Dcodes.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. #include "Dcodes.h"
  2. #include "Marlin.h"
  3. #include "Configuration.h"
  4. #include "language.h"
  5. #include "cmdqueue.h"
  6. #include <stdio.h>
  7. #include <avr/pgmspace.h>
  8. #define SHOW_TEMP_ADC_VALUES
  9. #include "temperature.h"
  10. #define DBG(args...) printf_P(args)
  11. inline void print_hex_nibble(uint8_t val)
  12. {
  13. putchar((val > 9)?(val - 10 + 'a'):(val + '0'));
  14. }
  15. void print_hex_byte(uint8_t val)
  16. {
  17. print_hex_nibble(val >> 4);
  18. print_hex_nibble(val & 15);
  19. }
  20. void print_hex_word(uint16_t val)
  21. {
  22. print_hex_byte(val >> 8);
  23. print_hex_byte(val & 255);
  24. }
  25. void print_eeprom(uint16_t address, uint16_t count, uint8_t countperline = 16)
  26. {
  27. while (count)
  28. {
  29. print_hex_word(address);
  30. putchar(' ');
  31. uint8_t count_line = countperline;
  32. while (count && count_line)
  33. {
  34. putchar(' ');
  35. print_hex_byte(eeprom_read_byte((uint8_t*)address++));
  36. count_line--;
  37. count--;
  38. }
  39. putchar('\n');
  40. }
  41. }
  42. int parse_hex(char* hex, uint8_t* data, int count)
  43. {
  44. int parsed = 0;
  45. while (*hex)
  46. {
  47. if (count && (parsed >= count)) break;
  48. char c = *(hex++);
  49. if (c == ' ') continue;
  50. if (c == '\n') break;
  51. uint8_t val = 0x00;
  52. if ((c >= '0') && (c <= '9')) val |= ((c - '0') << 4);
  53. else if ((c >= 'a') && (c <= 'f')) val |= ((c - 'a' + 10) << 4);
  54. else return -parsed;
  55. c = *(hex++);
  56. if ((c >= '0') && (c <= '9')) val |= (c - '0');
  57. else if ((c >= 'a') && (c <= 'f')) val |= (c - 'a' + 10);
  58. else return -parsed;
  59. data[parsed] = val;
  60. parsed++;
  61. }
  62. return parsed;
  63. }
  64. void print_mem(uint32_t address, uint16_t count, uint8_t type, uint8_t countperline = 16)
  65. {
  66. while (count)
  67. {
  68. if (type == 2)
  69. print_hex_nibble(address >> 16);
  70. print_hex_word(address);
  71. putchar(' ');
  72. uint8_t count_line = countperline;
  73. while (count && count_line)
  74. {
  75. uint8_t data = 0;
  76. switch (type)
  77. {
  78. case 0: data = *((uint8_t*)address++); break;
  79. case 1: data = eeprom_read_byte((uint8_t*)address++); break;
  80. case 2: data = pgm_read_byte_far((uint8_t*)address++); break;
  81. }
  82. putchar(' ');
  83. print_hex_byte(data);
  84. count_line--;
  85. count--;
  86. }
  87. putchar('\n');
  88. }
  89. }
  90. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  91. #define EEPROM_SIZE 0x1000
  92. /*!
  93. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  94. This command can be used without any additional parameters. It will read the entire eeprom.
