Marlin_main.cpp 307 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "cmdqueue.h"
  106. // Macros for bit masks
  107. #define BIT(b) (1<<(b))
  108. #define TEST(n,b) (((n)&BIT(b))!=0)
  109. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  110. //Macro for print fan speed
  111. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  112. #define PRINTING_TYPE_SD 0
  113. #define PRINTING_TYPE_USB 1
  114. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  115. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  116. //Implemented Codes
  117. //-------------------
  118. // PRUSA CODES
  119. // P F - Returns FW versions
  120. // P R - Returns revision of printer
  121. // G0 -> G1
  122. // G1 - Coordinated Movement X Y Z E
  123. // G2 - CW ARC
  124. // G3 - CCW ARC
  125. // G4 - Dwell S<seconds> or P<milliseconds>
  126. // G10 - retract filament according to settings of M207
  127. // G11 - retract recover filament according to settings of M208
  128. // G28 - Home all Axis
  129. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  130. // G30 - Single Z Probe, probes bed at current XY location.
  131. // G31 - Dock sled (Z_PROBE_SLED only)
  132. // G32 - Undock sled (Z_PROBE_SLED only)
  133. // G80 - Automatic mesh bed leveling
  134. // G81 - Print bed profile
  135. // G90 - Use Absolute Coordinates
  136. // G91 - Use Relative Coordinates
  137. // G92 - Set current position to coordinates given
  138. // M Codes
  139. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  140. // M1 - Same as M0
  141. // M17 - Enable/Power all stepper motors
  142. // M18 - Disable all stepper motors; same as M84
  143. // M20 - List SD card
  144. // M21 - Init SD card
  145. // M22 - Release SD card
  146. // M23 - Select SD file (M23 filename.g)
  147. // M24 - Start/resume SD print
  148. // M25 - Pause SD print
  149. // M26 - Set SD position in bytes (M26 S12345)
  150. // M27 - Report SD print status
  151. // M28 - Start SD write (M28 filename.g)
  152. // M29 - Stop SD write
  153. // M30 - Delete file from SD (M30 filename.g)
  154. // M31 - Output time since last M109 or SD card start to serial
  155. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  156. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  157. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  158. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  159. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  160. // M73 - Show percent done and print time remaining
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  169. // M92 - Set axis_steps_per_unit - same syntax as G92
  170. // M104 - Set extruder target temp
  171. // M105 - Read current temp
  172. // M106 - Fan on
  173. // M107 - Fan off
  174. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  175. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  176. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  177. // M112 - Emergency stop
  178. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  179. // M114 - Output current position to serial port
  180. // M115 - Capabilities string
  181. // M117 - display message
  182. // M119 - Output Endstop status to serial port
  183. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  184. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  185. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M140 - Set bed target temp
  188. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  189. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  190. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  191. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  192. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  193. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  194. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  195. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  196. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  197. // M206 - set additional homing offset
  198. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  199. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  200. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  201. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  202. // M220 S<factor in percent>- set speed factor override percentage
  203. // M221 S<factor in percent>- set extrude factor override percentage
  204. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  205. // M240 - Trigger a camera to take a photograph
  206. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  207. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  208. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  209. // M301 - Set PID parameters P I and D
  210. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  211. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  212. // M304 - Set bed PID parameters P I and D
  213. // M400 - Finish all moves
  214. // M401 - Lower z-probe if present
  215. // M402 - Raise z-probe if present
  216. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  217. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  218. // M406 - Turn off Filament Sensor extrusion control
  219. // M407 - Displays measured filament diameter
  220. // M500 - stores parameters in EEPROM
  221. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. // M503 - print the current settings (from memory not from EEPROM)
  224. // M509 - force language selection on next restart
  225. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  226. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  227. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  228. // M860 - Wait for PINDA thermistor to reach target temperature.
  229. // M861 - Set / Read PINDA temperature compensation offsets
  230. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  231. // M907 - Set digital trimpot motor current using axis codes.
  232. // M908 - Control digital trimpot directly.
  233. // M350 - Set microstepping mode.
  234. // M351 - Toggle MS1 MS2 pins directly.
  235. // M928 - Start SD logging (M928 filename.g) - ended by M29
  236. // M999 - Restart after being stopped by error
  237. //Stepper Movement Variables
  238. //===========================================================================
  239. //=============================imported variables============================
  240. //===========================================================================
  241. //===========================================================================
  242. //=============================public variables=============================
  243. //===========================================================================
  244. #ifdef SDSUPPORT
  245. CardReader card;
  246. #endif
  247. unsigned long PingTime = millis();
  248. unsigned long NcTime;
  249. union Data
  250. {
  251. byte b[2];
  252. int value;
  253. };
  254. float homing_feedrate[] = HOMING_FEEDRATE;
  255. // Currently only the extruder axis may be switched to a relative mode.
  256. // Other axes are always absolute or relative based on the common relative_mode flag.
  257. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  258. int feedmultiply=100; //100->1 200->2
  259. int saved_feedmultiply;
  260. int extrudemultiply=100; //100->1 200->2
  261. int extruder_multiply[EXTRUDERS] = {100
  262. #if EXTRUDERS > 1
  263. , 100
  264. #if EXTRUDERS > 2
  265. , 100
  266. #endif
  267. #endif
  268. };
  269. int bowden_length[4] = {385, 385, 385, 385};
  270. bool is_usb_printing = false;
  271. bool homing_flag = false;
  272. bool temp_cal_active = false;
  273. unsigned long kicktime = millis()+100000;
  274. unsigned int usb_printing_counter;
  275. int lcd_change_fil_state = 0;
  276. int feedmultiplyBckp = 100;
  277. float HotendTempBckp = 0;
  278. int fanSpeedBckp = 0;
  279. float pause_lastpos[4];
  280. unsigned long pause_time = 0;
  281. unsigned long start_pause_print = millis();
  282. unsigned long t_fan_rising_edge = millis();
  283. static LongTimer safetyTimer;
  284. static LongTimer crashDetTimer;
  285. //unsigned long load_filament_time;
  286. bool mesh_bed_leveling_flag = false;
  287. bool mesh_bed_run_from_menu = false;
  288. int8_t FarmMode = 0;
  289. bool prusa_sd_card_upload = false;
  290. unsigned int status_number = 0;
  291. unsigned long total_filament_used;
  292. unsigned int heating_status;
  293. unsigned int heating_status_counter;
  294. bool custom_message;
  295. bool loading_flag = false;
  296. unsigned int custom_message_type;
  297. unsigned int custom_message_state;
  298. char snmm_filaments_used = 0;
  299. bool fan_state[2];
  300. int fan_edge_counter[2];
  301. int fan_speed[2];
  302. char dir_names[3][9];
  303. bool sortAlpha = false;
  304. bool volumetric_enabled = false;
  305. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 1
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 2
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #endif
  311. #endif
  312. };
  313. float extruder_multiplier[EXTRUDERS] = {1.0
  314. #if EXTRUDERS > 1
  315. , 1.0
  316. #if EXTRUDERS > 2
  317. , 1.0
  318. #endif
  319. #endif
  320. };
  321. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  322. //shortcuts for more readable code
  323. #define _x current_position[X_AXIS]
  324. #define _y current_position[Y_AXIS]
  325. #define _z current_position[Z_AXIS]
  326. #define _e current_position[E_AXIS]
  327. float add_homing[3]={0,0,0};
  328. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  329. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  330. bool axis_known_position[3] = {false, false, false};
  331. float zprobe_zoffset;
  332. // Extruder offset
  333. #if EXTRUDERS > 1
  334. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  335. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  336. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  337. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  338. #endif
  339. };
  340. #endif
  341. uint8_t active_extruder = 0;
  342. int fanSpeed=0;
  343. #ifdef FWRETRACT
  344. bool autoretract_enabled=false;
  345. bool retracted[EXTRUDERS]={false
  346. #if EXTRUDERS > 1
  347. , false
  348. #if EXTRUDERS > 2
  349. , false
  350. #endif
  351. #endif
  352. };
  353. bool retracted_swap[EXTRUDERS]={false
  354. #if EXTRUDERS > 1
  355. , false
  356. #if EXTRUDERS > 2
  357. , false
  358. #endif
  359. #endif
  360. };
  361. float retract_length = RETRACT_LENGTH;
  362. float retract_length_swap = RETRACT_LENGTH_SWAP;
  363. float retract_feedrate = RETRACT_FEEDRATE;
  364. float retract_zlift = RETRACT_ZLIFT;
  365. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  366. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  367. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  368. #endif
  369. #ifdef PS_DEFAULT_OFF
  370. bool powersupply = false;
  371. #else
  372. bool powersupply = true;
  373. #endif
  374. bool cancel_heatup = false ;
  375. #ifdef HOST_KEEPALIVE_FEATURE
  376. int busy_state = NOT_BUSY;
  377. static long prev_busy_signal_ms = -1;
  378. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  379. #else
  380. #define host_keepalive();
  381. #define KEEPALIVE_STATE(n);
  382. #endif
  383. const char errormagic[] PROGMEM = "Error:";
  384. const char echomagic[] PROGMEM = "echo:";
  385. bool no_response = false;
  386. uint8_t important_status;
  387. uint8_t saved_filament_type;
  388. // save/restore printing
  389. bool saved_printing = false;
  390. // storing estimated time to end of print counted by slicer
  391. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  392. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  393. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. //===========================================================================
  396. //=============================Private Variables=============================
  397. //===========================================================================
  398. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  399. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  400. static float delta[3] = {0.0, 0.0, 0.0};
  401. // For tracing an arc
  402. static float offset[3] = {0.0, 0.0, 0.0};
  403. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  404. // Determines Absolute or Relative Coordinates.
  405. // Also there is bool axis_relative_modes[] per axis flag.
  406. static bool relative_mode = false;
  407. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  408. //static float tt = 0;
  409. //static float bt = 0;
  410. //Inactivity shutdown variables
  411. static unsigned long previous_millis_cmd = 0;
  412. unsigned long max_inactive_time = 0;
  413. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  414. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  415. unsigned long starttime=0;
  416. unsigned long stoptime=0;
  417. unsigned long _usb_timer = 0;
  418. static uint8_t tmp_extruder;
  419. bool extruder_under_pressure = true;
  420. bool Stopped=false;
  421. #if NUM_SERVOS > 0
  422. Servo servos[NUM_SERVOS];
  423. #endif
  424. bool CooldownNoWait = true;
  425. bool target_direction;
  426. //Insert variables if CHDK is defined
  427. #ifdef CHDK
  428. unsigned long chdkHigh = 0;
  429. boolean chdkActive = false;
  430. #endif
  431. // save/restore printing
  432. static uint32_t saved_sdpos = 0;
  433. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  434. static float saved_pos[4] = { 0, 0, 0, 0 };
  435. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  436. static float saved_feedrate2 = 0;
  437. static uint8_t saved_active_extruder = 0;
  438. static bool saved_extruder_under_pressure = false;
  439. static bool saved_extruder_relative_mode = false;
  440. //===========================================================================
  441. //=============================Routines======================================
  442. //===========================================================================
  443. static void get_arc_coordinates();
  444. static bool setTargetedHotend(int code);
  445. static void print_time_remaining_init();
  446. void serial_echopair_P(const char *s_P, float v)
  447. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  448. void serial_echopair_P(const char *s_P, double v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, unsigned long v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. #ifdef SDSUPPORT
  453. #include "SdFatUtil.h"
  454. int freeMemory() { return SdFatUtil::FreeRam(); }
  455. #else
  456. extern "C" {
  457. extern unsigned int __bss_end;
  458. extern unsigned int __heap_start;
  459. extern void *__brkval;
  460. int freeMemory() {
  461. int free_memory;
  462. if ((int)__brkval == 0)
  463. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  464. else
  465. free_memory = ((int)&free_memory) - ((int)__brkval);
  466. return free_memory;
  467. }
  468. }
  469. #endif //!SDSUPPORT
  470. void setup_killpin()
  471. {
  472. #if defined(KILL_PIN) && KILL_PIN > -1
  473. SET_INPUT(KILL_PIN);
  474. WRITE(KILL_PIN,HIGH);
  475. #endif
  476. }
  477. // Set home pin
  478. void setup_homepin(void)
  479. {
  480. #if defined(HOME_PIN) && HOME_PIN > -1
  481. SET_INPUT(HOME_PIN);
  482. WRITE(HOME_PIN,HIGH);
  483. #endif
  484. }
  485. void setup_photpin()
  486. {
  487. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  488. SET_OUTPUT(PHOTOGRAPH_PIN);
  489. WRITE(PHOTOGRAPH_PIN, LOW);
  490. #endif
  491. }
  492. void setup_powerhold()
  493. {
  494. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  495. SET_OUTPUT(SUICIDE_PIN);
  496. WRITE(SUICIDE_PIN, HIGH);
  497. #endif
  498. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  499. SET_OUTPUT(PS_ON_PIN);
  500. #if defined(PS_DEFAULT_OFF)
  501. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  502. #else
  503. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  504. #endif
  505. #endif
  506. }
  507. void suicide()
  508. {
  509. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  510. SET_OUTPUT(SUICIDE_PIN);
  511. WRITE(SUICIDE_PIN, LOW);
  512. #endif
  513. }
  514. void servo_init()
  515. {
  516. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  517. servos[0].attach(SERVO0_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  520. servos[1].attach(SERVO1_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  523. servos[2].attach(SERVO2_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  526. servos[3].attach(SERVO3_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 5)
  529. #error "TODO: enter initalisation code for more servos"
  530. #endif
  531. }
  532. void stop_and_save_print_to_ram(float z_move, float e_move);
  533. void restore_print_from_ram_and_continue(float e_move);
  534. bool fans_check_enabled = true;
  535. #ifdef TMC2130
  536. extern int8_t CrashDetectMenu;
  537. void crashdet_enable()
  538. {
  539. tmc2130_sg_stop_on_crash = true;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  541. CrashDetectMenu = 1;
  542. }
  543. void crashdet_disable()
  544. {
  545. tmc2130_sg_stop_on_crash = false;
  546. tmc2130_sg_crash = 0;
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  548. CrashDetectMenu = 0;
  549. }
  550. void crashdet_stop_and_save_print()
  551. {
  552. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  553. }
  554. void crashdet_restore_print_and_continue()
  555. {
  556. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  557. // babystep_apply();
  558. }
  559. void crashdet_stop_and_save_print2()
  560. {
  561. cli();
  562. planner_abort_hard(); //abort printing
  563. cmdqueue_reset(); //empty cmdqueue
  564. card.sdprinting = false;
  565. card.closefile();
  566. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  567. st_reset_timer();
  568. sei();
  569. }
  570. void crashdet_detected(uint8_t mask)
  571. {
  572. st_synchronize();
  573. static uint8_t crashDet_counter = 0;
  574. bool automatic_recovery_after_crash = true;
  575. if (crashDet_counter++ == 0) {
  576. crashDetTimer.start();
  577. }
  578. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  579. crashDetTimer.stop();
  580. crashDet_counter = 0;
  581. }
  582. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  583. automatic_recovery_after_crash = false;
  584. crashDetTimer.stop();
  585. crashDet_counter = 0;
  586. }
  587. else {
  588. crashDetTimer.start();
  589. }
  590. lcd_update_enable(true);
  591. lcd_clear();
  592. lcd_update(2);
  593. if (mask & X_AXIS_MASK)
  594. {
  595. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  596. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  597. }
  598. if (mask & Y_AXIS_MASK)
  599. {
  600. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  601. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  602. }
  603. lcd_update_enable(true);
  604. lcd_update(2);
  605. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  606. gcode_G28(true, true, false); //home X and Y
  607. st_synchronize();
  608. if (automatic_recovery_after_crash) {
  609. enquecommand_P(PSTR("CRASH_RECOVER"));
  610. }else{
  611. HotendTempBckp = degTargetHotend(active_extruder);
  612. setTargetHotend(0, active_extruder);
  613. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  614. lcd_update_enable(true);
  615. if (yesno)
  616. {
  617. char cmd1[10];
  618. strcpy(cmd1, "M109 S");
  619. strcat(cmd1, ftostr3(HotendTempBckp));
  620. enquecommand(cmd1);
  621. enquecommand_P(PSTR("CRASH_RECOVER"));
  622. }
  623. else
  624. {
  625. enquecommand_P(PSTR("CRASH_CANCEL"));
  626. }
  627. }
  628. }
  629. void crashdet_recover()
  630. {
  631. crashdet_restore_print_and_continue();
  632. tmc2130_sg_stop_on_crash = true;
  633. }
  634. void crashdet_cancel()
  635. {
  636. tmc2130_sg_stop_on_crash = true;
  637. if (saved_printing_type == PRINTING_TYPE_SD) {
  638. lcd_print_stop();
  639. }else if(saved_printing_type == PRINTING_TYPE_USB){
  640. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  641. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  642. }
  643. }
  644. #endif //TMC2130
  645. void failstats_reset_print()
  646. {
  647. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  648. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  651. }
  652. #ifdef MESH_BED_LEVELING
  653. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  654. #endif
  655. // Factory reset function
  656. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  657. // Level input parameter sets depth of reset
  658. // Quiet parameter masks all waitings for user interact.
  659. int er_progress = 0;
  660. void factory_reset(char level, bool quiet)
  661. {
  662. lcd_clear();
  663. int cursor_pos = 0;
  664. switch (level) {
  665. // Level 0: Language reset
  666. case 0:
  667. WRITE(BEEPER, HIGH);
  668. _delay_ms(100);
  669. WRITE(BEEPER, LOW);
  670. lang_reset();
  671. break;
  672. //Level 1: Reset statistics
  673. case 1:
  674. WRITE(BEEPER, HIGH);
  675. _delay_ms(100);
  676. WRITE(BEEPER, LOW);
  677. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  678. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  680. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  681. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  682. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  684. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  685. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  686. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  687. lcd_menu_statistics();
  688. break;
  689. // Level 2: Prepare for shipping
  690. case 2:
  691. //lcd_puts_P(PSTR("Factory RESET"));
  692. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  693. // Force language selection at the next boot up.
  694. lang_reset();
  695. // Force the "Follow calibration flow" message at the next boot up.
  696. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  697. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  698. farm_no = 0;
  699. farm_mode = false;
  700. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  701. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  702. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  703. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  704. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  705. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  706. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  707. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  708. #ifdef FILAMENT_SENSOR
  709. fsensor_enable();
  710. fsensor_autoload_set(true);
  711. #endif //FILAMENT_SENSOR
  712. WRITE(BEEPER, HIGH);
  713. _delay_ms(100);
  714. WRITE(BEEPER, LOW);
  715. //_delay_ms(2000);
  716. break;
  717. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  718. case 3:
  719. lcd_puts_P(PSTR("Factory RESET"));
  720. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. er_progress = 0;
  725. lcd_puts_at_P(3, 3, PSTR(" "));
  726. lcd_set_cursor(3, 3);
  727. lcd_print(er_progress);
  728. // Erase EEPROM
  729. for (int i = 0; i < 4096; i++) {
  730. eeprom_write_byte((uint8_t*)i, 0xFF);
  731. if (i % 41 == 0) {
  732. er_progress++;
  733. lcd_puts_at_P(3, 3, PSTR(" "));
  734. lcd_set_cursor(3, 3);
  735. lcd_print(er_progress);
  736. lcd_puts_P(PSTR("%"));
  737. }
  738. }
  739. break;
  740. case 4:
  741. bowden_menu();
  742. break;
  743. default:
  744. break;
  745. }
  746. }
  747. FILE _uartout = {0};
  748. int uart_putchar(char c, FILE *stream)
  749. {
  750. MYSERIAL.write(c);
  751. return 0;
  752. }
  753. void lcd_splash()
  754. {
  755. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  756. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  757. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  758. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  759. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  760. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  761. }
  762. void factory_reset()
  763. {
  764. KEEPALIVE_STATE(PAUSED_FOR_USER);
  765. if (!READ(BTN_ENC))
  766. {
  767. _delay_ms(1000);
  768. if (!READ(BTN_ENC))
  769. {
  770. lcd_clear();
  771. lcd_puts_P(PSTR("Factory RESET"));
  772. SET_OUTPUT(BEEPER);
  773. WRITE(BEEPER, HIGH);
  774. while (!READ(BTN_ENC));
  775. WRITE(BEEPER, LOW);
  776. _delay_ms(2000);
  777. char level = reset_menu();
  778. factory_reset(level, false);
  779. switch (level) {
  780. case 0: _delay_ms(0); break;
  781. case 1: _delay_ms(0); break;
  782. case 2: _delay_ms(0); break;
  783. case 3: _delay_ms(0); break;
  784. }
  785. // _delay_ms(100);
  786. /*
  787. #ifdef MESH_BED_LEVELING
  788. _delay_ms(2000);
  789. if (!READ(BTN_ENC))
  790. {
  791. WRITE(BEEPER, HIGH);
  792. _delay_ms(100);
  793. WRITE(BEEPER, LOW);
  794. _delay_ms(200);
  795. WRITE(BEEPER, HIGH);
  796. _delay_ms(100);
  797. WRITE(BEEPER, LOW);
  798. int _z = 0;
  799. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  800. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  801. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  802. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  803. }
  804. else
  805. {
  806. WRITE(BEEPER, HIGH);
  807. _delay_ms(100);
  808. WRITE(BEEPER, LOW);
  809. }
  810. #endif // mesh */
  811. }
  812. }
  813. else
  814. {
  815. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  816. }
  817. KEEPALIVE_STATE(IN_HANDLER);
  818. }
  819. void show_fw_version_warnings() {
  820. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  821. switch (FW_DEV_VERSION) {
  822. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  823. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  824. case(FW_VERSION_DEVEL):
  825. case(FW_VERSION_DEBUG):
  826. lcd_update_enable(false);
  827. lcd_clear();
  828. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  829. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  830. #else
  831. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  832. #endif
  833. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  834. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  835. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  836. lcd_wait_for_click();
  837. break;
  838. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  839. }
  840. lcd_update_enable(true);
  841. }
  842. uint8_t check_printer_version()
  843. {
  844. uint8_t version_changed = 0;
  845. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  846. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  847. if (printer_type != PRINTER_TYPE) {
  848. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  849. else version_changed |= 0b10;
  850. }
  851. if (motherboard != MOTHERBOARD) {
  852. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  853. else version_changed |= 0b01;
  854. }
  855. return version_changed;
  856. }
  857. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  858. {
  859. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  860. }
  861. #ifdef BOOTAPP
  862. #include "bootapp.h" //bootloader support
  863. #endif //BOOTAPP
  864. #if (LANG_MODE != 0) //secondary language support
  865. #ifdef W25X20CL
  866. // language update from external flash
  867. #define LANGBOOT_BLOCKSIZE 0x1000
  868. #define LANGBOOT_RAMBUFFER 0x0800
  869. void update_sec_lang_from_external_flash()
  870. {
  871. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  872. {
  873. uint8_t lang = boot_reserved >> 4;
  874. uint8_t state = boot_reserved & 0xf;
  875. lang_table_header_t header;
  876. uint32_t src_addr;
  877. if (lang_get_header(lang, &header, &src_addr))
  878. {
  879. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  880. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  881. delay(100);
  882. boot_reserved = (state + 1) | (lang << 4);
  883. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  884. {
  885. cli();
  886. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  887. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  888. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  889. if (state == 0)
  890. {
  891. //TODO - check header integrity
  892. }
  893. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  894. }
  895. else
  896. {
  897. //TODO - check sec lang data integrity
  898. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  899. }
  900. }
  901. }
  902. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  903. }
  904. #ifdef DEBUG_W25X20CL
  905. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  906. {
  907. lang_table_header_t header;
  908. uint8_t count = 0;
  909. uint32_t addr = 0x00000;
  910. while (1)
  911. {
  912. printf_P(_n("LANGTABLE%d:"), count);
  913. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  914. if (header.magic != LANG_MAGIC)
  915. {
  916. printf_P(_n("NG!\n"));
  917. break;
  918. }
  919. printf_P(_n("OK\n"));
  920. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  921. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  922. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  923. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  924. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  925. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  926. addr += header.size;
  927. codes[count] = header.code;
  928. count ++;
  929. }
  930. return count;
  931. }
  932. void list_sec_lang_from_external_flash()
  933. {
  934. uint16_t codes[8];
  935. uint8_t count = lang_xflash_enum_codes(codes);
  936. printf_P(_n("XFlash lang count = %hhd\n"), count);
  937. }
  938. #endif //DEBUG_W25X20CL
  939. #endif //W25X20CL
  940. #endif //(LANG_MODE != 0)
  941. // "Setup" function is called by the Arduino framework on startup.
  942. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  943. // are initialized by the main() routine provided by the Arduino framework.
  944. void setup()
  945. {
  946. ultralcd_init();
  947. spi_init();
  948. lcd_splash();
  949. #ifdef W25X20CL
  950. if (!w25x20cl_init())
  951. kill(_i("External SPI flash W25X20CL not responding."));
  952. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  953. optiboot_w25x20cl_enter();
  954. #endif
  955. #if (LANG_MODE != 0) //secondary language support
  956. #ifdef W25X20CL
  957. if (w25x20cl_init())
  958. update_sec_lang_from_external_flash();
  959. #endif //W25X20CL
  960. #endif //(LANG_MODE != 0)
  961. setup_killpin();
  962. setup_powerhold();
  963. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  964. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  965. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  966. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  967. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  968. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  969. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  970. if (farm_mode)
  971. {
  972. no_response = true; //we need confirmation by recieving PRUSA thx
  973. important_status = 8;
  974. prusa_statistics(8);
  975. selectedSerialPort = 1;
  976. #ifdef TMC2130
  977. //increased extruder current (PFW363)
  978. tmc2130_current_h[E_AXIS] = 36;
  979. tmc2130_current_r[E_AXIS] = 36;
  980. #endif //TMC2130
  981. #ifdef FILAMENT_SENSOR
  982. //disabled filament autoload (PFW360)
  983. fsensor_autoload_set(false);
  984. #endif //FILAMENT_SENSOR
  985. }
  986. MYSERIAL.begin(BAUDRATE);
  987. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  988. stdout = uartout;
  989. SERIAL_PROTOCOLLNPGM("start");
  990. SERIAL_ECHO_START;
  991. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  992. uart2_init();
  993. #ifdef DEBUG_SEC_LANG
  994. lang_table_header_t header;
  995. uint32_t src_addr = 0x00000;
  996. if (lang_get_header(1, &header, &src_addr))
  997. {
  998. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  999. #define LT_PRINT_TEST 2
  1000. // flash usage
  1001. // total p.test
  1002. //0 252718 t+c text code
  1003. //1 253142 424 170 254
  1004. //2 253040 322 164 158
  1005. //3 253248 530 135 395
  1006. #if (LT_PRINT_TEST==1) //not optimized printf
  1007. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1008. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1009. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1010. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1011. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1012. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1013. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1014. #elif (LT_PRINT_TEST==2) //optimized printf
  1015. printf_P(
  1016. _n(
  1017. " _src_addr = 0x%08lx\n"
  1018. " _lt_magic = 0x%08lx %S\n"
  1019. " _lt_size = 0x%04x (%d)\n"
  1020. " _lt_count = 0x%04x (%d)\n"
  1021. " _lt_chsum = 0x%04x\n"
  1022. " _lt_code = 0x%04x (%c%c)\n"
  1023. " _lt_resv1 = 0x%08lx\n"
  1024. ),
  1025. src_addr,
  1026. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1027. header.size, header.size,
  1028. header.count, header.count,
  1029. header.checksum,
  1030. header.code, header.code >> 8, header.code & 0xff,
  1031. header.signature
  1032. );
  1033. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1034. MYSERIAL.print(" _src_addr = 0x");
  1035. MYSERIAL.println(src_addr, 16);
  1036. MYSERIAL.print(" _lt_magic = 0x");
  1037. MYSERIAL.print(header.magic, 16);
  1038. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1039. MYSERIAL.print(" _lt_size = 0x");
  1040. MYSERIAL.print(header.size, 16);
  1041. MYSERIAL.print(" (");
  1042. MYSERIAL.print(header.size, 10);
  1043. MYSERIAL.println(")");
  1044. MYSERIAL.print(" _lt_count = 0x");
  1045. MYSERIAL.print(header.count, 16);
  1046. MYSERIAL.print(" (");
  1047. MYSERIAL.print(header.count, 10);
  1048. MYSERIAL.println(")");
  1049. MYSERIAL.print(" _lt_chsum = 0x");
  1050. MYSERIAL.println(header.checksum, 16);
  1051. MYSERIAL.print(" _lt_code = 0x");
  1052. MYSERIAL.print(header.code, 16);
  1053. MYSERIAL.print(" (");
  1054. MYSERIAL.print((char)(header.code >> 8), 0);
  1055. MYSERIAL.print((char)(header.code & 0xff), 0);
  1056. MYSERIAL.println(")");
  1057. MYSERIAL.print(" _lt_resv1 = 0x");
  1058. MYSERIAL.println(header.signature, 16);
  1059. #endif //(LT_PRINT_TEST==)
  1060. #undef LT_PRINT_TEST
  1061. #if 0
  1062. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1063. for (uint16_t i = 0; i < 1024; i++)
  1064. {
  1065. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1066. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1067. if ((i % 16) == 15) putchar('\n');
  1068. }
  1069. #endif
  1070. uint16_t sum = 0;
  1071. for (uint16_t i = 0; i < header.size; i++)
  1072. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1073. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1074. sum -= header.checksum; //subtract checksum
  1075. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1076. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1077. if (sum == header.checksum)
  1078. printf_P(_n("Checksum OK\n"), sum);
  1079. else
  1080. printf_P(_n("Checksum NG\n"), sum);
  1081. }
  1082. else
  1083. printf_P(_n("lang_get_header failed!\n"));
  1084. #if 0
  1085. for (uint16_t i = 0; i < 1024*10; i++)
  1086. {
  1087. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1088. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1089. if ((i % 16) == 15) putchar('\n');
  1090. }
  1091. #endif
  1092. #if 0
  1093. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1094. for (int i = 0; i < 4096; ++i) {
  1095. int b = eeprom_read_byte((unsigned char*)i);
  1096. if (b != 255) {
  1097. SERIAL_ECHO(i);
  1098. SERIAL_ECHO(":");
  1099. SERIAL_ECHO(b);
  1100. SERIAL_ECHOLN("");
  1101. }
  1102. }
  1103. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1104. #endif
  1105. #endif //DEBUG_SEC_LANG
  1106. // Check startup - does nothing if bootloader sets MCUSR to 0
  1107. byte mcu = MCUSR;
  1108. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1109. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1110. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1111. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1112. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1113. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1114. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1115. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1116. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1117. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1118. MCUSR = 0;
  1119. //SERIAL_ECHORPGM(MSG_MARLIN);
  1120. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1121. #ifdef STRING_VERSION_CONFIG_H
  1122. #ifdef STRING_CONFIG_H_AUTHOR
  1123. SERIAL_ECHO_START;
  1124. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1125. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1126. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1127. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1128. SERIAL_ECHOPGM("Compiled: ");
  1129. SERIAL_ECHOLNPGM(__DATE__);
  1130. #endif
  1131. #endif
  1132. SERIAL_ECHO_START;
  1133. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1134. SERIAL_ECHO(freeMemory());
  1135. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1136. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1137. //lcd_update_enable(false); // why do we need this?? - andre
  1138. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1139. bool previous_settings_retrieved = false;
  1140. uint8_t hw_changed = check_printer_version();
  1141. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1142. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1143. }
  1144. else { //printer version was changed so use default settings
  1145. Config_ResetDefault();
  1146. }
  1147. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1148. tp_init(); // Initialize temperature loop
  1149. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1150. plan_init(); // Initialize planner;
  1151. factory_reset();
  1152. #ifdef TMC2130
  1153. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1154. if (silentMode == 0xff) silentMode = 0;
  1155. tmc2130_mode = TMC2130_MODE_NORMAL;
  1156. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1157. if (crashdet && !farm_mode)
  1158. {
  1159. crashdet_enable();
  1160. puts_P(_N("CrashDetect ENABLED!"));
  1161. }
  1162. else
  1163. {
  1164. crashdet_disable();
  1165. puts_P(_N("CrashDetect DISABLED"));
  1166. }
  1167. #ifdef TMC2130_LINEARITY_CORRECTION
  1168. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1169. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1170. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1171. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1172. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1173. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1174. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1175. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1176. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1177. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1178. #endif //TMC2130_LINEARITY_CORRECTION
  1179. #ifdef TMC2130_VARIABLE_RESOLUTION
  1180. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1181. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1182. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1183. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1184. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1185. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1186. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1187. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1188. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1189. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1190. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1191. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1192. #else //TMC2130_VARIABLE_RESOLUTION
  1193. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1194. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1195. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1196. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1197. #endif //TMC2130_VARIABLE_RESOLUTION
  1198. #endif //TMC2130
  1199. st_init(); // Initialize stepper, this enables interrupts!
