Marlin_main.cpp 305 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  120. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  121. //Implemented Codes
  122. //-------------------
  123. // PRUSA CODES
  124. // P F - Returns FW versions
  125. // P R - Returns revision of printer
  126. // G0 -> G1
  127. // G1 - Coordinated Movement X Y Z E
  128. // G2 - CW ARC
  129. // G3 - CCW ARC
  130. // G4 - Dwell S<seconds> or P<milliseconds>
  131. // G10 - retract filament according to settings of M207
  132. // G11 - retract recover filament according to settings of M208
  133. // G28 - Home all Axis
  134. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  135. // G30 - Single Z Probe, probes bed at current XY location.
  136. // G31 - Dock sled (Z_PROBE_SLED only)
  137. // G32 - Undock sled (Z_PROBE_SLED only)
  138. // G80 - Automatic mesh bed leveling
  139. // G81 - Print bed profile
  140. // G90 - Use Absolute Coordinates
  141. // G91 - Use Relative Coordinates
  142. // G92 - Set current position to coordinates given
  143. // M Codes
  144. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  145. // M1 - Same as M0
  146. // M17 - Enable/Power all stepper motors
  147. // M18 - Disable all stepper motors; same as M84
  148. // M20 - List SD card
  149. // M21 - Init SD card
  150. // M22 - Release SD card
  151. // M23 - Select SD file (M23 filename.g)
  152. // M24 - Start/resume SD print
  153. // M25 - Pause SD print
  154. // M26 - Set SD position in bytes (M26 S12345)
  155. // M27 - Report SD print status
  156. // M28 - Start SD write (M28 filename.g)
  157. // M29 - Stop SD write
  158. // M30 - Delete file from SD (M30 filename.g)
  159. // M31 - Output time since last M109 or SD card start to serial
  160. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  161. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  162. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  163. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  164. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  165. // M73 - Show percent done and print time remaining
  166. // M80 - Turn on Power Supply
  167. // M81 - Turn off Power Supply
  168. // M82 - Set E codes absolute (default)
  169. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  170. // M84 - Disable steppers until next move,
  171. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  172. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  173. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  174. // M92 - Set axis_steps_per_unit - same syntax as G92
  175. // M104 - Set extruder target temp
  176. // M105 - Read current temp
  177. // M106 - Fan on
  178. // M107 - Fan off
  179. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  180. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  181. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  182. // M112 - Emergency stop
  183. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  184. // M114 - Output current position to serial port
  185. // M115 - Capabilities string
  186. // M117 - display message
  187. // M119 - Output Endstop status to serial port
  188. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  189. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  190. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  191. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M140 - Set bed target temp
  193. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  194. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  195. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  196. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  197. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  198. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  199. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  200. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  201. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  202. // M206 - set additional homing offset
  203. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  204. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  205. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  206. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  207. // M220 S<factor in percent>- set speed factor override percentage
  208. // M221 S<factor in percent>- set extrude factor override percentage
  209. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  210. // M240 - Trigger a camera to take a photograph
  211. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  212. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  213. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  214. // M301 - Set PID parameters P I and D
  215. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  216. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  217. // M304 - Set bed PID parameters P I and D
  218. // M400 - Finish all moves
  219. // M401 - Lower z-probe if present
  220. // M402 - Raise z-probe if present
  221. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  222. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  223. // M406 - Turn off Filament Sensor extrusion control
  224. // M407 - Displays measured filament diameter
  225. // M500 - stores parameters in EEPROM
  226. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  227. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  228. // M503 - print the current settings (from memory not from EEPROM)
  229. // M509 - force language selection on next restart
  230. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  231. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  232. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  233. // M860 - Wait for PINDA thermistor to reach target temperature.
  234. // M861 - Set / Read PINDA temperature compensation offsets
  235. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  236. // M907 - Set digital trimpot motor current using axis codes.
  237. // M908 - Control digital trimpot directly.
  238. // M350 - Set microstepping mode.
  239. // M351 - Toggle MS1 MS2 pins directly.
  240. // M928 - Start SD logging (M928 filename.g) - ended by M29
  241. // M999 - Restart after being stopped by error
  242. //Stepper Movement Variables
  243. //===========================================================================
  244. //=============================imported variables============================
  245. //===========================================================================
  246. //===========================================================================
  247. //=============================public variables=============================
  248. //===========================================================================
  249. #ifdef SDSUPPORT
  250. CardReader card;
  251. #endif
  252. unsigned long PingTime = millis();
  253. unsigned long NcTime;
  254. //used for PINDA temp calibration and pause print
  255. #define DEFAULT_RETRACTION 1
  256. #define DEFAULT_RETRACTION_MM 4 //MM
  257. float default_retraction = DEFAULT_RETRACTION;
  258. float homing_feedrate[] = HOMING_FEEDRATE;
  259. // Currently only the extruder axis may be switched to a relative mode.
  260. // Other axes are always absolute or relative based on the common relative_mode flag.
  261. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  262. int feedmultiply=100; //100->1 200->2
  263. int saved_feedmultiply;
  264. int extrudemultiply=100; //100->1 200->2
  265. int extruder_multiply[EXTRUDERS] = {100
  266. #if EXTRUDERS > 1
  267. , 100
  268. #if EXTRUDERS > 2
  269. , 100
  270. #endif
  271. #endif
  272. };
  273. int bowden_length[4] = {385, 385, 385, 385};
  274. bool is_usb_printing = false;
  275. bool homing_flag = false;
  276. bool temp_cal_active = false;
  277. unsigned long kicktime = millis()+100000;
  278. unsigned int usb_printing_counter;
  279. int8_t lcd_change_fil_state = 0;
  280. int feedmultiplyBckp = 100;
  281. float HotendTempBckp = 0;
  282. int fanSpeedBckp = 0;
  283. float pause_lastpos[4];
  284. unsigned long pause_time = 0;
  285. unsigned long start_pause_print = millis();
  286. unsigned long t_fan_rising_edge = millis();
  287. LongTimer safetyTimer;
  288. LongTimer crashDetTimer;
  289. //unsigned long load_filament_time;
  290. bool mesh_bed_leveling_flag = false;
  291. bool mesh_bed_run_from_menu = false;
  292. int8_t FarmMode = 0;
  293. bool prusa_sd_card_upload = false;
  294. unsigned int status_number = 0;
  295. unsigned long total_filament_used;
  296. unsigned int heating_status;
  297. unsigned int heating_status_counter;
  298. bool loading_flag = false;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // save/restore printing in case that mmu was not responding
  392. bool mmu_print_saved = false;
  393. // storing estimated time to end of print counted by slicer
  394. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  397. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  398. bool wizard_active = false; //autoload temporarily disabled during wizard
  399. //===========================================================================
  400. //=============================Private Variables=============================
  401. //===========================================================================
  402. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  403. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  404. // For tracing an arc
  405. static float offset[3] = {0.0, 0.0, 0.0};
  406. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  407. // Determines Absolute or Relative Coordinates.
  408. // Also there is bool axis_relative_modes[] per axis flag.
  409. static bool relative_mode = false;
  410. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. bool extruder_under_pressure = true;
  422. bool Stopped=false;
  423. #if NUM_SERVOS > 0
  424. Servo servos[NUM_SERVOS];
  425. #endif
  426. bool CooldownNoWait = true;
  427. bool target_direction;
  428. //Insert variables if CHDK is defined
  429. #ifdef CHDK
  430. unsigned long chdkHigh = 0;
  431. boolean chdkActive = false;
  432. #endif
  433. // save/restore printing
  434. static uint32_t saved_sdpos = 0;
  435. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  436. static float saved_pos[4] = { 0, 0, 0, 0 };
  437. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  438. static float saved_feedrate2 = 0;
  439. static uint8_t saved_active_extruder = 0;
  440. static bool saved_extruder_under_pressure = false;
  441. static bool saved_extruder_relative_mode = false;
  442. //===========================================================================
  443. //=============================Routines======================================
  444. //===========================================================================
  445. static void get_arc_coordinates();
  446. static bool setTargetedHotend(int code, uint8_t &extruder);
  447. static void print_time_remaining_init();
  448. static void wait_for_heater(long codenum, uint8_t extruder);
  449. uint16_t gcode_in_progress = 0;
  450. uint16_t mcode_in_progress = 0;
  451. void serial_echopair_P(const char *s_P, float v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, double v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char *s_P, unsigned long v)
  456. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. #ifdef SDSUPPORT
  458. #include "SdFatUtil.h"
  459. int freeMemory() { return SdFatUtil::FreeRam(); }
  460. #else
  461. extern "C" {
  462. extern unsigned int __bss_end;
  463. extern unsigned int __heap_start;
  464. extern void *__brkval;
  465. int freeMemory() {
  466. int free_memory;
  467. if ((int)__brkval == 0)
  468. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  469. else
  470. free_memory = ((int)&free_memory) - ((int)__brkval);
  471. return free_memory;
  472. }
  473. }
  474. #endif //!SDSUPPORT
  475. void setup_killpin()
  476. {
  477. #if defined(KILL_PIN) && KILL_PIN > -1
  478. SET_INPUT(KILL_PIN);
  479. WRITE(KILL_PIN,HIGH);
  480. #endif
  481. }
  482. // Set home pin
  483. void setup_homepin(void)
  484. {
  485. #if defined(HOME_PIN) && HOME_PIN > -1
  486. SET_INPUT(HOME_PIN);
  487. WRITE(HOME_PIN,HIGH);
  488. #endif
  489. }
  490. void setup_photpin()
  491. {
  492. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  493. SET_OUTPUT(PHOTOGRAPH_PIN);
  494. WRITE(PHOTOGRAPH_PIN, LOW);
  495. #endif
  496. }
  497. void setup_powerhold()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. SET_OUTPUT(SUICIDE_PIN);
  501. WRITE(SUICIDE_PIN, HIGH);
  502. #endif
  503. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  504. SET_OUTPUT(PS_ON_PIN);
  505. #if defined(PS_DEFAULT_OFF)
  506. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  507. #else
  508. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  509. #endif
  510. #endif
  511. }
  512. void suicide()
  513. {
  514. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  515. SET_OUTPUT(SUICIDE_PIN);
  516. WRITE(SUICIDE_PIN, LOW);
  517. #endif
  518. }
  519. void servo_init()
  520. {
  521. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  522. servos[0].attach(SERVO0_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  525. servos[1].attach(SERVO1_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  528. servos[2].attach(SERVO2_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  531. servos[3].attach(SERVO3_PIN);
  532. #endif
  533. #if (NUM_SERVOS >= 5)
  534. #error "TODO: enter initalisation code for more servos"
  535. #endif
  536. }
  537. void stop_and_save_print_to_ram(float z_move, float e_move);
  538. void restore_print_from_ram_and_continue(float e_move);
  539. bool fans_check_enabled = true;
  540. #ifdef TMC2130
  541. extern int8_t CrashDetectMenu;
  542. void crashdet_enable()
  543. {
  544. tmc2130_sg_stop_on_crash = true;
  545. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  546. CrashDetectMenu = 1;
  547. }
  548. void crashdet_disable()
  549. {
  550. tmc2130_sg_stop_on_crash = false;
  551. tmc2130_sg_crash = 0;
  552. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  553. CrashDetectMenu = 0;
  554. }
  555. void crashdet_stop_and_save_print()
  556. {
  557. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  558. }
  559. void crashdet_restore_print_and_continue()
  560. {
  561. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  562. // babystep_apply();
  563. }
  564. void crashdet_stop_and_save_print2()
  565. {
  566. cli();
  567. planner_abort_hard(); //abort printing
  568. cmdqueue_reset(); //empty cmdqueue
  569. card.sdprinting = false;
  570. card.closefile();
  571. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  572. st_reset_timer();
  573. sei();
  574. }
  575. void crashdet_detected(uint8_t mask)
  576. {
  577. st_synchronize();
  578. static uint8_t crashDet_counter = 0;
  579. bool automatic_recovery_after_crash = true;
  580. if (crashDet_counter++ == 0) {
  581. crashDetTimer.start();
  582. }
  583. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  584. crashDetTimer.stop();
  585. crashDet_counter = 0;
  586. }
  587. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  588. automatic_recovery_after_crash = false;
  589. crashDetTimer.stop();
  590. crashDet_counter = 0;
  591. }
  592. else {
  593. crashDetTimer.start();
  594. }
  595. lcd_update_enable(true);
  596. lcd_clear();
  597. lcd_update(2);
  598. if (mask & X_AXIS_MASK)
  599. {
  600. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  601. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  602. }
  603. if (mask & Y_AXIS_MASK)
  604. {
  605. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  606. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  607. }
  608. lcd_update_enable(true);
  609. lcd_update(2);
  610. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  611. gcode_G28(true, true, false); //home X and Y
  612. st_synchronize();
  613. if (automatic_recovery_after_crash) {
  614. enquecommand_P(PSTR("CRASH_RECOVER"));
  615. }else{
  616. HotendTempBckp = degTargetHotend(active_extruder);
  617. setTargetHotend(0, active_extruder);
  618. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  619. lcd_update_enable(true);
  620. if (yesno)
  621. {
  622. char cmd1[10];
  623. strcpy(cmd1, "M109 S");
  624. strcat(cmd1, ftostr3(HotendTempBckp));
  625. enquecommand(cmd1);
  626. enquecommand_P(PSTR("CRASH_RECOVER"));
  627. }
  628. else
  629. {
  630. enquecommand_P(PSTR("CRASH_CANCEL"));
  631. }
  632. }
  633. }
  634. void crashdet_recover()
  635. {
  636. crashdet_restore_print_and_continue();
  637. tmc2130_sg_stop_on_crash = true;
  638. }
  639. void crashdet_cancel()
  640. {
  641. tmc2130_sg_stop_on_crash = true;
  642. if (saved_printing_type == PRINTING_TYPE_SD) {
  643. lcd_print_stop();
  644. }else if(saved_printing_type == PRINTING_TYPE_USB){
  645. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  646. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  647. }
  648. }
  649. #endif //TMC2130
  650. void failstats_reset_print()
  651. {
  652. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  654. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  655. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  656. }
  657. #ifdef MESH_BED_LEVELING
  658. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  659. #endif
  660. // Factory reset function
  661. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  662. // Level input parameter sets depth of reset
  663. // Quiet parameter masks all waitings for user interact.
  664. int er_progress = 0;
  665. void factory_reset(char level, bool quiet)
  666. {
  667. lcd_clear();
  668. switch (level) {
  669. // Level 0: Language reset
  670. case 0:
  671. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  672. WRITE(BEEPER, HIGH);
  673. _delay_ms(100);
  674. WRITE(BEEPER, LOW);
  675. lang_reset();
  676. break;
  677. //Level 1: Reset statistics
  678. case 1:
  679. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  680. WRITE(BEEPER, HIGH);
  681. _delay_ms(100);
  682. WRITE(BEEPER, LOW);
  683. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  684. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  685. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  686. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  687. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  689. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  690. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  691. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  693. lcd_menu_statistics();
  694. break;
  695. // Level 2: Prepare for shipping
  696. case 2:
  697. //lcd_puts_P(PSTR("Factory RESET"));
  698. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  699. // Force language selection at the next boot up.
  700. lang_reset();
  701. // Force the "Follow calibration flow" message at the next boot up.
  702. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  703. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  704. farm_no = 0;
  705. farm_mode = false;
  706. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  707. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  708. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  709. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  710. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  711. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  712. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  714. #ifdef FILAMENT_SENSOR
  715. fsensor_enable();
  716. fsensor_autoload_set(true);
  717. #endif //FILAMENT_SENSOR
  718. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. //_delay_ms(2000);
  723. break;
  724. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  725. case 3:
  726. lcd_puts_P(PSTR("Factory RESET"));
  727. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  728. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. er_progress = 0;
  733. lcd_puts_at_P(3, 3, PSTR(" "));
  734. lcd_set_cursor(3, 3);
  735. lcd_print(er_progress);
  736. // Erase EEPROM
  737. for (int i = 0; i < 4096; i++) {
  738. eeprom_write_byte((uint8_t*)i, 0xFF);
  739. if (i % 41 == 0) {
  740. er_progress++;
  741. lcd_puts_at_P(3, 3, PSTR(" "));
  742. lcd_set_cursor(3, 3);
  743. lcd_print(er_progress);
  744. lcd_puts_P(PSTR("%"));
  745. }
  746. }
  747. break;
  748. case 4:
  749. bowden_menu();
  750. break;
  751. default:
  752. break;
  753. }
  754. }
  755. FILE _uartout = {0};
  756. int uart_putchar(char c, FILE *stream)
  757. {
  758. MYSERIAL.write(c);
  759. return 0;
  760. }
  761. void lcd_splash()
  762. {
  763. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  764. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  765. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  766. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  767. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  768. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  769. }
  770. void factory_reset()
  771. {
  772. KEEPALIVE_STATE(PAUSED_FOR_USER);
  773. if (!READ(BTN_ENC))
  774. {
  775. _delay_ms(1000);
  776. if (!READ(BTN_ENC))
  777. {
  778. lcd_clear();
  779. lcd_puts_P(PSTR("Factory RESET"));
  780. SET_OUTPUT(BEEPER);
  781. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  782. WRITE(BEEPER, HIGH);
  783. while (!READ(BTN_ENC));
  784. WRITE(BEEPER, LOW);
  785. _delay_ms(2000);
  786. char level = reset_menu();
  787. factory_reset(level, false);
  788. switch (level) {
  789. case 0: _delay_ms(0); break;
  790. case 1: _delay_ms(0); break;
  791. case 2: _delay_ms(0); break;
  792. case 3: _delay_ms(0); break;
  793. }
  794. }
  795. }
  796. KEEPALIVE_STATE(IN_HANDLER);
  797. }
  798. void show_fw_version_warnings() {
  799. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  800. switch (FW_DEV_VERSION) {
  801. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  802. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  803. case(FW_VERSION_DEVEL):
  804. case(FW_VERSION_DEBUG):
  805. lcd_update_enable(false);
  806. lcd_clear();
  807. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  808. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  809. #else
  810. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  811. #endif
  812. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  813. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  814. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  815. lcd_wait_for_click();
  816. break;
  817. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  818. }
  819. lcd_update_enable(true);
  820. }
  821. uint8_t check_printer_version()
  822. {
  823. uint8_t version_changed = 0;
  824. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  825. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  826. if (printer_type != PRINTER_TYPE) {
  827. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  828. else version_changed |= 0b10;
  829. }
  830. if (motherboard != MOTHERBOARD) {
  831. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  832. else version_changed |= 0b01;
  833. }
  834. return version_changed;
  835. }
  836. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  837. {
  838. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  839. }
  840. #ifdef BOOTAPP
  841. #include "bootapp.h" //bootloader support
  842. #endif //BOOTAPP
  843. #if (LANG_MODE != 0) //secondary language support
  844. #ifdef W25X20CL
  845. // language update from external flash
  846. #define LANGBOOT_BLOCKSIZE 0x1000u
  847. #define LANGBOOT_RAMBUFFER 0x0800
  848. void update_sec_lang_from_external_flash()
  849. {
  850. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  851. {
  852. uint8_t lang = boot_reserved >> 4;
  853. uint8_t state = boot_reserved & 0xf;
  854. lang_table_header_t header;
  855. uint32_t src_addr;
  856. if (lang_get_header(lang, &header, &src_addr))
  857. {
  858. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  859. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  860. delay(100);
  861. boot_reserved = (state + 1) | (lang << 4);
  862. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  863. {
  864. cli();
  865. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  866. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  867. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  868. if (state == 0)
  869. {
  870. //TODO - check header integrity
  871. }
  872. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  873. }
  874. else
  875. {
  876. //TODO - check sec lang data integrity
  877. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  878. }
  879. }
  880. }
  881. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  882. }
  883. #ifdef DEBUG_W25X20CL
  884. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  885. {
  886. lang_table_header_t header;
  887. uint8_t count = 0;
  888. uint32_t addr = 0x00000;
  889. while (1)
  890. {
  891. printf_P(_n("LANGTABLE%d:"), count);
  892. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  893. if (header.magic != LANG_MAGIC)
  894. {
  895. printf_P(_n("NG!\n"));
  896. break;
  897. }
  898. printf_P(_n("OK\n"));
  899. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  900. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  901. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  902. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  903. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  904. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  905. addr += header.size;
  906. codes[count] = header.code;
  907. count ++;
  908. }
  909. return count;
  910. }
  911. void list_sec_lang_from_external_flash()
  912. {
  913. uint16_t codes[8];
  914. uint8_t count = lang_xflash_enum_codes(codes);
  915. printf_P(_n("XFlash lang count = %hhd\n"), count);
  916. }
  917. #endif //DEBUG_W25X20CL
  918. #endif //W25X20CL
  919. #endif //(LANG_MODE != 0)
  920. // "Setup" function is called by the Arduino framework on startup.
  921. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  922. // are initialized by the main() routine provided by the Arduino framework.
  923. void setup()
  924. {
  925. mmu_init();
  926. ultralcd_init();
  927. spi_init();
  928. lcd_splash();
  929. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  930. #ifdef W25X20CL
  931. if (!w25x20cl_init())
  932. kill(_i("External SPI flash W25X20CL not responding."));
  933. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  934. optiboot_w25x20cl_enter();
  935. #endif
  936. #if (LANG_MODE != 0) //secondary language support
  937. #ifdef W25X20CL
  938. if (w25x20cl_init())
  939. update_sec_lang_from_external_flash();
  940. #endif //W25X20CL
  941. #endif //(LANG_MODE != 0)
  942. setup_killpin();
  943. setup_powerhold();
  944. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  945. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  946. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  947. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  948. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  949. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  950. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  951. if (farm_mode)
  952. {
  953. no_response = true; //we need confirmation by recieving PRUSA thx
  954. important_status = 8;
  955. prusa_statistics(8);
  956. selectedSerialPort = 1;
  957. #ifdef TMC2130
  958. //increased extruder current (PFW363)
  959. tmc2130_current_h[E_AXIS] = 36;
  960. tmc2130_current_r[E_AXIS] = 36;
  961. #endif //TMC2130
  962. #ifdef FILAMENT_SENSOR
  963. //disabled filament autoload (PFW360)
  964. fsensor_autoload_set(false);
  965. #endif //FILAMENT_SENSOR
  966. }
  967. MYSERIAL.begin(BAUDRATE);
  968. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  969. stdout = uartout;
  970. SERIAL_ECHO_START;
  971. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  972. #ifdef DEBUG_SEC_LANG
  973. lang_table_header_t header;
  974. uint32_t src_addr = 0x00000;
  975. if (lang_get_header(1, &header, &src_addr))
  976. {
  977. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  978. #define LT_PRINT_TEST 2
  979. // flash usage
  980. // total p.test
  981. //0 252718 t+c text code
  982. //1 253142 424 170 254
  983. //2 253040 322 164 158
  984. //3 253248 530 135 395
  985. #if (LT_PRINT_TEST==1) //not optimized printf
  986. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  987. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  988. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  989. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  990. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  991. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  992. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  993. #elif (LT_PRINT_TEST==2) //optimized printf
  994. printf_P(
  995. _n(
  996. " _src_addr = 0x%08lx\n"
  997. " _lt_magic = 0x%08lx %S\n"
  998. " _lt_size = 0x%04x (%d)\n"
  999. " _lt_count = 0x%04x (%d)\n"
  1000. " _lt_chsum = 0x%04x\n"
  1001. " _lt_code = 0x%04x (%c%c)\n"
  1002. " _lt_resv1 = 0x%08lx\n"
  1003. ),
  1004. src_addr,
  1005. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1006. header.size, header.size,
  1007. header.count, header.count,
  1008. header.checksum,
  1009. header.code, header.code >> 8, header.code & 0xff,
  1010. header.signature
  1011. );
  1012. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1013. MYSERIAL.print(" _src_addr = 0x");
  1014. MYSERIAL.println(src_addr, 16);
  1015. MYSERIAL.print(" _lt_magic = 0x");
  1016. MYSERIAL.print(header.magic, 16);
  1017. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1018. MYSERIAL.print(" _lt_size = 0x");
  1019. MYSERIAL.print(header.size, 16);
  1020. MYSERIAL.print(" (");
  1021. MYSERIAL.print(header.size, 10);
  1022. MYSERIAL.println(")");
  1023. MYSERIAL.print(" _lt_count = 0x");
  1024. MYSERIAL.print(header.count, 16);
  1025. MYSERIAL.print(" (");
  1026. MYSERIAL.print(header.count, 10);
  1027. MYSERIAL.println(")");
  1028. MYSERIAL.print(" _lt_chsum = 0x");
  1029. MYSERIAL.println(header.checksum, 16);
  1030. MYSERIAL.print(" _lt_code = 0x");
  1031. MYSERIAL.print(header.code, 16);
  1032. MYSERIAL.print(" (");
  1033. MYSERIAL.print((char)(header.code >> 8), 0);
  1034. MYSERIAL.print((char)(header.code & 0xff), 0);
  1035. MYSERIAL.println(")");
  1036. MYSERIAL.print(" _lt_resv1 = 0x");
  1037. MYSERIAL.println(header.signature, 16);
  1038. #endif //(LT_PRINT_TEST==)
  1039. #undef LT_PRINT_TEST
  1040. #if 0
  1041. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1042. for (uint16_t i = 0; i < 1024; i++)
  1043. {
  1044. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1045. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1046. if ((i % 16) == 15) putchar('\n');
  1047. }
  1048. #endif
  1049. uint16_t sum = 0;
  1050. for (uint16_t i = 0; i < header.size; i++)
  1051. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1052. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1053. sum -= header.checksum; //subtract checksum
  1054. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1055. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1056. if (sum == header.checksum)
  1057. printf_P(_n("Checksum OK\n"), sum);
  1058. else
  1059. printf_P(_n("Checksum NG\n"), sum);
  1060. }
  1061. else
  1062. printf_P(_n("lang_get_header failed!\n"));
  1063. #if 0
  1064. for (uint16_t i = 0; i < 1024*10; i++)
  1065. {
  1066. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1067. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1068. if ((i % 16) == 15) putchar('\n');
  1069. }
  1070. #endif
  1071. #if 0
  1072. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1073. for (int i = 0; i < 4096; ++i) {
  1074. int b = eeprom_read_byte((unsigned char*)i);
  1075. if (b != 255) {
  1076. SERIAL_ECHO(i);
  1077. SERIAL_ECHO(":");
  1078. SERIAL_ECHO(b);
  1079. SERIAL_ECHOLN("");
  1080. }
  1081. }
  1082. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1083. #endif
  1084. #endif //DEBUG_SEC_LANG
  1085. // Check startup - does nothing if bootloader sets MCUSR to 0
  1086. byte mcu = MCUSR;
  1087. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1088. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1089. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1090. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1091. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1092. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1093. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1094. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1095. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1096. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1097. MCUSR = 0;
  1098. //SERIAL_ECHORPGM(MSG_MARLIN);
  1099. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1100. #ifdef STRING_VERSION_CONFIG_H
  1101. #ifdef STRING_CONFIG_H_AUTHOR
  1102. SERIAL_ECHO_START;
  1103. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1104. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1105. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1106. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1107. SERIAL_ECHOPGM("Compiled: ");
  1108. SERIAL_ECHOLNPGM(__DATE__);
  1109. #endif
  1110. #endif
  1111. SERIAL_ECHO_START;
  1112. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1113. SERIAL_ECHO(freeMemory());
  1114. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1115. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1116. //lcd_update_enable(false); // why do we need this?? - andre
  1117. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1118. bool previous_settings_retrieved = false;
  1119. uint8_t hw_changed = check_printer_version();
  1120. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1121. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1122. }
  1123. else { //printer version was changed so use default settings
  1124. Config_ResetDefault();
  1125. }
  1126. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1127. tp_init(); // Initialize temperature loop
  1128. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1129. plan_init(); // Initialize planner;
  1130. factory_reset();
  1131. lcd_encoder_diff=0;
  1132. #ifdef TMC2130
  1133. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1134. if (silentMode == 0xff) silentMode = 0;
  1135. tmc2130_mode = TMC2130_MODE_NORMAL;
  1136. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1137. if (crashdet && !farm_mode)
  1138. {
  1139. crashdet_enable();
  1140. puts_P(_N("CrashDetect ENABLED!"));
  1141. }
  1142. else
  1143. {
  1144. crashdet_disable();
  1145. puts_P(_N("CrashDetect DISABLED"));
  1146. }
  1147. #ifdef TMC2130_LINEARITY_CORRECTION
  1148. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1149. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1150. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1151. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1152. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1153. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1154. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1155. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1156. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1157. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1158. #endif //TMC2130_LINEARITY_CORRECTION
  1159. #ifdef TMC2130_VARIABLE_RESOLUTION
  1160. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1161. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1162. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1163. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1164. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1165. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1166. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1167. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1168. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1169. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1170. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1171. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1172. #else //TMC2130_VARIABLE_RESOLUTION
  1173. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1174. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1175. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1176. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1177. #endif //TMC2130_VARIABLE_RESOLUTION
  1178. #endif //TMC2130
  1179. st_init(); // Initialize stepper, this enables interrupts!
  1180. #ifdef TMC2130
  1181. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1182. update_mode_profile();
  1183. tmc2130_init();
  1184. #endif //TMC2130
  1185. setup_photpin();
  1186. servo_init();
  1187. // Reset the machine correction matrix.
  1188. // It does not make sense to load the correction matrix until the machine is homed.
  1189. world2machine_reset();
  1190. #ifdef FILAMENT_SENSOR
  1191. fsensor_init();
  1192. #endif //FILAMENT_SENSOR
  1193. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1194. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1195. #endif
  1196. setup_homepin();
  1197. #ifdef TMC2130
  1198. if (1) {
  1199. // try to run to zero phase before powering the Z motor.
