Marlin_main.cpp 235 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M73 - Show percent done and print time remaining
  114. // M80 - Turn on Power Supply
  115. // M81 - Turn off Power Supply
  116. // M82 - Set E codes absolute (default)
  117. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  118. // M84 - Disable steppers until next move,
  119. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  120. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  121. // M92 - Set axis_steps_per_unit - same syntax as G92
  122. // M104 - Set extruder target temp
  123. // M105 - Read current temp
  124. // M106 - Fan on
  125. // M107 - Fan off
  126. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  127. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  128. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  129. // M112 - Emergency stop
  130. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  131. // M114 - Output current position to serial port
  132. // M115 - Capabilities string
  133. // M117 - display message
  134. // M119 - Output Endstop status to serial port
  135. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  136. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  137. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  139. // M140 - Set bed target temp
  140. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  144. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  148. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. // M206 - set additional homing offset
  150. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. // M220 S<factor in percent>- set speed factor override percentage
  155. // M221 S<factor in percent>- set extrude factor override percentage
  156. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  157. // M240 - Trigger a camera to take a photograph
  158. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  160. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. // M301 - Set PID parameters P I and D
  162. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. // M304 - Set bed PID parameters P I and D
  165. // M400 - Finish all moves
  166. // M401 - Lower z-probe if present
  167. // M402 - Raise z-probe if present
  168. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  169. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  170. // M406 - Turn off Filament Sensor extrusion control
  171. // M407 - Displays measured filament diameter
  172. // M500 - stores parameters in EEPROM
  173. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  174. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  175. // M503 - print the current settings (from memory not from EEPROM)
  176. // M509 - force language selection on next restart
  177. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  178. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  179. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  180. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  181. // M907 - Set digital trimpot motor current using axis codes.
  182. // M908 - Control digital trimpot directly.
  183. // M350 - Set microstepping mode.
  184. // M351 - Toggle MS1 MS2 pins directly.
  185. // M928 - Start SD logging (M928 filename.g) - ended by M29
  186. // M999 - Restart after being stopped by error
  187. //Stepper Movement Variables
  188. //===========================================================================
  189. //=============================imported variables============================
  190. //===========================================================================
  191. //===========================================================================
  192. //=============================public variables=============================
  193. //===========================================================================
  194. #ifdef SDSUPPORT
  195. CardReader card;
  196. #endif
  197. unsigned long TimeSent = millis();
  198. unsigned long TimeNow = millis();
  199. unsigned long PingTime = millis();
  200. unsigned long NcTime;
  201. union Data
  202. {
  203. byte b[2];
  204. int value;
  205. };
  206. float homing_feedrate[] = HOMING_FEEDRATE;
  207. // Currently only the extruder axis may be switched to a relative mode.
  208. // Other axes are always absolute or relative based on the common relative_mode flag.
  209. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  210. int feedmultiply=100; //100->1 200->2
  211. int saved_feedmultiply;
  212. int extrudemultiply=100; //100->1 200->2
  213. int extruder_multiply[EXTRUDERS] = {100
  214. #if EXTRUDERS > 1
  215. , 100
  216. #if EXTRUDERS > 2
  217. , 100
  218. #endif
  219. #endif
  220. };
  221. int bowden_length[4];
  222. bool is_usb_printing = false;
  223. bool homing_flag = false;
  224. bool temp_cal_active = false;
  225. unsigned long kicktime = millis()+100000;
  226. unsigned int usb_printing_counter;
  227. int lcd_change_fil_state = 0;
  228. int feedmultiplyBckp = 100;
  229. float HotendTempBckp = 0;
  230. int fanSpeedBckp = 0;
  231. float pause_lastpos[4];
  232. unsigned long pause_time = 0;
  233. unsigned long start_pause_print = millis();
  234. unsigned long load_filament_time;
  235. bool mesh_bed_leveling_flag = false;
  236. bool mesh_bed_run_from_menu = false;
  237. unsigned char lang_selected = 0;
  238. bool prusa_sd_card_upload = false;
  239. unsigned int status_number = 0;
  240. unsigned long total_filament_used;
  241. unsigned int heating_status;
  242. unsigned int heating_status_counter;
  243. bool custom_message;
  244. bool loading_flag = false;
  245. unsigned int custom_message_type;
  246. unsigned int custom_message_state;
  247. char snmm_filaments_used = 0;
  248. uint8_t selectedSerialPort;
  249. float distance_from_min[3];
  250. bool sortAlpha = false;
  251. bool volumetric_enabled = false;
  252. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  253. #if EXTRUDERS > 1
  254. , DEFAULT_NOMINAL_FILAMENT_DIA
  255. #if EXTRUDERS > 2
  256. , DEFAULT_NOMINAL_FILAMENT_DIA
  257. #endif
  258. #endif
  259. };
  260. float volumetric_multiplier[EXTRUDERS] = {1.0
  261. #if EXTRUDERS > 1
  262. , 1.0
  263. #if EXTRUDERS > 2
  264. , 1.0
  265. #endif
  266. #endif
  267. };
  268. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  269. float add_homing[3]={0,0,0};
  270. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  271. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  272. bool axis_known_position[3] = {false, false, false};
  273. float zprobe_zoffset;
  274. // Extruder offset
  275. #if EXTRUDERS > 1
  276. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  277. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  278. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  279. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  280. #endif
  281. };
  282. #endif
  283. uint8_t active_extruder = 0;
  284. int fanSpeed=0;
  285. #ifdef FWRETRACT
  286. bool autoretract_enabled=false;
  287. bool retracted[EXTRUDERS]={false
  288. #if EXTRUDERS > 1
  289. , false
  290. #if EXTRUDERS > 2
  291. , false
  292. #endif
  293. #endif
  294. };
  295. bool retracted_swap[EXTRUDERS]={false
  296. #if EXTRUDERS > 1
  297. , false
  298. #if EXTRUDERS > 2
  299. , false
  300. #endif
  301. #endif
  302. };
  303. float retract_length = RETRACT_LENGTH;
  304. float retract_length_swap = RETRACT_LENGTH_SWAP;
  305. float retract_feedrate = RETRACT_FEEDRATE;
  306. float retract_zlift = RETRACT_ZLIFT;
  307. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  308. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  309. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  310. #endif
  311. #ifdef ULTIPANEL
  312. #ifdef PS_DEFAULT_OFF
  313. bool powersupply = false;
  314. #else
  315. bool powersupply = true;
  316. #endif
  317. #endif
  318. bool cancel_heatup = false ;
  319. #ifdef HOST_KEEPALIVE_FEATURE
  320. MarlinBusyState busy_state = NOT_BUSY;
  321. static long prev_busy_signal_ms = -1;
  322. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  323. #else
  324. #define host_keepalive();
  325. #define KEEPALIVE_STATE(n);
  326. #endif
  327. #ifdef FILAMENT_SENSOR
  328. //Variables for Filament Sensor input
  329. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  330. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  331. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  332. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  333. int delay_index1=0; //index into ring buffer
  334. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  335. float delay_dist=0; //delay distance counter
  336. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  337. #endif
  338. const char errormagic[] PROGMEM = "Error:";
  339. const char echomagic[] PROGMEM = "echo:";
  340. bool no_response = false;
  341. uint8_t important_status;
  342. uint8_t saved_filament_type;
  343. // storing estimated time to end of print counted by slicer
  344. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  345. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  346. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  347. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. // For tracing an arc
  354. static float offset[3] = {0.0, 0.0, 0.0};
  355. static bool home_all_axis = true;
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  358. // Determines Absolute or Relative Coordinates.
  359. // Also there is bool axis_relative_modes[] per axis flag.
  360. static bool relative_mode = false;
  361. // String circular buffer. Commands may be pushed to the buffer from both sides:
  362. // Chained commands will be pushed to the front, interactive (from LCD menu)
  363. // and printing commands (from serial line or from SD card) are pushed to the tail.
  364. // First character of each entry indicates the type of the entry:
  365. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  366. // Command in cmdbuffer was sent over USB.
  367. #define CMDBUFFER_CURRENT_TYPE_USB 1
  368. // Command in cmdbuffer was read from SDCARD.
  369. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  370. // Command in cmdbuffer was generated by the UI.
  371. #define CMDBUFFER_CURRENT_TYPE_UI 3
  372. // Command in cmdbuffer was generated by another G-code.
  373. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  374. // How much space to reserve for the chained commands
  375. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  376. // which are pushed to the front of the queue?
  377. // Maximum 5 commands of max length 20 + null terminator.
  378. #define CMDBUFFER_RESERVE_FRONT (5*21)
  379. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  380. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  381. // Head of the circular buffer, where to read.
  382. static int bufindr = 0;
  383. // Tail of the buffer, where to write.
  384. static int bufindw = 0;
  385. // Number of lines in cmdbuffer.
  386. static int buflen = 0;
  387. // Flag for processing the current command inside the main Arduino loop().
  388. // If a new command was pushed to the front of a command buffer while
  389. // processing another command, this replaces the command on the top.
  390. // Therefore don't remove the command from the queue in the loop() function.
  391. static bool cmdbuffer_front_already_processed = false;
  392. // Type of a command, which is to be executed right now.
  393. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  394. // String of a command, which is to be executed right now.
  395. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  396. // Enable debugging of the command buffer.
  397. // Debugging information will be sent to serial line.
  398. // #define CMDBUFFER_DEBUG
  399. static int serial_count = 0; //index of character read from serial line
  400. static boolean comment_mode = false;
  401. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  402. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  403. //static float tt = 0;
  404. //static float bt = 0;
  405. //Inactivity shutdown variables
  406. static unsigned long previous_millis_cmd = 0;
  407. unsigned long max_inactive_time = 0;
  408. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  409. unsigned long starttime=0;
  410. unsigned long stoptime=0;
  411. unsigned long _usb_timer = 0;
  412. static uint8_t tmp_extruder;
  413. bool Stopped=false;
  414. #if NUM_SERVOS > 0
  415. Servo servos[NUM_SERVOS];
  416. #endif
  417. bool CooldownNoWait = true;
  418. bool target_direction;
  419. //Insert variables if CHDK is defined
  420. #ifdef CHDK
  421. unsigned long chdkHigh = 0;
  422. boolean chdkActive = false;
  423. #endif
  424. static int saved_feedmultiply_mm = 100;
  425. //===========================================================================
  426. //=============================Routines======================================
  427. //===========================================================================
  428. void get_arc_coordinates();
  429. bool setTargetedHotend(int code);
  430. void serial_echopair_P(const char *s_P, float v)
  431. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  432. void serial_echopair_P(const char *s_P, double v)
  433. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  434. void serial_echopair_P(const char *s_P, unsigned long v)
  435. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  436. #ifdef SDSUPPORT
  437. #include "SdFatUtil.h"
  438. int freeMemory() { return SdFatUtil::FreeRam(); }
  439. #else
  440. extern "C" {
  441. extern unsigned int __bss_end;
  442. extern unsigned int __heap_start;
  443. extern void *__brkval;
  444. int freeMemory() {
  445. int free_memory;
  446. if ((int)__brkval == 0)
  447. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  448. else
  449. free_memory = ((int)&free_memory) - ((int)__brkval);
  450. return free_memory;
  451. }
  452. }
  453. #endif //!SDSUPPORT
  454. // Pop the currently processed command from the queue.
  455. // It is expected, that there is at least one command in the queue.
  456. bool cmdqueue_pop_front()
  457. {
  458. if (buflen > 0) {
  459. #ifdef CMDBUFFER_DEBUG
  460. SERIAL_ECHOPGM("Dequeing ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. SERIAL_ECHOPGM("Old indices: buflen ");
  464. SERIAL_ECHO(buflen);
  465. SERIAL_ECHOPGM(", bufindr ");
  466. SERIAL_ECHO(bufindr);
  467. SERIAL_ECHOPGM(", bufindw ");
  468. SERIAL_ECHO(bufindw);
  469. SERIAL_ECHOPGM(", serial_count ");
  470. SERIAL_ECHO(serial_count);
  471. SERIAL_ECHOPGM(", bufsize ");
  472. SERIAL_ECHO(sizeof(cmdbuffer));
  473. SERIAL_ECHOLNPGM("");
  474. #endif /* CMDBUFFER_DEBUG */
  475. if (-- buflen == 0) {
  476. // Empty buffer.
  477. if (serial_count == 0)
  478. // No serial communication is pending. Reset both pointers to zero.
  479. bufindw = 0;
  480. bufindr = bufindw;
  481. } else {
  482. // There is at least one ready line in the buffer.
  483. // First skip the current command ID and iterate up to the end of the string.
  484. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  485. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  486. for (++ bufindr; (bufindr < (int)sizeof(cmdbuffer)) && (cmdbuffer[bufindr] == 0); ++ bufindr) ;
  487. // If the end of the buffer was empty,
  488. if (bufindr == sizeof(cmdbuffer)) {
  489. // skip to the start and find the nonzero command.
  490. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  491. }
  492. #ifdef CMDBUFFER_DEBUG
  493. SERIAL_ECHOPGM("New indices: buflen ");
  494. SERIAL_ECHO(buflen);
  495. SERIAL_ECHOPGM(", bufindr ");
  496. SERIAL_ECHO(bufindr);
  497. SERIAL_ECHOPGM(", bufindw ");
  498. SERIAL_ECHO(bufindw);
  499. SERIAL_ECHOPGM(", serial_count ");
  500. SERIAL_ECHO(serial_count);
  501. SERIAL_ECHOPGM(" new command on the top: ");
  502. SERIAL_ECHO(cmdbuffer+bufindr+1);
  503. SERIAL_ECHOLNPGM("");
  504. #endif /* CMDBUFFER_DEBUG */
  505. }
  506. return true;
  507. }
  508. return false;
  509. }
  510. void cmdqueue_reset()
  511. {
  512. while (cmdqueue_pop_front()) ;
  513. }
  514. // How long a string could be pushed to the front of the command queue?
  515. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  516. // len_asked does not contain the zero terminator size.
  517. bool cmdqueue_could_enqueue_front(int len_asked)
  518. {
  519. // MAX_CMD_SIZE has to accommodate the zero terminator.
  520. if (len_asked >= MAX_CMD_SIZE)
  521. return false;
  522. // Remove the currently processed command from the queue.
  523. if (! cmdbuffer_front_already_processed) {
  524. cmdqueue_pop_front();
  525. cmdbuffer_front_already_processed = true;
  526. }
  527. if (bufindr == bufindw && buflen > 0)
  528. // Full buffer.
  529. return false;
  530. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  531. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  532. if (bufindw < bufindr) {
  533. int bufindr_new = bufindr - len_asked - 2;
  534. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  535. if (endw <= bufindr_new) {
  536. bufindr = bufindr_new;
  537. return true;
  538. }
  539. } else {
  540. // Otherwise the free space is split between the start and end.
  541. if (len_asked + 2 <= bufindr) {
  542. // Could fit at the start.
  543. bufindr -= len_asked + 2;
  544. return true;
  545. }
  546. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  547. if (endw <= bufindr_new) {
  548. memset(cmdbuffer, 0, bufindr);
  549. bufindr = bufindr_new;
  550. return true;
  551. }
  552. }
  553. return false;
  554. }
  555. // Could one enqueue a command of lenthg len_asked into the buffer,
  556. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  557. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  558. // len_asked does not contain the zero terminator size.
  559. bool cmdqueue_could_enqueue_back(int len_asked)
  560. {
  561. // MAX_CMD_SIZE has to accommodate the zero terminator.
  562. if (len_asked >= MAX_CMD_SIZE)
  563. return false;
  564. if (bufindr == bufindw && buflen > 0)
  565. // Full buffer.
  566. return false;
  567. if (serial_count > 0) {
  568. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  569. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  570. // serial data.
  571. // How much memory to reserve for the commands pushed to the front?
  572. // End of the queue, when pushing to the end.
  573. int endw = bufindw + len_asked + 2;
  574. if (bufindw < bufindr)
  575. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  576. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  577. // Otherwise the free space is split between the start and end.
  578. if (// Could one fit to the end, including the reserve?
  579. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  580. // Could one fit to the end, and the reserve to the start?
  581. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  582. return true;
  583. // Could one fit both to the start?
  584. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  585. // Mark the rest of the buffer as used.
  586. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  587. // and point to the start.
  588. bufindw = 0;
  589. return true;
  590. }
  591. } else {
  592. // How much memory to reserve for the commands pushed to the front?
  593. // End of the queue, when pushing to the end.
  594. int endw = bufindw + len_asked + 2;
  595. if (bufindw < bufindr)
  596. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  597. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  598. // Otherwise the free space is split between the start and end.
  599. if (// Could one fit to the end, including the reserve?
  600. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  601. // Could one fit to the end, and the reserve to the start?
  602. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  603. return true;
  604. // Could one fit both to the start?
  605. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  606. // Mark the rest of the buffer as used.
  607. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  608. // and point to the start.
  609. bufindw = 0;
  610. return true;
  611. }
  612. }
  613. return false;
  614. }
  615. #ifdef CMDBUFFER_DEBUG
  616. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  617. {
  618. SERIAL_ECHOPGM("Entry nr: ");
  619. SERIAL_ECHO(nr);
  620. SERIAL_ECHOPGM(", type: ");
  621. SERIAL_ECHO(int(*p));
  622. SERIAL_ECHOPGM(", cmd: ");
  623. SERIAL_ECHO(p+1);
  624. SERIAL_ECHOLNPGM("");
  625. }
  626. static void cmdqueue_dump_to_serial()
  627. {
  628. if (buflen == 0) {
  629. SERIAL_ECHOLNPGM("The command buffer is empty.");
  630. } else {
  631. SERIAL_ECHOPGM("Content of the buffer: entries ");
  632. SERIAL_ECHO(buflen);
  633. SERIAL_ECHOPGM(", indr ");
  634. SERIAL_ECHO(bufindr);
  635. SERIAL_ECHOPGM(", indw ");
  636. SERIAL_ECHO(bufindw);
  637. SERIAL_ECHOLNPGM("");
  638. int nr = 0;
  639. if (bufindr < bufindw) {
  640. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  641. cmdqueue_dump_to_serial_single_line(nr, p);
  642. // Skip the command.
  643. for (++p; *p != 0; ++ p);
  644. // Skip the gaps.
  645. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  646. }
  647. } else {
  648. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  649. cmdqueue_dump_to_serial_single_line(nr, p);
  650. // Skip the command.
  651. for (++p; *p != 0; ++ p);
  652. // Skip the gaps.
  653. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  654. }
  655. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  656. cmdqueue_dump_to_serial_single_line(nr, p);
  657. // Skip the command.
  658. for (++p; *p != 0; ++ p);
  659. // Skip the gaps.
  660. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  661. }
  662. }
  663. SERIAL_ECHOLNPGM("End of the buffer.");
  664. }
  665. }
  666. #endif /* CMDBUFFER_DEBUG */
  667. //adds an command to the main command buffer
  668. //thats really done in a non-safe way.
  669. //needs overworking someday
  670. // Currently the maximum length of a command piped through this function is around 20 characters
  671. void enquecommand(const char *cmd, bool from_progmem)
  672. {
  673. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  674. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  675. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  676. if (cmdqueue_could_enqueue_back(len)) {
  677. // This is dangerous if a mixing of serial and this happens
  678. // This may easily be tested: If serial_count > 0, we have a problem.
  679. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  680. if (from_progmem)
  681. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  682. else
  683. strcpy(cmdbuffer + bufindw + 1, cmd);
  684. if (!farm_mode) {
  685. SERIAL_ECHO_START;
  686. SERIAL_ECHORPGM(MSG_Enqueing);
  687. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  688. SERIAL_ECHOLNPGM("\"");
  689. }
  690. bufindw += len + 2;
  691. if (bufindw == sizeof(cmdbuffer))
  692. bufindw = 0;
  693. ++ buflen;
  694. #ifdef CMDBUFFER_DEBUG
  695. cmdqueue_dump_to_serial();
  696. #endif /* CMDBUFFER_DEBUG */
  697. } else {
  698. SERIAL_ERROR_START;
  699. SERIAL_ECHORPGM(MSG_Enqueing);
  700. if (from_progmem)
  701. SERIAL_PROTOCOLRPGM(cmd);
  702. else
  703. SERIAL_ECHO(cmd);
  704. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  705. #ifdef CMDBUFFER_DEBUG
  706. cmdqueue_dump_to_serial();
  707. #endif /* CMDBUFFER_DEBUG */
  708. }
  709. }
  710. bool cmd_buffer_empty()
  711. {
  712. return (buflen == 0);
  713. }
  714. void enquecommand_front(const char *cmd, bool from_progmem)
  715. {
  716. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  717. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  718. if (cmdqueue_could_enqueue_front(len)) {
  719. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  720. if (from_progmem)
  721. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  722. else
  723. strcpy(cmdbuffer + bufindr + 1, cmd);
  724. ++ buflen;
  725. if (!farm_mode) {
  726. SERIAL_ECHO_START;
  727. SERIAL_ECHOPGM("Enqueing to the front: \"");
  728. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  729. SERIAL_ECHOLNPGM("\"");
  730. }
  731. #ifdef CMDBUFFER_DEBUG
  732. cmdqueue_dump_to_serial();
  733. #endif /* CMDBUFFER_DEBUG */
  734. } else {
  735. SERIAL_ERROR_START;
  736. SERIAL_ECHOPGM("Enqueing to the front: \"");
  737. if (from_progmem)
  738. SERIAL_PROTOCOLRPGM(cmd);
  739. else
  740. SERIAL_ECHO(cmd);
  741. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  742. #ifdef CMDBUFFER_DEBUG
  743. cmdqueue_dump_to_serial();
  744. #endif /* CMDBUFFER_DEBUG */
  745. }
  746. }
  747. // Mark the command at the top of the command queue as new.
  748. // Therefore it will not be removed from the queue.
  749. void repeatcommand_front()
  750. {
  751. cmdbuffer_front_already_processed = true;
  752. }
  753. bool is_buffer_empty()
  754. {
  755. if (buflen == 0) return true;
  756. else return false;
  757. }
  758. void setup_killpin()
  759. {
  760. #if defined(KILL_PIN) && KILL_PIN > -1
  761. SET_INPUT(KILL_PIN);
  762. WRITE(KILL_PIN,HIGH);
  763. #endif
  764. }
  765. // Set home pin
  766. void setup_homepin(void)
  767. {
  768. #if defined(HOME_PIN) && HOME_PIN > -1
  769. SET_INPUT(HOME_PIN);
  770. WRITE(HOME_PIN,HIGH);
  771. #endif
  772. }
  773. void setup_photpin()
  774. {
  775. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  776. SET_OUTPUT(PHOTOGRAPH_PIN);
  777. WRITE(PHOTOGRAPH_PIN, LOW);
  778. #endif
  779. }
  780. void setup_powerhold()
  781. {
  782. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  783. SET_OUTPUT(SUICIDE_PIN);
  784. WRITE(SUICIDE_PIN, HIGH);
  785. #endif
  786. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  787. SET_OUTPUT(PS_ON_PIN);
  788. #if defined(PS_DEFAULT_OFF)
  789. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  790. #else
  791. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  792. #endif
  793. #endif
  794. }
  795. void suicide()
  796. {
  797. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  798. SET_OUTPUT(SUICIDE_PIN);
  799. WRITE(SUICIDE_PIN, LOW);
  800. #endif
  801. }
  802. void servo_init()
  803. {
  804. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  805. servos[0].attach(SERVO0_PIN);
  806. #endif
  807. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  808. servos[1].attach(SERVO1_PIN);
  809. #endif
  810. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  811. servos[2].attach(SERVO2_PIN);
  812. #endif
  813. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  814. servos[3].attach(SERVO3_PIN);
  815. #endif
  816. #if (NUM_SERVOS >= 5)
  817. #error "TODO: enter initalisation code for more servos"
  818. #endif
  819. }
  820. #ifdef MESH_BED_LEVELING
  821. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  822. #endif
  823. // Factory reset function
  824. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  825. // Level input parameter sets depth of reset
  826. // Quiet parameter masks all waitings for user interact.
