
  6985. custom_message_state = (x_points_num * y_points_num) + 10;
  6986. lcd_update(1);
  6987. mbl.reset();
  6988. babystep_undo();
  6989. card.openFile(filename_wldsd, false);
  6990. current_position[Z_AXIS] = mesh_home_z_search;
  6991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6992. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6993. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6994. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6995. setup_for_endstop_move(false);
  6996. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6997. SERIAL_PROTOCOL(x_points_num);
  6998. SERIAL_PROTOCOLPGM(",");
  6999. SERIAL_PROTOCOL(y_points_num);
  7000. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7001. SERIAL_PROTOCOL(mesh_home_z_search);
  7002. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7003. SERIAL_PROTOCOL(x_dimension);
  7004. SERIAL_PROTOCOLPGM(",");
  7005. SERIAL_PROTOCOL(y_dimension);
  7006. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7007. while (mesh_point != x_points_num * y_points_num) {
  7008. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7009. iy = mesh_point / x_points_num;
  7010. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7011. float z0 = 0.f;
  7012. current_position[Z_AXIS] = mesh_home_z_search;
  7013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7014. st_synchronize();
  7015. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7016. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7018. st_synchronize();
  7019. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7020. break;
  7021. card.closefile();
  7022. }
  7023. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7024. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7025. //strcat(data_wldsd, numb_wldsd);
  7026. //MYSERIAL.println(data_wldsd);
  7027. //delay(1000);
  7028. //delay(3000);
  7029. //t1 = millis();
  7030. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7031. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7032. memset(digit, 0, sizeof(digit));
  7033. //cli();
  7034. digitalWrite(D_REQUIRE, LOW);
  7035. for (int i = 0; i<13; i++)
  7036. {
  7037. //t1 = millis();
  7038. for (int j = 0; j < 4; j++)
  7039. {
  7040. while (digitalRead(D_DATACLOCK) == LOW) {}
  7041. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7042. bitWrite(digit[i], j, digitalRead(D_DATA));
  7043. }
  7044. //t_delay = (millis() - t1);
  7045. //SERIAL_PROTOCOLPGM(" ");
  7046. //SERIAL_PROTOCOL_F(t_delay, 5);
  7047. //SERIAL_PROTOCOLPGM(" ");
  7048. }
  7049. //sei();
  7050. digitalWrite(D_REQUIRE, HIGH);
  7051. mergeOutput[0] = '\0';
  7052. output = 0;
  7053. for (int r = 5; r <= 10; r++) //Merge digits
  7054. {
  7055. sprintf(str, "%d", digit[r]);
  7056. strcat(mergeOutput, str);
  7057. }
  7058. output = atof(mergeOutput);
  7059. if (digit[4] == 8) //Handle sign
  7060. {
  7061. output *= -1;
  7062. }
  7063. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7064. {
  7065. output *= 0.1;
  7066. }
  7067. //output = d_ReadData();
  7068. //row[ix] = current_position[Z_AXIS];
  7069. memset(data_wldsd, 0, sizeof(data_wldsd));
  7070. for (int i = 0; i <3; i++) {
  7071. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7072. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7073. strcat(data_wldsd, numb_wldsd);
  7074. strcat(data_wldsd, ";");
  7075. }
  7076. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7077. dtostrf(output, 8, 5, numb_wldsd);
  7078. strcat(data_wldsd, numb_wldsd);
  7079. //strcat(data_wldsd, ";");
  7080. card.write_command(data_wldsd);
  7081. //row[ix] = d_ReadData();
  7082. row[ix] = output; // current_position[Z_AXIS];
  7083. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7084. for (int i = 0; i < x_points_num; i++) {
  7085. SERIAL_PROTOCOLPGM(" ");
  7086. SERIAL_PROTOCOL_F(row[i], 5);
  7087. }
  7088. SERIAL_PROTOCOLPGM("\n");
  7089. }
  7090. custom_message_state--;
  7091. mesh_point++;
  7092. lcd_update(1);
  7093. }
  7094. card.closefile();
  7095. }
  7096. #endif
  7097. void temp_compensation_start() {
  7098. custom_message = true;
  7099. custom_message_type = 5;
  7100. custom_message_state = PINDA_HEAT_T + 1;
  7101. lcd_update(2);
  7102. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7103. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7104. }