  1200. // Move in negative direction
  1201. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1202. // Round the current micro-micro steps to micro steps.
  1203. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1204. // Until the phase counter is reset to zero.
  1205. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1206. delay(2);
  1207. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1208. delay(2);
  1209. }
  1210. }
  1211. #endif //TMC2130
  1212. #if defined(Z_AXIS_ALWAYS_ON)
  1213. enable_z();
  1214. #endif
  1215. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1216. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1217. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1218. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1219. if (farm_mode)
  1220. {
  1221. prusa_statistics(8);
  1222. }
  1223. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1224. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1225. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1226. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1227. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1228. // where all the EEPROM entries are set to 0x0ff.
  1229. // Once a firmware boots up, it forces at least a language selection, which changes
  1230. // EEPROM_LANG to number lower than 0x0ff.
  1231. // 1) Set a high power mode.
  1232. #ifdef TMC2130
  1233. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1234. tmc2130_mode = TMC2130_MODE_NORMAL;
  1235. #endif //TMC2130
  1236. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1237. }
  1238. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1239. // but this times out if a blocking dialog is shown in setup().
  1240. card.initsd();
  1241. #ifdef DEBUG_SD_SPEED_TEST
  1242. if (card.cardOK)
  1243. {
  1244. uint8_t* buff = (uint8_t*)block_buffer;
  1245. uint32_t block = 0;
  1246. uint32_t sumr = 0;
  1247. uint32_t sumw = 0;
  1248. for (int i = 0; i < 1024; i++)
  1249. {
  1250. uint32_t u = micros();
  1251. bool res = card.card.readBlock(i, buff);
  1252. u = micros() - u;
  1253. if (res)
  1254. {
  1255. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1256. sumr += u;
  1257. u = micros();
  1258. res = card.card.writeBlock(i, buff);
  1259. u = micros() - u;
  1260. if (res)
  1261. {
  1262. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1263. sumw += u;
  1264. }
  1265. else
  1266. {
  1267. printf_P(PSTR("writeBlock %4d error\n"), i);
  1268. break;
  1269. }
  1270. }
  1271. else
  1272. {
  1273. printf_P(PSTR("readBlock %4d error\n"), i);
  1274. break;
  1275. }
  1276. }
  1277. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1278. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1279. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1280. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1281. }
  1282. else
  1283. printf_P(PSTR("Card NG!\n"));
  1284. #endif //DEBUG_SD_SPEED_TEST
  1285. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1288. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1289. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1290. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1291. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1292. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1293. #ifdef SNMM
  1294. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1295. int _z = BOWDEN_LENGTH;
  1296. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1297. }
  1298. #endif
  1299. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1300. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1301. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1302. #if (LANG_MODE != 0) //secondary language support
  1303. #ifdef DEBUG_W25X20CL
  1304. W25X20CL_SPI_ENTER();
  1305. uint8_t uid[8]; // 64bit unique id
  1306. w25x20cl_rd_uid(uid);
  1307. puts_P(_n("W25X20CL UID="));
  1308. for (uint8_t i = 0; i < 8; i ++)
  1309. printf_P(PSTR("%02hhx"), uid[i]);
  1310. putchar('\n');
  1311. list_sec_lang_from_external_flash();
  1312. #endif //DEBUG_W25X20CL
  1313. // lang_reset();
  1314. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1315. lcd_language();
  1316. #ifdef DEBUG_SEC_LANG
  1317. uint16_t sec_lang_code = lang_get_code(1);
  1318. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1319. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1320. // lang_print_sec_lang(uartout);
  1321. #endif //DEBUG_SEC_LANG
  1322. #endif //(LANG_MODE != 0)
  1323. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1324. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1325. temp_cal_active = false;
  1326. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1327. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1328. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1329. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1330. int16_t z_shift = 0;
  1331. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1332. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1333. temp_cal_active = false;
  1334. }
  1335. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1336. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1337. }
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1339. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1340. }
  1341. check_babystep(); //checking if Z babystep is in allowed range
  1342. #ifdef UVLO_SUPPORT
  1343. setup_uvlo_interrupt();
  1344. #endif //UVLO_SUPPORT
  1345. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1346. setup_fan_interrupt();
  1347. #endif //DEBUG_DISABLE_FANCHECK
  1348. #ifdef FILAMENT_SENSOR
  1349. fsensor_setup_interrupt();
  1350. #endif //FILAMENT_SENSOR
  1351. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1352. #ifndef DEBUG_DISABLE_STARTMSGS
  1353. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1354. show_fw_version_warnings();
  1355. switch (hw_changed) {
  1356. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1357. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1358. case(0b01):
  1359. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1360. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1361. break;
  1362. case(0b10):
  1363. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1364. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1365. break;
  1366. case(0b11):
  1367. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1368. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1369. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1370. break;
  1371. default: break; //no change, show no message
  1372. }
  1373. if (!previous_settings_retrieved) {
  1374. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1375. erase_eeprom_section(EEPROM_OFFSET, EEPROM_M500_SIZE); //erase M500 part of eeprom
  1376. }
  1377. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1378. lcd_wizard(0);
  1379. }
  1380. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1381. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1382. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1383. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1384. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1385. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1386. // Show the message.
  1387. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1388. }
  1389. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1390. // Show the message.
  1391. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1392. lcd_update_enable(true);
  1393. }
  1394. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1395. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1396. lcd_update_enable(true);
  1397. }
  1398. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1399. // Show the message.
  1400. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1401. }
  1402. }
  1403. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1404. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1405. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1406. update_current_firmware_version_to_eeprom();
  1407. lcd_selftest();
  1408. }
  1409. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1410. KEEPALIVE_STATE(IN_PROCESS);
  1411. #endif //DEBUG_DISABLE_STARTMSGS
  1412. lcd_update_enable(true);
  1413. lcd_clear();
  1414. lcd_update(2);
  1415. // Store the currently running firmware into an eeprom,
  1416. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1417. update_current_firmware_version_to_eeprom();
  1418. #ifdef TMC2130
  1419. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1420. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1421. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1422. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1423. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1424. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1425. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1426. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1427. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1428. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1429. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1430. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1431. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1432. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1433. #endif //TMC2130
  1434. #ifdef UVLO_SUPPORT
  1435. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1436. /*
  1437. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1438. else {
  1439. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1440. lcd_update_enable(true);
  1441. lcd_update(2);
  1442. lcd_setstatuspgm(_T(WELCOME_MSG));
  1443. }
  1444. */
  1445. manage_heater(); // Update temperatures
  1446. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1447. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1448. #endif
  1449. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1450. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1451. puts_P(_N("Automatic recovery!"));
  1452. #endif
  1453. recover_print(1);
  1454. }
  1455. else{
  1456. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1457. puts_P(_N("Normal recovery!"));
  1458. #endif
  1459. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1460. else {
  1461. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1462. lcd_update_enable(true);
  1463. lcd_update(2);
  1464. lcd_setstatuspgm(_T(WELCOME_MSG));
  1465. }
  1466. }
  1467. }
  1468. #endif //UVLO_SUPPORT
  1469. KEEPALIVE_STATE(NOT_BUSY);
  1470. #ifdef WATCHDOG
  1471. wdt_enable(WDTO_4S);
  1472. #endif //WATCHDOG
  1473. }
  1474. void trace();
  1475. #define CHUNK_SIZE 64 // bytes
  1476. #define SAFETY_MARGIN 1
  1477. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1478. int chunkHead = 0;
  1479. void serial_read_stream() {
  1480. setAllTargetHotends(0);
  1481. setTargetBed(0);
  1482. lcd_clear();
  1483. lcd_puts_P(PSTR(" Upload in progress"));
  1484. // first wait for how many bytes we will receive
  1485. uint32_t bytesToReceive;
  1486. // receive the four bytes
  1487. char bytesToReceiveBuffer[4];
  1488. for (int i=0; i<4; i++) {
  1489. int data;
  1490. while ((data = MYSERIAL.read()) == -1) {};
  1491. bytesToReceiveBuffer[i] = data;
  1492. }
  1493. // make it a uint32
  1494. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1495. // we're ready, notify the sender
  1496. MYSERIAL.write('+');
  1497. // lock in the routine
  1498. uint32_t receivedBytes = 0;
  1499. while (prusa_sd_card_upload) {
  1500. int i;
  1501. for (i=0; i<CHUNK_SIZE; i++) {
  1502. int data;
  1503. // check if we're not done
  1504. if (receivedBytes == bytesToReceive) {
  1505. break;
  1506. }
  1507. // read the next byte
  1508. while ((data = MYSERIAL.read()) == -1) {};
  1509. receivedBytes++;
  1510. // save it to the chunk
  1511. chunk[i] = data;
  1512. }
  1513. // write the chunk to SD
  1514. card.write_command_no_newline(&chunk[0]);
  1515. // notify the sender we're ready for more data
  1516. MYSERIAL.write('+');
  1517. // for safety
  1518. manage_heater();
  1519. // check if we're done
  1520. if(receivedBytes == bytesToReceive) {
  1521. trace(); // beep
  1522. card.closefile();
  1523. prusa_sd_card_upload = false;
  1524. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1525. }
  1526. }
  1527. }
  1528. #ifdef HOST_KEEPALIVE_FEATURE
  1529. /**
  1530. * Output a "busy" message at regular intervals
  1531. * while the machine is not accepting commands.
  1532. */
  1533. void host_keepalive() {
  1534. if (farm_mode) return;
  1535. long ms = millis();
  1536. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1537. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1538. switch (busy_state) {
  1539. case IN_HANDLER:
  1540. case IN_PROCESS:
  1541. SERIAL_ECHO_START;
  1542. SERIAL_ECHOLNPGM("busy: processing");
  1543. break;
  1544. case PAUSED_FOR_USER:
  1545. SERIAL_ECHO_START;
  1546. SERIAL_ECHOLNPGM("busy: paused for user");
  1547. break;
  1548. case PAUSED_FOR_INPUT:
  1549. SERIAL_ECHO_START;
  1550. SERIAL_ECHOLNPGM("busy: paused for input");
  1551. break;
  1552. default:
  1553. break;
  1554. }
  1555. }
  1556. prev_busy_signal_ms = ms;
  1557. }
  1558. #endif
  1559. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1560. // Before loop(), the setup() function is called by the main() routine.
  1561. void loop()
  1562. {
  1563. KEEPALIVE_STATE(NOT_BUSY);
  1564. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1565. {
  1566. is_usb_printing = true;
  1567. usb_printing_counter--;
  1568. _usb_timer = millis();
  1569. }
  1570. if (usb_printing_counter == 0)
  1571. {
  1572. is_usb_printing = false;
  1573. }
  1574. if (prusa_sd_card_upload)
  1575. {
  1576. //we read byte-by byte
  1577. serial_read_stream();
  1578. } else
  1579. {
  1580. get_command();
  1581. #ifdef SDSUPPORT
  1582. card.checkautostart(false);
  1583. #endif
  1584. if(buflen)
  1585. {
  1586. cmdbuffer_front_already_processed = false;
  1587. #ifdef SDSUPPORT
  1588. if(card.saving)
  1589. {
  1590. // Saving a G-code file onto an SD-card is in progress.
  1591. // Saving starts with M28, saving until M29 is seen.
  1592. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1593. card.write_command(CMDBUFFER_CURRENT_STRING);
  1594. if(card.logging)
  1595. process_commands();
  1596. else
  1597. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1598. } else {
  1599. card.closefile();
  1600. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1601. }
  1602. } else {
  1603. process_commands();
  1604. }
  1605. #else
  1606. process_commands();
  1607. #endif //SDSUPPORT
  1608. if (! cmdbuffer_front_already_processed && buflen)
  1609. {
  1610. // ptr points to the start of the block currently being processed.
  1611. // The first character in the block is the block type.
  1612. char *ptr = cmdbuffer + bufindr;
  1613. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1614. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1615. union {
  1616. struct {
  1617. char lo;
  1618. char hi;
  1619. } lohi;
  1620. uint16_t value;
  1621. } sdlen;
  1622. sdlen.value = 0;
  1623. {
  1624. // This block locks the interrupts globally for 3.25 us,
  1625. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1626. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1627. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1628. cli();
  1629. // Reset the command to something, which will be ignored by the power panic routine,
  1630. // so this buffer length will not be counted twice.
  1631. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1632. // Extract the current buffer length.
  1633. sdlen.lohi.lo = *ptr ++;
  1634. sdlen.lohi.hi = *ptr;
  1635. // and pass it to the planner queue.
  1636. planner_add_sd_length(sdlen.value);
  1637. sei();
  1638. }
  1639. }
  1640. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1641. cli();
  1642. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1643. // and one for each command to previous block in the planner queue.
  1644. planner_add_sd_length(1);
  1645. sei();
  1646. }
  1647. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1648. // this block's SD card length will not be counted twice as its command type has been replaced
  1649. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1650. cmdqueue_pop_front();
  1651. }
  1652. host_keepalive();
  1653. }
  1654. }
  1655. //check heater every n milliseconds
  1656. manage_heater();
  1657. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1658. checkHitEndstops();
  1659. lcd_update(0);
  1660. #ifdef FILAMENT_SENSOR
  1661. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1662. fsensor_update();
  1663. #endif //FILAMENT_SENSOR
  1664. #ifdef TMC2130
  1665. tmc2130_check_overtemp();
  1666. if (tmc2130_sg_crash)
  1667. {
  1668. uint8_t crash = tmc2130_sg_crash;
  1669. tmc2130_sg_crash = 0;
  1670. // crashdet_stop_and_save_print();
  1671. switch (crash)
  1672. {
  1673. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1674. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1675. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1676. }
  1677. }
  1678. #endif //TMC2130
  1679. mmu_loop();
  1680. }
  1681. #define DEFINE_PGM_READ_ANY(type, reader) \
  1682. static inline type pgm_read_any(const type *p) \
  1683. { return pgm_read_##reader##_near(p); }
  1684. DEFINE_PGM_READ_ANY(float, float);
  1685. DEFINE_PGM_READ_ANY(signed char, byte);
  1686. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1687. static const PROGMEM type array##_P[3] = \
  1688. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1689. static inline type array(int axis) \
  1690. { return pgm_read_any(&array##_P[axis]); } \
  1691. type array##_ext(int axis) \
  1692. { return pgm_read_any(&array##_P[axis]); }
  1693. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1694. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1695. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1696. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1697. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1698. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1699. static void axis_is_at_home(int axis) {
  1700. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1701. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1702. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1703. }
  1704. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1705. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1706. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1707. saved_feedrate = feedrate;
  1708. saved_feedmultiply = feedmultiply;
  1709. feedmultiply = 100;
  1710. previous_millis_cmd = millis();
  1711. enable_endstops(enable_endstops_now);
  1712. }
  1713. static void clean_up_after_endstop_move() {
  1714. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1715. enable_endstops(false);
  1716. #endif
  1717. feedrate = saved_feedrate;
  1718. feedmultiply = saved_feedmultiply;
  1719. previous_millis_cmd = millis();
  1720. }
  1721. #ifdef ENABLE_AUTO_BED_LEVELING
  1722. #ifdef AUTO_BED_LEVELING_GRID
  1723. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1724. {
  1725. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1726. planeNormal.debug("planeNormal");
  1727. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1728. //bedLevel.debug("bedLevel");
  1729. //plan_bed_level_matrix.debug("bed level before");
  1730. //vector_3 uncorrected_position = plan_get_position_mm();
  1731. //uncorrected_position.debug("position before");
  1732. vector_3 corrected_position = plan_get_position();
  1733. // corrected_position.debug("position after");
  1734. current_position[X_AXIS] = corrected_position.x;
  1735. current_position[Y_AXIS] = corrected_position.y;
  1736. current_position[Z_AXIS] = corrected_position.z;
  1737. // put the bed at 0 so we don't go below it.
  1738. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1739. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1740. }
  1741. #else // not AUTO_BED_LEVELING_GRID
  1742. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1743. plan_bed_level_matrix.set_to_identity();
  1744. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1745. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1746. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1747. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1748. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1749. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1750. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1751. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1752. vector_3 corrected_position = plan_get_position();
  1753. current_position[X_AXIS] = corrected_position.x;
  1754. current_position[Y_AXIS] = corrected_position.y;
  1755. current_position[Z_AXIS] = corrected_position.z;
  1756. // put the bed at 0 so we don't go below it.
  1757. current_position[Z_AXIS] = zprobe_zoffset;
  1758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1759. }
  1760. #endif // AUTO_BED_LEVELING_GRID
  1761. static void run_z_probe() {
  1762. plan_bed_level_matrix.set_to_identity();
  1763. feedrate = homing_feedrate[Z_AXIS];
  1764. // move down until you find the bed
  1765. float zPosition = -10;
  1766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1767. st_synchronize();
  1768. // we have to let the planner know where we are right now as it is not where we said to go.
  1769. zPosition = st_get_position_mm(Z_AXIS);
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1771. // move up the retract distance
  1772. zPosition += home_retract_mm(Z_AXIS);
  1773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1774. st_synchronize();
  1775. // move back down slowly to find bed
  1776. feedrate = homing_feedrate[Z_AXIS]/4;
  1777. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1779. st_synchronize();
  1780. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1781. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. }
  1784. static void do_blocking_move_to(float x, float y, float z) {
  1785. float oldFeedRate = feedrate;
  1786. feedrate = homing_feedrate[Z_AXIS];
  1787. current_position[Z_AXIS] = z;
  1788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. feedrate = XY_TRAVEL_SPEED;
  1791. current_position[X_AXIS] = x;
  1792. current_position[Y_AXIS] = y;
  1793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1794. st_synchronize();
  1795. feedrate = oldFeedRate;
  1796. }
  1797. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1798. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1799. }
  1800. /// Probe bed height at position (x,y), returns the measured z value
  1801. static float probe_pt(float x, float y, float z_before) {
  1802. // move to right place
  1803. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1804. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1805. run_z_probe();
  1806. float measured_z = current_position[Z_AXIS];
  1807. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1808. SERIAL_PROTOCOLPGM(" x: ");
  1809. SERIAL_PROTOCOL(x);
  1810. SERIAL_PROTOCOLPGM(" y: ");
  1811. SERIAL_PROTOCOL(y);
  1812. SERIAL_PROTOCOLPGM(" z: ");
  1813. SERIAL_PROTOCOL(measured_z);
  1814. SERIAL_PROTOCOLPGM("\n");
  1815. return measured_z;
  1816. }
  1817. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1818. #ifdef LIN_ADVANCE
  1819. /**
  1820. * M900: Set and/or Get advance K factor and WH/D ratio
  1821. *
  1822. * K<factor> Set advance K factor
  1823. * R<ratio> Set ratio directly (overrides WH/D)
  1824. * W<width> H<height> D<diam> Set ratio from WH/D
  1825. */
  1826. inline void gcode_M900() {
  1827. st_synchronize();
  1828. const float newK = code_seen('K') ? code_value_float() : -1;
  1829. if (newK >= 0) extruder_advance_k = newK;
  1830. float newR = code_seen('R') ? code_value_float() : -1;
  1831. if (newR < 0) {
  1832. const float newD = code_seen('D') ? code_value_float() : -1,
  1833. newW = code_seen('W') ? code_value_float() : -1,
  1834. newH = code_seen('H') ? code_value_float() : -1;
  1835. if (newD >= 0 && newW >= 0 && newH >= 0)
  1836. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1837. }
  1838. if (newR >= 0) advance_ed_ratio = newR;
  1839. SERIAL_ECHO_START;
  1840. SERIAL_ECHOPGM("Advance K=");
  1841. SERIAL_ECHOLN(extruder_advance_k);
  1842. SERIAL_ECHOPGM(" E/D=");
  1843. const float ratio = advance_ed_ratio;
  1844. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1845. }
  1846. #endif // LIN_ADVANCE
  1847. bool check_commands() {
  1848. bool end_command_found = false;
  1849. while (buflen)
  1850. {
  1851. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1852. if (!cmdbuffer_front_already_processed)
  1853. cmdqueue_pop_front();
  1854. cmdbuffer_front_already_processed = false;
  1855. }
  1856. return end_command_found;
  1857. }
  1858. #ifdef TMC2130
  1859. bool calibrate_z_auto()
  1860. {
  1861. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1862. lcd_clear();
  1863. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1864. bool endstops_enabled = enable_endstops(true);
  1865. int axis_up_dir = -home_dir(Z_AXIS);
  1866. tmc2130_home_enter(Z_AXIS_MASK);
  1867. current_position[Z_AXIS] = 0;
  1868. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1869. set_destination_to_current();
  1870. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1871. feedrate = homing_feedrate[Z_AXIS];
  1872. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1873. st_synchronize();
  1874. // current_position[axis] = 0;
  1875. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1876. tmc2130_home_exit();
  1877. enable_endstops(false);
  1878. current_position[Z_AXIS] = 0;
  1879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1880. set_destination_to_current();
  1881. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1882. feedrate = homing_feedrate[Z_AXIS] / 2;
  1883. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1884. st_synchronize();
  1885. enable_endstops(endstops_enabled);
  1886. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. return true;
  1889. }
  1890. #endif //TMC2130
  1891. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1892. {
  1893. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1894. #define HOMEAXIS_DO(LETTER) \
  1895. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1896. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1897. {
  1898. int axis_home_dir = home_dir(axis);
  1899. feedrate = homing_feedrate[axis];
  1900. #ifdef TMC2130
  1901. tmc2130_home_enter(X_AXIS_MASK << axis);
  1902. #endif //TMC2130
  1903. // Move right a bit, so that the print head does not touch the left end position,
  1904. // and the following left movement has a chance to achieve the required velocity
  1905. // for the stall guard to work.
  1906. current_position[axis] = 0;
  1907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1908. set_destination_to_current();
  1909. // destination[axis] = 11.f;
  1910. destination[axis] = 3.f;
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. // Move left away from the possible collision with the collision detection disabled.
  1914. endstops_hit_on_purpose();
  1915. enable_endstops(false);
  1916. current_position[axis] = 0;
  1917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1918. destination[axis] = - 1.;
  1919. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1920. st_synchronize();
  1921. // Now continue to move up to the left end stop with the collision detection enabled.
  1922. enable_endstops(true);
  1923. destination[axis] = - 1.1 * max_length(axis);
  1924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1925. st_synchronize();
  1926. for (uint8_t i = 0; i < cnt; i++)
  1927. {
  1928. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1929. endstops_hit_on_purpose();
  1930. enable_endstops(false);
  1931. current_position[axis] = 0;
  1932. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. destination[axis] = 10.f;
  1934. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1935. st_synchronize();
  1936. endstops_hit_on_purpose();
  1937. // Now move left up to the collision, this time with a repeatable velocity.
  1938. enable_endstops(true);
  1939. destination[axis] = - 11.f;
  1940. #ifdef TMC2130
  1941. feedrate = homing_feedrate[axis];
  1942. #else //TMC2130
  1943. feedrate = homing_feedrate[axis] / 2;
  1944. #endif //TMC2130
  1945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1946. st_synchronize();
  1947. #ifdef TMC2130
  1948. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1949. if (pstep) pstep[i] = mscnt >> 4;
  1950. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1951. #endif //TMC2130
  1952. }
  1953. endstops_hit_on_purpose();
  1954. enable_endstops(false);
  1955. #ifdef TMC2130
  1956. uint8_t orig = tmc2130_home_origin[axis];
  1957. uint8_t back = tmc2130_home_bsteps[axis];
  1958. if (tmc2130_home_enabled && (orig <= 63))
  1959. {
  1960. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1961. if (back > 0)
  1962. tmc2130_do_steps(axis, back, 1, 1000);
  1963. }
  1964. else
  1965. tmc2130_do_steps(axis, 8, 2, 1000);
  1966. tmc2130_home_exit();
  1967. #endif //TMC2130
  1968. axis_is_at_home(axis);
  1969. axis_known_position[axis] = true;
  1970. // Move from minimum
  1971. #ifdef TMC2130
  1972. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1973. #else //TMC2130
  1974. float dist = 0.01f * 64;
  1975. #endif //TMC2130
  1976. current_position[axis] -= dist;
  1977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1978. current_position[axis] += dist;
  1979. destination[axis] = current_position[axis];
  1980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1981. st_synchronize();
  1982. feedrate = 0.0;
  1983. }
  1984. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1985. {
  1986. #ifdef TMC2130
  1987. FORCE_HIGH_POWER_START;
  1988. #endif
  1989. int axis_home_dir = home_dir(axis);
  1990. current_position[axis] = 0;
  1991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1992. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1993. feedrate = homing_feedrate[axis];
  1994. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1995. st_synchronize();
  1996. #ifdef TMC2130
  1997. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1998. FORCE_HIGH_POWER_END;
  1999. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2000. return;
  2001. }
  2002. #endif //TMC2130
  2003. current_position[axis] = 0;
  2004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2005. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2007. st_synchronize();
  2008. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2009. feedrate = homing_feedrate[axis]/2 ;
  2010. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2011. st_synchronize();
  2012. #ifdef TMC2130
  2013. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2014. FORCE_HIGH_POWER_END;
  2015. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2016. return;
  2017. }
  2018. #endif //TMC2130
  2019. axis_is_at_home(axis);
  2020. destination[axis] = current_position[axis];
  2021. feedrate = 0.0;
  2022. endstops_hit_on_purpose();
  2023. axis_known_position[axis] = true;
  2024. #ifdef TMC2130
  2025. FORCE_HIGH_POWER_END;
  2026. #endif
  2027. }
  2028. enable_endstops(endstops_enabled);
  2029. }
  2030. /**/
  2031. void home_xy()
  2032. {
  2033. set_destination_to_current();
  2034. homeaxis(X_AXIS);
  2035. homeaxis(Y_AXIS);
  2036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2037. endstops_hit_on_purpose();
  2038. }
  2039. void refresh_cmd_timeout(void)
  2040. {
  2041. previous_millis_cmd = millis();
  2042. }
  2043. #ifdef FWRETRACT
  2044. void retract(bool retracting, bool swapretract = false) {
  2045. if(retracting && !retracted[active_extruder]) {
  2046. destination[X_AXIS]=current_position[X_AXIS];
  2047. destination[Y_AXIS]=current_position[Y_AXIS];
  2048. destination[Z_AXIS]=current_position[Z_AXIS];
  2049. destination[E_AXIS]=current_position[E_AXIS];
  2050. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2051. plan_set_e_position(current_position[E_AXIS]);
  2052. float oldFeedrate = feedrate;
  2053. feedrate=retract_feedrate*60;
  2054. retracted[active_extruder]=true;
  2055. prepare_move();
  2056. current_position[Z_AXIS]-=retract_zlift;
  2057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2058. prepare_move();
  2059. feedrate = oldFeedrate;
  2060. } else if(!retracting && retracted[active_extruder]) {
  2061. destination[X_AXIS]=current_position[X_AXIS];
  2062. destination[Y_AXIS]=current_position[Y_AXIS];
  2063. destination[Z_AXIS]=current_position[Z_AXIS];
  2064. destination[E_AXIS]=current_position[E_AXIS];
  2065. current_position[Z_AXIS]+=retract_zlift;
  2066. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2067. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2068. plan_set_e_position(current_position[E_AXIS]);
  2069. float oldFeedrate = feedrate;
  2070. feedrate=retract_recover_feedrate*60;
  2071. retracted[active_extruder]=false;
  2072. prepare_move();
  2073. feedrate = oldFeedrate;
  2074. }
  2075. } //retract
  2076. #endif //FWRETRACT
  2077. void trace() {
  2078. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2079. tone(BEEPER, 440);
  2080. delay(25);
  2081. noTone(BEEPER);
  2082. delay(20);
  2083. }
  2084. /*
  2085. void ramming() {
  2086. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2087. if (current_temperature[0] < 230) {
  2088. //PLA
  2089. max_feedrate[E_AXIS] = 50;
  2090. //current_position[E_AXIS] -= 8;
  2091. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2092. //current_position[E_AXIS] += 8;
  2093. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2094. current_position[E_AXIS] += 5.4;
  2095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2096. current_position[E_AXIS] += 3.2;
  2097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2098. current_position[E_AXIS] += 3;
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2100. st_synchronize();
  2101. max_feedrate[E_AXIS] = 80;
  2102. current_position[E_AXIS] -= 82;
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2104. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2105. current_position[E_AXIS] -= 20;
  2106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2107. current_position[E_AXIS] += 5;
  2108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2109. current_position[E_AXIS] += 5;
  2110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2111. current_position[E_AXIS] -= 10;
  2112. st_synchronize();
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2114. current_position[E_AXIS] += 10;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2116. current_position[E_AXIS] -= 10;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2118. current_position[E_AXIS] += 10;
  2119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2120. current_position[E_AXIS] -= 10;
  2121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2122. st_synchronize();
  2123. }
  2124. else {
  2125. //ABS
  2126. max_feedrate[E_AXIS] = 50;
  2127. //current_position[E_AXIS] -= 8;
  2128. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2129. //current_position[E_AXIS] += 8;
  2130. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2131. current_position[E_AXIS] += 3.1;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2133. current_position[E_AXIS] += 3.1;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2135. current_position[E_AXIS] += 4;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2137. st_synchronize();
  2138. //current_position[X_AXIS] += 23; //delay
  2139. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2140. //current_position[X_AXIS] -= 23; //delay
  2141. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2142. delay(4700);
  2143. max_feedrate[E_AXIS] = 80;
  2144. current_position[E_AXIS] -= 92;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2146. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2147. current_position[E_AXIS] -= 5;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2149. current_position[E_AXIS] += 5;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2151. current_position[E_AXIS] -= 5;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2153. st_synchronize();
  2154. current_position[E_AXIS] += 5;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2156. current_position[E_AXIS] -= 5;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2158. current_position[E_AXIS] += 5;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2160. current_position[E_AXIS] -= 5;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2162. st_synchronize();
  2163. }
  2164. }
  2165. */
  2166. #ifdef TMC2130
  2167. void force_high_power_mode(bool start_high_power_section) {
  2168. uint8_t silent;
  2169. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2170. if (silent == 1) {
  2171. //we are in silent mode, set to normal mode to enable crash detection
  2172. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2173. st_synchronize();
  2174. cli();
  2175. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2176. update_mode_profile();
  2177. tmc2130_init();
  2178. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2179. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2180. st_reset_timer();
  2181. sei();
  2182. }
  2183. }
  2184. #endif //TMC2130
  2185. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2186. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2187. }
  2188. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2189. st_synchronize();
  2190. #if 0
  2191. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2192. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2193. #endif
  2194. // Flag for the display update routine and to disable the print cancelation during homing.