  827. int er_progress = 0;
  828. void factory_reset(char level, bool quiet)
  829. {
  830. lcd_implementation_clear();
  831. switch (level) {
  832. // Level 0: Language reset
  833. case 0:
  834. WRITE(BEEPER, HIGH);
  835. _delay_ms(100);
  836. WRITE(BEEPER, LOW);
  837. lcd_force_language_selection();
  838. break;
  839. //Level 1: Reset statistics
  840. case 1:
  841. WRITE(BEEPER, HIGH);
  842. _delay_ms(100);
  843. WRITE(BEEPER, LOW);
  844. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  845. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  846. lcd_menu_statistics();
  847. break;
  848. // Level 2: Prepare for shipping
  849. case 2:
  850. //lcd_printPGM(PSTR("Factory RESET"));
  851. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  852. // Force language selection at the next boot up.
  853. lcd_force_language_selection();
  854. // Force the "Follow calibration flow" message at the next boot up.
  855. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  856. farm_no = 0;
  857. farm_mode = 0;
  858. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  859. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  860. WRITE(BEEPER, HIGH);
  861. _delay_ms(100);
  862. WRITE(BEEPER, LOW);
  863. //_delay_ms(2000);
  864. break;
  865. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  866. case 3:
  867. lcd_printPGM(PSTR("Factory RESET"));
  868. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  869. WRITE(BEEPER, HIGH);
  870. _delay_ms(100);
  871. WRITE(BEEPER, LOW);
  872. er_progress = 0;
  873. lcd_print_at_PGM(3, 3, PSTR(" "));
  874. lcd_implementation_print_at(3, 3, er_progress);
  875. // Erase EEPROM
  876. for (int i = 0; i < 4096; i++) {
  877. eeprom_write_byte((uint8_t*)i, 0xFF);
  878. if (i % 41 == 0) {
  879. er_progress++;
  880. lcd_print_at_PGM(3, 3, PSTR(" "));
  881. lcd_implementation_print_at(3, 3, er_progress);
  882. lcd_printPGM(PSTR("%"));
  883. }
  884. }
  885. break;
  886. case 4:
  887. bowden_menu();
  888. break;
  889. default:
  890. break;
  891. }
  892. }
  893. // "Setup" function is called by the Arduino framework on startup.
  894. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  895. // are initialized by the main() routine provided by the Arduino framework.
  896. void setup()
  897. {
  898. lcd_init();
  899. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  900. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  901. setup_killpin();
  902. setup_powerhold();
  903. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  904. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  905. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  906. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  907. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  908. if (farm_mode)
  909. {
  910. prusa_statistics(8);
  911. no_response = true; //we need confirmation by recieving PRUSA thx
  912. important_status = 8;
  913. selectedSerialPort = 1;
  914. } else {
  915. selectedSerialPort = 0;
  916. }
  917. MYSERIAL.begin(BAUDRATE);
  918. SERIAL_PROTOCOLLNPGM("start");
  919. SERIAL_ECHO_START;
  920. #if 0
  921. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  922. for (int i = 0; i < 4096; ++i) {
  923. int b = eeprom_read_byte((unsigned char*)i);
  924. if (b != 255) {
  925. SERIAL_ECHO(i);
  926. SERIAL_ECHO(":");
  927. SERIAL_ECHO(b);
  928. SERIAL_ECHOLN("");
  929. }
  930. }
  931. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  932. #endif
  933. // Check startup - does nothing if bootloader sets MCUSR to 0
  934. byte mcu = MCUSR;
  935. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  936. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  937. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  938. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  939. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  940. MCUSR = 0;
  941. //SERIAL_ECHORPGM(MSG_MARLIN);
  942. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  943. #ifdef STRING_VERSION_CONFIG_H
  944. #ifdef STRING_CONFIG_H_AUTHOR
  945. SERIAL_ECHO_START;
  946. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  947. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  948. SERIAL_ECHORPGM(MSG_AUTHOR);
  949. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  950. SERIAL_ECHOPGM("Compiled: ");
  951. SERIAL_ECHOLNPGM(__DATE__);
  952. #endif
  953. #endif
  954. SERIAL_ECHO_START;
  955. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  956. SERIAL_ECHO(freeMemory());
  957. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  958. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  959. lcd_update_enable(false);
  960. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  961. bool previous_settings_retrieved = Config_RetrieveSettings();
  962. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  963. tp_init(); // Initialize temperature loop
  964. plan_init(); // Initialize planner;
  965. watchdog_init();
  966. st_init(); // Initialize stepper, this enables interrupts!
  967. setup_photpin();
  968. servo_init();
  969. // Reset the machine correction matrix.
  970. // It does not make sense to load the correction matrix until the machine is homed.
  971. world2machine_reset();
  972. lcd_init();
  973. KEEPALIVE_STATE(PAUSED_FOR_USER);
  974. if (!READ(BTN_ENC))
  975. {
  976. _delay_ms(1000);
  977. if (!READ(BTN_ENC))
  978. {
  979. lcd_implementation_clear();
  980. lcd_printPGM(PSTR("Factory RESET"));
  981. SET_OUTPUT(BEEPER);
  982. WRITE(BEEPER, HIGH);
  983. while (!READ(BTN_ENC));
  984. WRITE(BEEPER, LOW);
  985. _delay_ms(2000);
  986. char level = reset_menu();
  987. factory_reset(level, false);
  988. switch (level) {
  989. case 0: _delay_ms(0); break;
  990. case 1: _delay_ms(0); break;
  991. case 2: _delay_ms(0); break;
  992. case 3: _delay_ms(0); break;
  993. }
  994. // _delay_ms(100);
  995. /*
  996. #ifdef MESH_BED_LEVELING
  997. _delay_ms(2000);
  998. if (!READ(BTN_ENC))
  999. {
  1000. WRITE(BEEPER, HIGH);
  1001. _delay_ms(100);
  1002. WRITE(BEEPER, LOW);
  1003. _delay_ms(200);
  1004. WRITE(BEEPER, HIGH);
  1005. _delay_ms(100);
  1006. WRITE(BEEPER, LOW);
  1007. int _z = 0;
  1008. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1009. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1010. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1011. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1012. }
  1013. else
  1014. {
  1015. WRITE(BEEPER, HIGH);
  1016. _delay_ms(100);
  1017. WRITE(BEEPER, LOW);
  1018. }
  1019. #endif // mesh */
  1020. }
  1021. }
  1022. else
  1023. {
  1024. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1025. }
  1026. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1027. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1028. #endif
  1029. #ifdef DIGIPOT_I2C
  1030. digipot_i2c_init();
  1031. #endif
  1032. setup_homepin();
  1033. #if defined(Z_AXIS_ALWAYS_ON)
  1034. enable_z();
  1035. #endif
  1036. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1037. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1038. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1039. // but this times out if a blocking dialog is shown in setup().
  1040. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  1041. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  1042. card.initsd();
  1043. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1044. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1045. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1046. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1047. // where all the EEPROM entries are set to 0x0ff.
  1048. // Once a firmware boots up, it forces at least a language selection, which changes
  1049. // EEPROM_LANG to number lower than 0x0ff.
  1050. // 1) Set a high power mode.
  1051. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1052. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1053. }
  1054. #ifdef SNMM
  1055. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1056. int _z = BOWDEN_LENGTH;
  1057. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1058. }
  1059. #endif
  1060. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1061. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1062. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1063. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1064. if (lang_selected >= LANG_NUM){
  1065. lcd_mylang();
  1066. }
  1067. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1068. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1069. temp_cal_active = false;
  1070. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1071. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1072. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1073. }
  1074. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1075. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1076. }
  1077. #ifndef DEBUG_DISABLE_STARTMSGS
  1078. check_babystep(); //checking if Z babystep is in allowed range
  1079. for (int i = 0; i < 4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1080. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1081. lcd_wizard(0);
  1082. }
  1083. else if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1084. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1085. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1086. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION){
  1087. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1088. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1089. // Show the message.
  1090. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1091. }
  1092. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1093. // Show the message.
  1094. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1095. lcd_update_enable(true);
  1096. }
  1097. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1098. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1099. lcd_update_enable(true);
  1100. }
  1101. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1102. // Show the message.
  1103. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1104. }
  1105. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1106. if (!previous_settings_retrieved) {
  1107. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1108. }
  1109. }
  1110. #endif //DEBUG_DISABLE_STARTMSGS
  1111. lcd_update_enable(true);
  1112. // Store the currently running firmware into an eeprom,
  1113. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1114. update_current_firmware_version_to_eeprom();
  1115. KEEPALIVE_STATE(NOT_BUSY);
  1116. }
  1117. void trace();
  1118. #define CHUNK_SIZE 64 // bytes
  1119. #define SAFETY_MARGIN 1
  1120. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1121. int chunkHead = 0;
  1122. void serial_read_stream() {
  1123. setTargetHotend(0, 0);
  1124. setTargetBed(0);
  1125. lcd_implementation_clear();
  1126. lcd_printPGM(PSTR(" Upload in progress"));
  1127. // first wait for how many bytes we will receive
  1128. uint32_t bytesToReceive;
  1129. // receive the four bytes
  1130. char bytesToReceiveBuffer[4];
  1131. for (int i=0; i<4; i++) {
  1132. int data;
  1133. while ((data = MYSERIAL.read()) == -1) {};
  1134. bytesToReceiveBuffer[i] = data;
  1135. }
  1136. // make it a uint32
  1137. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1138. // we're ready, notify the sender
  1139. MYSERIAL.write('+');
  1140. // lock in the routine
  1141. uint32_t receivedBytes = 0;
  1142. while (prusa_sd_card_upload) {
  1143. int i;
  1144. for (i=0; i<CHUNK_SIZE; i++) {
  1145. int data;
  1146. // check if we're not done
  1147. if (receivedBytes == bytesToReceive) {
  1148. break;
  1149. }
  1150. // read the next byte
  1151. while ((data = MYSERIAL.read()) == -1) {};
  1152. receivedBytes++;
  1153. // save it to the chunk
  1154. chunk[i] = data;
  1155. }
  1156. // write the chunk to SD
  1157. card.write_command_no_newline(&chunk[0]);
  1158. // notify the sender we're ready for more data
  1159. MYSERIAL.write('+');
  1160. // for safety
  1161. manage_heater();
  1162. // check if we're done
  1163. if(receivedBytes == bytesToReceive) {
  1164. trace(); // beep
  1165. card.closefile();
  1166. prusa_sd_card_upload = false;
  1167. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1168. return;
  1169. }
  1170. }
  1171. }
  1172. #ifdef HOST_KEEPALIVE_FEATURE
  1173. /**
  1174. * Output a "busy" message at regular intervals
  1175. * while the machine is not accepting commands.
  1176. */
  1177. void host_keepalive() {
  1178. if (farm_mode) return;
  1179. long ms = millis();
  1180. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1181. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1182. switch (busy_state) {
  1183. case IN_HANDLER:
  1184. case IN_PROCESS:
  1185. SERIAL_ECHO_START;
  1186. SERIAL_ECHOLNPGM("busy: processing");
  1187. break;
  1188. case PAUSED_FOR_USER:
  1189. SERIAL_ECHO_START;
  1190. SERIAL_ECHOLNPGM("busy: paused for user");
  1191. break;
  1192. case PAUSED_FOR_INPUT:
  1193. SERIAL_ECHO_START;
  1194. SERIAL_ECHOLNPGM("busy: paused for input");
  1195. break;
  1196. default:
  1197. break;
  1198. }
  1199. }
  1200. prev_busy_signal_ms = ms;
  1201. }
  1202. #endif
  1203. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1204. // Before loop(), the setup() function is called by the main() routine.
  1205. void loop()
  1206. {
  1207. KEEPALIVE_STATE(NOT_BUSY);
  1208. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1209. {
  1210. is_usb_printing = true;
  1211. usb_printing_counter--;
  1212. _usb_timer = millis();
  1213. }
  1214. if (usb_printing_counter == 0)
  1215. {
  1216. is_usb_printing = false;
  1217. }
  1218. if (prusa_sd_card_upload)
  1219. {
  1220. //we read byte-by byte
  1221. serial_read_stream();
  1222. } else
  1223. {
  1224. get_command();
  1225. #ifdef SDSUPPORT
  1226. card.checkautostart(false);
  1227. #endif
  1228. if(buflen)
  1229. {
  1230. #ifdef SDSUPPORT
  1231. if(card.saving)
  1232. {
  1233. // Saving a G-code file onto an SD-card is in progress.
  1234. // Saving starts with M28, saving until M29 is seen.
  1235. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1236. card.write_command(CMDBUFFER_CURRENT_STRING);
  1237. if(card.logging)
  1238. process_commands();
  1239. else
  1240. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1241. } else {
  1242. card.closefile();
  1243. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1244. }
  1245. } else {
  1246. process_commands();
  1247. }
  1248. #else
  1249. process_commands();
  1250. #endif //SDSUPPORT
  1251. if (! cmdbuffer_front_already_processed)
  1252. cmdqueue_pop_front();
  1253. cmdbuffer_front_already_processed = false;
  1254. host_keepalive();
  1255. }
  1256. }
  1257. //check heater every n milliseconds
  1258. manage_heater();
  1259. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1260. checkHitEndstops();
  1261. lcd_update();
  1262. }
  1263. void proc_commands() {
  1264. if (buflen)
  1265. {
  1266. process_commands();
  1267. if (!cmdbuffer_front_already_processed)
  1268. cmdqueue_pop_front();
  1269. cmdbuffer_front_already_processed = false;
  1270. }
  1271. }
  1272. void get_command()
  1273. {
  1274. // Test and reserve space for the new command string.
  1275. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1276. return;
  1277. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1278. while (MYSERIAL.available() > 0) {
  1279. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1280. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1281. rx_buffer_full = true; //sets flag that buffer was full
  1282. }
  1283. char serial_char = MYSERIAL.read();
  1284. if (selectedSerialPort == 1) {
  1285. selectedSerialPort = 0;
  1286. MYSERIAL.write(serial_char);
  1287. selectedSerialPort = 1;
  1288. }
  1289. TimeSent = millis();
  1290. TimeNow = millis();
  1291. if (serial_char < 0)
  1292. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1293. // and Marlin does not support such file names anyway.
  1294. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1295. // to a hang-up of the print process from an SD card.
  1296. continue;
  1297. if(serial_char == '\n' ||
  1298. serial_char == '\r' ||
  1299. (serial_char == ':' && comment_mode == false) ||
  1300. serial_count >= (MAX_CMD_SIZE - 1) )
  1301. {
  1302. if(!serial_count) { //if empty line
  1303. comment_mode = false; //for new command
  1304. return;
  1305. }
  1306. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1307. if(!comment_mode){
  1308. // Line numbers must be first in buffer
  1309. if ((strstr(cmdbuffer+bufindw+1, "PRUSA") == NULL) &&
  1310. (cmdbuffer[bufindw + 1] == 'N')) {
  1311. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1312. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1313. gcode_N = (strtol(cmdbuffer + bufindw + 2, NULL, 10));
  1314. if ((gcode_N != gcode_LastN + 1) &&
  1315. (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL))
  1316. {
  1317. // Line numbers not sent in succession.
  1318. SERIAL_ERROR_START;
  1319. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1320. SERIAL_ERRORLN(gcode_LastN);
  1321. //Serial.println(gcode_N);
  1322. FlushSerialRequestResend();
  1323. serial_count = 0;
  1324. return;
  1325. }
  1326. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1327. {
  1328. byte checksum = 0;
  1329. char *p = cmdbuffer+bufindw+1;
  1330. while (p != strchr_pointer)
  1331. checksum = checksum^(*p++);
  1332. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1333. SERIAL_ERROR_START;
  1334. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1335. SERIAL_ERRORLN(gcode_LastN);
  1336. FlushSerialRequestResend();
  1337. serial_count = 0;
  1338. return;
  1339. }
  1340. // If no errors, remove the checksum and continue parsing.
  1341. *strchr_pointer = 0;
  1342. }
  1343. else
  1344. {
  1345. SERIAL_ERROR_START;
  1346. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1347. SERIAL_ERRORLN(gcode_LastN);
  1348. FlushSerialRequestResend();
  1349. serial_count = 0;
  1350. return;
  1351. }
  1352. // Don't parse N again with code_seen('N')
  1353. cmdbuffer[bufindw + 1] = '$';
  1354. //if no errors, continue parsing
  1355. gcode_LastN = gcode_N;
  1356. }
  1357. // if we don't receive 'N' but still see '*'
  1358. if((cmdbuffer[bufindw + 1] != 'N') && (cmdbuffer[bufindw + 1] != '$') &&
  1359. (strchr(cmdbuffer + bufindw + 1, '*') != NULL))
  1360. {
  1361. SERIAL_ERROR_START;
  1362. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1363. SERIAL_ERRORLN(gcode_LastN);
  1364. serial_count = 0;
  1365. return;
  1366. }
  1367. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1368. if (! IS_SD_PRINTING) {
  1369. usb_printing_counter = 10;
  1370. is_usb_printing = true;
  1371. }
  1372. if (Stopped == true) {
  1373. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1374. if (gcode >= 0 && gcode <= 3) {
  1375. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1376. LCD_MESSAGERPGM(MSG_STOPPED);
  1377. }
  1378. }
  1379. } // end of 'G' command
  1380. //If command was e-stop process now
  1381. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1382. kill();
  1383. // Store the current line into buffer, move to the next line.
  1384. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1385. #ifdef CMDBUFFER_DEBUG
  1386. SERIAL_ECHO_START;
  1387. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1388. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1389. SERIAL_ECHOLNPGM("");
  1390. #endif /* CMDBUFFER_DEBUG */
  1391. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1392. if (bufindw == sizeof(cmdbuffer))
  1393. bufindw = 0;
  1394. ++ buflen;
  1395. #ifdef CMDBUFFER_DEBUG
  1396. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1397. SERIAL_ECHO(buflen);
  1398. SERIAL_ECHOLNPGM("");
  1399. #endif /* CMDBUFFER_DEBUG */
  1400. } // end of 'not comment mode'
  1401. serial_count = 0; //clear buffer
  1402. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1403. // in the queue, as this function will reserve the memory.
  1404. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1405. return;
  1406. } // end of "end of line" processing
  1407. else {
  1408. // Not an "end of line" symbol. Store the new character into a buffer.
  1409. if(serial_char == ';') comment_mode = true;
  1410. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1411. }
  1412. } // end of serial line processing loop
  1413. if(farm_mode){
  1414. TimeNow = millis();
  1415. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1416. cmdbuffer[bufindw+serial_count+1] = 0;
  1417. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1418. if (bufindw == sizeof(cmdbuffer))
  1419. bufindw = 0;
  1420. ++ buflen;
  1421. serial_count = 0;
  1422. SERIAL_ECHOPGM("TIMEOUT:");
  1423. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1424. return;
  1425. }
  1426. }
  1427. //add comment
  1428. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1429. rx_buffer_full = false;
  1430. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1431. serial_count = 0;
  1432. }
  1433. #ifdef SDSUPPORT
  1434. if(!card.sdprinting || serial_count!=0){
  1435. // If there is a half filled buffer from serial line, wait until return before
  1436. // continuing with the serial line.
  1437. return;
  1438. }
  1439. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1440. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1441. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1442. static bool stop_buffering=false;
  1443. if(buflen==0) stop_buffering=false;
  1444. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1445. while( !card.eof() && !stop_buffering) {
  1446. int16_t n=card.get();
  1447. char serial_char = (char)n;
  1448. if(serial_char == '\n' ||
  1449. serial_char == '\r' ||
  1450. (serial_char == '#' && comment_mode == false) ||
  1451. (serial_char == ':' && comment_mode == false) ||
  1452. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1453. {
  1454. if(card.eof()){
  1455. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1456. stoptime=millis();
  1457. char time[30];
  1458. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1459. pause_time = 0;
  1460. int hours, minutes;
  1461. minutes=(t/60)%60;
  1462. hours=t/60/60;
  1463. save_statistics(total_filament_used, t);
  1464. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1465. SERIAL_ECHO_START;
  1466. SERIAL_ECHOLN(time);
  1467. lcd_setstatus(time);
  1468. card.printingHasFinished();
  1469. card.checkautostart(true);
  1470. if (farm_mode)
  1471. {
  1472. prusa_statistics(6);
  1473. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1474. }
  1475. }
  1476. if(serial_char=='#')
  1477. stop_buffering=true;
  1478. if(!serial_count)
  1479. {
  1480. comment_mode = false; //for new command
  1481. return; //if empty line
  1482. }
  1483. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1484. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1485. ++ buflen;
  1486. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1487. if (bufindw == sizeof(cmdbuffer))
  1488. bufindw = 0;
  1489. comment_mode = false; //for new command
  1490. serial_count = 0; //clear buffer
  1491. // The following line will reserve buffer space if available.
  1492. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1493. return;
  1494. }
  1495. else
  1496. {
  1497. if(serial_char == ';') comment_mode = true;
  1498. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1499. }
  1500. }
  1501. #endif //SDSUPPORT
  1502. }
  1503. // Return True if a character was found
  1504. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1505. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1506. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1507. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1508. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1509. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1510. static inline float code_value_float() {
  1511. char* e = strchr(strchr_pointer, 'E');
  1512. if (!e) return strtod(strchr_pointer + 1, NULL);
  1513. *e = 0;
  1514. float ret = strtod(strchr_pointer + 1, NULL);
  1515. *e = 'E';
  1516. return ret;
  1517. }
  1518. #define DEFINE_PGM_READ_ANY(type, reader) \
  1519. static inline type pgm_read_any(const type *p) \
  1520. { return pgm_read_##reader##_near(p); }
  1521. DEFINE_PGM_READ_ANY(float, float);
  1522. DEFINE_PGM_READ_ANY(signed char, byte);
  1523. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1524. static const PROGMEM type array##_P[3] = \
  1525. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1526. static inline type array(int axis) \
  1527. { return pgm_read_any(&array##_P[axis]); } \
  1528. type array##_ext(int axis) \
  1529. { return pgm_read_any(&array##_P[axis]); }
  1530. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1531. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1532. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1533. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1534. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1535. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1536. static void axis_is_at_home(int axis) {
  1537. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1538. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1539. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1540. }
  1541. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1542. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1543. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1544. saved_feedrate = feedrate;
  1545. saved_feedmultiply = feedmultiply;
  1546. feedmultiply = 100;
  1547. previous_millis_cmd = millis();
  1548. enable_endstops(enable_endstops_now);
  1549. }
  1550. static void clean_up_after_endstop_move() {
  1551. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1552. enable_endstops(false);
  1553. #endif
  1554. feedrate = saved_feedrate;
  1555. feedmultiply = saved_feedmultiply;
  1556. previous_millis_cmd = millis();
  1557. }
  1558. #ifdef ENABLE_AUTO_BED_LEVELING
  1559. #ifdef AUTO_BED_LEVELING_GRID
  1560. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1561. {
  1562. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1563. planeNormal.debug("planeNormal");
  1564. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1565. //bedLevel.debug("bedLevel");
  1566. //plan_bed_level_matrix.debug("bed level before");
  1567. //vector_3 uncorrected_position = plan_get_position_mm();
  1568. //uncorrected_position.debug("position before");
  1569. vector_3 corrected_position = plan_get_position();
  1570. // corrected_position.debug("position after");
  1571. current_position[X_AXIS] = corrected_position.x;
  1572. current_position[Y_AXIS] = corrected_position.y;
  1573. current_position[Z_AXIS] = corrected_position.z;
  1574. // put the bed at 0 so we don't go below it.
  1575. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1576. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1577. }
  1578. #else // not AUTO_BED_LEVELING_GRID
  1579. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1580. plan_bed_level_matrix.set_to_identity();
  1581. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1582. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1583. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1584. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1585. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1586. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1587. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1588. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1589. vector_3 corrected_position = plan_get_position();
  1590. current_position[X_AXIS] = corrected_position.x;
  1591. current_position[Y_AXIS] = corrected_position.y;
  1592. current_position[Z_AXIS] = corrected_position.z;
  1593. // put the bed at 0 so we don't go below it.