  95. #### Usage
  96. D3 [ A | C | X ]
  97. #### Parameters
  98. - `A` - Address (x0000-x0fff)
  99. - `C` - Count (1-4096)
  100. - `X` - Data (hex)
  101. #### Notes
  102. - The hex address needs to be lowercase without the 0 before the x
  103. - Count is decimal
  104. - The hex data needs to be lowercase
  105. */
  106. void dcode_3()
  107. {
  108. DBG(_N("D3 - Read/Write EEPROM\n"));
  109. uint16_t address = 0x0000; //default 0x0000
  110. uint16_t count = EEPROM_SIZE; //default 0x1000 (entire eeprom)
  111. if (code_seen('A')) // Address (0x0000-0x0fff)
  112. address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
  113. if (code_seen('C')) // Count (0x0001-0x1000)
  114. count = (int)code_value();
  115. address &= 0x1fff;
  116. if (count > EEPROM_SIZE) count = EEPROM_SIZE;
  117. if ((address + count) > EEPROM_SIZE) count = EEPROM_SIZE - address;
  118. if (code_seen('X')) // Data
  119. {
  120. uint8_t data[16];
  121. count = parse_hex(strchr_pointer + 1, data, 16);
  122. if (count > 0)
  123. {
  124. for (uint16_t i = 0; i < count; i++)
  125. eeprom_write_byte((uint8_t*)(address + i), data[i]);
  126. printf_P(_N("%d bytes written to EEPROM at address 0x%04x"), count, address);
  127. putchar('\n');
  128. }
  129. else
  130. count = 0;
  131. }
  132. print_mem(address, count, 1);
  133. /* while (count)
  134. {
  135. print_hex_word(address);
  136. putchar(' ');
  137. uint8_t countperline = 16;
  138. while (count && countperline)
  139. {
  140. uint8_t data = eeprom_read_byte((uint8_t*)address++);
  141. putchar(' ');
  142. print_hex_byte(data);
  143. countperline--;
  144. count--;
  145. }
  146. putchar('\n');
  147. }*/
  148. }
  149. #endif //DEBUG_DCODE3
  150. #include "ConfigurationStore.h"
  151. #include "cmdqueue.h"
  152. #include "pat9125.h"
  153. #include "adc.h"
  154. #include "temperature.h"
  155. #include <avr/wdt.h>
  156. #include "bootapp.h"
  157. #if 0
  158. extern float current_temperature_pinda;
  159. extern float axis_steps_per_unit[NUM_AXIS];
  160. #define LOG(args...) printf(args)
  161. #endif //0
  162. #define LOG(args...)
  163. /*!
  164. *
  165. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">D-1: Endless Loop</a>
  166. D-1
  167. *
  168. */
  169. void dcode__1()
  170. {
  171. DBG(_N("D-1 - Endless loop\n"));
  172. // cli();
  173. while (1);
  174. }
  175. #ifdef DEBUG_DCODES
  176. /*!
  177. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  178. #### Usage
  179. D0 [ B ]
  180. #### Parameters
  181. - `B` - Bootloader
  182. */
  183. void dcode_0()
  184. {
  185. if (*(strchr_pointer + 1) == 0) return;
  186. LOG("D0 - Reset\n");
  187. if (code_seen('B')) //bootloader
  188. {
  189. softReset();
  190. }
  191. else //reset
  192. {
  193. #ifndef _NO_ASM
  194. asm volatile("jmp 0x00000");
  195. #endif //_NO_ASM
  196. }
  197. }
  198. /*!
  199. *
  200. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  201. D1
  202. *
  203. */
  204. void dcode_1()
  205. {
  206. LOG("D1 - Clear EEPROM and RESET\n");
  207. cli();
  208. for (int i = 0; i < 8192; i++)
  209. eeprom_write_byte((unsigned char*)i, (unsigned char)0xff);
  210. softReset();
  211. }
  212. #endif
  213. #if defined DEBUG_DCODE2 || defined DEBUG_DCODES
  214. /*!
  215. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  216. This command can be used without any additional parameters. It will read the entire RAM.
  217. #### Usage
  218. D2 [ A | C | X ]
  219. #### Parameters
  220. - `A` - Address (x0000-x1fff)
  221. - `C` - Count (1-8192)
  222. - `X` - Data
  223. #### Notes
  224. - The hex address needs to be lowercase without the 0 before the x
  225. - Count is decimal
  226. - The hex data needs to be lowercase
  227. */
  228. void dcode_2()
  229. {
  230. LOG("D2 - Read/Write RAM\n");
  231. uint16_t address = 0x0000; //default 0x0000
  232. uint16_t count = 0x2000; //default 0x2000 (entire ram)
  233. if (code_seen('A')) // Address (0x0000-0x1fff)
  234. address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
  235. if (code_seen('C')) // Count (0x0001-0x2000)
  236. count = (int)code_value();
  237. address &= 0x1fff;
  238. if (count > 0x2000) count = 0x2000;
  239. if ((address + count) > 0x2000) count = 0x2000 - address;
  240. if (code_seen('X')) // Data
  241. {
  242. uint8_t data[16];
  243. count = parse_hex(strchr_pointer + 1, data, 16);
  244. if (count > 0)
  245. {
  246. for (uint16_t i = 0; i < count; i++)
  247. *((uint8_t*)(address + i)) = data[i];
  248. LOG("%d bytes written to RAM at address %04x", count, address);
  249. }
  250. else
  251. count = 0;
  252. }
  253. print_mem(address, count, 0);
  254. /* while (count)
  255. {
  256. print_hex_word(address);
  257. putchar(' ');
  258. uint8_t countperline = 16;
  259. while (count && countperline)
  260. {
  261. uint8_t data = *((uint8_t*)address++);
  262. putchar(' ');
  263. print_hex_byte(data);
  264. countperline--;
  265. count--;
  266. }
  267. putchar('\n');
  268. }*/
  269. }
  270. #endif
  271. #ifdef DEBUG_DCODES
  272. /*!