  2195. homing_flag = true;
  2196. // Which axes should be homed?
  2197. bool home_x = home_x_axis;
  2198. bool home_y = home_y_axis;
  2199. bool home_z = home_z_axis;
  2200. // Either all X,Y,Z codes are present, or none of them.
  2201. bool home_all_axes = home_x == home_y && home_x == home_z;
  2202. if (home_all_axes)
  2203. // No X/Y/Z code provided means to home all axes.
  2204. home_x = home_y = home_z = true;
  2205. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2206. if (home_all_axes) {
  2207. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2208. feedrate = homing_feedrate[Z_AXIS];
  2209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2210. st_synchronize();
  2211. }
  2212. #ifdef ENABLE_AUTO_BED_LEVELING
  2213. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2214. #endif //ENABLE_AUTO_BED_LEVELING
  2215. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2216. // the planner will not perform any adjustments in the XY plane.
  2217. // Wait for the motors to stop and update the current position with the absolute values.
  2218. world2machine_revert_to_uncorrected();
  2219. // For mesh bed leveling deactivate the matrix temporarily.
  2220. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2221. // in a single axis only.
  2222. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2223. #ifdef MESH_BED_LEVELING
  2224. uint8_t mbl_was_active = mbl.active;
  2225. mbl.active = 0;
  2226. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2227. #endif
  2228. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2229. // consumed during the first movements following this statement.
  2230. if (home_z)
  2231. babystep_undo();
  2232. saved_feedrate = feedrate;
  2233. saved_feedmultiply = feedmultiply;
  2234. feedmultiply = 100;
  2235. previous_millis_cmd = millis();
  2236. enable_endstops(true);
  2237. memcpy(destination, current_position, sizeof(destination));
  2238. feedrate = 0.0;
  2239. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2240. if(home_z)
  2241. homeaxis(Z_AXIS);
  2242. #endif
  2243. #ifdef QUICK_HOME
  2244. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2245. if(home_x && home_y) //first diagonal move
  2246. {
  2247. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2248. int x_axis_home_dir = home_dir(X_AXIS);
  2249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2250. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2251. feedrate = homing_feedrate[X_AXIS];
  2252. if(homing_feedrate[Y_AXIS]<feedrate)
  2253. feedrate = homing_feedrate[Y_AXIS];
  2254. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2255. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2256. } else {
  2257. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2258. }
  2259. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2260. st_synchronize();
  2261. axis_is_at_home(X_AXIS);
  2262. axis_is_at_home(Y_AXIS);
  2263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2264. destination[X_AXIS] = current_position[X_AXIS];
  2265. destination[Y_AXIS] = current_position[Y_AXIS];
  2266. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2267. feedrate = 0.0;
  2268. st_synchronize();
  2269. endstops_hit_on_purpose();
  2270. current_position[X_AXIS] = destination[X_AXIS];
  2271. current_position[Y_AXIS] = destination[Y_AXIS];
  2272. current_position[Z_AXIS] = destination[Z_AXIS];
  2273. }
  2274. #endif /* QUICK_HOME */
  2275. #ifdef TMC2130
  2276. if(home_x)
  2277. {
  2278. if (!calib)
  2279. homeaxis(X_AXIS);
  2280. else
  2281. tmc2130_home_calibrate(X_AXIS);
  2282. }
  2283. if(home_y)
  2284. {
  2285. if (!calib)
  2286. homeaxis(Y_AXIS);
  2287. else
  2288. tmc2130_home_calibrate(Y_AXIS);
  2289. }
  2290. #endif //TMC2130
  2291. if(home_x_axis && home_x_value != 0)
  2292. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2293. if(home_y_axis && home_y_value != 0)
  2294. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2295. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2296. #ifndef Z_SAFE_HOMING
  2297. if(home_z) {
  2298. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2299. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2300. feedrate = max_feedrate[Z_AXIS];
  2301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2302. st_synchronize();
  2303. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2304. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2305. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2306. {
  2307. homeaxis(X_AXIS);
  2308. homeaxis(Y_AXIS);
  2309. }
  2310. // 1st mesh bed leveling measurement point, corrected.
  2311. world2machine_initialize();
  2312. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2313. world2machine_reset();
  2314. if (destination[Y_AXIS] < Y_MIN_POS)
  2315. destination[Y_AXIS] = Y_MIN_POS;
  2316. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2317. feedrate = homing_feedrate[Z_AXIS]/10;
  2318. current_position[Z_AXIS] = 0;
  2319. enable_endstops(false);
  2320. #ifdef DEBUG_BUILD
  2321. SERIAL_ECHOLNPGM("plan_set_position()");
  2322. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2323. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2324. #endif
  2325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2326. #ifdef DEBUG_BUILD
  2327. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2328. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2329. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2330. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2331. #endif
  2332. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2333. st_synchronize();
  2334. current_position[X_AXIS] = destination[X_AXIS];
  2335. current_position[Y_AXIS] = destination[Y_AXIS];
  2336. enable_endstops(true);
  2337. endstops_hit_on_purpose();
  2338. homeaxis(Z_AXIS);
  2339. #else // MESH_BED_LEVELING
  2340. homeaxis(Z_AXIS);
  2341. #endif // MESH_BED_LEVELING
  2342. }
  2343. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2344. if(home_all_axes) {
  2345. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2346. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2347. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2348. feedrate = XY_TRAVEL_SPEED/60;
  2349. current_position[Z_AXIS] = 0;
  2350. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2351. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2352. st_synchronize();
  2353. current_position[X_AXIS] = destination[X_AXIS];
  2354. current_position[Y_AXIS] = destination[Y_AXIS];
  2355. homeaxis(Z_AXIS);
  2356. }
  2357. // Let's see if X and Y are homed and probe is inside bed area.
  2358. if(home_z) {
  2359. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2360. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2361. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2362. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2363. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2364. current_position[Z_AXIS] = 0;
  2365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2366. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2367. feedrate = max_feedrate[Z_AXIS];
  2368. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2369. st_synchronize();
  2370. homeaxis(Z_AXIS);
  2371. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2372. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2373. SERIAL_ECHO_START;
  2374. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2375. } else {
  2376. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2377. SERIAL_ECHO_START;
  2378. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2379. }
  2380. }
  2381. #endif // Z_SAFE_HOMING
  2382. #endif // Z_HOME_DIR < 0
  2383. if(home_z_axis && home_z_value != 0)
  2384. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2385. #ifdef ENABLE_AUTO_BED_LEVELING
  2386. if(home_z)
  2387. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2388. #endif
  2389. // Set the planner and stepper routine positions.
  2390. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2391. // contains the machine coordinates.
  2392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2393. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2394. enable_endstops(false);
  2395. #endif
  2396. feedrate = saved_feedrate;
  2397. feedmultiply = saved_feedmultiply;
  2398. previous_millis_cmd = millis();
  2399. endstops_hit_on_purpose();
  2400. #ifndef MESH_BED_LEVELING
  2401. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2402. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2403. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2404. lcd_adjust_z();
  2405. #endif
  2406. // Load the machine correction matrix
  2407. world2machine_initialize();
  2408. // and correct the current_position XY axes to match the transformed coordinate system.
  2409. world2machine_update_current();
  2410. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2411. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2412. {
  2413. if (! home_z && mbl_was_active) {
  2414. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2415. mbl.active = true;
  2416. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2417. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2418. }
  2419. }
  2420. else
  2421. {
  2422. st_synchronize();
  2423. homing_flag = false;
  2424. }
  2425. #endif
  2426. if (farm_mode) { prusa_statistics(20); };
  2427. homing_flag = false;
  2428. #if 0
  2429. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2430. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2431. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2432. #endif
  2433. }
  2434. void adjust_bed_reset()
  2435. {
  2436. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2437. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2438. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2439. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2440. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2441. }
  2442. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2443. {
  2444. bool final_result = false;
  2445. #ifdef TMC2130
  2446. FORCE_HIGH_POWER_START;
  2447. #endif // TMC2130
  2448. // Only Z calibration?
  2449. if (!onlyZ)
  2450. {
  2451. setTargetBed(0);
  2452. setAllTargetHotends(0);
  2453. adjust_bed_reset(); //reset bed level correction
  2454. }
  2455. // Disable the default update procedure of the display. We will do a modal dialog.
  2456. lcd_update_enable(false);
  2457. // Let the planner use the uncorrected coordinates.
  2458. mbl.reset();
  2459. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2460. // the planner will not perform any adjustments in the XY plane.
  2461. // Wait for the motors to stop and update the current position with the absolute values.
  2462. world2machine_revert_to_uncorrected();
  2463. // Reset the baby step value applied without moving the axes.
  2464. babystep_reset();
  2465. // Mark all axes as in a need for homing.
  2466. memset(axis_known_position, 0, sizeof(axis_known_position));
  2467. // Home in the XY plane.
  2468. //set_destination_to_current();
  2469. setup_for_endstop_move();
  2470. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2471. home_xy();
  2472. enable_endstops(false);
  2473. current_position[X_AXIS] += 5;
  2474. current_position[Y_AXIS] += 5;
  2475. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2476. st_synchronize();
  2477. // Let the user move the Z axes up to the end stoppers.
  2478. #ifdef TMC2130
  2479. if (calibrate_z_auto())
  2480. {
  2481. #else //TMC2130
  2482. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2483. {
  2484. #endif //TMC2130
  2485. refresh_cmd_timeout();
  2486. #ifndef STEEL_SHEET
  2487. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2488. {
  2489. lcd_wait_for_cool_down();
  2490. }
  2491. #endif //STEEL_SHEET
  2492. if(!onlyZ)
  2493. {
  2494. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2495. #ifdef STEEL_SHEET
  2496. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2497. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2498. #endif //STEEL_SHEET
  2499. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2500. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2501. KEEPALIVE_STATE(IN_HANDLER);
  2502. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2503. lcd_set_cursor(0, 2);
  2504. lcd_print(1);
  2505. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2506. }
  2507. // Move the print head close to the bed.
  2508. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2509. bool endstops_enabled = enable_endstops(true);
  2510. #ifdef TMC2130
  2511. tmc2130_home_enter(Z_AXIS_MASK);
  2512. #endif //TMC2130
  2513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2514. st_synchronize();
  2515. #ifdef TMC2130
  2516. tmc2130_home_exit();
  2517. #endif //TMC2130
  2518. enable_endstops(endstops_enabled);
  2519. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2520. {
  2521. int8_t verbosity_level = 0;
  2522. if (code_seen('V'))
  2523. {
  2524. // Just 'V' without a number counts as V1.
  2525. char c = strchr_pointer[1];
  2526. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2527. }
  2528. if (onlyZ)
  2529. {
  2530. clean_up_after_endstop_move();
  2531. // Z only calibration.
  2532. // Load the machine correction matrix
  2533. world2machine_initialize();
  2534. // and correct the current_position to match the transformed coordinate system.
  2535. world2machine_update_current();
  2536. //FIXME
  2537. bool result = sample_mesh_and_store_reference();
  2538. if (result)
  2539. {
  2540. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2541. // Shipped, the nozzle height has been set already. The user can start printing now.
  2542. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2543. final_result = true;
  2544. // babystep_apply();
  2545. }
  2546. }
  2547. else
  2548. {
  2549. // Reset the baby step value and the baby step applied flag.
  2550. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2551. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2552. // Complete XYZ calibration.
  2553. uint8_t point_too_far_mask = 0;
  2554. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2555. clean_up_after_endstop_move();
  2556. // Print head up.
  2557. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2559. st_synchronize();
  2560. //#ifndef NEW_XYZCAL
  2561. if (result >= 0)
  2562. {
  2563. #ifdef HEATBED_V2
  2564. sample_z();
  2565. #else //HEATBED_V2
  2566. point_too_far_mask = 0;
  2567. // Second half: The fine adjustment.
  2568. // Let the planner use the uncorrected coordinates.
  2569. mbl.reset();
  2570. world2machine_reset();
  2571. // Home in the XY plane.
  2572. setup_for_endstop_move();
  2573. home_xy();
  2574. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2575. clean_up_after_endstop_move();
  2576. // Print head up.
  2577. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2579. st_synchronize();
  2580. // if (result >= 0) babystep_apply();
  2581. #endif //HEATBED_V2
  2582. }
  2583. //#endif //NEW_XYZCAL
  2584. lcd_update_enable(true);
  2585. lcd_update(2);
  2586. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2587. if (result >= 0)
  2588. {
  2589. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2590. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2591. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2592. final_result = true;
  2593. }
  2594. }
  2595. #ifdef TMC2130
  2596. tmc2130_home_exit();
  2597. #endif
  2598. }
  2599. else
  2600. {
  2601. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2602. final_result = false;
  2603. }
  2604. }
  2605. else
  2606. {
  2607. // Timeouted.
  2608. }
  2609. lcd_update_enable(true);
  2610. #ifdef TMC2130
  2611. FORCE_HIGH_POWER_END;
  2612. #endif // TMC2130
  2613. return final_result;
  2614. }
  2615. void gcode_M114()
  2616. {
  2617. SERIAL_PROTOCOLPGM("X:");
  2618. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2619. SERIAL_PROTOCOLPGM(" Y:");
  2620. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2621. SERIAL_PROTOCOLPGM(" Z:");
  2622. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2623. SERIAL_PROTOCOLPGM(" E:");
  2624. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2625. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2626. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2627. SERIAL_PROTOCOLPGM(" Y:");
  2628. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2629. SERIAL_PROTOCOLPGM(" Z:");
  2630. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" E:");
  2632. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2633. SERIAL_PROTOCOLLN("");
  2634. }
  2635. void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float e_shift_late) {
  2636. st_synchronize();
  2637. float lastpos[4];
  2638. if (farm_mode)
  2639. {
  2640. prusa_statistics(22);
  2641. }
  2642. //First backup current position and settings
  2643. feedmultiplyBckp=feedmultiply;
  2644. HotendTempBckp = degTargetHotend(active_extruder);
  2645. fanSpeedBckp = fanSpeed;
  2646. lastpos[X_AXIS]=current_position[X_AXIS];
  2647. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2648. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2649. lastpos[E_AXIS]=current_position[E_AXIS];
  2650. //Retract E
  2651. current_position[E_AXIS]+= e_shift;
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2653. st_synchronize();
  2654. //Lift Z
  2655. current_position[Z_AXIS]+= z_shift;
  2656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2657. st_synchronize();
  2658. //Move XY to side
  2659. current_position[X_AXIS]= x_position;
  2660. current_position[Y_AXIS]= y_position;
  2661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2662. st_synchronize();
  2663. //Beep, manage nozzle heater and wait for user to start unload filament
  2664. if(!mmu_enabled) M600_wait_for_user();
  2665. lcd_change_fil_state = 0;
  2666. // Unload filament
  2667. if (mmu_enabled)
  2668. extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2669. else
  2670. unload_filament(); //unload filament for single material (used also in M702)
  2671. //finish moves
  2672. st_synchronize();
  2673. if (!mmu_enabled)
  2674. {
  2675. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2676. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2677. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2678. lcd_update_enable(true);
  2679. }
  2680. if (mmu_enabled)
  2681. {
  2682. if (!automatic) {
  2683. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2684. mmu_M600_wait_and_beep();
  2685. if (saved_printing) {
  2686. lcd_clear();
  2687. lcd_set_cursor(0, 2);
  2688. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2689. mmu_command(MMU_CMD_R0);
  2690. manage_response(false, false);
  2691. }
  2692. }
  2693. mmu_M600_load_filament(automatic);
  2694. }
  2695. else
  2696. M600_load_filament();
  2697. if(!automatic) M600_check_state();
  2698. lcd_update_enable(true);
  2699. //Not let's go back to print
  2700. fanSpeed = fanSpeedBckp;
  2701. //Feed a little of filament to stabilize pressure
  2702. if (!automatic) {
  2703. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2705. }
  2706. //Move XY back
  2707. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2708. st_synchronize();
  2709. //Move Z back
  2710. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2711. st_synchronize();
  2712. //Set E position to original
  2713. plan_set_e_position(lastpos[E_AXIS]);
  2714. memcpy(current_position, lastpos, sizeof(lastpos));
  2715. memcpy(destination, current_position, sizeof(current_position));
  2716. //Recover feed rate
  2717. feedmultiply=feedmultiplyBckp;
  2718. char cmd[9];
  2719. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2720. enquecommand(cmd);
  2721. lcd_setstatuspgm(_T(WELCOME_MSG));
  2722. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2723. }
  2724. void gcode_M701()
  2725. {
  2726. printf_P(PSTR("gcode_M701 begin\n"));
  2727. if (mmu_enabled)
  2728. {
  2729. extr_adj(tmp_extruder);//loads current extruder
  2730. mmu_extruder = tmp_extruder;
  2731. }
  2732. else
  2733. {
  2734. enable_z();
  2735. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2736. #ifdef FSENSOR_QUALITY
  2737. fsensor_oq_meassure_start(40);
  2738. #endif //FSENSOR_QUALITY
  2739. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2740. current_position[E_AXIS] += 40;
  2741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2742. st_synchronize();
  2743. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2744. current_position[E_AXIS] += 30;
  2745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2746. st_synchronize();
  2747. current_position[E_AXIS] += 25;
  2748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2749. st_synchronize();
  2750. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2751. delay_keep_alive(50);
  2752. noTone(BEEPER);
  2753. if (!farm_mode && loading_flag) {
  2754. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2755. while (!clean) {
  2756. lcd_update_enable(true);
  2757. lcd_update(2);
  2758. current_position[E_AXIS] += 25;
  2759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2760. st_synchronize();
  2761. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2762. }
  2763. }
  2764. lcd_update_enable(true);
  2765. lcd_update(2);
  2766. lcd_setstatuspgm(_T(WELCOME_MSG));
  2767. disable_z();
  2768. loading_flag = false;
  2769. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2770. #ifdef FSENSOR_QUALITY
  2771. fsensor_oq_meassure_stop();
  2772. if (!fsensor_oq_result())
  2773. {
  2774. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2775. lcd_update_enable(true);
  2776. lcd_update(2);
  2777. if (disable)
  2778. fsensor_disable();
  2779. }
  2780. #endif //FSENSOR_QUALITY
  2781. }
  2782. }
  2783. /**
  2784. * @brief Get serial number from 32U2 processor
  2785. *
  2786. * Typical format of S/N is:CZPX0917X003XC13518
  2787. *
  2788. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2789. *
  2790. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2791. * reply is transmitted to serial port 1 character by character.
  2792. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2793. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2794. * in any case.
  2795. */
  2796. static void gcode_PRUSA_SN()
  2797. {
  2798. if (farm_mode) {
  2799. selectedSerialPort = 0;
  2800. putchar(';');
  2801. putchar('S');
  2802. int numbersRead = 0;
  2803. ShortTimer timeout;
  2804. timeout.start();
  2805. while (numbersRead < 19) {
  2806. while (MSerial.available() > 0) {
  2807. uint8_t serial_char = MSerial.read();
  2808. selectedSerialPort = 1;
  2809. putchar(serial_char);
  2810. numbersRead++;
  2811. selectedSerialPort = 0;
  2812. }
  2813. if (timeout.expired(100u)) break;
  2814. }
  2815. selectedSerialPort = 1;
  2816. putchar('\n');
  2817. #if 0
  2818. for (int b = 0; b < 3; b++) {
  2819. tone(BEEPER, 110);
  2820. delay(50);
  2821. noTone(BEEPER);
  2822. delay(50);
  2823. }
  2824. #endif
  2825. } else {
  2826. puts_P(_N("Not in farm mode."));
  2827. }
  2828. }
  2829. #ifdef BACKLASH_X
  2830. extern uint8_t st_backlash_x;
  2831. #endif //BACKLASH_X
  2832. #ifdef BACKLASH_Y
  2833. extern uint8_t st_backlash_y;
  2834. #endif //BACKLASH_Y
  2835. void process_commands()
  2836. {
  2837. if (!buflen) return; //empty command
  2838. #ifdef FILAMENT_RUNOUT_SUPPORT
  2839. SET_INPUT(FR_SENS);
  2840. #endif
  2841. #ifdef CMDBUFFER_DEBUG
  2842. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2843. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2844. SERIAL_ECHOLNPGM("");
  2845. SERIAL_ECHOPGM("In cmdqueue: ");
  2846. SERIAL_ECHO(buflen);
  2847. SERIAL_ECHOLNPGM("");
  2848. #endif /* CMDBUFFER_DEBUG */
  2849. unsigned long codenum; //throw away variable
  2850. char *starpos = NULL;
  2851. #ifdef ENABLE_AUTO_BED_LEVELING
  2852. float x_tmp, y_tmp, z_tmp, real_z;
  2853. #endif
  2854. // PRUSA GCODES
  2855. KEEPALIVE_STATE(IN_HANDLER);
  2856. #ifdef SNMM
  2857. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2858. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2859. int8_t SilentMode;
  2860. #endif
  2861. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2862. starpos = (strchr(strchr_pointer + 5, '*'));
  2863. if (starpos != NULL)
  2864. *(starpos) = '\0';
  2865. lcd_setstatus(strchr_pointer + 5);
  2866. }
  2867. #ifdef TMC2130
  2868. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2869. {
  2870. if(code_seen("CRASH_DETECTED"))
  2871. {
  2872. uint8_t mask = 0;
  2873. if (code_seen('X')) mask |= X_AXIS_MASK;
  2874. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2875. crashdet_detected(mask);
  2876. }
  2877. else if(code_seen("CRASH_RECOVER"))
  2878. crashdet_recover();
  2879. else if(code_seen("CRASH_CANCEL"))
  2880. crashdet_cancel();
  2881. }
  2882. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2883. {
  2884. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2885. {
  2886. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2887. axis = (axis == 'E')?3:(axis - 'X');
  2888. if (axis < 4)
  2889. {
  2890. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2891. tmc2130_set_wave(axis, 247, fac);
  2892. }
  2893. }
  2894. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2895. {
  2896. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2897. axis = (axis == 'E')?3:(axis - 'X');
  2898. if (axis < 4)
  2899. {
  2900. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2901. uint16_t res = tmc2130_get_res(axis);
  2902. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2903. }
  2904. }
  2905. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2906. {
  2907. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2908. axis = (axis == 'E')?3:(axis - 'X');
  2909. if (axis < 4)
  2910. {
  2911. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2912. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2913. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2914. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2915. char* str_end = 0;
  2916. if (CMDBUFFER_CURRENT_STRING[14])
  2917. {
  2918. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2919. if (str_end && *str_end)
  2920. {
  2921. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2922. if (str_end && *str_end)
  2923. {
  2924. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2925. if (str_end && *str_end)
  2926. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2927. }
  2928. }
  2929. }
  2930. tmc2130_chopper_config[axis].toff = chop0;
  2931. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2932. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2933. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2934. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2935. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2936. }
  2937. }
  2938. }
  2939. #ifdef BACKLASH_X
  2940. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2941. {
  2942. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2943. st_backlash_x = bl;
  2944. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2945. }
  2946. #endif //BACKLASH_X
  2947. #ifdef BACKLASH_Y
  2948. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2949. {
  2950. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2951. st_backlash_y = bl;
  2952. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2953. }
  2954. #endif //BACKLASH_Y
  2955. #endif //TMC2130
  2956. else if (code_seen("FSENSOR_RECOVER")) {
  2957. fsensor_restore_print_and_continue();
  2958. }
  2959. else if(code_seen("PRUSA")){
  2960. if (code_seen("Ping")) { //PRUSA Ping
  2961. if (farm_mode) {
  2962. PingTime = millis();
  2963. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2964. }
  2965. }
  2966. else if (code_seen("PRN")) {
  2967. printf_P(_N("%d"), status_number);
  2968. }else if (code_seen("FAN")) {
  2969. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2970. }else if (code_seen("fn")) {
  2971. if (farm_mode) {
  2972. printf_P(_N("%d"), farm_no);
  2973. }
  2974. else {
  2975. puts_P(_N("Not in farm mode."));
  2976. }
  2977. }
  2978. else if (code_seen("thx"))
  2979. {
  2980. no_response = false;
  2981. }
  2982. else if (code_seen("uvlo"))
  2983. {
  2984. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2985. enquecommand_P(PSTR("M24"));
  2986. }
  2987. else if (code_seen("MMURES"))
  2988. {
  2989. mmu_reset();
  2990. }
  2991. else if (code_seen("RESET")) {
  2992. // careful!
  2993. if (farm_mode) {
  2994. #ifdef WATCHDOG
  2995. boot_app_magic = BOOT_APP_MAGIC;
  2996. boot_app_flags = BOOT_APP_FLG_RUN;
  2997. wdt_enable(WDTO_15MS);
  2998. cli();
  2999. while(1);
  3000. #else //WATCHDOG
  3001. asm volatile("jmp 0x3E000");
  3002. #endif //WATCHDOG
  3003. }
  3004. else {
  3005. MYSERIAL.println("Not in farm mode.");
  3006. }
  3007. }else if (code_seen("fv")) {
  3008. // get file version
  3009. #ifdef SDSUPPORT
  3010. card.openFile(strchr_pointer + 3,true);
  3011. while (true) {
  3012. uint16_t readByte = card.get();
  3013. MYSERIAL.write(readByte);
  3014. if (readByte=='\n') {
  3015. break;
  3016. }
  3017. }
  3018. card.closefile();
  3019. #endif // SDSUPPORT
  3020. } else if (code_seen("M28")) {
  3021. trace();
  3022. prusa_sd_card_upload = true;
  3023. card.openFile(strchr_pointer+4,false);
  3024. } else if (code_seen("SN")) {
  3025. gcode_PRUSA_SN();
  3026. } else if(code_seen("Fir")){
  3027. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3028. } else if(code_seen("Rev")){
  3029. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3030. } else if(code_seen("Lang")) {
  3031. lang_reset();
  3032. } else if(code_seen("Lz")) {
  3033. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3034. } else if(code_seen("Beat")) {
  3035. // Kick farm link timer
  3036. kicktime = millis();
  3037. } else if(code_seen("FR")) {
  3038. // Factory full reset
  3039. factory_reset(0,true);
  3040. }
  3041. //else if (code_seen('Cal')) {
  3042. // lcd_calibration();
  3043. // }
  3044. }
  3045. else if (code_seen('^')) {
  3046. // nothing, this is a version line
  3047. } else if(code_seen('G'))
  3048. {
  3049. gcode_in_progress = (int)code_value();
  3050. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3051. switch (gcode_in_progress)
  3052. {
  3053. case 0: // G0 -> G1
  3054. case 1: // G1
  3055. if(Stopped == false) {
  3056. #ifdef FILAMENT_RUNOUT_SUPPORT
  3057. if(READ(FR_SENS)){
  3058. feedmultiplyBckp=feedmultiply;
  3059. float target[4];
  3060. float lastpos[4];
  3061. target[X_AXIS]=current_position[X_AXIS];
  3062. target[Y_AXIS]=current_position[Y_AXIS];
  3063. target[Z_AXIS]=current_position[Z_AXIS];
  3064. target[E_AXIS]=current_position[E_AXIS];
  3065. lastpos[X_AXIS]=current_position[X_AXIS];
  3066. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3067. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3068. lastpos[E_AXIS]=current_position[E_AXIS];
  3069. //retract by E
  3070. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3071. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3072. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3074. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3075. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3077. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3078. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3079. //finish moves
  3080. st_synchronize();
  3081. //disable extruder steppers so filament can be removed
  3082. disable_e0();
  3083. disable_e1();
  3084. disable_e2();
  3085. delay(100);
  3086. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3087. uint8_t cnt=0;
  3088. int counterBeep = 0;
  3089. lcd_wait_interact();
  3090. while(!lcd_clicked()){
  3091. cnt++;
  3092. manage_heater();
  3093. manage_inactivity(true);
  3094. //lcd_update(0);
  3095. if(cnt==0)
  3096. {
  3097. #if BEEPER > 0
  3098. if (counterBeep== 500){
  3099. counterBeep = 0;
  3100. }
  3101. SET_OUTPUT(BEEPER);
  3102. if (counterBeep== 0){
  3103. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3104. WRITE(BEEPER,HIGH);
  3105. }
  3106. if (counterBeep== 20){
  3107. WRITE(BEEPER,LOW);
  3108. }
  3109. counterBeep++;
  3110. #else
  3111. #endif
  3112. }
  3113. }
  3114. WRITE(BEEPER,LOW);
  3115. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3117. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3119. lcd_change_fil_state = 0;
  3120. lcd_loading_filament();
  3121. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3122. lcd_change_fil_state = 0;
  3123. lcd_alright();
  3124. switch(lcd_change_fil_state){
  3125. case 2:
  3126. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3128. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3130. lcd_loading_filament();
  3131. break;
  3132. case 3:
  3133. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3135. lcd_loading_color();
  3136. break;
  3137. default:
  3138. lcd_change_success();
  3139. break;
  3140. }
  3141. }
  3142. target[E_AXIS]+= 5;
  3143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3144. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3145. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3146. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3147. //plan_set_e_position(current_position[E_AXIS]);
  3148. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3149. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3150. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3151. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3152. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3153. plan_set_e_position(lastpos[E_AXIS]);
  3154. feedmultiply=feedmultiplyBckp;
  3155. char cmd[9];
  3156. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3157. enquecommand(cmd);
  3158. }
  3159. #endif
  3160. get_coordinates(); // For X Y Z E F
  3161. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3162. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3163. }
  3164. #ifdef FWRETRACT
  3165. if(autoretract_enabled)
  3166. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3167. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3168. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3169. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3170. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3171. retract(!retracted[active_extruder]);
  3172. return;
  3173. }
  3174. }
  3175. #endif //FWRETRACT
  3176. prepare_move();
  3177. //ClearToSend();
  3178. }
  3179. break;
  3180. case 2: // G2 - CW ARC
  3181. if(Stopped == false) {
  3182. get_arc_coordinates();
  3183. prepare_arc_move(true);
  3184. }
  3185. break;
  3186. case 3: // G3 - CCW ARC
  3187. if(Stopped == false) {
  3188. get_arc_coordinates();
  3189. prepare_arc_move(false);
  3190. }
  3191. break;
  3192. case 4: // G4 dwell
  3193. codenum = 0;
  3194. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3195. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3196. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3197. st_synchronize();
  3198. codenum += millis(); // keep track of when we started waiting
  3199. previous_millis_cmd = millis();
  3200. while(millis() < codenum) {
  3201. manage_heater();
  3202. manage_inactivity();
  3203. lcd_update(0);
  3204. }
  3205. break;
  3206. #ifdef FWRETRACT
  3207. case 10: // G10 retract
  3208. #if EXTRUDERS > 1
  3209. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3210. retract(true,retracted_swap[active_extruder]);
  3211. #else
  3212. retract(true);
  3213. #endif
  3214. break;
  3215. case 11: // G11 retract_recover
  3216. #if EXTRUDERS > 1
  3217. retract(false,retracted_swap[active_extruder]);
  3218. #else
  3219. retract(false);
  3220. #endif
  3221. break;
  3222. #endif //FWRETRACT
  3223. case 28: //G28 Home all Axis one at a time
  3224. {
  3225. long home_x_value = 0;
  3226. long home_y_value = 0;
  3227. long home_z_value = 0;
  3228. // Which axes should be homed?