  1594. current_position[Z_AXIS] = zprobe_zoffset;
  1595. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1596. }
  1597. #endif // AUTO_BED_LEVELING_GRID
  1598. static void run_z_probe() {
  1599. plan_bed_level_matrix.set_to_identity();
  1600. feedrate = homing_feedrate[Z_AXIS];
  1601. // move down until you find the bed
  1602. float zPosition = -10;
  1603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1604. st_synchronize();
  1605. // we have to let the planner know where we are right now as it is not where we said to go.
  1606. zPosition = st_get_position_mm(Z_AXIS);
  1607. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1608. // move up the retract distance
  1609. zPosition += home_retract_mm(Z_AXIS);
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1611. st_synchronize();
  1612. // move back down slowly to find bed
  1613. feedrate = homing_feedrate[Z_AXIS]/4;
  1614. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1616. st_synchronize();
  1617. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1618. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1619. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1620. }
  1621. static void do_blocking_move_to(float x, float y, float z) {
  1622. float oldFeedRate = feedrate;
  1623. feedrate = homing_feedrate[Z_AXIS];
  1624. current_position[Z_AXIS] = z;
  1625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1626. st_synchronize();
  1627. feedrate = XY_TRAVEL_SPEED;
  1628. current_position[X_AXIS] = x;
  1629. current_position[Y_AXIS] = y;
  1630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1631. st_synchronize();
  1632. feedrate = oldFeedRate;
  1633. }
  1634. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1635. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1636. }
  1637. /// Probe bed height at position (x,y), returns the measured z value
  1638. static float probe_pt(float x, float y, float z_before) {
  1639. // move to right place
  1640. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1641. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1642. run_z_probe();
  1643. float measured_z = current_position[Z_AXIS];
  1644. SERIAL_PROTOCOLRPGM(MSG_BED);
  1645. SERIAL_PROTOCOLPGM(" x: ");
  1646. SERIAL_PROTOCOL(x);
  1647. SERIAL_PROTOCOLPGM(" y: ");
  1648. SERIAL_PROTOCOL(y);
  1649. SERIAL_PROTOCOLPGM(" z: ");
  1650. SERIAL_PROTOCOL(measured_z);
  1651. SERIAL_PROTOCOLPGM("\n");
  1652. return measured_z;
  1653. }
  1654. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1655. #ifdef LIN_ADVANCE
  1656. /**
  1657. * M900: Set and/or Get advance K factor and WH/D ratio
  1658. *
  1659. * K<factor> Set advance K factor
  1660. * R<ratio> Set ratio directly (overrides WH/D)
  1661. * W<width> H<height> D<diam> Set ratio from WH/D
  1662. */
  1663. inline void gcode_M900() {
  1664. st_synchronize();
  1665. const float newK = code_seen('K') ? code_value_float() : -1;
  1666. if (newK >= 0) extruder_advance_k = newK;
  1667. float newR = code_seen('R') ? code_value_float() : -1;
  1668. if (newR < 0) {
  1669. const float newD = code_seen('D') ? code_value_float() : -1,
  1670. newW = code_seen('W') ? code_value_float() : -1,
  1671. newH = code_seen('H') ? code_value_float() : -1;
  1672. if (newD >= 0 && newW >= 0 && newH >= 0)
  1673. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1674. }
  1675. if (newR >= 0) advance_ed_ratio = newR;
  1676. SERIAL_ECHO_START;
  1677. SERIAL_ECHOPGM("Advance K=");
  1678. SERIAL_ECHOLN(extruder_advance_k);
  1679. SERIAL_ECHOPGM(" E/D=");
  1680. const float ratio = advance_ed_ratio;
  1681. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1682. }
  1683. #endif // LIN_ADVANCE
  1684. bool check_commands() {
  1685. bool end_command_found = false;
  1686. while (buflen)
  1687. {
  1688. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1689. if (!cmdbuffer_front_already_processed)
  1690. cmdqueue_pop_front();
  1691. cmdbuffer_front_already_processed = false;
  1692. }
  1693. return end_command_found;
  1694. }
  1695. void homeaxis(int axis) {
  1696. #define HOMEAXIS_DO(LETTER) \
  1697. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1698. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1699. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1700. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1701. 0) {
  1702. int axis_home_dir = home_dir(axis);
  1703. current_position[axis] = 0;
  1704. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1705. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1706. feedrate = homing_feedrate[axis];
  1707. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1708. st_synchronize();
  1709. current_position[axis] = 0;
  1710. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1711. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1712. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1713. st_synchronize();
  1714. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1715. feedrate = homing_feedrate[axis]/2 ;
  1716. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1717. st_synchronize();
  1718. axis_is_at_home(axis);
  1719. destination[axis] = current_position[axis];
  1720. feedrate = 0.0;
  1721. endstops_hit_on_purpose();
  1722. axis_known_position[axis] = true;
  1723. }
  1724. }
  1725. void home_xy()
  1726. {
  1727. set_destination_to_current();
  1728. homeaxis(X_AXIS);
  1729. homeaxis(Y_AXIS);
  1730. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1731. endstops_hit_on_purpose();
  1732. }
  1733. void refresh_cmd_timeout(void)
  1734. {
  1735. previous_millis_cmd = millis();
  1736. }
  1737. #ifdef FWRETRACT
  1738. void retract(bool retracting, bool swapretract = false) {
  1739. if(retracting && !retracted[active_extruder]) {
  1740. destination[X_AXIS]=current_position[X_AXIS];
  1741. destination[Y_AXIS]=current_position[Y_AXIS];
  1742. destination[Z_AXIS]=current_position[Z_AXIS];
  1743. destination[E_AXIS]=current_position[E_AXIS];
  1744. if (swapretract) {
  1745. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1746. } else {
  1747. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1748. }
  1749. plan_set_e_position(current_position[E_AXIS]);
  1750. float oldFeedrate = feedrate;
  1751. feedrate=retract_feedrate*60;
  1752. retracted[active_extruder]=true;
  1753. prepare_move();
  1754. current_position[Z_AXIS]-=retract_zlift;
  1755. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1756. prepare_move();
  1757. feedrate = oldFeedrate;
  1758. } else if(!retracting && retracted[active_extruder]) {
  1759. destination[X_AXIS]=current_position[X_AXIS];
  1760. destination[Y_AXIS]=current_position[Y_AXIS];
  1761. destination[Z_AXIS]=current_position[Z_AXIS];
  1762. destination[E_AXIS]=current_position[E_AXIS];
  1763. current_position[Z_AXIS]+=retract_zlift;
  1764. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1765. //prepare_move();
  1766. if (swapretract) {
  1767. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1768. } else {
  1769. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1770. }
  1771. plan_set_e_position(current_position[E_AXIS]);
  1772. float oldFeedrate = feedrate;
  1773. feedrate=retract_recover_feedrate*60;
  1774. retracted[active_extruder]=false;
  1775. prepare_move();
  1776. feedrate = oldFeedrate;
  1777. }
  1778. } //retract
  1779. #endif //FWRETRACT
  1780. void trace() {
  1781. tone(BEEPER, 440);
  1782. delay(25);
  1783. noTone(BEEPER);
  1784. delay(20);
  1785. }
  1786. /*
  1787. void ramming() {
  1788. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1789. if (current_temperature[0] < 230) {
  1790. //PLA
  1791. max_feedrate[E_AXIS] = 50;
  1792. //current_position[E_AXIS] -= 8;
  1793. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1794. //current_position[E_AXIS] += 8;
  1795. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1796. current_position[E_AXIS] += 5.4;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1798. current_position[E_AXIS] += 3.2;
  1799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1800. current_position[E_AXIS] += 3;
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1802. st_synchronize();
  1803. max_feedrate[E_AXIS] = 80;
  1804. current_position[E_AXIS] -= 82;
  1805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1806. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1807. current_position[E_AXIS] -= 20;
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1809. current_position[E_AXIS] += 5;
  1810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1811. current_position[E_AXIS] += 5;
  1812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1813. current_position[E_AXIS] -= 10;
  1814. st_synchronize();
  1815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1816. current_position[E_AXIS] += 10;
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1818. current_position[E_AXIS] -= 10;
  1819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1820. current_position[E_AXIS] += 10;
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1822. current_position[E_AXIS] -= 10;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1824. st_synchronize();
  1825. }
  1826. else {
  1827. //ABS
  1828. max_feedrate[E_AXIS] = 50;
  1829. //current_position[E_AXIS] -= 8;
  1830. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1831. //current_position[E_AXIS] += 8;
  1832. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1833. current_position[E_AXIS] += 3.1;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1835. current_position[E_AXIS] += 3.1;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1837. current_position[E_AXIS] += 4;
  1838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1839. st_synchronize();
  1840. //current_position[X_AXIS] += 23; //delay
  1841. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1842. //current_position[X_AXIS] -= 23; //delay
  1843. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1844. delay(4700);
  1845. max_feedrate[E_AXIS] = 80;
  1846. current_position[E_AXIS] -= 92;
  1847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1848. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1849. current_position[E_AXIS] -= 5;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1851. current_position[E_AXIS] += 5;
  1852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1853. current_position[E_AXIS] -= 5;
  1854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1855. st_synchronize();
  1856. current_position[E_AXIS] += 5;
  1857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1858. current_position[E_AXIS] -= 5;
  1859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1860. current_position[E_AXIS] += 5;
  1861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1862. current_position[E_AXIS] -= 5;
  1863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1864. st_synchronize();
  1865. }
  1866. }
  1867. */
  1868. void gcode_M701() {
  1869. #ifdef SNMM
  1870. extr_adj(snmm_extruder);//loads current extruder
  1871. #else
  1872. enable_z();
  1873. custom_message = true;
  1874. custom_message_type = 2;
  1875. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1876. current_position[E_AXIS] += 70;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1878. current_position[E_AXIS] += 25;
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1880. st_synchronize();
  1881. if (!farm_mode && loading_flag) {
  1882. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1883. while (!clean) {
  1884. lcd_update_enable(true);
  1885. lcd_update(2);
  1886. current_position[E_AXIS] += 25;
  1887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1888. st_synchronize();
  1889. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1890. }
  1891. }
  1892. lcd_update_enable(true);
  1893. lcd_update(2);
  1894. lcd_setstatuspgm(WELCOME_MSG);
  1895. disable_z();
  1896. loading_flag = false;
  1897. custom_message = false;
  1898. custom_message_type = 0;
  1899. #endif
  1900. }
  1901. bool gcode_M45(bool onlyZ) {
  1902. bool final_result = false;
  1903. if (!onlyZ) {
  1904. setTargetBed(0);
  1905. setTargetHotend(0, 0);
  1906. setTargetHotend(0, 1);
  1907. setTargetHotend(0, 2);
  1908. adjust_bed_reset(); //reset bed level correction
  1909. }
  1910. // Disable the default update procedure of the display. We will do a modal dialog.
  1911. lcd_update_enable(false);
  1912. // Let the planner use the uncorrected coordinates.
  1913. mbl.reset();
  1914. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1915. // the planner will not perform any adjustments in the XY plane.
  1916. // Wait for the motors to stop and update the current position with the absolute values.
  1917. world2machine_revert_to_uncorrected();
  1918. // Reset the baby step value applied without moving the axes.
  1919. babystep_reset();
  1920. // Mark all axes as in a need for homing.
  1921. memset(axis_known_position, 0, sizeof(axis_known_position));
  1922. // Let the user move the Z axes up to the end stoppers.
  1923. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1924. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1925. KEEPALIVE_STATE(IN_HANDLER);
  1926. refresh_cmd_timeout();
  1927. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1928. lcd_wait_for_cool_down();
  1929. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1930. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1931. lcd_implementation_print_at(0, 3, 1);
  1932. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1933. }
  1934. // Move the print head close to the bed.
  1935. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1937. st_synchronize();
  1938. // Home in the XY plane.
  1939. set_destination_to_current();
  1940. setup_for_endstop_move();
  1941. home_xy();
  1942. int8_t verbosity_level = 0;
  1943. if (code_seen('V')) {
  1944. // Just 'V' without a number counts as V1.
  1945. char c = strchr_pointer[1];
  1946. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1947. }
  1948. if (onlyZ) {
  1949. clean_up_after_endstop_move();
  1950. // Z only calibration.
  1951. // Load the machine correction matrix
  1952. world2machine_initialize();
  1953. // and correct the current_position to match the transformed coordinate system.
  1954. world2machine_update_current();
  1955. //FIXME
  1956. bool result = sample_mesh_and_store_reference();
  1957. if (result) {
  1958. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1959. // Shipped, the nozzle height has been set already. The user can start printing now.
  1960. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1961. // babystep_apply();
  1962. final_result = true;
  1963. }
  1964. }
  1965. else {
  1966. //if wizard is active and selftest was succefully completed, we dont want to loose information about it
  1967. if (calibration_status() != 250 || eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) {
  1968. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1969. }
  1970. // Reset the baby step value and the baby step applied flag.
  1971. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1972. // Complete XYZ calibration.
  1973. uint8_t point_too_far_mask = 0;
  1974. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1975. clean_up_after_endstop_move();
  1976. // Print head up.
  1977. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1979. st_synchronize();
  1980. if (result >= 0) {
  1981. point_too_far_mask = 0;
  1982. // Second half: The fine adjustment.
  1983. // Let the planner use the uncorrected coordinates.
  1984. mbl.reset();
  1985. world2machine_reset();
  1986. // Home in the XY plane.
  1987. setup_for_endstop_move();
  1988. home_xy();
  1989. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1990. clean_up_after_endstop_move();
  1991. // Print head up.
  1992. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1994. st_synchronize();
  1995. // if (result >= 0) babystep_apply();
  1996. }
  1997. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1998. if (result >= 0) {
  1999. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2000. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2001. if(eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2002. final_result = true;
  2003. }
  2004. }
  2005. }
  2006. else {
  2007. // Timeouted.
  2008. KEEPALIVE_STATE(IN_HANDLER);
  2009. }
  2010. lcd_update_enable(true);
  2011. return final_result;
  2012. }
  2013. void process_commands()
  2014. {
  2015. #ifdef FILAMENT_RUNOUT_SUPPORT
  2016. SET_INPUT(FR_SENS);
  2017. #endif
  2018. #ifdef CMDBUFFER_DEBUG
  2019. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2020. SERIAL_ECHO(cmdbuffer+bufindr+1);
  2021. SERIAL_ECHOLNPGM("");
  2022. SERIAL_ECHOPGM("In cmdqueue: ");
  2023. SERIAL_ECHO(buflen);
  2024. SERIAL_ECHOLNPGM("");
  2025. #endif /* CMDBUFFER_DEBUG */
  2026. unsigned long codenum; //throw away variable
  2027. char *starpos = NULL;
  2028. #ifdef ENABLE_AUTO_BED_LEVELING
  2029. float x_tmp, y_tmp, z_tmp, real_z;
  2030. #endif
  2031. // PRUSA GCODES
  2032. KEEPALIVE_STATE(IN_HANDLER);
  2033. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2034. custom_message = true; //fixes using M117 during SD print, but needs to be be updated in future
  2035. custom_message_type = 2; //fixes using M117 during SD print, but needs to be be updated in future
  2036. starpos = (strchr(strchr_pointer + 5, '*'));
  2037. if (starpos != NULL)
  2038. *(starpos) = '\0';
  2039. lcd_setstatus(strchr_pointer + 5);
  2040. custom_message = false;
  2041. custom_message_type = 0;
  2042. }
  2043. else if(code_seen("PRUSA")){
  2044. if (code_seen("Ping")) { //PRUSA Ping
  2045. if (farm_mode) {
  2046. PingTime = millis();
  2047. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2048. }
  2049. } else if (code_seen("PRN")) {
  2050. MYSERIAL.println(status_number);
  2051. } else if (code_seen("RESET")) {
  2052. // careful!
  2053. if (farm_mode) {
  2054. asm volatile(" jmp 0x3E000");
  2055. }
  2056. else {
  2057. MYSERIAL.println("Not in farm mode.");
  2058. }
  2059. } else if (code_seen("fn")) {
  2060. if (farm_mode) {
  2061. MYSERIAL.println(farm_no);
  2062. }
  2063. else {
  2064. MYSERIAL.println("Not in farm mode.");
  2065. }
  2066. }
  2067. else if (code_seen("thx")) {
  2068. no_response = false;
  2069. }else if (code_seen("fv")) {
  2070. // get file version
  2071. #ifdef SDSUPPORT
  2072. card.openFile(strchr_pointer + 3,true);
  2073. while (true) {
  2074. uint16_t readByte = card.get();
  2075. MYSERIAL.write(readByte);
  2076. if (readByte=='\n') {
  2077. break;
  2078. }
  2079. }
  2080. card.closefile();
  2081. #endif // SDSUPPORT
  2082. } else if (code_seen("M28")) {
  2083. trace();
  2084. prusa_sd_card_upload = true;
  2085. card.openFile(strchr_pointer+4,false);
  2086. } else if (code_seen("SN")) {
  2087. if (farm_mode) {
  2088. selectedSerialPort = 0;
  2089. MSerial.write(";S");
  2090. // S/N is:CZPX0917X003XC13518
  2091. int numbersRead = 0;
  2092. while (numbersRead < 19) {
  2093. while (MSerial.available() > 0) {
  2094. uint8_t serial_char = MSerial.read();
  2095. selectedSerialPort = 1;
  2096. MSerial.write(serial_char);
  2097. numbersRead++;
  2098. selectedSerialPort = 0;
  2099. }
  2100. }
  2101. selectedSerialPort = 1;
  2102. MSerial.write('\n');
  2103. /*for (int b = 0; b < 3; b++) {
  2104. tone(BEEPER, 110);
  2105. delay(50);
  2106. noTone(BEEPER);
  2107. delay(50);
  2108. }*/
  2109. } else {
  2110. MYSERIAL.println("Not in farm mode.");
  2111. }
  2112. } else if(code_seen("Fir")){
  2113. SERIAL_PROTOCOLLN(FW_version);
  2114. } else if(code_seen("Rev")){
  2115. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2116. } else if(code_seen("Lang")) {
  2117. lcd_force_language_selection();
  2118. } else if(code_seen("Lz")) {
  2119. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2120. } else if (code_seen("SERIAL LOW")) {
  2121. MYSERIAL.println("SERIAL LOW");
  2122. MYSERIAL.begin(BAUDRATE);
  2123. return;
  2124. } else if (code_seen("SERIAL HIGH")) {
  2125. MYSERIAL.println("SERIAL HIGH");
  2126. MYSERIAL.begin(115200);
  2127. return;
  2128. } else if(code_seen("Beat")) {
  2129. // Kick farm link timer
  2130. kicktime = millis();
  2131. } else if(code_seen("FR")) {
  2132. // Factory full reset
  2133. factory_reset(0,true);
  2134. }
  2135. //else if (code_seen('Cal')) {
  2136. // lcd_calibration();
  2137. // }
  2138. }
  2139. else if (code_seen('^')) {
  2140. // nothing, this is a version line
  2141. } else if(code_seen('G'))
  2142. {
  2143. switch((int)code_value())
  2144. {
  2145. case 0: // G0 -> G1
  2146. case 1: // G1
  2147. if(Stopped == false) {
  2148. #ifdef FILAMENT_RUNOUT_SUPPORT
  2149. if(READ(FR_SENS)){
  2150. enquecommand_front_P((PSTR(FILAMENT_RUNOUT_SCRIPT)));
  2151. /* feedmultiplyBckp=feedmultiply;
  2152. float target[4];
  2153. float lastpos[4];
  2154. target[X_AXIS]=current_position[X_AXIS];
  2155. target[Y_AXIS]=current_position[Y_AXIS];
  2156. target[Z_AXIS]=current_position[Z_AXIS];
  2157. target[E_AXIS]=current_position[E_AXIS];
  2158. lastpos[X_AXIS]=current_position[X_AXIS];
  2159. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2160. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2161. lastpos[E_AXIS]=current_position[E_AXIS];
  2162. //retract by E
  2163. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2165. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2166. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2167. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2168. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2169. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2170. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2171. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2172. //finish moves
  2173. st_synchronize();
  2174. //disable extruder steppers so filament can be removed
  2175. disable_e0();
  2176. disable_e1();
  2177. disable_e2();
  2178. delay(100);
  2179. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2180. uint8_t cnt=0;
  2181. int counterBeep = 0;
  2182. lcd_wait_interact();
  2183. while(!lcd_clicked()){
  2184. cnt++;
  2185. manage_heater();
  2186. manage_inactivity(true);
  2187. //lcd_update();
  2188. if(cnt==0)
  2189. {
  2190. #if BEEPER > 0
  2191. if (counterBeep== 500){
  2192. counterBeep = 0;
  2193. }
  2194. SET_OUTPUT(BEEPER);
  2195. if (counterBeep== 0){
  2196. WRITE(BEEPER,HIGH);
  2197. }
  2198. if (counterBeep== 20){
  2199. WRITE(BEEPER,LOW);
  2200. }
  2201. counterBeep++;
  2202. #else
  2203. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2204. lcd_buzz(1000/6,100);
  2205. #else
  2206. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2207. #endif
  2208. #endif
  2209. }
  2210. }
  2211. WRITE(BEEPER,LOW);
  2212. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2213. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2214. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2216. lcd_change_fil_state = 0;
  2217. lcd_loading_filament();
  2218. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2219. lcd_change_fil_state = 0;
  2220. lcd_alright();
  2221. switch(lcd_change_fil_state){
  2222. case 2:
  2223. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2224. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2225. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2227. lcd_loading_filament();
  2228. break;
  2229. case 3:
  2230. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2231. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2232. lcd_loading_color();
  2233. break;
  2234. default:
  2235. lcd_change_success();
  2236. break;
  2237. }
  2238. }
  2239. target[E_AXIS]+= 5;
  2240. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2241. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2242. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2243. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2244. //plan_set_e_position(current_position[E_AXIS]);
  2245. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2246. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2247. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2248. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2249. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2250. plan_set_e_position(lastpos[E_AXIS]);
  2251. feedmultiply=feedmultiplyBckp;
  2252. char cmd[9];
  2253. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2254. enquecommand(cmd);
  2255. */
  2256. }
  2257. #endif
  2258. get_coordinates(); // For X Y Z E F
  2259. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2260. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2261. }
  2262. #ifdef FWRETRACT
  2263. if(autoretract_enabled)
  2264. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2265. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2266. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2267. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2268. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2269. retract(!retracted[active_extruder]);
  2270. return;
  2271. }
  2272. }
  2273. #endif //FWRETRACT
  2274. prepare_move();
  2275. //ClearToSend();
  2276. }
  2277. break;
  2278. case 2: // G2 - CW ARC
  2279. if(Stopped == false) {
  2280. get_arc_coordinates();
  2281. prepare_arc_move(true);
  2282. }
  2283. break;
  2284. case 3: // G3 - CCW ARC
  2285. if(Stopped == false) {
  2286. get_arc_coordinates();
  2287. prepare_arc_move(false);
  2288. }
  2289. break;
  2290. case 4: // G4 dwell
  2291. codenum = 0;
  2292. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2293. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2294. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2295. st_synchronize();
  2296. codenum += millis(); // keep track of when we started waiting
  2297. previous_millis_cmd = millis();
  2298. while(millis() < codenum) {
  2299. manage_heater();
  2300. manage_inactivity();
  2301. lcd_update();
  2302. }
  2303. break;
  2304. #ifdef FWRETRACT
  2305. case 10: // G10 retract
  2306. #if EXTRUDERS > 1
  2307. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2308. retract(true,retracted_swap[active_extruder]);
  2309. #else
  2310. retract(true);
  2311. #endif
  2312. break;
  2313. case 11: // G11 retract_recover
  2314. #if EXTRUDERS > 1
  2315. retract(false,retracted_swap[active_extruder]);
  2316. #else
  2317. retract(false);
  2318. #endif
  2319. break;
  2320. #endif //FWRETRACT
  2321. case 28: //G28 Home all Axis one at a time
  2322. homing_flag = true;
  2323. #ifdef ENABLE_AUTO_BED_LEVELING
  2324. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2325. #endif //ENABLE_AUTO_BED_LEVELING
  2326. // For mesh bed leveling deactivate the matrix temporarily
  2327. #ifdef MESH_BED_LEVELING
  2328. mbl.active = 0;
  2329. #endif
  2330. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2331. // the planner will not perform any adjustments in the XY plane.