  7105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7106. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7107. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7108. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7110. st_synchronize();
  7111. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7112. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7113. delay_keep_alive(1000);
  7114. custom_message_state = PINDA_HEAT_T - i;
  7115. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7116. else lcd_update(1);
  7117. }
  7118. custom_message_type = 0;
  7119. custom_message_state = 0;
  7120. custom_message = false;
  7121. }
  7122. void temp_compensation_apply() {
  7123. int i_add;
  7124. int compensation_value;
  7125. int z_shift = 0;
  7126. float z_shift_mm;
  7127. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7128. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7129. i_add = (target_temperature_bed - 60) / 10;
  7130. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7131. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7132. }else {
  7133. //interpolation
  7134. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7135. }
  7136. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7138. st_synchronize();
  7139. plan_set_z_position(current_position[Z_AXIS]);
  7140. }
  7141. else {
  7142. //we have no temp compensation data
  7143. }
  7144. }
  7145. float temp_comp_interpolation(float inp_temperature) {
  7146. //cubic spline interpolation
  7147. int n, i, j, k;
  7148. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7149. int shift[10];
  7150. int temp_C[10];
  7151. n = 6; //number of measured points
  7152. shift[0] = 0;
  7153. for (i = 0; i < n; i++) {
  7154. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7155. temp_C[i] = 50 + i * 10; //temperature in C
  7156. #ifdef PINDA_THERMISTOR
  7157. temp_C[i] = 35 + i * 5; //temperature in C
  7158. #else
  7159. temp_C[i] = 50 + i * 10; //temperature in C
  7160. #endif
  7161. x[i] = (float)temp_C[i];
  7162. f[i] = (float)shift[i];
  7163. }
  7164. if (inp_temperature < x[0]) return 0;
  7165. for (i = n - 1; i>0; i--) {
  7166. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7167. h[i - 1] = x[i] - x[i - 1];
  7168. }
  7169. //*********** formation of h, s , f matrix **************
  7170. for (i = 1; i<n - 1; i++) {
  7171. m[i][i] = 2 * (h[i - 1] + h[i]);
  7172. if (i != 1) {
  7173. m[i][i - 1] = h[i - 1];
  7174. m[i - 1][i] = h[i - 1];
  7175. }
  7176. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7177. }
  7178. //*********** forward elimination **************
  7179. for (i = 1; i<n - 2; i++) {
  7180. temp = (m[i + 1][i] / m[i][i]);
  7181. for (j = 1; j <= n - 1; j++)
  7182. m[i + 1][j] -= temp*m[i][j];
  7183. }
  7184. //*********** backward substitution *********
  7185. for (i = n - 2; i>0; i--) {
  7186. sum = 0;
  7187. for (j = i; j <= n - 2; j++)
  7188. sum += m[i][j] * s[j];
  7189. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7190. }
  7191. for (i = 0; i<n - 1; i++)
  7192. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7193. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7194. b = s[i] / 2;
  7195. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7196. d = f[i];
  7197. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7198. }
  7199. return sum;
  7200. }
  7201. #ifdef PINDA_THERMISTOR
  7202. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7203. {
  7204. if (!temp_cal_active) return 0;
  7205. if (!calibration_status_pinda()) return 0;
  7206. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7207. }
  7208. #endif //PINDA_THERMISTOR
  7209. void long_pause() //long pause print
  7210. {
  7211. st_synchronize();
  7212. //save currently set parameters to global variables
  7213. saved_feedmultiply = feedmultiply;
  7214. HotendTempBckp = degTargetHotend(active_extruder);
  7215. fanSpeedBckp = fanSpeed;
  7216. start_pause_print = millis();
  7217. //save position
  7218. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7219. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7220. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7221. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7222. //retract
  7223. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7225. //lift z
  7226. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7227. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7228. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7229. //set nozzle target temperature to 0