  3229. bool home_x = code_seen(axis_codes[X_AXIS]);
  3230. home_x_value = code_value_long();
  3231. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3232. home_y_value = code_value_long();
  3233. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3234. home_z_value = code_value_long();
  3235. bool without_mbl = code_seen('W');
  3236. // calibrate?
  3237. bool calib = code_seen('C');
  3238. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3239. if ((home_x || home_y || without_mbl || home_z) == false) {
  3240. // Push the commands to the front of the message queue in the reverse order!
  3241. // There shall be always enough space reserved for these commands.
  3242. goto case_G80;
  3243. }
  3244. break;
  3245. }
  3246. #ifdef ENABLE_AUTO_BED_LEVELING
  3247. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3248. {
  3249. #if Z_MIN_PIN == -1
  3250. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3251. #endif
  3252. // Prevent user from running a G29 without first homing in X and Y
  3253. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3254. {
  3255. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3256. SERIAL_ECHO_START;
  3257. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3258. break; // abort G29, since we don't know where we are
  3259. }
  3260. st_synchronize();
  3261. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3262. //vector_3 corrected_position = plan_get_position_mm();
  3263. //corrected_position.debug("position before G29");
  3264. plan_bed_level_matrix.set_to_identity();
  3265. vector_3 uncorrected_position = plan_get_position();
  3266. //uncorrected_position.debug("position durring G29");
  3267. current_position[X_AXIS] = uncorrected_position.x;
  3268. current_position[Y_AXIS] = uncorrected_position.y;
  3269. current_position[Z_AXIS] = uncorrected_position.z;
  3270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3271. setup_for_endstop_move();
  3272. feedrate = homing_feedrate[Z_AXIS];
  3273. #ifdef AUTO_BED_LEVELING_GRID
  3274. // probe at the points of a lattice grid
  3275. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3276. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3277. // solve the plane equation ax + by + d = z
  3278. // A is the matrix with rows [x y 1] for all the probed points
  3279. // B is the vector of the Z positions
  3280. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3281. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3282. // "A" matrix of the linear system of equations
  3283. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3284. // "B" vector of Z points
  3285. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3286. int probePointCounter = 0;
  3287. bool zig = true;
  3288. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3289. {
  3290. int xProbe, xInc;
  3291. if (zig)
  3292. {
  3293. xProbe = LEFT_PROBE_BED_POSITION;
  3294. //xEnd = RIGHT_PROBE_BED_POSITION;
  3295. xInc = xGridSpacing;
  3296. zig = false;
  3297. } else // zag
  3298. {
  3299. xProbe = RIGHT_PROBE_BED_POSITION;
  3300. //xEnd = LEFT_PROBE_BED_POSITION;
  3301. xInc = -xGridSpacing;
  3302. zig = true;
  3303. }
  3304. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3305. {
  3306. float z_before;
  3307. if (probePointCounter == 0)
  3308. {
  3309. // raise before probing
  3310. z_before = Z_RAISE_BEFORE_PROBING;
  3311. } else
  3312. {
  3313. // raise extruder
  3314. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3315. }
  3316. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3317. eqnBVector[probePointCounter] = measured_z;
  3318. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3319. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3320. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3321. probePointCounter++;
  3322. xProbe += xInc;
  3323. }
  3324. }
  3325. clean_up_after_endstop_move();
  3326. // solve lsq problem
  3327. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3328. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3329. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3330. SERIAL_PROTOCOLPGM(" b: ");
  3331. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3332. SERIAL_PROTOCOLPGM(" d: ");
  3333. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3334. set_bed_level_equation_lsq(plane_equation_coefficients);
  3335. free(plane_equation_coefficients);
  3336. #else // AUTO_BED_LEVELING_GRID not defined
  3337. // Probe at 3 arbitrary points
  3338. // probe 1
  3339. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3340. // probe 2
  3341. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3342. // probe 3
  3343. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3344. clean_up_after_endstop_move();
  3345. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3346. #endif // AUTO_BED_LEVELING_GRID
  3347. st_synchronize();
  3348. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3349. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3350. // When the bed is uneven, this height must be corrected.
  3351. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3352. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3353. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3354. z_tmp = current_position[Z_AXIS];
  3355. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3356. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3358. }
  3359. break;
  3360. #ifndef Z_PROBE_SLED
  3361. case 30: // G30 Single Z Probe
  3362. {
  3363. st_synchronize();
  3364. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3365. setup_for_endstop_move();
  3366. feedrate = homing_feedrate[Z_AXIS];
  3367. run_z_probe();
  3368. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3369. SERIAL_PROTOCOLPGM(" X: ");
  3370. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3371. SERIAL_PROTOCOLPGM(" Y: ");
  3372. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3373. SERIAL_PROTOCOLPGM(" Z: ");
  3374. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3375. SERIAL_PROTOCOLPGM("\n");
  3376. clean_up_after_endstop_move();
  3377. }
  3378. break;
  3379. #else
  3380. case 31: // dock the sled
  3381. dock_sled(true);
  3382. break;
  3383. case 32: // undock the sled
  3384. dock_sled(false);
  3385. break;
  3386. #endif // Z_PROBE_SLED
  3387. #endif // ENABLE_AUTO_BED_LEVELING
  3388. #ifdef MESH_BED_LEVELING
  3389. case 30: // G30 Single Z Probe
  3390. {
  3391. st_synchronize();
  3392. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3393. setup_for_endstop_move();
  3394. feedrate = homing_feedrate[Z_AXIS];
  3395. find_bed_induction_sensor_point_z(-10.f, 3);
  3396. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3397. clean_up_after_endstop_move();
  3398. }
  3399. break;
  3400. case 75:
  3401. {
  3402. for (int i = 40; i <= 110; i++)
  3403. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3404. }
  3405. break;
  3406. case 76: //PINDA probe temperature calibration
  3407. {
  3408. #ifdef PINDA_THERMISTOR
  3409. if (true)
  3410. {
  3411. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3412. //we need to know accurate position of first calibration point
  3413. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3414. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3415. break;
  3416. }
  3417. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3418. {
  3419. // We don't know where we are! HOME!
  3420. // Push the commands to the front of the message queue in the reverse order!
  3421. // There shall be always enough space reserved for these commands.
  3422. repeatcommand_front(); // repeat G76 with all its parameters
  3423. enquecommand_front_P((PSTR("G28 W0")));
  3424. break;
  3425. }
  3426. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3427. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3428. if (result)
  3429. {
  3430. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3432. current_position[Z_AXIS] = 50;
  3433. current_position[Y_AXIS] = 180;
  3434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3435. st_synchronize();
  3436. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3437. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3438. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3440. st_synchronize();
  3441. gcode_G28(false, false, true);
  3442. }
  3443. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3444. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3445. current_position[Z_AXIS] = 100;
  3446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3447. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3448. lcd_temp_cal_show_result(false);
  3449. break;
  3450. }
  3451. }
  3452. lcd_update_enable(true);
  3453. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3454. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3455. float zero_z;
  3456. int z_shift = 0; //unit: steps
  3457. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3458. if (start_temp < 35) start_temp = 35;
  3459. if (start_temp < current_temperature_pinda) start_temp += 5;
  3460. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3461. // setTargetHotend(200, 0);
  3462. setTargetBed(70 + (start_temp - 30));
  3463. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3464. custom_message_state = 1;
  3465. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3466. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3468. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3469. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3471. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3473. st_synchronize();
  3474. while (current_temperature_pinda < start_temp)
  3475. {
  3476. delay_keep_alive(1000);
  3477. serialecho_temperatures();
  3478. }
  3479. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3480. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3482. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3483. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3485. st_synchronize();
  3486. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3487. if (find_z_result == false) {
  3488. lcd_temp_cal_show_result(find_z_result);
  3489. break;
  3490. }
  3491. zero_z = current_position[Z_AXIS];
  3492. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3493. int i = -1; for (; i < 5; i++)
  3494. {
  3495. float temp = (40 + i * 5);
  3496. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3497. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3498. if (start_temp <= temp) break;
  3499. }
  3500. for (i++; i < 5; i++)
  3501. {
  3502. float temp = (40 + i * 5);
  3503. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3504. custom_message_state = i + 2;
  3505. setTargetBed(50 + 10 * (temp - 30) / 5);
  3506. // setTargetHotend(255, 0);
  3507. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3510. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3512. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3514. st_synchronize();
  3515. while (current_temperature_pinda < temp)
  3516. {
  3517. delay_keep_alive(1000);
  3518. serialecho_temperatures();
  3519. }
  3520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3523. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3525. st_synchronize();
  3526. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3527. if (find_z_result == false) {
  3528. lcd_temp_cal_show_result(find_z_result);
  3529. break;
  3530. }
  3531. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3532. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3533. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3534. }
  3535. lcd_temp_cal_show_result(true);
  3536. break;
  3537. }
  3538. #endif //PINDA_THERMISTOR
  3539. setTargetBed(PINDA_MIN_T);
  3540. float zero_z;
  3541. int z_shift = 0; //unit: steps
  3542. int t_c; // temperature
  3543. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3544. // We don't know where we are! HOME!
  3545. // Push the commands to the front of the message queue in the reverse order!
  3546. // There shall be always enough space reserved for these commands.
  3547. repeatcommand_front(); // repeat G76 with all its parameters
  3548. enquecommand_front_P((PSTR("G28 W0")));
  3549. break;
  3550. }
  3551. puts_P(_N("PINDA probe calibration start"));
  3552. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3553. custom_message_state = 1;
  3554. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3555. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3556. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3557. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3559. st_synchronize();
  3560. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3561. delay_keep_alive(1000);
  3562. serialecho_temperatures();
  3563. }
  3564. //enquecommand_P(PSTR("M190 S50"));
  3565. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3566. delay_keep_alive(1000);
  3567. serialecho_temperatures();
  3568. }
  3569. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3570. current_position[Z_AXIS] = 5;
  3571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3572. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3573. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3575. st_synchronize();
  3576. find_bed_induction_sensor_point_z(-1.f);
  3577. zero_z = current_position[Z_AXIS];
  3578. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3579. for (int i = 0; i<5; i++) {
  3580. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3581. custom_message_state = i + 2;
  3582. t_c = 60 + i * 10;
  3583. setTargetBed(t_c);
  3584. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3585. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3586. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3588. st_synchronize();
  3589. while (degBed() < t_c) {
  3590. delay_keep_alive(1000);
  3591. serialecho_temperatures();
  3592. }
  3593. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3594. delay_keep_alive(1000);
  3595. serialecho_temperatures();
  3596. }
  3597. current_position[Z_AXIS] = 5;
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3599. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3600. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3602. st_synchronize();
  3603. find_bed_induction_sensor_point_z(-1.f);
  3604. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3605. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3606. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3607. }
  3608. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3609. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3610. puts_P(_N("Temperature calibration done."));
  3611. disable_x();
  3612. disable_y();
  3613. disable_z();
  3614. disable_e0();
  3615. disable_e1();
  3616. disable_e2();
  3617. setTargetBed(0); //set bed target temperature back to 0
  3618. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3619. temp_cal_active = true;
  3620. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3621. lcd_update_enable(true);
  3622. lcd_update(2);
  3623. }
  3624. break;
  3625. #ifdef DIS
  3626. case 77:
  3627. {
  3628. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3629. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3630. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3631. float dimension_x = 40;
  3632. float dimension_y = 40;
  3633. int points_x = 40;
  3634. int points_y = 40;
  3635. float offset_x = 74;
  3636. float offset_y = 33;
  3637. if (code_seen('X')) dimension_x = code_value();
  3638. if (code_seen('Y')) dimension_y = code_value();
  3639. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3640. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3641. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3642. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3643. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3644. } break;
  3645. #endif
  3646. case 79: {
  3647. for (int i = 255; i > 0; i = i - 5) {
  3648. fanSpeed = i;
  3649. //delay_keep_alive(2000);
  3650. for (int j = 0; j < 100; j++) {
  3651. delay_keep_alive(100);
  3652. }
  3653. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3654. }
  3655. }break;
  3656. /**
  3657. * G80: Mesh-based Z probe, probes a grid and produces a
  3658. * mesh to compensate for variable bed height
  3659. *
  3660. * The S0 report the points as below
  3661. *
  3662. * +----> X-axis
  3663. * |
  3664. * |
  3665. * v Y-axis
  3666. *
  3667. */
  3668. case 80:
  3669. #ifdef MK1BP
  3670. break;
  3671. #endif //MK1BP
  3672. case_G80:
  3673. {
  3674. mesh_bed_leveling_flag = true;
  3675. static bool run = false;
  3676. #ifdef SUPPORT_VERBOSITY
  3677. int8_t verbosity_level = 0;
  3678. if (code_seen('V')) {
  3679. // Just 'V' without a number counts as V1.
  3680. char c = strchr_pointer[1];
  3681. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3682. }
  3683. #endif //SUPPORT_VERBOSITY
  3684. // Firstly check if we know where we are
  3685. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3686. // We don't know where we are! HOME!
  3687. // Push the commands to the front of the message queue in the reverse order!
  3688. // There shall be always enough space reserved for these commands.
  3689. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3690. repeatcommand_front(); // repeat G80 with all its parameters
  3691. enquecommand_front_P((PSTR("G28 W0")));
  3692. }
  3693. else {
  3694. mesh_bed_leveling_flag = false;
  3695. }
  3696. break;
  3697. }
  3698. bool temp_comp_start = true;
  3699. #ifdef PINDA_THERMISTOR
  3700. temp_comp_start = false;
  3701. #endif //PINDA_THERMISTOR
  3702. if (temp_comp_start)
  3703. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3704. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3705. temp_compensation_start();
  3706. run = true;
  3707. repeatcommand_front(); // repeat G80 with all its parameters
  3708. enquecommand_front_P((PSTR("G28 W0")));
  3709. }
  3710. else {
  3711. mesh_bed_leveling_flag = false;
  3712. }
  3713. break;
  3714. }
  3715. run = false;
  3716. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3717. mesh_bed_leveling_flag = false;
  3718. break;
  3719. }
  3720. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3721. unsigned int custom_message_type_old = custom_message_type;
  3722. unsigned int custom_message_state_old = custom_message_state;
  3723. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3724. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3725. lcd_update(1);
  3726. mbl.reset(); //reset mesh bed leveling
  3727. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3728. // consumed during the first movements following this statement.
  3729. babystep_undo();
  3730. // Cycle through all points and probe them
  3731. // First move up. During this first movement, the babystepping will be reverted.
  3732. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3734. // The move to the first calibration point.
  3735. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3736. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3737. #ifdef SUPPORT_VERBOSITY
  3738. if (verbosity_level >= 1)
  3739. {
  3740. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3741. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3742. }
  3743. #endif //SUPPORT_VERBOSITY
  3744. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3746. // Wait until the move is finished.
  3747. st_synchronize();
  3748. int mesh_point = 0; //index number of calibration point
  3749. int ix = 0;
  3750. int iy = 0;
  3751. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3752. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3753. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3754. #ifdef SUPPORT_VERBOSITY
  3755. if (verbosity_level >= 1) {
  3756. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3757. }
  3758. #endif // SUPPORT_VERBOSITY
  3759. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3760. const char *kill_message = NULL;
  3761. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3762. // Get coords of a measuring point.
  3763. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3764. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3765. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3766. float z0 = 0.f;
  3767. if (has_z && mesh_point > 0) {
  3768. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3769. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3770. //#if 0
  3771. #ifdef SUPPORT_VERBOSITY
  3772. if (verbosity_level >= 1) {
  3773. SERIAL_ECHOLNPGM("");
  3774. SERIAL_ECHOPGM("Bed leveling, point: ");
  3775. MYSERIAL.print(mesh_point);
  3776. SERIAL_ECHOPGM(", calibration z: ");
  3777. MYSERIAL.print(z0, 5);
  3778. SERIAL_ECHOLNPGM("");
  3779. }
  3780. #endif // SUPPORT_VERBOSITY
  3781. //#endif
  3782. }
  3783. // Move Z up to MESH_HOME_Z_SEARCH.
  3784. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3786. st_synchronize();
  3787. // Move to XY position of the sensor point.
  3788. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3789. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3790. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3791. #ifdef SUPPORT_VERBOSITY
  3792. if (verbosity_level >= 1) {
  3793. SERIAL_PROTOCOL(mesh_point);
  3794. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3795. }
  3796. #endif // SUPPORT_VERBOSITY
  3797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3798. st_synchronize();
  3799. // Go down until endstop is hit
  3800. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3801. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3802. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3803. break;
  3804. }
  3805. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3806. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3807. break;
  3808. }
  3809. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3810. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3811. break;
  3812. }
  3813. #ifdef SUPPORT_VERBOSITY
  3814. if (verbosity_level >= 10) {
  3815. SERIAL_ECHOPGM("X: ");
  3816. MYSERIAL.print(current_position[X_AXIS], 5);
  3817. SERIAL_ECHOLNPGM("");
  3818. SERIAL_ECHOPGM("Y: ");
  3819. MYSERIAL.print(current_position[Y_AXIS], 5);
  3820. SERIAL_PROTOCOLPGM("\n");
  3821. }
  3822. #endif // SUPPORT_VERBOSITY
  3823. float offset_z = 0;
  3824. #ifdef PINDA_THERMISTOR
  3825. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3826. #endif //PINDA_THERMISTOR
  3827. // #ifdef SUPPORT_VERBOSITY
  3828. /* if (verbosity_level >= 1)
  3829. {
  3830. SERIAL_ECHOPGM("mesh bed leveling: ");
  3831. MYSERIAL.print(current_position[Z_AXIS], 5);
  3832. SERIAL_ECHOPGM(" offset: ");
  3833. MYSERIAL.print(offset_z, 5);
  3834. SERIAL_ECHOLNPGM("");
  3835. }*/
  3836. // #endif // SUPPORT_VERBOSITY
  3837. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3838. custom_message_state--;
  3839. mesh_point++;
  3840. lcd_update(1);
  3841. }
  3842. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3843. #ifdef SUPPORT_VERBOSITY
  3844. if (verbosity_level >= 20) {
  3845. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3846. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3847. MYSERIAL.print(current_position[Z_AXIS], 5);
  3848. }
  3849. #endif // SUPPORT_VERBOSITY
  3850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3851. st_synchronize();
  3852. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3853. kill(kill_message);
  3854. SERIAL_ECHOLNPGM("killed");
  3855. }
  3856. clean_up_after_endstop_move();
  3857. // SERIAL_ECHOLNPGM("clean up finished ");
  3858. bool apply_temp_comp = true;
  3859. #ifdef PINDA_THERMISTOR
  3860. apply_temp_comp = false;
  3861. #endif
  3862. if (apply_temp_comp)
  3863. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3864. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3865. // SERIAL_ECHOLNPGM("babystep applied");
  3866. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3867. #ifdef SUPPORT_VERBOSITY
  3868. if (verbosity_level >= 1) {
  3869. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3870. }
  3871. #endif // SUPPORT_VERBOSITY
  3872. for (uint8_t i = 0; i < 4; ++i) {
  3873. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3874. long correction = 0;
  3875. if (code_seen(codes[i]))
  3876. correction = code_value_long();
  3877. else if (eeprom_bed_correction_valid) {
  3878. unsigned char *addr = (i < 2) ?
  3879. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3880. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3881. correction = eeprom_read_int8(addr);
  3882. }
  3883. if (correction == 0)
  3884. continue;
  3885. float offset = float(correction) * 0.001f;
  3886. if (fabs(offset) > 0.101f) {
  3887. SERIAL_ERROR_START;
  3888. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3889. SERIAL_ECHO(offset);
  3890. SERIAL_ECHOLNPGM(" microns");
  3891. }
  3892. else {
  3893. switch (i) {
  3894. case 0:
  3895. for (uint8_t row = 0; row < 3; ++row) {
  3896. mbl.z_values[row][1] += 0.5f * offset;
  3897. mbl.z_values[row][0] += offset;
  3898. }
  3899. break;
  3900. case 1:
  3901. for (uint8_t row = 0; row < 3; ++row) {
  3902. mbl.z_values[row][1] += 0.5f * offset;
  3903. mbl.z_values[row][2] += offset;
  3904. }
  3905. break;
  3906. case 2:
  3907. for (uint8_t col = 0; col < 3; ++col) {
  3908. mbl.z_values[1][col] += 0.5f * offset;
  3909. mbl.z_values[0][col] += offset;
  3910. }
  3911. break;
  3912. case 3:
  3913. for (uint8_t col = 0; col < 3; ++col) {
  3914. mbl.z_values[1][col] += 0.5f * offset;
  3915. mbl.z_values[2][col] += offset;
  3916. }
  3917. break;
  3918. }
  3919. }
  3920. }
  3921. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3922. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3923. // SERIAL_ECHOLNPGM("Upsample finished");
  3924. mbl.active = 1; //activate mesh bed leveling
  3925. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3926. go_home_with_z_lift();
  3927. // SERIAL_ECHOLNPGM("Go home finished");
  3928. //unretract (after PINDA preheat retraction)
  3929. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3930. current_position[E_AXIS] += default_retraction;
  3931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3932. }
  3933. KEEPALIVE_STATE(NOT_BUSY);
  3934. // Restore custom message state
  3935. lcd_setstatuspgm(_T(WELCOME_MSG));
  3936. custom_message_type = custom_message_type_old;
  3937. custom_message_state = custom_message_state_old;
  3938. mesh_bed_leveling_flag = false;
  3939. mesh_bed_run_from_menu = false;
  3940. lcd_update(2);
  3941. }
  3942. break;
  3943. /**
  3944. * G81: Print mesh bed leveling status and bed profile if activated
  3945. */
  3946. case 81:
  3947. if (mbl.active) {
  3948. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3949. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3950. SERIAL_PROTOCOLPGM(",");
  3951. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3952. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3953. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3954. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3955. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3956. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3957. SERIAL_PROTOCOLPGM(" ");
  3958. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3959. }
  3960. SERIAL_PROTOCOLPGM("\n");
  3961. }
  3962. }
  3963. else
  3964. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3965. break;
  3966. #if 0
  3967. /**
  3968. * G82: Single Z probe at current location
  3969. *
  3970. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3971. *
  3972. */
  3973. case 82:
  3974. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3975. setup_for_endstop_move();
  3976. find_bed_induction_sensor_point_z();
  3977. clean_up_after_endstop_move();
  3978. SERIAL_PROTOCOLPGM("Bed found at: ");
  3979. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3980. SERIAL_PROTOCOLPGM("\n");
  3981. break;
  3982. /**
  3983. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3984. */
  3985. case 83:
  3986. {
  3987. int babystepz = code_seen('S') ? code_value() : 0;
  3988. int BabyPosition = code_seen('P') ? code_value() : 0;
  3989. if (babystepz != 0) {
  3990. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3991. // Is the axis indexed starting with zero or one?
  3992. if (BabyPosition > 4) {
  3993. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3994. }else{
  3995. // Save it to the eeprom
  3996. babystepLoadZ = babystepz;
  3997. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3998. // adjust the Z
  3999. babystepsTodoZadd(babystepLoadZ);
  4000. }
  4001. }
  4002. }
  4003. break;
  4004. /**
  4005. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4006. */
  4007. case 84:
  4008. babystepsTodoZsubtract(babystepLoadZ);
  4009. // babystepLoadZ = 0;
  4010. break;
  4011. /**
  4012. * G85: Prusa3D specific: Pick best babystep
  4013. */
  4014. case 85:
  4015. lcd_pick_babystep();
  4016. break;
  4017. #endif
  4018. /**
  4019. * G86: Prusa3D specific: Disable babystep correction after home.
  4020. * This G-code will be performed at the start of a calibration script.
  4021. */
  4022. case 86:
  4023. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4024. break;
  4025. /**
  4026. * G87: Prusa3D specific: Enable babystep correction after home
  4027. * This G-code will be performed at the end of a calibration script.
  4028. */
  4029. case 87:
  4030. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4031. break;
  4032. /**
  4033. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4034. */
  4035. case 88:
  4036. break;
  4037. #endif // ENABLE_MESH_BED_LEVELING
  4038. case 90: // G90
  4039. relative_mode = false;
  4040. break;
  4041. case 91: // G91
  4042. relative_mode = true;
  4043. break;
  4044. case 92: // G92
  4045. if(!code_seen(axis_codes[E_AXIS]))
  4046. st_synchronize();
  4047. for(int8_t i=0; i < NUM_AXIS; i++) {
  4048. if(code_seen(axis_codes[i])) {
  4049. if(i == E_AXIS) {
  4050. current_position[i] = code_value();
  4051. plan_set_e_position(current_position[E_AXIS]);
  4052. }
  4053. else {
  4054. current_position[i] = code_value()+add_homing[i];
  4055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4056. }
  4057. }
  4058. }
  4059. break;
  4060. case 98: // G98 (activate farm mode)
  4061. farm_mode = 1;
  4062. PingTime = millis();
  4063. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4064. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4065. SilentModeMenu = SILENT_MODE_OFF;
  4066. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4067. break;
  4068. case 99: // G99 (deactivate farm mode)
  4069. farm_mode = 0;
  4070. lcd_printer_connected();
  4071. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4072. lcd_update(2);
  4073. break;
  4074. default:
  4075. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4076. }
  4077. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4078. gcode_in_progress = 0;
  4079. } // end if(code_seen('G'))
  4080. else if(code_seen('M'))
  4081. {
  4082. int index;
  4083. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4084. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4085. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4086. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4087. } else
  4088. {
  4089. mcode_in_progress = (int)code_value();
  4090. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4091. switch(mcode_in_progress)
  4092. {
  4093. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4094. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4095. {
  4096. char *src = strchr_pointer + 2;
  4097. codenum = 0;
  4098. bool hasP = false, hasS = false;
  4099. if (code_seen('P')) {
  4100. codenum = code_value(); // milliseconds to wait
  4101. hasP = codenum > 0;
  4102. }
  4103. if (code_seen('S')) {
  4104. codenum = code_value() * 1000; // seconds to wait
  4105. hasS = codenum > 0;
  4106. }
  4107. starpos = strchr(src, '*');
  4108. if (starpos != NULL) *(starpos) = '\0';
  4109. while (*src == ' ') ++src;
  4110. if (!hasP && !hasS && *src != '\0') {
  4111. lcd_setstatus(src);
  4112. } else {
  4113. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4114. }
  4115. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4116. st_synchronize();
  4117. previous_millis_cmd = millis();
  4118. if (codenum > 0){
  4119. codenum += millis(); // keep track of when we started waiting
  4120. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4121. while(millis() < codenum && !lcd_clicked()){
  4122. manage_heater();
  4123. manage_inactivity(true);
  4124. lcd_update(0);
  4125. }
  4126. KEEPALIVE_STATE(IN_HANDLER);
  4127. lcd_ignore_click(false);
  4128. }else{
  4129. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4130. while(!lcd_clicked()){
  4131. manage_heater();
  4132. manage_inactivity(true);
  4133. lcd_update(0);
  4134. }
  4135. KEEPALIVE_STATE(IN_HANDLER);
  4136. }
  4137. if (IS_SD_PRINTING)
  4138. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4139. else
  4140. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4141. }
  4142. break;
  4143. case 17:
  4144. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4145. enable_x();
  4146. enable_y();
  4147. enable_z();
  4148. enable_e0();
  4149. enable_e1();
  4150. enable_e2();
  4151. break;
  4152. #ifdef SDSUPPORT
  4153. case 20: // M20 - list SD card
  4154. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4155. card.ls();
  4156. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4157. break;
  4158. case 21: // M21 - init SD card
  4159. card.initsd();
  4160. break;
  4161. case 22: //M22 - release SD card
  4162. card.release();
  4163. break;
  4164. case 23: //M23 - Select file
  4165. starpos = (strchr(strchr_pointer + 4,'*'));
  4166. if(starpos!=NULL)
  4167. *(starpos)='\0';
  4168. card.openFile(strchr_pointer + 4,true);
  4169. break;
  4170. case 24: //M24 - Start SD print
  4171. if (!card.paused)
  4172. failstats_reset_print();
  4173. card.startFileprint();
  4174. starttime=millis();
  4175. break;
  4176. case 25: //M25 - Pause SD print
  4177. card.pauseSDPrint();
  4178. break;
  4179. case 26: //M26 - Set SD index
  4180. if(card.cardOK && code_seen('S')) {
  4181. card.setIndex(code_value_long());
  4182. }
  4183. break;
  4184. case 27: //M27 - Get SD status
  4185. card.getStatus();
  4186. break;
  4187. case 28: //M28 - Start SD write
  4188. starpos = (strchr(strchr_pointer + 4,'*'));
  4189. if(starpos != NULL){
  4190. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4191. strchr_pointer = strchr(npos,' ') + 1;
  4192. *(starpos) = '\0';
  4193. }
  4194. card.openFile(strchr_pointer+4,false);
  4195. break;
  4196. case 29: //M29 - Stop SD write
  4197. //processed in write to file routine above
  4198. //card,saving = false;
  4199. break;
  4200. case 30: //M30 <filename> Delete File
  4201. if (card.cardOK){
  4202. card.closefile();
  4203. starpos = (strchr(strchr_pointer + 4,'*'));
  4204. if(starpos != NULL){
  4205. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4206. strchr_pointer = strchr(npos,' ') + 1;
  4207. *(starpos) = '\0';
  4208. }
  4209. card.removeFile(strchr_pointer + 4);
  4210. }
  4211. break;
  4212. case 32: //M32 - Select file and start SD print
  4213. {
  4214. if(card.sdprinting) {
  4215. st_synchronize();
  4216. }
  4217. starpos = (strchr(strchr_pointer + 4,'*'));
  4218. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4219. if(namestartpos==NULL)
  4220. {
  4221. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4222. }
  4223. else
  4224. namestartpos++; //to skip the '!'