  1200. #ifdef TMC2130
  1201. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1202. update_mode_profile();
  1203. tmc2130_init();
  1204. #endif //TMC2130
  1205. setup_photpin();
  1206. servo_init();
  1207. // Reset the machine correction matrix.
  1208. // It does not make sense to load the correction matrix until the machine is homed.
  1209. world2machine_reset();
  1210. #ifdef FILAMENT_SENSOR
  1211. fsensor_init();
  1212. #endif //FILAMENT_SENSOR
  1213. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1214. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1215. #endif
  1216. setup_homepin();
  1217. #ifdef TMC2130
  1218. if (1) {
  1219. // try to run to zero phase before powering the Z motor.
  1220. // Move in negative direction
  1221. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1222. // Round the current micro-micro steps to micro steps.
  1223. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1224. // Until the phase counter is reset to zero.
  1225. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1226. delay(2);
  1227. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1228. delay(2);
  1229. }
  1230. }
  1231. #endif //TMC2130
  1232. #if defined(Z_AXIS_ALWAYS_ON)
  1233. enable_z();
  1234. #endif
  1235. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1236. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1237. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1238. if (farm_no == 0xFFFF) farm_no = 0;
  1239. if (farm_mode)
  1240. {
  1241. prusa_statistics(8);
  1242. }
  1243. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1244. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1245. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1246. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1247. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1248. // where all the EEPROM entries are set to 0x0ff.
  1249. // Once a firmware boots up, it forces at least a language selection, which changes
  1250. // EEPROM_LANG to number lower than 0x0ff.
  1251. // 1) Set a high power mode.
  1252. #ifdef TMC2130
  1253. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1254. tmc2130_mode = TMC2130_MODE_NORMAL;
  1255. #endif //TMC2130
  1256. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1257. }
  1258. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1259. // but this times out if a blocking dialog is shown in setup().
  1260. card.initsd();
  1261. #ifdef DEBUG_SD_SPEED_TEST
  1262. if (card.cardOK)
  1263. {
  1264. uint8_t* buff = (uint8_t*)block_buffer;
  1265. uint32_t block = 0;
  1266. uint32_t sumr = 0;
  1267. uint32_t sumw = 0;
  1268. for (int i = 0; i < 1024; i++)
  1269. {
  1270. uint32_t u = micros();
  1271. bool res = card.card.readBlock(i, buff);
  1272. u = micros() - u;
  1273. if (res)
  1274. {
  1275. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1276. sumr += u;
  1277. u = micros();
  1278. res = card.card.writeBlock(i, buff);
  1279. u = micros() - u;
  1280. if (res)
  1281. {
  1282. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1283. sumw += u;
  1284. }
  1285. else
  1286. {
  1287. printf_P(PSTR("writeBlock %4d error\n"), i);
  1288. break;
  1289. }
  1290. }
  1291. else
  1292. {
  1293. printf_P(PSTR("readBlock %4d error\n"), i);
  1294. break;
  1295. }
  1296. }
  1297. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1298. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1299. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1300. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1301. }
  1302. else
  1303. printf_P(PSTR("Card NG!\n"));
  1304. #endif //DEBUG_SD_SPEED_TEST
  1305. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1306. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1307. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1308. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1309. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1310. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1311. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1312. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1313. #ifdef SNMM
  1314. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1315. int _z = BOWDEN_LENGTH;
  1316. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1317. }
  1318. #endif
  1319. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1320. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1321. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1322. #if (LANG_MODE != 0) //secondary language support
  1323. #ifdef DEBUG_W25X20CL
  1324. W25X20CL_SPI_ENTER();
  1325. uint8_t uid[8]; // 64bit unique id
  1326. w25x20cl_rd_uid(uid);
  1327. puts_P(_n("W25X20CL UID="));
  1328. for (uint8_t i = 0; i < 8; i ++)
  1329. printf_P(PSTR("%02hhx"), uid[i]);
  1330. putchar('\n');
  1331. list_sec_lang_from_external_flash();
  1332. #endif //DEBUG_W25X20CL
  1333. // lang_reset();
  1334. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1335. lcd_language();
  1336. #ifdef DEBUG_SEC_LANG
  1337. uint16_t sec_lang_code = lang_get_code(1);
  1338. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1339. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1340. // lang_print_sec_lang(uartout);
  1341. #endif //DEBUG_SEC_LANG
  1342. #endif //(LANG_MODE != 0)
  1343. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1344. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1345. temp_cal_active = false;
  1346. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1348. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1349. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1350. int16_t z_shift = 0;
  1351. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1352. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1353. temp_cal_active = false;
  1354. }
  1355. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1356. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1357. }
  1358. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1359. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1360. }
  1361. check_babystep(); //checking if Z babystep is in allowed range
  1362. #ifdef UVLO_SUPPORT
  1363. setup_uvlo_interrupt();
  1364. #endif //UVLO_SUPPORT
  1365. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1366. setup_fan_interrupt();
  1367. #endif //DEBUG_DISABLE_FANCHECK
  1368. #ifdef FILAMENT_SENSOR
  1369. fsensor_setup_interrupt();
  1370. #endif //FILAMENT_SENSOR
  1371. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1372. #ifndef DEBUG_DISABLE_STARTMSGS
  1373. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1374. show_fw_version_warnings();
  1375. switch (hw_changed) {
  1376. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1377. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1378. case(0b01):
  1379. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1380. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1381. break;
  1382. case(0b10):
  1383. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1384. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1385. break;
  1386. case(0b11):
  1387. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1388. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1389. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1390. break;
  1391. default: break; //no change, show no message
  1392. }
  1393. if (!previous_settings_retrieved) {
  1394. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1395. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1396. }
  1397. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1398. lcd_wizard(0);
  1399. }
  1400. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1401. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1402. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1403. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1404. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1405. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1406. // Show the message.
  1407. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1408. }
  1409. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1410. // Show the message.
  1411. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1412. lcd_update_enable(true);
  1413. }
  1414. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1415. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1416. lcd_update_enable(true);
  1417. }
  1418. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1419. // Show the message.
  1420. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1421. }
  1422. }
  1423. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1424. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1425. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1426. update_current_firmware_version_to_eeprom();
  1427. lcd_selftest();
  1428. }
  1429. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1430. KEEPALIVE_STATE(IN_PROCESS);
  1431. #endif //DEBUG_DISABLE_STARTMSGS
  1432. lcd_update_enable(true);
  1433. lcd_clear();
  1434. lcd_update(2);
  1435. // Store the currently running firmware into an eeprom,
  1436. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1437. update_current_firmware_version_to_eeprom();
  1438. #ifdef TMC2130
  1439. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1440. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1441. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1442. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1443. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1444. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1445. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1446. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1447. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1448. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1449. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1450. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1451. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1452. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1453. #endif //TMC2130
  1454. #ifdef UVLO_SUPPORT
  1455. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1456. /*
  1457. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1458. else {
  1459. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1460. lcd_update_enable(true);
  1461. lcd_update(2);
  1462. lcd_setstatuspgm(_T(WELCOME_MSG));
  1463. }
  1464. */
  1465. manage_heater(); // Update temperatures
  1466. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1467. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1468. #endif
  1469. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1470. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1471. puts_P(_N("Automatic recovery!"));
  1472. #endif
  1473. recover_print(1);
  1474. }
  1475. else{
  1476. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1477. puts_P(_N("Normal recovery!"));
  1478. #endif
  1479. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1480. else {
  1481. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1482. lcd_update_enable(true);
  1483. lcd_update(2);
  1484. lcd_setstatuspgm(_T(WELCOME_MSG));
  1485. }
  1486. }
  1487. }
  1488. #endif //UVLO_SUPPORT
  1489. KEEPALIVE_STATE(NOT_BUSY);
  1490. #ifdef WATCHDOG
  1491. wdt_enable(WDTO_4S);
  1492. #endif //WATCHDOG
  1493. }
  1494. void trace();
  1495. #define CHUNK_SIZE 64 // bytes
  1496. #define SAFETY_MARGIN 1
  1497. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1498. int chunkHead = 0;
  1499. int serial_read_stream() {
  1500. setTargetHotend(0, 0);
  1501. setTargetBed(0);
  1502. lcd_clear();
  1503. lcd_puts_P(PSTR(" Upload in progress"));
  1504. // first wait for how many bytes we will receive
  1505. uint32_t bytesToReceive;
  1506. // receive the four bytes
  1507. char bytesToReceiveBuffer[4];
  1508. for (int i=0; i<4; i++) {
  1509. int data;
  1510. while ((data = MYSERIAL.read()) == -1) {};
  1511. bytesToReceiveBuffer[i] = data;
  1512. }
  1513. // make it a uint32
  1514. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1515. // we're ready, notify the sender
  1516. MYSERIAL.write('+');
  1517. // lock in the routine
  1518. uint32_t receivedBytes = 0;
  1519. while (prusa_sd_card_upload) {
  1520. int i;
  1521. for (i=0; i<CHUNK_SIZE; i++) {
  1522. int data;
  1523. // check if we're not done
  1524. if (receivedBytes == bytesToReceive) {
  1525. break;
  1526. }
  1527. // read the next byte
  1528. while ((data = MYSERIAL.read()) == -1) {};
  1529. receivedBytes++;
  1530. // save it to the chunk
  1531. chunk[i] = data;
  1532. }
  1533. // write the chunk to SD
  1534. card.write_command_no_newline(&chunk[0]);
  1535. // notify the sender we're ready for more data
  1536. MYSERIAL.write('+');
  1537. // for safety
  1538. manage_heater();
  1539. // check if we're done
  1540. if(receivedBytes == bytesToReceive) {
  1541. trace(); // beep
  1542. card.closefile();
  1543. prusa_sd_card_upload = false;
  1544. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1545. return 0;
  1546. }
  1547. }
  1548. }
  1549. #ifdef HOST_KEEPALIVE_FEATURE
  1550. /**
  1551. * Output a "busy" message at regular intervals
  1552. * while the machine is not accepting commands.
  1553. */
  1554. void host_keepalive() {
  1555. if (farm_mode) return;
  1556. long ms = millis();
  1557. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1558. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1559. switch (busy_state) {
  1560. case IN_HANDLER:
  1561. case IN_PROCESS:
  1562. SERIAL_ECHO_START;
  1563. SERIAL_ECHOLNPGM("busy: processing");
  1564. break;
  1565. case PAUSED_FOR_USER:
  1566. SERIAL_ECHO_START;
  1567. SERIAL_ECHOLNPGM("busy: paused for user");
  1568. break;
  1569. case PAUSED_FOR_INPUT:
  1570. SERIAL_ECHO_START;
  1571. SERIAL_ECHOLNPGM("busy: paused for input");
  1572. break;
  1573. default:
  1574. break;
  1575. }
  1576. }
  1577. prev_busy_signal_ms = ms;
  1578. }
  1579. #endif
  1580. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1581. // Before loop(), the setup() function is called by the main() routine.
  1582. void loop()
  1583. {
  1584. KEEPALIVE_STATE(NOT_BUSY);
  1585. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1586. {
  1587. is_usb_printing = true;
  1588. usb_printing_counter--;
  1589. _usb_timer = millis();
  1590. }
  1591. if (usb_printing_counter == 0)
  1592. {
  1593. is_usb_printing = false;
  1594. }
  1595. if (prusa_sd_card_upload)
  1596. {
  1597. //we read byte-by byte
  1598. serial_read_stream();
  1599. } else
  1600. {
  1601. get_command();
  1602. #ifdef SDSUPPORT
  1603. card.checkautostart(false);
  1604. #endif
  1605. if(buflen)
  1606. {
  1607. cmdbuffer_front_already_processed = false;
  1608. #ifdef SDSUPPORT
  1609. if(card.saving)
  1610. {
  1611. // Saving a G-code file onto an SD-card is in progress.
  1612. // Saving starts with M28, saving until M29 is seen.
  1613. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1614. card.write_command(CMDBUFFER_CURRENT_STRING);
  1615. if(card.logging)
  1616. process_commands();
  1617. else
  1618. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1619. } else {
  1620. card.closefile();
  1621. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1622. }
  1623. } else {
  1624. process_commands();
  1625. }
  1626. #else
  1627. process_commands();
  1628. #endif //SDSUPPORT
  1629. if (! cmdbuffer_front_already_processed && buflen)
  1630. {
  1631. // ptr points to the start of the block currently being processed.
  1632. // The first character in the block is the block type.
  1633. char *ptr = cmdbuffer + bufindr;
  1634. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1635. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1636. union {
  1637. struct {
  1638. char lo;
  1639. char hi;
  1640. } lohi;
  1641. uint16_t value;
  1642. } sdlen;
  1643. sdlen.value = 0;
  1644. {
  1645. // This block locks the interrupts globally for 3.25 us,
  1646. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1647. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1648. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1649. cli();
  1650. // Reset the command to something, which will be ignored by the power panic routine,
  1651. // so this buffer length will not be counted twice.
  1652. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1653. // Extract the current buffer length.
  1654. sdlen.lohi.lo = *ptr ++;
  1655. sdlen.lohi.hi = *ptr;
  1656. // and pass it to the planner queue.
  1657. planner_add_sd_length(sdlen.value);
  1658. sei();
  1659. }
  1660. }
  1661. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1662. cli();
  1663. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1664. // and one for each command to previous block in the planner queue.
  1665. planner_add_sd_length(1);
  1666. sei();
  1667. }
  1668. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1669. // this block's SD card length will not be counted twice as its command type has been replaced
  1670. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1671. cmdqueue_pop_front();
  1672. }
  1673. host_keepalive();
  1674. }
  1675. }
  1676. //check heater every n milliseconds
  1677. manage_heater();
  1678. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1679. checkHitEndstops();
  1680. lcd_update(0);
  1681. #ifdef FILAMENT_SENSOR
  1682. fsensor_update();
  1683. #endif //FILAMENT_SENSOR
  1684. #ifdef TMC2130
  1685. tmc2130_check_overtemp();
  1686. if (tmc2130_sg_crash)
  1687. {
  1688. uint8_t crash = tmc2130_sg_crash;
  1689. tmc2130_sg_crash = 0;
  1690. // crashdet_stop_and_save_print();
  1691. switch (crash)
  1692. {
  1693. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1694. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1695. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1696. }
  1697. }
  1698. #endif //TMC2130
  1699. }
  1700. #define DEFINE_PGM_READ_ANY(type, reader) \
  1701. static inline type pgm_read_any(const type *p) \
  1702. { return pgm_read_##reader##_near(p); }
  1703. DEFINE_PGM_READ_ANY(float, float);
  1704. DEFINE_PGM_READ_ANY(signed char, byte);
  1705. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1706. static const PROGMEM type array##_P[3] = \
  1707. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1708. static inline type array(int axis) \
  1709. { return pgm_read_any(&array##_P[axis]); } \
  1710. type array##_ext(int axis) \
  1711. { return pgm_read_any(&array##_P[axis]); }
  1712. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1713. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1714. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1715. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1716. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1717. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1718. static void axis_is_at_home(int axis) {
  1719. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1720. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1721. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1722. }
  1723. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1724. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1725. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1726. saved_feedrate = feedrate;
  1727. saved_feedmultiply = feedmultiply;
  1728. feedmultiply = 100;
  1729. previous_millis_cmd = millis();
  1730. enable_endstops(enable_endstops_now);
  1731. }
  1732. static void clean_up_after_endstop_move() {
  1733. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1734. enable_endstops(false);
  1735. #endif
  1736. feedrate = saved_feedrate;
  1737. feedmultiply = saved_feedmultiply;
  1738. previous_millis_cmd = millis();
  1739. }
  1740. #ifdef ENABLE_AUTO_BED_LEVELING
  1741. #ifdef AUTO_BED_LEVELING_GRID
  1742. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1743. {
  1744. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1745. planeNormal.debug("planeNormal");
  1746. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1747. //bedLevel.debug("bedLevel");
  1748. //plan_bed_level_matrix.debug("bed level before");
  1749. //vector_3 uncorrected_position = plan_get_position_mm();
  1750. //uncorrected_position.debug("position before");
  1751. vector_3 corrected_position = plan_get_position();
  1752. // corrected_position.debug("position after");
  1753. current_position[X_AXIS] = corrected_position.x;
  1754. current_position[Y_AXIS] = corrected_position.y;
  1755. current_position[Z_AXIS] = corrected_position.z;
  1756. // put the bed at 0 so we don't go below it.
  1757. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1759. }
  1760. #else // not AUTO_BED_LEVELING_GRID
  1761. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1762. plan_bed_level_matrix.set_to_identity();
  1763. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1764. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1765. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1766. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1767. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1768. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1769. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1770. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1771. vector_3 corrected_position = plan_get_position();
  1772. current_position[X_AXIS] = corrected_position.x;
  1773. current_position[Y_AXIS] = corrected_position.y;
  1774. current_position[Z_AXIS] = corrected_position.z;
  1775. // put the bed at 0 so we don't go below it.
  1776. current_position[Z_AXIS] = zprobe_zoffset;
  1777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1778. }
  1779. #endif // AUTO_BED_LEVELING_GRID
  1780. static void run_z_probe() {
  1781. plan_bed_level_matrix.set_to_identity();
  1782. feedrate = homing_feedrate[Z_AXIS];
  1783. // move down until you find the bed
  1784. float zPosition = -10;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1786. st_synchronize();
  1787. // we have to let the planner know where we are right now as it is not where we said to go.
  1788. zPosition = st_get_position_mm(Z_AXIS);
  1789. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1790. // move up the retract distance
  1791. zPosition += home_retract_mm(Z_AXIS);
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1793. st_synchronize();
  1794. // move back down slowly to find bed
  1795. feedrate = homing_feedrate[Z_AXIS]/4;
  1796. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1798. st_synchronize();
  1799. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1800. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1801. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1802. }
  1803. static void do_blocking_move_to(float x, float y, float z) {
  1804. float oldFeedRate = feedrate;
  1805. feedrate = homing_feedrate[Z_AXIS];
  1806. current_position[Z_AXIS] = z;
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. feedrate = XY_TRAVEL_SPEED;
  1810. current_position[X_AXIS] = x;
  1811. current_position[Y_AXIS] = y;
  1812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. feedrate = oldFeedRate;
  1815. }
  1816. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1817. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1818. }
  1819. /// Probe bed height at position (x,y), returns the measured z value
  1820. static float probe_pt(float x, float y, float z_before) {
  1821. // move to right place
  1822. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1823. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1824. run_z_probe();
  1825. float measured_z = current_position[Z_AXIS];
  1826. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1827. SERIAL_PROTOCOLPGM(" x: ");
  1828. SERIAL_PROTOCOL(x);
  1829. SERIAL_PROTOCOLPGM(" y: ");
  1830. SERIAL_PROTOCOL(y);
  1831. SERIAL_PROTOCOLPGM(" z: ");
  1832. SERIAL_PROTOCOL(measured_z);
  1833. SERIAL_PROTOCOLPGM("\n");
  1834. return measured_z;
  1835. }
  1836. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1837. #ifdef LIN_ADVANCE
  1838. /**
  1839. * M900: Set and/or Get advance K factor and WH/D ratio
  1840. *
  1841. * K<factor> Set advance K factor
  1842. * R<ratio> Set ratio directly (overrides WH/D)
  1843. * W<width> H<height> D<diam> Set ratio from WH/D
  1844. */
  1845. inline void gcode_M900() {
  1846. st_synchronize();
  1847. const float newK = code_seen('K') ? code_value_float() : -1;
  1848. if (newK >= 0) extruder_advance_k = newK;
  1849. float newR = code_seen('R') ? code_value_float() : -1;
  1850. if (newR < 0) {
  1851. const float newD = code_seen('D') ? code_value_float() : -1,
  1852. newW = code_seen('W') ? code_value_float() : -1,
  1853. newH = code_seen('H') ? code_value_float() : -1;
  1854. if (newD >= 0 && newW >= 0 && newH >= 0)
  1855. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1856. }
  1857. if (newR >= 0) advance_ed_ratio = newR;
  1858. SERIAL_ECHO_START;
  1859. SERIAL_ECHOPGM("Advance K=");
  1860. SERIAL_ECHOLN(extruder_advance_k);
  1861. SERIAL_ECHOPGM(" E/D=");
  1862. const float ratio = advance_ed_ratio;
  1863. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1864. }
  1865. #endif // LIN_ADVANCE
  1866. bool check_commands() {
  1867. bool end_command_found = false;
  1868. while (buflen)
  1869. {
  1870. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1871. if (!cmdbuffer_front_already_processed)
  1872. cmdqueue_pop_front();
  1873. cmdbuffer_front_already_processed = false;
  1874. }
  1875. return end_command_found;
  1876. }
  1877. #ifdef TMC2130
  1878. bool calibrate_z_auto()
  1879. {
  1880. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1881. lcd_clear();
  1882. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1883. bool endstops_enabled = enable_endstops(true);
  1884. int axis_up_dir = -home_dir(Z_AXIS);
  1885. tmc2130_home_enter(Z_AXIS_MASK);
  1886. current_position[Z_AXIS] = 0;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. set_destination_to_current();
  1889. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1890. feedrate = homing_feedrate[Z_AXIS];
  1891. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1892. st_synchronize();
  1893. // current_position[axis] = 0;
  1894. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1895. tmc2130_home_exit();
  1896. enable_endstops(false);
  1897. current_position[Z_AXIS] = 0;
  1898. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1899. set_destination_to_current();
  1900. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1901. feedrate = homing_feedrate[Z_AXIS] / 2;
  1902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1903. st_synchronize();
  1904. enable_endstops(endstops_enabled);
  1905. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1906. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1907. return true;
  1908. }
  1909. #endif //TMC2130
  1910. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1911. {
  1912. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1913. #define HOMEAXIS_DO(LETTER) \
  1914. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1915. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1916. {
  1917. int axis_home_dir = home_dir(axis);
  1918. feedrate = homing_feedrate[axis];
  1919. #ifdef TMC2130
  1920. tmc2130_home_enter(X_AXIS_MASK << axis);
  1921. #endif //TMC2130
  1922. // Move right a bit, so that the print head does not touch the left end position,
  1923. // and the following left movement has a chance to achieve the required velocity
  1924. // for the stall guard to work.
  1925. current_position[axis] = 0;
  1926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1927. set_destination_to_current();
  1928. // destination[axis] = 11.f;
  1929. destination[axis] = 3.f;
  1930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1931. st_synchronize();
  1932. // Move left away from the possible collision with the collision detection disabled.
  1933. endstops_hit_on_purpose();
  1934. enable_endstops(false);
  1935. current_position[axis] = 0;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. destination[axis] = - 1.;
  1938. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1939. st_synchronize();
  1940. // Now continue to move up to the left end stop with the collision detection enabled.
  1941. enable_endstops(true);
  1942. destination[axis] = - 1.1 * max_length(axis);
  1943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1944. st_synchronize();
  1945. for (uint8_t i = 0; i < cnt; i++)
  1946. {
  1947. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1948. endstops_hit_on_purpose();
  1949. enable_endstops(false);
  1950. current_position[axis] = 0;
  1951. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1952. destination[axis] = 10.f;
  1953. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1954. st_synchronize();
  1955. endstops_hit_on_purpose();
  1956. // Now move left up to the collision, this time with a repeatable velocity.