  7230. setTargetHotend(0, 0);
  7231. setTargetHotend(0, 1);
  7232. setTargetHotend(0, 2);
  7233. //Move XY to side
  7234. current_position[X_AXIS] = X_PAUSE_POS;
  7235. current_position[Y_AXIS] = Y_PAUSE_POS;
  7236. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7237. // Turn off the print fan
  7238. fanSpeed = 0;
  7239. st_synchronize();
  7240. }
  7241. void serialecho_temperatures() {
  7242. float tt = degHotend(active_extruder);
  7243. SERIAL_PROTOCOLPGM("T:");
  7244. SERIAL_PROTOCOL(tt);
  7245. SERIAL_PROTOCOLPGM(" E:");
  7246. SERIAL_PROTOCOL((int)active_extruder);
  7247. SERIAL_PROTOCOLPGM(" B:");
  7248. SERIAL_PROTOCOL_F(degBed(), 1);
  7249. SERIAL_PROTOCOLLN("");
  7250. }
  7251. extern uint32_t sdpos_atomic;
  7252. #ifdef UVLO_SUPPORT
  7253. void uvlo_()
  7254. {
  7255. unsigned long time_start = millis();
  7256. bool sd_print = card.sdprinting;
  7257. // Conserve power as soon as possible.
  7258. disable_x();
  7259. disable_y();
  7260. #ifdef TMC2130
  7261. tmc2130_set_current_h(Z_AXIS, 20);
  7262. tmc2130_set_current_r(Z_AXIS, 20);
  7263. tmc2130_set_current_h(E_AXIS, 20);
  7264. tmc2130_set_current_r(E_AXIS, 20);
  7265. #endif //TMC2130
  7266. // Indicate that the interrupt has been triggered.
  7267. // SERIAL_ECHOLNPGM("UVLO");
  7268. // Read out the current Z motor microstep counter. This will be later used
  7269. // for reaching the zero full step before powering off.
  7270. uint16_t z_microsteps = 0;
  7271. #ifdef TMC2130
  7272. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7273. #endif //TMC2130
  7274. // Calculate the file position, from which to resume this print.
  7275. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7276. {
  7277. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7278. sd_position -= sdlen_planner;
  7279. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7280. sd_position -= sdlen_cmdqueue;
  7281. if (sd_position < 0) sd_position = 0;
  7282. }
  7283. // Backup the feedrate in mm/min.
  7284. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7285. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7286. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7287. // are in action.
  7288. planner_abort_hard();
  7289. // Store the current extruder position.
  7290. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7291. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7292. // Clean the input command queue.
  7293. cmdqueue_reset();
  7294. card.sdprinting = false;
  7295. // card.closefile();
  7296. // Enable stepper driver interrupt to move Z axis.
  7297. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7298. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7299. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7300. sei();
  7301. plan_buffer_line(
  7302. current_position[X_AXIS],
  7303. current_position[Y_AXIS],
  7304. current_position[Z_AXIS],
  7305. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7306. 95, active_extruder);
  7307. st_synchronize();
  7308. disable_e0();
  7309. plan_buffer_line(
  7310. current_position[X_AXIS],
  7311. current_position[Y_AXIS],
  7312. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7313. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7314. 40, active_extruder);
  7315. st_synchronize();
  7316. disable_e0();
  7317. plan_buffer_line(
  7318. current_position[X_AXIS],
  7319. current_position[Y_AXIS],
  7320. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7321. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7322. 40, active_extruder);
  7323. st_synchronize();
  7324. disable_e0();
  7325. disable_z();
  7326. // Move Z up to the next 0th full step.
  7327. // Write the file position.
  7328. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7329. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7330. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7331. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7332. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7333. // Scale the z value to 1u resolution.
  7334. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7335. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7336. }
  7337. // Read out the current Z motor microstep counter. This will be later used
  7338. // for reaching the zero full step before powering off.