  4225. if(starpos!=NULL)
  4226. *(starpos)='\0';
  4227. bool call_procedure=(code_seen('P'));
  4228. if(strchr_pointer>namestartpos)
  4229. call_procedure=false; //false alert, 'P' found within filename
  4230. if( card.cardOK )
  4231. {
  4232. card.openFile(namestartpos,true,!call_procedure);
  4233. if(code_seen('S'))
  4234. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4235. card.setIndex(code_value_long());
  4236. card.startFileprint();
  4237. if(!call_procedure)
  4238. starttime=millis(); //procedure calls count as normal print time.
  4239. }
  4240. } break;
  4241. case 928: //M928 - Start SD write
  4242. starpos = (strchr(strchr_pointer + 5,'*'));
  4243. if(starpos != NULL){
  4244. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4245. strchr_pointer = strchr(npos,' ') + 1;
  4246. *(starpos) = '\0';
  4247. }
  4248. card.openLogFile(strchr_pointer+5);
  4249. break;
  4250. #endif //SDSUPPORT
  4251. case 31: //M31 take time since the start of the SD print or an M109 command
  4252. {
  4253. stoptime=millis();
  4254. char time[30];
  4255. unsigned long t=(stoptime-starttime)/1000;
  4256. int sec,min;
  4257. min=t/60;
  4258. sec=t%60;
  4259. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4260. SERIAL_ECHO_START;
  4261. SERIAL_ECHOLN(time);
  4262. lcd_setstatus(time);
  4263. autotempShutdown();
  4264. }
  4265. break;
  4266. case 42: //M42 -Change pin status via gcode
  4267. if (code_seen('S'))
  4268. {
  4269. int pin_status = code_value();
  4270. int pin_number = LED_PIN;
  4271. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4272. pin_number = code_value();
  4273. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4274. {
  4275. if (sensitive_pins[i] == pin_number)
  4276. {
  4277. pin_number = -1;
  4278. break;
  4279. }
  4280. }
  4281. #if defined(FAN_PIN) && FAN_PIN > -1
  4282. if (pin_number == FAN_PIN)
  4283. fanSpeed = pin_status;
  4284. #endif
  4285. if (pin_number > -1)
  4286. {
  4287. pinMode(pin_number, OUTPUT);
  4288. digitalWrite(pin_number, pin_status);
  4289. analogWrite(pin_number, pin_status);
  4290. }
  4291. }
  4292. break;
  4293. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4294. // Reset the baby step value and the baby step applied flag.
  4295. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4296. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4297. // Reset the skew and offset in both RAM and EEPROM.
  4298. reset_bed_offset_and_skew();
  4299. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4300. // the planner will not perform any adjustments in the XY plane.
  4301. // Wait for the motors to stop and update the current position with the absolute values.
  4302. world2machine_revert_to_uncorrected();
  4303. break;
  4304. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4305. {
  4306. int8_t verbosity_level = 0;
  4307. bool only_Z = code_seen('Z');
  4308. #ifdef SUPPORT_VERBOSITY
  4309. if (code_seen('V'))
  4310. {
  4311. // Just 'V' without a number counts as V1.
  4312. char c = strchr_pointer[1];
  4313. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4314. }
  4315. #endif //SUPPORT_VERBOSITY
  4316. gcode_M45(only_Z, verbosity_level);
  4317. }
  4318. break;
  4319. /*
  4320. case 46:
  4321. {
  4322. // M46: Prusa3D: Show the assigned IP address.
  4323. uint8_t ip[4];
  4324. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4325. if (hasIP) {
  4326. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4327. SERIAL_ECHO(int(ip[0]));
  4328. SERIAL_ECHOPGM(".");
  4329. SERIAL_ECHO(int(ip[1]));
  4330. SERIAL_ECHOPGM(".");
  4331. SERIAL_ECHO(int(ip[2]));
  4332. SERIAL_ECHOPGM(".");
  4333. SERIAL_ECHO(int(ip[3]));
  4334. SERIAL_ECHOLNPGM("");
  4335. } else {
  4336. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4337. }
  4338. break;
  4339. }
  4340. */
  4341. case 47:
  4342. // M47: Prusa3D: Show end stops dialog on the display.
  4343. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4344. lcd_diag_show_end_stops();
  4345. KEEPALIVE_STATE(IN_HANDLER);
  4346. break;
  4347. #if 0
  4348. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4349. {
  4350. // Disable the default update procedure of the display. We will do a modal dialog.
  4351. lcd_update_enable(false);
  4352. // Let the planner use the uncorrected coordinates.
  4353. mbl.reset();
  4354. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4355. // the planner will not perform any adjustments in the XY plane.
  4356. // Wait for the motors to stop and update the current position with the absolute values.
  4357. world2machine_revert_to_uncorrected();
  4358. // Move the print head close to the bed.
  4359. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4361. st_synchronize();
  4362. // Home in the XY plane.
  4363. set_destination_to_current();
  4364. setup_for_endstop_move();
  4365. home_xy();
  4366. int8_t verbosity_level = 0;
  4367. if (code_seen('V')) {
  4368. // Just 'V' without a number counts as V1.
  4369. char c = strchr_pointer[1];
  4370. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4371. }
  4372. bool success = scan_bed_induction_points(verbosity_level);
  4373. clean_up_after_endstop_move();
  4374. // Print head up.
  4375. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4377. st_synchronize();
  4378. lcd_update_enable(true);
  4379. break;
  4380. }
  4381. #endif
  4382. // M48 Z-Probe repeatability measurement function.
  4383. //
  4384. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4385. //
  4386. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4387. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4388. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4389. // regenerated.
  4390. //
  4391. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4392. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4393. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4394. //
  4395. #ifdef ENABLE_AUTO_BED_LEVELING
  4396. #ifdef Z_PROBE_REPEATABILITY_TEST
  4397. case 48: // M48 Z-Probe repeatability
  4398. {
  4399. #if Z_MIN_PIN == -1
  4400. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4401. #endif
  4402. double sum=0.0;
  4403. double mean=0.0;
  4404. double sigma=0.0;
  4405. double sample_set[50];
  4406. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4407. double X_current, Y_current, Z_current;
  4408. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4409. if (code_seen('V') || code_seen('v')) {
  4410. verbose_level = code_value();
  4411. if (verbose_level<0 || verbose_level>4 ) {
  4412. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4413. goto Sigma_Exit;
  4414. }
  4415. }
  4416. if (verbose_level > 0) {
  4417. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4418. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4419. }
  4420. if (code_seen('n')) {
  4421. n_samples = code_value();
  4422. if (n_samples<4 || n_samples>50 ) {
  4423. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4424. goto Sigma_Exit;
  4425. }
  4426. }
  4427. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4428. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4429. Z_current = st_get_position_mm(Z_AXIS);
  4430. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4431. ext_position = st_get_position_mm(E_AXIS);
  4432. if (code_seen('X') || code_seen('x') ) {
  4433. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4434. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4435. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4436. goto Sigma_Exit;
  4437. }
  4438. }
  4439. if (code_seen('Y') || code_seen('y') ) {
  4440. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4441. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4442. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4443. goto Sigma_Exit;
  4444. }
  4445. }
  4446. if (code_seen('L') || code_seen('l') ) {
  4447. n_legs = code_value();
  4448. if ( n_legs==1 )
  4449. n_legs = 2;
  4450. if ( n_legs<0 || n_legs>15 ) {
  4451. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4452. goto Sigma_Exit;
  4453. }
  4454. }
  4455. //
  4456. // Do all the preliminary setup work. First raise the probe.
  4457. //
  4458. st_synchronize();
  4459. plan_bed_level_matrix.set_to_identity();
  4460. plan_buffer_line( X_current, Y_current, Z_start_location,
  4461. ext_position,
  4462. homing_feedrate[Z_AXIS]/60,
  4463. active_extruder);
  4464. st_synchronize();
  4465. //
  4466. // Now get everything to the specified probe point So we can safely do a probe to
  4467. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4468. // use that as a starting point for each probe.
  4469. //
  4470. if (verbose_level > 2)
  4471. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4472. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4473. ext_position,
  4474. homing_feedrate[X_AXIS]/60,
  4475. active_extruder);
  4476. st_synchronize();
  4477. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4478. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4479. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4480. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4481. //
  4482. // OK, do the inital probe to get us close to the bed.
  4483. // Then retrace the right amount and use that in subsequent probes
  4484. //
  4485. setup_for_endstop_move();
  4486. run_z_probe();
  4487. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4488. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4489. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4490. ext_position,
  4491. homing_feedrate[X_AXIS]/60,
  4492. active_extruder);
  4493. st_synchronize();
  4494. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4495. for( n=0; n<n_samples; n++) {
  4496. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4497. if ( n_legs) {
  4498. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4499. int rotational_direction, l;
  4500. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4501. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4502. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4503. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4504. //SERIAL_ECHOPAIR(" theta: ",theta);
  4505. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4506. //SERIAL_PROTOCOLLNPGM("");
  4507. for( l=0; l<n_legs-1; l++) {
  4508. if (rotational_direction==1)
  4509. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4510. else
  4511. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4512. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4513. if ( radius<0.0 )
  4514. radius = -radius;
  4515. X_current = X_probe_location + cos(theta) * radius;
  4516. Y_current = Y_probe_location + sin(theta) * radius;
  4517. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4518. X_current = X_MIN_POS;
  4519. if ( X_current>X_MAX_POS)
  4520. X_current = X_MAX_POS;
  4521. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4522. Y_current = Y_MIN_POS;
  4523. if ( Y_current>Y_MAX_POS)
  4524. Y_current = Y_MAX_POS;
  4525. if (verbose_level>3 ) {
  4526. SERIAL_ECHOPAIR("x: ", X_current);
  4527. SERIAL_ECHOPAIR("y: ", Y_current);
  4528. SERIAL_PROTOCOLLNPGM("");
  4529. }
  4530. do_blocking_move_to( X_current, Y_current, Z_current );
  4531. }
  4532. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4533. }
  4534. setup_for_endstop_move();
  4535. run_z_probe();
  4536. sample_set[n] = current_position[Z_AXIS];
  4537. //
  4538. // Get the current mean for the data points we have so far
  4539. //
  4540. sum=0.0;
  4541. for( j=0; j<=n; j++) {
  4542. sum = sum + sample_set[j];
  4543. }
  4544. mean = sum / (double (n+1));
  4545. //
  4546. // Now, use that mean to calculate the standard deviation for the
  4547. // data points we have so far
  4548. //
  4549. sum=0.0;
  4550. for( j=0; j<=n; j++) {
  4551. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4552. }
  4553. sigma = sqrt( sum / (double (n+1)) );
  4554. if (verbose_level > 1) {
  4555. SERIAL_PROTOCOL(n+1);
  4556. SERIAL_PROTOCOL(" of ");
  4557. SERIAL_PROTOCOL(n_samples);
  4558. SERIAL_PROTOCOLPGM(" z: ");
  4559. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4560. }
  4561. if (verbose_level > 2) {
  4562. SERIAL_PROTOCOL(" mean: ");
  4563. SERIAL_PROTOCOL_F(mean,6);
  4564. SERIAL_PROTOCOL(" sigma: ");
  4565. SERIAL_PROTOCOL_F(sigma,6);
  4566. }
  4567. if (verbose_level > 0)
  4568. SERIAL_PROTOCOLPGM("\n");
  4569. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4570. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4571. st_synchronize();
  4572. }
  4573. delay(1000);
  4574. clean_up_after_endstop_move();
  4575. // enable_endstops(true);
  4576. if (verbose_level > 0) {
  4577. SERIAL_PROTOCOLPGM("Mean: ");
  4578. SERIAL_PROTOCOL_F(mean, 6);
  4579. SERIAL_PROTOCOLPGM("\n");
  4580. }
  4581. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4582. SERIAL_PROTOCOL_F(sigma, 6);
  4583. SERIAL_PROTOCOLPGM("\n\n");
  4584. Sigma_Exit:
  4585. break;
  4586. }
  4587. #endif // Z_PROBE_REPEATABILITY_TEST
  4588. #endif // ENABLE_AUTO_BED_LEVELING
  4589. case 73: //M73 show percent done and time remaining
  4590. if(code_seen('P')) print_percent_done_normal = code_value();
  4591. if(code_seen('R')) print_time_remaining_normal = code_value();
  4592. if(code_seen('Q')) print_percent_done_silent = code_value();
  4593. if(code_seen('S')) print_time_remaining_silent = code_value();
  4594. {
  4595. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4596. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4597. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4598. }
  4599. break;
  4600. case 104: // M104
  4601. {
  4602. uint8_t extruder;
  4603. if(setTargetedHotend(104,extruder)){
  4604. break;
  4605. }
  4606. if (code_seen('S'))
  4607. {
  4608. setTargetHotendSafe(code_value(), extruder);
  4609. }
  4610. setWatch();
  4611. break;
  4612. }
  4613. case 112: // M112 -Emergency Stop
  4614. kill(_n(""), 3);
  4615. break;
  4616. case 140: // M140 set bed temp
  4617. if (code_seen('S')) setTargetBed(code_value());
  4618. break;
  4619. case 105 : // M105
  4620. {
  4621. uint8_t extruder;
  4622. if(setTargetedHotend(105, extruder)){
  4623. break;
  4624. }
  4625. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4626. SERIAL_PROTOCOLPGM("ok T:");
  4627. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4628. SERIAL_PROTOCOLPGM(" /");
  4629. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4630. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4631. SERIAL_PROTOCOLPGM(" B:");
  4632. SERIAL_PROTOCOL_F(degBed(),1);
  4633. SERIAL_PROTOCOLPGM(" /");
  4634. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4635. #endif //TEMP_BED_PIN
  4636. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4637. SERIAL_PROTOCOLPGM(" T");
  4638. SERIAL_PROTOCOL(cur_extruder);
  4639. SERIAL_PROTOCOLPGM(":");
  4640. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4641. SERIAL_PROTOCOLPGM(" /");
  4642. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4643. }
  4644. #else
  4645. SERIAL_ERROR_START;
  4646. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4647. #endif
  4648. SERIAL_PROTOCOLPGM(" @:");
  4649. #ifdef EXTRUDER_WATTS
  4650. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4651. SERIAL_PROTOCOLPGM("W");
  4652. #else
  4653. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4654. #endif
  4655. SERIAL_PROTOCOLPGM(" B@:");
  4656. #ifdef BED_WATTS
  4657. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4658. SERIAL_PROTOCOLPGM("W");
  4659. #else
  4660. SERIAL_PROTOCOL(getHeaterPower(-1));
  4661. #endif
  4662. #ifdef PINDA_THERMISTOR
  4663. SERIAL_PROTOCOLPGM(" P:");
  4664. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4665. #endif //PINDA_THERMISTOR
  4666. #ifdef AMBIENT_THERMISTOR
  4667. SERIAL_PROTOCOLPGM(" A:");
  4668. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4669. #endif //AMBIENT_THERMISTOR
  4670. #ifdef SHOW_TEMP_ADC_VALUES
  4671. {float raw = 0.0;
  4672. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4673. SERIAL_PROTOCOLPGM(" ADC B:");
  4674. SERIAL_PROTOCOL_F(degBed(),1);
  4675. SERIAL_PROTOCOLPGM("C->");
  4676. raw = rawBedTemp();
  4677. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4678. SERIAL_PROTOCOLPGM(" Rb->");
  4679. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4680. SERIAL_PROTOCOLPGM(" Rxb->");
  4681. SERIAL_PROTOCOL_F(raw, 5);
  4682. #endif
  4683. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4684. SERIAL_PROTOCOLPGM(" T");
  4685. SERIAL_PROTOCOL(cur_extruder);
  4686. SERIAL_PROTOCOLPGM(":");
  4687. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4688. SERIAL_PROTOCOLPGM("C->");
  4689. raw = rawHotendTemp(cur_extruder);
  4690. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4691. SERIAL_PROTOCOLPGM(" Rt");
  4692. SERIAL_PROTOCOL(cur_extruder);
  4693. SERIAL_PROTOCOLPGM("->");
  4694. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4695. SERIAL_PROTOCOLPGM(" Rx");
  4696. SERIAL_PROTOCOL(cur_extruder);
  4697. SERIAL_PROTOCOLPGM("->");
  4698. SERIAL_PROTOCOL_F(raw, 5);
  4699. }}
  4700. #endif
  4701. SERIAL_PROTOCOLLN("");
  4702. KEEPALIVE_STATE(NOT_BUSY);
  4703. return;
  4704. break;
  4705. }
  4706. case 109:
  4707. {// M109 - Wait for extruder heater to reach target.
  4708. uint8_t extruder;
  4709. if(setTargetedHotend(109, extruder)){
  4710. break;
  4711. }
  4712. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4713. heating_status = 1;
  4714. if (farm_mode) { prusa_statistics(1); };
  4715. #ifdef AUTOTEMP
  4716. autotemp_enabled=false;
  4717. #endif
  4718. if (code_seen('S')) {
  4719. setTargetHotendSafe(code_value(), extruder);
  4720. CooldownNoWait = true;
  4721. } else if (code_seen('R')) {
  4722. setTargetHotendSafe(code_value(), extruder);
  4723. CooldownNoWait = false;
  4724. }
  4725. #ifdef AUTOTEMP
  4726. if (code_seen('S')) autotemp_min=code_value();
  4727. if (code_seen('B')) autotemp_max=code_value();
  4728. if (code_seen('F'))
  4729. {
  4730. autotemp_factor=code_value();
  4731. autotemp_enabled=true;
  4732. }
  4733. #endif
  4734. setWatch();
  4735. codenum = millis();
  4736. /* See if we are heating up or cooling down */
  4737. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4738. KEEPALIVE_STATE(NOT_BUSY);
  4739. cancel_heatup = false;
  4740. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4741. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4742. KEEPALIVE_STATE(IN_HANDLER);
  4743. heating_status = 2;
  4744. if (farm_mode) { prusa_statistics(2); };
  4745. //starttime=millis();
  4746. previous_millis_cmd = millis();
  4747. }
  4748. break;
  4749. case 190: // M190 - Wait for bed heater to reach target.
  4750. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4751. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4752. heating_status = 3;
  4753. if (farm_mode) { prusa_statistics(1); };
  4754. if (code_seen('S'))
  4755. {
  4756. setTargetBed(code_value());
  4757. CooldownNoWait = true;
  4758. }
  4759. else if (code_seen('R'))
  4760. {
  4761. setTargetBed(code_value());
  4762. CooldownNoWait = false;
  4763. }
  4764. codenum = millis();
  4765. cancel_heatup = false;
  4766. target_direction = isHeatingBed(); // true if heating, false if cooling
  4767. KEEPALIVE_STATE(NOT_BUSY);
  4768. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4769. {
  4770. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4771. {
  4772. if (!farm_mode) {
  4773. float tt = degHotend(active_extruder);
  4774. SERIAL_PROTOCOLPGM("T:");
  4775. SERIAL_PROTOCOL(tt);
  4776. SERIAL_PROTOCOLPGM(" E:");
  4777. SERIAL_PROTOCOL((int)active_extruder);
  4778. SERIAL_PROTOCOLPGM(" B:");
  4779. SERIAL_PROTOCOL_F(degBed(), 1);
  4780. SERIAL_PROTOCOLLN("");
  4781. }
  4782. codenum = millis();
  4783. }
  4784. manage_heater();
  4785. manage_inactivity();
  4786. lcd_update(0);
  4787. }
  4788. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4789. KEEPALIVE_STATE(IN_HANDLER);
  4790. heating_status = 4;
  4791. previous_millis_cmd = millis();
  4792. #endif
  4793. break;
  4794. #if defined(FAN_PIN) && FAN_PIN > -1
  4795. case 106: //M106 Fan On
  4796. if (code_seen('S')){
  4797. fanSpeed=constrain(code_value(),0,255);
  4798. }
  4799. else {
  4800. fanSpeed=255;
  4801. }
  4802. break;
  4803. case 107: //M107 Fan Off
  4804. fanSpeed = 0;
  4805. break;
  4806. #endif //FAN_PIN
  4807. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4808. case 80: // M80 - Turn on Power Supply
  4809. SET_OUTPUT(PS_ON_PIN); //GND
  4810. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4811. // If you have a switch on suicide pin, this is useful
  4812. // if you want to start another print with suicide feature after
  4813. // a print without suicide...
  4814. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4815. SET_OUTPUT(SUICIDE_PIN);
  4816. WRITE(SUICIDE_PIN, HIGH);
  4817. #endif
  4818. powersupply = true;
  4819. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4820. lcd_update(0);
  4821. break;
  4822. #endif
  4823. case 81: // M81 - Turn off Power Supply
  4824. disable_heater();
  4825. st_synchronize();
  4826. disable_e0();
  4827. disable_e1();
  4828. disable_e2();
  4829. finishAndDisableSteppers();
  4830. fanSpeed = 0;
  4831. delay(1000); // Wait a little before to switch off
  4832. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4833. st_synchronize();
  4834. suicide();
  4835. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4836. SET_OUTPUT(PS_ON_PIN);
  4837. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4838. #endif
  4839. powersupply = false;
  4840. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4841. lcd_update(0);
  4842. break;
  4843. case 82:
  4844. axis_relative_modes[3] = false;
  4845. break;
  4846. case 83:
  4847. axis_relative_modes[3] = true;
  4848. break;
  4849. case 18: //compatibility
  4850. case 84: // M84
  4851. if(code_seen('S')){
  4852. stepper_inactive_time = code_value() * 1000;
  4853. }
  4854. else
  4855. {
  4856. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4857. if(all_axis)
  4858. {
  4859. st_synchronize();
  4860. disable_e0();
  4861. disable_e1();
  4862. disable_e2();
  4863. finishAndDisableSteppers();
  4864. }
  4865. else
  4866. {
  4867. st_synchronize();
  4868. if (code_seen('X')) disable_x();
  4869. if (code_seen('Y')) disable_y();
  4870. if (code_seen('Z')) disable_z();
  4871. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4872. if (code_seen('E')) {
  4873. disable_e0();
  4874. disable_e1();
  4875. disable_e2();
  4876. }
  4877. #endif
  4878. }
  4879. }
  4880. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4881. print_time_remaining_init();
  4882. snmm_filaments_used = 0;
  4883. break;
  4884. case 85: // M85
  4885. if(code_seen('S')) {
  4886. max_inactive_time = code_value() * 1000;
  4887. }
  4888. break;
  4889. #ifdef SAFETYTIMER
  4890. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4891. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4892. if (code_seen('S')) {
  4893. safetytimer_inactive_time = code_value() * 1000;
  4894. safetyTimer.start();
  4895. }
  4896. break;
  4897. #endif
  4898. case 92: // M92
  4899. for(int8_t i=0; i < NUM_AXIS; i++)
  4900. {
  4901. if(code_seen(axis_codes[i]))
  4902. {
  4903. if(i == 3) { // E
  4904. float value = code_value();
  4905. if(value < 20.0) {
  4906. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4907. max_jerk[E_AXIS] *= factor;
  4908. max_feedrate[i] *= factor;
  4909. axis_steps_per_sqr_second[i] *= factor;
  4910. }
  4911. axis_steps_per_unit[i] = value;
  4912. }
  4913. else {
  4914. axis_steps_per_unit[i] = code_value();
  4915. }
  4916. }
  4917. }
  4918. break;
  4919. case 110: // M110 - reset line pos
  4920. if (code_seen('N'))
  4921. gcode_LastN = code_value_long();
  4922. break;
  4923. #ifdef HOST_KEEPALIVE_FEATURE
  4924. case 113: // M113 - Get or set Host Keepalive interval
  4925. if (code_seen('S')) {
  4926. host_keepalive_interval = (uint8_t)code_value_short();
  4927. // NOMORE(host_keepalive_interval, 60);
  4928. }
  4929. else {
  4930. SERIAL_ECHO_START;
  4931. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4932. SERIAL_PROTOCOLLN("");
  4933. }
  4934. break;
  4935. #endif
  4936. case 115: // M115
  4937. if (code_seen('V')) {
  4938. // Report the Prusa version number.
  4939. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4940. } else if (code_seen('U')) {
  4941. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4942. // pause the print and ask the user to upgrade the firmware.