  2332. // Wait for the motors to stop and update the current position with the absolute values.
  2333. world2machine_revert_to_uncorrected();
  2334. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2335. // consumed during the first movements following this statement.
  2336. babystep_undo();
  2337. saved_feedrate = feedrate;
  2338. saved_feedmultiply = feedmultiply;
  2339. feedmultiply = 100;
  2340. previous_millis_cmd = millis();
  2341. enable_endstops(true);
  2342. for(int8_t i=0; i < NUM_AXIS; i++)
  2343. destination[i] = current_position[i];
  2344. feedrate = 0.0;
  2345. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2346. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2347. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2348. homeaxis(Z_AXIS);
  2349. }
  2350. #endif
  2351. #ifdef QUICK_HOME
  2352. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2353. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2354. {
  2355. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2356. int x_axis_home_dir = home_dir(X_AXIS);
  2357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2358. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2359. feedrate = homing_feedrate[X_AXIS];
  2360. if(homing_feedrate[Y_AXIS]<feedrate)
  2361. feedrate = homing_feedrate[Y_AXIS];
  2362. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2363. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2364. } else {
  2365. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2366. }
  2367. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2368. st_synchronize();
  2369. axis_is_at_home(X_AXIS);
  2370. axis_is_at_home(Y_AXIS);
  2371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2372. destination[X_AXIS] = current_position[X_AXIS];
  2373. destination[Y_AXIS] = current_position[Y_AXIS];
  2374. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2375. feedrate = 0.0;
  2376. st_synchronize();
  2377. endstops_hit_on_purpose();
  2378. current_position[X_AXIS] = destination[X_AXIS];
  2379. current_position[Y_AXIS] = destination[Y_AXIS];
  2380. current_position[Z_AXIS] = destination[Z_AXIS];
  2381. }
  2382. #endif /* QUICK_HOME */
  2383. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2384. homeaxis(X_AXIS);
  2385. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2386. homeaxis(Y_AXIS);
  2387. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2388. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2389. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2390. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2391. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2392. #ifndef Z_SAFE_HOMING
  2393. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2394. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2395. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2396. feedrate = max_feedrate[Z_AXIS];
  2397. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2398. st_synchronize();
  2399. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2400. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2401. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2402. {
  2403. homeaxis(X_AXIS);
  2404. homeaxis(Y_AXIS);
  2405. }
  2406. // 1st mesh bed leveling measurement point, corrected.
  2407. world2machine_initialize();
  2408. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2409. world2machine_reset();
  2410. if (destination[Y_AXIS] < Y_MIN_POS)
  2411. destination[Y_AXIS] = Y_MIN_POS;
  2412. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2413. feedrate = homing_feedrate[Z_AXIS]/10;
  2414. current_position[Z_AXIS] = 0;
  2415. enable_endstops(false);
  2416. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2417. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2418. st_synchronize();
  2419. current_position[X_AXIS] = destination[X_AXIS];
  2420. current_position[Y_AXIS] = destination[Y_AXIS];
  2421. enable_endstops(true);
  2422. endstops_hit_on_purpose();
  2423. homeaxis(Z_AXIS);
  2424. #else // MESH_BED_LEVELING
  2425. homeaxis(Z_AXIS);
  2426. #endif // MESH_BED_LEVELING
  2427. }
  2428. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2429. if(home_all_axis) {
  2430. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2431. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2432. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2433. feedrate = XY_TRAVEL_SPEED/60;
  2434. current_position[Z_AXIS] = 0;
  2435. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2436. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2437. st_synchronize();
  2438. current_position[X_AXIS] = destination[X_AXIS];
  2439. current_position[Y_AXIS] = destination[Y_AXIS];
  2440. homeaxis(Z_AXIS);
  2441. }
  2442. // Let's see if X and Y are homed and probe is inside bed area.
  2443. if(code_seen(axis_codes[Z_AXIS])) {
  2444. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2445. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2446. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2447. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2448. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2449. current_position[Z_AXIS] = 0;
  2450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2451. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2452. feedrate = max_feedrate[Z_AXIS];
  2453. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2454. st_synchronize();
  2455. homeaxis(Z_AXIS);
  2456. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2457. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2458. SERIAL_ECHO_START;
  2459. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2460. } else {
  2461. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2462. SERIAL_ECHO_START;
  2463. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2464. }
  2465. }
  2466. #endif // Z_SAFE_HOMING
  2467. #endif // Z_HOME_DIR < 0
  2468. if(code_seen(axis_codes[Z_AXIS])) {
  2469. if(code_value_long() != 0) {
  2470. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2471. }
  2472. }
  2473. #ifdef ENABLE_AUTO_BED_LEVELING
  2474. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2475. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2476. }
  2477. #endif
  2478. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2479. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2480. enable_endstops(false);
  2481. #endif
  2482. feedrate = saved_feedrate;
  2483. feedmultiply = saved_feedmultiply;
  2484. previous_millis_cmd = millis();
  2485. endstops_hit_on_purpose();
  2486. #ifndef MESH_BED_LEVELING
  2487. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2488. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2489. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2490. lcd_adjust_z();
  2491. #endif
  2492. // Load the machine correction matrix
  2493. world2machine_initialize();
  2494. // and correct the current_position to match the transformed coordinate system.
  2495. world2machine_update_current();
  2496. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2497. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2498. {
  2499. }
  2500. else
  2501. {
  2502. st_synchronize();
  2503. homing_flag = false;
  2504. // Push the commands to the front of the message queue in the reverse order!
  2505. // There shall be always enough space reserved for these commands.
  2506. // enquecommand_front_P((PSTR("G80")));
  2507. goto case_G80;
  2508. }
  2509. #endif
  2510. if (farm_mode) { prusa_statistics(20); };
  2511. homing_flag = false;
  2512. break;
  2513. #ifdef ENABLE_AUTO_BED_LEVELING
  2514. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2515. {
  2516. #if Z_MIN_PIN == -1
  2517. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2518. #endif
  2519. // Prevent user from running a G29 without first homing in X and Y
  2520. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2521. {
  2522. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2523. SERIAL_ECHO_START;
  2524. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2525. break; // abort G29, since we don't know where we are
  2526. }
  2527. st_synchronize();
  2528. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2529. //vector_3 corrected_position = plan_get_position_mm();
  2530. //corrected_position.debug("position before G29");
  2531. plan_bed_level_matrix.set_to_identity();
  2532. vector_3 uncorrected_position = plan_get_position();
  2533. //uncorrected_position.debug("position durring G29");
  2534. current_position[X_AXIS] = uncorrected_position.x;
  2535. current_position[Y_AXIS] = uncorrected_position.y;
  2536. current_position[Z_AXIS] = uncorrected_position.z;
  2537. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2538. setup_for_endstop_move();
  2539. feedrate = homing_feedrate[Z_AXIS];
  2540. #ifdef AUTO_BED_LEVELING_GRID
  2541. // probe at the points of a lattice grid
  2542. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2543. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2544. // solve the plane equation ax + by + d = z
  2545. // A is the matrix with rows [x y 1] for all the probed points
  2546. // B is the vector of the Z positions
  2547. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2548. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2549. // "A" matrix of the linear system of equations
  2550. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2551. // "B" vector of Z points
  2552. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2553. int probePointCounter = 0;
  2554. bool zig = true;
  2555. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2556. {
  2557. int xProbe, xInc;
  2558. if (zig)
  2559. {
  2560. xProbe = LEFT_PROBE_BED_POSITION;
  2561. //xEnd = RIGHT_PROBE_BED_POSITION;
  2562. xInc = xGridSpacing;
  2563. zig = false;
  2564. } else // zag
  2565. {
  2566. xProbe = RIGHT_PROBE_BED_POSITION;
  2567. //xEnd = LEFT_PROBE_BED_POSITION;
  2568. xInc = -xGridSpacing;
  2569. zig = true;
  2570. }
  2571. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2572. {
  2573. float z_before;
  2574. if (probePointCounter == 0)
  2575. {
  2576. // raise before probing
  2577. z_before = Z_RAISE_BEFORE_PROBING;
  2578. } else
  2579. {
  2580. // raise extruder
  2581. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2582. }
  2583. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2584. eqnBVector[probePointCounter] = measured_z;
  2585. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2586. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2587. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2588. probePointCounter++;
  2589. xProbe += xInc;
  2590. }
  2591. }
  2592. clean_up_after_endstop_move();
  2593. // solve lsq problem
  2594. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2595. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2596. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2597. SERIAL_PROTOCOLPGM(" b: ");
  2598. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2599. SERIAL_PROTOCOLPGM(" d: ");
  2600. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2601. set_bed_level_equation_lsq(plane_equation_coefficients);
  2602. free(plane_equation_coefficients);
  2603. #else // AUTO_BED_LEVELING_GRID not defined
  2604. // Probe at 3 arbitrary points
  2605. // probe 1
  2606. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2607. // probe 2
  2608. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2609. // probe 3
  2610. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2611. clean_up_after_endstop_move();
  2612. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2613. #endif // AUTO_BED_LEVELING_GRID
  2614. st_synchronize();
  2615. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2616. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2617. // When the bed is uneven, this height must be corrected.
  2618. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2619. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2620. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2621. z_tmp = current_position[Z_AXIS];
  2622. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2623. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2624. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2625. }
  2626. break;
  2627. #ifndef Z_PROBE_SLED
  2628. case 30: // G30 Single Z Probe
  2629. {
  2630. st_synchronize();
  2631. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2632. setup_for_endstop_move();
  2633. feedrate = homing_feedrate[Z_AXIS];
  2634. run_z_probe();
  2635. SERIAL_PROTOCOLPGM(MSG_BED);
  2636. SERIAL_PROTOCOLPGM(" X: ");
  2637. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Y: ");
  2639. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" Z: ");
  2641. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2642. SERIAL_PROTOCOLPGM("\n");
  2643. clean_up_after_endstop_move();
  2644. }
  2645. break;
  2646. #else
  2647. case 31: // dock the sled
  2648. dock_sled(true);
  2649. break;
  2650. case 32: // undock the sled
  2651. dock_sled(false);
  2652. break;
  2653. #endif // Z_PROBE_SLED
  2654. #endif // ENABLE_AUTO_BED_LEVELING
  2655. #ifdef MESH_BED_LEVELING
  2656. case 30: // G30 Single Z Probe
  2657. {
  2658. st_synchronize();
  2659. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2660. setup_for_endstop_move();
  2661. feedrate = homing_feedrate[Z_AXIS];
  2662. find_bed_induction_sensor_point_z(-10.f, 3);
  2663. SERIAL_PROTOCOLRPGM(MSG_BED);
  2664. SERIAL_PROTOCOLPGM(" X: ");
  2665. MYSERIAL.print(current_position[X_AXIS], 5);
  2666. SERIAL_PROTOCOLPGM(" Y: ");
  2667. MYSERIAL.print(current_position[Y_AXIS], 5);
  2668. SERIAL_PROTOCOLPGM(" Z: ");
  2669. MYSERIAL.print(current_position[Z_AXIS], 5);
  2670. SERIAL_PROTOCOLPGM("\n");
  2671. clean_up_after_endstop_move();
  2672. }
  2673. break;
  2674. case 75:
  2675. {
  2676. for (int i = 40; i <= 110; i++) {
  2677. MYSERIAL.print(i);
  2678. MYSERIAL.print(" ");
  2679. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2680. }
  2681. }
  2682. break;
  2683. case 76: //PINDA probe temperature calibration
  2684. {
  2685. setTargetBed(PINDA_MIN_T);
  2686. float zero_z;
  2687. int z_shift = 0; //unit: steps
  2688. int t_c; // temperature
  2689. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2690. // We don't know where we are! HOME!
  2691. // Push the commands to the front of the message queue in the reverse order!
  2692. // There shall be always enough space reserved for these commands.
  2693. repeatcommand_front(); // repeat G76 with all its parameters
  2694. enquecommand_front_P((PSTR("G28 W0")));
  2695. break;
  2696. }
  2697. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2698. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2699. custom_message = true;
  2700. custom_message_type = 4;
  2701. custom_message_state = 1;
  2702. custom_message = MSG_TEMP_CALIBRATION;
  2703. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2704. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2705. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2707. st_synchronize();
  2708. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2709. delay_keep_alive(1000);
  2710. serialecho_temperatures();
  2711. }
  2712. //enquecommand_P(PSTR("M190 S50"));
  2713. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2714. delay_keep_alive(1000);
  2715. serialecho_temperatures();
  2716. }
  2717. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2718. current_position[Z_AXIS] = 5;
  2719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2720. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2721. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2723. st_synchronize();
  2724. find_bed_induction_sensor_point_z(-1.f);
  2725. zero_z = current_position[Z_AXIS];
  2726. //current_position[Z_AXIS]
  2727. SERIAL_ECHOLNPGM("");
  2728. SERIAL_ECHOPGM("ZERO: ");
  2729. MYSERIAL.print(current_position[Z_AXIS]);
  2730. SERIAL_ECHOLNPGM("");
  2731. for (int i = 0; i<5; i++) {
  2732. SERIAL_ECHOPGM("Step: ");
  2733. MYSERIAL.print(i+2);
  2734. SERIAL_ECHOLNPGM("/6");
  2735. custom_message_state = i + 2;
  2736. t_c = 60 + i * 10;
  2737. setTargetBed(t_c);
  2738. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2739. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2740. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2742. st_synchronize();
  2743. while (degBed() < t_c) {
  2744. delay_keep_alive(1000);
  2745. serialecho_temperatures();
  2746. }
  2747. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2748. delay_keep_alive(1000);
  2749. serialecho_temperatures();
  2750. }
  2751. current_position[Z_AXIS] = 5;
  2752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2753. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2754. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2756. st_synchronize();
  2757. find_bed_induction_sensor_point_z(-1.f);
  2758. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2759. SERIAL_ECHOLNPGM("");
  2760. SERIAL_ECHOPGM("Temperature: ");
  2761. MYSERIAL.print(t_c);
  2762. SERIAL_ECHOPGM(" Z shift (mm):");
  2763. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2764. SERIAL_ECHOLNPGM("");
  2765. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2766. }
  2767. custom_message_type = 0;
  2768. custom_message = false;
  2769. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2770. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2771. disable_x();
  2772. disable_y();
  2773. disable_z();
  2774. disable_e0();
  2775. disable_e1();
  2776. disable_e2();
  2777. setTargetBed(0); //set bed target temperature back to 0
  2778. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2779. lcd_update_enable(true);
  2780. lcd_update(2);
  2781. }
  2782. break;
  2783. #ifdef DIS
  2784. case 77:
  2785. {
  2786. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2787. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2788. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2789. float dimension_x = 40;
  2790. float dimension_y = 40;
  2791. int points_x = 40;
  2792. int points_y = 40;
  2793. float offset_x = 74;
  2794. float offset_y = 33;
  2795. if (code_seen('X')) dimension_x = code_value();
  2796. if (code_seen('Y')) dimension_y = code_value();
  2797. if (code_seen('XP')) points_x = code_value();
  2798. if (code_seen('YP')) points_y = code_value();
  2799. if (code_seen('XO')) offset_x = code_value();
  2800. if (code_seen('YO')) offset_y = code_value();
  2801. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2802. } break;
  2803. #endif
  2804. /**
  2805. * G80: Mesh-based Z probe, probes a grid and produces a
  2806. * mesh to compensate for variable bed height
  2807. *
  2808. * The S0 report the points as below
  2809. *
  2810. * +----> X-axis
  2811. * |
  2812. * |
  2813. * v Y-axis
  2814. *
  2815. */
  2816. case 80:
  2817. #ifdef MK1BP
  2818. break;
  2819. #endif //MK1BP
  2820. case_G80:
  2821. {
  2822. mesh_bed_leveling_flag = true;
  2823. int8_t verbosity_level = 0;
  2824. static bool run = false;
  2825. if (code_seen('V')) {
  2826. // Just 'V' without a number counts as V1.
  2827. char c = strchr_pointer[1];
  2828. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2829. }
  2830. // Firstly check if we know where we are
  2831. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2832. // We don't know where we are! HOME!
  2833. // Push the commands to the front of the message queue in the reverse order!
  2834. // There shall be always enough space reserved for these commands.
  2835. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2836. repeatcommand_front(); // repeat G80 with all its parameters
  2837. enquecommand_front_P((PSTR("G28 W0")));
  2838. }
  2839. else {
  2840. mesh_bed_leveling_flag = false;
  2841. }
  2842. break;
  2843. }
  2844. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2845. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2846. temp_compensation_start();
  2847. run = true;
  2848. repeatcommand_front(); // repeat G80 with all its parameters
  2849. enquecommand_front_P((PSTR("G28 W0")));
  2850. }
  2851. else {
  2852. mesh_bed_leveling_flag = false;
  2853. }
  2854. break;
  2855. }
  2856. run = false;
  2857. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2858. mesh_bed_leveling_flag = false;
  2859. break;
  2860. }
  2861. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2862. bool custom_message_old = custom_message;
  2863. unsigned int custom_message_type_old = custom_message_type;
  2864. unsigned int custom_message_state_old = custom_message_state;
  2865. custom_message = true;
  2866. custom_message_type = 1;
  2867. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2868. lcd_update(1);
  2869. mbl.reset(); //reset mesh bed leveling
  2870. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2871. // consumed during the first movements following this statement.
  2872. babystep_undo();
  2873. // Cycle through all points and probe them
  2874. // First move up. During this first movement, the babystepping will be reverted.
  2875. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2877. // The move to the first calibration point.
  2878. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2879. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2880. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2881. #ifdef SUPPORT_VERBOSITY
  2882. if (verbosity_level >= 1) {
  2883. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2884. }
  2885. #endif // SUPPORT_VERBOSITY
  2886. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2888. // Wait until the move is finished.
  2889. st_synchronize();
  2890. int mesh_point = 0; //index number of calibration point
  2891. int ix = 0;
  2892. int iy = 0;
  2893. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2894. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2895. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2896. #ifdef SUPPORT_VERBOSITY
  2897. if (verbosity_level >= 1) {
  2898. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2899. }
  2900. #endif // SUPPORT_VERBOSITY
  2901. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2902. const char *kill_message = NULL;
  2903. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2904. #ifdef SUPPORT_VERBOSITY
  2905. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2906. #endif // SUPPORT_VERBOSITY
  2907. // Get coords of a measuring point.
  2908. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2909. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2910. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2911. float z0 = 0.f;
  2912. if (has_z && mesh_point > 0) {
  2913. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2914. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2915. #ifdef SUPPORT_VERBOSITY
  2916. if (verbosity_level >= 1) {
  2917. SERIAL_ECHOPGM("Bed leveling, point: ");
  2918. MYSERIAL.print(mesh_point);
  2919. SERIAL_ECHOPGM(", calibration z: ");
  2920. MYSERIAL.print(z0, 5);
  2921. SERIAL_ECHOLNPGM("");
  2922. }
  2923. #endif // SUPPORT_VERBOSITY
  2924. }
  2925. // Move Z up to MESH_HOME_Z_SEARCH.
  2926. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2928. st_synchronize();
  2929. // Move to XY position of the sensor point.
  2930. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2931. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2932. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2933. #ifdef SUPPORT_VERBOSITY
  2934. if (verbosity_level >= 1) {
  2935. SERIAL_PROTOCOL(mesh_point);
  2936. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2937. }
  2938. #endif // SUPPORT_VERBOSITY
  2939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2940. st_synchronize();
  2941. // Go down until endstop is hit
  2942. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2943. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2944. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2945. break;
  2946. }
  2947. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2948. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2949. break;
  2950. }
  2951. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2952. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2953. break;
  2954. }
  2955. #ifdef SUPPORT_VERBOSITY
  2956. if (verbosity_level >= 10) {
  2957. SERIAL_ECHOPGM("X: ");
  2958. MYSERIAL.print(current_position[X_AXIS], 5);
  2959. SERIAL_ECHOLNPGM("");
  2960. SERIAL_ECHOPGM("Y: ");
  2961. MYSERIAL.print(current_position[Y_AXIS], 5);
  2962. SERIAL_PROTOCOLPGM("\n");
  2963. }
  2964. if (verbosity_level >= 1) {
  2965. SERIAL_ECHOPGM("mesh bed leveling: ");
  2966. MYSERIAL.print(current_position[Z_AXIS], 5);
  2967. SERIAL_ECHOLNPGM("");
  2968. }
  2969. #endif // SUPPORT_VERBOSITY
  2970. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2971. custom_message_state--;
  2972. mesh_point++;
  2973. lcd_update(1);
  2974. }
  2975. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2976. #ifdef SUPPORT_VERBOSITY
  2977. if (verbosity_level >= 20) {
  2978. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2979. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2980. MYSERIAL.print(current_position[Z_AXIS], 5);
  2981. }
  2982. #endif // SUPPORT_VERBOSITY
  2983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2984. st_synchronize();
  2985. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2986. kill(kill_message);
  2987. SERIAL_ECHOLNPGM("killed");
  2988. }
  2989. clean_up_after_endstop_move();
  2990. SERIAL_ECHOLNPGM("clean up finished ");
  2991. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2992. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2993. SERIAL_ECHOLNPGM("babystep applied");
  2994. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2995. #ifdef SUPPORT_VERBOSITY
  2996. if (verbosity_level >= 1) {
  2997. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2998. }
  2999. #endif // SUPPORT_VERBOSITY
  3000. for (uint8_t i = 0; i < 4; ++i) {
  3001. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3002. long correction = 0;
  3003. if (code_seen(codes[i]))
  3004. correction = code_value_long();
  3005. else if (eeprom_bed_correction_valid) {
  3006. unsigned char *addr = (i < 2) ?
  3007. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3008. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3009. correction = eeprom_read_int8(addr);
  3010. }
  3011. if (correction == 0)
  3012. continue;
  3013. float offset = float(correction) * 0.001f;
  3014. if (fabs(offset) > 0.101f) {
  3015. SERIAL_ERROR_START;
  3016. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3017. SERIAL_ECHO(offset);
  3018. SERIAL_ECHOLNPGM(" microns");
  3019. }
  3020. else {
  3021. switch (i) {
  3022. case 0:
  3023. for (uint8_t row = 0; row < 3; ++row) {
  3024. mbl.z_values[row][1] += 0.5f * offset;
  3025. mbl.z_values[row][0] += offset;
  3026. }
  3027. break;
  3028. case 1:
  3029. for (uint8_t row = 0; row < 3; ++row) {
  3030. mbl.z_values[row][1] += 0.5f * offset;
  3031. mbl.z_values[row][2] += offset;
  3032. }
  3033. break;
  3034. case 2:
  3035. for (uint8_t col = 0; col < 3; ++col) {
  3036. mbl.z_values[1][col] += 0.5f * offset;
  3037. mbl.z_values[0][col] += offset;
  3038. }
  3039. break;
  3040. case 3:
  3041. for (uint8_t col = 0; col < 3; ++col) {
  3042. mbl.z_values[1][col] += 0.5f * offset;
  3043. mbl.z_values[2][col] += offset;
  3044. }
  3045. break;
  3046. }
  3047. }
  3048. }
  3049. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3050. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3051. SERIAL_ECHOLNPGM("Upsample finished");
  3052. mbl.active = 1; //activate mesh bed leveling
  3053. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3054. go_home_with_z_lift();
  3055. SERIAL_ECHOLNPGM("Go home finished");
  3056. //unretract (after PINDA preheat retraction)
  3057. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3058. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3060. }
  3061. KEEPALIVE_STATE(NOT_BUSY);
  3062. // Restore custom message state
  3063. custom_message = custom_message_old;
  3064. custom_message_type = custom_message_type_old;
  3065. custom_message_state = custom_message_state_old;
  3066. mesh_bed_leveling_flag = false;
  3067. mesh_bed_run_from_menu = false;
  3068. lcd_update(2);
  3069. }
  3070. break;
  3071. /**
  3072. * G81: Print mesh bed leveling status and bed profile if activated
  3073. */
  3074. case 81:
  3075. if (mbl.active) {
  3076. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3077. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3078. SERIAL_PROTOCOLPGM(",");
  3079. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3080. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3081. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3082. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3083. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3084. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3085. SERIAL_PROTOCOLPGM(" ");
  3086. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3087. }
  3088. SERIAL_PROTOCOLPGM("\n");
  3089. }
  3090. }
  3091. else
  3092. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3093. break;
  3094. #if 0
  3095. /**
  3096. * G82: Single Z probe at current location
  3097. *
  3098. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3099. *
  3100. */
  3101. case 82:
  3102. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3103. setup_for_endstop_move();
  3104. find_bed_induction_sensor_point_z();
  3105. clean_up_after_endstop_move();
  3106. SERIAL_PROTOCOLPGM("Bed found at: ");
  3107. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3108. SERIAL_PROTOCOLPGM("\n");
  3109. break;
  3110. /**
  3111. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3112. */
  3113. case 83:
  3114. {
  3115. int babystepz = code_seen('S') ? code_value() : 0;
  3116. int BabyPosition = code_seen('P') ? code_value() : 0;
  3117. if (babystepz != 0) {
  3118. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3119. // Is the axis indexed starting with zero or one?