  7339. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7340. // Store the current position.
  7341. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7342. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7343. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7344. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7345. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7346. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7347. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7348. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7349. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7350. #if EXTRUDERS > 1
  7351. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7352. #if EXTRUDERS > 2
  7353. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7354. #endif
  7355. #endif
  7356. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7357. // Finaly store the "power outage" flag.
  7358. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7359. st_synchronize();
  7360. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7361. disable_z();
  7362. // Increment power failure counter
  7363. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7364. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7365. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7366. #if 0
  7367. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7368. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7370. st_synchronize();
  7371. #endif
  7372. cli();
  7373. volatile unsigned int ppcount = 0;
  7374. SET_OUTPUT(BEEPER);
  7375. WRITE(BEEPER, HIGH);
  7376. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7377. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7378. }
  7379. WRITE(BEEPER, LOW);
  7380. while(1){
  7381. #if 1
  7382. WRITE(BEEPER, LOW);
  7383. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7384. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7385. }
  7386. #endif
  7387. };
  7388. }
  7389. #endif //UVLO_SUPPORT
  7390. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7391. void setup_fan_interrupt() {
  7392. //INT7
  7393. DDRE &= ~(1 << 7); //input pin
  7394. PORTE &= ~(1 << 7); //no internal pull-up
  7395. //start with sensing rising edge
  7396. EICRB &= ~(1 << 6);
  7397. EICRB |= (1 << 7);
  7398. //enable INT7 interrupt
  7399. EIMSK |= (1 << 7);
  7400. }
  7401. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7402. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7403. ISR(INT7_vect) {
  7404. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7405. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7406. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7407. t_fan_rising_edge = millis_nc();
  7408. }
  7409. else { //interrupt was triggered by falling edge
  7410. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7411. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7412. }
  7413. }
  7414. EICRB ^= (1 << 6); //change edge
  7415. }
  7416. #endif
  7417. #ifdef UVLO_SUPPORT
  7418. void setup_uvlo_interrupt() {
  7419. DDRE &= ~(1 << 4); //input pin
  7420. PORTE &= ~(1 << 4); //no internal pull-up
  7421. //sensing falling edge
  7422. EICRB |= (1 << 0);
  7423. EICRB &= ~(1 << 1);
  7424. //enable INT4 interrupt
  7425. EIMSK |= (1 << 4);
  7426. }
  7427. ISR(INT4_vect) {
  7428. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7429. SERIAL_ECHOLNPGM("INT4");
  7430. if (IS_SD_PRINTING) uvlo_();
  7431. }
  7432. void recover_print(uint8_t automatic) {
  7433. char cmd[30];
  7434. lcd_update_enable(true);
  7435. lcd_update(2);
  7436. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7437. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7438. // Lift the print head, so one may remove the excess priming material.
  7439. if (current_position[Z_AXIS] < 25)
  7440. enquecommand_P(PSTR("G1 Z25 F800"));
  7441. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7442. enquecommand_P(PSTR("G28 X Y"));
  7443. // Set the target bed and nozzle temperatures and wait.
  7444. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7445. enquecommand(cmd);
  7446. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7447. enquecommand(cmd);
  7448. enquecommand_P(PSTR("M83")); //E axis relative mode
  7449. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7450. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7451. if(automatic == 0){
  7452. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7453. }
  7454. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7455. // Mark the power panic status as inactive.
  7456. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7457. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7458. delay_keep_alive(1000);
  7459. }*/
  7460. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7461. // Restart the print.
  7462. restore_print_from_eeprom();
  7463. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7464. }
  7465. void recover_machine_state_after_power_panic()
  7466. {
  7467. char cmd[30];
  7468. // 1) Recover the logical cordinates at the time of the power panic.
  7469. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7470. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7471. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7472. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7473. // The current position after power panic is moved to the next closest 0th full step.