  4943. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4944. } else {
  4945. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4946. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4947. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4948. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4949. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4950. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4951. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4952. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4953. SERIAL_ECHOPGM(" UUID:");
  4954. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4955. }
  4956. break;
  4957. /* case 117: // M117 display message
  4958. starpos = (strchr(strchr_pointer + 5,'*'));
  4959. if(starpos!=NULL)
  4960. *(starpos)='\0';
  4961. lcd_setstatus(strchr_pointer + 5);
  4962. break;*/
  4963. case 114: // M114
  4964. gcode_M114();
  4965. break;
  4966. case 120: // M120
  4967. enable_endstops(false) ;
  4968. break;
  4969. case 121: // M121
  4970. enable_endstops(true) ;
  4971. break;
  4972. case 119: // M119
  4973. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4974. SERIAL_PROTOCOLLN("");
  4975. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4976. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4977. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4978. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4979. }else{
  4980. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4981. }
  4982. SERIAL_PROTOCOLLN("");
  4983. #endif
  4984. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4985. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4986. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4987. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4988. }else{
  4989. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4990. }
  4991. SERIAL_PROTOCOLLN("");
  4992. #endif
  4993. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4994. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4995. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4996. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4997. }else{
  4998. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4999. }
  5000. SERIAL_PROTOCOLLN("");
  5001. #endif
  5002. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5003. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5004. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5005. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5006. }else{
  5007. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5008. }
  5009. SERIAL_PROTOCOLLN("");
  5010. #endif
  5011. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5012. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5013. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5014. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5015. }else{
  5016. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5017. }
  5018. SERIAL_PROTOCOLLN("");
  5019. #endif
  5020. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5021. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5022. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5023. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5024. }else{
  5025. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5026. }
  5027. SERIAL_PROTOCOLLN("");
  5028. #endif
  5029. break;
  5030. //TODO: update for all axis, use for loop
  5031. #ifdef BLINKM
  5032. case 150: // M150
  5033. {
  5034. byte red;
  5035. byte grn;
  5036. byte blu;
  5037. if(code_seen('R')) red = code_value();
  5038. if(code_seen('U')) grn = code_value();
  5039. if(code_seen('B')) blu = code_value();
  5040. SendColors(red,grn,blu);
  5041. }
  5042. break;
  5043. #endif //BLINKM
  5044. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5045. {
  5046. uint8_t extruder = active_extruder;
  5047. if(code_seen('T')) {
  5048. extruder = code_value();
  5049. if(extruder >= EXTRUDERS) {
  5050. SERIAL_ECHO_START;
  5051. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5052. break;
  5053. }
  5054. }
  5055. if(code_seen('D')) {
  5056. float diameter = (float)code_value();
  5057. if (diameter == 0.0) {
  5058. // setting any extruder filament size disables volumetric on the assumption that
  5059. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5060. // for all extruders
  5061. volumetric_enabled = false;
  5062. } else {
  5063. filament_size[extruder] = (float)code_value();
  5064. // make sure all extruders have some sane value for the filament size
  5065. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5066. #if EXTRUDERS > 1
  5067. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5068. #if EXTRUDERS > 2
  5069. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5070. #endif
  5071. #endif
  5072. volumetric_enabled = true;
  5073. }
  5074. } else {
  5075. //reserved for setting filament diameter via UFID or filament measuring device
  5076. break;
  5077. }
  5078. calculate_extruder_multipliers();
  5079. }
  5080. break;
  5081. case 201: // M201
  5082. for (int8_t i = 0; i < NUM_AXIS; i++)
  5083. {
  5084. if (code_seen(axis_codes[i]))
  5085. {
  5086. unsigned long val = code_value();
  5087. #ifdef TMC2130
  5088. unsigned long val_silent = val;
  5089. if ((i == X_AXIS) || (i == Y_AXIS))
  5090. {
  5091. if (val > NORMAL_MAX_ACCEL_XY)
  5092. val = NORMAL_MAX_ACCEL_XY;
  5093. if (val_silent > SILENT_MAX_ACCEL_XY)
  5094. val_silent = SILENT_MAX_ACCEL_XY;
  5095. }
  5096. max_acceleration_units_per_sq_second_normal[i] = val;
  5097. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5098. #else //TMC2130
  5099. max_acceleration_units_per_sq_second[i] = val;
  5100. #endif //TMC2130
  5101. }
  5102. }
  5103. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5104. reset_acceleration_rates();
  5105. break;
  5106. #if 0 // Not used for Sprinter/grbl gen6
  5107. case 202: // M202
  5108. for(int8_t i=0; i < NUM_AXIS; i++) {
  5109. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5110. }
  5111. break;
  5112. #endif
  5113. case 203: // M203 max feedrate mm/sec
  5114. for (int8_t i = 0; i < NUM_AXIS; i++)
  5115. {
  5116. if (code_seen(axis_codes[i]))
  5117. {
  5118. float val = code_value();
  5119. #ifdef TMC2130
  5120. float val_silent = val;
  5121. if ((i == X_AXIS) || (i == Y_AXIS))
  5122. {
  5123. if (val > NORMAL_MAX_FEEDRATE_XY)
  5124. val = NORMAL_MAX_FEEDRATE_XY;
  5125. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5126. val_silent = SILENT_MAX_FEEDRATE_XY;
  5127. }
  5128. max_feedrate_normal[i] = val;
  5129. max_feedrate_silent[i] = val_silent;
  5130. #else //TMC2130
  5131. max_feedrate[i] = val;
  5132. #endif //TMC2130
  5133. }
  5134. }
  5135. break;
  5136. case 204:
  5137. // M204 acclereration settings.
  5138. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5139. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5140. {
  5141. if(code_seen('S')) {
  5142. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5143. // and it is also generated by Slic3r to control acceleration per extrusion type
  5144. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5145. acceleration = code_value();
  5146. // Interpret the T value as retract acceleration in the old Marlin format.
  5147. if(code_seen('T'))
  5148. retract_acceleration = code_value();
  5149. } else {
  5150. // New acceleration format, compatible with the upstream Marlin.
  5151. if(code_seen('P'))
  5152. acceleration = code_value();
  5153. if(code_seen('R'))
  5154. retract_acceleration = code_value();
  5155. if(code_seen('T')) {
  5156. // Interpret the T value as the travel acceleration in the new Marlin format.
  5157. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5158. // travel_acceleration = code_value();
  5159. }
  5160. }
  5161. }
  5162. break;
  5163. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5164. {
  5165. if(code_seen('S')) minimumfeedrate = code_value();
  5166. if(code_seen('T')) mintravelfeedrate = code_value();
  5167. if(code_seen('B')) minsegmenttime = code_value() ;
  5168. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5169. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5170. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5171. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5172. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5173. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5174. }
  5175. break;
  5176. case 206: // M206 additional homing offset
  5177. for(int8_t i=0; i < 3; i++)
  5178. {
  5179. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5180. }
  5181. break;
  5182. #ifdef FWRETRACT
  5183. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5184. {
  5185. if(code_seen('S'))
  5186. {
  5187. retract_length = code_value() ;
  5188. }
  5189. if(code_seen('F'))
  5190. {
  5191. retract_feedrate = code_value()/60 ;
  5192. }
  5193. if(code_seen('Z'))
  5194. {
  5195. retract_zlift = code_value() ;
  5196. }
  5197. }break;
  5198. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5199. {
  5200. if(code_seen('S'))
  5201. {
  5202. retract_recover_length = code_value() ;
  5203. }
  5204. if(code_seen('F'))
  5205. {
  5206. retract_recover_feedrate = code_value()/60 ;
  5207. }
  5208. }break;
  5209. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5210. {
  5211. if(code_seen('S'))
  5212. {
  5213. int t= code_value() ;
  5214. switch(t)
  5215. {
  5216. case 0:
  5217. {
  5218. autoretract_enabled=false;
  5219. retracted[0]=false;
  5220. #if EXTRUDERS > 1
  5221. retracted[1]=false;
  5222. #endif
  5223. #if EXTRUDERS > 2
  5224. retracted[2]=false;
  5225. #endif
  5226. }break;
  5227. case 1:
  5228. {
  5229. autoretract_enabled=true;
  5230. retracted[0]=false;
  5231. #if EXTRUDERS > 1
  5232. retracted[1]=false;
  5233. #endif
  5234. #if EXTRUDERS > 2
  5235. retracted[2]=false;
  5236. #endif
  5237. }break;
  5238. default:
  5239. SERIAL_ECHO_START;
  5240. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5241. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5242. SERIAL_ECHOLNPGM("\"(1)");
  5243. }
  5244. }
  5245. }break;
  5246. #endif // FWRETRACT
  5247. #if EXTRUDERS > 1
  5248. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5249. {
  5250. uint8_t extruder;
  5251. if(setTargetedHotend(218, extruder)){
  5252. break;
  5253. }
  5254. if(code_seen('X'))
  5255. {
  5256. extruder_offset[X_AXIS][extruder] = code_value();
  5257. }
  5258. if(code_seen('Y'))
  5259. {
  5260. extruder_offset[Y_AXIS][extruder] = code_value();
  5261. }
  5262. SERIAL_ECHO_START;
  5263. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5264. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5265. {
  5266. SERIAL_ECHO(" ");
  5267. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5268. SERIAL_ECHO(",");
  5269. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5270. }
  5271. SERIAL_ECHOLN("");
  5272. }break;
  5273. #endif
  5274. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5275. {
  5276. if(code_seen('S'))
  5277. {
  5278. feedmultiply = code_value() ;
  5279. }
  5280. }
  5281. break;
  5282. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5283. {
  5284. if(code_seen('S'))
  5285. {
  5286. int tmp_code = code_value();
  5287. if (code_seen('T'))
  5288. {
  5289. uint8_t extruder;
  5290. if(setTargetedHotend(221, extruder)){
  5291. break;
  5292. }
  5293. extruder_multiply[extruder] = tmp_code;
  5294. }
  5295. else
  5296. {
  5297. extrudemultiply = tmp_code ;
  5298. }
  5299. }
  5300. calculate_extruder_multipliers();
  5301. }
  5302. break;
  5303. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5304. {
  5305. if(code_seen('P')){
  5306. int pin_number = code_value(); // pin number
  5307. int pin_state = -1; // required pin state - default is inverted
  5308. if(code_seen('S')) pin_state = code_value(); // required pin state
  5309. if(pin_state >= -1 && pin_state <= 1){
  5310. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5311. {
  5312. if (sensitive_pins[i] == pin_number)
  5313. {
  5314. pin_number = -1;
  5315. break;
  5316. }
  5317. }
  5318. if (pin_number > -1)
  5319. {
  5320. int target = LOW;
  5321. st_synchronize();
  5322. pinMode(pin_number, INPUT);
  5323. switch(pin_state){
  5324. case 1:
  5325. target = HIGH;
  5326. break;
  5327. case 0:
  5328. target = LOW;
  5329. break;
  5330. case -1:
  5331. target = !digitalRead(pin_number);
  5332. break;
  5333. }
  5334. while(digitalRead(pin_number) != target){
  5335. manage_heater();
  5336. manage_inactivity();
  5337. lcd_update(0);
  5338. }
  5339. }
  5340. }
  5341. }
  5342. }
  5343. break;
  5344. #if NUM_SERVOS > 0
  5345. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5346. {
  5347. int servo_index = -1;
  5348. int servo_position = 0;
  5349. if (code_seen('P'))
  5350. servo_index = code_value();
  5351. if (code_seen('S')) {
  5352. servo_position = code_value();
  5353. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5354. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5355. servos[servo_index].attach(0);
  5356. #endif
  5357. servos[servo_index].write(servo_position);
  5358. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5359. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5360. servos[servo_index].detach();
  5361. #endif
  5362. }
  5363. else {
  5364. SERIAL_ECHO_START;
  5365. SERIAL_ECHO("Servo ");
  5366. SERIAL_ECHO(servo_index);
  5367. SERIAL_ECHOLN(" out of range");
  5368. }
  5369. }
  5370. else if (servo_index >= 0) {
  5371. SERIAL_PROTOCOL(_T(MSG_OK));
  5372. SERIAL_PROTOCOL(" Servo ");
  5373. SERIAL_PROTOCOL(servo_index);
  5374. SERIAL_PROTOCOL(": ");
  5375. SERIAL_PROTOCOL(servos[servo_index].read());
  5376. SERIAL_PROTOCOLLN("");
  5377. }
  5378. }
  5379. break;
  5380. #endif // NUM_SERVOS > 0
  5381. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5382. case 300: // M300
  5383. {
  5384. int beepS = code_seen('S') ? code_value() : 110;
  5385. int beepP = code_seen('P') ? code_value() : 1000;
  5386. if (beepS > 0)
  5387. {
  5388. #if BEEPER > 0
  5389. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5390. tone(BEEPER, beepS);
  5391. delay(beepP);
  5392. noTone(BEEPER);
  5393. #endif
  5394. }
  5395. else
  5396. {
  5397. delay(beepP);
  5398. }
  5399. }
  5400. break;
  5401. #endif // M300
  5402. #ifdef PIDTEMP
  5403. case 301: // M301
  5404. {
  5405. if(code_seen('P')) Kp = code_value();
  5406. if(code_seen('I')) Ki = scalePID_i(code_value());
  5407. if(code_seen('D')) Kd = scalePID_d(code_value());
  5408. #ifdef PID_ADD_EXTRUSION_RATE
  5409. if(code_seen('C')) Kc = code_value();
  5410. #endif
  5411. updatePID();
  5412. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5413. SERIAL_PROTOCOL(" p:");
  5414. SERIAL_PROTOCOL(Kp);
  5415. SERIAL_PROTOCOL(" i:");
  5416. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5417. SERIAL_PROTOCOL(" d:");
  5418. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5419. #ifdef PID_ADD_EXTRUSION_RATE
  5420. SERIAL_PROTOCOL(" c:");
  5421. //Kc does not have scaling applied above, or in resetting defaults
  5422. SERIAL_PROTOCOL(Kc);
  5423. #endif
  5424. SERIAL_PROTOCOLLN("");
  5425. }
  5426. break;
  5427. #endif //PIDTEMP
  5428. #ifdef PIDTEMPBED
  5429. case 304: // M304
  5430. {
  5431. if(code_seen('P')) bedKp = code_value();
  5432. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5433. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5434. updatePID();
  5435. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5436. SERIAL_PROTOCOL(" p:");
  5437. SERIAL_PROTOCOL(bedKp);
  5438. SERIAL_PROTOCOL(" i:");
  5439. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5440. SERIAL_PROTOCOL(" d:");
  5441. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5442. SERIAL_PROTOCOLLN("");
  5443. }
  5444. break;
  5445. #endif //PIDTEMP
  5446. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5447. {
  5448. #ifdef CHDK
  5449. SET_OUTPUT(CHDK);
  5450. WRITE(CHDK, HIGH);
  5451. chdkHigh = millis();
  5452. chdkActive = true;
  5453. #else
  5454. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5455. const uint8_t NUM_PULSES=16;
  5456. const float PULSE_LENGTH=0.01524;
  5457. for(int i=0; i < NUM_PULSES; i++) {
  5458. WRITE(PHOTOGRAPH_PIN, HIGH);
  5459. _delay_ms(PULSE_LENGTH);
  5460. WRITE(PHOTOGRAPH_PIN, LOW);
  5461. _delay_ms(PULSE_LENGTH);
  5462. }
  5463. delay(7.33);
  5464. for(int i=0; i < NUM_PULSES; i++) {
  5465. WRITE(PHOTOGRAPH_PIN, HIGH);
  5466. _delay_ms(PULSE_LENGTH);
  5467. WRITE(PHOTOGRAPH_PIN, LOW);
  5468. _delay_ms(PULSE_LENGTH);
  5469. }
  5470. #endif
  5471. #endif //chdk end if
  5472. }
  5473. break;
  5474. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5475. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5476. {
  5477. float temp = .0;
  5478. if (code_seen('S')) temp=code_value();
  5479. set_extrude_min_temp(temp);
  5480. }
  5481. break;
  5482. #endif
  5483. case 303: // M303 PID autotune
  5484. {
  5485. float temp = 150.0;
  5486. int e=0;
  5487. int c=5;
  5488. if (code_seen('E')) e=code_value();
  5489. if (e<0)
  5490. temp=70;
  5491. if (code_seen('S')) temp=code_value();
  5492. if (code_seen('C')) c=code_value();
  5493. PID_autotune(temp, e, c);
  5494. }
  5495. break;
  5496. case 400: // M400 finish all moves
  5497. {
  5498. st_synchronize();
  5499. }
  5500. break;
  5501. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5502. {
  5503. //currently three different materials are needed (default, flex and PVA)
  5504. //add storing this information for different load/unload profiles etc. in the future
  5505. //firmware does not wait for "ok" from mmu
  5506. if (mmu_enabled)
  5507. {
  5508. uint8_t extruder;
  5509. uint8_t filament;
  5510. if(code_seen('E')) extruder = code_value();
  5511. if(code_seen('F')) filament = code_value();
  5512. mmu_set_filament_type(extruder, filament);
  5513. }
  5514. }
  5515. break;
  5516. case 500: // M500 Store settings in EEPROM
  5517. {
  5518. Config_StoreSettings(EEPROM_OFFSET);
  5519. }
  5520. break;
  5521. case 501: // M501 Read settings from EEPROM
  5522. {
  5523. Config_RetrieveSettings(EEPROM_OFFSET);
  5524. }
  5525. break;
  5526. case 502: // M502 Revert to default settings
  5527. {
  5528. Config_ResetDefault();
  5529. }
  5530. break;
  5531. case 503: // M503 print settings currently in memory
  5532. {
  5533. Config_PrintSettings();
  5534. }
  5535. break;
  5536. case 509: //M509 Force language selection
  5537. {
  5538. lang_reset();
  5539. SERIAL_ECHO_START;
  5540. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5541. }
  5542. break;
  5543. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5544. case 540:
  5545. {
  5546. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5547. }
  5548. break;
  5549. #endif
  5550. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5551. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5552. {
  5553. float value;
  5554. if (code_seen('Z'))
  5555. {
  5556. value = code_value();
  5557. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5558. {
  5559. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5560. SERIAL_ECHO_START;
  5561. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5562. SERIAL_PROTOCOLLN("");
  5563. }
  5564. else
  5565. {
  5566. SERIAL_ECHO_START;
  5567. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5568. SERIAL_ECHORPGM(MSG_Z_MIN);
  5569. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5570. SERIAL_ECHORPGM(MSG_Z_MAX);
  5571. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5572. SERIAL_PROTOCOLLN("");
  5573. }
  5574. }
  5575. else
  5576. {
  5577. SERIAL_ECHO_START;
  5578. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5579. SERIAL_ECHO(-zprobe_zoffset);
  5580. SERIAL_PROTOCOLLN("");
  5581. }
  5582. break;
  5583. }
  5584. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5585. #ifdef FILAMENTCHANGEENABLE
  5586. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5587. {
  5588. st_synchronize();
  5589. float x_position = current_position[X_AXIS];
  5590. float y_position = current_position[Y_AXIS];
  5591. float z_shift = 0;
  5592. float e_shift_init = 0;
  5593. float e_shift_late = 0;
  5594. bool automatic = false;
  5595. //Retract extruder
  5596. if(code_seen('E'))
  5597. {
  5598. e_shift_init = code_value();
  5599. }
  5600. else
  5601. {
  5602. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5603. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5604. #endif
  5605. }
  5606. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5607. if (code_seen('L'))
  5608. {
  5609. e_shift_late = code_value();
  5610. }
  5611. else
  5612. {
  5613. #ifdef FILAMENTCHANGE_FINALRETRACT
  5614. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5615. #endif
  5616. }
  5617. //Lift Z
  5618. if(code_seen('Z'))
  5619. {
  5620. z_shift = code_value();
  5621. }
  5622. else
  5623. {
  5624. #ifdef FILAMENTCHANGE_ZADD
  5625. z_shift= FILAMENTCHANGE_ZADD ;
  5626. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5627. #endif
  5628. }
  5629. //Move XY to side
  5630. if(code_seen('X'))
  5631. {
  5632. x_position = code_value();
  5633. }
  5634. else
  5635. {
  5636. #ifdef FILAMENTCHANGE_XPOS
  5637. x_position = FILAMENTCHANGE_XPOS;
  5638. #endif
  5639. }
  5640. if(code_seen('Y'))
  5641. {
  5642. y_position = code_value();
  5643. }
  5644. else
  5645. {
  5646. #ifdef FILAMENTCHANGE_YPOS
  5647. y_position = FILAMENTCHANGE_YPOS ;
  5648. #endif
  5649. }
  5650. if (mmu_enabled && code_seen("AUTO"))
  5651. automatic = true;
  5652. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5653. }
  5654. break;
  5655. #endif //FILAMENTCHANGEENABLE
  5656. case 601: {
  5657. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5658. }
  5659. break;
  5660. case 602: {
  5661. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5662. }
  5663. break;
  5664. #ifdef PINDA_THERMISTOR
  5665. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5666. {
  5667. int set_target_pinda = 0;
  5668. if (code_seen('S')) {
  5669. set_target_pinda = code_value();
  5670. }
  5671. else {
  5672. break;
  5673. }
  5674. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5675. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5676. SERIAL_PROTOCOL(set_target_pinda);
  5677. SERIAL_PROTOCOLLN("");
  5678. codenum = millis();
  5679. cancel_heatup = false;
  5680. bool is_pinda_cooling = false;
  5681. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5682. is_pinda_cooling = true;
  5683. }
  5684. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5685. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5686. {
  5687. SERIAL_PROTOCOLPGM("P:");
  5688. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5689. SERIAL_PROTOCOLPGM("/");
  5690. SERIAL_PROTOCOL(set_target_pinda);
  5691. SERIAL_PROTOCOLLN("");
  5692. codenum = millis();
  5693. }
  5694. manage_heater();
  5695. manage_inactivity();
  5696. lcd_update(0);
  5697. }
  5698. LCD_MESSAGERPGM(_T(MSG_OK));
  5699. break;
  5700. }
  5701. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5702. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5703. uint8_t cal_status = calibration_status_pinda();
  5704. int16_t usteps = 0;
  5705. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5706. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5707. for (uint8_t i = 0; i < 6; i++)
  5708. {
  5709. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5710. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5711. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5712. SERIAL_PROTOCOLPGM(", ");
  5713. SERIAL_PROTOCOL(35 + (i * 5));
  5714. SERIAL_PROTOCOLPGM(", ");
  5715. SERIAL_PROTOCOL(usteps);
  5716. SERIAL_PROTOCOLPGM(", ");
  5717. SERIAL_PROTOCOL(mm * 1000);
  5718. SERIAL_PROTOCOLLN("");
  5719. }
  5720. }
  5721. else if (code_seen('!')) { // ! - Set factory default values
  5722. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5723. int16_t z_shift = 8; //40C - 20um - 8usteps
  5724. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5725. z_shift = 24; //45C - 60um - 24usteps
  5726. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5727. z_shift = 48; //50C - 120um - 48usteps
  5728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5729. z_shift = 80; //55C - 200um - 80usteps
  5730. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5731. z_shift = 120; //60C - 300um - 120usteps
  5732. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5733. SERIAL_PROTOCOLLN("factory restored");
  5734. }
  5735. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5736. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5737. int16_t z_shift = 0;
  5738. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5739. SERIAL_PROTOCOLLN("zerorized");
  5740. }
  5741. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5742. int16_t usteps = code_value();
  5743. if (code_seen('I')) {
  5744. byte index = code_value();
  5745. if ((index >= 0) && (index < 5)) {
  5746. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5747. SERIAL_PROTOCOLLN("OK");
  5748. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5749. for (uint8_t i = 0; i < 6; i++)
  5750. {
  5751. usteps = 0;
  5752. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5753. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5754. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5755. SERIAL_PROTOCOLPGM(", ");
  5756. SERIAL_PROTOCOL(35 + (i * 5));
  5757. SERIAL_PROTOCOLPGM(", ");
  5758. SERIAL_PROTOCOL(usteps);
  5759. SERIAL_PROTOCOLPGM(", ");
  5760. SERIAL_PROTOCOL(mm * 1000);
  5761. SERIAL_PROTOCOLLN("");
  5762. }
  5763. }
  5764. }
  5765. }
  5766. else {
  5767. SERIAL_PROTOCOLPGM("no valid command");
  5768. }
  5769. break;
  5770. #endif //PINDA_THERMISTOR
  5771. #ifdef LIN_ADVANCE
  5772. case 900: // M900: Set LIN_ADVANCE options.
  5773. gcode_M900();
  5774. break;
  5775. #endif
  5776. case 907: // M907 Set digital trimpot motor current using axis codes.
  5777. {
  5778. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5779. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5780. if(code_seen('B')) st_current_set(4,code_value());
  5781. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5782. #endif
  5783. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5784. if(code_seen('X')) st_current_set(0, code_value());
  5785. #endif
  5786. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5787. if(code_seen('Z')) st_current_set(1, code_value());
  5788. #endif
  5789. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5790. if(code_seen('E')) st_current_set(2, code_value());
  5791. #endif
  5792. }
  5793. break;
  5794. case 908: // M908 Control digital trimpot directly.
  5795. {
  5796. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5797. uint8_t channel,current;
  5798. if(code_seen('P')) channel=code_value();
  5799. if(code_seen('S')) current=code_value();
  5800. digitalPotWrite(channel, current);
  5801. #endif
  5802. }
  5803. break;
  5804. #ifdef TMC2130
  5805. case 910: // M910 TMC2130 init
  5806. {
  5807. tmc2130_init();
  5808. }
  5809. break;
  5810. case 911: // M911 Set TMC2130 holding currents
  5811. {
  5812. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5813. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5814. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5815. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5816. }
  5817. break;
  5818. case 912: // M912 Set TMC2130 running currents
  5819. {
  5820. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5821. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5822. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5823. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5824. }
  5825. break;
  5826. case 913: // M913 Print TMC2130 currents
  5827. {
  5828. tmc2130_print_currents();
  5829. }
  5830. break;
  5831. case 914: // M914 Set normal mode
  5832. {
  5833. tmc2130_mode = TMC2130_MODE_NORMAL;
  5834. update_mode_profile();
  5835. tmc2130_init();
  5836. }
  5837. break;
  5838. case 915: // M915 Set silent mode
  5839. {
  5840. tmc2130_mode = TMC2130_MODE_SILENT;
  5841. update_mode_profile();
  5842. tmc2130_init();
  5843. }
  5844. break;
  5845. case 916: // M916 Set sg_thrs
  5846. {
  5847. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5848. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5849. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5850. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5851. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5852. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5853. }
  5854. break;
  5855. case 917: // M917 Set TMC2130 pwm_ampl
  5856. {
  5857. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5858. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5859. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5860. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5861. }
  5862. break;
  5863. case 918: // M918 Set TMC2130 pwm_grad
  5864. {
  5865. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5866. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5867. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5868. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5869. }
  5870. break;
  5871. #endif //TMC2130
  5872. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5873. {
  5874. #ifdef TMC2130
  5875. if(code_seen('E'))
  5876. {
  5877. uint16_t res_new = code_value();
  5878. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5879. {
  5880. st_synchronize();
  5881. uint8_t axis = E_AXIS;
  5882. uint16_t res = tmc2130_get_res(axis);
  5883. tmc2130_set_res(axis, res_new);
  5884. if (res_new > res)
  5885. {
  5886. uint16_t fac = (res_new / res);
  5887. axis_steps_per_unit[axis] *= fac;
  5888. position[E_AXIS] *= fac;
  5889. }
  5890. else
  5891. {
  5892. uint16_t fac = (res / res_new);
  5893. axis_steps_per_unit[axis] /= fac;
  5894. position[E_AXIS] /= fac;
  5895. }
  5896. }
  5897. }
  5898. #else //TMC2130
  5899. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5900. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5901. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5902. if(code_seen('B')) microstep_mode(4,code_value());
  5903. microstep_readings();
  5904. #endif
  5905. #endif //TMC2130
  5906. }
  5907. break;
  5908. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5909. {
  5910. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5911. if(code_seen('S')) switch((int)code_value())
  5912. {
  5913. case 1:
  5914. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5915. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5916. break;
  5917. case 2:
  5918. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5919. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5920. break;
  5921. }
  5922. microstep_readings();
  5923. #endif
  5924. }
  5925. break;
  5926. case 701: //M701: load filament
  5927. {
  5928. if (mmu_enabled && code_seen('E'))
  5929. tmp_extruder = code_value();
  5930. gcode_M701();
  5931. }
  5932. break;
  5933. case 702:
  5934. {
  5935. if (mmu_enabled)
  5936. {
  5937. if (code_seen('U'))
  5938. extr_unload_used(); //unload all filaments which were used in current print
  5939. else if (code_seen('C'))
  5940. extr_unload(); //unload just current filament
  5941. else
  5942. extr_unload_all(); //unload all filaments
  5943. }
  5944. else
  5945. unload_filament();
  5946. }
  5947. break;
  5948. case 999: // M999: Restart after being stopped
  5949. Stopped = false;
  5950. lcd_reset_alert_level();
  5951. gcode_LastN = Stopped_gcode_LastN;
  5952. FlushSerialRequestResend();
  5953. break;
  5954. default:
  5955. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5956. }
  5957. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5958. mcode_in_progress = 0;
  5959. }
  5960. } // end if(code_seen('M')) (end of M codes)
  5961. else if(code_seen('T'))
  5962. {
  5963. int index;
  5964. st_synchronize();
  5965. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5966. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5967. SERIAL_ECHOLNPGM("Invalid T code.");
  5968. }
  5969. else {
  5970. if (*(strchr_pointer + index) == '?') {
  5971. tmp_extruder = choose_extruder_menu();
  5972. }
  5973. else {
  5974. tmp_extruder = code_value();
  5975. }
  5976. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5977. if (mmu_enabled)
  5978. {
  5979. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5980. manage_response(true, true);
  5981. mmu_command(MMU_CMD_C0);
  5982. mmu_extruder = tmp_extruder; //filament change is finished
  5983. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5984. {
  5985. mmu_load_to_nozzle();
  5986. }
  5987. }
  5988. else
  5989. {
  5990. #ifdef SNMM
  5991. #ifdef LIN_ADVANCE
  5992. if (mmu_extruder != tmp_extruder)
  5993. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5994. #endif
  5995. mmu_extruder = tmp_extruder;
  5996. delay(100);
  5997. disable_e0();
  5998. disable_e1();
  5999. disable_e2();
  6000. pinMode(E_MUX0_PIN, OUTPUT);
  6001. pinMode(E_MUX1_PIN, OUTPUT);
  6002. delay(100);
  6003. SERIAL_ECHO_START;
  6004. SERIAL_ECHO("T:");
  6005. SERIAL_ECHOLN((int)tmp_extruder);
  6006. switch (tmp_extruder) {
  6007. case 1:
  6008. WRITE(E_MUX0_PIN, HIGH);
  6009. WRITE(E_MUX1_PIN, LOW);
  6010. break;
  6011. case 2:
  6012. WRITE(E_MUX0_PIN, LOW);
  6013. WRITE(E_MUX1_PIN, HIGH);
  6014. break;
  6015. case 3:
  6016. WRITE(E_MUX0_PIN, HIGH);
  6017. WRITE(E_MUX1_PIN, HIGH);
  6018. break;
  6019. default:
  6020. WRITE(E_MUX0_PIN, LOW);
  6021. WRITE(E_MUX1_PIN, LOW);
  6022. break;
  6023. }
  6024. delay(100);
  6025. #else //SNMM
  6026. if (tmp_extruder >= EXTRUDERS) {
  6027. SERIAL_ECHO_START;
  6028. SERIAL_ECHOPGM("T");
  6029. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6030. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6031. }
  6032. else {
  6033. #if EXTRUDERS > 1
  6034. boolean make_move = false;
  6035. #endif
  6036. if (code_seen('F')) {
  6037. #if EXTRUDERS > 1
  6038. make_move = true;
  6039. #endif
  6040. next_feedrate = code_value();
  6041. if (next_feedrate > 0.0) {
  6042. feedrate = next_feedrate;
  6043. }
  6044. }
  6045. #if EXTRUDERS > 1
  6046. if (tmp_extruder != active_extruder) {
  6047. // Save current position to return to after applying extruder offset
  6048. memcpy(destination, current_position, sizeof(destination));
  6049. // Offset extruder (only by XY)
  6050. int i;
  6051. for (i = 0; i < 2; i++) {
  6052. current_position[i] = current_position[i] -
  6053. extruder_offset[i][active_extruder] +
  6054. extruder_offset[i][tmp_extruder];
  6055. }
  6056. // Set the new active extruder and position
  6057. active_extruder = tmp_extruder;
  6058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6059. // Move to the old position if 'F' was in the parameters
  6060. if (make_move && Stopped == false) {
  6061. prepare_move();
  6062. }
  6063. }
  6064. #endif
  6065. SERIAL_ECHO_START;
  6066. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6067. SERIAL_PROTOCOLLN((int)active_extruder);
  6068. }
  6069. #endif //SNMM
  6070. }
  6071. }
  6072. } // end if(code_seen('T')) (end of T codes)
  6073. else if (code_seen('D')) // D codes (debug)
  6074. {
  6075. switch((int)code_value())
  6076. {
  6077. #ifdef DEBUG_DCODES
  6078. case -1: // D-1 - Endless loop
  6079. dcode__1(); break;
  6080. case 0: // D0 - Reset
  6081. dcode_0(); break;
  6082. case 1: // D1 - Clear EEPROM
  6083. dcode_1(); break;
  6084. case 2: // D2 - Read/Write RAM
  6085. dcode_2(); break;
  6086. #endif //DEBUG_DCODES
  6087. #ifdef DEBUG_DCODE3
  6088. case 3: // D3 - Read/Write EEPROM
  6089. dcode_3(); break;
  6090. #endif //DEBUG_DCODE3
  6091. #ifdef DEBUG_DCODES
  6092. case 4: // D4 - Read/Write PIN
  6093. dcode_4(); break;
  6094. case 5: // D5 - Read/Write FLASH
  6095. // dcode_5(); break;
  6096. break;
  6097. case 6: // D6 - Read/Write external FLASH
  6098. dcode_6(); break;
  6099. case 7: // D7 - Read/Write Bootloader
  6100. dcode_7(); break;
  6101. case 8: // D8 - Read/Write PINDA
  6102. dcode_8(); break;
  6103. case 9: // D9 - Read/Write ADC
  6104. dcode_9(); break;
  6105. case 10: // D10 - XYZ calibration = OK
  6106. dcode_10(); break;
  6107. #ifdef TMC2130
  6108. case 2130: // D9125 - TMC2130
  6109. dcode_2130(); break;
  6110. #endif //TMC2130
  6111. #ifdef FILAMENT_SENSOR
  6112. case 9125: // D9125 - FILAMENT_SENSOR
  6113. dcode_9125(); break;
  6114. #endif //FILAMENT_SENSOR
  6115. #endif //DEBUG_DCODES
  6116. }
  6117. }
  6118. else
  6119. {
  6120. SERIAL_ECHO_START;
  6121. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6122. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6123. SERIAL_ECHOLNPGM("\"(2)");
  6124. }
  6125. KEEPALIVE_STATE(NOT_BUSY);
  6126. ClearToSend();
  6127. }
  6128. void FlushSerialRequestResend()
  6129. {
  6130. //char cmdbuffer[bufindr][100]="Resend:";
  6131. MYSERIAL.flush();
  6132. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6133. }
  6134. // Confirm the execution of a command, if sent from a serial line.