  3120. if (BabyPosition > 4) {
  3121. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3122. }else{
  3123. // Save it to the eeprom
  3124. babystepLoadZ = babystepz;
  3125. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3126. // adjust the Z
  3127. babystepsTodoZadd(babystepLoadZ);
  3128. }
  3129. }
  3130. }
  3131. break;
  3132. /**
  3133. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3134. */
  3135. case 84:
  3136. babystepsTodoZsubtract(babystepLoadZ);
  3137. // babystepLoadZ = 0;
  3138. break;
  3139. /**
  3140. * G85: Prusa3D specific: Pick best babystep
  3141. */
  3142. case 85:
  3143. lcd_pick_babystep();
  3144. break;
  3145. #endif
  3146. /**
  3147. * G86: Prusa3D specific: Disable babystep correction after home.
  3148. * This G-code will be performed at the start of a calibration script.
  3149. */
  3150. case 86:
  3151. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3152. break;
  3153. /**
  3154. * G87: Prusa3D specific: Enable babystep correction after home
  3155. * This G-code will be performed at the end of a calibration script.
  3156. */
  3157. case 87:
  3158. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3159. break;
  3160. /*case 88: //just for test
  3161. SERIAL_ECHOPGM("Calibration status:");
  3162. MYSERIAL.println(int(calibration_status()));
  3163. if (code_seen('S')) codenum = code_value();
  3164. calibration_status_store(codenum);
  3165. SERIAL_ECHOPGM("Calibration status:");
  3166. MYSERIAL.println(int(calibration_status()));
  3167. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  3168. break;
  3169. */
  3170. #endif // ENABLE_MESH_BED_LEVELING
  3171. case 90: // G90
  3172. relative_mode = false;
  3173. break;
  3174. case 91: // G91
  3175. relative_mode = true;
  3176. break;
  3177. case 92: // G92
  3178. if(!code_seen(axis_codes[E_AXIS]))
  3179. st_synchronize();
  3180. for(int8_t i=0; i < NUM_AXIS; i++) {
  3181. if(code_seen(axis_codes[i])) {
  3182. if(i == E_AXIS) {
  3183. current_position[i] = code_value();
  3184. plan_set_e_position(current_position[E_AXIS]);
  3185. }
  3186. else {
  3187. current_position[i] = code_value()+add_homing[i];
  3188. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3189. }
  3190. }
  3191. }
  3192. break;
  3193. case 98: //activate farm mode
  3194. farm_mode = 1;
  3195. PingTime = millis();
  3196. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3197. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3198. break;
  3199. case 99: //deactivate farm mode
  3200. farm_mode = 0;
  3201. lcd_printer_connected();
  3202. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3203. lcd_update(2);
  3204. break;
  3205. }
  3206. } // end if(code_seen('G'))
  3207. else if(code_seen('M'))
  3208. {
  3209. int index;
  3210. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3211. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3212. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3213. SERIAL_ECHOLNPGM("Invalid M code");
  3214. } else
  3215. switch((int)code_value())
  3216. {
  3217. #ifdef ULTIPANEL
  3218. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3219. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3220. {
  3221. custom_message = true; //fixes using M1 during SD print, but needs to be be updated in future
  3222. custom_message_type = 2; //fixes using M1 during SD print, but needs to be be updated in future
  3223. char *src = strchr_pointer + 2;
  3224. codenum = 0;
  3225. bool hasP = false, hasS = false;
  3226. if (code_seen('P')) {
  3227. codenum = code_value(); // milliseconds to wait
  3228. hasP = codenum > 0;
  3229. }
  3230. if (code_seen('S')) {
  3231. codenum = code_value() * 1000; // seconds to wait
  3232. hasS = codenum > 0;
  3233. }
  3234. starpos = strchr(src, '*');
  3235. if (starpos != NULL) *(starpos) = '\0';
  3236. while (*src == ' ') ++src;
  3237. if (!hasP && !hasS && *src != '\0') {
  3238. lcd_setstatus(src);
  3239. } else {
  3240. LCD_MESSAGERPGM(MSG_USERWAIT);
  3241. }
  3242. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3243. st_synchronize();
  3244. previous_millis_cmd = millis();
  3245. if (codenum > 0){
  3246. codenum += millis(); // keep track of when we started waiting
  3247. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3248. while(millis() < codenum && !lcd_clicked()){
  3249. manage_heater();
  3250. manage_inactivity(true);
  3251. lcd_update();
  3252. }
  3253. KEEPALIVE_STATE(IN_HANDLER);
  3254. lcd_ignore_click(false);
  3255. }else{
  3256. if (!lcd_detected())
  3257. break;
  3258. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3259. while(!lcd_clicked()){
  3260. manage_heater();
  3261. manage_inactivity(true);
  3262. lcd_update();
  3263. }
  3264. KEEPALIVE_STATE(IN_HANDLER);
  3265. }
  3266. if (IS_SD_PRINTING)
  3267. LCD_MESSAGERPGM(MSG_RESUMING);
  3268. else
  3269. LCD_MESSAGERPGM(WELCOME_MSG);
  3270. custom_message = false;
  3271. custom_message_type = 0;
  3272. }
  3273. break;
  3274. #endif
  3275. case 17:
  3276. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3277. enable_x();
  3278. enable_y();
  3279. enable_z();
  3280. enable_e0();
  3281. enable_e1();
  3282. enable_e2();
  3283. break;
  3284. #ifdef SDSUPPORT
  3285. case 20: // M20 - list SD card
  3286. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3287. card.ls();
  3288. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3289. break;
  3290. case 21: // M21 - init SD card
  3291. card.initsd();
  3292. break;
  3293. case 22: //M22 - release SD card
  3294. card.release();
  3295. break;
  3296. case 23: //M23 - Select file
  3297. starpos = (strchr(strchr_pointer + 4,'*'));
  3298. if(starpos!=NULL)
  3299. *(starpos)='\0';
  3300. card.openFile(strchr_pointer + 4,true);
  3301. break;
  3302. case 24: //M24 - Start SD print
  3303. card.startFileprint();
  3304. starttime=millis();
  3305. break;
  3306. case 25: //M25 - Pause SD print
  3307. card.pauseSDPrint();
  3308. break;
  3309. case 26: //M26 - Set SD index
  3310. if(card.cardOK && code_seen('S')) {
  3311. card.setIndex(code_value_long());
  3312. }
  3313. break;
  3314. case 27: //M27 - Get SD status
  3315. card.getStatus();
  3316. break;
  3317. case 28: //M28 - Start SD write
  3318. starpos = (strchr(strchr_pointer + 4,'*'));
  3319. if(starpos != NULL){
  3320. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3321. strchr_pointer = strchr(npos,' ') + 1;
  3322. *(starpos) = '\0';
  3323. }
  3324. card.openFile(strchr_pointer+4,false);
  3325. break;
  3326. case 29: //M29 - Stop SD write
  3327. //processed in write to file routine above
  3328. //card,saving = false;
  3329. break;
  3330. case 30: //M30 <filename> Delete File
  3331. if (card.cardOK){
  3332. card.closefile();
  3333. starpos = (strchr(strchr_pointer + 4,'*'));
  3334. if(starpos != NULL){
  3335. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3336. strchr_pointer = strchr(npos,' ') + 1;
  3337. *(starpos) = '\0';
  3338. }
  3339. card.removeFile(strchr_pointer + 4);
  3340. }
  3341. break;
  3342. case 32: //M32 - Select file and start SD print
  3343. {
  3344. if(card.sdprinting) {
  3345. st_synchronize();
  3346. }
  3347. starpos = (strchr(strchr_pointer + 4,'*'));
  3348. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3349. if(namestartpos==NULL)
  3350. {
  3351. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3352. }
  3353. else
  3354. namestartpos++; //to skip the '!'
  3355. if(starpos!=NULL)
  3356. *(starpos)='\0';
  3357. bool call_procedure=(code_seen('P'));
  3358. if(strchr_pointer>namestartpos)
  3359. call_procedure=false; //false alert, 'P' found within filename
  3360. if( card.cardOK )
  3361. {
  3362. card.openFile(namestartpos,true,!call_procedure);
  3363. if(code_seen('S'))
  3364. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3365. card.setIndex(code_value_long());
  3366. card.startFileprint();
  3367. if(!call_procedure)
  3368. starttime=millis(); //procedure calls count as normal print time.
  3369. }
  3370. } break;
  3371. case 928: //M928 - Start SD write
  3372. starpos = (strchr(strchr_pointer + 5,'*'));
  3373. if(starpos != NULL){
  3374. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3375. strchr_pointer = strchr(npos,' ') + 1;
  3376. *(starpos) = '\0';
  3377. }
  3378. card.openLogFile(strchr_pointer+5);
  3379. break;
  3380. #endif //SDSUPPORT
  3381. case 31: //M31 take time since the start of the SD print or an M109 command
  3382. {
  3383. stoptime=millis();
  3384. char time[30];
  3385. unsigned long t=(stoptime-starttime)/1000;
  3386. int sec,min;
  3387. min=t/60;
  3388. sec=t%60;
  3389. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3390. SERIAL_ECHO_START;
  3391. SERIAL_ECHOLN(time);
  3392. lcd_setstatus(time);
  3393. autotempShutdown();
  3394. }
  3395. break;
  3396. case 42: //M42 -Change pin status via gcode
  3397. if (code_seen('S'))
  3398. {
  3399. int pin_status = code_value();
  3400. int pin_number = LED_PIN;
  3401. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3402. pin_number = code_value();
  3403. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3404. {
  3405. if (sensitive_pins[i] == pin_number)
  3406. {
  3407. pin_number = -1;
  3408. break;
  3409. }
  3410. }
  3411. #if defined(FAN_PIN) && FAN_PIN > -1
  3412. if (pin_number == FAN_PIN)
  3413. fanSpeed = pin_status;
  3414. #endif
  3415. if (pin_number > -1)
  3416. {
  3417. pinMode(pin_number, OUTPUT);
  3418. digitalWrite(pin_number, pin_status);
  3419. analogWrite(pin_number, pin_status);
  3420. }
  3421. }
  3422. break;
  3423. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3424. // Reset the baby step value and the baby step applied flag.
  3425. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3426. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3427. // Reset the skew and offset in both RAM and EEPROM.
  3428. reset_bed_offset_and_skew();
  3429. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3430. // the planner will not perform any adjustments in the XY plane.
  3431. // Wait for the motors to stop and update the current position with the absolute values.
  3432. world2machine_revert_to_uncorrected();
  3433. break;
  3434. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3435. {
  3436. // Only Z calibration?
  3437. bool only_Z = code_seen('Z');
  3438. gcode_M45(only_Z);
  3439. break;
  3440. }
  3441. /*
  3442. case 46:
  3443. {
  3444. // M46: Prusa3D: Show the assigned IP address.
  3445. uint8_t ip[4];
  3446. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3447. if (hasIP) {
  3448. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3449. SERIAL_ECHO(int(ip[0]));
  3450. SERIAL_ECHOPGM(".");
  3451. SERIAL_ECHO(int(ip[1]));
  3452. SERIAL_ECHOPGM(".");
  3453. SERIAL_ECHO(int(ip[2]));
  3454. SERIAL_ECHOPGM(".");
  3455. SERIAL_ECHO(int(ip[3]));
  3456. SERIAL_ECHOLNPGM("");
  3457. } else {
  3458. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3459. }
  3460. break;
  3461. }
  3462. */
  3463. case 47:
  3464. // M47: Prusa3D: Show end stops dialog on the display.
  3465. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3466. lcd_diag_show_end_stops();
  3467. KEEPALIVE_STATE(IN_HANDLER);
  3468. break;
  3469. #if 0
  3470. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3471. {
  3472. // Disable the default update procedure of the display. We will do a modal dialog.
  3473. lcd_update_enable(false);
  3474. // Let the planner use the uncorrected coordinates.
  3475. mbl.reset();
  3476. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3477. // the planner will not perform any adjustments in the XY plane.
  3478. // Wait for the motors to stop and update the current position with the absolute values.
  3479. world2machine_revert_to_uncorrected();
  3480. // Move the print head close to the bed.
  3481. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3483. st_synchronize();
  3484. // Home in the XY plane.
  3485. set_destination_to_current();
  3486. setup_for_endstop_move();
  3487. home_xy();
  3488. int8_t verbosity_level = 0;
  3489. if (code_seen('V')) {
  3490. // Just 'V' without a number counts as V1.
  3491. char c = strchr_pointer[1];
  3492. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3493. }
  3494. bool success = scan_bed_induction_points(verbosity_level);
  3495. clean_up_after_endstop_move();
  3496. // Print head up.
  3497. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3499. st_synchronize();
  3500. lcd_update_enable(true);
  3501. break;
  3502. }
  3503. #endif
  3504. // M48 Z-Probe repeatability measurement function.
  3505. //
  3506. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3507. //
  3508. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3509. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3510. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3511. // regenerated.
  3512. //
  3513. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3514. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3515. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3516. //
  3517. #ifdef ENABLE_AUTO_BED_LEVELING
  3518. #ifdef Z_PROBE_REPEATABILITY_TEST
  3519. case 48: // M48 Z-Probe repeatability
  3520. {
  3521. #if Z_MIN_PIN == -1
  3522. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3523. #endif
  3524. double sum=0.0;
  3525. double mean=0.0;
  3526. double sigma=0.0;
  3527. double sample_set[50];
  3528. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3529. double X_current, Y_current, Z_current;
  3530. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3531. if (code_seen('V') || code_seen('v')) {
  3532. verbose_level = code_value();
  3533. if (verbose_level<0 || verbose_level>4 ) {
  3534. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3535. goto Sigma_Exit;
  3536. }
  3537. }
  3538. if (verbose_level > 0) {
  3539. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3540. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3541. }
  3542. if (code_seen('n')) {
  3543. n_samples = code_value();
  3544. if (n_samples<4 || n_samples>50 ) {
  3545. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3546. goto Sigma_Exit;
  3547. }
  3548. }
  3549. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3550. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3551. Z_current = st_get_position_mm(Z_AXIS);
  3552. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3553. ext_position = st_get_position_mm(E_AXIS);
  3554. if (code_seen('X') || code_seen('x') ) {
  3555. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3556. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3557. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3558. goto Sigma_Exit;
  3559. }
  3560. }
  3561. if (code_seen('Y') || code_seen('y') ) {
  3562. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3563. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3564. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3565. goto Sigma_Exit;
  3566. }
  3567. }
  3568. if (code_seen('L') || code_seen('l') ) {
  3569. n_legs = code_value();
  3570. if ( n_legs==1 )
  3571. n_legs = 2;
  3572. if ( n_legs<0 || n_legs>15 ) {
  3573. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3574. goto Sigma_Exit;
  3575. }
  3576. }
  3577. //
  3578. // Do all the preliminary setup work. First raise the probe.
  3579. //
  3580. st_synchronize();
  3581. plan_bed_level_matrix.set_to_identity();
  3582. plan_buffer_line( X_current, Y_current, Z_start_location,
  3583. ext_position,
  3584. homing_feedrate[Z_AXIS]/60,
  3585. active_extruder);
  3586. st_synchronize();
  3587. //
  3588. // Now get everything to the specified probe point So we can safely do a probe to
  3589. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3590. // use that as a starting point for each probe.
  3591. //
  3592. if (verbose_level > 2)
  3593. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3594. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3595. ext_position,
  3596. homing_feedrate[X_AXIS]/60,
  3597. active_extruder);
  3598. st_synchronize();
  3599. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3600. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3601. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3602. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3603. //
  3604. // OK, do the inital probe to get us close to the bed.
  3605. // Then retrace the right amount and use that in subsequent probes
  3606. //
  3607. setup_for_endstop_move();
  3608. run_z_probe();
  3609. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3610. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3611. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3612. ext_position,
  3613. homing_feedrate[X_AXIS]/60,
  3614. active_extruder);
  3615. st_synchronize();
  3616. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3617. for( n=0; n<n_samples; n++) {
  3618. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3619. if ( n_legs) {
  3620. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3621. int rotational_direction, l;
  3622. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3623. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3624. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3625. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3626. //SERIAL_ECHOPAIR(" theta: ",theta);
  3627. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3628. //SERIAL_PROTOCOLLNPGM("");
  3629. for( l=0; l<n_legs-1; l++) {
  3630. if (rotational_direction==1)
  3631. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3632. else
  3633. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3634. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3635. if ( radius<0.0 )
  3636. radius = -radius;
  3637. X_current = X_probe_location + cos(theta) * radius;
  3638. Y_current = Y_probe_location + sin(theta) * radius;
  3639. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3640. X_current = X_MIN_POS;
  3641. if ( X_current>X_MAX_POS)
  3642. X_current = X_MAX_POS;
  3643. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3644. Y_current = Y_MIN_POS;
  3645. if ( Y_current>Y_MAX_POS)
  3646. Y_current = Y_MAX_POS;
  3647. if (verbose_level>3 ) {
  3648. SERIAL_ECHOPAIR("x: ", X_current);
  3649. SERIAL_ECHOPAIR("y: ", Y_current);
  3650. SERIAL_PROTOCOLLNPGM("");
  3651. }
  3652. do_blocking_move_to( X_current, Y_current, Z_current );
  3653. }
  3654. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3655. }
  3656. setup_for_endstop_move();
  3657. run_z_probe();
  3658. sample_set[n] = current_position[Z_AXIS];
  3659. //
  3660. // Get the current mean for the data points we have so far
  3661. //
  3662. sum=0.0;
  3663. for( j=0; j<=n; j++) {
  3664. sum = sum + sample_set[j];
  3665. }
  3666. mean = sum / (double (n+1));
  3667. //
  3668. // Now, use that mean to calculate the standard deviation for the
  3669. // data points we have so far
  3670. //
  3671. sum=0.0;
  3672. for( j=0; j<=n; j++) {
  3673. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3674. }
  3675. sigma = sqrt( sum / (double (n+1)) );
  3676. if (verbose_level > 1) {
  3677. SERIAL_PROTOCOL(n+1);
  3678. SERIAL_PROTOCOL(" of ");
  3679. SERIAL_PROTOCOL(n_samples);
  3680. SERIAL_PROTOCOLPGM(" z: ");
  3681. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3682. }
  3683. if (verbose_level > 2) {
  3684. SERIAL_PROTOCOL(" mean: ");
  3685. SERIAL_PROTOCOL_F(mean,6);
  3686. SERIAL_PROTOCOL(" sigma: ");
  3687. SERIAL_PROTOCOL_F(sigma,6);
  3688. }
  3689. if (verbose_level > 0)
  3690. SERIAL_PROTOCOLPGM("\n");
  3691. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3692. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3693. st_synchronize();
  3694. }
  3695. delay(1000);
  3696. clean_up_after_endstop_move();
  3697. // enable_endstops(true);
  3698. if (verbose_level > 0) {
  3699. SERIAL_PROTOCOLPGM("Mean: ");
  3700. SERIAL_PROTOCOL_F(mean, 6);
  3701. SERIAL_PROTOCOLPGM("\n");
  3702. }
  3703. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3704. SERIAL_PROTOCOL_F(sigma, 6);
  3705. SERIAL_PROTOCOLPGM("\n\n");
  3706. Sigma_Exit:
  3707. break;
  3708. }
  3709. #endif // Z_PROBE_REPEATABILITY_TEST
  3710. #endif // ENABLE_AUTO_BED_LEVELING
  3711. case 73: //M73 show percent done and time remaining
  3712. if(code_seen('P')) print_percent_done_normal = code_value();
  3713. if(code_seen('R')) print_time_remaining_normal = code_value();
  3714. if(code_seen('Q')) print_percent_done_silent = code_value();
  3715. if(code_seen('S')) print_time_remaining_silent = code_value();
  3716. SERIAL_ECHOPGM("NORMAL MODE: Percent done: ");
  3717. MYSERIAL.print(int(print_percent_done_normal));
  3718. SERIAL_ECHOPGM("; print time remaining in mins: ");
  3719. MYSERIAL.println(print_time_remaining_normal);
  3720. SERIAL_ECHOPGM("SILENT MODE: Percent done: ");
  3721. MYSERIAL.print(int(print_percent_done_silent));
  3722. SERIAL_ECHOPGM("; print time remaining in mins: ");
  3723. MYSERIAL.println(print_time_remaining_silent);
  3724. break;
  3725. case 104: // M104
  3726. if(setTargetedHotend(104)){
  3727. break;
  3728. }
  3729. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3730. setWatch();
  3731. break;
  3732. case 112: // M112 -Emergency Stop
  3733. kill();
  3734. break;
  3735. case 140: // M140 set bed temp
  3736. if (code_seen('S')) setTargetBed(code_value());
  3737. break;
  3738. case 105 : // M105
  3739. if(setTargetedHotend(105)){
  3740. break;
  3741. }
  3742. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3743. SERIAL_PROTOCOLPGM("ok T:");
  3744. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3745. SERIAL_PROTOCOLPGM(" /");
  3746. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3747. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3748. SERIAL_PROTOCOLPGM(" B:");
  3749. SERIAL_PROTOCOL_F(degBed(),1);
  3750. SERIAL_PROTOCOLPGM(" /");
  3751. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3752. #endif //TEMP_BED_PIN
  3753. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3754. SERIAL_PROTOCOLPGM(" T");
  3755. SERIAL_PROTOCOL(cur_extruder);
  3756. SERIAL_PROTOCOLPGM(":");
  3757. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3758. SERIAL_PROTOCOLPGM(" /");
  3759. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3760. }
  3761. #else
  3762. SERIAL_ERROR_START;
  3763. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3764. #endif
  3765. SERIAL_PROTOCOLPGM(" @:");
  3766. #ifdef EXTRUDER_WATTS
  3767. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3768. SERIAL_PROTOCOLPGM("W");
  3769. #else
  3770. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3771. #endif
  3772. SERIAL_PROTOCOLPGM(" B@:");
  3773. #ifdef BED_WATTS
  3774. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3775. SERIAL_PROTOCOLPGM("W");
  3776. #else
  3777. SERIAL_PROTOCOL(getHeaterPower(-1));
  3778. #endif
  3779. #ifdef SHOW_TEMP_ADC_VALUES
  3780. {float raw = 0.0;
  3781. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3782. SERIAL_PROTOCOLPGM(" ADC B:");
  3783. SERIAL_PROTOCOL_F(degBed(),1);
  3784. SERIAL_PROTOCOLPGM("C->");
  3785. raw = rawBedTemp();
  3786. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3787. SERIAL_PROTOCOLPGM(" Rb->");
  3788. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3789. SERIAL_PROTOCOLPGM(" Rxb->");
  3790. SERIAL_PROTOCOL_F(raw, 5);
  3791. #endif
  3792. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3793. SERIAL_PROTOCOLPGM(" T");
  3794. SERIAL_PROTOCOL(cur_extruder);
  3795. SERIAL_PROTOCOLPGM(":");
  3796. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3797. SERIAL_PROTOCOLPGM("C->");
  3798. raw = rawHotendTemp(cur_extruder);
  3799. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3800. SERIAL_PROTOCOLPGM(" Rt");
  3801. SERIAL_PROTOCOL(cur_extruder);
  3802. SERIAL_PROTOCOLPGM("->");
  3803. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3804. SERIAL_PROTOCOLPGM(" Rx");
  3805. SERIAL_PROTOCOL(cur_extruder);
  3806. SERIAL_PROTOCOLPGM("->");
  3807. SERIAL_PROTOCOL_F(raw, 5);
  3808. }}
  3809. #endif
  3810. SERIAL_PROTOCOLLN("");
  3811. KEEPALIVE_STATE(NOT_BUSY);
  3812. return;
  3813. break;
  3814. case 109:
  3815. {// M109 - Wait for extruder heater to reach target.