  7474. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7475. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7476. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7477. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7478. sprintf_P(cmd, PSTR("G92 E"));
  7479. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7480. enquecommand(cmd);
  7481. }
  7482. memcpy(destination, current_position, sizeof(destination));
  7483. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7484. print_world_coordinates();
  7485. // 2) Initialize the logical to physical coordinate system transformation.
  7486. world2machine_initialize();
  7487. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7488. mbl.active = false;
  7489. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7490. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7491. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7492. // Scale the z value to 10u resolution.
  7493. int16_t v;
  7494. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7495. if (v != 0)
  7496. mbl.active = true;
  7497. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7498. }
  7499. if (mbl.active)
  7500. mbl.upsample_3x3();
  7501. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7502. // print_mesh_bed_leveling_table();
  7503. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7504. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7505. babystep_load();
  7506. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7507. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7508. // 6) Power up the motors, mark their positions as known.
  7509. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7510. axis_known_position[X_AXIS] = true; enable_x();
  7511. axis_known_position[Y_AXIS] = true; enable_y();
  7512. axis_known_position[Z_AXIS] = true; enable_z();
  7513. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7514. print_physical_coordinates();
  7515. // 7) Recover the target temperatures.
  7516. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7517. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7518. // 8) Recover extruder multipilers
  7519. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7520. #if EXTRUDERS > 1
  7521. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7522. #if EXTRUDERS > 2
  7523. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7524. #endif
  7525. #endif
  7526. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7527. }
  7528. void restore_print_from_eeprom() {
  7529. float x_rec, y_rec, z_pos;
  7530. int feedrate_rec;
  7531. uint8_t fan_speed_rec;
  7532. char cmd[30];
  7533. char* c;
  7534. char filename[13];
  7535. uint8_t depth = 0;
  7536. char dir_name[9];
  7537. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7538. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7539. SERIAL_ECHOPGM("Feedrate:");
  7540. MYSERIAL.println(feedrate_rec);
  7541. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7542. MYSERIAL.println(int(depth));
  7543. for (int i = 0; i < depth; i++) {
  7544. for (int j = 0; j < 8; j++) {
  7545. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7546. }
  7547. dir_name[8] = '\0';
  7548. MYSERIAL.println(dir_name);
  7549. strcpy(dir_names[i], dir_name);
  7550. card.chdir(dir_name);
  7551. }
  7552. for (int i = 0; i < 8; i++) {
  7553. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7554. }
  7555. filename[8] = '\0';
  7556. MYSERIAL.print(filename);
  7557. strcat_P(filename, PSTR(".gco"));
  7558. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7559. enquecommand(cmd);
  7560. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7561. SERIAL_ECHOPGM("Position read from eeprom:");
  7562. MYSERIAL.println(position);
  7563. // E axis relative mode.
  7564. enquecommand_P(PSTR("M83"));
  7565. // Move to the XY print position in logical coordinates, where the print has been killed.
  7566. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7567. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7568. strcat_P(cmd, PSTR(" F2000"));
  7569. enquecommand(cmd);
  7570. // Move the Z axis down to the print, in logical coordinates.
  7571. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7572. enquecommand(cmd);
  7573. // Unretract.
  7574. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7575. // Set the feedrate saved at the power panic.
  7576. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7577. enquecommand(cmd);
  7578. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7579. {
  7580. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7581. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7582. }
  7583. // Set the fan speed saved at the power panic.
  7584. strcpy_P(cmd, PSTR("M106 S"));
  7585. strcat(cmd, itostr3(int(fan_speed_rec)));
  7586. enquecommand(cmd);
  7587. // Set a position in the file.
  7588. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7589. enquecommand(cmd);
  7590. // Start SD print.