  1957. enable_endstops(true);
  1958. destination[axis] = - 11.f;
  1959. #ifdef TMC2130
  1960. feedrate = homing_feedrate[axis];
  1961. #else //TMC2130
  1962. feedrate = homing_feedrate[axis] / 2;
  1963. #endif //TMC2130
  1964. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1965. st_synchronize();
  1966. #ifdef TMC2130
  1967. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1968. if (pstep) pstep[i] = mscnt >> 4;
  1969. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1970. #endif //TMC2130
  1971. }
  1972. endstops_hit_on_purpose();
  1973. enable_endstops(false);
  1974. #ifdef TMC2130
  1975. uint8_t orig = tmc2130_home_origin[axis];
  1976. uint8_t back = tmc2130_home_bsteps[axis];
  1977. if (tmc2130_home_enabled && (orig <= 63))
  1978. {
  1979. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1980. if (back > 0)
  1981. tmc2130_do_steps(axis, back, 1, 1000);
  1982. }
  1983. else
  1984. tmc2130_do_steps(axis, 8, 2, 1000);
  1985. tmc2130_home_exit();
  1986. #endif //TMC2130
  1987. axis_is_at_home(axis);
  1988. axis_known_position[axis] = true;
  1989. // Move from minimum
  1990. #ifdef TMC2130
  1991. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1992. #else //TMC2130
  1993. float dist = 0.01f * 64;
  1994. #endif //TMC2130
  1995. current_position[axis] -= dist;
  1996. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1997. current_position[axis] += dist;
  1998. destination[axis] = current_position[axis];
  1999. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2000. st_synchronize();
  2001. feedrate = 0.0;
  2002. }
  2003. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2004. {
  2005. #ifdef TMC2130
  2006. FORCE_HIGH_POWER_START;
  2007. #endif
  2008. int axis_home_dir = home_dir(axis);
  2009. current_position[axis] = 0;
  2010. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2011. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2012. feedrate = homing_feedrate[axis];
  2013. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2014. st_synchronize();
  2015. #ifdef TMC2130
  2016. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2017. FORCE_HIGH_POWER_END;
  2018. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2019. return;
  2020. }
  2021. #endif //TMC2130
  2022. current_position[axis] = 0;
  2023. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2024. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2025. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2026. st_synchronize();
  2027. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2028. feedrate = homing_feedrate[axis]/2 ;
  2029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2030. st_synchronize();
  2031. #ifdef TMC2130
  2032. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2033. FORCE_HIGH_POWER_END;
  2034. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2035. return;
  2036. }
  2037. #endif //TMC2130
  2038. axis_is_at_home(axis);
  2039. destination[axis] = current_position[axis];
  2040. feedrate = 0.0;
  2041. endstops_hit_on_purpose();
  2042. axis_known_position[axis] = true;
  2043. #ifdef TMC2130
  2044. FORCE_HIGH_POWER_END;
  2045. #endif
  2046. }
  2047. enable_endstops(endstops_enabled);
  2048. }
  2049. /**/
  2050. void home_xy()
  2051. {
  2052. set_destination_to_current();
  2053. homeaxis(X_AXIS);
  2054. homeaxis(Y_AXIS);
  2055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2056. endstops_hit_on_purpose();
  2057. }
  2058. void refresh_cmd_timeout(void)
  2059. {
  2060. previous_millis_cmd = millis();
  2061. }
  2062. #ifdef FWRETRACT
  2063. void retract(bool retracting, bool swapretract = false) {
  2064. if(retracting && !retracted[active_extruder]) {
  2065. destination[X_AXIS]=current_position[X_AXIS];
  2066. destination[Y_AXIS]=current_position[Y_AXIS];
  2067. destination[Z_AXIS]=current_position[Z_AXIS];
  2068. destination[E_AXIS]=current_position[E_AXIS];
  2069. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2070. plan_set_e_position(current_position[E_AXIS]);
  2071. float oldFeedrate = feedrate;
  2072. feedrate=retract_feedrate*60;
  2073. retracted[active_extruder]=true;
  2074. prepare_move();
  2075. current_position[Z_AXIS]-=retract_zlift;
  2076. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2077. prepare_move();
  2078. feedrate = oldFeedrate;
  2079. } else if(!retracting && retracted[active_extruder]) {
  2080. destination[X_AXIS]=current_position[X_AXIS];
  2081. destination[Y_AXIS]=current_position[Y_AXIS];
  2082. destination[Z_AXIS]=current_position[Z_AXIS];
  2083. destination[E_AXIS]=current_position[E_AXIS];
  2084. current_position[Z_AXIS]+=retract_zlift;
  2085. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2086. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2087. plan_set_e_position(current_position[E_AXIS]);
  2088. float oldFeedrate = feedrate;
  2089. feedrate=retract_recover_feedrate*60;
  2090. retracted[active_extruder]=false;
  2091. prepare_move();
  2092. feedrate = oldFeedrate;
  2093. }
  2094. } //retract
  2095. #endif //FWRETRACT
  2096. void trace() {
  2097. tone(BEEPER, 440);
  2098. delay(25);
  2099. noTone(BEEPER);
  2100. delay(20);
  2101. }
  2102. /*
  2103. void ramming() {
  2104. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2105. if (current_temperature[0] < 230) {
  2106. //PLA
  2107. max_feedrate[E_AXIS] = 50;
  2108. //current_position[E_AXIS] -= 8;
  2109. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2110. //current_position[E_AXIS] += 8;
  2111. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2112. current_position[E_AXIS] += 5.4;
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2114. current_position[E_AXIS] += 3.2;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2116. current_position[E_AXIS] += 3;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2118. st_synchronize();
  2119. max_feedrate[E_AXIS] = 80;
  2120. current_position[E_AXIS] -= 82;
  2121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2122. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2123. current_position[E_AXIS] -= 20;
  2124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2125. current_position[E_AXIS] += 5;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2127. current_position[E_AXIS] += 5;
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2129. current_position[E_AXIS] -= 10;
  2130. st_synchronize();
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2132. current_position[E_AXIS] += 10;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2134. current_position[E_AXIS] -= 10;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2136. current_position[E_AXIS] += 10;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2138. current_position[E_AXIS] -= 10;
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2140. st_synchronize();
  2141. }
  2142. else {
  2143. //ABS
  2144. max_feedrate[E_AXIS] = 50;
  2145. //current_position[E_AXIS] -= 8;
  2146. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2147. //current_position[E_AXIS] += 8;
  2148. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2149. current_position[E_AXIS] += 3.1;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2151. current_position[E_AXIS] += 3.1;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2153. current_position[E_AXIS] += 4;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2155. st_synchronize();
  2156. //current_position[X_AXIS] += 23; //delay
  2157. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2158. //current_position[X_AXIS] -= 23; //delay
  2159. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2160. delay(4700);
  2161. max_feedrate[E_AXIS] = 80;
  2162. current_position[E_AXIS] -= 92;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2164. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2165. current_position[E_AXIS] -= 5;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2167. current_position[E_AXIS] += 5;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2169. current_position[E_AXIS] -= 5;
  2170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2171. st_synchronize();
  2172. current_position[E_AXIS] += 5;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2174. current_position[E_AXIS] -= 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2176. current_position[E_AXIS] += 5;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2178. current_position[E_AXIS] -= 5;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2180. st_synchronize();
  2181. }
  2182. }
  2183. */
  2184. #ifdef TMC2130
  2185. void force_high_power_mode(bool start_high_power_section) {
  2186. uint8_t silent;
  2187. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2188. if (silent == 1) {
  2189. //we are in silent mode, set to normal mode to enable crash detection
  2190. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2191. st_synchronize();
  2192. cli();
  2193. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2194. update_mode_profile();
  2195. tmc2130_init();
  2196. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2197. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2198. st_reset_timer();
  2199. sei();
  2200. }
  2201. }
  2202. #endif //TMC2130
  2203. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2204. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2205. }
  2206. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2207. st_synchronize();
  2208. #if 0
  2209. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2210. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2211. #endif
  2212. // Flag for the display update routine and to disable the print cancelation during homing.
  2213. homing_flag = true;
  2214. // Which axes should be homed?
  2215. bool home_x = home_x_axis;
  2216. bool home_y = home_y_axis;
  2217. bool home_z = home_z_axis;
  2218. // Either all X,Y,Z codes are present, or none of them.
  2219. bool home_all_axes = home_x == home_y && home_x == home_z;
  2220. if (home_all_axes)
  2221. // No X/Y/Z code provided means to home all axes.
  2222. home_x = home_y = home_z = true;
  2223. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2224. if (home_all_axes) {
  2225. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2226. feedrate = homing_feedrate[Z_AXIS];
  2227. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2228. st_synchronize();
  2229. }
  2230. #ifdef ENABLE_AUTO_BED_LEVELING
  2231. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2232. #endif //ENABLE_AUTO_BED_LEVELING
  2233. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2234. // the planner will not perform any adjustments in the XY plane.
  2235. // Wait for the motors to stop and update the current position with the absolute values.
  2236. world2machine_revert_to_uncorrected();
  2237. // For mesh bed leveling deactivate the matrix temporarily.
  2238. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2239. // in a single axis only.
  2240. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2241. #ifdef MESH_BED_LEVELING
  2242. uint8_t mbl_was_active = mbl.active;
  2243. mbl.active = 0;
  2244. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2245. #endif
  2246. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2247. // consumed during the first movements following this statement.
  2248. if (home_z)
  2249. babystep_undo();
  2250. saved_feedrate = feedrate;
  2251. saved_feedmultiply = feedmultiply;
  2252. feedmultiply = 100;
  2253. previous_millis_cmd = millis();
  2254. enable_endstops(true);
  2255. memcpy(destination, current_position, sizeof(destination));
  2256. feedrate = 0.0;
  2257. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2258. if(home_z)
  2259. homeaxis(Z_AXIS);
  2260. #endif
  2261. #ifdef QUICK_HOME
  2262. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2263. if(home_x && home_y) //first diagonal move
  2264. {
  2265. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2266. int x_axis_home_dir = home_dir(X_AXIS);
  2267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2268. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2269. feedrate = homing_feedrate[X_AXIS];
  2270. if(homing_feedrate[Y_AXIS]<feedrate)
  2271. feedrate = homing_feedrate[Y_AXIS];
  2272. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2273. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2274. } else {
  2275. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2276. }
  2277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2278. st_synchronize();
  2279. axis_is_at_home(X_AXIS);
  2280. axis_is_at_home(Y_AXIS);
  2281. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2282. destination[X_AXIS] = current_position[X_AXIS];
  2283. destination[Y_AXIS] = current_position[Y_AXIS];
  2284. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2285. feedrate = 0.0;
  2286. st_synchronize();
  2287. endstops_hit_on_purpose();
  2288. current_position[X_AXIS] = destination[X_AXIS];
  2289. current_position[Y_AXIS] = destination[Y_AXIS];
  2290. current_position[Z_AXIS] = destination[Z_AXIS];
  2291. }
  2292. #endif /* QUICK_HOME */
  2293. #ifdef TMC2130
  2294. if(home_x)
  2295. {
  2296. if (!calib)
  2297. homeaxis(X_AXIS);
  2298. else
  2299. tmc2130_home_calibrate(X_AXIS);
  2300. }
  2301. if(home_y)
  2302. {
  2303. if (!calib)
  2304. homeaxis(Y_AXIS);
  2305. else
  2306. tmc2130_home_calibrate(Y_AXIS);
  2307. }
  2308. #endif //TMC2130
  2309. if(home_x_axis && home_x_value != 0)
  2310. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2311. if(home_y_axis && home_y_value != 0)
  2312. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2313. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2314. #ifndef Z_SAFE_HOMING
  2315. if(home_z) {
  2316. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2317. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2318. feedrate = max_feedrate[Z_AXIS];
  2319. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2320. st_synchronize();
  2321. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2322. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2323. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2324. {
  2325. homeaxis(X_AXIS);
  2326. homeaxis(Y_AXIS);
  2327. }
  2328. // 1st mesh bed leveling measurement point, corrected.
  2329. world2machine_initialize();
  2330. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2331. world2machine_reset();
  2332. if (destination[Y_AXIS] < Y_MIN_POS)
  2333. destination[Y_AXIS] = Y_MIN_POS;
  2334. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2335. feedrate = homing_feedrate[Z_AXIS]/10;
  2336. current_position[Z_AXIS] = 0;
  2337. enable_endstops(false);
  2338. #ifdef DEBUG_BUILD
  2339. SERIAL_ECHOLNPGM("plan_set_position()");
  2340. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2341. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2342. #endif
  2343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2344. #ifdef DEBUG_BUILD
  2345. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2346. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2347. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2348. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2349. #endif
  2350. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2351. st_synchronize();
  2352. current_position[X_AXIS] = destination[X_AXIS];
  2353. current_position[Y_AXIS] = destination[Y_AXIS];
  2354. enable_endstops(true);
  2355. endstops_hit_on_purpose();
  2356. homeaxis(Z_AXIS);
  2357. #else // MESH_BED_LEVELING
  2358. homeaxis(Z_AXIS);
  2359. #endif // MESH_BED_LEVELING
  2360. }
  2361. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2362. if(home_all_axes) {
  2363. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2364. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2365. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2366. feedrate = XY_TRAVEL_SPEED/60;
  2367. current_position[Z_AXIS] = 0;
  2368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2369. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2370. st_synchronize();
  2371. current_position[X_AXIS] = destination[X_AXIS];
  2372. current_position[Y_AXIS] = destination[Y_AXIS];
  2373. homeaxis(Z_AXIS);
  2374. }
  2375. // Let's see if X and Y are homed and probe is inside bed area.
  2376. if(home_z) {
  2377. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2378. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2379. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2380. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2381. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2382. current_position[Z_AXIS] = 0;
  2383. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2384. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2385. feedrate = max_feedrate[Z_AXIS];
  2386. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2387. st_synchronize();
  2388. homeaxis(Z_AXIS);
  2389. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2390. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2391. SERIAL_ECHO_START;
  2392. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2393. } else {
  2394. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2395. SERIAL_ECHO_START;
  2396. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2397. }
  2398. }
  2399. #endif // Z_SAFE_HOMING
  2400. #endif // Z_HOME_DIR < 0
  2401. if(home_z_axis && home_z_value != 0)
  2402. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2403. #ifdef ENABLE_AUTO_BED_LEVELING
  2404. if(home_z)
  2405. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2406. #endif
  2407. // Set the planner and stepper routine positions.
  2408. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2409. // contains the machine coordinates.
  2410. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2411. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2412. enable_endstops(false);
  2413. #endif
  2414. feedrate = saved_feedrate;
  2415. feedmultiply = saved_feedmultiply;
  2416. previous_millis_cmd = millis();
  2417. endstops_hit_on_purpose();
  2418. #ifndef MESH_BED_LEVELING
  2419. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2420. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2421. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2422. lcd_adjust_z();
  2423. #endif
  2424. // Load the machine correction matrix
  2425. world2machine_initialize();
  2426. // and correct the current_position XY axes to match the transformed coordinate system.
  2427. world2machine_update_current();
  2428. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2429. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2430. {
  2431. if (! home_z && mbl_was_active) {
  2432. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2433. mbl.active = true;
  2434. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2435. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2436. }
  2437. }
  2438. else
  2439. {
  2440. st_synchronize();
  2441. homing_flag = false;
  2442. }
  2443. #endif
  2444. if (farm_mode) { prusa_statistics(20); };
  2445. homing_flag = false;
  2446. #if 0
  2447. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2448. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2449. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2450. #endif
  2451. }
  2452. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2453. {
  2454. bool final_result = false;
  2455. #ifdef TMC2130
  2456. FORCE_HIGH_POWER_START;
  2457. #endif // TMC2130
  2458. // Only Z calibration?
  2459. if (!onlyZ)
  2460. {
  2461. setTargetBed(0);
  2462. setTargetHotend(0, 0);
  2463. setTargetHotend(0, 1);
  2464. setTargetHotend(0, 2);
  2465. adjust_bed_reset(); //reset bed level correction
  2466. }
  2467. // Disable the default update procedure of the display. We will do a modal dialog.
  2468. lcd_update_enable(false);
  2469. // Let the planner use the uncorrected coordinates.
  2470. mbl.reset();
  2471. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2472. // the planner will not perform any adjustments in the XY plane.
  2473. // Wait for the motors to stop and update the current position with the absolute values.
  2474. world2machine_revert_to_uncorrected();
  2475. // Reset the baby step value applied without moving the axes.
  2476. babystep_reset();
  2477. // Mark all axes as in a need for homing.
  2478. memset(axis_known_position, 0, sizeof(axis_known_position));
  2479. // Home in the XY plane.
  2480. //set_destination_to_current();
  2481. setup_for_endstop_move();
  2482. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2483. home_xy();
  2484. enable_endstops(false);
  2485. current_position[X_AXIS] += 5;
  2486. current_position[Y_AXIS] += 5;
  2487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2488. st_synchronize();
  2489. // Let the user move the Z axes up to the end stoppers.
  2490. #ifdef TMC2130
  2491. if (calibrate_z_auto())
  2492. {
  2493. #else //TMC2130
  2494. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2495. {
  2496. #endif //TMC2130
  2497. refresh_cmd_timeout();
  2498. #ifndef STEEL_SHEET
  2499. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2500. {
  2501. lcd_wait_for_cool_down();
  2502. }
  2503. #endif //STEEL_SHEET
  2504. if(!onlyZ)
  2505. {
  2506. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2507. #ifdef STEEL_SHEET
  2508. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2509. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2510. #endif //STEEL_SHEET
  2511. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2512. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2513. KEEPALIVE_STATE(IN_HANDLER);
  2514. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2515. lcd_set_cursor(0, 2);
  2516. lcd_print(1);
  2517. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2518. }
  2519. // Move the print head close to the bed.
  2520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2521. bool endstops_enabled = enable_endstops(true);
  2522. #ifdef TMC2130
  2523. tmc2130_home_enter(Z_AXIS_MASK);
  2524. #endif //TMC2130
  2525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2526. st_synchronize();
  2527. #ifdef TMC2130
  2528. tmc2130_home_exit();
  2529. #endif //TMC2130
  2530. enable_endstops(endstops_enabled);
  2531. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2532. {
  2533. int8_t verbosity_level = 0;
  2534. if (code_seen('V'))
  2535. {
  2536. // Just 'V' without a number counts as V1.
  2537. char c = strchr_pointer[1];
  2538. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2539. }
  2540. if (onlyZ)
  2541. {
  2542. clean_up_after_endstop_move();
  2543. // Z only calibration.
  2544. // Load the machine correction matrix
  2545. world2machine_initialize();
  2546. // and correct the current_position to match the transformed coordinate system.
  2547. world2machine_update_current();
  2548. //FIXME
  2549. bool result = sample_mesh_and_store_reference();
  2550. if (result)
  2551. {
  2552. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2553. // Shipped, the nozzle height has been set already. The user can start printing now.
  2554. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2555. final_result = true;
  2556. // babystep_apply();
  2557. }
  2558. }
  2559. else
  2560. {
  2561. // Reset the baby step value and the baby step applied flag.
  2562. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2563. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2564. // Complete XYZ calibration.
  2565. uint8_t point_too_far_mask = 0;
  2566. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2567. clean_up_after_endstop_move();
  2568. // Print head up.
  2569. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2571. st_synchronize();
  2572. //#ifndef NEW_XYZCAL
  2573. if (result >= 0)
  2574. {
  2575. #ifdef HEATBED_V2
  2576. sample_z();
  2577. #else //HEATBED_V2
  2578. point_too_far_mask = 0;
  2579. // Second half: The fine adjustment.
  2580. // Let the planner use the uncorrected coordinates.
  2581. mbl.reset();
  2582. world2machine_reset();
  2583. // Home in the XY plane.
  2584. setup_for_endstop_move();
  2585. home_xy();
  2586. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2587. clean_up_after_endstop_move();
  2588. // Print head up.
  2589. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2591. st_synchronize();
  2592. // if (result >= 0) babystep_apply();
  2593. #endif //HEATBED_V2
  2594. }
  2595. //#endif //NEW_XYZCAL
  2596. lcd_update_enable(true);
  2597. lcd_update(2);
  2598. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2599. if (result >= 0)
  2600. {
  2601. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2602. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2603. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2604. final_result = true;
  2605. }
  2606. }
  2607. #ifdef TMC2130
  2608. tmc2130_home_exit();
  2609. #endif
  2610. }
  2611. else
  2612. {
  2613. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2614. final_result = false;
  2615. }
  2616. }
  2617. else
  2618. {
  2619. // Timeouted.
  2620. }
  2621. lcd_update_enable(true);
  2622. #ifdef TMC2130
  2623. FORCE_HIGH_POWER_END;
  2624. #endif // TMC2130
  2625. return final_result;
  2626. }
  2627. void gcode_M114()
  2628. {
  2629. SERIAL_PROTOCOLPGM("X:");
  2630. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" Y:");
  2632. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2633. SERIAL_PROTOCOLPGM(" Z:");
  2634. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2635. SERIAL_PROTOCOLPGM(" E:");
  2636. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2637. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2638. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2639. SERIAL_PROTOCOLPGM(" Y:");
  2640. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2641. SERIAL_PROTOCOLPGM(" Z:");
  2642. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2643. SERIAL_PROTOCOLPGM(" E:");
  2644. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2645. SERIAL_PROTOCOLLN("");
  2646. }
  2647. void gcode_M701()
  2648. {
  2649. printf_P(PSTR("gcode_M701 begin\n"));
  2650. #if defined (SNMM) || defined (SNMM_V2)
  2651. extr_adj(snmm_extruder);//loads current extruder
  2652. #else //defined (SNMM) || defined (SNMM_V2)
  2653. enable_z();
  2654. custom_message = true;
  2655. custom_message_type = 2;
  2656. #ifdef FILAMENT_SENSOR
  2657. fsensor_oq_meassure_start(40);
  2658. #endif //FILAMENT_SENSOR
  2659. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2660. current_position[E_AXIS] += 40;
  2661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2662. st_synchronize();
  2663. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2664. current_position[E_AXIS] += 30;
  2665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2666. st_synchronize();
  2667. current_position[E_AXIS] += 25;
  2668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2669. st_synchronize();
  2670. tone(BEEPER, 500);
  2671. delay_keep_alive(50);
  2672. noTone(BEEPER);
  2673. if (!farm_mode && loading_flag) {
  2674. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2675. while (!clean) {
  2676. lcd_update_enable(true);
  2677. lcd_update(2);
  2678. current_position[E_AXIS] += 25;
  2679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2680. st_synchronize();
  2681. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2682. }
  2683. }
  2684. lcd_update_enable(true);
  2685. lcd_update(2);
  2686. lcd_setstatuspgm(_T(WELCOME_MSG));
  2687. disable_z();
  2688. loading_flag = false;
  2689. custom_message = false;
  2690. custom_message_type = 0;
  2691. #ifdef FILAMENT_SENSOR
  2692. fsensor_oq_meassure_stop();
  2693. if (!fsensor_oq_result())
  2694. {
  2695. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2696. lcd_update_enable(true);
  2697. lcd_update(2);
  2698. if (disable)
  2699. fsensor_disable();
  2700. }
  2701. #endif //FILAMENT_SENSOR
  2702. #endif //defined (SNMM) || defined (SNMM_V2)
  2703. }
  2704. /**
  2705. * @brief Get serial number from 32U2 processor
  2706. *
  2707. * Typical format of S/N is:CZPX0917X003XC13518
  2708. *
  2709. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2710. *
  2711. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2712. * reply is transmitted to serial port 1 character by character.
  2713. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2714. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2715. * in any case.
  2716. */
  2717. static void gcode_PRUSA_SN()
  2718. {
  2719. if (farm_mode) {
  2720. selectedSerialPort = 0;
  2721. putchar(';');
  2722. putchar('S');
  2723. int numbersRead = 0;
  2724. ShortTimer timeout;
  2725. timeout.start();
  2726. while (numbersRead < 19) {
  2727. while (MSerial.available() > 0) {
  2728. uint8_t serial_char = MSerial.read();
  2729. selectedSerialPort = 1;
  2730. putchar(serial_char);
  2731. numbersRead++;
  2732. selectedSerialPort = 0;
  2733. }
  2734. if (timeout.expired(100u)) break;
  2735. }
  2736. selectedSerialPort = 1;
  2737. putchar('\n');
  2738. #if 0
  2739. for (int b = 0; b < 3; b++) {
  2740. tone(BEEPER, 110);
  2741. delay(50);
  2742. noTone(BEEPER);
  2743. delay(50);
  2744. }
  2745. #endif
  2746. } else {
  2747. puts_P(_N("Not in farm mode."));
  2748. }
  2749. }
  2750. #ifdef BACKLASH_X
  2751. extern uint8_t st_backlash_x;
  2752. #endif //BACKLASH_X
  2753. #ifdef BACKLASH_Y
  2754. extern uint8_t st_backlash_y;
  2755. #endif //BACKLASH_Y
  2756. uint16_t gcode_in_progress = 0;
  2757. uint16_t mcode_in_progress = 0;
  2758. void process_commands()
  2759. {
  2760. if (!buflen) return; //empty command
  2761. #ifdef FILAMENT_RUNOUT_SUPPORT
  2762. SET_INPUT(FR_SENS);
  2763. #endif
  2764. #ifdef CMDBUFFER_DEBUG
  2765. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2766. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2767. SERIAL_ECHOLNPGM("");
  2768. SERIAL_ECHOPGM("In cmdqueue: ");
  2769. SERIAL_ECHO(buflen);
  2770. SERIAL_ECHOLNPGM("");
  2771. #endif /* CMDBUFFER_DEBUG */
  2772. unsigned long codenum; //throw away variable
  2773. char *starpos = NULL;
  2774. #ifdef ENABLE_AUTO_BED_LEVELING
  2775. float x_tmp, y_tmp, z_tmp, real_z;
  2776. #endif
  2777. // PRUSA GCODES
  2778. KEEPALIVE_STATE(IN_HANDLER);
  2779. #ifdef SNMM
  2780. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2781. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2782. int8_t SilentMode;
  2783. #endif
  2784. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2785. starpos = (strchr(strchr_pointer + 5, '*'));
  2786. if (starpos != NULL)
  2787. *(starpos) = '\0';
  2788. lcd_setstatus(strchr_pointer + 5);
  2789. }
  2790. #ifdef TMC2130
  2791. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2792. {
  2793. if(code_seen("CRASH_DETECTED"))
  2794. {
  2795. uint8_t mask = 0;
  2796. if (code_seen("X")) mask |= X_AXIS_MASK;
  2797. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2798. crashdet_detected(mask);
  2799. }
  2800. else if(code_seen("CRASH_RECOVER"))
  2801. crashdet_recover();
  2802. else if(code_seen("CRASH_CANCEL"))
  2803. crashdet_cancel();
  2804. }
  2805. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2806. {
  2807. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2808. {
  2809. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2810. axis = (axis == 'E')?3:(axis - 'X');
  2811. if (axis < 4)
  2812. {
  2813. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2814. tmc2130_set_wave(axis, 247, fac);
  2815. }
  2816. }
  2817. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2818. {
  2819. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2820. axis = (axis == 'E')?3:(axis - 'X');
  2821. if (axis < 4)
  2822. {
  2823. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2824. uint16_t res = tmc2130_get_res(axis);
  2825. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2826. }
  2827. }
  2828. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2829. {
  2830. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2831. axis = (axis == 'E')?3:(axis - 'X');
  2832. if (axis < 4)
  2833. {
  2834. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2835. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2836. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2837. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2838. char* str_end = 0;
  2839. if (CMDBUFFER_CURRENT_STRING[14])
  2840. {
  2841. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2842. if (str_end && *str_end)
  2843. {
  2844. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2845. if (str_end && *str_end)
  2846. {
  2847. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2848. if (str_end && *str_end)
  2849. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2850. }
  2851. }
  2852. }
  2853. tmc2130_chopper_config[axis].toff = chop0;
  2854. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2855. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2856. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2857. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2858. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2859. }
  2860. }
  2861. }
  2862. #ifdef BACKLASH_X
  2863. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2864. {
  2865. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2866. st_backlash_x = bl;
  2867. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2868. }
  2869. #endif //BACKLASH_X
  2870. #ifdef BACKLASH_Y
  2871. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2872. {
  2873. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2874. st_backlash_y = bl;
  2875. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2876. }
  2877. #endif //BACKLASH_Y
  2878. #endif //TMC2130
  2879. else if(code_seen("PRUSA")){
  2880. if (code_seen("Ping")) { //PRUSA Ping
  2881. if (farm_mode) {
  2882. PingTime = millis();
  2883. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2884. }
  2885. }
  2886. else if (code_seen("PRN")) {
  2887. printf_P(_N("%d"), status_number);
  2888. }else if (code_seen("FAN")) {
  2889. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2890. }else if (code_seen("fn")) {
  2891. if (farm_mode) {
  2892. printf_P(_N("%d"), farm_no);
  2893. }
  2894. else {
  2895. puts_P(_N("Not in farm mode."));
  2896. }
  2897. }
  2898. else if (code_seen("thx")) {
  2899. no_response = false;
  2900. }
  2901. else if (code_seen("MMURES")) {
  2902. fprintf_P(uart2io, PSTR("X0"));
  2903. }
  2904. else if (code_seen("RESET")) {
  2905. // careful!