  3816. if(setTargetedHotend(109)){
  3817. break;
  3818. }
  3819. LCD_MESSAGERPGM(MSG_HEATING);
  3820. heating_status = 1;
  3821. if (farm_mode) { prusa_statistics(1); };
  3822. #ifdef AUTOTEMP
  3823. autotemp_enabled=false;
  3824. #endif
  3825. if (code_seen('S')) {
  3826. setTargetHotend(code_value(), tmp_extruder);
  3827. CooldownNoWait = true;
  3828. } else if (code_seen('R')) {
  3829. setTargetHotend(code_value(), tmp_extruder);
  3830. CooldownNoWait = false;
  3831. }
  3832. #ifdef AUTOTEMP
  3833. if (code_seen('S')) autotemp_min=code_value();
  3834. if (code_seen('B')) autotemp_max=code_value();
  3835. if (code_seen('F'))
  3836. {
  3837. autotemp_factor=code_value();
  3838. autotemp_enabled=true;
  3839. }
  3840. #endif
  3841. setWatch();
  3842. codenum = millis();
  3843. /* See if we are heating up or cooling down */
  3844. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3845. KEEPALIVE_STATE(NOT_BUSY);
  3846. cancel_heatup = false;
  3847. wait_for_heater(codenum); //loops until target temperature is reached
  3848. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3849. KEEPALIVE_STATE(IN_HANDLER);
  3850. heating_status = 2;
  3851. if (farm_mode) { prusa_statistics(2); };
  3852. //starttime=millis();
  3853. previous_millis_cmd = millis();
  3854. }
  3855. break;
  3856. case 190: // M190 - Wait for bed heater to reach target.
  3857. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3858. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3859. heating_status = 3;
  3860. if (farm_mode) { prusa_statistics(1); };
  3861. if (code_seen('S'))
  3862. {
  3863. setTargetBed(code_value());
  3864. CooldownNoWait = true;
  3865. }
  3866. else if (code_seen('R'))
  3867. {
  3868. setTargetBed(code_value());
  3869. CooldownNoWait = false;
  3870. }
  3871. codenum = millis();
  3872. cancel_heatup = false;
  3873. target_direction = isHeatingBed(); // true if heating, false if cooling
  3874. KEEPALIVE_STATE(NOT_BUSY);
  3875. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3876. {
  3877. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3878. {
  3879. if (!farm_mode) {
  3880. float tt = degHotend(active_extruder);
  3881. SERIAL_PROTOCOLPGM("T:");
  3882. SERIAL_PROTOCOL(tt);
  3883. SERIAL_PROTOCOLPGM(" E:");
  3884. SERIAL_PROTOCOL((int)active_extruder);
  3885. SERIAL_PROTOCOLPGM(" B:");
  3886. SERIAL_PROTOCOL_F(degBed(), 1);
  3887. SERIAL_PROTOCOLLN("");
  3888. }
  3889. codenum = millis();
  3890. }
  3891. manage_heater();
  3892. manage_inactivity();
  3893. lcd_update();
  3894. }
  3895. LCD_MESSAGERPGM(MSG_BED_DONE);
  3896. KEEPALIVE_STATE(IN_HANDLER);
  3897. heating_status = 4;
  3898. previous_millis_cmd = millis();
  3899. #endif
  3900. break;
  3901. #if defined(FAN_PIN) && FAN_PIN > -1
  3902. case 106: //M106 Fan On
  3903. if (code_seen('S')){
  3904. fanSpeed=constrain(code_value(),0,255);
  3905. }
  3906. else {
  3907. fanSpeed=255;
  3908. }
  3909. break;
  3910. case 107: //M107 Fan Off
  3911. fanSpeed = 0;
  3912. break;
  3913. #endif //FAN_PIN
  3914. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3915. case 80: // M80 - Turn on Power Supply
  3916. SET_OUTPUT(PS_ON_PIN); //GND
  3917. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3918. // If you have a switch on suicide pin, this is useful
  3919. // if you want to start another print with suicide feature after
  3920. // a print without suicide...
  3921. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3922. SET_OUTPUT(SUICIDE_PIN);
  3923. WRITE(SUICIDE_PIN, HIGH);
  3924. #endif
  3925. #ifdef ULTIPANEL
  3926. powersupply = true;
  3927. LCD_MESSAGERPGM(WELCOME_MSG);
  3928. lcd_update();
  3929. #endif
  3930. break;
  3931. #endif
  3932. case 81: // M81 - Turn off Power Supply
  3933. disable_heater();
  3934. st_synchronize();
  3935. disable_e0();
  3936. disable_e1();
  3937. disable_e2();
  3938. finishAndDisableSteppers();
  3939. fanSpeed = 0;
  3940. delay(1000); // Wait a little before to switch off
  3941. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3942. st_synchronize();
  3943. suicide();
  3944. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3945. SET_OUTPUT(PS_ON_PIN);
  3946. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3947. #endif
  3948. #ifdef ULTIPANEL
  3949. powersupply = false;
  3950. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3951. /*
  3952. MACHNAME = "Prusa i3"
  3953. MSGOFF = "Vypnuto"
  3954. "Prusai3"" ""vypnuto""."
  3955. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3956. */
  3957. lcd_update();
  3958. #endif
  3959. break;
  3960. case 82:
  3961. axis_relative_modes[3] = false;
  3962. break;
  3963. case 83:
  3964. axis_relative_modes[3] = true;
  3965. break;
  3966. case 18: //compatibility
  3967. case 84: // M84
  3968. if(code_seen('S')){
  3969. stepper_inactive_time = code_value() * 1000;
  3970. }
  3971. else
  3972. {
  3973. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3974. if(all_axis)
  3975. {
  3976. st_synchronize();
  3977. disable_e0();
  3978. disable_e1();
  3979. disable_e2();
  3980. finishAndDisableSteppers();
  3981. }
  3982. else
  3983. {
  3984. st_synchronize();
  3985. if (code_seen('X')) disable_x();
  3986. if (code_seen('Y')) disable_y();
  3987. if (code_seen('Z')) disable_z();
  3988. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3989. if (code_seen('E')) {
  3990. disable_e0();
  3991. disable_e1();
  3992. disable_e2();
  3993. }
  3994. #endif
  3995. }
  3996. }
  3997. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  3998. print_time_remaining_init();
  3999. snmm_filaments_used = 0;
  4000. break;
  4001. case 85: // M85
  4002. if(code_seen('S')) {
  4003. max_inactive_time = code_value() * 1000;
  4004. }
  4005. break;
  4006. case 92: // M92
  4007. for(int8_t i=0; i < NUM_AXIS; i++)
  4008. {
  4009. if(code_seen(axis_codes[i]))
  4010. {
  4011. if(i == 3) { // E
  4012. float value = code_value();
  4013. if(value < 20.0) {
  4014. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4015. max_jerk[E_AXIS] *= factor;
  4016. max_feedrate[i] *= factor;
  4017. axis_steps_per_sqr_second[i] *= factor;
  4018. }
  4019. axis_steps_per_unit[i] = value;
  4020. }
  4021. else {
  4022. axis_steps_per_unit[i] = code_value();
  4023. }
  4024. }
  4025. }
  4026. break;
  4027. case 110: // M110 - reset line pos
  4028. if (code_seen('N'))
  4029. gcode_LastN = code_value_long();
  4030. break;
  4031. #ifdef HOST_KEEPALIVE_FEATURE
  4032. case 113: // M113 - Get or set Host Keepalive interval
  4033. if (code_seen('S')) {
  4034. host_keepalive_interval = (uint8_t)code_value_short();
  4035. NOMORE(host_keepalive_interval, 60);
  4036. } else {
  4037. SERIAL_ECHO_START;
  4038. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4039. SERIAL_PROTOCOLLN("");
  4040. }
  4041. break;
  4042. #endif
  4043. case 115: // M115
  4044. if (code_seen('V')) {
  4045. // Report the Prusa version number.
  4046. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4047. } else if (code_seen('U')) {
  4048. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4049. // pause the print and ask the user to upgrade the firmware.
  4050. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4051. } else {
  4052. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4053. }
  4054. break;
  4055. /* case 117: // M117 display message
  4056. starpos = (strchr(strchr_pointer + 5,'*'));
  4057. if(starpos!=NULL)
  4058. *(starpos)='\0';
  4059. lcd_setstatus(strchr_pointer + 5);
  4060. break;*/
  4061. case 114: // M114
  4062. SERIAL_PROTOCOLPGM("X:");
  4063. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4064. SERIAL_PROTOCOLPGM(" Y:");
  4065. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4066. SERIAL_PROTOCOLPGM(" Z:");
  4067. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4068. SERIAL_PROTOCOLPGM(" E:");
  4069. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4070. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4071. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4072. SERIAL_PROTOCOLPGM(" Y:");
  4073. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4074. SERIAL_PROTOCOLPGM(" Z:");
  4075. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4076. SERIAL_PROTOCOLLN("");
  4077. break;
  4078. case 120: // M120
  4079. enable_endstops(false) ;
  4080. break;
  4081. case 121: // M121
  4082. enable_endstops(true) ;
  4083. break;
  4084. case 119: // M119
  4085. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4086. SERIAL_PROTOCOLLN("");
  4087. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4088. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4089. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4090. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4091. }else{
  4092. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4093. }
  4094. SERIAL_PROTOCOLLN("");
  4095. #endif
  4096. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4097. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4098. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4099. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4100. }else{
  4101. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4102. }
  4103. SERIAL_PROTOCOLLN("");
  4104. #endif
  4105. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4106. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4107. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4108. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4109. }else{
  4110. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4111. }
  4112. SERIAL_PROTOCOLLN("");
  4113. #endif
  4114. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4115. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4116. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4117. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4118. }else{
  4119. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4120. }
  4121. SERIAL_PROTOCOLLN("");
  4122. #endif
  4123. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4124. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4125. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4126. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4127. }else{
  4128. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4129. }
  4130. SERIAL_PROTOCOLLN("");
  4131. #endif
  4132. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4133. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4134. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4135. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4136. }else{
  4137. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4138. }
  4139. SERIAL_PROTOCOLLN("");
  4140. #endif
  4141. break;
  4142. //TODO: update for all axis, use for loop
  4143. #ifdef BLINKM
  4144. case 150: // M150
  4145. {
  4146. byte red;
  4147. byte grn;
  4148. byte blu;
  4149. if(code_seen('R')) red = code_value();
  4150. if(code_seen('U')) grn = code_value();
  4151. if(code_seen('B')) blu = code_value();
  4152. SendColors(red,grn,blu);
  4153. }
  4154. break;
  4155. #endif //BLINKM
  4156. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4157. {
  4158. tmp_extruder = active_extruder;
  4159. if(code_seen('T')) {
  4160. tmp_extruder = code_value();
  4161. if(tmp_extruder >= EXTRUDERS) {
  4162. SERIAL_ECHO_START;
  4163. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4164. break;
  4165. }
  4166. }
  4167. if(code_seen('D')) {
  4168. float diameter = (float)code_value();
  4169. if (diameter == 0.0) {
  4170. // setting any extruder filament size disables volumetric on the assumption that
  4171. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4172. // for all extruders
  4173. volumetric_enabled = false;
  4174. } else {
  4175. filament_size[tmp_extruder] = (float)code_value();
  4176. // make sure all extruders have some sane value for the filament size
  4177. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4178. #if EXTRUDERS > 1
  4179. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4180. #if EXTRUDERS > 2
  4181. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4182. #endif
  4183. #endif
  4184. volumetric_enabled = true;
  4185. }
  4186. } else {
  4187. //reserved for setting filament diameter via UFID or filament measuring device
  4188. break;
  4189. }
  4190. calculate_volumetric_multipliers();
  4191. }
  4192. break;
  4193. case 201: // M201
  4194. for(int8_t i=0; i < NUM_AXIS; i++)
  4195. {
  4196. if(code_seen(axis_codes[i]))
  4197. {
  4198. max_acceleration_units_per_sq_second[i] = code_value();
  4199. }
  4200. }
  4201. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4202. reset_acceleration_rates();
  4203. break;
  4204. #if 0 // Not used for Sprinter/grbl gen6
  4205. case 202: // M202
  4206. for(int8_t i=0; i < NUM_AXIS; i++) {
  4207. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4208. }
  4209. break;
  4210. #endif
  4211. case 203: // M203 max feedrate mm/sec
  4212. for(int8_t i=0; i < NUM_AXIS; i++) {
  4213. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4214. }
  4215. break;
  4216. case 204: // M204 acclereration S normal moves T filmanent only moves
  4217. {
  4218. if(code_seen('S')) acceleration = code_value() ;
  4219. if(code_seen('T')) retract_acceleration = code_value() ;
  4220. }
  4221. break;
  4222. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4223. {
  4224. if(code_seen('S')) minimumfeedrate = code_value();
  4225. if(code_seen('T')) mintravelfeedrate = code_value();
  4226. if(code_seen('B')) minsegmenttime = code_value() ;
  4227. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4228. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4229. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4230. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4231. }
  4232. break;
  4233. case 206: // M206 additional homing offset
  4234. for(int8_t i=0; i < 3; i++)
  4235. {
  4236. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4237. }
  4238. break;
  4239. #ifdef FWRETRACT
  4240. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4241. {
  4242. if(code_seen('S'))
  4243. {
  4244. retract_length = code_value() ;
  4245. }
  4246. if(code_seen('F'))
  4247. {
  4248. retract_feedrate = code_value()/60 ;
  4249. }
  4250. if(code_seen('Z'))
  4251. {
  4252. retract_zlift = code_value() ;
  4253. }
  4254. }break;
  4255. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4256. {
  4257. if(code_seen('S'))
  4258. {
  4259. retract_recover_length = code_value() ;
  4260. }
  4261. if(code_seen('F'))
  4262. {
  4263. retract_recover_feedrate = code_value()/60 ;
  4264. }
  4265. }break;
  4266. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4267. {
  4268. if(code_seen('S'))
  4269. {
  4270. int t= code_value() ;
  4271. switch(t)
  4272. {
  4273. case 0:
  4274. {
  4275. autoretract_enabled=false;
  4276. retracted[0]=false;
  4277. #if EXTRUDERS > 1
  4278. retracted[1]=false;
  4279. #endif
  4280. #if EXTRUDERS > 2
  4281. retracted[2]=false;
  4282. #endif
  4283. }break;
  4284. case 1:
  4285. {
  4286. autoretract_enabled=true;
  4287. retracted[0]=false;
  4288. #if EXTRUDERS > 1
  4289. retracted[1]=false;
  4290. #endif
  4291. #if EXTRUDERS > 2
  4292. retracted[2]=false;
  4293. #endif
  4294. }break;
  4295. default:
  4296. SERIAL_ECHO_START;
  4297. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4298. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4299. SERIAL_ECHOLNPGM("\"");
  4300. }
  4301. }
  4302. }break;
  4303. #endif // FWRETRACT
  4304. #if EXTRUDERS > 1
  4305. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4306. {
  4307. if(setTargetedHotend(218)){
  4308. break;
  4309. }
  4310. if(code_seen('X'))
  4311. {
  4312. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4313. }
  4314. if(code_seen('Y'))
  4315. {
  4316. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4317. }
  4318. SERIAL_ECHO_START;
  4319. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4320. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4321. {
  4322. SERIAL_ECHO(" ");
  4323. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4324. SERIAL_ECHO(",");
  4325. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4326. }
  4327. SERIAL_ECHOLN("");
  4328. }break;
  4329. #endif
  4330. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4331. {
  4332. if (code_seen('B')) //backup current speed factor
  4333. {
  4334. saved_feedmultiply_mm = feedmultiply;
  4335. }
  4336. if(code_seen('S'))
  4337. {
  4338. feedmultiply = code_value() ;
  4339. }
  4340. if (code_seen('R')) { //restore previous feedmultiply
  4341. feedmultiply = saved_feedmultiply_mm;
  4342. }
  4343. }
  4344. break;
  4345. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4346. {
  4347. if(code_seen('S'))
  4348. {
  4349. int tmp_code = code_value();
  4350. if (code_seen('T'))
  4351. {
  4352. if(setTargetedHotend(221)){
  4353. break;
  4354. }
  4355. extruder_multiply[tmp_extruder] = tmp_code;
  4356. }
  4357. else
  4358. {
  4359. extrudemultiply = tmp_code ;
  4360. }
  4361. }
  4362. }
  4363. break;
  4364. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4365. {
  4366. if(code_seen('P')){
  4367. int pin_number = code_value(); // pin number
  4368. int pin_state = -1; // required pin state - default is inverted
  4369. if(code_seen('S')) pin_state = code_value(); // required pin state
  4370. if(pin_state >= -1 && pin_state <= 1){
  4371. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4372. {
  4373. if (sensitive_pins[i] == pin_number)
  4374. {
  4375. pin_number = -1;
  4376. break;
  4377. }
  4378. }
  4379. if (pin_number > -1)
  4380. {
  4381. int target = LOW;
  4382. st_synchronize();
  4383. pinMode(pin_number, INPUT);
  4384. switch(pin_state){
  4385. case 1:
  4386. target = HIGH;
  4387. break;
  4388. case 0:
  4389. target = LOW;
  4390. break;
  4391. case -1:
  4392. target = !digitalRead(pin_number);
  4393. break;
  4394. }
  4395. while(digitalRead(pin_number) != target){
  4396. manage_heater();
  4397. manage_inactivity();
  4398. lcd_update();
  4399. }
  4400. }
  4401. }
  4402. }
  4403. }
  4404. break;
  4405. #if NUM_SERVOS > 0
  4406. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4407. {
  4408. int servo_index = -1;
  4409. int servo_position = 0;
  4410. if (code_seen('P'))
  4411. servo_index = code_value();
  4412. if (code_seen('S')) {
  4413. servo_position = code_value();
  4414. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4415. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4416. servos[servo_index].attach(0);
  4417. #endif
  4418. servos[servo_index].write(servo_position);
  4419. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4420. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4421. servos[servo_index].detach();
  4422. #endif
  4423. }
  4424. else {
  4425. SERIAL_ECHO_START;
  4426. SERIAL_ECHO("Servo ");
  4427. SERIAL_ECHO(servo_index);
  4428. SERIAL_ECHOLN(" out of range");
  4429. }
  4430. }
  4431. else if (servo_index >= 0) {
  4432. SERIAL_PROTOCOL(MSG_OK);
  4433. SERIAL_PROTOCOL(" Servo ");
  4434. SERIAL_PROTOCOL(servo_index);
  4435. SERIAL_PROTOCOL(": ");
  4436. SERIAL_PROTOCOL(servos[servo_index].read());
  4437. SERIAL_PROTOCOLLN("");
  4438. }
  4439. }
  4440. break;
  4441. #endif // NUM_SERVOS > 0
  4442. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4443. case 300: // M300
  4444. {
  4445. int beepS = code_seen('S') ? code_value() : 110;
  4446. int beepP = code_seen('P') ? code_value() : 1000;
  4447. if (beepS > 0)
  4448. {
  4449. #if BEEPER > 0
  4450. tone(BEEPER, beepS);
  4451. delay(beepP);
  4452. noTone(BEEPER);
  4453. #elif defined(ULTRALCD)
  4454. lcd_buzz(beepS, beepP);
  4455. #elif defined(LCD_USE_I2C_BUZZER)
  4456. lcd_buzz(beepP, beepS);
  4457. #endif
  4458. }
  4459. else
  4460. {
  4461. delay(beepP);
  4462. }
  4463. }
  4464. break;
  4465. #endif // M300
  4466. #ifdef PIDTEMP
  4467. case 301: // M301
  4468. {
  4469. if(code_seen('P')) Kp = code_value();
  4470. if(code_seen('I')) Ki = scalePID_i(code_value());
  4471. if(code_seen('D')) Kd = scalePID_d(code_value());
  4472. #ifdef PID_ADD_EXTRUSION_RATE
  4473. if(code_seen('C')) Kc = code_value();
  4474. #endif
  4475. updatePID();
  4476. SERIAL_PROTOCOLRPGM(MSG_OK);
  4477. SERIAL_PROTOCOL(" p:");
  4478. SERIAL_PROTOCOL(Kp);
  4479. SERIAL_PROTOCOL(" i:");
  4480. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4481. SERIAL_PROTOCOL(" d:");
  4482. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4483. #ifdef PID_ADD_EXTRUSION_RATE
  4484. SERIAL_PROTOCOL(" c:");
  4485. //Kc does not have scaling applied above, or in resetting defaults
  4486. SERIAL_PROTOCOL(Kc);
  4487. #endif
  4488. SERIAL_PROTOCOLLN("");
  4489. }
  4490. break;
  4491. #endif //PIDTEMP
  4492. #ifdef PIDTEMPBED
  4493. case 304: // M304
  4494. {
  4495. if(code_seen('P')) bedKp = code_value();
  4496. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4497. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4498. updatePID();
  4499. SERIAL_PROTOCOLRPGM(MSG_OK);
  4500. SERIAL_PROTOCOL(" p:");
  4501. SERIAL_PROTOCOL(bedKp);
  4502. SERIAL_PROTOCOL(" i:");
  4503. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4504. SERIAL_PROTOCOL(" d:");
  4505. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4506. SERIAL_PROTOCOLLN("");
  4507. }
  4508. break;
  4509. #endif //PIDTEMP
  4510. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4511. {
  4512. #ifdef CHDK
  4513. SET_OUTPUT(CHDK);
  4514. WRITE(CHDK, HIGH);
  4515. chdkHigh = millis();
  4516. chdkActive = true;
  4517. #else
  4518. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4519. const uint8_t NUM_PULSES=16;
  4520. const float PULSE_LENGTH=0.01524;
  4521. for(int i=0; i < NUM_PULSES; i++) {
  4522. WRITE(PHOTOGRAPH_PIN, HIGH);
  4523. _delay_ms(PULSE_LENGTH);
  4524. WRITE(PHOTOGRAPH_PIN, LOW);
  4525. _delay_ms(PULSE_LENGTH);
  4526. }
  4527. delay(7.33);
  4528. for(int i=0; i < NUM_PULSES; i++) {
  4529. WRITE(PHOTOGRAPH_PIN, HIGH);
  4530. _delay_ms(PULSE_LENGTH);
  4531. WRITE(PHOTOGRAPH_PIN, LOW);
  4532. _delay_ms(PULSE_LENGTH);
  4533. }
  4534. #endif
  4535. #endif //chdk end if
  4536. }
  4537. break;
  4538. #ifdef DOGLCD
  4539. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4540. {
  4541. if (code_seen('C')) {
  4542. lcd_setcontrast( ((int)code_value())&63 );
  4543. }
  4544. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4545. SERIAL_PROTOCOL(lcd_contrast);
  4546. SERIAL_PROTOCOLLN("");
  4547. }
  4548. break;
  4549. #endif
  4550. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4551. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4552. {
  4553. float temp = .0;
  4554. if (code_seen('S')) temp=code_value();
  4555. set_extrude_min_temp(temp);
  4556. }
  4557. break;
  4558. #endif
  4559. case 303: // M303 PID autotune
  4560. {
  4561. float temp = 150.0;
  4562. int e=0;
  4563. int c=5;
  4564. if (code_seen('E')) e=code_value();
  4565. if (e<0)
  4566. temp=70;
  4567. if (code_seen('S')) temp=code_value();
  4568. if (code_seen('C')) c=code_value();
  4569. PID_autotune(temp, e, c);
  4570. }
  4571. break;
  4572. case 400: // M400 finish all moves
  4573. {
  4574. st_synchronize();
  4575. }
  4576. break;
  4577. #ifdef FILAMENT_SENSOR
  4578. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4579. {
  4580. #if (FILWIDTH_PIN > -1)
  4581. if(code_seen('N')) filament_width_nominal=code_value();
  4582. else{
  4583. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4584. SERIAL_PROTOCOLLN(filament_width_nominal);
  4585. }
  4586. #endif
  4587. }
  4588. break;
  4589. case 405: //M405 Turn on filament sensor for control
  4590. {
  4591. if(code_seen('D')) meas_delay_cm=code_value();
  4592. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4593. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4594. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4595. {
  4596. int temp_ratio = widthFil_to_size_ratio();
  4597. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4598. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4599. }
  4600. delay_index1=0;