  7591. enquecommand_P(PSTR("M24"));
  7592. }
  7593. #endif //UVLO_SUPPORT
  7594. ////////////////////////////////////////////////////////////////////////////////
  7595. // save/restore printing
  7596. void stop_and_save_print_to_ram(float z_move, float e_move)
  7597. {
  7598. if (saved_printing) return;
  7599. unsigned char nplanner_blocks;
  7600. unsigned char nlines;
  7601. uint16_t sdlen_planner;
  7602. uint16_t sdlen_cmdqueue;
  7603. cli();
  7604. if (card.sdprinting) {
  7605. nplanner_blocks = number_of_blocks();
  7606. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7607. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7608. saved_sdpos -= sdlen_planner;
  7609. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7610. saved_sdpos -= sdlen_cmdqueue;
  7611. saved_printing_type = PRINTING_TYPE_SD;
  7612. }
  7613. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7614. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7615. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7616. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7617. saved_sdpos -= nlines;
  7618. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7619. saved_printing_type = PRINTING_TYPE_USB;
  7620. }
  7621. else {
  7622. //not sd printing nor usb printing
  7623. }
  7624. #if 0
  7625. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7626. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7627. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7628. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7629. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7630. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7631. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7632. {
  7633. card.setIndex(saved_sdpos);
  7634. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7635. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7636. MYSERIAL.print(char(card.get()));
  7637. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7638. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7639. MYSERIAL.print(char(card.get()));
  7640. SERIAL_ECHOLNPGM("End of command buffer");
  7641. }
  7642. {
  7643. // Print the content of the planner buffer, line by line:
  7644. card.setIndex(saved_sdpos);
  7645. int8_t iline = 0;
  7646. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7647. SERIAL_ECHOPGM("Planner line (from file): ");
  7648. MYSERIAL.print(int(iline), DEC);
  7649. SERIAL_ECHOPGM(", length: ");
  7650. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7651. SERIAL_ECHOPGM(", steps: (");
  7652. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7653. SERIAL_ECHOPGM(",");
  7654. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7655. SERIAL_ECHOPGM(",");
  7656. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7657. SERIAL_ECHOPGM(",");
  7658. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7659. SERIAL_ECHOPGM("), events: ");
  7660. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7661. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7662. MYSERIAL.print(char(card.get()));
  7663. }
  7664. }
  7665. {
  7666. // Print the content of the command buffer, line by line:
  7667. int8_t iline = 0;
  7668. union {
  7669. struct {
  7670. char lo;
  7671. char hi;
  7672. } lohi;
  7673. uint16_t value;
  7674. } sdlen_single;
  7675. int _bufindr = bufindr;
  7676. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7677. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7678. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7679. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7680. }
  7681. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7682. MYSERIAL.print(int(iline), DEC);
  7683. SERIAL_ECHOPGM(", type: ");
  7684. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7685. SERIAL_ECHOPGM(", len: ");
  7686. MYSERIAL.println(sdlen_single.value, DEC);
  7687. // Print the content of the buffer line.
  7688. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7689. SERIAL_ECHOPGM("Buffer line (from file): ");
  7690. MYSERIAL.println(int(iline), DEC);
  7691. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7692. MYSERIAL.print(char(card.get()));
  7693. if (-- _buflen == 0)
  7694. break;
  7695. // First skip the current command ID and iterate up to the end of the string.
  7696. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7697. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7698. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7699. // If the end of the buffer was empty,
  7700. if (_bufindr == sizeof(cmdbuffer)) {
  7701. // skip to the start and find the nonzero command.
  7702. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7703. }
  7704. }
  7705. }
  7706. #endif
  7707. #if 0
  7708. saved_feedrate2 = feedrate; //save feedrate
  7709. #else
  7710. // Try to deduce the feedrate from the first block of the planner.
  7711. // Speed is in mm/min.