  2906. if (farm_mode) {
  2907. #ifdef WATCHDOG
  2908. boot_app_magic = BOOT_APP_MAGIC;
  2909. boot_app_flags = BOOT_APP_FLG_RUN;
  2910. wdt_enable(WDTO_15MS);
  2911. cli();
  2912. while(1);
  2913. #else //WATCHDOG
  2914. asm volatile("jmp 0x3E000");
  2915. #endif //WATCHDOG
  2916. }
  2917. else {
  2918. MYSERIAL.println("Not in farm mode.");
  2919. }
  2920. }else if (code_seen("fv")) {
  2921. // get file version
  2922. #ifdef SDSUPPORT
  2923. card.openFile(strchr_pointer + 3,true);
  2924. while (true) {
  2925. uint16_t readByte = card.get();
  2926. MYSERIAL.write(readByte);
  2927. if (readByte=='\n') {
  2928. break;
  2929. }
  2930. }
  2931. card.closefile();
  2932. #endif // SDSUPPORT
  2933. } else if (code_seen("M28")) {
  2934. trace();
  2935. prusa_sd_card_upload = true;
  2936. card.openFile(strchr_pointer+4,false);
  2937. } else if (code_seen("SN")) {
  2938. gcode_PRUSA_SN();
  2939. } else if(code_seen("Fir")){
  2940. SERIAL_PROTOCOLLN(FW_VERSION);
  2941. } else if(code_seen("Rev")){
  2942. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2943. } else if(code_seen("Lang")) {
  2944. lang_reset();
  2945. } else if(code_seen("Lz")) {
  2946. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2947. } else if(code_seen("Beat")) {
  2948. // Kick farm link timer
  2949. kicktime = millis();
  2950. } else if(code_seen("FR")) {
  2951. // Factory full reset
  2952. factory_reset(0,true);
  2953. }
  2954. //else if (code_seen('Cal')) {
  2955. // lcd_calibration();
  2956. // }
  2957. }
  2958. else if (code_seen('^')) {
  2959. // nothing, this is a version line
  2960. } else if(code_seen('G'))
  2961. {
  2962. gcode_in_progress = (int)code_value();
  2963. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  2964. switch (gcode_in_progress)
  2965. {
  2966. case 0: // G0 -> G1
  2967. case 1: // G1
  2968. if(Stopped == false) {
  2969. #ifdef FILAMENT_RUNOUT_SUPPORT
  2970. if(READ(FR_SENS)){
  2971. feedmultiplyBckp=feedmultiply;
  2972. float target[4];
  2973. float lastpos[4];
  2974. target[X_AXIS]=current_position[X_AXIS];
  2975. target[Y_AXIS]=current_position[Y_AXIS];
  2976. target[Z_AXIS]=current_position[Z_AXIS];
  2977. target[E_AXIS]=current_position[E_AXIS];
  2978. lastpos[X_AXIS]=current_position[X_AXIS];
  2979. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2980. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2981. lastpos[E_AXIS]=current_position[E_AXIS];
  2982. //retract by E
  2983. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2984. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2985. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2986. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2987. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2988. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2990. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2992. //finish moves
  2993. st_synchronize();
  2994. //disable extruder steppers so filament can be removed
  2995. disable_e0();
  2996. disable_e1();
  2997. disable_e2();
  2998. delay(100);
  2999. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3000. uint8_t cnt=0;
  3001. int counterBeep = 0;
  3002. lcd_wait_interact();
  3003. while(!lcd_clicked()){
  3004. cnt++;
  3005. manage_heater();
  3006. manage_inactivity(true);
  3007. //lcd_update(0);
  3008. if(cnt==0)
  3009. {
  3010. #if BEEPER > 0
  3011. if (counterBeep== 500){
  3012. counterBeep = 0;
  3013. }
  3014. SET_OUTPUT(BEEPER);
  3015. if (counterBeep== 0){
  3016. WRITE(BEEPER,HIGH);
  3017. }
  3018. if (counterBeep== 20){
  3019. WRITE(BEEPER,LOW);
  3020. }
  3021. counterBeep++;
  3022. #else
  3023. #endif
  3024. }
  3025. }
  3026. WRITE(BEEPER,LOW);
  3027. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3028. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3029. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3030. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3031. lcd_change_fil_state = 0;
  3032. lcd_loading_filament();
  3033. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3034. lcd_change_fil_state = 0;
  3035. lcd_alright();
  3036. switch(lcd_change_fil_state){
  3037. case 2:
  3038. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3040. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3042. lcd_loading_filament();
  3043. break;
  3044. case 3:
  3045. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3047. lcd_loading_color();
  3048. break;
  3049. default:
  3050. lcd_change_success();
  3051. break;
  3052. }
  3053. }
  3054. target[E_AXIS]+= 5;
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3056. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3058. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3059. //plan_set_e_position(current_position[E_AXIS]);
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3061. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3062. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3063. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3064. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3065. plan_set_e_position(lastpos[E_AXIS]);
  3066. feedmultiply=feedmultiplyBckp;
  3067. char cmd[9];
  3068. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3069. enquecommand(cmd);
  3070. }
  3071. #endif
  3072. get_coordinates(); // For X Y Z E F
  3073. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3074. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3075. }
  3076. #ifdef FWRETRACT
  3077. if(autoretract_enabled)
  3078. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3079. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3080. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3081. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3082. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3083. retract(!retracted[active_extruder]);
  3084. return;
  3085. }
  3086. }
  3087. #endif //FWRETRACT
  3088. prepare_move();
  3089. //ClearToSend();
  3090. }
  3091. break;
  3092. case 2: // G2 - CW ARC
  3093. if(Stopped == false) {
  3094. get_arc_coordinates();
  3095. prepare_arc_move(true);
  3096. }
  3097. break;
  3098. case 3: // G3 - CCW ARC
  3099. if(Stopped == false) {
  3100. get_arc_coordinates();
  3101. prepare_arc_move(false);
  3102. }
  3103. break;
  3104. case 4: // G4 dwell
  3105. codenum = 0;
  3106. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3107. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3108. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3109. st_synchronize();
  3110. codenum += millis(); // keep track of when we started waiting
  3111. previous_millis_cmd = millis();
  3112. while(millis() < codenum) {
  3113. manage_heater();
  3114. manage_inactivity();
  3115. lcd_update(0);
  3116. }
  3117. break;
  3118. #ifdef FWRETRACT
  3119. case 10: // G10 retract
  3120. #if EXTRUDERS > 1
  3121. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3122. retract(true,retracted_swap[active_extruder]);
  3123. #else
  3124. retract(true);
  3125. #endif
  3126. break;
  3127. case 11: // G11 retract_recover
  3128. #if EXTRUDERS > 1
  3129. retract(false,retracted_swap[active_extruder]);
  3130. #else
  3131. retract(false);
  3132. #endif
  3133. break;
  3134. #endif //FWRETRACT
  3135. case 28: //G28 Home all Axis one at a time
  3136. {
  3137. long home_x_value = 0;
  3138. long home_y_value = 0;
  3139. long home_z_value = 0;
  3140. // Which axes should be homed?
  3141. bool home_x = code_seen(axis_codes[X_AXIS]);
  3142. home_x_value = code_value_long();
  3143. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3144. home_y_value = code_value_long();
  3145. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3146. home_z_value = code_value_long();
  3147. bool without_mbl = code_seen('W');
  3148. // calibrate?
  3149. bool calib = code_seen('C');
  3150. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3151. if ((home_x || home_y || without_mbl || home_z) == false) {
  3152. // Push the commands to the front of the message queue in the reverse order!
  3153. // There shall be always enough space reserved for these commands.
  3154. goto case_G80;
  3155. }
  3156. break;
  3157. }
  3158. #ifdef ENABLE_AUTO_BED_LEVELING
  3159. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3160. {
  3161. #if Z_MIN_PIN == -1
  3162. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3163. #endif
  3164. // Prevent user from running a G29 without first homing in X and Y
  3165. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3166. {
  3167. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3168. SERIAL_ECHO_START;
  3169. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3170. break; // abort G29, since we don't know where we are
  3171. }
  3172. st_synchronize();
  3173. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3174. //vector_3 corrected_position = plan_get_position_mm();
  3175. //corrected_position.debug("position before G29");
  3176. plan_bed_level_matrix.set_to_identity();
  3177. vector_3 uncorrected_position = plan_get_position();
  3178. //uncorrected_position.debug("position durring G29");
  3179. current_position[X_AXIS] = uncorrected_position.x;
  3180. current_position[Y_AXIS] = uncorrected_position.y;
  3181. current_position[Z_AXIS] = uncorrected_position.z;
  3182. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3183. setup_for_endstop_move();
  3184. feedrate = homing_feedrate[Z_AXIS];
  3185. #ifdef AUTO_BED_LEVELING_GRID
  3186. // probe at the points of a lattice grid
  3187. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3188. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3189. // solve the plane equation ax + by + d = z
  3190. // A is the matrix with rows [x y 1] for all the probed points
  3191. // B is the vector of the Z positions
  3192. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3193. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3194. // "A" matrix of the linear system of equations
  3195. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3196. // "B" vector of Z points
  3197. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3198. int probePointCounter = 0;
  3199. bool zig = true;
  3200. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3201. {
  3202. int xProbe, xInc;
  3203. if (zig)
  3204. {
  3205. xProbe = LEFT_PROBE_BED_POSITION;
  3206. //xEnd = RIGHT_PROBE_BED_POSITION;
  3207. xInc = xGridSpacing;
  3208. zig = false;
  3209. } else // zag
  3210. {
  3211. xProbe = RIGHT_PROBE_BED_POSITION;
  3212. //xEnd = LEFT_PROBE_BED_POSITION;
  3213. xInc = -xGridSpacing;
  3214. zig = true;
  3215. }
  3216. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3217. {
  3218. float z_before;
  3219. if (probePointCounter == 0)
  3220. {
  3221. // raise before probing
  3222. z_before = Z_RAISE_BEFORE_PROBING;
  3223. } else
  3224. {
  3225. // raise extruder
  3226. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3227. }
  3228. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3229. eqnBVector[probePointCounter] = measured_z;
  3230. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3231. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3232. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3233. probePointCounter++;
  3234. xProbe += xInc;
  3235. }
  3236. }
  3237. clean_up_after_endstop_move();
  3238. // solve lsq problem
  3239. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3240. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3241. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3242. SERIAL_PROTOCOLPGM(" b: ");
  3243. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3244. SERIAL_PROTOCOLPGM(" d: ");
  3245. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3246. set_bed_level_equation_lsq(plane_equation_coefficients);
  3247. free(plane_equation_coefficients);
  3248. #else // AUTO_BED_LEVELING_GRID not defined
  3249. // Probe at 3 arbitrary points
  3250. // probe 1
  3251. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3252. // probe 2
  3253. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3254. // probe 3
  3255. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3256. clean_up_after_endstop_move();
  3257. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3258. #endif // AUTO_BED_LEVELING_GRID
  3259. st_synchronize();
  3260. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3261. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3262. // When the bed is uneven, this height must be corrected.
  3263. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3264. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3265. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3266. z_tmp = current_position[Z_AXIS];
  3267. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3268. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3270. }
  3271. break;
  3272. #ifndef Z_PROBE_SLED
  3273. case 30: // G30 Single Z Probe
  3274. {
  3275. st_synchronize();
  3276. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3277. setup_for_endstop_move();
  3278. feedrate = homing_feedrate[Z_AXIS];
  3279. run_z_probe();
  3280. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3281. SERIAL_PROTOCOLPGM(" X: ");
  3282. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3283. SERIAL_PROTOCOLPGM(" Y: ");
  3284. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3285. SERIAL_PROTOCOLPGM(" Z: ");
  3286. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3287. SERIAL_PROTOCOLPGM("\n");
  3288. clean_up_after_endstop_move();
  3289. }
  3290. break;
  3291. #else
  3292. case 31: // dock the sled
  3293. dock_sled(true);
  3294. break;
  3295. case 32: // undock the sled
  3296. dock_sled(false);
  3297. break;
  3298. #endif // Z_PROBE_SLED
  3299. #endif // ENABLE_AUTO_BED_LEVELING
  3300. #ifdef MESH_BED_LEVELING
  3301. case 30: // G30 Single Z Probe
  3302. {
  3303. st_synchronize();
  3304. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3305. setup_for_endstop_move();
  3306. feedrate = homing_feedrate[Z_AXIS];
  3307. find_bed_induction_sensor_point_z(-10.f, 3);
  3308. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3309. clean_up_after_endstop_move();
  3310. }
  3311. break;
  3312. case 75:
  3313. {
  3314. for (int i = 40; i <= 110; i++)
  3315. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3316. }
  3317. break;
  3318. case 76: //PINDA probe temperature calibration
  3319. {
  3320. #ifdef PINDA_THERMISTOR
  3321. if (true)
  3322. {
  3323. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3324. //we need to know accurate position of first calibration point
  3325. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3326. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3327. break;
  3328. }
  3329. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3330. {
  3331. // We don't know where we are! HOME!
  3332. // Push the commands to the front of the message queue in the reverse order!
  3333. // There shall be always enough space reserved for these commands.
  3334. repeatcommand_front(); // repeat G76 with all its parameters
  3335. enquecommand_front_P((PSTR("G28 W0")));
  3336. break;
  3337. }
  3338. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3339. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3340. if (result)
  3341. {
  3342. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3344. current_position[Z_AXIS] = 50;
  3345. current_position[Y_AXIS] = 180;
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3347. st_synchronize();
  3348. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3349. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3350. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3352. st_synchronize();
  3353. gcode_G28(false, false, true);
  3354. }
  3355. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3356. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3357. current_position[Z_AXIS] = 100;
  3358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3359. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3360. lcd_temp_cal_show_result(false);
  3361. break;
  3362. }
  3363. }
  3364. lcd_update_enable(true);
  3365. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3366. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3367. float zero_z;
  3368. int z_shift = 0; //unit: steps
  3369. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3370. if (start_temp < 35) start_temp = 35;
  3371. if (start_temp < current_temperature_pinda) start_temp += 5;
  3372. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3373. // setTargetHotend(200, 0);
  3374. setTargetBed(70 + (start_temp - 30));
  3375. custom_message = true;
  3376. custom_message_type = 4;
  3377. custom_message_state = 1;
  3378. custom_message = _T(MSG_TEMP_CALIBRATION);
  3379. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3381. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3382. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3384. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3386. st_synchronize();
  3387. while (current_temperature_pinda < start_temp)
  3388. {
  3389. delay_keep_alive(1000);
  3390. serialecho_temperatures();
  3391. }
  3392. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3393. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3395. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3396. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3398. st_synchronize();
  3399. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3400. if (find_z_result == false) {
  3401. lcd_temp_cal_show_result(find_z_result);
  3402. break;
  3403. }
  3404. zero_z = current_position[Z_AXIS];
  3405. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3406. int i = -1; for (; i < 5; i++)
  3407. {
  3408. float temp = (40 + i * 5);
  3409. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3410. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3411. if (start_temp <= temp) break;
  3412. }
  3413. for (i++; i < 5; i++)
  3414. {
  3415. float temp = (40 + i * 5);
  3416. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3417. custom_message_state = i + 2;
  3418. setTargetBed(50 + 10 * (temp - 30) / 5);
  3419. // setTargetHotend(255, 0);
  3420. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3422. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3423. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3425. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3427. st_synchronize();
  3428. while (current_temperature_pinda < temp)
  3429. {
  3430. delay_keep_alive(1000);
  3431. serialecho_temperatures();
  3432. }
  3433. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3435. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3436. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3438. st_synchronize();
  3439. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3440. if (find_z_result == false) {
  3441. lcd_temp_cal_show_result(find_z_result);
  3442. break;
  3443. }
  3444. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3445. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3446. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3447. }
  3448. lcd_temp_cal_show_result(true);
  3449. break;
  3450. }
  3451. #endif //PINDA_THERMISTOR
  3452. setTargetBed(PINDA_MIN_T);
  3453. float zero_z;
  3454. int z_shift = 0; //unit: steps
  3455. int t_c; // temperature
  3456. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3457. // We don't know where we are! HOME!
  3458. // Push the commands to the front of the message queue in the reverse order!
  3459. // There shall be always enough space reserved for these commands.
  3460. repeatcommand_front(); // repeat G76 with all its parameters
  3461. enquecommand_front_P((PSTR("G28 W0")));
  3462. break;
  3463. }
  3464. puts_P(_N("PINDA probe calibration start"));
  3465. custom_message = true;
  3466. custom_message_type = 4;
  3467. custom_message_state = 1;
  3468. custom_message = _T(MSG_TEMP_CALIBRATION);
  3469. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3470. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3471. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3473. st_synchronize();
  3474. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3475. delay_keep_alive(1000);
  3476. serialecho_temperatures();
  3477. }
  3478. //enquecommand_P(PSTR("M190 S50"));
  3479. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3480. delay_keep_alive(1000);
  3481. serialecho_temperatures();
  3482. }
  3483. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3484. current_position[Z_AXIS] = 5;
  3485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3486. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3487. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3489. st_synchronize();
  3490. find_bed_induction_sensor_point_z(-1.f);
  3491. zero_z = current_position[Z_AXIS];
  3492. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3493. for (int i = 0; i<5; i++) {
  3494. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3495. custom_message_state = i + 2;
  3496. t_c = 60 + i * 10;
  3497. setTargetBed(t_c);
  3498. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3499. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3500. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3502. st_synchronize();
  3503. while (degBed() < t_c) {
  3504. delay_keep_alive(1000);
  3505. serialecho_temperatures();
  3506. }
  3507. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3508. delay_keep_alive(1000);
  3509. serialecho_temperatures();
  3510. }
  3511. current_position[Z_AXIS] = 5;
  3512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3513. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3514. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3516. st_synchronize();
  3517. find_bed_induction_sensor_point_z(-1.f);
  3518. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3519. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3520. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3521. }
  3522. custom_message_type = 0;
  3523. custom_message = false;
  3524. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3525. puts_P(_N("Temperature calibration done."));
  3526. disable_x();
  3527. disable_y();
  3528. disable_z();
  3529. disable_e0();
  3530. disable_e1();
  3531. disable_e2();
  3532. setTargetBed(0); //set bed target temperature back to 0
  3533. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3534. temp_cal_active = true;
  3535. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3536. lcd_update_enable(true);
  3537. lcd_update(2);
  3538. }
  3539. break;
  3540. #ifdef DIS
  3541. case 77:
  3542. {
  3543. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3544. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3545. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3546. float dimension_x = 40;
  3547. float dimension_y = 40;
  3548. int points_x = 40;
  3549. int points_y = 40;
  3550. float offset_x = 74;
  3551. float offset_y = 33;
  3552. if (code_seen('X')) dimension_x = code_value();
  3553. if (code_seen('Y')) dimension_y = code_value();
  3554. if (code_seen('XP')) points_x = code_value();
  3555. if (code_seen('YP')) points_y = code_value();
  3556. if (code_seen('XO')) offset_x = code_value();
  3557. if (code_seen('YO')) offset_y = code_value();
  3558. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3559. } break;
  3560. #endif
  3561. case 79: {
  3562. for (int i = 255; i > 0; i = i - 5) {
  3563. fanSpeed = i;
  3564. //delay_keep_alive(2000);
  3565. for (int j = 0; j < 100; j++) {
  3566. delay_keep_alive(100);
  3567. }
  3568. fan_speed[1];
  3569. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3570. }
  3571. }break;
  3572. /**
  3573. * G80: Mesh-based Z probe, probes a grid and produces a
  3574. * mesh to compensate for variable bed height
  3575. *
  3576. * The S0 report the points as below
  3577. *
  3578. * +----> X-axis
  3579. * |
  3580. * |
  3581. * v Y-axis
  3582. *
  3583. */
  3584. case 80:
  3585. #ifdef MK1BP
  3586. break;
  3587. #endif //MK1BP
  3588. case_G80:
  3589. {
  3590. mesh_bed_leveling_flag = true;
  3591. int8_t verbosity_level = 0;
  3592. static bool run = false;
  3593. if (code_seen('V')) {
  3594. // Just 'V' without a number counts as V1.
  3595. char c = strchr_pointer[1];
  3596. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3597. }
  3598. // Firstly check if we know where we are
  3599. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3600. // We don't know where we are! HOME!
  3601. // Push the commands to the front of the message queue in the reverse order!
  3602. // There shall be always enough space reserved for these commands.
  3603. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3604. repeatcommand_front(); // repeat G80 with all its parameters
  3605. enquecommand_front_P((PSTR("G28 W0")));
  3606. }
  3607. else {
  3608. mesh_bed_leveling_flag = false;
  3609. }
  3610. break;
  3611. }
  3612. bool temp_comp_start = true;
  3613. #ifdef PINDA_THERMISTOR
  3614. temp_comp_start = false;
  3615. #endif //PINDA_THERMISTOR
  3616. if (temp_comp_start)
  3617. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3618. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3619. temp_compensation_start();
  3620. run = true;
  3621. repeatcommand_front(); // repeat G80 with all its parameters
  3622. enquecommand_front_P((PSTR("G28 W0")));
  3623. }
  3624. else {
  3625. mesh_bed_leveling_flag = false;
  3626. }
  3627. break;
  3628. }
  3629. run = false;
  3630. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3631. mesh_bed_leveling_flag = false;
  3632. break;
  3633. }
  3634. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3635. bool custom_message_old = custom_message;
  3636. unsigned int custom_message_type_old = custom_message_type;
  3637. unsigned int custom_message_state_old = custom_message_state;
  3638. custom_message = true;
  3639. custom_message_type = 1;
  3640. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3641. lcd_update(1);
  3642. mbl.reset(); //reset mesh bed leveling
  3643. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3644. // consumed during the first movements following this statement.
  3645. babystep_undo();
  3646. // Cycle through all points and probe them
  3647. // First move up. During this first movement, the babystepping will be reverted.
  3648. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3650. // The move to the first calibration point.
  3651. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3652. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3653. #ifdef SUPPORT_VERBOSITY
  3654. if (verbosity_level >= 1)
  3655. {
  3656. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3657. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3658. }
  3659. #endif //SUPPORT_VERBOSITY
  3660. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3662. // Wait until the move is finished.
  3663. st_synchronize();
  3664. int mesh_point = 0; //index number of calibration point
  3665. int ix = 0;
  3666. int iy = 0;
  3667. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3668. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3669. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3670. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3671. #ifdef SUPPORT_VERBOSITY
  3672. if (verbosity_level >= 1) {
  3673. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3674. }
  3675. #endif // SUPPORT_VERBOSITY
  3676. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3677. const char *kill_message = NULL;
  3678. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3679. // Get coords of a measuring point.
  3680. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3681. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3682. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3683. float z0 = 0.f;
  3684. if (has_z && mesh_point > 0) {
  3685. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3686. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3687. //#if 0
  3688. #ifdef SUPPORT_VERBOSITY
  3689. if (verbosity_level >= 1) {
  3690. SERIAL_ECHOLNPGM("");
  3691. SERIAL_ECHOPGM("Bed leveling, point: ");
  3692. MYSERIAL.print(mesh_point);
  3693. SERIAL_ECHOPGM(", calibration z: ");
  3694. MYSERIAL.print(z0, 5);
  3695. SERIAL_ECHOLNPGM("");
  3696. }
  3697. #endif // SUPPORT_VERBOSITY
  3698. //#endif
  3699. }
  3700. // Move Z up to MESH_HOME_Z_SEARCH.
  3701. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3703. st_synchronize();
  3704. // Move to XY position of the sensor point.
  3705. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3706. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3707. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3708. #ifdef SUPPORT_VERBOSITY
  3709. if (verbosity_level >= 1) {
  3710. SERIAL_PROTOCOL(mesh_point);
  3711. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3712. }
  3713. #endif // SUPPORT_VERBOSITY
  3714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3715. st_synchronize();
  3716. // Go down until endstop is hit
  3717. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3718. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3719. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3720. break;
  3721. }
  3722. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3723. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3724. break;
  3725. }
  3726. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3727. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3728. break;
  3729. }
  3730. #ifdef SUPPORT_VERBOSITY
  3731. if (verbosity_level >= 10) {
  3732. SERIAL_ECHOPGM("X: ");
  3733. MYSERIAL.print(current_position[X_AXIS], 5);
  3734. SERIAL_ECHOLNPGM("");
  3735. SERIAL_ECHOPGM("Y: ");
  3736. MYSERIAL.print(current_position[Y_AXIS], 5);
  3737. SERIAL_PROTOCOLPGM("\n");
  3738. }
  3739. #endif // SUPPORT_VERBOSITY
  3740. float offset_z = 0;
  3741. #ifdef PINDA_THERMISTOR
  3742. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3743. #endif //PINDA_THERMISTOR
  3744. // #ifdef SUPPORT_VERBOSITY
  3745. /* if (verbosity_level >= 1)
  3746. {
  3747. SERIAL_ECHOPGM("mesh bed leveling: ");
  3748. MYSERIAL.print(current_position[Z_AXIS], 5);
  3749. SERIAL_ECHOPGM(" offset: ");
  3750. MYSERIAL.print(offset_z, 5);
  3751. SERIAL_ECHOLNPGM("");
  3752. }*/
  3753. // #endif // SUPPORT_VERBOSITY
  3754. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3755. custom_message_state--;
  3756. mesh_point++;
  3757. lcd_update(1);
  3758. }
  3759. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3760. #ifdef SUPPORT_VERBOSITY
  3761. if (verbosity_level >= 20) {
  3762. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3763. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3764. MYSERIAL.print(current_position[Z_AXIS], 5);
  3765. }
  3766. #endif // SUPPORT_VERBOSITY
  3767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3768. st_synchronize();
  3769. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3770. kill(kill_message);
  3771. SERIAL_ECHOLNPGM("killed");
  3772. }
  3773. clean_up_after_endstop_move();
  3774. // SERIAL_ECHOLNPGM("clean up finished ");
  3775. bool apply_temp_comp = true;
  3776. #ifdef PINDA_THERMISTOR
  3777. apply_temp_comp = false;
  3778. #endif
  3779. if (apply_temp_comp)
  3780. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3781. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3782. // SERIAL_ECHOLNPGM("babystep applied");
  3783. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3784. #ifdef SUPPORT_VERBOSITY
  3785. if (verbosity_level >= 1) {
  3786. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3787. }
  3788. #endif // SUPPORT_VERBOSITY
  3789. for (uint8_t i = 0; i < 4; ++i) {
  3790. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3791. long correction = 0;
  3792. if (code_seen(codes[i]))
  3793. correction = code_value_long();
  3794. else if (eeprom_bed_correction_valid) {
  3795. unsigned char *addr = (i < 2) ?
  3796. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3797. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3798. correction = eeprom_read_int8(addr);
  3799. }
  3800. if (correction == 0)
  3801. continue;
  3802. float offset = float(correction) * 0.001f;
  3803. if (fabs(offset) > 0.101f) {
  3804. SERIAL_ERROR_START;
  3805. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3806. SERIAL_ECHO(offset);
  3807. SERIAL_ECHOLNPGM(" microns");
  3808. }
  3809. else {
  3810. switch (i) {
  3811. case 0:
  3812. for (uint8_t row = 0; row < 3; ++row) {
  3813. mbl.z_values[row][1] += 0.5f * offset;
  3814. mbl.z_values[row][0] += offset;
  3815. }
  3816. break;
  3817. case 1:
  3818. for (uint8_t row = 0; row < 3; ++row) {
  3819. mbl.z_values[row][1] += 0.5f * offset;
  3820. mbl.z_values[row][2] += offset;
  3821. }
  3822. break;
  3823. case 2:
  3824. for (uint8_t col = 0; col < 3; ++col) {
  3825. mbl.z_values[1][col] += 0.5f * offset;
  3826. mbl.z_values[0][col] += offset;
  3827. }
  3828. break;
  3829. case 3:
  3830. for (uint8_t col = 0; col < 3; ++col) {
  3831. mbl.z_values[1][col] += 0.5f * offset;
  3832. mbl.z_values[2][col] += offset;
  3833. }
  3834. break;
  3835. }
  3836. }
  3837. }
  3838. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3839. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3840. // SERIAL_ECHOLNPGM("Upsample finished");
  3841. mbl.active = 1; //activate mesh bed leveling
  3842. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3843. go_home_with_z_lift();
  3844. // SERIAL_ECHOLNPGM("Go home finished");
  3845. //unretract (after PINDA preheat retraction)
  3846. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3847. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3849. }
  3850. KEEPALIVE_STATE(NOT_BUSY);
  3851. // Restore custom message state
  3852. lcd_setstatuspgm(_T(WELCOME_MSG));
  3853. custom_message = custom_message_old;
  3854. custom_message_type = custom_message_type_old;
  3855. custom_message_state = custom_message_state_old;
  3856. mesh_bed_leveling_flag = false;
  3857. mesh_bed_run_from_menu = false;
  3858. lcd_update(2);
  3859. }
  3860. break;
  3861. /**
  3862. * G81: Print mesh bed leveling status and bed profile if activated
  3863. */
  3864. case 81:
  3865. if (mbl.active) {
  3866. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3867. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3868. SERIAL_PROTOCOLPGM(",");
  3869. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3870. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3871. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3872. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3873. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3874. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3875. SERIAL_PROTOCOLPGM(" ");
  3876. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3877. }
  3878. SERIAL_PROTOCOLPGM("\n");
  3879. }
  3880. }
  3881. else
  3882. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3883. break;
  3884. #if 0
  3885. /**
  3886. * G82: Single Z probe at current location
  3887. *
  3888. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3889. *
  3890. */
  3891. case 82:
  3892. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3893. setup_for_endstop_move();
  3894. find_bed_induction_sensor_point_z();
  3895. clean_up_after_endstop_move();
  3896. SERIAL_PROTOCOLPGM("Bed found at: ");
  3897. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3898. SERIAL_PROTOCOLPGM("\n");
  3899. break;
  3900. /**
  3901. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3902. */
  3903. case 83:
  3904. {
  3905. int babystepz = code_seen('S') ? code_value() : 0;
  3906. int BabyPosition = code_seen('P') ? code_value() : 0;
  3907. if (babystepz != 0) {
  3908. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3909. // Is the axis indexed starting with zero or one?
  3910. if (BabyPosition > 4) {
  3911. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3912. }else{
  3913. // Save it to the eeprom
  3914. babystepLoadZ = babystepz;
  3915. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3916. // adjust the Z
  3917. babystepsTodoZadd(babystepLoadZ);
  3918. }
  3919. }
  3920. }
  3921. break;
  3922. /**
  3923. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3924. */
  3925. case 84:
  3926. babystepsTodoZsubtract(babystepLoadZ);
  3927. // babystepLoadZ = 0;
  3928. break;
  3929. /**
  3930. * G85: Prusa3D specific: Pick best babystep
  3931. */
  3932. case 85:
  3933. lcd_pick_babystep();
  3934. break;
  3935. #endif
  3936. /**
  3937. * G86: Prusa3D specific: Disable babystep correction after home.
  3938. * This G-code will be performed at the start of a calibration script.
  3939. */
  3940. case 86:
  3941. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3942. break;
  3943. /**
  3944. * G87: Prusa3D specific: Enable babystep correction after home
  3945. * This G-code will be performed at the end of a calibration script.