  273. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  274. To read the digital value of a pin you need only to define the pin number.
  275. #### Usage
  276. D4 [ P | F | V ]
  277. #### Parameters
  278. - `P` - Pin (0-255)
  279. - `F` - Function in/out (0/1)
  280. - `V` - Value (0/1)
  281. */
  282. void dcode_4()
  283. {
  284. LOG("D4 - Read/Write PIN\n");
  285. if (code_seen('P')) // Pin (0-255)
  286. {
  287. int pin = (int)code_value();
  288. if ((pin >= 0) && (pin <= 255))
  289. {
  290. if (code_seen('F')) // Function in/out (0/1)
  291. {
  292. int fnc = (int)code_value();
  293. if (fnc == 0) pinMode(pin, INPUT);
  294. else if (fnc == 1) pinMode(pin, OUTPUT);
  295. }
  296. if (code_seen('V')) // Value (0/1)
  297. {
  298. int val = (int)code_value();
  299. if (val == 0) digitalWrite(pin, LOW);
  300. else if (val == 1) digitalWrite(pin, HIGH);
  301. }
  302. else
  303. {
  304. int val = (digitalRead(pin) != LOW)?1:0;
  305. printf("PIN%d=%d", pin, val);
  306. }
  307. }
  308. }
  309. }
  310. #endif //DEBUG_DCODES
  311. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  312. /*!
  313. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  314. This command can be used without any additional parameters. It will read the 1kb FLASH.
  315. #### Usage
  316. D5 [ A | C | X | E ]
  317. #### Parameters
  318. - `A` - Address (x00000-x3ffff)
  319. - `C` - Count (1-8192)
  320. - `X` - Data (hex)
  321. - `E` - Erase
  322. #### Notes
  323. - The hex address needs to be lowercase without the 0 before the x
  324. - Count is decimal
  325. - The hex data needs to be lowercase
  326. */
  327. void dcode_5()
  328. {
  329. puts_P(PSTR("D5 - Read/Write FLASH"));
  330. uint32_t address = 0x0000; //default 0x0000
  331. uint16_t count = 0x0400; //default 0x0400 (1kb block)
  332. if (code_seen('A')) // Address (0x00000-0x3ffff)
  333. address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
  334. if (code_seen('C')) // Count (0x0001-0x2000)
  335. count = (int)code_value();
  336. address &= 0x3ffff;
  337. if (count > 0x2000) count = 0x2000;
  338. if ((address + count) > 0x40000) count = 0x40000 - address;
  339. bool bErase = false;
  340. bool bCopy = false;
  341. if (code_seen('E')) //Erase
  342. bErase = true;
  343. uint8_t data[16];
  344. if (code_seen('X')) // Data
  345. {
  346. count = parse_hex(strchr_pointer + 1, data, 16);
  347. if (count > 0) bCopy = true;
  348. }
  349. if (bErase || bCopy)
  350. {
  351. if (bErase)
  352. {
  353. printf_P(PSTR("%d bytes of FLASH at address %05x will be erased\n"), count, address);
  354. }
  355. if (bCopy)
  356. {
  357. printf_P(PSTR("%d bytes will be written to FLASH at address %05x\n"), count, address);
  358. }
  359. cli();
  360. boot_app_magic = 0x55aa55aa;
  361. boot_app_flags = (bErase?(BOOT_APP_FLG_ERASE):0) | (bCopy?(BOOT_APP_FLG_COPY):0);
  362. boot_copy_size = (uint16_t)count;
  363. boot_dst_addr = (uint32_t)address;
  364. boot_src_addr = (uint32_t)(&data);
  365. bootapp_print_vars();
  366. softReset();
  367. }
  368. while (count)
  369. {
  370. print_hex_nibble(address >> 16);
  371. print_hex_word(address);
  372. putchar(' ');
  373. uint8_t countperline = 16;
  374. while (count && countperline)
  375. {
  376. uint8_t data = pgm_read_byte_far((uint8_t*)address++);
  377. putchar(' ');
  378. print_hex_byte(data);
  379. countperline--;
  380. count--;
  381. }
  382. putchar('\n');
  383. }
  384. }
  385. #endif //DEBUG_DCODE5
  386. #ifdef DEBUG_DCODES
  387. /*!