  7712. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7713. #endif
  7714. planner_abort_hard(); //abort printing
  7715. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7716. saved_active_extruder = active_extruder; //save active_extruder
  7717. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7718. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7719. cmdqueue_reset(); //empty cmdqueue
  7720. card.sdprinting = false;
  7721. // card.closefile();
  7722. saved_printing = true;
  7723. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7724. st_reset_timer();
  7725. sei();
  7726. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7727. #if 1
  7728. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7729. char buf[48];
  7730. // First unretract (relative extrusion)
  7731. if(!saved_extruder_relative_mode){
  7732. strcpy_P(buf, PSTR("M83"));
  7733. enquecommand(buf, false);
  7734. }
  7735. //retract 45mm/s
  7736. strcpy_P(buf, PSTR("G1 E"));
  7737. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7738. strcat_P(buf, PSTR(" F"));
  7739. dtostrf(2700, 8, 3, buf + strlen(buf));
  7740. enquecommand(buf, false);
  7741. // Then lift Z axis
  7742. strcpy_P(buf, PSTR("G1 Z"));
  7743. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7744. strcat_P(buf, PSTR(" F"));
  7745. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7746. // At this point the command queue is empty.
  7747. enquecommand(buf, false);
  7748. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7749. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7750. repeatcommand_front();
  7751. #else
  7752. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7753. st_synchronize(); //wait moving
  7754. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7755. memcpy(destination, current_position, sizeof(destination));
  7756. #endif
  7757. }
  7758. }
  7759. void restore_print_from_ram_and_continue(float e_move)
  7760. {
  7761. if (!saved_printing) return;
  7762. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7763. // current_position[axis] = st_get_position_mm(axis);
  7764. active_extruder = saved_active_extruder; //restore active_extruder
  7765. feedrate = saved_feedrate2; //restore feedrate
  7766. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7767. float e = saved_pos[E_AXIS] - e_move;
  7768. plan_set_e_position(e);
  7769. //first move print head in XY to the saved position:
  7770. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7771. st_synchronize();
  7772. //then move Z
  7773. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7774. st_synchronize();
  7775. //and finaly unretract (35mm/s)
  7776. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7777. st_synchronize();
  7778. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7779. memcpy(destination, current_position, sizeof(destination));
  7780. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7781. card.setIndex(saved_sdpos);
  7782. sdpos_atomic = saved_sdpos;
  7783. card.sdprinting = true;
  7784. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7785. }
  7786. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7787. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7788. serial_count = 0;
  7789. FlushSerialRequestResend();
  7790. }
  7791. else {
  7792. //not sd printing nor usb printing
  7793. }
  7794. lcd_setstatuspgm(_T(WELCOME_MSG));
  7795. saved_printing = false;
  7796. }
  7797. void print_world_coordinates()
  7798. {
  7799. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7800. }
  7801. void print_physical_coordinates()
  7802. {
  7803. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7804. }
  7805. void print_mesh_bed_leveling_table()
  7806. {
  7807. SERIAL_ECHOPGM("mesh bed leveling: ");
  7808. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7809. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7810. MYSERIAL.print(mbl.z_values[y][x], 3);
  7811. SERIAL_ECHOPGM(" ");
  7812. }
  7813. SERIAL_ECHOLNPGM("");
  7814. }
  7815. uint16_t print_time_remaining() {
  7816. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7817. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7818. else print_t = print_time_remaining_silent;
  7819. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7820. return print_t;
  7821. }
  7822. uint8_t print_percent_done() {
  7823. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7824. uint8_t percent_done = 0;
  7825. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7826. percent_done = print_percent_done_normal;
  7827. }
  7828. else if (print_percent_done_silent <= 100) {
  7829. percent_done = print_percent_done_silent;
  7830. }
  7831. else {
  7832. percent_done = card.percentDone();
  7833. }
  7834. return percent_done;
  7835. }
  7836. static void print_time_remaining_init() {