  3946. */
  3947. case 87:
  3948. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3949. break;
  3950. /**
  3951. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3952. */
  3953. case 88:
  3954. break;
  3955. #endif // ENABLE_MESH_BED_LEVELING
  3956. case 90: // G90
  3957. relative_mode = false;
  3958. break;
  3959. case 91: // G91
  3960. relative_mode = true;
  3961. break;
  3962. case 92: // G92
  3963. if(!code_seen(axis_codes[E_AXIS]))
  3964. st_synchronize();
  3965. for(int8_t i=0; i < NUM_AXIS; i++) {
  3966. if(code_seen(axis_codes[i])) {
  3967. if(i == E_AXIS) {
  3968. current_position[i] = code_value();
  3969. plan_set_e_position(current_position[E_AXIS]);
  3970. }
  3971. else {
  3972. current_position[i] = code_value()+add_homing[i];
  3973. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3974. }
  3975. }
  3976. }
  3977. break;
  3978. case 98: // G98 (activate farm mode)
  3979. farm_mode = 1;
  3980. PingTime = millis();
  3981. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3982. SilentModeMenu = SILENT_MODE_OFF;
  3983. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3984. break;
  3985. case 99: // G99 (deactivate farm mode)
  3986. farm_mode = 0;
  3987. lcd_printer_connected();
  3988. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3989. lcd_update(2);
  3990. break;
  3991. default:
  3992. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3993. }
  3994. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  3995. gcode_in_progress = 0;
  3996. } // end if(code_seen('G'))
  3997. else if(code_seen('M'))
  3998. {
  3999. int index;
  4000. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4001. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4002. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4003. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4004. } else
  4005. {
  4006. mcode_in_progress = (int)code_value();
  4007. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4008. switch(mcode_in_progress)
  4009. {
  4010. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4011. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4012. {
  4013. char *src = strchr_pointer + 2;
  4014. codenum = 0;
  4015. bool hasP = false, hasS = false;
  4016. if (code_seen('P')) {
  4017. codenum = code_value(); // milliseconds to wait
  4018. hasP = codenum > 0;
  4019. }
  4020. if (code_seen('S')) {
  4021. codenum = code_value() * 1000; // seconds to wait
  4022. hasS = codenum > 0;
  4023. }
  4024. starpos = strchr(src, '*');
  4025. if (starpos != NULL) *(starpos) = '\0';
  4026. while (*src == ' ') ++src;
  4027. if (!hasP && !hasS && *src != '\0') {
  4028. lcd_setstatus(src);
  4029. } else {
  4030. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4031. }
  4032. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4033. st_synchronize();
  4034. previous_millis_cmd = millis();
  4035. if (codenum > 0){
  4036. codenum += millis(); // keep track of when we started waiting
  4037. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4038. while(millis() < codenum && !lcd_clicked()){
  4039. manage_heater();
  4040. manage_inactivity(true);
  4041. lcd_update(0);
  4042. }
  4043. KEEPALIVE_STATE(IN_HANDLER);
  4044. lcd_ignore_click(false);
  4045. }else{
  4046. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4047. while(!lcd_clicked()){
  4048. manage_heater();
  4049. manage_inactivity(true);
  4050. lcd_update(0);
  4051. }
  4052. KEEPALIVE_STATE(IN_HANDLER);
  4053. }
  4054. if (IS_SD_PRINTING)
  4055. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4056. else
  4057. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4058. }
  4059. break;
  4060. case 17:
  4061. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4062. enable_x();
  4063. enable_y();
  4064. enable_z();
  4065. enable_e0();
  4066. enable_e1();
  4067. enable_e2();
  4068. break;
  4069. #ifdef SDSUPPORT
  4070. case 20: // M20 - list SD card
  4071. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4072. card.ls();
  4073. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4074. break;
  4075. case 21: // M21 - init SD card
  4076. card.initsd();
  4077. break;
  4078. case 22: //M22 - release SD card
  4079. card.release();
  4080. break;
  4081. case 23: //M23 - Select file
  4082. starpos = (strchr(strchr_pointer + 4,'*'));
  4083. if(starpos!=NULL)
  4084. *(starpos)='\0';
  4085. card.openFile(strchr_pointer + 4,true);
  4086. break;
  4087. case 24: //M24 - Start SD print
  4088. if (!card.paused)
  4089. failstats_reset_print();
  4090. card.startFileprint();
  4091. starttime=millis();
  4092. break;
  4093. case 25: //M25 - Pause SD print
  4094. card.pauseSDPrint();
  4095. break;
  4096. case 26: //M26 - Set SD index
  4097. if(card.cardOK && code_seen('S')) {
  4098. card.setIndex(code_value_long());
  4099. }
  4100. break;
  4101. case 27: //M27 - Get SD status
  4102. card.getStatus();
  4103. break;
  4104. case 28: //M28 - Start SD write
  4105. starpos = (strchr(strchr_pointer + 4,'*'));
  4106. if(starpos != NULL){
  4107. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4108. strchr_pointer = strchr(npos,' ') + 1;
  4109. *(starpos) = '\0';
  4110. }
  4111. card.openFile(strchr_pointer+4,false);
  4112. break;
  4113. case 29: //M29 - Stop SD write
  4114. //processed in write to file routine above
  4115. //card,saving = false;
  4116. break;
  4117. case 30: //M30 <filename> Delete File
  4118. if (card.cardOK){
  4119. card.closefile();
  4120. starpos = (strchr(strchr_pointer + 4,'*'));
  4121. if(starpos != NULL){
  4122. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4123. strchr_pointer = strchr(npos,' ') + 1;
  4124. *(starpos) = '\0';
  4125. }
  4126. card.removeFile(strchr_pointer + 4);
  4127. }
  4128. break;
  4129. case 32: //M32 - Select file and start SD print
  4130. {
  4131. if(card.sdprinting) {
  4132. st_synchronize();
  4133. }
  4134. starpos = (strchr(strchr_pointer + 4,'*'));
  4135. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4136. if(namestartpos==NULL)
  4137. {
  4138. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4139. }
  4140. else
  4141. namestartpos++; //to skip the '!'
  4142. if(starpos!=NULL)
  4143. *(starpos)='\0';
  4144. bool call_procedure=(code_seen('P'));
  4145. if(strchr_pointer>namestartpos)
  4146. call_procedure=false; //false alert, 'P' found within filename
  4147. if( card.cardOK )
  4148. {
  4149. card.openFile(namestartpos,true,!call_procedure);
  4150. if(code_seen('S'))
  4151. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4152. card.setIndex(code_value_long());
  4153. card.startFileprint();
  4154. if(!call_procedure)
  4155. starttime=millis(); //procedure calls count as normal print time.
  4156. }
  4157. } break;
  4158. case 928: //M928 - Start SD write
  4159. starpos = (strchr(strchr_pointer + 5,'*'));
  4160. if(starpos != NULL){
  4161. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4162. strchr_pointer = strchr(npos,' ') + 1;
  4163. *(starpos) = '\0';
  4164. }
  4165. card.openLogFile(strchr_pointer+5);
  4166. break;
  4167. #endif //SDSUPPORT
  4168. case 31: //M31 take time since the start of the SD print or an M109 command
  4169. {
  4170. stoptime=millis();
  4171. char time[30];
  4172. unsigned long t=(stoptime-starttime)/1000;
  4173. int sec,min;
  4174. min=t/60;
  4175. sec=t%60;
  4176. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4177. SERIAL_ECHO_START;
  4178. SERIAL_ECHOLN(time);
  4179. lcd_setstatus(time);
  4180. autotempShutdown();
  4181. }
  4182. break;
  4183. case 42: //M42 -Change pin status via gcode
  4184. if (code_seen('S'))
  4185. {
  4186. int pin_status = code_value();
  4187. int pin_number = LED_PIN;
  4188. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4189. pin_number = code_value();
  4190. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4191. {
  4192. if (sensitive_pins[i] == pin_number)
  4193. {
  4194. pin_number = -1;
  4195. break;
  4196. }
  4197. }
  4198. #if defined(FAN_PIN) && FAN_PIN > -1
  4199. if (pin_number == FAN_PIN)
  4200. fanSpeed = pin_status;
  4201. #endif
  4202. if (pin_number > -1)
  4203. {
  4204. pinMode(pin_number, OUTPUT);
  4205. digitalWrite(pin_number, pin_status);
  4206. analogWrite(pin_number, pin_status);
  4207. }
  4208. }
  4209. break;
  4210. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4211. // Reset the baby step value and the baby step applied flag.
  4212. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4213. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4214. // Reset the skew and offset in both RAM and EEPROM.
  4215. reset_bed_offset_and_skew();
  4216. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4217. // the planner will not perform any adjustments in the XY plane.
  4218. // Wait for the motors to stop and update the current position with the absolute values.
  4219. world2machine_revert_to_uncorrected();
  4220. break;
  4221. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4222. {
  4223. int8_t verbosity_level = 0;
  4224. bool only_Z = code_seen('Z');
  4225. #ifdef SUPPORT_VERBOSITY
  4226. if (code_seen('V'))
  4227. {
  4228. // Just 'V' without a number counts as V1.
  4229. char c = strchr_pointer[1];
  4230. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4231. }
  4232. #endif //SUPPORT_VERBOSITY
  4233. gcode_M45(only_Z, verbosity_level);
  4234. }
  4235. break;
  4236. /*
  4237. case 46:
  4238. {
  4239. // M46: Prusa3D: Show the assigned IP address.
  4240. uint8_t ip[4];
  4241. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4242. if (hasIP) {
  4243. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4244. SERIAL_ECHO(int(ip[0]));
  4245. SERIAL_ECHOPGM(".");
  4246. SERIAL_ECHO(int(ip[1]));
  4247. SERIAL_ECHOPGM(".");
  4248. SERIAL_ECHO(int(ip[2]));
  4249. SERIAL_ECHOPGM(".");
  4250. SERIAL_ECHO(int(ip[3]));
  4251. SERIAL_ECHOLNPGM("");
  4252. } else {
  4253. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4254. }
  4255. break;
  4256. }
  4257. */
  4258. case 47:
  4259. // M47: Prusa3D: Show end stops dialog on the display.
  4260. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4261. lcd_diag_show_end_stops();
  4262. KEEPALIVE_STATE(IN_HANDLER);
  4263. break;
  4264. #if 0
  4265. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4266. {
  4267. // Disable the default update procedure of the display. We will do a modal dialog.
  4268. lcd_update_enable(false);
  4269. // Let the planner use the uncorrected coordinates.
  4270. mbl.reset();
  4271. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4272. // the planner will not perform any adjustments in the XY plane.
  4273. // Wait for the motors to stop and update the current position with the absolute values.
  4274. world2machine_revert_to_uncorrected();
  4275. // Move the print head close to the bed.
  4276. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4278. st_synchronize();
  4279. // Home in the XY plane.
  4280. set_destination_to_current();
  4281. setup_for_endstop_move();
  4282. home_xy();
  4283. int8_t verbosity_level = 0;
  4284. if (code_seen('V')) {
  4285. // Just 'V' without a number counts as V1.
  4286. char c = strchr_pointer[1];
  4287. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4288. }
  4289. bool success = scan_bed_induction_points(verbosity_level);
  4290. clean_up_after_endstop_move();
  4291. // Print head up.
  4292. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4294. st_synchronize();
  4295. lcd_update_enable(true);
  4296. break;
  4297. }
  4298. #endif
  4299. // M48 Z-Probe repeatability measurement function.
  4300. //
  4301. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4302. //
  4303. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4304. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4305. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4306. // regenerated.
  4307. //
  4308. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4309. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4310. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4311. //
  4312. #ifdef ENABLE_AUTO_BED_LEVELING
  4313. #ifdef Z_PROBE_REPEATABILITY_TEST
  4314. case 48: // M48 Z-Probe repeatability
  4315. {
  4316. #if Z_MIN_PIN == -1
  4317. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4318. #endif
  4319. double sum=0.0;
  4320. double mean=0.0;
  4321. double sigma=0.0;
  4322. double sample_set[50];
  4323. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4324. double X_current, Y_current, Z_current;
  4325. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4326. if (code_seen('V') || code_seen('v')) {
  4327. verbose_level = code_value();
  4328. if (verbose_level<0 || verbose_level>4 ) {
  4329. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4330. goto Sigma_Exit;
  4331. }
  4332. }
  4333. if (verbose_level > 0) {
  4334. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4335. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4336. }
  4337. if (code_seen('n')) {
  4338. n_samples = code_value();
  4339. if (n_samples<4 || n_samples>50 ) {
  4340. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4341. goto Sigma_Exit;
  4342. }
  4343. }
  4344. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4345. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4346. Z_current = st_get_position_mm(Z_AXIS);
  4347. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4348. ext_position = st_get_position_mm(E_AXIS);
  4349. if (code_seen('X') || code_seen('x') ) {
  4350. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4351. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4352. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4353. goto Sigma_Exit;
  4354. }
  4355. }
  4356. if (code_seen('Y') || code_seen('y') ) {
  4357. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4358. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4359. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4360. goto Sigma_Exit;
  4361. }
  4362. }
  4363. if (code_seen('L') || code_seen('l') ) {
  4364. n_legs = code_value();
  4365. if ( n_legs==1 )
  4366. n_legs = 2;
  4367. if ( n_legs<0 || n_legs>15 ) {
  4368. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4369. goto Sigma_Exit;
  4370. }
  4371. }
  4372. //
  4373. // Do all the preliminary setup work. First raise the probe.
  4374. //
  4375. st_synchronize();
  4376. plan_bed_level_matrix.set_to_identity();
  4377. plan_buffer_line( X_current, Y_current, Z_start_location,
  4378. ext_position,
  4379. homing_feedrate[Z_AXIS]/60,
  4380. active_extruder);
  4381. st_synchronize();
  4382. //
  4383. // Now get everything to the specified probe point So we can safely do a probe to
  4384. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4385. // use that as a starting point for each probe.
  4386. //
  4387. if (verbose_level > 2)
  4388. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4389. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4390. ext_position,
  4391. homing_feedrate[X_AXIS]/60,
  4392. active_extruder);
  4393. st_synchronize();
  4394. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4395. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4396. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4397. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4398. //
  4399. // OK, do the inital probe to get us close to the bed.
  4400. // Then retrace the right amount and use that in subsequent probes
  4401. //
  4402. setup_for_endstop_move();
  4403. run_z_probe();
  4404. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4405. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4406. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4407. ext_position,
  4408. homing_feedrate[X_AXIS]/60,
  4409. active_extruder);
  4410. st_synchronize();
  4411. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4412. for( n=0; n<n_samples; n++) {
  4413. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4414. if ( n_legs) {
  4415. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4416. int rotational_direction, l;
  4417. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4418. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4419. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4420. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4421. //SERIAL_ECHOPAIR(" theta: ",theta);
  4422. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4423. //SERIAL_PROTOCOLLNPGM("");
  4424. for( l=0; l<n_legs-1; l++) {
  4425. if (rotational_direction==1)
  4426. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4427. else
  4428. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4429. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4430. if ( radius<0.0 )
  4431. radius = -radius;
  4432. X_current = X_probe_location + cos(theta) * radius;
  4433. Y_current = Y_probe_location + sin(theta) * radius;
  4434. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4435. X_current = X_MIN_POS;
  4436. if ( X_current>X_MAX_POS)
  4437. X_current = X_MAX_POS;
  4438. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4439. Y_current = Y_MIN_POS;
  4440. if ( Y_current>Y_MAX_POS)
  4441. Y_current = Y_MAX_POS;
  4442. if (verbose_level>3 ) {
  4443. SERIAL_ECHOPAIR("x: ", X_current);
  4444. SERIAL_ECHOPAIR("y: ", Y_current);
  4445. SERIAL_PROTOCOLLNPGM("");
  4446. }
  4447. do_blocking_move_to( X_current, Y_current, Z_current );
  4448. }
  4449. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4450. }
  4451. setup_for_endstop_move();
  4452. run_z_probe();
  4453. sample_set[n] = current_position[Z_AXIS];
  4454. //
  4455. // Get the current mean for the data points we have so far
  4456. //
  4457. sum=0.0;
  4458. for( j=0; j<=n; j++) {
  4459. sum = sum + sample_set[j];
  4460. }
  4461. mean = sum / (double (n+1));
  4462. //
  4463. // Now, use that mean to calculate the standard deviation for the
  4464. // data points we have so far
  4465. //
  4466. sum=0.0;
  4467. for( j=0; j<=n; j++) {
  4468. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4469. }
  4470. sigma = sqrt( sum / (double (n+1)) );
  4471. if (verbose_level > 1) {
  4472. SERIAL_PROTOCOL(n+1);
  4473. SERIAL_PROTOCOL(" of ");
  4474. SERIAL_PROTOCOL(n_samples);
  4475. SERIAL_PROTOCOLPGM(" z: ");
  4476. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4477. }
  4478. if (verbose_level > 2) {
  4479. SERIAL_PROTOCOL(" mean: ");
  4480. SERIAL_PROTOCOL_F(mean,6);
  4481. SERIAL_PROTOCOL(" sigma: ");
  4482. SERIAL_PROTOCOL_F(sigma,6);
  4483. }
  4484. if (verbose_level > 0)
  4485. SERIAL_PROTOCOLPGM("\n");
  4486. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4487. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4488. st_synchronize();
  4489. }
  4490. delay(1000);
  4491. clean_up_after_endstop_move();
  4492. // enable_endstops(true);
  4493. if (verbose_level > 0) {
  4494. SERIAL_PROTOCOLPGM("Mean: ");
  4495. SERIAL_PROTOCOL_F(mean, 6);
  4496. SERIAL_PROTOCOLPGM("\n");
  4497. }
  4498. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4499. SERIAL_PROTOCOL_F(sigma, 6);
  4500. SERIAL_PROTOCOLPGM("\n\n");
  4501. Sigma_Exit:
  4502. break;
  4503. }
  4504. #endif // Z_PROBE_REPEATABILITY_TEST
  4505. #endif // ENABLE_AUTO_BED_LEVELING
  4506. case 73: //M73 show percent done and time remaining
  4507. if(code_seen('P')) print_percent_done_normal = code_value();
  4508. if(code_seen('R')) print_time_remaining_normal = code_value();
  4509. if(code_seen('Q')) print_percent_done_silent = code_value();
  4510. if(code_seen('S')) print_time_remaining_silent = code_value();
  4511. {
  4512. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4513. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4514. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4515. }
  4516. break;
  4517. case 104: // M104
  4518. if(setTargetedHotend(104)){
  4519. break;
  4520. }
  4521. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4522. setWatch();
  4523. break;
  4524. case 112: // M112 -Emergency Stop
  4525. kill(_n(""), 3);
  4526. break;
  4527. case 140: // M140 set bed temp
  4528. if (code_seen('S')) setTargetBed(code_value());
  4529. break;
  4530. case 105 : // M105
  4531. if(setTargetedHotend(105)){
  4532. break;
  4533. }
  4534. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4535. SERIAL_PROTOCOLPGM("ok T:");
  4536. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4537. SERIAL_PROTOCOLPGM(" /");
  4538. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4539. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4540. SERIAL_PROTOCOLPGM(" B:");
  4541. SERIAL_PROTOCOL_F(degBed(),1);
  4542. SERIAL_PROTOCOLPGM(" /");
  4543. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4544. #endif //TEMP_BED_PIN
  4545. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4546. SERIAL_PROTOCOLPGM(" T");
  4547. SERIAL_PROTOCOL(cur_extruder);
  4548. SERIAL_PROTOCOLPGM(":");
  4549. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4550. SERIAL_PROTOCOLPGM(" /");
  4551. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4552. }
  4553. #else
  4554. SERIAL_ERROR_START;
  4555. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4556. #endif
  4557. SERIAL_PROTOCOLPGM(" @:");
  4558. #ifdef EXTRUDER_WATTS
  4559. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4560. SERIAL_PROTOCOLPGM("W");
  4561. #else
  4562. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4563. #endif
  4564. SERIAL_PROTOCOLPGM(" B@:");
  4565. #ifdef BED_WATTS
  4566. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4567. SERIAL_PROTOCOLPGM("W");
  4568. #else
  4569. SERIAL_PROTOCOL(getHeaterPower(-1));
  4570. #endif
  4571. #ifdef PINDA_THERMISTOR
  4572. SERIAL_PROTOCOLPGM(" P:");
  4573. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4574. #endif //PINDA_THERMISTOR
  4575. #ifdef AMBIENT_THERMISTOR
  4576. SERIAL_PROTOCOLPGM(" A:");
  4577. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4578. #endif //AMBIENT_THERMISTOR
  4579. #ifdef SHOW_TEMP_ADC_VALUES
  4580. {float raw = 0.0;
  4581. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4582. SERIAL_PROTOCOLPGM(" ADC B:");
  4583. SERIAL_PROTOCOL_F(degBed(),1);
  4584. SERIAL_PROTOCOLPGM("C->");
  4585. raw = rawBedTemp();
  4586. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4587. SERIAL_PROTOCOLPGM(" Rb->");
  4588. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4589. SERIAL_PROTOCOLPGM(" Rxb->");
  4590. SERIAL_PROTOCOL_F(raw, 5);
  4591. #endif
  4592. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4593. SERIAL_PROTOCOLPGM(" T");
  4594. SERIAL_PROTOCOL(cur_extruder);
  4595. SERIAL_PROTOCOLPGM(":");
  4596. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4597. SERIAL_PROTOCOLPGM("C->");
  4598. raw = rawHotendTemp(cur_extruder);
  4599. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4600. SERIAL_PROTOCOLPGM(" Rt");
  4601. SERIAL_PROTOCOL(cur_extruder);
  4602. SERIAL_PROTOCOLPGM("->");
  4603. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4604. SERIAL_PROTOCOLPGM(" Rx");
  4605. SERIAL_PROTOCOL(cur_extruder);
  4606. SERIAL_PROTOCOLPGM("->");
  4607. SERIAL_PROTOCOL_F(raw, 5);
  4608. }}
  4609. #endif
  4610. SERIAL_PROTOCOLLN("");
  4611. KEEPALIVE_STATE(NOT_BUSY);
  4612. return;
  4613. break;
  4614. case 109:
  4615. {// M109 - Wait for extruder heater to reach target.
  4616. if(setTargetedHotend(109)){
  4617. break;
  4618. }
  4619. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4620. heating_status = 1;
  4621. if (farm_mode) { prusa_statistics(1); };
  4622. #ifdef AUTOTEMP
  4623. autotemp_enabled=false;
  4624. #endif
  4625. if (code_seen('S')) {
  4626. setTargetHotend(code_value(), tmp_extruder);
  4627. CooldownNoWait = true;
  4628. } else if (code_seen('R')) {
  4629. setTargetHotend(code_value(), tmp_extruder);
  4630. CooldownNoWait = false;
  4631. }
  4632. #ifdef AUTOTEMP
  4633. if (code_seen('S')) autotemp_min=code_value();
  4634. if (code_seen('B')) autotemp_max=code_value();
  4635. if (code_seen('F'))
  4636. {
  4637. autotemp_factor=code_value();
  4638. autotemp_enabled=true;
  4639. }
  4640. #endif
  4641. setWatch();
  4642. codenum = millis();
  4643. /* See if we are heating up or cooling down */
  4644. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4645. KEEPALIVE_STATE(NOT_BUSY);
  4646. cancel_heatup = false;
  4647. wait_for_heater(codenum); //loops until target temperature is reached
  4648. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4649. KEEPALIVE_STATE(IN_HANDLER);
  4650. heating_status = 2;
  4651. if (farm_mode) { prusa_statistics(2); };
  4652. //starttime=millis();
  4653. previous_millis_cmd = millis();
  4654. }
  4655. break;
  4656. case 190: // M190 - Wait for bed heater to reach target.
  4657. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4658. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4659. heating_status = 3;
  4660. if (farm_mode) { prusa_statistics(1); };
  4661. if (code_seen('S'))
  4662. {
  4663. setTargetBed(code_value());
  4664. CooldownNoWait = true;
  4665. }
  4666. else if (code_seen('R'))
  4667. {
  4668. setTargetBed(code_value());
  4669. CooldownNoWait = false;
  4670. }
  4671. codenum = millis();
  4672. cancel_heatup = false;
  4673. target_direction = isHeatingBed(); // true if heating, false if cooling
  4674. KEEPALIVE_STATE(NOT_BUSY);
  4675. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4676. {
  4677. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4678. {
  4679. if (!farm_mode) {
  4680. float tt = degHotend(active_extruder);
  4681. SERIAL_PROTOCOLPGM("T:");
  4682. SERIAL_PROTOCOL(tt);
  4683. SERIAL_PROTOCOLPGM(" E:");
  4684. SERIAL_PROTOCOL((int)active_extruder);
  4685. SERIAL_PROTOCOLPGM(" B:");
  4686. SERIAL_PROTOCOL_F(degBed(), 1);
  4687. SERIAL_PROTOCOLLN("");
  4688. }
  4689. codenum = millis();
  4690. }
  4691. manage_heater();
  4692. manage_inactivity();
  4693. lcd_update(0);
  4694. }
  4695. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4696. KEEPALIVE_STATE(IN_HANDLER);
  4697. heating_status = 4;
  4698. previous_millis_cmd = millis();
  4699. #endif
  4700. break;
  4701. #if defined(FAN_PIN) && FAN_PIN > -1
  4702. case 106: //M106 Fan On
  4703. if (code_seen('S')){
  4704. fanSpeed=constrain(code_value(),0,255);
  4705. }
  4706. else {
  4707. fanSpeed=255;
  4708. }
  4709. break;
  4710. case 107: //M107 Fan Off
  4711. fanSpeed = 0;
  4712. break;
  4713. #endif //FAN_PIN
  4714. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4715. case 80: // M80 - Turn on Power Supply
  4716. SET_OUTPUT(PS_ON_PIN); //GND
  4717. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4718. // If you have a switch on suicide pin, this is useful
  4719. // if you want to start another print with suicide feature after
  4720. // a print without suicide...
  4721. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4722. SET_OUTPUT(SUICIDE_PIN);
  4723. WRITE(SUICIDE_PIN, HIGH);
  4724. #endif
  4725. powersupply = true;
  4726. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4727. lcd_update(0);
  4728. break;
  4729. #endif
  4730. case 81: // M81 - Turn off Power Supply
  4731. disable_heater();
  4732. st_synchronize();
  4733. disable_e0();
  4734. disable_e1();
  4735. disable_e2();
  4736. finishAndDisableSteppers();
  4737. fanSpeed = 0;
  4738. delay(1000); // Wait a little before to switch off
  4739. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4740. st_synchronize();
  4741. suicide();
  4742. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4743. SET_OUTPUT(PS_ON_PIN);
  4744. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4745. #endif
  4746. powersupply = false;
  4747. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4748. lcd_update(0);
  4749. break;
  4750. case 82:
  4751. axis_relative_modes[3] = false;
  4752. break;
  4753. case 83:
  4754. axis_relative_modes[3] = true;
  4755. break;
  4756. case 18: //compatibility
  4757. case 84: // M84
  4758. if(code_seen('S')){
  4759. stepper_inactive_time = code_value() * 1000;
  4760. }
  4761. else
  4762. {
  4763. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4764. if(all_axis)
  4765. {
  4766. st_synchronize();
  4767. disable_e0();
  4768. disable_e1();
  4769. disable_e2();
  4770. finishAndDisableSteppers();
  4771. }
  4772. else
  4773. {
  4774. st_synchronize();
  4775. if (code_seen('X')) disable_x();
  4776. if (code_seen('Y')) disable_y();
  4777. if (code_seen('Z')) disable_z();
  4778. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4779. if (code_seen('E')) {
  4780. disable_e0();
  4781. disable_e1();
  4782. disable_e2();
  4783. }
  4784. #endif
  4785. }
  4786. }
  4787. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4788. print_time_remaining_init();
  4789. snmm_filaments_used = 0;
  4790. break;
  4791. case 85: // M85
  4792. if(code_seen('S')) {
  4793. max_inactive_time = code_value() * 1000;
  4794. }
  4795. break;
  4796. #ifdef SAFETYTIMER
  4797. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4798. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4799. if (code_seen('S')) {
  4800. safetytimer_inactive_time = code_value() * 1000;
  4801. safetyTimer.start();
  4802. }
  4803. break;
  4804. #endif
  4805. case 92: // M92
  4806. for(int8_t i=0; i < NUM_AXIS; i++)
  4807. {
  4808. if(code_seen(axis_codes[i]))
  4809. {
  4810. if(i == 3) { // E
  4811. float value = code_value();
  4812. if(value < 20.0) {
  4813. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4814. max_jerk[E_AXIS] *= factor;
  4815. max_feedrate[i] *= factor;
  4816. axis_steps_per_sqr_second[i] *= factor;
  4817. }
  4818. axis_steps_per_unit[i] = value;
  4819. }
  4820. else {
  4821. axis_steps_per_unit[i] = code_value();
  4822. }
  4823. }
  4824. }
  4825. break;
  4826. case 110: // M110 - reset line pos
  4827. if (code_seen('N'))
  4828. gcode_LastN = code_value_long();
  4829. break;
  4830. #ifdef HOST_KEEPALIVE_FEATURE
  4831. case 113: // M113 - Get or set Host Keepalive interval
  4832. if (code_seen('S')) {
  4833. host_keepalive_interval = (uint8_t)code_value_short();
  4834. // NOMORE(host_keepalive_interval, 60);
  4835. }
  4836. else {
  4837. SERIAL_ECHO_START;
  4838. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4839. SERIAL_PROTOCOLLN("");
  4840. }
  4841. break;
  4842. #endif
  4843. case 115: // M115
  4844. if (code_seen('V')) {
  4845. // Report the Prusa version number.