  388. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  389. Reserved
  390. */
  391. void dcode_6()
  392. {
  393. LOG("D6 - Read/Write external FLASH\n");
  394. }
  395. /*!
  396. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  397. Reserved
  398. */
  399. void dcode_7()
  400. {
  401. LOG("D7 - Read/Write Bootloader\n");
  402. /*
  403. cli();
  404. boot_app_magic = 0x55aa55aa;
  405. boot_app_flags = BOOT_APP_FLG_ERASE | BOOT_APP_FLG_COPY | BOOT_APP_FLG_FLASH;
  406. boot_copy_size = (uint16_t)0xc00;
  407. boot_src_addr = (uint32_t)0x0003e400;
  408. boot_dst_addr = (uint32_t)0x0003f400;
  409. softReset();
  410. */
  411. }
  412. /*!
  413. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  414. #### Usage
  415. D8 [ ? | ! | P | Z ]
  416. #### Parameters
  417. - `?` - Read PINDA temperature shift values
  418. - `!` - Reset PINDA temperature shift values to default
  419. - `P` - Pinda temperature [C]
  420. - `Z` - Z Offset [mm]
  421. */
  422. void dcode_8()
  423. {
  424. puts_P(PSTR("D8 - Read/Write PINDA"));
  425. uint8_t cal_status = calibration_status_pinda();
  426. float temp_pinda = current_temperature_pinda;
  427. float offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
  428. if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
  429. {
  430. printf_P(PSTR("cal_status=%d\n"), cal_status?1:0);
  431. for (uint8_t i = 0; i < 6; i++)
  432. {
  433. uint16_t offs = 0;
  434. if (i > 0) offs = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
  435. float foffs = ((float)offs) / cs.axis_steps_per_unit[Z_AXIS];
  436. offs = 1000 * foffs;
  437. printf_P(PSTR("temp_pinda=%dC temp_shift=%dum\n"), 35 + i * 5, offs);
  438. }
  439. }
  440. else if (strchr_pointer[1+1] == '!')
  441. {
  442. cal_status = 1;
  443. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, cal_status);
  444. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  445. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  446. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  447. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  448. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  449. }
  450. else
  451. {
  452. if (code_seen('P')) // Pinda temperature [C]
  453. temp_pinda = code_value();
  454. offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
  455. if (code_seen('Z')) // Z Offset [mm]
  456. {
  457. offset_z = code_value();
  458. }
  459. }
  460. printf_P(PSTR("temp_pinda=%d offset_z=%d.%03d\n"), (int)temp_pinda, (int)offset_z, ((int)(1000 * offset_z) % 1000));
  461. }
  462. /*!