  6135. // Execution of a command from a SD card will not be confirmed.
  6136. void ClearToSend()
  6137. {
  6138. previous_millis_cmd = millis();
  6139. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6140. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6141. }
  6142. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6143. void update_currents() {
  6144. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6145. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6146. float tmp_motor[3];
  6147. //SERIAL_ECHOLNPGM("Currents updated: ");
  6148. if (destination[Z_AXIS] < Z_SILENT) {
  6149. //SERIAL_ECHOLNPGM("LOW");
  6150. for (uint8_t i = 0; i < 3; i++) {
  6151. st_current_set(i, current_low[i]);
  6152. /*MYSERIAL.print(int(i));
  6153. SERIAL_ECHOPGM(": ");
  6154. MYSERIAL.println(current_low[i]);*/
  6155. }
  6156. }
  6157. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6158. //SERIAL_ECHOLNPGM("HIGH");
  6159. for (uint8_t i = 0; i < 3; i++) {
  6160. st_current_set(i, current_high[i]);
  6161. /*MYSERIAL.print(int(i));
  6162. SERIAL_ECHOPGM(": ");
  6163. MYSERIAL.println(current_high[i]);*/
  6164. }
  6165. }
  6166. else {
  6167. for (uint8_t i = 0; i < 3; i++) {
  6168. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6169. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6170. st_current_set(i, tmp_motor[i]);
  6171. /*MYSERIAL.print(int(i));
  6172. SERIAL_ECHOPGM(": ");
  6173. MYSERIAL.println(tmp_motor[i]);*/
  6174. }
  6175. }
  6176. }
  6177. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6178. void get_coordinates()
  6179. {
  6180. bool seen[4]={false,false,false,false};
  6181. for(int8_t i=0; i < NUM_AXIS; i++) {
  6182. if(code_seen(axis_codes[i]))
  6183. {
  6184. bool relative = axis_relative_modes[i] || relative_mode;
  6185. destination[i] = (float)code_value();
  6186. if (i == E_AXIS) {
  6187. float emult = extruder_multiplier[active_extruder];
  6188. if (emult != 1.) {
  6189. if (! relative) {
  6190. destination[i] -= current_position[i];
  6191. relative = true;
  6192. }
  6193. destination[i] *= emult;
  6194. }
  6195. }
  6196. if (relative)
  6197. destination[i] += current_position[i];
  6198. seen[i]=true;
  6199. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6200. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6201. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6202. }
  6203. else destination[i] = current_position[i]; //Are these else lines really needed?
  6204. }
  6205. if(code_seen('F')) {
  6206. next_feedrate = code_value();
  6207. #ifdef MAX_SILENT_FEEDRATE
  6208. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6209. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6210. #endif //MAX_SILENT_FEEDRATE
  6211. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6212. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6213. {
  6214. // float e_max_speed =
  6215. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6216. }
  6217. }
  6218. }
  6219. void get_arc_coordinates()
  6220. {
  6221. #ifdef SF_ARC_FIX
  6222. bool relative_mode_backup = relative_mode;
  6223. relative_mode = true;
  6224. #endif
  6225. get_coordinates();
  6226. #ifdef SF_ARC_FIX
  6227. relative_mode=relative_mode_backup;
  6228. #endif
  6229. if(code_seen('I')) {
  6230. offset[0] = code_value();
  6231. }
  6232. else {
  6233. offset[0] = 0.0;
  6234. }
  6235. if(code_seen('J')) {
  6236. offset[1] = code_value();
  6237. }
  6238. else {
  6239. offset[1] = 0.0;
  6240. }
  6241. }
  6242. void clamp_to_software_endstops(float target[3])
  6243. {
  6244. #ifdef DEBUG_DISABLE_SWLIMITS
  6245. return;
  6246. #endif //DEBUG_DISABLE_SWLIMITS
  6247. world2machine_clamp(target[0], target[1]);
  6248. // Clamp the Z coordinate.
  6249. if (min_software_endstops) {
  6250. float negative_z_offset = 0;
  6251. #ifdef ENABLE_AUTO_BED_LEVELING
  6252. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6253. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6254. #endif
  6255. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6256. }
  6257. if (max_software_endstops) {
  6258. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6259. }
  6260. }
  6261. #ifdef MESH_BED_LEVELING
  6262. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6263. float dx = x - current_position[X_AXIS];
  6264. float dy = y - current_position[Y_AXIS];
  6265. float dz = z - current_position[Z_AXIS];
  6266. int n_segments = 0;
  6267. if (mbl.active) {
  6268. float len = abs(dx) + abs(dy);
  6269. if (len > 0)
  6270. // Split to 3cm segments or shorter.
  6271. n_segments = int(ceil(len / 30.f));
  6272. }
  6273. if (n_segments > 1) {
  6274. float de = e - current_position[E_AXIS];
  6275. for (int i = 1; i < n_segments; ++ i) {
  6276. float t = float(i) / float(n_segments);
  6277. if (saved_printing || (mbl.active == false)) return;
  6278. plan_buffer_line(
  6279. current_position[X_AXIS] + t * dx,
  6280. current_position[Y_AXIS] + t * dy,
  6281. current_position[Z_AXIS] + t * dz,
  6282. current_position[E_AXIS] + t * de,
  6283. feed_rate, extruder);
  6284. }
  6285. }
  6286. // The rest of the path.
  6287. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6288. current_position[X_AXIS] = x;
  6289. current_position[Y_AXIS] = y;
  6290. current_position[Z_AXIS] = z;
  6291. current_position[E_AXIS] = e;
  6292. }
  6293. #endif // MESH_BED_LEVELING
  6294. void prepare_move()
  6295. {
  6296. clamp_to_software_endstops(destination);
  6297. previous_millis_cmd = millis();
  6298. // Do not use feedmultiply for E or Z only moves
  6299. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6300. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6301. }
  6302. else {
  6303. #ifdef MESH_BED_LEVELING
  6304. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6305. #else
  6306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6307. #endif
  6308. }
  6309. for(int8_t i=0; i < NUM_AXIS; i++) {
  6310. current_position[i] = destination[i];
  6311. }
  6312. }
  6313. void prepare_arc_move(char isclockwise) {
  6314. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6315. // Trace the arc
  6316. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6317. // As far as the parser is concerned, the position is now == target. In reality the
  6318. // motion control system might still be processing the action and the real tool position
  6319. // in any intermediate location.
  6320. for(int8_t i=0; i < NUM_AXIS; i++) {
  6321. current_position[i] = destination[i];
  6322. }
  6323. previous_millis_cmd = millis();
  6324. }
  6325. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6326. #if defined(FAN_PIN)
  6327. #if CONTROLLERFAN_PIN == FAN_PIN
  6328. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6329. #endif
  6330. #endif
  6331. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6332. unsigned long lastMotorCheck = 0;
  6333. void controllerFan()
  6334. {
  6335. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6336. {
  6337. lastMotorCheck = millis();
  6338. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6339. #if EXTRUDERS > 2
  6340. || !READ(E2_ENABLE_PIN)
  6341. #endif
  6342. #if EXTRUDER > 1
  6343. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6344. || !READ(X2_ENABLE_PIN)
  6345. #endif
  6346. || !READ(E1_ENABLE_PIN)
  6347. #endif
  6348. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6349. {
  6350. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6351. }
  6352. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6353. {
  6354. digitalWrite(CONTROLLERFAN_PIN, 0);
  6355. analogWrite(CONTROLLERFAN_PIN, 0);
  6356. }
  6357. else
  6358. {
  6359. // allows digital or PWM fan output to be used (see M42 handling)
  6360. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6361. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6362. }
  6363. }
  6364. }
  6365. #endif
  6366. #ifdef TEMP_STAT_LEDS
  6367. static bool blue_led = false;
  6368. static bool red_led = false;
  6369. static uint32_t stat_update = 0;
  6370. void handle_status_leds(void) {
  6371. float max_temp = 0.0;
  6372. if(millis() > stat_update) {
  6373. stat_update += 500; // Update every 0.5s
  6374. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6375. max_temp = max(max_temp, degHotend(cur_extruder));
  6376. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6377. }
  6378. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6379. max_temp = max(max_temp, degTargetBed());
  6380. max_temp = max(max_temp, degBed());
  6381. #endif
  6382. if((max_temp > 55.0) && (red_led == false)) {
  6383. digitalWrite(STAT_LED_RED, 1);
  6384. digitalWrite(STAT_LED_BLUE, 0);
  6385. red_led = true;
  6386. blue_led = false;
  6387. }
  6388. if((max_temp < 54.0) && (blue_led == false)) {
  6389. digitalWrite(STAT_LED_RED, 0);
  6390. digitalWrite(STAT_LED_BLUE, 1);
  6391. red_led = false;
  6392. blue_led = true;
  6393. }
  6394. }
  6395. }
  6396. #endif
  6397. #ifdef SAFETYTIMER
  6398. /**
  6399. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6400. *
  6401. * Full screen blocking notification message is shown after heater turning off.
  6402. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6403. * damage print.
  6404. *
  6405. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6406. */
  6407. static void handleSafetyTimer()
  6408. {
  6409. #if (EXTRUDERS > 1)
  6410. #error Implemented only for one extruder.
  6411. #endif //(EXTRUDERS > 1)
  6412. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6413. {
  6414. safetyTimer.stop();
  6415. }
  6416. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6417. {
  6418. safetyTimer.start();
  6419. }
  6420. else if (safetyTimer.expired(safetytimer_inactive_time))
  6421. {
  6422. setTargetBed(0);
  6423. setAllTargetHotends(0);
  6424. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6425. }
  6426. }
  6427. #endif //SAFETYTIMER
  6428. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6429. {
  6430. #ifdef FILAMENT_SENSOR
  6431. if (mmu_enabled == false)
  6432. {
  6433. if (mcode_in_progress != 600) //M600 not in progress
  6434. {
  6435. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6436. {
  6437. if (fsensor_check_autoload())
  6438. {
  6439. fsensor_autoload_check_stop();
  6440. if (degHotend0() > EXTRUDE_MINTEMP)
  6441. {
  6442. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6443. tone(BEEPER, 1000);
  6444. delay_keep_alive(50);
  6445. noTone(BEEPER);
  6446. loading_flag = true;
  6447. enquecommand_front_P((PSTR("M701")));
  6448. }
  6449. else
  6450. {
  6451. lcd_update_enable(false);
  6452. lcd_clear();
  6453. lcd_set_cursor(0, 0);
  6454. lcd_puts_P(_T(MSG_ERROR));
  6455. lcd_set_cursor(0, 2);
  6456. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6457. delay(2000);
  6458. lcd_clear();
  6459. lcd_update_enable(true);
  6460. }
  6461. }
  6462. }
  6463. else
  6464. fsensor_autoload_check_stop();
  6465. }
  6466. }
  6467. #endif //FILAMENT_SENSOR
  6468. #ifdef SAFETYTIMER
  6469. handleSafetyTimer();
  6470. #endif //SAFETYTIMER
  6471. #if defined(KILL_PIN) && KILL_PIN > -1
  6472. static int killCount = 0; // make the inactivity button a bit less responsive
  6473. const int KILL_DELAY = 10000;
  6474. #endif
  6475. if(buflen < (BUFSIZE-1)){
  6476. get_command();
  6477. }
  6478. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6479. if(max_inactive_time)
  6480. kill(_n(""), 4);
  6481. if(stepper_inactive_time) {
  6482. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6483. {
  6484. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6485. disable_x();
  6486. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6487. disable_y();
  6488. disable_z();
  6489. disable_e0();
  6490. disable_e1();
  6491. disable_e2();
  6492. }
  6493. }
  6494. }
  6495. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6496. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6497. {
  6498. chdkActive = false;
  6499. WRITE(CHDK, LOW);
  6500. }
  6501. #endif
  6502. #if defined(KILL_PIN) && KILL_PIN > -1
  6503. // Check if the kill button was pressed and wait just in case it was an accidental
  6504. // key kill key press
  6505. // -------------------------------------------------------------------------------
  6506. if( 0 == READ(KILL_PIN) )
  6507. {
  6508. killCount++;
  6509. }
  6510. else if (killCount > 0)
  6511. {
  6512. killCount--;
  6513. }
  6514. // Exceeded threshold and we can confirm that it was not accidental
  6515. // KILL the machine
  6516. // ----------------------------------------------------------------
  6517. if ( killCount >= KILL_DELAY)
  6518. {
  6519. kill("", 5);
  6520. }
  6521. #endif
  6522. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6523. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6524. #endif
  6525. #ifdef EXTRUDER_RUNOUT_PREVENT
  6526. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6527. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6528. {
  6529. bool oldstatus=READ(E0_ENABLE_PIN);
  6530. enable_e0();
  6531. float oldepos=current_position[E_AXIS];
  6532. float oldedes=destination[E_AXIS];
  6533. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6534. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6535. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6536. current_position[E_AXIS]=oldepos;
  6537. destination[E_AXIS]=oldedes;
  6538. plan_set_e_position(oldepos);
  6539. previous_millis_cmd=millis();
  6540. st_synchronize();
  6541. WRITE(E0_ENABLE_PIN,oldstatus);
  6542. }
  6543. #endif
  6544. #ifdef TEMP_STAT_LEDS
  6545. handle_status_leds();
  6546. #endif
  6547. check_axes_activity();
  6548. mmu_loop();
  6549. }
  6550. void kill(const char *full_screen_message, unsigned char id)
  6551. {
  6552. printf_P(_N("KILL: %d\n"), id);
  6553. //return;
  6554. cli(); // Stop interrupts
  6555. disable_heater();
  6556. disable_x();
  6557. // SERIAL_ECHOLNPGM("kill - disable Y");
  6558. disable_y();
  6559. disable_z();
  6560. disable_e0();
  6561. disable_e1();
  6562. disable_e2();
  6563. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6564. pinMode(PS_ON_PIN,INPUT);
  6565. #endif
  6566. SERIAL_ERROR_START;
  6567. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6568. if (full_screen_message != NULL) {
  6569. SERIAL_ERRORLNRPGM(full_screen_message);
  6570. lcd_display_message_fullscreen_P(full_screen_message);
  6571. } else {
  6572. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6573. }
  6574. // FMC small patch to update the LCD before ending
  6575. sei(); // enable interrupts
  6576. for ( int i=5; i--; lcd_update(0))
  6577. {
  6578. delay(200);
  6579. }
  6580. cli(); // disable interrupts
  6581. suicide();
  6582. while(1)
  6583. {
  6584. #ifdef WATCHDOG
  6585. wdt_reset();
  6586. #endif //WATCHDOG
  6587. /* Intentionally left empty */
  6588. } // Wait for reset
  6589. }
  6590. void Stop()
  6591. {
  6592. disable_heater();
  6593. if(Stopped == false) {
  6594. Stopped = true;
  6595. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6596. SERIAL_ERROR_START;
  6597. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6598. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6599. }
  6600. }
  6601. bool IsStopped() { return Stopped; };
  6602. #ifdef FAST_PWM_FAN
  6603. void setPwmFrequency(uint8_t pin, int val)
  6604. {
  6605. val &= 0x07;
  6606. switch(digitalPinToTimer(pin))
  6607. {
  6608. #if defined(TCCR0A)
  6609. case TIMER0A:
  6610. case TIMER0B:
  6611. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6612. // TCCR0B |= val;
  6613. break;
  6614. #endif
  6615. #if defined(TCCR1A)
  6616. case TIMER1A:
  6617. case TIMER1B:
  6618. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6619. // TCCR1B |= val;
  6620. break;
  6621. #endif
  6622. #if defined(TCCR2)
  6623. case TIMER2:
  6624. case TIMER2:
  6625. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6626. TCCR2 |= val;
  6627. break;
  6628. #endif
  6629. #if defined(TCCR2A)
  6630. case TIMER2A:
  6631. case TIMER2B:
  6632. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6633. TCCR2B |= val;
  6634. break;
  6635. #endif
  6636. #if defined(TCCR3A)
  6637. case TIMER3A:
  6638. case TIMER3B:
  6639. case TIMER3C:
  6640. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6641. TCCR3B |= val;
  6642. break;
  6643. #endif
  6644. #if defined(TCCR4A)
  6645. case TIMER4A:
  6646. case TIMER4B:
  6647. case TIMER4C:
  6648. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6649. TCCR4B |= val;
  6650. break;
  6651. #endif
  6652. #if defined(TCCR5A)
  6653. case TIMER5A:
  6654. case TIMER5B:
  6655. case TIMER5C:
  6656. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6657. TCCR5B |= val;
  6658. break;
  6659. #endif
  6660. }
  6661. }
  6662. #endif //FAST_PWM_FAN
  6663. //! @brief Get and validate extruder number
  6664. //!
  6665. //! If it is not specified, active_extruder is returned in parameter extruder.
  6666. //! @param [in] code M code number
  6667. //! @param [out] extruder
  6668. //! @return error
  6669. //! @retval true Invalid extruder specified in T code
  6670. //! @retval false Valid extruder specified in T code, or not specifiead
  6671. bool setTargetedHotend(int code, uint8_t &extruder)
  6672. {
  6673. extruder = active_extruder;
  6674. if(code_seen('T')) {
  6675. extruder = code_value();
  6676. if(extruder >= EXTRUDERS) {
  6677. SERIAL_ECHO_START;
  6678. switch(code){
  6679. case 104:
  6680. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6681. break;
  6682. case 105:
  6683. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6684. break;
  6685. case 109:
  6686. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6687. break;
  6688. case 218:
  6689. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6690. break;
  6691. case 221:
  6692. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6693. break;
  6694. }
  6695. SERIAL_PROTOCOLLN((int)extruder);
  6696. return true;
  6697. }
  6698. }
  6699. return false;
  6700. }
  6701. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6702. {
  6703. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6704. {
  6705. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6706. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6707. }
  6708. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6709. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6710. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6711. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6712. total_filament_used = 0;
  6713. }
  6714. float calculate_extruder_multiplier(float diameter) {
  6715. float out = 1.f;
  6716. if (volumetric_enabled && diameter > 0.f) {
  6717. float area = M_PI * diameter * diameter * 0.25;
  6718. out = 1.f / area;
  6719. }
  6720. if (extrudemultiply != 100)
  6721. out *= float(extrudemultiply) * 0.01f;
  6722. return out;
  6723. }
  6724. void calculate_extruder_multipliers() {
  6725. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6726. #if EXTRUDERS > 1
  6727. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6728. #if EXTRUDERS > 2
  6729. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6730. #endif
  6731. #endif
  6732. }
  6733. void delay_keep_alive(unsigned int ms)
  6734. {
  6735. for (;;) {
  6736. manage_heater();
  6737. // Manage inactivity, but don't disable steppers on timeout.
  6738. manage_inactivity(true);
  6739. lcd_update(0);
  6740. if (ms == 0)
  6741. break;
  6742. else if (ms >= 50) {
  6743. delay(50);
  6744. ms -= 50;
  6745. } else {
  6746. delay(ms);
  6747. ms = 0;
  6748. }
  6749. }
  6750. }
  6751. static void wait_for_heater(long codenum, uint8_t extruder) {
  6752. #ifdef TEMP_RESIDENCY_TIME
  6753. long residencyStart;
  6754. residencyStart = -1;
  6755. /* continue to loop until we have reached the target temp
  6756. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6757. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6758. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6759. #else
  6760. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6761. #endif //TEMP_RESIDENCY_TIME
  6762. if ((millis() - codenum) > 1000UL)
  6763. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6764. if (!farm_mode) {
  6765. SERIAL_PROTOCOLPGM("T:");
  6766. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6767. SERIAL_PROTOCOLPGM(" E:");
  6768. SERIAL_PROTOCOL((int)extruder);
  6769. #ifdef TEMP_RESIDENCY_TIME
  6770. SERIAL_PROTOCOLPGM(" W:");
  6771. if (residencyStart > -1)
  6772. {
  6773. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6774. SERIAL_PROTOCOLLN(codenum);
  6775. }
  6776. else
  6777. {
  6778. SERIAL_PROTOCOLLN("?");
  6779. }
  6780. }
  6781. #else
  6782. SERIAL_PROTOCOLLN("");
  6783. #endif
  6784. codenum = millis();
  6785. }
  6786. manage_heater();
  6787. manage_inactivity();
  6788. lcd_update(0);
  6789. #ifdef TEMP_RESIDENCY_TIME
  6790. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6791. or when current temp falls outside the hysteresis after target temp was reached */
  6792. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6793. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6794. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6795. {
  6796. residencyStart = millis();
  6797. }
  6798. #endif //TEMP_RESIDENCY_TIME
  6799. }
  6800. }
  6801. void check_babystep()
  6802. {
  6803. int babystep_z;
  6804. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6805. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6806. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6807. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6809. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6810. lcd_update_enable(true);
  6811. }
  6812. }
  6813. #ifdef DIS
  6814. void d_setup()
  6815. {
  6816. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6817. pinMode(D_DATA, INPUT_PULLUP);
  6818. pinMode(D_REQUIRE, OUTPUT);
  6819. digitalWrite(D_REQUIRE, HIGH);
  6820. }
  6821. float d_ReadData()
  6822. {
  6823. int digit[13];
  6824. String mergeOutput;
  6825. float output;
  6826. digitalWrite(D_REQUIRE, HIGH);
  6827. for (int i = 0; i<13; i++)
  6828. {
  6829. for (int j = 0; j < 4; j++)
  6830. {
  6831. while (digitalRead(D_DATACLOCK) == LOW) {}
  6832. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6833. bitWrite(digit[i], j, digitalRead(D_DATA));
  6834. }
  6835. }
  6836. digitalWrite(D_REQUIRE, LOW);
  6837. mergeOutput = "";
  6838. output = 0;
  6839. for (int r = 5; r <= 10; r++) //Merge digits
  6840. {
  6841. mergeOutput += digit[r];
  6842. }
  6843. output = mergeOutput.toFloat();
  6844. if (digit[4] == 8) //Handle sign
  6845. {
  6846. output *= -1;
  6847. }
  6848. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6849. {
  6850. output /= 10;
  6851. }
  6852. return output;
  6853. }
  6854. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6855. int t1 = 0;
  6856. int t_delay = 0;
  6857. int digit[13];
  6858. int m;
  6859. char str[3];
  6860. //String mergeOutput;
  6861. char mergeOutput[15];
  6862. float output;
  6863. int mesh_point = 0; //index number of calibration point
  6864. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6865. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6866. float mesh_home_z_search = 4;
  6867. float row[x_points_num];
  6868. int ix = 0;
  6869. int iy = 0;
  6870. const char* filename_wldsd = "wldsd.txt";
  6871. char data_wldsd[70];
  6872. char numb_wldsd[10];
  6873. d_setup();
  6874. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6875. // We don't know where we are! HOME!
  6876. // Push the commands to the front of the message queue in the reverse order!
  6877. // There shall be always enough space reserved for these commands.