  4846. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4847. } else if (code_seen('U')) {
  4848. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4849. // pause the print and ask the user to upgrade the firmware.
  4850. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4851. } else {
  4852. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4853. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4854. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4855. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4856. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4857. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4858. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4859. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4860. SERIAL_ECHOPGM(" UUID:");
  4861. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4862. }
  4863. break;
  4864. /* case 117: // M117 display message
  4865. starpos = (strchr(strchr_pointer + 5,'*'));
  4866. if(starpos!=NULL)
  4867. *(starpos)='\0';
  4868. lcd_setstatus(strchr_pointer + 5);
  4869. break;*/
  4870. case 114: // M114
  4871. gcode_M114();
  4872. break;
  4873. case 120: // M120
  4874. enable_endstops(false) ;
  4875. break;
  4876. case 121: // M121
  4877. enable_endstops(true) ;
  4878. break;
  4879. case 119: // M119
  4880. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4881. SERIAL_PROTOCOLLN("");
  4882. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4883. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4884. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4885. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4886. }else{
  4887. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4888. }
  4889. SERIAL_PROTOCOLLN("");
  4890. #endif
  4891. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4892. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4893. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4894. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4895. }else{
  4896. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4897. }
  4898. SERIAL_PROTOCOLLN("");
  4899. #endif
  4900. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4901. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4902. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4903. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4904. }else{
  4905. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4906. }
  4907. SERIAL_PROTOCOLLN("");
  4908. #endif
  4909. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4910. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4911. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4912. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4913. }else{
  4914. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4915. }
  4916. SERIAL_PROTOCOLLN("");
  4917. #endif
  4918. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4919. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4920. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4921. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4922. }else{
  4923. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4924. }
  4925. SERIAL_PROTOCOLLN("");
  4926. #endif
  4927. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4928. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4929. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4930. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4931. }else{
  4932. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4933. }
  4934. SERIAL_PROTOCOLLN("");
  4935. #endif
  4936. break;
  4937. //TODO: update for all axis, use for loop
  4938. #ifdef BLINKM
  4939. case 150: // M150
  4940. {
  4941. byte red;
  4942. byte grn;
  4943. byte blu;
  4944. if(code_seen('R')) red = code_value();
  4945. if(code_seen('U')) grn = code_value();
  4946. if(code_seen('B')) blu = code_value();
  4947. SendColors(red,grn,blu);
  4948. }
  4949. break;
  4950. #endif //BLINKM
  4951. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4952. {
  4953. tmp_extruder = active_extruder;
  4954. if(code_seen('T')) {
  4955. tmp_extruder = code_value();
  4956. if(tmp_extruder >= EXTRUDERS) {
  4957. SERIAL_ECHO_START;
  4958. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4959. break;
  4960. }
  4961. }
  4962. float area = .0;
  4963. if(code_seen('D')) {
  4964. float diameter = (float)code_value();
  4965. if (diameter == 0.0) {
  4966. // setting any extruder filament size disables volumetric on the assumption that
  4967. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4968. // for all extruders
  4969. volumetric_enabled = false;
  4970. } else {
  4971. filament_size[tmp_extruder] = (float)code_value();
  4972. // make sure all extruders have some sane value for the filament size
  4973. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4974. #if EXTRUDERS > 1
  4975. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4976. #if EXTRUDERS > 2
  4977. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4978. #endif
  4979. #endif
  4980. volumetric_enabled = true;
  4981. }
  4982. } else {
  4983. //reserved for setting filament diameter via UFID or filament measuring device
  4984. break;
  4985. }
  4986. calculate_extruder_multipliers();
  4987. }
  4988. break;
  4989. case 201: // M201
  4990. for (int8_t i = 0; i < NUM_AXIS; i++)
  4991. {
  4992. if (code_seen(axis_codes[i]))
  4993. {
  4994. int val = code_value();
  4995. #ifdef TMC2130
  4996. int val_silent = val;
  4997. if ((i == X_AXIS) || (i == Y_AXIS))
  4998. {
  4999. if (val > NORMAL_MAX_ACCEL_XY)
  5000. val = NORMAL_MAX_ACCEL_XY;
  5001. if (val_silent > SILENT_MAX_ACCEL_XY)
  5002. val_silent = SILENT_MAX_ACCEL_XY;
  5003. }
  5004. max_acceleration_units_per_sq_second_normal[i] = val;
  5005. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5006. #else //TMC2130
  5007. max_acceleration_units_per_sq_second[i] = val;
  5008. #endif //TMC2130
  5009. }
  5010. }
  5011. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5012. reset_acceleration_rates();
  5013. break;
  5014. #if 0 // Not used for Sprinter/grbl gen6
  5015. case 202: // M202
  5016. for(int8_t i=0; i < NUM_AXIS; i++) {
  5017. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5018. }
  5019. break;
  5020. #endif
  5021. case 203: // M203 max feedrate mm/sec
  5022. for (int8_t i = 0; i < NUM_AXIS; i++)
  5023. {
  5024. if (code_seen(axis_codes[i]))
  5025. {
  5026. float val = code_value();
  5027. #ifdef TMC2130
  5028. float val_silent = val;
  5029. if ((i == X_AXIS) || (i == Y_AXIS))
  5030. {
  5031. if (val > NORMAL_MAX_FEEDRATE_XY)
  5032. val = NORMAL_MAX_FEEDRATE_XY;
  5033. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5034. val_silent = SILENT_MAX_FEEDRATE_XY;
  5035. }
  5036. max_feedrate_normal[i] = val;
  5037. max_feedrate_silent[i] = val_silent;
  5038. #else //TMC2130
  5039. max_feedrate[i] = val;
  5040. #endif //TMC2130
  5041. }
  5042. }
  5043. break;
  5044. case 204: // M204 acclereration S normal moves T filmanent only moves
  5045. {
  5046. if(code_seen('S')) acceleration = code_value() ;
  5047. if(code_seen('T')) retract_acceleration = code_value() ;
  5048. }
  5049. break;
  5050. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5051. {
  5052. if(code_seen('S')) minimumfeedrate = code_value();
  5053. if(code_seen('T')) mintravelfeedrate = code_value();
  5054. if(code_seen('B')) minsegmenttime = code_value() ;
  5055. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5056. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5057. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5058. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5059. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5060. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5061. }
  5062. break;
  5063. case 206: // M206 additional homing offset
  5064. for(int8_t i=0; i < 3; i++)
  5065. {
  5066. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5067. }
  5068. break;
  5069. #ifdef FWRETRACT
  5070. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5071. {
  5072. if(code_seen('S'))
  5073. {
  5074. retract_length = code_value() ;
  5075. }
  5076. if(code_seen('F'))
  5077. {
  5078. retract_feedrate = code_value()/60 ;
  5079. }
  5080. if(code_seen('Z'))
  5081. {
  5082. retract_zlift = code_value() ;
  5083. }
  5084. }break;
  5085. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5086. {
  5087. if(code_seen('S'))
  5088. {
  5089. retract_recover_length = code_value() ;
  5090. }
  5091. if(code_seen('F'))
  5092. {
  5093. retract_recover_feedrate = code_value()/60 ;
  5094. }
  5095. }break;
  5096. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5097. {
  5098. if(code_seen('S'))
  5099. {
  5100. int t= code_value() ;
  5101. switch(t)
  5102. {
  5103. case 0:
  5104. {
  5105. autoretract_enabled=false;
  5106. retracted[0]=false;
  5107. #if EXTRUDERS > 1
  5108. retracted[1]=false;
  5109. #endif
  5110. #if EXTRUDERS > 2
  5111. retracted[2]=false;
  5112. #endif
  5113. }break;
  5114. case 1:
  5115. {
  5116. autoretract_enabled=true;
  5117. retracted[0]=false;
  5118. #if EXTRUDERS > 1
  5119. retracted[1]=false;
  5120. #endif
  5121. #if EXTRUDERS > 2
  5122. retracted[2]=false;
  5123. #endif
  5124. }break;
  5125. default:
  5126. SERIAL_ECHO_START;
  5127. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5128. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5129. SERIAL_ECHOLNPGM("\"(1)");
  5130. }
  5131. }
  5132. }break;
  5133. #endif // FWRETRACT
  5134. #if EXTRUDERS > 1
  5135. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5136. {
  5137. if(setTargetedHotend(218)){
  5138. break;
  5139. }
  5140. if(code_seen('X'))
  5141. {
  5142. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5143. }
  5144. if(code_seen('Y'))
  5145. {
  5146. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5147. }
  5148. SERIAL_ECHO_START;
  5149. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5150. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5151. {
  5152. SERIAL_ECHO(" ");
  5153. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5154. SERIAL_ECHO(",");
  5155. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5156. }
  5157. SERIAL_ECHOLN("");
  5158. }break;
  5159. #endif
  5160. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5161. {
  5162. if(code_seen('S'))
  5163. {
  5164. feedmultiply = code_value() ;
  5165. }
  5166. }
  5167. break;
  5168. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5169. {
  5170. if(code_seen('S'))
  5171. {
  5172. int tmp_code = code_value();
  5173. if (code_seen('T'))
  5174. {
  5175. if(setTargetedHotend(221)){
  5176. break;
  5177. }
  5178. extruder_multiply[tmp_extruder] = tmp_code;
  5179. }
  5180. else
  5181. {
  5182. extrudemultiply = tmp_code ;
  5183. }
  5184. }
  5185. calculate_extruder_multipliers();
  5186. }
  5187. break;
  5188. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5189. {
  5190. if(code_seen('P')){
  5191. int pin_number = code_value(); // pin number
  5192. int pin_state = -1; // required pin state - default is inverted
  5193. if(code_seen('S')) pin_state = code_value(); // required pin state
  5194. if(pin_state >= -1 && pin_state <= 1){
  5195. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5196. {
  5197. if (sensitive_pins[i] == pin_number)
  5198. {
  5199. pin_number = -1;
  5200. break;
  5201. }
  5202. }
  5203. if (pin_number > -1)
  5204. {
  5205. int target = LOW;
  5206. st_synchronize();
  5207. pinMode(pin_number, INPUT);
  5208. switch(pin_state){
  5209. case 1:
  5210. target = HIGH;
  5211. break;
  5212. case 0:
  5213. target = LOW;
  5214. break;
  5215. case -1:
  5216. target = !digitalRead(pin_number);
  5217. break;
  5218. }
  5219. while(digitalRead(pin_number) != target){
  5220. manage_heater();
  5221. manage_inactivity();
  5222. lcd_update(0);
  5223. }
  5224. }
  5225. }
  5226. }
  5227. }
  5228. break;
  5229. #if NUM_SERVOS > 0
  5230. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5231. {
  5232. int servo_index = -1;
  5233. int servo_position = 0;
  5234. if (code_seen('P'))
  5235. servo_index = code_value();
  5236. if (code_seen('S')) {
  5237. servo_position = code_value();
  5238. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5239. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5240. servos[servo_index].attach(0);
  5241. #endif
  5242. servos[servo_index].write(servo_position);
  5243. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5244. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5245. servos[servo_index].detach();
  5246. #endif
  5247. }
  5248. else {
  5249. SERIAL_ECHO_START;
  5250. SERIAL_ECHO("Servo ");
  5251. SERIAL_ECHO(servo_index);
  5252. SERIAL_ECHOLN(" out of range");
  5253. }
  5254. }
  5255. else if (servo_index >= 0) {
  5256. SERIAL_PROTOCOL(_T(MSG_OK));
  5257. SERIAL_PROTOCOL(" Servo ");
  5258. SERIAL_PROTOCOL(servo_index);
  5259. SERIAL_PROTOCOL(": ");
  5260. SERIAL_PROTOCOL(servos[servo_index].read());
  5261. SERIAL_PROTOCOLLN("");
  5262. }
  5263. }
  5264. break;
  5265. #endif // NUM_SERVOS > 0
  5266. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5267. case 300: // M300
  5268. {
  5269. int beepS = code_seen('S') ? code_value() : 110;
  5270. int beepP = code_seen('P') ? code_value() : 1000;
  5271. if (beepS > 0)
  5272. {
  5273. #if BEEPER > 0
  5274. tone(BEEPER, beepS);
  5275. delay(beepP);
  5276. noTone(BEEPER);
  5277. #endif
  5278. }
  5279. else
  5280. {
  5281. delay(beepP);
  5282. }
  5283. }
  5284. break;
  5285. #endif // M300
  5286. #ifdef PIDTEMP
  5287. case 301: // M301
  5288. {
  5289. if(code_seen('P')) Kp = code_value();
  5290. if(code_seen('I')) Ki = scalePID_i(code_value());
  5291. if(code_seen('D')) Kd = scalePID_d(code_value());
  5292. #ifdef PID_ADD_EXTRUSION_RATE
  5293. if(code_seen('C')) Kc = code_value();
  5294. #endif
  5295. updatePID();
  5296. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5297. SERIAL_PROTOCOL(" p:");
  5298. SERIAL_PROTOCOL(Kp);
  5299. SERIAL_PROTOCOL(" i:");
  5300. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5301. SERIAL_PROTOCOL(" d:");
  5302. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5303. #ifdef PID_ADD_EXTRUSION_RATE
  5304. SERIAL_PROTOCOL(" c:");
  5305. //Kc does not have scaling applied above, or in resetting defaults
  5306. SERIAL_PROTOCOL(Kc);
  5307. #endif
  5308. SERIAL_PROTOCOLLN("");
  5309. }
  5310. break;
  5311. #endif //PIDTEMP
  5312. #ifdef PIDTEMPBED
  5313. case 304: // M304
  5314. {
  5315. if(code_seen('P')) bedKp = code_value();
  5316. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5317. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5318. updatePID();
  5319. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5320. SERIAL_PROTOCOL(" p:");
  5321. SERIAL_PROTOCOL(bedKp);
  5322. SERIAL_PROTOCOL(" i:");
  5323. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5324. SERIAL_PROTOCOL(" d:");
  5325. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5326. SERIAL_PROTOCOLLN("");
  5327. }
  5328. break;
  5329. #endif //PIDTEMP
  5330. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5331. {
  5332. #ifdef CHDK
  5333. SET_OUTPUT(CHDK);
  5334. WRITE(CHDK, HIGH);
  5335. chdkHigh = millis();
  5336. chdkActive = true;
  5337. #else
  5338. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5339. const uint8_t NUM_PULSES=16;
  5340. const float PULSE_LENGTH=0.01524;
  5341. for(int i=0; i < NUM_PULSES; i++) {
  5342. WRITE(PHOTOGRAPH_PIN, HIGH);
  5343. _delay_ms(PULSE_LENGTH);
  5344. WRITE(PHOTOGRAPH_PIN, LOW);
  5345. _delay_ms(PULSE_LENGTH);
  5346. }
  5347. delay(7.33);
  5348. for(int i=0; i < NUM_PULSES; i++) {
  5349. WRITE(PHOTOGRAPH_PIN, HIGH);
  5350. _delay_ms(PULSE_LENGTH);
  5351. WRITE(PHOTOGRAPH_PIN, LOW);
  5352. _delay_ms(PULSE_LENGTH);
  5353. }
  5354. #endif
  5355. #endif //chdk end if
  5356. }
  5357. break;
  5358. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5359. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5360. {
  5361. float temp = .0;
  5362. if (code_seen('S')) temp=code_value();
  5363. set_extrude_min_temp(temp);
  5364. }
  5365. break;
  5366. #endif
  5367. case 303: // M303 PID autotune
  5368. {
  5369. float temp = 150.0;
  5370. int e=0;
  5371. int c=5;
  5372. if (code_seen('E')) e=code_value();
  5373. if (e<0)
  5374. temp=70;
  5375. if (code_seen('S')) temp=code_value();
  5376. if (code_seen('C')) c=code_value();
  5377. PID_autotune(temp, e, c);
  5378. }
  5379. break;
  5380. case 400: // M400 finish all moves
  5381. {
  5382. st_synchronize();
  5383. }
  5384. break;
  5385. case 500: // M500 Store settings in EEPROM
  5386. {
  5387. Config_StoreSettings(EEPROM_OFFSET);
  5388. }
  5389. break;
  5390. case 501: // M501 Read settings from EEPROM
  5391. {
  5392. Config_RetrieveSettings(EEPROM_OFFSET);
  5393. }
  5394. break;
  5395. case 502: // M502 Revert to default settings
  5396. {
  5397. Config_ResetDefault();
  5398. }
  5399. break;
  5400. case 503: // M503 print settings currently in memory
  5401. {
  5402. Config_PrintSettings();
  5403. }
  5404. break;
  5405. case 509: //M509 Force language selection
  5406. {
  5407. lang_reset();
  5408. SERIAL_ECHO_START;
  5409. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5410. }
  5411. break;
  5412. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5413. case 540:
  5414. {
  5415. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5416. }
  5417. break;
  5418. #endif
  5419. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5420. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5421. {
  5422. float value;
  5423. if (code_seen('Z'))
  5424. {
  5425. value = code_value();
  5426. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5427. {
  5428. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5429. SERIAL_ECHO_START;
  5430. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5431. SERIAL_PROTOCOLLN("");
  5432. }
  5433. else
  5434. {
  5435. SERIAL_ECHO_START;
  5436. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5437. SERIAL_ECHORPGM(MSG_Z_MIN);
  5438. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5439. SERIAL_ECHORPGM(MSG_Z_MAX);
  5440. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5441. SERIAL_PROTOCOLLN("");
  5442. }
  5443. }
  5444. else
  5445. {
  5446. SERIAL_ECHO_START;
  5447. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5448. SERIAL_ECHO(-zprobe_zoffset);
  5449. SERIAL_PROTOCOLLN("");
  5450. }
  5451. break;
  5452. }
  5453. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5454. #ifdef FILAMENTCHANGEENABLE
  5455. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5456. {
  5457. st_synchronize();
  5458. float lastpos[4];
  5459. if (farm_mode)
  5460. {
  5461. prusa_statistics(22);
  5462. }
  5463. feedmultiplyBckp=feedmultiply;
  5464. int8_t TooLowZ = 0;
  5465. float HotendTempBckp = degTargetHotend(active_extruder);
  5466. int fanSpeedBckp = fanSpeed;
  5467. lastpos[X_AXIS]=current_position[X_AXIS];
  5468. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5469. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5470. lastpos[E_AXIS]=current_position[E_AXIS];
  5471. //Restract extruder
  5472. if(code_seen('E'))
  5473. {
  5474. current_position[E_AXIS]+= code_value();
  5475. }
  5476. else
  5477. {
  5478. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5479. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5480. #endif
  5481. }
  5482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5483. //Lift Z
  5484. if(code_seen('Z'))
  5485. {
  5486. current_position[Z_AXIS]+= code_value();
  5487. }
  5488. else
  5489. {
  5490. #ifdef FILAMENTCHANGE_ZADD
  5491. current_position[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5492. if(current_position[Z_AXIS] < 10){
  5493. current_position[Z_AXIS]+= 10 ;
  5494. TooLowZ = 1;
  5495. }else{
  5496. TooLowZ = 0;
  5497. }
  5498. #endif
  5499. }
  5500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5501. //Move XY to side
  5502. if(code_seen('X'))
  5503. {
  5504. current_position[X_AXIS]+= code_value();
  5505. }
  5506. else
  5507. {
  5508. #ifdef FILAMENTCHANGE_XPOS
  5509. current_position[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5510. #endif
  5511. }
  5512. if(code_seen('Y'))
  5513. {
  5514. current_position[Y_AXIS]= code_value();
  5515. }
  5516. else
  5517. {
  5518. #ifdef FILAMENTCHANGE_YPOS
  5519. current_position[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5520. #endif
  5521. }
  5522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5523. st_synchronize();
  5524. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5525. uint8_t cnt = 0;
  5526. int counterBeep = 0;
  5527. fanSpeed = 0;
  5528. unsigned long waiting_start_time = millis();
  5529. uint8_t wait_for_user_state = 0;
  5530. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5531. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5532. //cnt++;
  5533. manage_heater();
  5534. manage_inactivity(true);
  5535. #if BEEPER > 0
  5536. if (counterBeep == 500) {
  5537. counterBeep = 0;
  5538. }
  5539. SET_OUTPUT(BEEPER);
  5540. if (counterBeep == 0) {
  5541. WRITE(BEEPER, HIGH);
  5542. }
  5543. if (counterBeep == 20) {
  5544. WRITE(BEEPER, LOW);
  5545. }
  5546. counterBeep++;
  5547. #endif
  5548. switch (wait_for_user_state) {
  5549. case 0:
  5550. delay_keep_alive(4);
  5551. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5552. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5553. wait_for_user_state = 1;
  5554. setTargetHotend(0, 0);
  5555. setTargetHotend(0, 1);
  5556. setTargetHotend(0, 2);
  5557. st_synchronize();
  5558. disable_e0();
  5559. disable_e1();
  5560. disable_e2();
  5561. }
  5562. break;
  5563. case 1:
  5564. delay_keep_alive(4);
  5565. if (lcd_clicked()) {
  5566. setTargetHotend(HotendTempBckp, active_extruder);
  5567. lcd_wait_for_heater();
  5568. wait_for_user_state = 2;
  5569. }
  5570. break;
  5571. case 2:
  5572. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5573. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5574. waiting_start_time = millis();
  5575. wait_for_user_state = 0;
  5576. }
  5577. else {
  5578. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5579. lcd_set_cursor(1, 4);
  5580. lcd_print(ftostr3(degHotend(active_extruder)));
  5581. }
  5582. break;
  5583. }
  5584. }
  5585. WRITE(BEEPER, LOW);
  5586. lcd_change_fil_state = 0;
  5587. // Unload filament
  5588. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5589. KEEPALIVE_STATE(IN_HANDLER);
  5590. custom_message = true;
  5591. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5592. if (code_seen('L'))
  5593. {
  5594. current_position[E_AXIS] += code_value();
  5595. }
  5596. else
  5597. {
  5598. #ifdef SNMM
  5599. #else
  5600. #ifdef FILAMENTCHANGE_FINALRETRACT
  5601. current_position[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5602. #endif
  5603. #endif // SNMM
  5604. }
  5605. #ifdef SNMM
  5606. current_position[E_AXIS] += 12;
  5607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500, active_extruder);
  5608. current_position[E_AXIS] += 6;
  5609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5610. current_position[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5612. st_synchronize();
  5613. current_position[E_AXIS] += (FIL_COOLING);
  5614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5615. current_position[E_AXIS] += (FIL_COOLING*-1);
  5616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5617. current_position[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  5619. st_synchronize();
  5620. #else
  5621. // plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5622. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500 / 60, active_extruder);
  5623. current_position[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5624. st_synchronize();
  5625. #ifdef TMC2130
  5626. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5627. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5628. #else
  5629. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5630. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5631. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5632. #endif //TMC2130
  5633. current_position[E_AXIS] -= 45;
  5634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5635. st_synchronize();
  5636. current_position[E_AXIS] -= 15;
  5637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5638. st_synchronize();
  5639. current_position[E_AXIS] -= 20;
  5640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5641. st_synchronize();
  5642. #ifdef TMC2130
  5643. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5644. #else
  5645. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5646. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5647. else st_current_set(2, tmp_motor_loud[2]);
  5648. #endif //TMC2130
  5649. #endif // SNMM
  5650. //finish moves
  5651. st_synchronize();
  5652. //disable extruder steppers so filament can be removed
  5653. disable_e0();
  5654. disable_e1();
  5655. disable_e2();
  5656. delay(100);
  5657. #ifdef SNMM_V2
  5658. fprintf_P(uart2io, PSTR("U0\n"));
  5659. // get response
  5660. bool response = mmu_get_reponse(false);
  5661. if (!response) mmu_not_responding();
  5662. #else
  5663. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5664. WRITE(BEEPER, HIGH);
  5665. counterBeep = 0;
  5666. while(!lcd_clicked() && (counterBeep < 50)) {
  5667. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5668. delay_keep_alive(100);
  5669. counterBeep++;
  5670. }
  5671. WRITE(BEEPER, LOW);
  5672. #endif
  5673. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5674. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5675. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5676. //lcd_return_to_status();
  5677. lcd_update_enable(true);
  5678. #ifdef SNMM_V2
  5679. mmu_M600_load_filament();
  5680. #else
  5681. M600_load_filament();
  5682. #endif
  5683. //Wait for user to check the state
  5684. lcd_change_fil_state = 0;
  5685. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5686. lcd_change_fil_state = 0;
  5687. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5688. lcd_alright();
  5689. KEEPALIVE_STATE(IN_HANDLER);
  5690. switch(lcd_change_fil_state){
  5691. // Filament failed to load so load it again
  5692. case 2:
  5693. #ifdef SNMM_V2
  5694. mmu_M600_load_filament(); //change to "wrong filament loaded" option?
  5695. #else
  5696. M600_load_filament_movements();
  5697. #endif
  5698. break;
  5699. // Filament loaded properly but color is not clear
  5700. case 3:
  5701. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  5703. lcd_loading_color();
  5704. break;
  5705. // Everything good
  5706. default:
  5707. lcd_change_success();
  5708. lcd_update_enable(true);
  5709. break;
  5710. }
  5711. }
  5712. //Not let's go back to print
  5713. fanSpeed = fanSpeedBckp;
  5714. //Feed a little of filament to stabilize pressure
  5715. current_position[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5717. //Retract
  5718. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5720. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 70, active_extruder); //should do nothing
  5721. //Move XY back
  5722. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5723. //Move Z back
  5724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5725. current_position[E_AXIS]= current_position[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5726. //Unretract
  5727. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5728. //Set E position to original
  5729. plan_set_e_position(lastpos[E_AXIS]);
  5730. memcpy(current_position, lastpos, sizeof(lastpos));
  5731. memcpy(destination, current_position, sizeof(current_position));
  5732. //Recover feed rate
  5733. feedmultiply=feedmultiplyBckp;
  5734. char cmd[9];
  5735. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5736. enquecommand(cmd);
  5737. lcd_setstatuspgm(_T(WELCOME_MSG));
  5738. custom_message = false;
  5739. custom_message_type = 0;
  5740. }
  5741. break;
  5742. #endif //FILAMENTCHANGEENABLE
  5743. case 601: {
  5744. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5745. }
  5746. break;
  5747. case 602: {
  5748. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5749. }
  5750. break;
  5751. #ifdef PINDA_THERMISTOR
  5752. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5753. {
  5754. int set_target_pinda = 0;
  5755. if (code_seen('S')) {
  5756. set_target_pinda = code_value();
  5757. }
  5758. else {
  5759. break;
  5760. }
  5761. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5762. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5763. SERIAL_PROTOCOL(set_target_pinda);
  5764. SERIAL_PROTOCOLLN("");
  5765. codenum = millis();
  5766. cancel_heatup = false;
  5767. bool is_pinda_cooling = false;
  5768. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5769. is_pinda_cooling = true;
  5770. }
  5771. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5772. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5773. {
  5774. SERIAL_PROTOCOLPGM("P:");
  5775. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5776. SERIAL_PROTOCOLPGM("/");
  5777. SERIAL_PROTOCOL(set_target_pinda);
  5778. SERIAL_PROTOCOLLN("");
  5779. codenum = millis();
  5780. }
  5781. manage_heater();
  5782. manage_inactivity();
  5783. lcd_update(0);
  5784. }
  5785. LCD_MESSAGERPGM(_T(MSG_OK));
  5786. break;
  5787. }
  5788. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5789. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5790. uint8_t cal_status = calibration_status_pinda();
  5791. int16_t usteps = 0;
  5792. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5793. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5794. for (uint8_t i = 0; i < 6; i++)
  5795. {
  5796. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5797. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5798. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5799. SERIAL_PROTOCOLPGM(", ");
  5800. SERIAL_PROTOCOL(35 + (i * 5));
  5801. SERIAL_PROTOCOLPGM(", ");
  5802. SERIAL_PROTOCOL(usteps);
  5803. SERIAL_PROTOCOLPGM(", ");
  5804. SERIAL_PROTOCOL(mm * 1000);
  5805. SERIAL_PROTOCOLLN("");
  5806. }
  5807. }
  5808. else if (code_seen('!')) { // ! - Set factory default values
  5809. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5810. int16_t z_shift = 8; //40C - 20um - 8usteps
  5811. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5812. z_shift = 24; //45C - 60um - 24usteps
  5813. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5814. z_shift = 48; //50C - 120um - 48usteps
  5815. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5816. z_shift = 80; //55C - 200um - 80usteps
  5817. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5818. z_shift = 120; //60C - 300um - 120usteps
  5819. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5820. SERIAL_PROTOCOLLN("factory restored");
  5821. }
  5822. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5823. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5824. int16_t z_shift = 0;
  5825. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5826. SERIAL_PROTOCOLLN("zerorized");
  5827. }
  5828. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5829. int16_t usteps = code_value();
  5830. if (code_seen('I')) {
  5831. byte index = code_value();
  5832. if ((index >= 0) && (index < 5)) {
  5833. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5834. SERIAL_PROTOCOLLN("OK");
  5835. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5836. for (uint8_t i = 0; i < 6; i++)
  5837. {
  5838. usteps = 0;
  5839. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5840. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5841. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5842. SERIAL_PROTOCOLPGM(", ");
  5843. SERIAL_PROTOCOL(35 + (i * 5));
  5844. SERIAL_PROTOCOLPGM(", ");
  5845. SERIAL_PROTOCOL(usteps);
  5846. SERIAL_PROTOCOLPGM(", ");
  5847. SERIAL_PROTOCOL(mm * 1000);
  5848. SERIAL_PROTOCOLLN("");
  5849. }
  5850. }
  5851. }
  5852. }
  5853. else {
  5854. SERIAL_PROTOCOLPGM("no valid command");
  5855. }
  5856. break;
  5857. #endif //PINDA_THERMISTOR
  5858. #ifdef LIN_ADVANCE
  5859. case 900: // M900: Set LIN_ADVANCE options.