  463. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  464. #### Usage
  465. D9 [ I | V ]
  466. #### Parameters
  467. - `I` - ADC channel index
  468. - `0` - Heater 0 temperature
  469. - `1` - Heater 1 temperature
  470. - `2` - Bed temperature
  471. - `3` - PINDA temperature
  472. - `4` - PWR voltage
  473. - `5` - Ambient temperature
  474. - `6` - BED voltage
  475. - `V` Value to be written as simulated
  476. */
  477. const char* dcode_9_ADC_name(uint8_t i)
  478. {
  479. switch (i)
  480. {
  481. case 0: return PSTR("TEMP_HEATER0");
  482. case 1: return PSTR("TEMP_HEATER1");
  483. case 2: return PSTR("TEMP_BED");
  484. case 3: return PSTR("TEMP_PINDA");
  485. case 4: return PSTR("VOLT_PWR");
  486. case 5: return PSTR("TEMP_AMBIENT");
  487. case 6: return PSTR("VOLT_BED");
  488. }
  489. return 0;
  490. }
  491. #ifdef AMBIENT_THERMISTOR
  492. extern int current_temperature_raw_ambient;
  493. #endif //AMBIENT_THERMISTOR
  494. #ifdef VOLT_PWR_PIN
  495. extern int current_voltage_raw_pwr;
  496. #endif //VOLT_PWR_PIN
  497. #ifdef VOLT_BED_PIN
  498. extern int current_voltage_raw_bed;
  499. #endif //VOLT_BED_PIN
  500. uint16_t dcode_9_ADC_val(uint8_t i)
  501. {
  502. switch (i)
  503. {
  504. case 0: return current_temperature_raw[0];
  505. case 1: return 0;
  506. case 2: return current_temperature_bed_raw;
  507. case 3: return current_temperature_raw_pinda;
  508. #ifdef VOLT_PWR_PIN
  509. case 4: return current_voltage_raw_pwr;
  510. #endif //VOLT_PWR_PIN
  511. #ifdef AMBIENT_THERMISTOR
  512. case 5: return current_temperature_raw_ambient;
  513. #endif //AMBIENT_THERMISTOR
  514. #ifdef VOLT_BED_PIN
  515. case 6: return current_voltage_raw_bed;
  516. #endif //VOLT_BED_PIN
  517. }
  518. return 0;
  519. }
  520. void dcode_9()
  521. {
  522. puts_P(PSTR("D9 - Read/Write ADC"));
  523. if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
  524. {
  525. for (uint8_t i = 0; i < ADC_CHAN_CNT; i++)
  526. printf_P(PSTR("\tADC%d=%4d\t(%S)\n"), i, dcode_9_ADC_val(i) >> 4, dcode_9_ADC_name(i));
  527. }
  528. else
  529. {
  530. uint8_t index = 0xff;
  531. if (code_seen('I')) // index (index of used channel, not avr channel index)
  532. index = code_value();
  533. if (index < ADC_CHAN_CNT)
  534. {
  535. if (code_seen('V')) // value to be written as simulated
  536. {
  537. adc_sim_mask |= (1 << index);
  538. adc_values[index] = (((int)code_value()) << 4);
  539. printf_P(PSTR("ADC%d=%4d\n"), index, adc_values[index] >> 4);
  540. }
  541. }
  542. }
  543. }
  544. /*!
  545. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  546. */
  547. void dcode_10()
  548. {//Tell the printer that XYZ calibration went OK
  549. LOG("D10 - XYZ calibration = OK\n");
  550. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  551. }
  552. /*!
  553. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  554. Writes the current time in the log file.
  555. */
  556. void dcode_12()
  557. {//Time
  558. LOG("D12 - Time\n");
  559. }
  560. #ifdef HEATBED_ANALYSIS
  561. /*!
  562. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  563. This command will log data to SD card file "mesh.txt".
  564. #### Usage
  565. D80 [ E | F | G | H | I | J ]
  566. #### Parameters
  567. - `E` - Dimension X (default 40)
  568. - `F` - Dimention Y (default 40)
  569. - `G` - Points X (default 40)
  570. - `H` - Points Y (default 40)
  571. - `I` - Offset X (default 74)
  572. - `J` - Offset Y (default 34)
  573. */
  574. void dcode_80()
  575. {
  576. float dimension_x = 40;
  577. float dimension_y = 40;
  578. int points_x = 40;
  579. int points_y = 40;
  580. float offset_x = 74;
  581. float offset_y = 33;
  582. if (code_seen('E')) dimension_x = code_value();
  583. if (code_seen('F')) dimension_y = code_value();
  584. if (code_seen('G')) {points_x = code_value(); }
  585. if (code_seen('H')) {points_y = code_value(); }
  586. if (code_seen('I')) {offset_x = code_value(); }
  587. if (code_seen('J')) {offset_y = code_value(); }
  588. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  589. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  590. printf_P(PSTR("POINTS X: %d\n"), points_x);
  591. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  592. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  593. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  594. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  595. }
  596. /*!