  4601. delay_index2=0;
  4602. }
  4603. filament_sensor = true ;
  4604. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4605. //SERIAL_PROTOCOL(filament_width_meas);
  4606. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4607. //SERIAL_PROTOCOL(extrudemultiply);
  4608. }
  4609. break;
  4610. case 406: //M406 Turn off filament sensor for control
  4611. {
  4612. filament_sensor = false ;
  4613. }
  4614. break;
  4615. case 407: //M407 Display measured filament diameter
  4616. {
  4617. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4618. SERIAL_PROTOCOLLN(filament_width_meas);
  4619. }
  4620. break;
  4621. #endif
  4622. case 500: // M500 Store settings in EEPROM
  4623. {
  4624. Config_StoreSettings();
  4625. }
  4626. break;
  4627. case 501: // M501 Read settings from EEPROM
  4628. {
  4629. Config_RetrieveSettings();
  4630. }
  4631. break;
  4632. case 502: // M502 Revert to default settings
  4633. {
  4634. Config_ResetDefault();
  4635. }
  4636. break;
  4637. case 503: // M503 print settings currently in memory
  4638. {
  4639. Config_PrintSettings();
  4640. }
  4641. break;
  4642. case 509: //M509 Force language selection
  4643. {
  4644. lcd_force_language_selection();
  4645. SERIAL_ECHO_START;
  4646. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4647. }
  4648. break;
  4649. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4650. case 540:
  4651. {
  4652. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4653. }
  4654. break;
  4655. #endif
  4656. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4657. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4658. {
  4659. float value;
  4660. if (code_seen('Z'))
  4661. {
  4662. value = code_value();
  4663. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4664. {
  4665. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4666. SERIAL_ECHO_START;
  4667. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4668. SERIAL_PROTOCOLLN("");
  4669. }
  4670. else
  4671. {
  4672. SERIAL_ECHO_START;
  4673. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4674. SERIAL_ECHORPGM(MSG_Z_MIN);
  4675. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4676. SERIAL_ECHORPGM(MSG_Z_MAX);
  4677. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4678. SERIAL_PROTOCOLLN("");
  4679. }
  4680. }
  4681. else
  4682. {
  4683. SERIAL_ECHO_START;
  4684. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4685. SERIAL_ECHO(-zprobe_zoffset);
  4686. SERIAL_PROTOCOLLN("");
  4687. }
  4688. break;
  4689. }
  4690. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4691. #ifdef FILAMENTCHANGEENABLE
  4692. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4693. {
  4694. st_synchronize();
  4695. float target[4];
  4696. float lastpos[4];
  4697. if (farm_mode)
  4698. {
  4699. prusa_statistics(22);
  4700. }
  4701. feedmultiplyBckp=feedmultiply;
  4702. target[X_AXIS]=current_position[X_AXIS];
  4703. target[Y_AXIS]=current_position[Y_AXIS];
  4704. target[Z_AXIS]=current_position[Z_AXIS];
  4705. target[E_AXIS]=current_position[E_AXIS];
  4706. lastpos[X_AXIS]=current_position[X_AXIS];
  4707. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4708. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4709. lastpos[E_AXIS]=current_position[E_AXIS];
  4710. //Retract extruder
  4711. if(code_seen('E'))
  4712. {
  4713. target[E_AXIS]+= code_value();
  4714. }
  4715. else
  4716. {
  4717. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4718. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4719. #endif
  4720. }
  4721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4722. //Lift Z
  4723. if(code_seen('Z'))
  4724. {
  4725. target[Z_AXIS]+= code_value();
  4726. }
  4727. else
  4728. {
  4729. #ifdef FILAMENTCHANGE_ZADD
  4730. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4731. // XXX: Removed unused var 'TooLowZ'
  4732. if(target[Z_AXIS] < 10){
  4733. target[Z_AXIS]+= 10 ;
  4734. }
  4735. #endif
  4736. }
  4737. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4738. //Move XY to side
  4739. if(code_seen('X'))
  4740. {
  4741. target[X_AXIS]+= code_value();
  4742. }
  4743. else
  4744. {
  4745. #ifdef FILAMENTCHANGE_XPOS
  4746. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4747. #endif
  4748. }
  4749. if(code_seen('Y'))
  4750. {
  4751. target[Y_AXIS]= code_value();
  4752. }
  4753. else
  4754. {
  4755. #ifdef FILAMENTCHANGE_YPOS
  4756. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4757. #endif
  4758. }
  4759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4760. st_synchronize();
  4761. custom_message = true;
  4762. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4763. // Unload filament
  4764. if(code_seen('L'))
  4765. {
  4766. target[E_AXIS]+= code_value();
  4767. }
  4768. else
  4769. {
  4770. #ifdef SNMM
  4771. #else
  4772. #ifdef FILAMENTCHANGE_FINALRETRACT
  4773. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4774. #endif
  4775. #endif // SNMM
  4776. }
  4777. #ifdef SNMM
  4778. target[E_AXIS] += 12;
  4779. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4780. target[E_AXIS] += 6;
  4781. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4782. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4783. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4784. st_synchronize();
  4785. target[E_AXIS] += (FIL_COOLING);
  4786. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4787. target[E_AXIS] += (FIL_COOLING*-1);
  4788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4789. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4790. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4791. st_synchronize();
  4792. #else
  4793. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4794. #endif // SNMM
  4795. //finish moves
  4796. st_synchronize();
  4797. //disable extruder steppers so filament can be removed
  4798. disable_e0();
  4799. disable_e1();
  4800. disable_e2();
  4801. delay(100);
  4802. //Wait for user to insert filament
  4803. uint8_t cnt=0;
  4804. int counterBeep = 0;
  4805. lcd_wait_interact();
  4806. load_filament_time = millis();
  4807. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4808. while(!lcd_clicked()){
  4809. cnt++;
  4810. manage_heater();
  4811. manage_inactivity(true);
  4812. /*#ifdef SNMM
  4813. target[E_AXIS] += 0.002;
  4814. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4815. #endif // SNMM*/
  4816. if(cnt==0)
  4817. {
  4818. #if BEEPER > 0
  4819. if (counterBeep== 500){
  4820. counterBeep = 0;
  4821. }
  4822. SET_OUTPUT(BEEPER);
  4823. if (counterBeep== 0){
  4824. WRITE(BEEPER,HIGH);
  4825. }
  4826. if (counterBeep== 20){
  4827. WRITE(BEEPER,LOW);
  4828. }
  4829. counterBeep++;
  4830. #else
  4831. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4832. lcd_buzz(1000/6,100);
  4833. #else
  4834. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4835. #endif
  4836. #endif
  4837. }
  4838. }
  4839. KEEPALIVE_STATE(IN_HANDLER);
  4840. WRITE(BEEPER, LOW);
  4841. #ifdef SNMM
  4842. display_loading();
  4843. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4844. do {
  4845. target[E_AXIS] += 0.002;
  4846. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4847. delay_keep_alive(2);
  4848. } while (!lcd_clicked());
  4849. KEEPALIVE_STATE(IN_HANDLER);
  4850. /*if (millis() - load_filament_time > 2) {
  4851. load_filament_time = millis();
  4852. target[E_AXIS] += 0.001;
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4854. }*/
  4855. #endif
  4856. //Filament inserted
  4857. //Feed the filament to the end of nozzle quickly
  4858. #ifdef SNMM
  4859. st_synchronize();
  4860. target[E_AXIS] += bowden_length[snmm_extruder];
  4861. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4862. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4863. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4864. target[E_AXIS] += 40;
  4865. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4866. target[E_AXIS] += 10;
  4867. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4868. #else
  4869. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4870. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4871. #endif // SNMM
  4872. //Extrude some filament
  4873. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4874. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4875. //Wait for user to check the state
  4876. lcd_change_fil_state = 0;
  4877. lcd_loading_filament();
  4878. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4879. lcd_change_fil_state = 0;
  4880. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4881. lcd_alright();
  4882. KEEPALIVE_STATE(IN_HANDLER);
  4883. switch(lcd_change_fil_state){
  4884. // Filament failed to load so load it again
  4885. case 2:
  4886. #ifdef SNMM
  4887. display_loading();
  4888. do {
  4889. target[E_AXIS] += 0.002;
  4890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4891. delay_keep_alive(2);
  4892. } while (!lcd_clicked());
  4893. st_synchronize();
  4894. target[E_AXIS] += bowden_length[snmm_extruder];
  4895. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4896. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4897. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4898. target[E_AXIS] += 40;
  4899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4900. target[E_AXIS] += 10;
  4901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4902. #else
  4903. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4904. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4905. #endif
  4906. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4907. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4908. lcd_loading_filament();
  4909. break;
  4910. // Filament loaded properly but color is not clear
  4911. case 3:
  4912. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4913. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4914. lcd_loading_color();
  4915. break;
  4916. // Everything good
  4917. default:
  4918. lcd_change_success();
  4919. lcd_update_enable(true);
  4920. break;
  4921. }
  4922. }
  4923. //Not let's go back to print
  4924. //Feed a little of filament to stabilize pressure
  4925. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4926. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4927. //Retract
  4928. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4930. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4931. //Move XY back
  4932. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4933. //Move Z back
  4934. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4935. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4936. //Unretract
  4937. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4938. //Set E position to original
  4939. plan_set_e_position(lastpos[E_AXIS]);
  4940. //Recover feed rate
  4941. feedmultiply=feedmultiplyBckp;
  4942. char cmd[9];
  4943. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4944. enquecommand(cmd);
  4945. lcd_setstatuspgm(WELCOME_MSG);
  4946. custom_message = false;
  4947. custom_message_type = 0;
  4948. }
  4949. break;
  4950. #endif //FILAMENTCHANGEENABLE
  4951. case 601: {
  4952. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4953. }
  4954. break;
  4955. case 602: {
  4956. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4957. }
  4958. break;
  4959. #ifdef LIN_ADVANCE
  4960. case 900: // M900: Set LIN_ADVANCE options.
  4961. gcode_M900();
  4962. break;
  4963. #endif
  4964. case 907: // M907 Set digital trimpot motor current using axis codes.
  4965. {
  4966. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4967. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4968. if(code_seen('B')) digipot_current(4,code_value());
  4969. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4970. #endif
  4971. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4972. if(code_seen('X')) digipot_current(0, code_value());
  4973. #endif
  4974. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4975. if(code_seen('Z')) digipot_current(1, code_value());
  4976. #endif
  4977. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4978. if(code_seen('E')) digipot_current(2, code_value());
  4979. #endif
  4980. #ifdef DIGIPOT_I2C
  4981. // this one uses actual amps in floating point
  4982. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4983. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4984. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4985. #endif
  4986. }
  4987. break;
  4988. case 908: // M908 Control digital trimpot directly.
  4989. {
  4990. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4991. uint8_t channel,current;
  4992. if(code_seen('P')) channel=code_value();
  4993. if(code_seen('S')) current=code_value();
  4994. digitalPotWrite(channel, current);
  4995. #endif
  4996. }
  4997. break;
  4998. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4999. {
  5000. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5001. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5002. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5003. if(code_seen('B')) microstep_mode(4,code_value());
  5004. microstep_readings();
  5005. #endif
  5006. }
  5007. break;
  5008. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5009. {
  5010. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5011. if(code_seen('S')) switch((int)code_value())
  5012. {
  5013. case 1:
  5014. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5015. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5016. break;
  5017. case 2:
  5018. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5019. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5020. break;
  5021. }
  5022. microstep_readings();
  5023. #endif
  5024. }
  5025. break;
  5026. case 701: //M701: load filament
  5027. {
  5028. gcode_M701();
  5029. }
  5030. break;
  5031. case 702:
  5032. {
  5033. #ifdef SNMM
  5034. if (code_seen('U')) {
  5035. extr_unload_used(); //unload all filaments which were used in current print
  5036. }
  5037. else if (code_seen('C')) {
  5038. extr_unload(); //unload just current filament
  5039. }
  5040. else {
  5041. extr_unload_all(); //unload all filaments
  5042. }
  5043. #else
  5044. custom_message = true;
  5045. custom_message_type = 2;
  5046. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5047. current_position[E_AXIS] -= 80;
  5048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5049. st_synchronize();
  5050. lcd_setstatuspgm(WELCOME_MSG);
  5051. custom_message = false;
  5052. custom_message_type = 0;
  5053. #endif
  5054. }
  5055. break;
  5056. case 999: // M999: Restart after being stopped
  5057. Stopped = false;
  5058. lcd_reset_alert_level();
  5059. gcode_LastN = Stopped_gcode_LastN;
  5060. FlushSerialRequestResend();
  5061. break;
  5062. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5063. }
  5064. } // end if(code_seen('M')) (end of M codes)
  5065. else if(code_seen('T'))
  5066. {
  5067. int index;
  5068. st_synchronize();
  5069. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5070. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5071. SERIAL_ECHOLNPGM("Invalid T code.");
  5072. }
  5073. else {
  5074. if (*(strchr_pointer + index) == '?') {
  5075. tmp_extruder = choose_extruder_menu();
  5076. }
  5077. else {
  5078. tmp_extruder = code_value();
  5079. }
  5080. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5081. #ifdef SNMM
  5082. #ifdef LIN_ADVANCE
  5083. if (snmm_extruder != tmp_extruder)
  5084. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5085. #endif
  5086. snmm_extruder = tmp_extruder;
  5087. delay(100);
  5088. disable_e0();
  5089. disable_e1();
  5090. disable_e2();
  5091. pinMode(E_MUX0_PIN, OUTPUT);
  5092. pinMode(E_MUX1_PIN, OUTPUT);
  5093. delay(100);
  5094. SERIAL_ECHO_START;
  5095. SERIAL_ECHO("T:");
  5096. SERIAL_ECHOLN((int)tmp_extruder);
  5097. switch (tmp_extruder) {
  5098. case 1:
  5099. WRITE(E_MUX0_PIN, HIGH);
  5100. WRITE(E_MUX1_PIN, LOW);
  5101. break;
  5102. case 2:
  5103. WRITE(E_MUX0_PIN, LOW);
  5104. WRITE(E_MUX1_PIN, HIGH);
  5105. break;
  5106. case 3:
  5107. WRITE(E_MUX0_PIN, HIGH);
  5108. WRITE(E_MUX1_PIN, HIGH);
  5109. break;
  5110. default:
  5111. WRITE(E_MUX0_PIN, LOW);
  5112. WRITE(E_MUX1_PIN, LOW);
  5113. break;
  5114. }
  5115. delay(100);
  5116. #else
  5117. if (tmp_extruder >= EXTRUDERS) {
  5118. SERIAL_ECHO_START;
  5119. SERIAL_ECHOPGM("T");
  5120. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5121. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5122. }
  5123. else {
  5124. #if EXTRUDERS == 1
  5125. if (code_seen('F')) {
  5126. next_feedrate = code_value();
  5127. if (next_feedrate > 0.0) {
  5128. feedrate = next_feedrate;
  5129. }
  5130. }
  5131. #else
  5132. boolean make_move = false;
  5133. if (code_seen('F')) {
  5134. make_move = true;
  5135. next_feedrate = code_value();
  5136. if (next_feedrate > 0.0) {
  5137. feedrate = next_feedrate;
  5138. }
  5139. }
  5140. if (tmp_extruder != active_extruder) {
  5141. // Save current position to return to after applying extruder offset
  5142. memcpy(destination, current_position, sizeof(destination));
  5143. // Offset extruder (only by XY)
  5144. int i;
  5145. for (i = 0; i < 2; i++) {
  5146. current_position[i] = current_position[i] -
  5147. extruder_offset[i][active_extruder] +
  5148. extruder_offset[i][tmp_extruder];
  5149. }
  5150. // Set the new active extruder and position
  5151. active_extruder = tmp_extruder;
  5152. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5153. // Move to the old position if 'F' was in the parameters
  5154. if (make_move && Stopped == false) {
  5155. prepare_move();
  5156. }
  5157. }
  5158. #endif
  5159. SERIAL_ECHO_START;
  5160. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5161. SERIAL_PROTOCOLLN((int)active_extruder);
  5162. }
  5163. #endif
  5164. }
  5165. } // end if(code_seen('T')) (end of T codes)
  5166. #ifdef DEBUG_DCODES
  5167. else if (code_seen('D')) // D codes (debug)
  5168. {
  5169. switch((int)code_value_uint8())
  5170. {
  5171. case 0: // D0 - Reset
  5172. if (*(strchr_pointer + 1) == 0) break;
  5173. MYSERIAL.println("D0 - Reset");
  5174. asm volatile("jmp 0x00000");
  5175. break;
  5176. case 1: // D1 - Clear EEPROM
  5177. {
  5178. MYSERIAL.println("D1 - Clear EEPROM");
  5179. cli();
  5180. for (int i = 0; i < 4096; i++)
  5181. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5182. sei();
  5183. }
  5184. break;
  5185. case 2: // D2 - Read/Write PIN
  5186. {
  5187. if (code_seen('P')) // Pin (0-255)
  5188. {
  5189. int pin = (int)code_value();
  5190. if ((pin >= 0) && (pin <= 255))
  5191. {
  5192. if (code_seen('F')) // Function in/out (0/1)
  5193. {
  5194. int fnc = (int)code_value();
  5195. if (fnc == 0) pinMode(pin, INPUT);
  5196. else if (fnc == 1) pinMode(pin, OUTPUT);
  5197. }
  5198. if (code_seen('V')) // Value (0/1)
  5199. {
  5200. int val = (int)code_value();
  5201. if (val == 0) digitalWrite(pin, LOW);
  5202. else if (val == 1) digitalWrite(pin, HIGH);
  5203. }
  5204. else
  5205. {
  5206. int val = (digitalRead(pin) != LOW)?1:0;
  5207. MYSERIAL.print("PIN");
  5208. MYSERIAL.print(pin);
  5209. MYSERIAL.print("=");
  5210. MYSERIAL.println(val);
  5211. }
  5212. }
  5213. }
  5214. }
  5215. break;
  5216. }
  5217. }
  5218. #endif //DEBUG_DCODES
  5219. else
  5220. {
  5221. SERIAL_ECHO_START;
  5222. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5223. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5224. SERIAL_ECHOLNPGM("\"");
  5225. }
  5226. KEEPALIVE_STATE(NOT_BUSY);
  5227. ClearToSend();
  5228. }
  5229. void FlushSerialRequestResend()
  5230. {
  5231. //char cmdbuffer[bufindr][100]="Resend:";
  5232. MYSERIAL.flush();
  5233. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5234. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5235. ClearToSend();
  5236. }
  5237. // Confirm the execution of a command, if sent from a serial line.
  5238. // Execution of a command from a SD card will not be confirmed.
  5239. void ClearToSend()
  5240. {
  5241. previous_millis_cmd = millis();
  5242. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5243. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5244. }
  5245. void update_currents() {
  5246. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5247. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5248. float tmp_motor[3];
  5249. //SERIAL_ECHOLNPGM("Currents updated: ");
  5250. if (destination[Z_AXIS] < Z_SILENT) {
  5251. //SERIAL_ECHOLNPGM("LOW");
  5252. for (uint8_t i = 0; i < 3; i++) {
  5253. digipot_current(i, current_low[i]);
  5254. /*MYSERIAL.print(int(i));
  5255. SERIAL_ECHOPGM(": ");
  5256. MYSERIAL.println(current_low[i]);*/
  5257. }
  5258. }
  5259. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5260. //SERIAL_ECHOLNPGM("HIGH");
  5261. for (uint8_t i = 0; i < 3; i++) {
  5262. digipot_current(i, current_high[i]);
  5263. /*MYSERIAL.print(int(i));
  5264. SERIAL_ECHOPGM(": ");
  5265. MYSERIAL.println(current_high[i]);*/
  5266. }
  5267. }
  5268. else {
  5269. for (uint8_t i = 0; i < 3; i++) {
  5270. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5271. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5272. digipot_current(i, tmp_motor[i]);
  5273. /*MYSERIAL.print(int(i));
  5274. SERIAL_ECHOPGM(": ");
  5275. MYSERIAL.println(tmp_motor[i]);*/
  5276. }
  5277. }
  5278. }
  5279. void get_coordinates()
  5280. {
  5281. // XXX: Unused var (set but not ref)
  5282. // bool seen[4]={false,false,false,false};
  5283. for(int8_t i=0; i < NUM_AXIS; i++) {
  5284. if(code_seen(axis_codes[i]))
  5285. {
  5286. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5287. // seen[i]=true;
  5288. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5289. }
  5290. else destination[i] = current_position[i]; //Are these else lines really needed?
  5291. }
  5292. if(code_seen('F')) {
  5293. next_feedrate = code_value();
  5294. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5295. }
  5296. }
  5297. void get_arc_coordinates()
  5298. {
  5299. #ifdef SF_ARC_FIX
  5300. bool relative_mode_backup = relative_mode;
  5301. relative_mode = true;
  5302. #endif
  5303. get_coordinates();
  5304. #ifdef SF_ARC_FIX
  5305. relative_mode=relative_mode_backup;
  5306. #endif
  5307. if(code_seen('I')) {
  5308. offset[0] = code_value();
  5309. }
  5310. else {
  5311. offset[0] = 0.0;
  5312. }
  5313. if(code_seen('J')) {
  5314. offset[1] = code_value();
  5315. }
  5316. else {
  5317. offset[1] = 0.0;
  5318. }
  5319. }
  5320. void clamp_to_software_endstops(float target[3])
  5321. {
  5322. #ifdef DEBUG_DISABLE_SWLIMITS
  5323. return;
  5324. #endif //DEBUG_DISABLE_SWLIMITS
  5325. world2machine_clamp(target[0], target[1]);
  5326. // Clamp the Z coordinate.
  5327. if (min_software_endstops) {
  5328. float negative_z_offset = 0;
  5329. #ifdef ENABLE_AUTO_BED_LEVELING
  5330. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5331. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5332. #endif
  5333. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5334. }
  5335. if (max_software_endstops) {
  5336. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5337. }
  5338. }
  5339. #ifdef MESH_BED_LEVELING
  5340. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5341. float dx = x - current_position[X_AXIS];
  5342. float dy = y - current_position[Y_AXIS];
  5343. float dz = z - current_position[Z_AXIS];
  5344. int n_segments = 0;
  5345. if (mbl.active) {
  5346. float len = abs(dx) + abs(dy);
  5347. if (len > 0)
  5348. // Split to 3cm segments or shorter.
  5349. n_segments = int(ceil(len / 30.f));
  5350. }
  5351. if (n_segments > 1) {
  5352. float de = e - current_position[E_AXIS];
  5353. for (int i = 1; i < n_segments; ++ i) {
  5354. float t = float(i) / float(n_segments);
  5355. plan_buffer_line(
  5356. current_position[X_AXIS] + t * dx,
  5357. current_position[Y_AXIS] + t * dy,
  5358. current_position[Z_AXIS] + t * dz,
  5359. current_position[E_AXIS] + t * de,
  5360. feed_rate, extruder);
  5361. }
  5362. }
  5363. // The rest of the path.