  7837. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7838. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7839. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7840. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7841. }
  7842. bool mmu_get_reponse() {
  7843. bool response = true;
  7844. LongTimer mmu_get_reponse_timeout;
  7845. uart2_rx_clr();
  7846. mmu_get_reponse_timeout.start();
  7847. while (!uart2_rx_ok())
  7848. {
  7849. delay_keep_alive(100);
  7850. if (mmu_get_reponse_timeout.expired(180 * 1000ul)) { //3 minutes timeout
  7851. response = false;
  7852. break;
  7853. }
  7854. }
  7855. return response;
  7856. }
  7857. void mmu_not_responding() {
  7858. printf_P(PSTR("MMU not responding"));
  7859. }
  7860. void mmu_load_to_nozzle() {
  7861. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7862. if (!saved_e_relative_mode) {
  7863. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7864. }
  7865. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7866. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7867. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7868. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7869. if (!saved_e_relative_mode) {
  7870. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7871. }*/
  7872. st_synchronize();
  7873. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7874. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7875. current_position[E_AXIS] += 7.2f;
  7876. float feedrate = 562;
  7877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7878. st_synchronize();
  7879. current_position[E_AXIS] += 14.4f;
  7880. feedrate = 871;
  7881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7882. st_synchronize();
  7883. current_position[E_AXIS] += 36.0f;
  7884. feedrate = 1393;
  7885. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7886. st_synchronize();
  7887. current_position[E_AXIS] += 14.4f;
  7888. feedrate = 871;
  7889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7890. st_synchronize();
  7891. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7892. }
  7893. void mmu_switch_extruder(uint8_t extruder) {
  7894. }
  7895. void mmu_M600_load_filament() {
  7896. #ifdef SNMM_V2
  7897. bool response = false;
  7898. tmp_extruder = choose_extruder_menu();
  7899. lcd_update_enable(false);
  7900. lcd_clear();
  7901. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  7902. lcd_print(" ");
  7903. lcd_print(snmm_extruder + 1);
  7904. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7905. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  7906. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  7907. response = mmu_get_reponse();
  7908. if (!response) mmu_not_responding();
  7909. snmm_extruder = tmp_extruder; //filament change is finished
  7910. mmu_load_to_nozzle();
  7911. #endif
  7912. }
  7913. void M600_load_filament_movements() {
  7914. #ifdef SNMM
  7915. display_loading();
  7916. do {
  7917. current_position[E_AXIS] += 0.002;
  7918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7919. delay_keep_alive(2);
  7920. } while (!lcd_clicked());
  7921. st_synchronize();
  7922. current_position[E_AXIS] += bowden_length[snmm_extruder];
  7923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7924. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7926. current_position[E_AXIS] += 40;
  7927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7928. current_position[E_AXIS] += 10;
  7929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7930. #else
  7931. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7933. #endif
  7934. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7936. lcd_loading_filament();
  7937. }
  7938. void M600_load_filament()
  7939. {
  7940. lcd_wait_interact();
  7941. //load_filament_time = millis();
  7942. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7943. #ifdef FILAMENT_SENSOR
  7944. fsensor_autoload_check_start();
  7945. #endif //FILAMENT_SENSOR
  7946. while(!lcd_clicked())
  7947. {
  7948. manage_heater();
  7949. manage_inactivity(true);
  7950. #ifdef FILAMENT_SENSOR
  7951. if (fsensor_check_autoload())
  7952. {
  7953. tone(BEEPER, 1000);
  7954. delay_keep_alive(50);
  7955. noTone(BEEPER);
  7956. break;
  7957. }
  7958. #endif //FILAMENT_SENSOR
  7959. }
  7960. #ifdef FILAMENT_SENSOR
  7961. fsensor_autoload_check_stop();
  7962. #endif //FILAMENT_SENSOR
  7963. KEEPALIVE_STATE(IN_HANDLER);
  7964. #ifdef FILAMENT_SENSOR
  7965. fsensor_oq_meassure_start(70);
  7966. #endif //FILAMENT_SENSOR
  7967. M600_load_filament_movements();
  7968. tone(BEEPER, 500);
  7969. delay_keep_alive(50);
  7970. noTone(BEEPER);
  7971. #ifdef FILAMENT_SENSOR
  7972. fsensor_oq_meassure_stop();
  7973. if (!fsensor_oq_result())
  7974. {
  7975. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7976. lcd_update_enable(true);
  7977. lcd_update(2);
  7978. if (disable)
  7979. fsensor_disable();
  7980. }
  7981. #endif //FILAMENT_SENSOR
  7982. }
  7983. #define FIL_LOAD_LENGTH 60