  5860. gcode_M900();
  5861. break;
  5862. #endif
  5863. case 907: // M907 Set digital trimpot motor current using axis codes.
  5864. {
  5865. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5866. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5867. if(code_seen('B')) st_current_set(4,code_value());
  5868. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5869. #endif
  5870. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5871. if(code_seen('X')) st_current_set(0, code_value());
  5872. #endif
  5873. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5874. if(code_seen('Z')) st_current_set(1, code_value());
  5875. #endif
  5876. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5877. if(code_seen('E')) st_current_set(2, code_value());
  5878. #endif
  5879. }
  5880. break;
  5881. case 908: // M908 Control digital trimpot directly.
  5882. {
  5883. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5884. uint8_t channel,current;
  5885. if(code_seen('P')) channel=code_value();
  5886. if(code_seen('S')) current=code_value();
  5887. digitalPotWrite(channel, current);
  5888. #endif
  5889. }
  5890. break;
  5891. #ifdef TMC2130
  5892. case 910: // M910 TMC2130 init
  5893. {
  5894. tmc2130_init();
  5895. }
  5896. break;
  5897. case 911: // M911 Set TMC2130 holding currents
  5898. {
  5899. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5900. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5901. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5902. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5903. }
  5904. break;
  5905. case 912: // M912 Set TMC2130 running currents
  5906. {
  5907. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5908. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5909. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5910. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5911. }
  5912. break;
  5913. case 913: // M913 Print TMC2130 currents
  5914. {
  5915. tmc2130_print_currents();
  5916. }
  5917. break;
  5918. case 914: // M914 Set normal mode
  5919. {
  5920. tmc2130_mode = TMC2130_MODE_NORMAL;
  5921. update_mode_profile();
  5922. tmc2130_init();
  5923. }
  5924. break;
  5925. case 915: // M915 Set silent mode
  5926. {
  5927. tmc2130_mode = TMC2130_MODE_SILENT;
  5928. update_mode_profile();
  5929. tmc2130_init();
  5930. }
  5931. break;
  5932. case 916: // M916 Set sg_thrs
  5933. {
  5934. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5935. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5936. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5937. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5938. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5939. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5940. }
  5941. break;
  5942. case 917: // M917 Set TMC2130 pwm_ampl
  5943. {
  5944. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5945. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5946. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5947. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5948. }
  5949. break;
  5950. case 918: // M918 Set TMC2130 pwm_grad
  5951. {
  5952. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5953. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5954. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5955. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5956. }
  5957. break;
  5958. #endif //TMC2130
  5959. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5960. {
  5961. #ifdef TMC2130
  5962. if(code_seen('E'))
  5963. {
  5964. uint16_t res_new = code_value();
  5965. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5966. {
  5967. st_synchronize();
  5968. uint8_t axis = E_AXIS;
  5969. uint16_t res = tmc2130_get_res(axis);
  5970. tmc2130_set_res(axis, res_new);
  5971. if (res_new > res)
  5972. {
  5973. uint16_t fac = (res_new / res);
  5974. axis_steps_per_unit[axis] *= fac;
  5975. position[E_AXIS] *= fac;
  5976. }
  5977. else
  5978. {
  5979. uint16_t fac = (res / res_new);
  5980. axis_steps_per_unit[axis] /= fac;
  5981. position[E_AXIS] /= fac;
  5982. }
  5983. }
  5984. }
  5985. #else //TMC2130
  5986. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5987. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5988. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5989. if(code_seen('B')) microstep_mode(4,code_value());
  5990. microstep_readings();
  5991. #endif
  5992. #endif //TMC2130
  5993. }
  5994. break;
  5995. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5996. {
  5997. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5998. if(code_seen('S')) switch((int)code_value())
  5999. {
  6000. case 1:
  6001. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6002. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6003. break;
  6004. case 2:
  6005. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6006. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6007. break;
  6008. }
  6009. microstep_readings();
  6010. #endif
  6011. }
  6012. break;
  6013. case 701: //M701: load filament
  6014. {
  6015. #ifdef SNMM_V2
  6016. if (code_seen('E'))
  6017. {
  6018. snmm_extruder = code_value();
  6019. }
  6020. #endif
  6021. gcode_M701();
  6022. }
  6023. break;
  6024. case 702:
  6025. {
  6026. #if defined (SNMM) || defined (SNMM_V2)
  6027. if (code_seen('U')) {
  6028. extr_unload_used(); //unload all filaments which were used in current print
  6029. }
  6030. else if (code_seen('C')) {
  6031. extr_unload(); //unload just current filament
  6032. }
  6033. else {
  6034. extr_unload_all(); //unload all filaments
  6035. }
  6036. #else
  6037. custom_message = true;
  6038. custom_message_type = 2;
  6039. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6040. // extr_unload2();
  6041. current_position[E_AXIS] -= 45;
  6042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6043. st_synchronize();
  6044. current_position[E_AXIS] -= 15;
  6045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6046. st_synchronize();
  6047. current_position[E_AXIS] -= 20;
  6048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6049. st_synchronize();
  6050. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6051. //disable extruder steppers so filament can be removed
  6052. disable_e0();
  6053. disable_e1();
  6054. disable_e2();
  6055. delay(100);
  6056. WRITE(BEEPER, HIGH);
  6057. uint8_t counterBeep = 0;
  6058. while (!lcd_clicked() && (counterBeep < 50)) {
  6059. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6060. delay_keep_alive(100);
  6061. counterBeep++;
  6062. }
  6063. WRITE(BEEPER, LOW);
  6064. st_synchronize();
  6065. while (lcd_clicked()) delay_keep_alive(100);
  6066. lcd_update_enable(true);
  6067. lcd_setstatuspgm(_T(WELCOME_MSG));
  6068. custom_message = false;
  6069. custom_message_type = 0;
  6070. #endif
  6071. }
  6072. break;
  6073. case 999: // M999: Restart after being stopped
  6074. Stopped = false;
  6075. lcd_reset_alert_level();
  6076. gcode_LastN = Stopped_gcode_LastN;
  6077. FlushSerialRequestResend();
  6078. break;
  6079. default:
  6080. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6081. }
  6082. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6083. mcode_in_progress = 0;
  6084. }
  6085. } // end if(code_seen('M')) (end of M codes)
  6086. else if(code_seen('T'))
  6087. {
  6088. int index;
  6089. st_synchronize();
  6090. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6091. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6092. SERIAL_ECHOLNPGM("Invalid T code.");
  6093. }
  6094. else {
  6095. if (*(strchr_pointer + index) == '?') {
  6096. tmp_extruder = choose_extruder_menu();
  6097. }
  6098. else {
  6099. tmp_extruder = code_value();
  6100. }
  6101. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6102. #ifdef SNMM_V2
  6103. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6104. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  6105. bool response = mmu_get_reponse(false);
  6106. if (!response) mmu_not_responding();
  6107. snmm_extruder = tmp_extruder; //filament change is finished
  6108. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  6109. mmu_load_to_nozzle();
  6110. }
  6111. #endif
  6112. #ifdef SNMM
  6113. #ifdef LIN_ADVANCE
  6114. if (snmm_extruder != tmp_extruder)
  6115. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6116. #endif
  6117. snmm_extruder = tmp_extruder;
  6118. delay(100);
  6119. disable_e0();
  6120. disable_e1();
  6121. disable_e2();
  6122. pinMode(E_MUX0_PIN, OUTPUT);
  6123. pinMode(E_MUX1_PIN, OUTPUT);
  6124. delay(100);
  6125. SERIAL_ECHO_START;
  6126. SERIAL_ECHO("T:");
  6127. SERIAL_ECHOLN((int)tmp_extruder);
  6128. switch (tmp_extruder) {
  6129. case 1:
  6130. WRITE(E_MUX0_PIN, HIGH);
  6131. WRITE(E_MUX1_PIN, LOW);
  6132. break;
  6133. case 2:
  6134. WRITE(E_MUX0_PIN, LOW);
  6135. WRITE(E_MUX1_PIN, HIGH);
  6136. break;
  6137. case 3:
  6138. WRITE(E_MUX0_PIN, HIGH);
  6139. WRITE(E_MUX1_PIN, HIGH);
  6140. break;
  6141. default:
  6142. WRITE(E_MUX0_PIN, LOW);
  6143. WRITE(E_MUX1_PIN, LOW);
  6144. break;
  6145. }
  6146. delay(100);
  6147. #else
  6148. if (tmp_extruder >= EXTRUDERS) {
  6149. SERIAL_ECHO_START;
  6150. SERIAL_ECHOPGM("T");
  6151. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6152. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6153. }
  6154. else {
  6155. boolean make_move = false;
  6156. if (code_seen('F')) {
  6157. make_move = true;
  6158. next_feedrate = code_value();
  6159. if (next_feedrate > 0.0) {
  6160. feedrate = next_feedrate;
  6161. }
  6162. }
  6163. #if EXTRUDERS > 1
  6164. if (tmp_extruder != active_extruder) {
  6165. // Save current position to return to after applying extruder offset
  6166. memcpy(destination, current_position, sizeof(destination));
  6167. // Offset extruder (only by XY)
  6168. int i;
  6169. for (i = 0; i < 2; i++) {
  6170. current_position[i] = current_position[i] -
  6171. extruder_offset[i][active_extruder] +
  6172. extruder_offset[i][tmp_extruder];
  6173. }
  6174. // Set the new active extruder and position
  6175. active_extruder = tmp_extruder;
  6176. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6177. // Move to the old position if 'F' was in the parameters
  6178. if (make_move && Stopped == false) {
  6179. prepare_move();
  6180. }
  6181. }
  6182. #endif
  6183. SERIAL_ECHO_START;
  6184. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6185. SERIAL_PROTOCOLLN((int)active_extruder);
  6186. }
  6187. #endif
  6188. }
  6189. } // end if(code_seen('T')) (end of T codes)
  6190. #ifdef DEBUG_DCODES
  6191. else if (code_seen('D')) // D codes (debug)
  6192. {
  6193. switch((int)code_value())
  6194. {
  6195. case -1: // D-1 - Endless loop
  6196. dcode__1(); break;
  6197. case 0: // D0 - Reset
  6198. dcode_0(); break;
  6199. case 1: // D1 - Clear EEPROM
  6200. dcode_1(); break;
  6201. case 2: // D2 - Read/Write RAM
  6202. dcode_2(); break;
  6203. case 3: // D3 - Read/Write EEPROM
  6204. dcode_3(); break;
  6205. case 4: // D4 - Read/Write PIN
  6206. dcode_4(); break;
  6207. case 5: // D5 - Read/Write FLASH
  6208. // dcode_5(); break;
  6209. break;
  6210. case 6: // D6 - Read/Write external FLASH
  6211. dcode_6(); break;
  6212. case 7: // D7 - Read/Write Bootloader
  6213. dcode_7(); break;
  6214. case 8: // D8 - Read/Write PINDA
  6215. dcode_8(); break;
  6216. case 9: // D9 - Read/Write ADC
  6217. dcode_9(); break;
  6218. case 10: // D10 - XYZ calibration = OK
  6219. dcode_10(); break;
  6220. #ifdef TMC2130
  6221. case 2130: // D9125 - TMC2130
  6222. dcode_2130(); break;
  6223. #endif //TMC2130
  6224. #ifdef FILAMENT_SENSOR
  6225. case 9125: // D9125 - FILAMENT_SENSOR
  6226. dcode_9125(); break;
  6227. #endif //FILAMENT_SENSOR
  6228. }
  6229. }
  6230. #endif //DEBUG_DCODES
  6231. else
  6232. {
  6233. SERIAL_ECHO_START;
  6234. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6235. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6236. SERIAL_ECHOLNPGM("\"(2)");
  6237. }
  6238. KEEPALIVE_STATE(NOT_BUSY);
  6239. ClearToSend();
  6240. }
  6241. void FlushSerialRequestResend()
  6242. {
  6243. //char cmdbuffer[bufindr][100]="Resend:";
  6244. MYSERIAL.flush();
  6245. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6246. }
  6247. // Confirm the execution of a command, if sent from a serial line.
  6248. // Execution of a command from a SD card will not be confirmed.
  6249. void ClearToSend()
  6250. {
  6251. previous_millis_cmd = millis();
  6252. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6253. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6254. }
  6255. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6256. void update_currents() {
  6257. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6258. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6259. float tmp_motor[3];
  6260. //SERIAL_ECHOLNPGM("Currents updated: ");
  6261. if (destination[Z_AXIS] < Z_SILENT) {
  6262. //SERIAL_ECHOLNPGM("LOW");
  6263. for (uint8_t i = 0; i < 3; i++) {
  6264. st_current_set(i, current_low[i]);
  6265. /*MYSERIAL.print(int(i));
  6266. SERIAL_ECHOPGM(": ");
  6267. MYSERIAL.println(current_low[i]);*/
  6268. }
  6269. }
  6270. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6271. //SERIAL_ECHOLNPGM("HIGH");
  6272. for (uint8_t i = 0; i < 3; i++) {
  6273. st_current_set(i, current_high[i]);
  6274. /*MYSERIAL.print(int(i));
  6275. SERIAL_ECHOPGM(": ");
  6276. MYSERIAL.println(current_high[i]);*/
  6277. }
  6278. }
  6279. else {
  6280. for (uint8_t i = 0; i < 3; i++) {
  6281. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6282. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6283. st_current_set(i, tmp_motor[i]);
  6284. /*MYSERIAL.print(int(i));
  6285. SERIAL_ECHOPGM(": ");
  6286. MYSERIAL.println(tmp_motor[i]);*/
  6287. }
  6288. }
  6289. }
  6290. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6291. void get_coordinates()
  6292. {
  6293. bool seen[4]={false,false,false,false};
  6294. for(int8_t i=0; i < NUM_AXIS; i++) {
  6295. if(code_seen(axis_codes[i]))
  6296. {
  6297. bool relative = axis_relative_modes[i] || relative_mode;
  6298. destination[i] = (float)code_value();
  6299. if (i == E_AXIS) {
  6300. float emult = extruder_multiplier[active_extruder];
  6301. if (emult != 1.) {
  6302. if (! relative) {
  6303. destination[i] -= current_position[i];
  6304. relative = true;
  6305. }
  6306. destination[i] *= emult;
  6307. }
  6308. }
  6309. if (relative)
  6310. destination[i] += current_position[i];
  6311. seen[i]=true;
  6312. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6313. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6314. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6315. }
  6316. else destination[i] = current_position[i]; //Are these else lines really needed?
  6317. }
  6318. if(code_seen('F')) {
  6319. next_feedrate = code_value();
  6320. #ifdef MAX_SILENT_FEEDRATE
  6321. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6322. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6323. #endif //MAX_SILENT_FEEDRATE
  6324. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6325. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6326. {
  6327. // float e_max_speed =
  6328. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6329. }
  6330. }
  6331. }
  6332. void get_arc_coordinates()
  6333. {
  6334. #ifdef SF_ARC_FIX
  6335. bool relative_mode_backup = relative_mode;
  6336. relative_mode = true;
  6337. #endif
  6338. get_coordinates();
  6339. #ifdef SF_ARC_FIX
  6340. relative_mode=relative_mode_backup;
  6341. #endif
  6342. if(code_seen('I')) {
  6343. offset[0] = code_value();
  6344. }
  6345. else {
  6346. offset[0] = 0.0;
  6347. }
  6348. if(code_seen('J')) {
  6349. offset[1] = code_value();
  6350. }
  6351. else {
  6352. offset[1] = 0.0;
  6353. }
  6354. }
  6355. void clamp_to_software_endstops(float target[3])
  6356. {
  6357. #ifdef DEBUG_DISABLE_SWLIMITS
  6358. return;
  6359. #endif //DEBUG_DISABLE_SWLIMITS
  6360. world2machine_clamp(target[0], target[1]);
  6361. // Clamp the Z coordinate.
  6362. if (min_software_endstops) {
  6363. float negative_z_offset = 0;
  6364. #ifdef ENABLE_AUTO_BED_LEVELING
  6365. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6366. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6367. #endif
  6368. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6369. }
  6370. if (max_software_endstops) {
  6371. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6372. }
  6373. }
  6374. #ifdef MESH_BED_LEVELING
  6375. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6376. float dx = x - current_position[X_AXIS];
  6377. float dy = y - current_position[Y_AXIS];
  6378. float dz = z - current_position[Z_AXIS];
  6379. int n_segments = 0;
  6380. if (mbl.active) {
  6381. float len = abs(dx) + abs(dy);
  6382. if (len > 0)
  6383. // Split to 3cm segments or shorter.
  6384. n_segments = int(ceil(len / 30.f));
  6385. }
  6386. if (n_segments > 1) {
  6387. float de = e - current_position[E_AXIS];
  6388. for (int i = 1; i < n_segments; ++ i) {
  6389. float t = float(i) / float(n_segments);
  6390. if (saved_printing || (mbl.active == false)) return;
  6391. plan_buffer_line(
  6392. current_position[X_AXIS] + t * dx,
  6393. current_position[Y_AXIS] + t * dy,
  6394. current_position[Z_AXIS] + t * dz,
  6395. current_position[E_AXIS] + t * de,
  6396. feed_rate, extruder);
  6397. }
  6398. }
  6399. // The rest of the path.
  6400. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6401. current_position[X_AXIS] = x;
  6402. current_position[Y_AXIS] = y;
  6403. current_position[Z_AXIS] = z;
  6404. current_position[E_AXIS] = e;
  6405. }
  6406. #endif // MESH_BED_LEVELING
  6407. void prepare_move()
  6408. {
  6409. clamp_to_software_endstops(destination);
  6410. previous_millis_cmd = millis();
  6411. // Do not use feedmultiply for E or Z only moves
  6412. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6413. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6414. }
  6415. else {
  6416. #ifdef MESH_BED_LEVELING
  6417. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6418. #else
  6419. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6420. #endif
  6421. }
  6422. for(int8_t i=0; i < NUM_AXIS; i++) {
  6423. current_position[i] = destination[i];
  6424. }
  6425. }
  6426. void prepare_arc_move(char isclockwise) {
  6427. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6428. // Trace the arc
  6429. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6430. // As far as the parser is concerned, the position is now == target. In reality the
  6431. // motion control system might still be processing the action and the real tool position
  6432. // in any intermediate location.
  6433. for(int8_t i=0; i < NUM_AXIS; i++) {
  6434. current_position[i] = destination[i];
  6435. }
  6436. previous_millis_cmd = millis();
  6437. }
  6438. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6439. #if defined(FAN_PIN)
  6440. #if CONTROLLERFAN_PIN == FAN_PIN
  6441. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6442. #endif
  6443. #endif
  6444. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6445. unsigned long lastMotorCheck = 0;
  6446. void controllerFan()
  6447. {
  6448. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6449. {
  6450. lastMotorCheck = millis();
  6451. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6452. #if EXTRUDERS > 2
  6453. || !READ(E2_ENABLE_PIN)
  6454. #endif
  6455. #if EXTRUDER > 1
  6456. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6457. || !READ(X2_ENABLE_PIN)
  6458. #endif
  6459. || !READ(E1_ENABLE_PIN)
  6460. #endif
  6461. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6462. {
  6463. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6464. }
  6465. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6466. {
  6467. digitalWrite(CONTROLLERFAN_PIN, 0);
  6468. analogWrite(CONTROLLERFAN_PIN, 0);
  6469. }
  6470. else
  6471. {
  6472. // allows digital or PWM fan output to be used (see M42 handling)
  6473. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6474. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6475. }
  6476. }
  6477. }
  6478. #endif
  6479. #ifdef TEMP_STAT_LEDS
  6480. static bool blue_led = false;
  6481. static bool red_led = false;
  6482. static uint32_t stat_update = 0;
  6483. void handle_status_leds(void) {
  6484. float max_temp = 0.0;
  6485. if(millis() > stat_update) {
  6486. stat_update += 500; // Update every 0.5s
  6487. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6488. max_temp = max(max_temp, degHotend(cur_extruder));
  6489. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6490. }
  6491. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6492. max_temp = max(max_temp, degTargetBed());
  6493. max_temp = max(max_temp, degBed());
  6494. #endif
  6495. if((max_temp > 55.0) && (red_led == false)) {
  6496. digitalWrite(STAT_LED_RED, 1);
  6497. digitalWrite(STAT_LED_BLUE, 0);
  6498. red_led = true;
  6499. blue_led = false;
  6500. }
  6501. if((max_temp < 54.0) && (blue_led == false)) {
  6502. digitalWrite(STAT_LED_RED, 0);
  6503. digitalWrite(STAT_LED_BLUE, 1);
  6504. red_led = false;
  6505. blue_led = true;
  6506. }
  6507. }
  6508. }
  6509. #endif
  6510. #ifdef SAFETYTIMER
  6511. /**
  6512. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6513. *
  6514. * Full screen blocking notification message is shown after heater turning off.
  6515. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6516. * damage print.
  6517. *
  6518. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6519. */
  6520. static void handleSafetyTimer()
  6521. {
  6522. #if (EXTRUDERS > 1)
  6523. #error Implemented only for one extruder.
  6524. #endif //(EXTRUDERS > 1)
  6525. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6526. {
  6527. safetyTimer.stop();
  6528. }
  6529. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6530. {
  6531. safetyTimer.start();
  6532. }
  6533. else if (safetyTimer.expired(safetytimer_inactive_time))
  6534. {
  6535. setTargetBed(0);
  6536. setTargetHotend(0, 0);
  6537. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6538. }
  6539. }
  6540. #endif //SAFETYTIMER
  6541. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6542. {
  6543. #ifdef FILAMENT_SENSOR
  6544. if (mcode_in_progress != 600) //M600 not in progress
  6545. {
  6546. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6547. {
  6548. if (fsensor_check_autoload())
  6549. {
  6550. fsensor_autoload_check_stop();
  6551. if (degHotend0() > EXTRUDE_MINTEMP)
  6552. {
  6553. tone(BEEPER, 1000);
  6554. delay_keep_alive(50);
  6555. noTone(BEEPER);
  6556. loading_flag = true;
  6557. enquecommand_front_P((PSTR("M701")));
  6558. }
  6559. else
  6560. {
  6561. lcd_update_enable(false);
  6562. lcd_clear();
  6563. lcd_set_cursor(0, 0);
  6564. lcd_puts_P(_T(MSG_ERROR));
  6565. lcd_set_cursor(0, 2);
  6566. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6567. delay(2000);
  6568. lcd_clear();
  6569. lcd_update_enable(true);
  6570. }
  6571. }
  6572. }
  6573. else
  6574. fsensor_autoload_check_stop();
  6575. }
  6576. #endif //FILAMENT_SENSOR
  6577. #ifdef SAFETYTIMER
  6578. handleSafetyTimer();
  6579. #endif //SAFETYTIMER
  6580. #if defined(KILL_PIN) && KILL_PIN > -1
  6581. static int killCount = 0; // make the inactivity button a bit less responsive
  6582. const int KILL_DELAY = 10000;
  6583. #endif
  6584. if(buflen < (BUFSIZE-1)){
  6585. get_command();
  6586. }
  6587. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6588. if(max_inactive_time)
  6589. kill(_n(""), 4);
  6590. if(stepper_inactive_time) {
  6591. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6592. {
  6593. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6594. disable_x();
  6595. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6596. disable_y();
  6597. disable_z();
  6598. disable_e0();
  6599. disable_e1();
  6600. disable_e2();
  6601. }
  6602. }
  6603. }
  6604. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6605. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6606. {
  6607. chdkActive = false;
  6608. WRITE(CHDK, LOW);
  6609. }
  6610. #endif
  6611. #if defined(KILL_PIN) && KILL_PIN > -1
  6612. // Check if the kill button was pressed and wait just in case it was an accidental
  6613. // key kill key press
  6614. // -------------------------------------------------------------------------------
  6615. if( 0 == READ(KILL_PIN) )
  6616. {
  6617. killCount++;
  6618. }
  6619. else if (killCount > 0)
  6620. {
  6621. killCount--;
  6622. }
  6623. // Exceeded threshold and we can confirm that it was not accidental
  6624. // KILL the machine
  6625. // ----------------------------------------------------------------
  6626. if ( killCount >= KILL_DELAY)
  6627. {
  6628. kill("", 5);
  6629. }
  6630. #endif
  6631. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6632. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6633. #endif
  6634. #ifdef EXTRUDER_RUNOUT_PREVENT
  6635. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6636. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6637. {
  6638. bool oldstatus=READ(E0_ENABLE_PIN);
  6639. enable_e0();
  6640. float oldepos=current_position[E_AXIS];
  6641. float oldedes=destination[E_AXIS];
  6642. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6643. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6644. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6645. current_position[E_AXIS]=oldepos;
  6646. destination[E_AXIS]=oldedes;
  6647. plan_set_e_position(oldepos);
  6648. previous_millis_cmd=millis();
  6649. st_synchronize();
  6650. WRITE(E0_ENABLE_PIN,oldstatus);
  6651. }
  6652. #endif
  6653. #ifdef TEMP_STAT_LEDS
  6654. handle_status_leds();
  6655. #endif
  6656. check_axes_activity();
  6657. }
  6658. void kill(const char *full_screen_message, unsigned char id)
  6659. {
  6660. printf_P(_N("KILL: %d\n"), id);
  6661. //return;
  6662. cli(); // Stop interrupts
  6663. disable_heater();
  6664. disable_x();
  6665. // SERIAL_ECHOLNPGM("kill - disable Y");
  6666. disable_y();
  6667. disable_z();
  6668. disable_e0();
  6669. disable_e1();
  6670. disable_e2();
  6671. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6672. pinMode(PS_ON_PIN,INPUT);
  6673. #endif
  6674. SERIAL_ERROR_START;
  6675. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6676. if (full_screen_message != NULL) {
  6677. SERIAL_ERRORLNRPGM(full_screen_message);
  6678. lcd_display_message_fullscreen_P(full_screen_message);
  6679. } else {
  6680. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6681. }
  6682. // FMC small patch to update the LCD before ending
  6683. sei(); // enable interrupts
  6684. for ( int i=5; i--; lcd_update(0))
  6685. {
  6686. delay(200);
  6687. }
  6688. cli(); // disable interrupts
  6689. suicide();
  6690. while(1)
  6691. {
  6692. #ifdef WATCHDOG
  6693. wdt_reset();
  6694. #endif //WATCHDOG
  6695. /* Intentionally left empty */
  6696. } // Wait for reset
  6697. }
  6698. void Stop()
  6699. {
  6700. disable_heater();
  6701. if(Stopped == false) {
  6702. Stopped = true;
  6703. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6704. SERIAL_ERROR_START;
  6705. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6706. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6707. }
  6708. }
  6709. bool IsStopped() { return Stopped; };
  6710. #ifdef FAST_PWM_FAN
  6711. void setPwmFrequency(uint8_t pin, int val)
  6712. {
  6713. val &= 0x07;
  6714. switch(digitalPinToTimer(pin))
  6715. {
  6716. #if defined(TCCR0A)
  6717. case TIMER0A:
  6718. case TIMER0B:
  6719. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6720. // TCCR0B |= val;
  6721. break;
  6722. #endif
  6723. #if defined(TCCR1A)
  6724. case TIMER1A:
  6725. case TIMER1B:
  6726. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6727. // TCCR1B |= val;
  6728. break;
  6729. #endif
  6730. #if defined(TCCR2)
  6731. case TIMER2:
  6732. case TIMER2:
  6733. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6734. TCCR2 |= val;
  6735. break;
  6736. #endif
  6737. #if defined(TCCR2A)
  6738. case TIMER2A:
  6739. case TIMER2B:
  6740. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6741. TCCR2B |= val;
  6742. break;
  6743. #endif
  6744. #if defined(TCCR3A)
  6745. case TIMER3A:
  6746. case TIMER3B:
  6747. case TIMER3C:
  6748. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6749. TCCR3B |= val;
  6750. break;
  6751. #endif
  6752. #if defined(TCCR4A)
  6753. case TIMER4A:
  6754. case TIMER4B:
  6755. case TIMER4C:
  6756. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6757. TCCR4B |= val;
  6758. break;
  6759. #endif
  6760. #if defined(TCCR5A)
  6761. case TIMER5A:
  6762. case TIMER5B:
  6763. case TIMER5C:
  6764. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6765. TCCR5B |= val;
  6766. break;
  6767. #endif
  6768. }
  6769. }
  6770. #endif //FAST_PWM_FAN
  6771. bool setTargetedHotend(int code){
  6772. tmp_extruder = active_extruder;
  6773. if(code_seen('T')) {
  6774. tmp_extruder = code_value();
  6775. if(tmp_extruder >= EXTRUDERS) {
  6776. SERIAL_ECHO_START;
  6777. switch(code){
  6778. case 104:
  6779. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6780. break;
  6781. case 105:
  6782. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6783. break;
  6784. case 109:
  6785. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6786. break;
  6787. case 218:
  6788. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6789. break;
  6790. case 221:
  6791. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6792. break;
  6793. }
  6794. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6795. return true;
  6796. }
  6797. }
  6798. return false;
  6799. }
  6800. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6801. {
  6802. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6803. {
  6804. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6805. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6806. }
  6807. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6808. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6809. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6810. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6811. total_filament_used = 0;
  6812. }
  6813. float calculate_extruder_multiplier(float diameter) {
  6814. float out = 1.f;
  6815. if (volumetric_enabled && diameter > 0.f) {
  6816. float area = M_PI * diameter * diameter * 0.25;
  6817. out = 1.f / area;
  6818. }
  6819. if (extrudemultiply != 100)
  6820. out *= float(extrudemultiply) * 0.01f;
  6821. return out;
  6822. }
  6823. void calculate_extruder_multipliers() {
  6824. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6825. #if EXTRUDERS > 1
  6826. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6827. #if EXTRUDERS > 2
  6828. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6829. #endif
  6830. #endif
  6831. }
  6832. void delay_keep_alive(unsigned int ms)
  6833. {
  6834. for (;;) {
  6835. manage_heater();
  6836. // Manage inactivity, but don't disable steppers on timeout.