  5364. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5365. current_position[X_AXIS] = x;
  5366. current_position[Y_AXIS] = y;
  5367. current_position[Z_AXIS] = z;
  5368. current_position[E_AXIS] = e;
  5369. }
  5370. #endif // MESH_BED_LEVELING
  5371. void prepare_move()
  5372. {
  5373. clamp_to_software_endstops(destination);
  5374. previous_millis_cmd = millis();
  5375. // Do not use feedmultiply for E or Z only moves
  5376. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5377. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5378. }
  5379. else {
  5380. #ifdef MESH_BED_LEVELING
  5381. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5382. #else
  5383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5384. #endif
  5385. }
  5386. for(int8_t i=0; i < NUM_AXIS; i++) {
  5387. current_position[i] = destination[i];
  5388. }
  5389. }
  5390. void prepare_arc_move(char isclockwise) {
  5391. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5392. // Trace the arc
  5393. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5394. // As far as the parser is concerned, the position is now == target. In reality the
  5395. // motion control system might still be processing the action and the real tool position
  5396. // in any intermediate location.
  5397. for(int8_t i=0; i < NUM_AXIS; i++) {
  5398. current_position[i] = destination[i];
  5399. }
  5400. previous_millis_cmd = millis();
  5401. }
  5402. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5403. #if defined(FAN_PIN)
  5404. #if CONTROLLERFAN_PIN == FAN_PIN
  5405. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5406. #endif
  5407. #endif
  5408. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5409. unsigned long lastMotorCheck = 0;
  5410. void controllerFan()
  5411. {
  5412. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5413. {
  5414. lastMotorCheck = millis();
  5415. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5416. #if EXTRUDERS > 2
  5417. || !READ(E2_ENABLE_PIN)
  5418. #endif
  5419. #if EXTRUDER > 1
  5420. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5421. || !READ(X2_ENABLE_PIN)
  5422. #endif
  5423. || !READ(E1_ENABLE_PIN)
  5424. #endif
  5425. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5426. {
  5427. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5428. }
  5429. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5430. {
  5431. digitalWrite(CONTROLLERFAN_PIN, 0);
  5432. analogWrite(CONTROLLERFAN_PIN, 0);
  5433. }
  5434. else
  5435. {
  5436. // allows digital or PWM fan output to be used (see M42 handling)
  5437. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5438. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5439. }
  5440. }
  5441. }
  5442. #endif
  5443. #ifdef TEMP_STAT_LEDS
  5444. static bool blue_led = false;
  5445. static bool red_led = false;
  5446. static uint32_t stat_update = 0;
  5447. void handle_status_leds(void) {
  5448. float max_temp = 0.0;
  5449. if(millis() > stat_update) {
  5450. stat_update += 500; // Update every 0.5s
  5451. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5452. max_temp = max(max_temp, degHotend(cur_extruder));
  5453. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5454. }
  5455. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5456. max_temp = max(max_temp, degTargetBed());
  5457. max_temp = max(max_temp, degBed());
  5458. #endif
  5459. if((max_temp > 55.0) && (red_led == false)) {
  5460. digitalWrite(STAT_LED_RED, 1);
  5461. digitalWrite(STAT_LED_BLUE, 0);
  5462. red_led = true;
  5463. blue_led = false;
  5464. }
  5465. if((max_temp < 54.0) && (blue_led == false)) {
  5466. digitalWrite(STAT_LED_RED, 0);
  5467. digitalWrite(STAT_LED_BLUE, 1);
  5468. red_led = false;
  5469. blue_led = true;
  5470. }
  5471. }
  5472. }
  5473. #endif
  5474. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5475. {
  5476. #if defined(KILL_PIN) && KILL_PIN > -1
  5477. static int killCount = 0; // make the inactivity button a bit less responsive
  5478. const int KILL_DELAY = 10000;
  5479. #endif
  5480. if(buflen < (BUFSIZE-1)){
  5481. get_command();
  5482. }
  5483. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5484. if(max_inactive_time)
  5485. kill();
  5486. if(stepper_inactive_time) {
  5487. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5488. {
  5489. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5490. disable_x();
  5491. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5492. disable_y();
  5493. disable_z();
  5494. disable_e0();
  5495. disable_e1();
  5496. disable_e2();
  5497. }
  5498. }
  5499. }
  5500. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5501. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5502. {
  5503. chdkActive = false;
  5504. WRITE(CHDK, LOW);
  5505. }
  5506. #endif
  5507. #if defined(KILL_PIN) && KILL_PIN > -1
  5508. // Check if the kill button was pressed and wait just in case it was an accidental
  5509. // key kill key press
  5510. // -------------------------------------------------------------------------------
  5511. if( 0 == READ(KILL_PIN) )
  5512. {
  5513. killCount++;
  5514. }
  5515. else if (killCount > 0)
  5516. {
  5517. killCount--;
  5518. }
  5519. // Exceeded threshold and we can confirm that it was not accidental
  5520. // KILL the machine
  5521. // ----------------------------------------------------------------
  5522. if ( killCount >= KILL_DELAY)
  5523. {
  5524. kill();
  5525. }
  5526. #endif
  5527. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5528. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5529. #endif
  5530. #ifdef EXTRUDER_RUNOUT_PREVENT
  5531. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5532. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5533. {
  5534. bool oldstatus=READ(E0_ENABLE_PIN);
  5535. enable_e0();
  5536. float oldepos=current_position[E_AXIS];
  5537. float oldedes=destination[E_AXIS];
  5538. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5539. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5540. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5541. current_position[E_AXIS]=oldepos;
  5542. destination[E_AXIS]=oldedes;
  5543. plan_set_e_position(oldepos);
  5544. previous_millis_cmd=millis();
  5545. st_synchronize();
  5546. WRITE(E0_ENABLE_PIN,oldstatus);
  5547. }
  5548. #endif
  5549. #ifdef TEMP_STAT_LEDS
  5550. handle_status_leds();
  5551. #endif
  5552. check_axes_activity();
  5553. }
  5554. void kill(const char *full_screen_message)
  5555. {
  5556. cli(); // Stop interrupts
  5557. disable_heater();
  5558. disable_x();
  5559. // SERIAL_ECHOLNPGM("kill - disable Y");
  5560. disable_y();
  5561. disable_z();
  5562. disable_e0();
  5563. disable_e1();
  5564. disable_e2();
  5565. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5566. pinMode(PS_ON_PIN,INPUT);
  5567. #endif
  5568. SERIAL_ERROR_START;
  5569. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5570. if (full_screen_message != NULL) {
  5571. SERIAL_ERRORLNRPGM(full_screen_message);
  5572. lcd_display_message_fullscreen_P(full_screen_message);
  5573. } else {
  5574. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5575. }
  5576. // FMC small patch to update the LCD before ending
  5577. sei(); // enable interrupts
  5578. for ( int i=5; i--; lcd_update())
  5579. {
  5580. delay(200);
  5581. }
  5582. cli(); // disable interrupts
  5583. suicide();
  5584. while(1) { /* Intentionally left empty */ } // Wait for reset
  5585. }
  5586. void Stop()
  5587. {
  5588. disable_heater();
  5589. if(Stopped == false) {
  5590. Stopped = true;
  5591. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5592. SERIAL_ERROR_START;
  5593. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5594. LCD_MESSAGERPGM(MSG_STOPPED);
  5595. }
  5596. }
  5597. bool IsStopped() { return Stopped; };
  5598. #ifdef FAST_PWM_FAN
  5599. void setPwmFrequency(uint8_t pin, int val)
  5600. {
  5601. val &= 0x07;
  5602. switch(digitalPinToTimer(pin))
  5603. {
  5604. #if defined(TCCR0A)
  5605. case TIMER0A:
  5606. case TIMER0B:
  5607. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5608. // TCCR0B |= val;
  5609. break;
  5610. #endif
  5611. #if defined(TCCR1A)
  5612. case TIMER1A:
  5613. case TIMER1B:
  5614. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5615. // TCCR1B |= val;
  5616. break;
  5617. #endif
  5618. #if defined(TCCR2)
  5619. case TIMER2:
  5620. case TIMER2:
  5621. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5622. TCCR2 |= val;
  5623. break;
  5624. #endif
  5625. #if defined(TCCR2A)
  5626. case TIMER2A:
  5627. case TIMER2B:
  5628. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5629. TCCR2B |= val;
  5630. break;
  5631. #endif
  5632. #if defined(TCCR3A)
  5633. case TIMER3A:
  5634. case TIMER3B:
  5635. case TIMER3C:
  5636. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5637. TCCR3B |= val;
  5638. break;
  5639. #endif
  5640. #if defined(TCCR4A)
  5641. case TIMER4A:
  5642. case TIMER4B:
  5643. case TIMER4C:
  5644. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5645. TCCR4B |= val;
  5646. break;
  5647. #endif
  5648. #if defined(TCCR5A)
  5649. case TIMER5A:
  5650. case TIMER5B:
  5651. case TIMER5C:
  5652. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5653. TCCR5B |= val;
  5654. break;
  5655. #endif
  5656. }
  5657. }
  5658. #endif //FAST_PWM_FAN
  5659. bool setTargetedHotend(int code){
  5660. tmp_extruder = active_extruder;
  5661. if(code_seen('T')) {
  5662. tmp_extruder = code_value();
  5663. if(tmp_extruder >= EXTRUDERS) {
  5664. SERIAL_ECHO_START;
  5665. switch(code){
  5666. case 104:
  5667. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5668. break;
  5669. case 105:
  5670. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5671. break;
  5672. case 109:
  5673. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5674. break;
  5675. case 218:
  5676. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5677. break;
  5678. case 221:
  5679. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5680. break;
  5681. }
  5682. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5683. return true;
  5684. }
  5685. }
  5686. return false;
  5687. }
  5688. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5689. {
  5690. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5691. {
  5692. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5693. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5694. }
  5695. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5696. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5697. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5698. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5699. total_filament_used = 0;
  5700. }
  5701. float calculate_volumetric_multiplier(float diameter) {
  5702. float area = .0;
  5703. float radius = .0;
  5704. radius = diameter * .5;
  5705. if (! volumetric_enabled || radius == 0) {
  5706. area = 1;
  5707. }
  5708. else {
  5709. area = M_PI * pow(radius, 2);
  5710. }
  5711. return 1.0 / area;
  5712. }
  5713. void calculate_volumetric_multipliers() {
  5714. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5715. #if EXTRUDERS > 1
  5716. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5717. #if EXTRUDERS > 2
  5718. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5719. #endif
  5720. #endif
  5721. }
  5722. void delay_keep_alive(unsigned int ms)
  5723. {
  5724. for (;;) {
  5725. manage_heater();
  5726. // Manage inactivity, but don't disable steppers on timeout.
  5727. manage_inactivity(true);
  5728. lcd_update();
  5729. if (ms == 0)
  5730. break;
  5731. else if (ms >= 50) {
  5732. delay(50);
  5733. ms -= 50;
  5734. } else {
  5735. delay(ms);
  5736. ms = 0;
  5737. }
  5738. }
  5739. }
  5740. void wait_for_heater(long codenum) {
  5741. #ifdef TEMP_RESIDENCY_TIME
  5742. long residencyStart;
  5743. residencyStart = -1;
  5744. /* continue to loop until we have reached the target temp
  5745. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5746. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5747. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5748. #else
  5749. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5750. #endif //TEMP_RESIDENCY_TIME
  5751. if ((millis() - codenum) > 1000UL)
  5752. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5753. if (!farm_mode) {
  5754. SERIAL_PROTOCOLPGM("T:");
  5755. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5756. SERIAL_PROTOCOLPGM(" E:");
  5757. SERIAL_PROTOCOL((int)tmp_extruder);
  5758. #ifdef TEMP_RESIDENCY_TIME
  5759. SERIAL_PROTOCOLPGM(" W:");
  5760. if (residencyStart > -1)
  5761. {
  5762. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5763. SERIAL_PROTOCOLLN(codenum);
  5764. }
  5765. else
  5766. {
  5767. SERIAL_PROTOCOLLN("?");
  5768. }
  5769. }
  5770. #else
  5771. SERIAL_PROTOCOLLN("");
  5772. #endif
  5773. codenum = millis();
  5774. }
  5775. manage_heater();
  5776. manage_inactivity();
  5777. lcd_update();
  5778. #ifdef TEMP_RESIDENCY_TIME
  5779. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5780. or when current temp falls outside the hysteresis after target temp was reached */
  5781. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5782. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5783. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5784. {
  5785. residencyStart = millis();
  5786. }
  5787. #endif //TEMP_RESIDENCY_TIME
  5788. }
  5789. }
  5790. void check_babystep() {
  5791. int babystep_z;
  5792. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5793. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5794. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5795. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5796. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5797. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5798. lcd_update_enable(true);
  5799. }
  5800. }
  5801. #ifdef DIS
  5802. void d_setup()
  5803. {
  5804. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5805. pinMode(D_DATA, INPUT_PULLUP);
  5806. pinMode(D_REQUIRE, OUTPUT);
  5807. digitalWrite(D_REQUIRE, HIGH);
  5808. }
  5809. float d_ReadData()
  5810. {
  5811. int digit[13];
  5812. String mergeOutput;
  5813. float output;
  5814. digitalWrite(D_REQUIRE, HIGH);
  5815. for (int i = 0; i<13; i++)
  5816. {
  5817. for (int j = 0; j < 4; j++)
  5818. {
  5819. while (digitalRead(D_DATACLOCK) == LOW) {}
  5820. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5821. bitWrite(digit[i], j, digitalRead(D_DATA));
  5822. }
  5823. }
  5824. digitalWrite(D_REQUIRE, LOW);
  5825. mergeOutput = "";
  5826. output = 0;
  5827. for (int r = 5; r <= 10; r++) //Merge digits
  5828. {
  5829. mergeOutput += digit[r];
  5830. }
  5831. output = mergeOutput.toFloat();
  5832. if (digit[4] == 8) //Handle sign
  5833. {
  5834. output *= -1;
  5835. }
  5836. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5837. {
  5838. output /= 10;
  5839. }
  5840. return output;
  5841. }
  5842. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5843. int t1 = 0;
  5844. int t_delay = 0;
  5845. int digit[13];
  5846. int m;
  5847. char str[3];
  5848. //String mergeOutput;
  5849. char mergeOutput[15];
  5850. float output;
  5851. int mesh_point = 0; //index number of calibration point
  5852. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5853. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5854. float mesh_home_z_search = 4;
  5855. float row[x_points_num];
  5856. int ix = 0;
  5857. int iy = 0;
  5858. char* filename_wldsd = "wldsd.txt";
  5859. char data_wldsd[70];
  5860. char numb_wldsd[10];
  5861. d_setup();
  5862. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5863. // We don't know where we are! HOME!
  5864. // Push the commands to the front of the message queue in the reverse order!
  5865. // There shall be always enough space reserved for these commands.
  5866. repeatcommand_front(); // repeat G80 with all its parameters
  5867. enquecommand_front_P((PSTR("G28 W0")));
  5868. enquecommand_front_P((PSTR("G1 Z5")));
  5869. return;
  5870. }
  5871. bool custom_message_old = custom_message;
  5872. unsigned int custom_message_type_old = custom_message_type;
  5873. unsigned int custom_message_state_old = custom_message_state;
  5874. custom_message = true;
  5875. custom_message_type = 1;
  5876. custom_message_state = (x_points_num * y_points_num) + 10;
  5877. lcd_update(1);
  5878. mbl.reset();
  5879. babystep_undo();
  5880. card.openFile(filename_wldsd, false);
  5881. current_position[Z_AXIS] = mesh_home_z_search;
  5882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5883. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5884. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5885. setup_for_endstop_move(false);
  5886. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5887. SERIAL_PROTOCOL(x_points_num);
  5888. SERIAL_PROTOCOLPGM(",");
  5889. SERIAL_PROTOCOL(y_points_num);
  5890. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5891. SERIAL_PROTOCOL(mesh_home_z_search);
  5892. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5893. SERIAL_PROTOCOL(x_dimension);
  5894. SERIAL_PROTOCOLPGM(",");
  5895. SERIAL_PROTOCOL(y_dimension);
  5896. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5897. while (mesh_point != x_points_num * y_points_num) {
  5898. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5899. iy = mesh_point / x_points_num;
  5900. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5901. float z0 = 0.f;
  5902. current_position[Z_AXIS] = mesh_home_z_search;
  5903. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5904. st_synchronize();
  5905. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5906. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5908. st_synchronize();
  5909. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5910. break;
  5911. card.closefile();
  5912. }
  5913. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5914. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5915. //strcat(data_wldsd, numb_wldsd);
  5916. //MYSERIAL.println(data_wldsd);
  5917. //delay(1000);
  5918. //delay(3000);
  5919. //t1 = millis();
  5920. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5921. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5922. memset(digit, 0, sizeof(digit));
  5923. //cli();
  5924. digitalWrite(D_REQUIRE, LOW);
  5925. for (int i = 0; i<13; i++)
  5926. {
  5927. //t1 = millis();
  5928. for (int j = 0; j < 4; j++)
  5929. {
  5930. while (digitalRead(D_DATACLOCK) == LOW) {}
  5931. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5932. bitWrite(digit[i], j, digitalRead(D_DATA));
  5933. }
  5934. //t_delay = (millis() - t1);
  5935. //SERIAL_PROTOCOLPGM(" ");
  5936. //SERIAL_PROTOCOL_F(t_delay, 5);
  5937. //SERIAL_PROTOCOLPGM(" ");
  5938. }
  5939. //sei();
  5940. digitalWrite(D_REQUIRE, HIGH);
  5941. mergeOutput[0] = '\0';
  5942. output = 0;
  5943. for (int r = 5; r <= 10; r++) //Merge digits
  5944. {
  5945. sprintf(str, "%d", digit[r]);
  5946. strcat(mergeOutput, str);
  5947. }
  5948. output = atof(mergeOutput);
  5949. if (digit[4] == 8) //Handle sign
  5950. {
  5951. output *= -1;
  5952. }
  5953. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5954. {
  5955. output *= 0.1;
  5956. }
  5957. //output = d_ReadData();
  5958. //row[ix] = current_position[Z_AXIS];
  5959. memset(data_wldsd, 0, sizeof(data_wldsd));
  5960. for (int i = 0; i <3; i++) {
  5961. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5962. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5963. strcat(data_wldsd, numb_wldsd);
  5964. strcat(data_wldsd, ";");
  5965. }
  5966. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5967. dtostrf(output, 8, 5, numb_wldsd);
  5968. strcat(data_wldsd, numb_wldsd);
  5969. //strcat(data_wldsd, ";");
  5970. card.write_command(data_wldsd);
  5971. //row[ix] = d_ReadData();
  5972. row[ix] = output; // current_position[Z_AXIS];
  5973. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5974. for (int i = 0; i < x_points_num; i++) {
  5975. SERIAL_PROTOCOLPGM(" ");
  5976. SERIAL_PROTOCOL_F(row[i], 5);
  5977. }
  5978. SERIAL_PROTOCOLPGM("\n");
  5979. }
  5980. custom_message_state--;
  5981. mesh_point++;
  5982. lcd_update(1);
  5983. }
  5984. card.closefile();
  5985. }
  5986. #endif
  5987. void temp_compensation_start() {
  5988. custom_message = true;
  5989. custom_message_type = 5;
  5990. custom_message_state = PINDA_HEAT_T + 1;
  5991. lcd_update(2);
  5992. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5993. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5994. }
  5995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5996. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5997. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5998. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6000. st_synchronize();
  6001. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6002. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6003. delay_keep_alive(1000);
  6004. custom_message_state = PINDA_HEAT_T - i;
  6005. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6006. else lcd_update(1);
  6007. }
  6008. custom_message_type = 0;
  6009. custom_message_state = 0;
  6010. custom_message = false;
  6011. }
  6012. void temp_compensation_apply() {
  6013. int i_add;
  6014. int z_shift = 0;
  6015. float z_shift_mm;
  6016. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6017. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6018. i_add = (target_temperature_bed - 60) / 10;
  6019. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6020. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6021. }else {
  6022. //interpolation
  6023. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6024. }
  6025. SERIAL_PROTOCOLPGM("\n");
  6026. SERIAL_PROTOCOLPGM("Z shift applied:");
  6027. MYSERIAL.print(z_shift_mm);
  6028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6029. st_synchronize();
  6030. plan_set_z_position(current_position[Z_AXIS]);
  6031. }
  6032. else {
  6033. //we have no temp compensation data
  6034. }
  6035. }
  6036. float temp_comp_interpolation(float inp_temperature) {
  6037. //cubic spline interpolation
  6038. int n, i, j;
  6039. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6040. int shift[10];
  6041. int temp_C[10];
  6042. n = 6; //number of measured points
  6043. shift[0] = 0;
  6044. for (i = 0; i < n; i++) {
  6045. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6046. temp_C[i] = 50 + i * 10; //temperature in C
  6047. x[i] = (float)temp_C[i];
  6048. f[i] = (float)shift[i];
  6049. }
  6050. if (inp_temperature < x[0]) return 0;
  6051. for (i = n - 1; i>0; i--) {
  6052. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6053. h[i - 1] = x[i] - x[i - 1];
  6054. }
  6055. //*********** formation of h, s , f matrix **************
  6056. for (i = 1; i<n - 1; i++) {
  6057. m[i][i] = 2 * (h[i - 1] + h[i]);
  6058. if (i != 1) {
  6059. m[i][i - 1] = h[i - 1];
  6060. m[i - 1][i] = h[i - 1];
  6061. }
  6062. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6063. }
  6064. //*********** forward elimination **************
  6065. for (i = 1; i<n - 2; i++) {
  6066. temp = (m[i + 1][i] / m[i][i]);
  6067. for (j = 1; j <= n - 1; j++)
  6068. m[i + 1][j] -= temp*m[i][j];
  6069. }
  6070. //*********** backward substitution *********
  6071. for (i = n - 2; i>0; i--) {
  6072. sum = 0;
  6073. for (j = i; j <= n - 2; j++)
  6074. sum += m[i][j] * s[j];
  6075. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6076. }
  6077. for (i = 0; i<n - 1; i++)
  6078. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6079. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6080. b = s[i] / 2;
  6081. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6082. d = f[i];
  6083. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6084. }
  6085. return sum;
  6086. }
  6087. void long_pause() //long pause print
  6088. {
  6089. st_synchronize();
  6090. //save currently set parameters to global variables
  6091. saved_feedmultiply = feedmultiply;
  6092. HotendTempBckp = degTargetHotend(active_extruder);
  6093. fanSpeedBckp = fanSpeed;
  6094. start_pause_print = millis();
  6095. //save position
  6096. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6097. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6098. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6099. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6100. //retract
  6101. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6103. //lift z
  6104. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6105. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6107. //set nozzle target temperature to 0
  6108. setTargetHotend(0, 0);
  6109. setTargetHotend(0, 1);
  6110. setTargetHotend(0, 2);
  6111. //Move XY to side
  6112. current_position[X_AXIS] = X_PAUSE_POS;
  6113. current_position[Y_AXIS] = Y_PAUSE_POS;
  6114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6115. // Turn off the print fan
  6116. fanSpeed = 0;
  6117. st_synchronize();
  6118. }
  6119. void serialecho_temperatures() {
  6120. float tt = degHotend(active_extruder);
  6121. SERIAL_PROTOCOLPGM("T:");
  6122. SERIAL_PROTOCOL(tt);
  6123. SERIAL_PROTOCOLPGM(" E:");
  6124. SERIAL_PROTOCOL((int)active_extruder);
  6125. SERIAL_PROTOCOLPGM(" B:");
  6126. SERIAL_PROTOCOL_F(degBed(), 1);
  6127. SERIAL_PROTOCOLLN("");
  6128. }
  6129. uint16_t print_time_remaining() {
  6130. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  6131. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  6132. else print_t = print_time_remaining_silent;
  6133. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  6134. return print_t;
  6135. }
  6136. uint8_t print_percent_done() {
  6137. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  6138. uint8_t percent_done = 0;
  6139. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  6140. percent_done = print_percent_done_normal;
  6141. }
  6142. else if (print_percent_done_silent <= 100) {
  6143. percent_done = print_percent_done_silent;
  6144. }
  6145. else {
  6146. percent_done = card.percentDone();
  6147. }
  6148. return percent_done;
  6149. }
  6150. static void print_time_remaining_init() {
  6151. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  6152. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  6153. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  6154. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  6155. }