  597. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  598. This command will log data to SD card file "wldsd.txt".
  599. #### Usage
  600. D81 [ E | F | G | H | I | J ]
  601. #### Parameters
  602. - `E` - Dimension X (default 40)
  603. - `F` - Dimention Y (default 40)
  604. - `G` - Points X (default 40)
  605. - `H` - Points Y (default 40)
  606. - `I` - Offset X (default 74)
  607. - `J` - Offset Y (default 34)
  608. */
  609. void dcode_81()
  610. {
  611. float dimension_x = 40;
  612. float dimension_y = 40;
  613. int points_x = 40;
  614. int points_y = 40;
  615. float offset_x = 74;
  616. float offset_y = 33;
  617. if (code_seen('E')) dimension_x = code_value();
  618. if (code_seen('F')) dimension_y = code_value();
  619. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  620. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  621. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  622. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  623. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  624. }
  625. #endif //HEATBED_ANALYSIS
  626. /*!
  627. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  628. */
  629. void dcode_106()
  630. {
  631. for (int i = 255; i > 0; i = i - 5) {
  632. fanSpeed = i;
  633. //delay_keep_alive(2000);
  634. for (int j = 0; j < 100; j++) {
  635. delay_keep_alive(100);
  636. }
  637. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  638. }
  639. }
  640. #ifdef TMC2130
  641. #include "planner.h"
  642. #include "tmc2130.h"
  643. extern void st_synchronize();
  644. /*!
  645. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  646. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  647. #### Usage
  648. D2130 [ Axis | Command | Subcommand | Value ]
  649. #### Parameters
  650. - Axis
  651. - `X` - X stepper driver
  652. - `Y` - Y stepper driver
  653. - `Z` - Z stepper driver
  654. - `E` - Extruder stepper driver
  655. - Commands
  656. - `0` - Current off
  657. - `1` - Current on
  658. - `+` - Single step
  659. - `-` - Single step oposite direction
  660. - `NNN` - Value sereval steps
  661. - `?` - Read register
  662. - Subcommands for read register
  663. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  664. - `step` - Step
  665. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  666. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  667. - `wave` - Microstep linearity compensation curve
  668. - `!` - Set register
  669. - Subcommands for set register
  670. - `mres` - Micro step resolution
  671. - `step` - Step
  672. - `wave` - Microstep linearity compensation curve
  673. - Values for set register
  674. - `0, 180 --> 250` - Off
  675. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  676. - `@` - Home calibrate axis
  677. Examples:
  678. D2130E?wave
  679. Print extruder microstep linearity compensation curve
  680. D2130E!wave0
  681. Disable extruder linearity compensation curve, (sine curve is used)
  682. D2130E!wave220
  683. (sin(x))^1.1 extruder microstep compensation curve used
  684. Notes:
  685. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  686. *
  687. */
  688. void dcode_2130()
  689. {
  690. puts_P(PSTR("D2130 - TMC2130"));
  691. uint8_t axis = 0xff;
  692. switch (strchr_pointer[1+4])
  693. {
  694. case 'X': axis = X_AXIS; break;
  695. case 'Y': axis = Y_AXIS; break;
  696. case 'Z': axis = Z_AXIS; break;
  697. case 'E': axis = E_AXIS; break;
  698. }
  699. if (axis != 0xff)
  700. {
  701. char ch_axis = strchr_pointer[1+4];
  702. if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }
  703. else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }
  704. else if (strchr_pointer[1+5] == '+')
  705. {
  706. if (strchr_pointer[1+6] == 0)
  707. {
  708. tmc2130_set_dir(axis, 0);
  709. tmc2130_do_step(axis);
  710. }
  711. else
  712. {
  713. uint8_t steps = atoi(strchr_pointer + 1 + 6);
  714. tmc2130_do_steps(axis, steps, 0, 1000);
  715. }
  716. }
  717. else if (strchr_pointer[1+5] == '-')
  718. {
  719. if (strchr_pointer[1+6] == 0)
  720. {
  721. tmc2130_set_dir(axis, 1);
  722. tmc2130_do_step(axis);
  723. }
  724. else
  725. {
  726. uint8_t steps = atoi(strchr_pointer + 1 + 6);
  727. tmc2130_do_steps(axis, steps, 1, 1000);
  728. }
  729. }
  730. else if (strchr_pointer[1+5] == '?')