  6878. repeatcommand_front(); // repeat G80 with all its parameters
  6879. enquecommand_front_P((PSTR("G28 W0")));
  6880. enquecommand_front_P((PSTR("G1 Z5")));
  6881. return;
  6882. }
  6883. unsigned int custom_message_type_old = custom_message_type;
  6884. unsigned int custom_message_state_old = custom_message_state;
  6885. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6886. custom_message_state = (x_points_num * y_points_num) + 10;
  6887. lcd_update(1);
  6888. mbl.reset();
  6889. babystep_undo();
  6890. card.openFile(filename_wldsd, false);
  6891. current_position[Z_AXIS] = mesh_home_z_search;
  6892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6893. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6894. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6895. setup_for_endstop_move(false);
  6896. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6897. SERIAL_PROTOCOL(x_points_num);
  6898. SERIAL_PROTOCOLPGM(",");
  6899. SERIAL_PROTOCOL(y_points_num);
  6900. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6901. SERIAL_PROTOCOL(mesh_home_z_search);
  6902. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6903. SERIAL_PROTOCOL(x_dimension);
  6904. SERIAL_PROTOCOLPGM(",");
  6905. SERIAL_PROTOCOL(y_dimension);
  6906. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6907. while (mesh_point != x_points_num * y_points_num) {
  6908. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6909. iy = mesh_point / x_points_num;
  6910. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6911. float z0 = 0.f;
  6912. current_position[Z_AXIS] = mesh_home_z_search;
  6913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6914. st_synchronize();
  6915. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6916. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6918. st_synchronize();
  6919. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6920. break;
  6921. card.closefile();
  6922. }
  6923. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6924. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6925. //strcat(data_wldsd, numb_wldsd);
  6926. //MYSERIAL.println(data_wldsd);
  6927. //delay(1000);
  6928. //delay(3000);
  6929. //t1 = millis();
  6930. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6931. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6932. memset(digit, 0, sizeof(digit));
  6933. //cli();
  6934. digitalWrite(D_REQUIRE, LOW);
  6935. for (int i = 0; i<13; i++)
  6936. {
  6937. //t1 = millis();
  6938. for (int j = 0; j < 4; j++)
  6939. {
  6940. while (digitalRead(D_DATACLOCK) == LOW) {}
  6941. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6942. bitWrite(digit[i], j, digitalRead(D_DATA));
  6943. }
  6944. //t_delay = (millis() - t1);
  6945. //SERIAL_PROTOCOLPGM(" ");
  6946. //SERIAL_PROTOCOL_F(t_delay, 5);
  6947. //SERIAL_PROTOCOLPGM(" ");
  6948. }
  6949. //sei();
  6950. digitalWrite(D_REQUIRE, HIGH);
  6951. mergeOutput[0] = '\0';
  6952. output = 0;
  6953. for (int r = 5; r <= 10; r++) //Merge digits
  6954. {
  6955. sprintf(str, "%d", digit[r]);
  6956. strcat(mergeOutput, str);
  6957. }
  6958. output = atof(mergeOutput);
  6959. if (digit[4] == 8) //Handle sign
  6960. {
  6961. output *= -1;
  6962. }
  6963. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6964. {
  6965. output *= 0.1;
  6966. }
  6967. //output = d_ReadData();
  6968. //row[ix] = current_position[Z_AXIS];
  6969. memset(data_wldsd, 0, sizeof(data_wldsd));
  6970. for (int i = 0; i <3; i++) {
  6971. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6972. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6973. strcat(data_wldsd, numb_wldsd);
  6974. strcat(data_wldsd, ";");
  6975. }
  6976. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6977. dtostrf(output, 8, 5, numb_wldsd);
  6978. strcat(data_wldsd, numb_wldsd);
  6979. //strcat(data_wldsd, ";");
  6980. card.write_command(data_wldsd);
  6981. //row[ix] = d_ReadData();
  6982. row[ix] = output; // current_position[Z_AXIS];
  6983. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6984. for (int i = 0; i < x_points_num; i++) {
  6985. SERIAL_PROTOCOLPGM(" ");
  6986. SERIAL_PROTOCOL_F(row[i], 5);
  6987. }
  6988. SERIAL_PROTOCOLPGM("\n");
  6989. }
  6990. custom_message_state--;
  6991. mesh_point++;
  6992. lcd_update(1);
  6993. }
  6994. card.closefile();
  6995. }
  6996. #endif
  6997. void temp_compensation_start() {
  6998. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  6999. custom_message_state = PINDA_HEAT_T + 1;
  7000. lcd_update(2);
  7001. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7002. current_position[E_AXIS] -= default_retraction;
  7003. }
  7004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7005. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7006. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7007. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7009. st_synchronize();
  7010. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7011. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7012. delay_keep_alive(1000);
  7013. custom_message_state = PINDA_HEAT_T - i;
  7014. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7015. else lcd_update(1);
  7016. }
  7017. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7018. custom_message_state = 0;
  7019. }
  7020. void temp_compensation_apply() {
  7021. int i_add;
  7022. int z_shift = 0;
  7023. float z_shift_mm;
  7024. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7025. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7026. i_add = (target_temperature_bed - 60) / 10;
  7027. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7028. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7029. }else {
  7030. //interpolation
  7031. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7032. }
  7033. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7035. st_synchronize();
  7036. plan_set_z_position(current_position[Z_AXIS]);
  7037. }
  7038. else {
  7039. //we have no temp compensation data
  7040. }
  7041. }
  7042. float temp_comp_interpolation(float inp_temperature) {
  7043. //cubic spline interpolation
  7044. int n, i, j;
  7045. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7046. int shift[10];
  7047. int temp_C[10];
  7048. n = 6; //number of measured points
  7049. shift[0] = 0;
  7050. for (i = 0; i < n; i++) {
  7051. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7052. temp_C[i] = 50 + i * 10; //temperature in C
  7053. #ifdef PINDA_THERMISTOR
  7054. temp_C[i] = 35 + i * 5; //temperature in C
  7055. #else
  7056. temp_C[i] = 50 + i * 10; //temperature in C
  7057. #endif
  7058. x[i] = (float)temp_C[i];
  7059. f[i] = (float)shift[i];
  7060. }
  7061. if (inp_temperature < x[0]) return 0;
  7062. for (i = n - 1; i>0; i--) {
  7063. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7064. h[i - 1] = x[i] - x[i - 1];
  7065. }
  7066. //*********** formation of h, s , f matrix **************
  7067. for (i = 1; i<n - 1; i++) {
  7068. m[i][i] = 2 * (h[i - 1] + h[i]);
  7069. if (i != 1) {
  7070. m[i][i - 1] = h[i - 1];
  7071. m[i - 1][i] = h[i - 1];
  7072. }
  7073. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7074. }
  7075. //*********** forward elimination **************
  7076. for (i = 1; i<n - 2; i++) {
  7077. temp = (m[i + 1][i] / m[i][i]);
  7078. for (j = 1; j <= n - 1; j++)
  7079. m[i + 1][j] -= temp*m[i][j];
  7080. }
  7081. //*********** backward substitution *********
  7082. for (i = n - 2; i>0; i--) {
  7083. sum = 0;
  7084. for (j = i; j <= n - 2; j++)
  7085. sum += m[i][j] * s[j];
  7086. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7087. }
  7088. for (i = 0; i<n - 1; i++)
  7089. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7090. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7091. b = s[i] / 2;
  7092. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7093. d = f[i];
  7094. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7095. }
  7096. return sum;
  7097. }
  7098. #ifdef PINDA_THERMISTOR
  7099. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7100. {
  7101. if (!temp_cal_active) return 0;
  7102. if (!calibration_status_pinda()) return 0;
  7103. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7104. }
  7105. #endif //PINDA_THERMISTOR
  7106. void long_pause() //long pause print
  7107. {
  7108. st_synchronize();
  7109. //save currently set parameters to global variables
  7110. saved_feedmultiply = feedmultiply;
  7111. HotendTempBckp = degTargetHotend(active_extruder);
  7112. fanSpeedBckp = fanSpeed;
  7113. start_pause_print = millis();
  7114. //save position
  7115. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7116. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7117. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7118. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7119. //retract
  7120. current_position[E_AXIS] -= default_retraction;
  7121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7122. //lift z
  7123. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7124. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7126. //set nozzle target temperature to 0
  7127. setAllTargetHotends(0);
  7128. //Move XY to side
  7129. current_position[X_AXIS] = X_PAUSE_POS;
  7130. current_position[Y_AXIS] = Y_PAUSE_POS;
  7131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7132. // Turn off the print fan
  7133. fanSpeed = 0;
  7134. st_synchronize();
  7135. }
  7136. void serialecho_temperatures() {
  7137. float tt = degHotend(active_extruder);
  7138. SERIAL_PROTOCOLPGM("T:");
  7139. SERIAL_PROTOCOL(tt);
  7140. SERIAL_PROTOCOLPGM(" E:");
  7141. SERIAL_PROTOCOL((int)active_extruder);
  7142. SERIAL_PROTOCOLPGM(" B:");
  7143. SERIAL_PROTOCOL_F(degBed(), 1);
  7144. SERIAL_PROTOCOLLN("");
  7145. }
  7146. extern uint32_t sdpos_atomic;
  7147. #ifdef UVLO_SUPPORT
  7148. void uvlo_()
  7149. {
  7150. unsigned long time_start = millis();
  7151. bool sd_print = card.sdprinting;
  7152. // Conserve power as soon as possible.
  7153. disable_x();
  7154. disable_y();
  7155. #ifdef TMC2130
  7156. tmc2130_set_current_h(Z_AXIS, 20);
  7157. tmc2130_set_current_r(Z_AXIS, 20);
  7158. tmc2130_set_current_h(E_AXIS, 20);
  7159. tmc2130_set_current_r(E_AXIS, 20);
  7160. #endif //TMC2130
  7161. // Indicate that the interrupt has been triggered.
  7162. // SERIAL_ECHOLNPGM("UVLO");
  7163. // Read out the current Z motor microstep counter. This will be later used
  7164. // for reaching the zero full step before powering off.
  7165. uint16_t z_microsteps = 0;
  7166. #ifdef TMC2130
  7167. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7168. #endif //TMC2130
  7169. // Calculate the file position, from which to resume this print.
  7170. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7171. {
  7172. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7173. sd_position -= sdlen_planner;
  7174. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7175. sd_position -= sdlen_cmdqueue;
  7176. if (sd_position < 0) sd_position = 0;
  7177. }
  7178. // Backup the feedrate in mm/min.
  7179. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7180. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7181. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7182. // are in action.
  7183. planner_abort_hard();
  7184. // Store the current extruder position.
  7185. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7186. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7187. // Clean the input command queue.
  7188. cmdqueue_reset();
  7189. card.sdprinting = false;
  7190. // card.closefile();
  7191. // Enable stepper driver interrupt to move Z axis.
  7192. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7193. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7194. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7195. sei();
  7196. plan_buffer_line(
  7197. current_position[X_AXIS],
  7198. current_position[Y_AXIS],
  7199. current_position[Z_AXIS],
  7200. current_position[E_AXIS] - default_retraction,
  7201. 95, active_extruder);
  7202. st_synchronize();
  7203. disable_e0();
  7204. plan_buffer_line(
  7205. current_position[X_AXIS],
  7206. current_position[Y_AXIS],
  7207. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7208. current_position[E_AXIS] - default_retraction,
  7209. 40, active_extruder);
  7210. st_synchronize();
  7211. disable_e0();
  7212. plan_buffer_line(
  7213. current_position[X_AXIS],
  7214. current_position[Y_AXIS],
  7215. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7216. current_position[E_AXIS] - default_retraction,
  7217. 40, active_extruder);
  7218. st_synchronize();
  7219. disable_e0();
  7220. disable_z();
  7221. // Move Z up to the next 0th full step.
  7222. // Write the file position.
  7223. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7224. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7225. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7226. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7227. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7228. // Scale the z value to 1u resolution.
  7229. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7230. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7231. }
  7232. // Read out the current Z motor microstep counter. This will be later used
  7233. // for reaching the zero full step before powering off.
  7234. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7235. // Store the current position.
  7236. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7237. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7238. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7239. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7240. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7241. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7242. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7243. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7244. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7245. #if EXTRUDERS > 1
  7246. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7247. #if EXTRUDERS > 2
  7248. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7249. #endif
  7250. #endif
  7251. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7252. // Finaly store the "power outage" flag.
  7253. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7254. st_synchronize();
  7255. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7256. disable_z();
  7257. // Increment power failure counter
  7258. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7259. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7260. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7261. #if 0
  7262. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7263. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7265. st_synchronize();
  7266. #endif
  7267. wdt_enable(WDTO_500MS);
  7268. WRITE(BEEPER,HIGH);
  7269. while(1)
  7270. ;
  7271. }
  7272. void uvlo_tiny()
  7273. {
  7274. uint16_t z_microsteps=0;
  7275. // Conserve power as soon as possible.
  7276. disable_x();
  7277. disable_y();
  7278. disable_e0();
  7279. #ifdef TMC2130
  7280. tmc2130_set_current_h(Z_AXIS, 20);
  7281. tmc2130_set_current_r(Z_AXIS, 20);
  7282. #endif //TMC2130
  7283. // Read out the current Z motor microstep counter
  7284. #ifdef TMC2130
  7285. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7286. #endif //TMC2130
  7287. planner_abort_hard();
  7288. sei();
  7289. plan_buffer_line(
  7290. current_position[X_AXIS],
  7291. current_position[Y_AXIS],
  7292. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7293. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7294. current_position[E_AXIS],
  7295. 40, active_extruder);
  7296. st_synchronize();
  7297. disable_z();
  7298. // Finaly store the "power outage" flag.
  7299. //if(sd_print)
  7300. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7301. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7302. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7303. // Increment power failure counter
  7304. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7305. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7306. wdt_enable(WDTO_500MS);
  7307. WRITE(BEEPER,HIGH);
  7308. while(1)
  7309. ;
  7310. }
  7311. #endif //UVLO_SUPPORT
  7312. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7313. void setup_fan_interrupt() {
  7314. //INT7
  7315. DDRE &= ~(1 << 7); //input pin
  7316. PORTE &= ~(1 << 7); //no internal pull-up
  7317. //start with sensing rising edge
  7318. EICRB &= ~(1 << 6);
  7319. EICRB |= (1 << 7);
  7320. //enable INT7 interrupt
  7321. EIMSK |= (1 << 7);
  7322. }
  7323. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7324. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7325. ISR(INT7_vect) {
  7326. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7327. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7328. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7329. t_fan_rising_edge = millis_nc();
  7330. }
  7331. else { //interrupt was triggered by falling edge
  7332. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7333. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7334. }
  7335. }
  7336. EICRB ^= (1 << 6); //change edge
  7337. }
  7338. #endif
  7339. #ifdef UVLO_SUPPORT
  7340. void setup_uvlo_interrupt() {
  7341. DDRE &= ~(1 << 4); //input pin
  7342. PORTE &= ~(1 << 4); //no internal pull-up
  7343. //sensing falling edge
  7344. EICRB |= (1 << 0);
  7345. EICRB &= ~(1 << 1);
  7346. //enable INT4 interrupt
  7347. EIMSK |= (1 << 4);
  7348. }
  7349. ISR(INT4_vect) {
  7350. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7351. SERIAL_ECHOLNPGM("INT4");
  7352. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7353. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7354. }
  7355. void recover_print(uint8_t automatic) {
  7356. char cmd[30];
  7357. lcd_update_enable(true);
  7358. lcd_update(2);
  7359. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7360. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7361. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7362. // Lift the print head, so one may remove the excess priming material.
  7363. if(!bTiny&&(current_position[Z_AXIS]<25))
  7364. enquecommand_P(PSTR("G1 Z25 F800"));
  7365. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7366. enquecommand_P(PSTR("G28 X Y"));
  7367. // Set the target bed and nozzle temperatures and wait.
  7368. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7369. enquecommand(cmd);
  7370. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7371. enquecommand(cmd);
  7372. enquecommand_P(PSTR("M83")); //E axis relative mode
  7373. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7374. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7375. if(automatic == 0){
  7376. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7377. }
  7378. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7379. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7380. // Restart the print.
  7381. restore_print_from_eeprom();
  7382. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7383. }
  7384. void recover_machine_state_after_power_panic(bool bTiny)
  7385. {
  7386. char cmd[30];
  7387. // 1) Recover the logical cordinates at the time of the power panic.
  7388. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7389. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7390. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7391. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7392. // The current position after power panic is moved to the next closest 0th full step.
  7393. if(bTiny)
  7394. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7395. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7396. else
  7397. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7398. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7399. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7400. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7401. sprintf_P(cmd, PSTR("G92 E"));
  7402. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7403. enquecommand(cmd);
  7404. }
  7405. memcpy(destination, current_position, sizeof(destination));
  7406. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7407. print_world_coordinates();
  7408. // 2) Initialize the logical to physical coordinate system transformation.
  7409. world2machine_initialize();
  7410. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7411. mbl.active = false;
  7412. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7413. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7414. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7415. // Scale the z value to 10u resolution.
  7416. int16_t v;
  7417. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7418. if (v != 0)
  7419. mbl.active = true;
  7420. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7421. }
  7422. if (mbl.active)
  7423. mbl.upsample_3x3();
  7424. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7425. // print_mesh_bed_leveling_table();
  7426. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7427. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7428. babystep_load();
  7429. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7430. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7431. // 6) Power up the motors, mark their positions as known.
  7432. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7433. axis_known_position[X_AXIS] = true; enable_x();
  7434. axis_known_position[Y_AXIS] = true; enable_y();
  7435. axis_known_position[Z_AXIS] = true; enable_z();
  7436. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7437. print_physical_coordinates();
  7438. // 7) Recover the target temperatures.
  7439. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7440. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7441. // 8) Recover extruder multipilers
  7442. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7443. #if EXTRUDERS > 1
  7444. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7445. #if EXTRUDERS > 2
  7446. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7447. #endif
  7448. #endif
  7449. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7450. }
  7451. void restore_print_from_eeprom() {
  7452. int feedrate_rec;
  7453. uint8_t fan_speed_rec;
  7454. char cmd[30];
  7455. char filename[13];
  7456. uint8_t depth = 0;
  7457. char dir_name[9];
  7458. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7459. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7460. SERIAL_ECHOPGM("Feedrate:");
  7461. MYSERIAL.println(feedrate_rec);
  7462. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7463. MYSERIAL.println(int(depth));
  7464. for (int i = 0; i < depth; i++) {
  7465. for (int j = 0; j < 8; j++) {
  7466. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7467. }
  7468. dir_name[8] = '\0';
  7469. MYSERIAL.println(dir_name);
  7470. strcpy(dir_names[i], dir_name);
  7471. card.chdir(dir_name);
  7472. }
  7473. for (int i = 0; i < 8; i++) {
  7474. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7475. }
  7476. filename[8] = '\0';
  7477. MYSERIAL.print(filename);
  7478. strcat_P(filename, PSTR(".gco"));
  7479. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7480. enquecommand(cmd);
  7481. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7482. SERIAL_ECHOPGM("Position read from eeprom:");
  7483. MYSERIAL.println(position);
  7484. // E axis relative mode.
  7485. enquecommand_P(PSTR("M83"));
  7486. // Move to the XY print position in logical coordinates, where the print has been killed.
  7487. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7488. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7489. strcat_P(cmd, PSTR(" F2000"));
  7490. enquecommand(cmd);
  7491. // Move the Z axis down to the print, in logical coordinates.
  7492. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7493. enquecommand(cmd);
  7494. // Unretract.
  7495. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7496. // Set the feedrate saved at the power panic.
  7497. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7498. enquecommand(cmd);
  7499. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7500. {
  7501. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7502. }
  7503. // Set the fan speed saved at the power panic.
  7504. strcpy_P(cmd, PSTR("M106 S"));
  7505. strcat(cmd, itostr3(int(fan_speed_rec)));
  7506. enquecommand(cmd);
  7507. // Set a position in the file.
  7508. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7509. enquecommand(cmd);
  7510. enquecommand_P(PSTR("G4 S0"));
  7511. enquecommand_P(PSTR("PRUSA uvlo"));
  7512. }
  7513. #endif //UVLO_SUPPORT
  7514. ////////////////////////////////////////////////////////////////////////////////
  7515. // save/restore printing
  7516. void stop_and_save_print_to_ram(float z_move, float e_move)
  7517. {
  7518. if (saved_printing) return;
  7519. #if 0
  7520. unsigned char nplanner_blocks;
  7521. #endif
  7522. unsigned char nlines;
  7523. uint16_t sdlen_planner;
  7524. uint16_t sdlen_cmdqueue;
  7525. cli();
  7526. if (card.sdprinting) {
  7527. #if 0
  7528. nplanner_blocks = number_of_blocks();
  7529. #endif
  7530. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7531. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7532. saved_sdpos -= sdlen_planner;
  7533. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7534. saved_sdpos -= sdlen_cmdqueue;
  7535. saved_printing_type = PRINTING_TYPE_SD;
  7536. }
  7537. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7538. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7539. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7540. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7541. saved_sdpos -= nlines;
  7542. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7543. saved_printing_type = PRINTING_TYPE_USB;
  7544. }
  7545. else {
  7546. //not sd printing nor usb printing
  7547. }
  7548. #if 0
  7549. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7550. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7551. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7552. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7553. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7554. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7555. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7556. {
  7557. card.setIndex(saved_sdpos);
  7558. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7559. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7560. MYSERIAL.print(char(card.get()));
  7561. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7562. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7563. MYSERIAL.print(char(card.get()));
  7564. SERIAL_ECHOLNPGM("End of command buffer");
  7565. }
  7566. {
  7567. // Print the content of the planner buffer, line by line:
  7568. card.setIndex(saved_sdpos);
  7569. int8_t iline = 0;
  7570. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7571. SERIAL_ECHOPGM("Planner line (from file): ");
  7572. MYSERIAL.print(int(iline), DEC);
  7573. SERIAL_ECHOPGM(", length: ");
  7574. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7575. SERIAL_ECHOPGM(", steps: (");
  7576. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7577. SERIAL_ECHOPGM(",");
  7578. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7579. SERIAL_ECHOPGM(",");
  7580. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7581. SERIAL_ECHOPGM(",");
  7582. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7583. SERIAL_ECHOPGM("), events: ");
  7584. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7585. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7586. MYSERIAL.print(char(card.get()));
  7587. }
  7588. }
  7589. {
  7590. // Print the content of the command buffer, line by line:
  7591. int8_t iline = 0;
  7592. union {
  7593. struct {
  7594. char lo;
  7595. char hi;
  7596. } lohi;
  7597. uint16_t value;
  7598. } sdlen_single;
  7599. int _bufindr = bufindr;
  7600. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7601. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7602. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7603. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7604. }
  7605. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7606. MYSERIAL.print(int(iline), DEC);
  7607. SERIAL_ECHOPGM(", type: ");
  7608. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7609. SERIAL_ECHOPGM(", len: ");
  7610. MYSERIAL.println(sdlen_single.value, DEC);
  7611. // Print the content of the buffer line.
  7612. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7613. SERIAL_ECHOPGM("Buffer line (from file): ");
  7614. MYSERIAL.println(int(iline), DEC);
  7615. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7616. MYSERIAL.print(char(card.get()));
  7617. if (-- _buflen == 0)
  7618. break;
  7619. // First skip the current command ID and iterate up to the end of the string.
  7620. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7621. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7622. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7623. // If the end of the buffer was empty,
  7624. if (_bufindr == sizeof(cmdbuffer)) {
  7625. // skip to the start and find the nonzero command.
  7626. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7627. }
  7628. }
  7629. }
  7630. #endif
  7631. #if 0
  7632. saved_feedrate2 = feedrate; //save feedrate
  7633. #else
  7634. // Try to deduce the feedrate from the first block of the planner.
  7635. // Speed is in mm/min.
  7636. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7637. #endif
  7638. planner_abort_hard(); //abort printing
  7639. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7640. saved_active_extruder = active_extruder; //save active_extruder
  7641. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7642. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7643. cmdqueue_reset(); //empty cmdqueue
  7644. card.sdprinting = false;
  7645. // card.closefile();
  7646. saved_printing = true;
  7647. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7648. st_reset_timer();
  7649. sei();
  7650. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7651. #if 1
  7652. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7653. char buf[48];
  7654. // First unretract (relative extrusion)
  7655. if(!saved_extruder_relative_mode){
  7656. strcpy_P(buf, PSTR("M83"));
  7657. enquecommand(buf, false);
  7658. }
  7659. //retract 45mm/s
  7660. strcpy_P(buf, PSTR("G1 E"));
  7661. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7662. strcat_P(buf, PSTR(" F"));
  7663. dtostrf(2700, 8, 3, buf + strlen(buf));
  7664. enquecommand(buf, false);
  7665. // Then lift Z axis
  7666. strcpy_P(buf, PSTR("G1 Z"));
  7667. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7668. strcat_P(buf, PSTR(" F"));
  7669. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7670. // At this point the command queue is empty.
  7671. enquecommand(buf, false);
  7672. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7673. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7674. repeatcommand_front();
  7675. #else
  7676. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7677. st_synchronize(); //wait moving
  7678. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7679. memcpy(destination, current_position, sizeof(destination));
  7680. #endif
  7681. }
  7682. }
  7683. void restore_print_from_ram_and_continue(float e_move)
  7684. {
  7685. if (!saved_printing) return;
  7686. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7687. // current_position[axis] = st_get_position_mm(axis);
  7688. active_extruder = saved_active_extruder; //restore active_extruder
  7689. feedrate = saved_feedrate2; //restore feedrate
  7690. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7691. float e = saved_pos[E_AXIS] - e_move;
  7692. plan_set_e_position(e);
  7693. //first move print head in XY to the saved position:
  7694. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7695. st_synchronize();
  7696. //then move Z
  7697. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7698. st_synchronize();
  7699. //and finaly unretract (35mm/s)
  7700. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7701. st_synchronize();
  7702. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7703. memcpy(destination, current_position, sizeof(destination));
  7704. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7705. card.setIndex(saved_sdpos);
  7706. sdpos_atomic = saved_sdpos;
  7707. card.sdprinting = true;
  7708. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7709. }
  7710. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7711. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7712. serial_count = 0;
  7713. FlushSerialRequestResend();
  7714. }
  7715. else {
  7716. //not sd printing nor usb printing
  7717. }
  7718. lcd_setstatuspgm(_T(WELCOME_MSG));
  7719. saved_printing = false;
  7720. }
  7721. void print_world_coordinates()
  7722. {
  7723. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7724. }
  7725. void print_physical_coordinates()
  7726. {
  7727. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7728. }
  7729. void print_mesh_bed_leveling_table()
  7730. {
  7731. SERIAL_ECHOPGM("mesh bed leveling: ");
  7732. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7733. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7734. MYSERIAL.print(mbl.z_values[y][x], 3);
  7735. SERIAL_ECHOPGM(" ");
  7736. }
  7737. SERIAL_ECHOLNPGM("");
  7738. }
  7739. uint16_t print_time_remaining() {
  7740. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7741. #ifdef TMC2130
  7742. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7743. else print_t = print_time_remaining_silent;
  7744. #else
  7745. print_t = print_time_remaining_normal;
  7746. #endif //TMC2130
  7747. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7748. return print_t;
  7749. }
  7750. uint8_t calc_percent_done()
  7751. {
  7752. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7753. uint8_t percent_done = 0;
  7754. #ifdef TMC2130
  7755. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7756. percent_done = print_percent_done_normal;
  7757. }
  7758. else if (print_percent_done_silent <= 100) {
  7759. percent_done = print_percent_done_silent;
  7760. }
  7761. #else
  7762. if (print_percent_done_normal <= 100) {
  7763. percent_done = print_percent_done_normal;
  7764. }
  7765. #endif //TMC2130
  7766. else {
  7767. percent_done = card.percentDone();
  7768. }
  7769. return percent_done;
  7770. }
  7771. static void print_time_remaining_init()
  7772. {
  7773. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7774. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7775. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7776. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7777. }
  7778. void M600_check_state()
  7779. {
  7780. //Wait for user to check the state
  7781. lcd_change_fil_state = 0;
  7782. while (lcd_change_fil_state != 1){
  7783. lcd_change_fil_state = 0;
  7784. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7785. lcd_alright();
  7786. KEEPALIVE_STATE(IN_HANDLER);
  7787. switch(lcd_change_fil_state){
  7788. // Filament failed to load so load it again
  7789. case 2:
  7790. if (mmu_enabled)
  7791. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7792. else
  7793. M600_load_filament_movements();
  7794. break;
  7795. // Filament loaded properly but color is not clear
  7796. case 3:
  7797. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7799. lcd_loading_color();
  7800. break;
  7801. // Everything good
  7802. default:
  7803. lcd_change_success();
  7804. break;
  7805. }
  7806. }
  7807. }
  7808. void M600_wait_for_user() {
  7809. //Beep, manage nozzle heater and wait for user to start unload filament
  7810. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7811. int counterBeep = 0;
  7812. unsigned long waiting_start_time = millis();
  7813. uint8_t wait_for_user_state = 0;
  7814. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7815. bool bFirst=true;
  7816. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7817. manage_heater();
  7818. manage_inactivity(true);
  7819. #if BEEPER > 0
  7820. if (counterBeep == 500) {
  7821. counterBeep = 0;
  7822. }
  7823. SET_OUTPUT(BEEPER);
  7824. if (counterBeep == 0) {
  7825. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7826. {
  7827. bFirst=false;
  7828. WRITE(BEEPER, HIGH);
  7829. }
  7830. }
  7831. if (counterBeep == 20) {
  7832. WRITE(BEEPER, LOW);
  7833. }
  7834. counterBeep++;
  7835. #endif //BEEPER > 0
  7836. switch (wait_for_user_state) {
  7837. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7838. delay_keep_alive(4);
  7839. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7840. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7841. wait_for_user_state = 1;
  7842. setTargetHotend(0, 0);
  7843. setTargetHotend(0, 1);
  7844. setTargetHotend(0, 2);
  7845. st_synchronize();
  7846. disable_e0();
  7847. disable_e1();
  7848. disable_e2();
  7849. }
  7850. break;
  7851. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7852. delay_keep_alive(4);
  7853. if (lcd_clicked()) {
  7854. setTargetHotend(HotendTempBckp, active_extruder);
  7855. lcd_wait_for_heater();
  7856. wait_for_user_state = 2;
  7857. }
  7858. break;
  7859. case 2: //waiting for nozzle to reach target temperature
  7860. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7861. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7862. waiting_start_time = millis();
  7863. wait_for_user_state = 0;
  7864. }
  7865. else {
  7866. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7867. lcd_set_cursor(1, 4);
  7868. lcd_print(ftostr3(degHotend(active_extruder)));
  7869. }
  7870. break;
  7871. }
  7872. }
  7873. WRITE(BEEPER, LOW);
  7874. }
  7875. void M600_load_filament_movements()
  7876. {
  7877. #ifdef SNMM
  7878. display_loading();
  7879. do
  7880. {
  7881. current_position[E_AXIS] += 0.002;
  7882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7883. delay_keep_alive(2);
  7884. }
  7885. while (!lcd_clicked());
  7886. st_synchronize();
  7887. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7889. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7891. current_position[E_AXIS] += 40;
  7892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7893. current_position[E_AXIS] += 10;
  7894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7895. #else
  7896. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7898. #endif
  7899. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7901. lcd_loading_filament();
  7902. }
  7903. void M600_load_filament() {
  7904. //load filament for single material and SNMM
  7905. lcd_wait_interact();
  7906. //load_filament_time = millis();
  7907. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7908. #ifdef FILAMENT_SENSOR
  7909. fsensor_autoload_check_start();
  7910. #endif //FILAMENT_SENSOR
  7911. while(!lcd_clicked())
  7912. {
  7913. manage_heater();
  7914. manage_inactivity(true);
  7915. #ifdef FILAMENT_SENSOR
  7916. if (fsensor_check_autoload())
  7917. {
  7918. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7919. tone(BEEPER, 1000);
  7920. delay_keep_alive(50);
  7921. noTone(BEEPER);
  7922. break;
  7923. }
  7924. #endif //FILAMENT_SENSOR
  7925. }
  7926. #ifdef FILAMENT_SENSOR
  7927. fsensor_autoload_check_stop();
  7928. #endif //FILAMENT_SENSOR
  7929. KEEPALIVE_STATE(IN_HANDLER);
  7930. #ifdef FSENSOR_QUALITY
  7931. fsensor_oq_meassure_start(70);
  7932. #endif //FSENSOR_QUALITY
  7933. M600_load_filament_movements();
  7934. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7935. tone(BEEPER, 500);
  7936. delay_keep_alive(50);
  7937. noTone(BEEPER);
  7938. #ifdef FSENSOR_QUALITY
  7939. fsensor_oq_meassure_stop();
  7940. if (!fsensor_oq_result())
  7941. {
  7942. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7943. lcd_update_enable(true);
  7944. lcd_update(2);
  7945. if (disable)
  7946. fsensor_disable();
  7947. }
  7948. #endif //FSENSOR_QUALITY
  7949. lcd_update_enable(false);
  7950. }
  7951. #define FIL_LOAD_LENGTH 60