  731. {
  732. if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]);
  733. else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);
  734. else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));
  735. else if (strcmp(strchr_pointer + 7, "mscuract") == 0)
  736. {
  737. uint32_t val = tmc2130_rd_MSCURACT(axis);
  738. int curA = (val & 0xff);
  739. int curB = ((val >> 16) & 0xff);
  740. if ((val << 7) & 0x8000) curA -= 256;
  741. if ((val >> 9) & 0x8000) curB -= 256;
  742. printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);
  743. }
  744. else if (strcmp(strchr_pointer + 7, "wave") == 0)
  745. {
  746. tmc2130_get_wave(axis, 0, stdout);
  747. }
  748. }
  749. else if (strchr_pointer[1+5] == '!')
  750. {
  751. if (strncmp(strchr_pointer + 7, "step", 4) == 0)
  752. {
  753. uint8_t step = atoi(strchr_pointer + 11);
  754. uint16_t res = tmc2130_get_res(axis);
  755. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  756. }
  757. else if (strncmp(strchr_pointer + 7, "mres", 4) == 0)
  758. {
  759. uint8_t mres = strchr_pointer[11] - '0';
  760. if (mres <= 8)
  761. {
  762. st_synchronize();
  763. uint16_t res = tmc2130_get_res(axis);
  764. uint16_t res_new = tmc2130_mres2usteps(mres);
  765. tmc2130_set_res(axis, res_new);
  766. if (res_new > res)
  767. cs.axis_steps_per_unit[axis] *= (res_new / res);
  768. else
  769. cs.axis_steps_per_unit[axis] /= (res / res_new);
  770. }
  771. }
  772. else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)
  773. {
  774. uint8_t fac1000 = atoi(strchr_pointer + 11) & 0xffff;
  775. if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
  776. if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
  777. tmc2130_set_wave(axis, 247, fac1000);
  778. tmc2130_wave_fac[axis] = fac1000;
  779. }
  780. }
  781. else if (strchr_pointer[1+5] == '@')
  782. {
  783. tmc2130_home_calibrate(axis);
  784. }
  785. }
  786. }
  787. #endif //TMC2130
  788. #ifdef PAT9125
  789. /*!
  790. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  791. #### Usage
  792. D9125 [ ? | ! | R | X | Y | L ]
  793. #### Parameters
  794. - `?` - Print values
  795. - `!` - Print values
  796. - `R` - Resolution. Not active in code
  797. - `X` - X values
  798. - `Y` - Y values
  799. - `L` - Activate filament sensor log
  800. */
  801. void dcode_9125()
  802. {
  803. LOG("D9125 - PAT9125\n");
  804. if ((strchr_pointer[1+4] == '?') || (strchr_pointer[1+4] == 0))
  805. {
  806. // printf("res_x=%d res_y=%d x=%d y=%d b=%d s=%d\n", pat9125_xres, pat9125_yres, pat9125_x, pat9125_y, pat9125_b, pat9125_s);
  807. printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
  808. return;
  809. }
  810. if (strchr_pointer[1+4] == '!')
  811. {
  812. pat9125_update();
  813. printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
  814. return;
  815. }
  816. /*
  817. if (code_seen('R'))
  818. {
  819. unsigned char res = (int)code_value();
  820. LOG("pat9125_init(xres=yres=%d)=%d\n", res, pat9125_init(res, res));
  821. }
  822. */
  823. if (code_seen('X'))
  824. {
  825. pat9125_x = (int)code_value();
  826. LOG("pat9125_x=%d\n", pat9125_x);
  827. }
  828. if (code_seen('Y'))
  829. {
  830. pat9125_y = (int)code_value();
  831. LOG("pat9125_y=%d\n", pat9125_y);
  832. }
  833. #ifdef DEBUG_FSENSOR_LOG
  834. if (code_seen('L'))
  835. {
  836. fsensor_log = (int)code_value();
  837. LOG("fsensor_log=%d\n", fsensor_log);
  838. }
  839. #endif //DEBUG_FSENSOR_LOG
  840. }
  841. #endif //PAT9125
  842. #endif //DEBUG_DCODES