  6837. manage_inactivity(true);
  6838. lcd_update(0);
  6839. if (ms == 0)
  6840. break;
  6841. else if (ms >= 50) {
  6842. delay(50);
  6843. ms -= 50;
  6844. } else {
  6845. delay(ms);
  6846. ms = 0;
  6847. }
  6848. }
  6849. }
  6850. void wait_for_heater(long codenum) {
  6851. #ifdef TEMP_RESIDENCY_TIME
  6852. long residencyStart;
  6853. residencyStart = -1;
  6854. /* continue to loop until we have reached the target temp
  6855. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6856. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6857. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6858. #else
  6859. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6860. #endif //TEMP_RESIDENCY_TIME
  6861. if ((millis() - codenum) > 1000UL)
  6862. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6863. if (!farm_mode) {
  6864. SERIAL_PROTOCOLPGM("T:");
  6865. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6866. SERIAL_PROTOCOLPGM(" E:");
  6867. SERIAL_PROTOCOL((int)tmp_extruder);
  6868. #ifdef TEMP_RESIDENCY_TIME
  6869. SERIAL_PROTOCOLPGM(" W:");
  6870. if (residencyStart > -1)
  6871. {
  6872. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6873. SERIAL_PROTOCOLLN(codenum);
  6874. }
  6875. else
  6876. {
  6877. SERIAL_PROTOCOLLN("?");
  6878. }
  6879. }
  6880. #else
  6881. SERIAL_PROTOCOLLN("");
  6882. #endif
  6883. codenum = millis();
  6884. }
  6885. manage_heater();
  6886. manage_inactivity();
  6887. lcd_update(0);
  6888. #ifdef TEMP_RESIDENCY_TIME
  6889. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6890. or when current temp falls outside the hysteresis after target temp was reached */
  6891. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6892. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6893. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6894. {
  6895. residencyStart = millis();
  6896. }
  6897. #endif //TEMP_RESIDENCY_TIME
  6898. }
  6899. }
  6900. void check_babystep() {
  6901. int babystep_z;
  6902. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6903. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6904. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6905. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6906. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6907. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6908. lcd_update_enable(true);
  6909. }
  6910. }
  6911. #ifdef DIS
  6912. void d_setup()
  6913. {
  6914. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6915. pinMode(D_DATA, INPUT_PULLUP);
  6916. pinMode(D_REQUIRE, OUTPUT);
  6917. digitalWrite(D_REQUIRE, HIGH);
  6918. }
  6919. float d_ReadData()
  6920. {
  6921. int digit[13];
  6922. String mergeOutput;
  6923. float output;
  6924. digitalWrite(D_REQUIRE, HIGH);
  6925. for (int i = 0; i<13; i++)
  6926. {
  6927. for (int j = 0; j < 4; j++)
  6928. {
  6929. while (digitalRead(D_DATACLOCK) == LOW) {}
  6930. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6931. bitWrite(digit[i], j, digitalRead(D_DATA));
  6932. }
  6933. }
  6934. digitalWrite(D_REQUIRE, LOW);
  6935. mergeOutput = "";
  6936. output = 0;
  6937. for (int r = 5; r <= 10; r++) //Merge digits
  6938. {
  6939. mergeOutput += digit[r];
  6940. }
  6941. output = mergeOutput.toFloat();
  6942. if (digit[4] == 8) //Handle sign
  6943. {
  6944. output *= -1;
  6945. }
  6946. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6947. {
  6948. output /= 10;
  6949. }
  6950. return output;
  6951. }
  6952. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6953. int t1 = 0;
  6954. int t_delay = 0;
  6955. int digit[13];
  6956. int m;
  6957. char str[3];
  6958. //String mergeOutput;
  6959. char mergeOutput[15];
  6960. float output;
  6961. int mesh_point = 0; //index number of calibration point
  6962. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6963. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6964. float mesh_home_z_search = 4;
  6965. float row[x_points_num];
  6966. int ix = 0;
  6967. int iy = 0;
  6968. char* filename_wldsd = "wldsd.txt";
  6969. char data_wldsd[70];
  6970. char numb_wldsd[10];
  6971. d_setup();
  6972. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6973. // We don't know where we are! HOME!
  6974. // Push the commands to the front of the message queue in the reverse order!
  6975. // There shall be always enough space reserved for these commands.
  6976. repeatcommand_front(); // repeat G80 with all its parameters
  6977. enquecommand_front_P((PSTR("G28 W0")));
  6978. enquecommand_front_P((PSTR("G1 Z5")));
  6979. return;
  6980. }
  6981. bool custom_message_old = custom_message;
  6982. unsigned int custom_message_type_old = custom_message_type;
  6983. unsigned int custom_message_state_old = custom_message_state;
  6984. custom_message = true;
  6985. custom_message_type = 1;
  6986. custom_message_state = (x_points_num * y_points_num) + 10;
  6987. lcd_update(1);
  6988. mbl.reset();
  6989. babystep_undo();
  6990. card.openFile(filename_wldsd, false);
  6991. current_position[Z_AXIS] = mesh_home_z_search;
  6992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6993. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6994. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6995. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6996. setup_for_endstop_move(false);
  6997. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6998. SERIAL_PROTOCOL(x_points_num);
  6999. SERIAL_PROTOCOLPGM(",");
  7000. SERIAL_PROTOCOL(y_points_num);
  7001. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7002. SERIAL_PROTOCOL(mesh_home_z_search);
  7003. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7004. SERIAL_PROTOCOL(x_dimension);
  7005. SERIAL_PROTOCOLPGM(",");
  7006. SERIAL_PROTOCOL(y_dimension);
  7007. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7008. while (mesh_point != x_points_num * y_points_num) {
  7009. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7010. iy = mesh_point / x_points_num;
  7011. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7012. float z0 = 0.f;
  7013. current_position[Z_AXIS] = mesh_home_z_search;
  7014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7015. st_synchronize();
  7016. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7017. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7019. st_synchronize();
  7020. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7021. break;
  7022. card.closefile();
  7023. }
  7024. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7025. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7026. //strcat(data_wldsd, numb_wldsd);
  7027. //MYSERIAL.println(data_wldsd);
  7028. //delay(1000);
  7029. //delay(3000);
  7030. //t1 = millis();
  7031. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7032. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7033. memset(digit, 0, sizeof(digit));
  7034. //cli();
  7035. digitalWrite(D_REQUIRE, LOW);
  7036. for (int i = 0; i<13; i++)
  7037. {
  7038. //t1 = millis();
  7039. for (int j = 0; j < 4; j++)
  7040. {
  7041. while (digitalRead(D_DATACLOCK) == LOW) {}
  7042. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7043. bitWrite(digit[i], j, digitalRead(D_DATA));
  7044. }
  7045. //t_delay = (millis() - t1);
  7046. //SERIAL_PROTOCOLPGM(" ");
  7047. //SERIAL_PROTOCOL_F(t_delay, 5);
  7048. //SERIAL_PROTOCOLPGM(" ");
  7049. }
  7050. //sei();
  7051. digitalWrite(D_REQUIRE, HIGH);
  7052. mergeOutput[0] = '\0';
  7053. output = 0;
  7054. for (int r = 5; r <= 10; r++) //Merge digits
  7055. {
  7056. sprintf(str, "%d", digit[r]);
  7057. strcat(mergeOutput, str);
  7058. }
  7059. output = atof(mergeOutput);
  7060. if (digit[4] == 8) //Handle sign
  7061. {
  7062. output *= -1;
  7063. }
  7064. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7065. {
  7066. output *= 0.1;
  7067. }
  7068. //output = d_ReadData();
  7069. //row[ix] = current_position[Z_AXIS];
  7070. memset(data_wldsd, 0, sizeof(data_wldsd));
  7071. for (int i = 0; i <3; i++) {
  7072. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7073. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7074. strcat(data_wldsd, numb_wldsd);
  7075. strcat(data_wldsd, ";");
  7076. }
  7077. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7078. dtostrf(output, 8, 5, numb_wldsd);
  7079. strcat(data_wldsd, numb_wldsd);
  7080. //strcat(data_wldsd, ";");
  7081. card.write_command(data_wldsd);
  7082. //row[ix] = d_ReadData();
  7083. row[ix] = output; // current_position[Z_AXIS];
  7084. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7085. for (int i = 0; i < x_points_num; i++) {
  7086. SERIAL_PROTOCOLPGM(" ");
  7087. SERIAL_PROTOCOL_F(row[i], 5);
  7088. }
  7089. SERIAL_PROTOCOLPGM("\n");
  7090. }
  7091. custom_message_state--;
  7092. mesh_point++;
  7093. lcd_update(1);
  7094. }
  7095. card.closefile();
  7096. }
  7097. #endif
  7098. void temp_compensation_start() {
  7099. custom_message = true;
  7100. custom_message_type = 5;
  7101. custom_message_state = PINDA_HEAT_T + 1;
  7102. lcd_update(2);
  7103. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7104. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7105. }
  7106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7107. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7108. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7109. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7111. st_synchronize();
  7112. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7113. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7114. delay_keep_alive(1000);
  7115. custom_message_state = PINDA_HEAT_T - i;
  7116. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7117. else lcd_update(1);
  7118. }
  7119. custom_message_type = 0;
  7120. custom_message_state = 0;
  7121. custom_message = false;
  7122. }
  7123. void temp_compensation_apply() {
  7124. int i_add;
  7125. int compensation_value;
  7126. int z_shift = 0;
  7127. float z_shift_mm;
  7128. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7129. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7130. i_add = (target_temperature_bed - 60) / 10;
  7131. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7132. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7133. }else {
  7134. //interpolation
  7135. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7136. }
  7137. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7139. st_synchronize();
  7140. plan_set_z_position(current_position[Z_AXIS]);
  7141. }
  7142. else {
  7143. //we have no temp compensation data
  7144. }
  7145. }
  7146. float temp_comp_interpolation(float inp_temperature) {
  7147. //cubic spline interpolation
  7148. int n, i, j, k;
  7149. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7150. int shift[10];
  7151. int temp_C[10];
  7152. n = 6; //number of measured points
  7153. shift[0] = 0;
  7154. for (i = 0; i < n; i++) {
  7155. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7156. temp_C[i] = 50 + i * 10; //temperature in C
  7157. #ifdef PINDA_THERMISTOR
  7158. temp_C[i] = 35 + i * 5; //temperature in C
  7159. #else
  7160. temp_C[i] = 50 + i * 10; //temperature in C
  7161. #endif
  7162. x[i] = (float)temp_C[i];
  7163. f[i] = (float)shift[i];
  7164. }
  7165. if (inp_temperature < x[0]) return 0;
  7166. for (i = n - 1; i>0; i--) {
  7167. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7168. h[i - 1] = x[i] - x[i - 1];
  7169. }
  7170. //*********** formation of h, s , f matrix **************
  7171. for (i = 1; i<n - 1; i++) {
  7172. m[i][i] = 2 * (h[i - 1] + h[i]);
  7173. if (i != 1) {
  7174. m[i][i - 1] = h[i - 1];
  7175. m[i - 1][i] = h[i - 1];
  7176. }
  7177. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7178. }
  7179. //*********** forward elimination **************
  7180. for (i = 1; i<n - 2; i++) {
  7181. temp = (m[i + 1][i] / m[i][i]);
  7182. for (j = 1; j <= n - 1; j++)
  7183. m[i + 1][j] -= temp*m[i][j];
  7184. }
  7185. //*********** backward substitution *********
  7186. for (i = n - 2; i>0; i--) {
  7187. sum = 0;
  7188. for (j = i; j <= n - 2; j++)
  7189. sum += m[i][j] * s[j];
  7190. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7191. }
  7192. for (i = 0; i<n - 1; i++)
  7193. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7194. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7195. b = s[i] / 2;
  7196. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7197. d = f[i];
  7198. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7199. }
  7200. return sum;
  7201. }
  7202. #ifdef PINDA_THERMISTOR
  7203. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7204. {
  7205. if (!temp_cal_active) return 0;
  7206. if (!calibration_status_pinda()) return 0;
  7207. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7208. }
  7209. #endif //PINDA_THERMISTOR
  7210. void long_pause() //long pause print
  7211. {
  7212. st_synchronize();
  7213. //save currently set parameters to global variables
  7214. saved_feedmultiply = feedmultiply;
  7215. HotendTempBckp = degTargetHotend(active_extruder);
  7216. fanSpeedBckp = fanSpeed;
  7217. start_pause_print = millis();
  7218. //save position
  7219. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7220. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7221. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7222. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7223. //retract
  7224. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7226. //lift z
  7227. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7228. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7229. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7230. //set nozzle target temperature to 0
  7231. setTargetHotend(0, 0);
  7232. setTargetHotend(0, 1);
  7233. setTargetHotend(0, 2);
  7234. //Move XY to side
  7235. current_position[X_AXIS] = X_PAUSE_POS;
  7236. current_position[Y_AXIS] = Y_PAUSE_POS;
  7237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7238. // Turn off the print fan
  7239. fanSpeed = 0;
  7240. st_synchronize();
  7241. }
  7242. void serialecho_temperatures() {
  7243. float tt = degHotend(active_extruder);
  7244. SERIAL_PROTOCOLPGM("T:");
  7245. SERIAL_PROTOCOL(tt);
  7246. SERIAL_PROTOCOLPGM(" E:");
  7247. SERIAL_PROTOCOL((int)active_extruder);
  7248. SERIAL_PROTOCOLPGM(" B:");
  7249. SERIAL_PROTOCOL_F(degBed(), 1);
  7250. SERIAL_PROTOCOLLN("");
  7251. }
  7252. extern uint32_t sdpos_atomic;
  7253. #ifdef UVLO_SUPPORT
  7254. void uvlo_()
  7255. {
  7256. unsigned long time_start = millis();
  7257. bool sd_print = card.sdprinting;
  7258. // Conserve power as soon as possible.
  7259. disable_x();
  7260. disable_y();
  7261. #ifdef TMC2130
  7262. tmc2130_set_current_h(Z_AXIS, 20);
  7263. tmc2130_set_current_r(Z_AXIS, 20);
  7264. tmc2130_set_current_h(E_AXIS, 20);
  7265. tmc2130_set_current_r(E_AXIS, 20);
  7266. #endif //TMC2130
  7267. // Indicate that the interrupt has been triggered.
  7268. // SERIAL_ECHOLNPGM("UVLO");
  7269. // Read out the current Z motor microstep counter. This will be later used
  7270. // for reaching the zero full step before powering off.
  7271. uint16_t z_microsteps = 0;
  7272. #ifdef TMC2130
  7273. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7274. #endif //TMC2130
  7275. // Calculate the file position, from which to resume this print.
  7276. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7277. {
  7278. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7279. sd_position -= sdlen_planner;
  7280. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7281. sd_position -= sdlen_cmdqueue;
  7282. if (sd_position < 0) sd_position = 0;
  7283. }
  7284. // Backup the feedrate in mm/min.
  7285. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7286. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7287. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7288. // are in action.
  7289. planner_abort_hard();
  7290. // Store the current extruder position.
  7291. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7292. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7293. // Clean the input command queue.
  7294. cmdqueue_reset();
  7295. card.sdprinting = false;
  7296. // card.closefile();
  7297. // Enable stepper driver interrupt to move Z axis.
  7298. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7299. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7300. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7301. sei();
  7302. plan_buffer_line(
  7303. current_position[X_AXIS],
  7304. current_position[Y_AXIS],
  7305. current_position[Z_AXIS],
  7306. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7307. 95, active_extruder);
  7308. st_synchronize();
  7309. disable_e0();
  7310. plan_buffer_line(
  7311. current_position[X_AXIS],
  7312. current_position[Y_AXIS],
  7313. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7314. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7315. 40, active_extruder);
  7316. st_synchronize();
  7317. disable_e0();
  7318. plan_buffer_line(
  7319. current_position[X_AXIS],
  7320. current_position[Y_AXIS],
  7321. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7322. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7323. 40, active_extruder);
  7324. st_synchronize();
  7325. disable_e0();
  7326. disable_z();
  7327. // Move Z up to the next 0th full step.
  7328. // Write the file position.
  7329. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7330. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7331. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7332. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7333. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7334. // Scale the z value to 1u resolution.
  7335. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7336. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7337. }
  7338. // Read out the current Z motor microstep counter. This will be later used
  7339. // for reaching the zero full step before powering off.
  7340. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7341. // Store the current position.
  7342. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7343. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7344. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7345. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7346. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7347. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7348. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7349. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7350. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7351. #if EXTRUDERS > 1
  7352. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7353. #if EXTRUDERS > 2
  7354. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7355. #endif
  7356. #endif
  7357. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7358. // Finaly store the "power outage" flag.
  7359. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7360. st_synchronize();
  7361. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7362. disable_z();
  7363. // Increment power failure counter
  7364. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7365. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7366. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7367. #if 0
  7368. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7369. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7371. st_synchronize();
  7372. #endif
  7373. cli();
  7374. volatile unsigned int ppcount = 0;
  7375. SET_OUTPUT(BEEPER);
  7376. WRITE(BEEPER, HIGH);
  7377. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7378. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7379. }
  7380. WRITE(BEEPER, LOW);
  7381. while(1){
  7382. #if 1
  7383. WRITE(BEEPER, LOW);
  7384. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7385. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7386. }
  7387. #endif
  7388. };
  7389. }
  7390. #endif //UVLO_SUPPORT
  7391. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7392. void setup_fan_interrupt() {
  7393. //INT7
  7394. DDRE &= ~(1 << 7); //input pin
  7395. PORTE &= ~(1 << 7); //no internal pull-up
  7396. //start with sensing rising edge
  7397. EICRB &= ~(1 << 6);
  7398. EICRB |= (1 << 7);
  7399. //enable INT7 interrupt
  7400. EIMSK |= (1 << 7);
  7401. }
  7402. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7403. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7404. ISR(INT7_vect) {
  7405. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7406. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7407. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7408. t_fan_rising_edge = millis_nc();
  7409. }
  7410. else { //interrupt was triggered by falling edge
  7411. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7412. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7413. }
  7414. }
  7415. EICRB ^= (1 << 6); //change edge
  7416. }
  7417. #endif
  7418. #ifdef UVLO_SUPPORT
  7419. void setup_uvlo_interrupt() {
  7420. DDRE &= ~(1 << 4); //input pin
  7421. PORTE &= ~(1 << 4); //no internal pull-up
  7422. //sensing falling edge
  7423. EICRB |= (1 << 0);
  7424. EICRB &= ~(1 << 1);
  7425. //enable INT4 interrupt
  7426. EIMSK |= (1 << 4);
  7427. }
  7428. ISR(INT4_vect) {
  7429. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7430. SERIAL_ECHOLNPGM("INT4");
  7431. if (IS_SD_PRINTING) uvlo_();
  7432. }
  7433. void recover_print(uint8_t automatic) {
  7434. char cmd[30];
  7435. lcd_update_enable(true);
  7436. lcd_update(2);
  7437. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7438. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7439. // Lift the print head, so one may remove the excess priming material.
  7440. if (current_position[Z_AXIS] < 25)
  7441. enquecommand_P(PSTR("G1 Z25 F800"));
  7442. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7443. enquecommand_P(PSTR("G28 X Y"));
  7444. // Set the target bed and nozzle temperatures and wait.
  7445. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7446. enquecommand(cmd);
  7447. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7448. enquecommand(cmd);
  7449. enquecommand_P(PSTR("M83")); //E axis relative mode
  7450. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7451. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7452. if(automatic == 0){
  7453. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7454. }
  7455. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7456. // Mark the power panic status as inactive.
  7457. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7458. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7459. delay_keep_alive(1000);
  7460. }*/
  7461. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7462. // Restart the print.
  7463. restore_print_from_eeprom();
  7464. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7465. }
  7466. void recover_machine_state_after_power_panic()
  7467. {
  7468. char cmd[30];
  7469. // 1) Recover the logical cordinates at the time of the power panic.
  7470. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7471. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7472. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7473. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7474. // The current position after power panic is moved to the next closest 0th full step.
  7475. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7476. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7477. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7478. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7479. sprintf_P(cmd, PSTR("G92 E"));
  7480. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7481. enquecommand(cmd);
  7482. }
  7483. memcpy(destination, current_position, sizeof(destination));
  7484. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7485. print_world_coordinates();
  7486. // 2) Initialize the logical to physical coordinate system transformation.
  7487. world2machine_initialize();
  7488. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7489. mbl.active = false;
  7490. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7491. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7492. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7493. // Scale the z value to 10u resolution.
  7494. int16_t v;
  7495. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7496. if (v != 0)
  7497. mbl.active = true;
  7498. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7499. }
  7500. if (mbl.active)
  7501. mbl.upsample_3x3();
  7502. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7503. // print_mesh_bed_leveling_table();
  7504. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7505. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7506. babystep_load();
  7507. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7509. // 6) Power up the motors, mark their positions as known.
  7510. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7511. axis_known_position[X_AXIS] = true; enable_x();
  7512. axis_known_position[Y_AXIS] = true; enable_y();
  7513. axis_known_position[Z_AXIS] = true; enable_z();
  7514. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7515. print_physical_coordinates();
  7516. // 7) Recover the target temperatures.
  7517. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7518. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7519. // 8) Recover extruder multipilers
  7520. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7521. #if EXTRUDERS > 1
  7522. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7523. #if EXTRUDERS > 2
  7524. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7525. #endif
  7526. #endif
  7527. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7528. }
  7529. void restore_print_from_eeprom() {
  7530. float x_rec, y_rec, z_pos;
  7531. int feedrate_rec;
  7532. uint8_t fan_speed_rec;
  7533. char cmd[30];
  7534. char* c;
  7535. char filename[13];
  7536. uint8_t depth = 0;
  7537. char dir_name[9];
  7538. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7539. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7540. SERIAL_ECHOPGM("Feedrate:");
  7541. MYSERIAL.println(feedrate_rec);
  7542. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7543. MYSERIAL.println(int(depth));
  7544. for (int i = 0; i < depth; i++) {
  7545. for (int j = 0; j < 8; j++) {
  7546. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7547. }
  7548. dir_name[8] = '\0';
  7549. MYSERIAL.println(dir_name);
  7550. strcpy(dir_names[i], dir_name);
  7551. card.chdir(dir_name);
  7552. }
  7553. for (int i = 0; i < 8; i++) {
  7554. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7555. }
  7556. filename[8] = '\0';
  7557. MYSERIAL.print(filename);
  7558. strcat_P(filename, PSTR(".gco"));
  7559. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7560. enquecommand(cmd);
  7561. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7562. SERIAL_ECHOPGM("Position read from eeprom:");
  7563. MYSERIAL.println(position);
  7564. // E axis relative mode.
  7565. enquecommand_P(PSTR("M83"));
  7566. // Move to the XY print position in logical coordinates, where the print has been killed.
  7567. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7568. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7569. strcat_P(cmd, PSTR(" F2000"));
  7570. enquecommand(cmd);
  7571. // Move the Z axis down to the print, in logical coordinates.
  7572. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7573. enquecommand(cmd);
  7574. // Unretract.
  7575. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7576. // Set the feedrate saved at the power panic.
  7577. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7578. enquecommand(cmd);
  7579. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7580. {
  7581. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7582. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7583. }
  7584. // Set the fan speed saved at the power panic.
  7585. strcpy_P(cmd, PSTR("M106 S"));
  7586. strcat(cmd, itostr3(int(fan_speed_rec)));
  7587. enquecommand(cmd);
  7588. // Set a position in the file.
  7589. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7590. enquecommand(cmd);
  7591. // Start SD print.
  7592. enquecommand_P(PSTR("M24"));
  7593. }
  7594. #endif //UVLO_SUPPORT
  7595. ////////////////////////////////////////////////////////////////////////////////
  7596. // save/restore printing
  7597. void stop_and_save_print_to_ram(float z_move, float e_move)
  7598. {
  7599. if (saved_printing) return;
  7600. unsigned char nplanner_blocks;
  7601. unsigned char nlines;
  7602. uint16_t sdlen_planner;
  7603. uint16_t sdlen_cmdqueue;
  7604. cli();
  7605. if (card.sdprinting) {
  7606. nplanner_blocks = number_of_blocks();
  7607. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7608. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7609. saved_sdpos -= sdlen_planner;
  7610. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7611. saved_sdpos -= sdlen_cmdqueue;
  7612. saved_printing_type = PRINTING_TYPE_SD;
  7613. }
  7614. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7615. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7616. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7617. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7618. saved_sdpos -= nlines;
  7619. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7620. saved_printing_type = PRINTING_TYPE_USB;
  7621. }
  7622. else {
  7623. //not sd printing nor usb printing
  7624. }
  7625. #if 0
  7626. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7627. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7628. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7629. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7630. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7631. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7632. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7633. {
  7634. card.setIndex(saved_sdpos);
  7635. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7636. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7637. MYSERIAL.print(char(card.get()));
  7638. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7639. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7640. MYSERIAL.print(char(card.get()));
  7641. SERIAL_ECHOLNPGM("End of command buffer");
  7642. }
  7643. {
  7644. // Print the content of the planner buffer, line by line:
  7645. card.setIndex(saved_sdpos);
  7646. int8_t iline = 0;
  7647. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7648. SERIAL_ECHOPGM("Planner line (from file): ");
  7649. MYSERIAL.print(int(iline), DEC);
  7650. SERIAL_ECHOPGM(", length: ");
  7651. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7652. SERIAL_ECHOPGM(", steps: (");
  7653. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7654. SERIAL_ECHOPGM(",");
  7655. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7656. SERIAL_ECHOPGM(",");
  7657. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7658. SERIAL_ECHOPGM(",");
  7659. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7660. SERIAL_ECHOPGM("), events: ");
  7661. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7662. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7663. MYSERIAL.print(char(card.get()));
  7664. }
  7665. }
  7666. {
  7667. // Print the content of the command buffer, line by line:
  7668. int8_t iline = 0;
  7669. union {
  7670. struct {
  7671. char lo;
  7672. char hi;
  7673. } lohi;
  7674. uint16_t value;
  7675. } sdlen_single;
  7676. int _bufindr = bufindr;
  7677. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7678. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7679. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7680. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7681. }
  7682. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7683. MYSERIAL.print(int(iline), DEC);
  7684. SERIAL_ECHOPGM(", type: ");
  7685. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7686. SERIAL_ECHOPGM(", len: ");
  7687. MYSERIAL.println(sdlen_single.value, DEC);
  7688. // Print the content of the buffer line.
  7689. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7690. SERIAL_ECHOPGM("Buffer line (from file): ");
  7691. MYSERIAL.println(int(iline), DEC);
  7692. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7693. MYSERIAL.print(char(card.get()));
  7694. if (-- _buflen == 0)
  7695. break;
  7696. // First skip the current command ID and iterate up to the end of the string.
  7697. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7698. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7699. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7700. // If the end of the buffer was empty,
  7701. if (_bufindr == sizeof(cmdbuffer)) {
  7702. // skip to the start and find the nonzero command.
  7703. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7704. }
  7705. }
  7706. }
  7707. #endif
  7708. #if 0
  7709. saved_feedrate2 = feedrate; //save feedrate
  7710. #else
  7711. // Try to deduce the feedrate from the first block of the planner.
  7712. // Speed is in mm/min.
  7713. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7714. #endif
  7715. planner_abort_hard(); //abort printing
  7716. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7717. saved_active_extruder = active_extruder; //save active_extruder
  7718. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7719. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7720. cmdqueue_reset(); //empty cmdqueue
  7721. card.sdprinting = false;
  7722. // card.closefile();
  7723. saved_printing = true;
  7724. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7725. st_reset_timer();
  7726. sei();
  7727. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7728. #if 1
  7729. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7730. char buf[48];
  7731. // First unretract (relative extrusion)
  7732. if(!saved_extruder_relative_mode){
  7733. strcpy_P(buf, PSTR("M83"));
  7734. enquecommand(buf, false);
  7735. }
  7736. //retract 45mm/s
  7737. strcpy_P(buf, PSTR("G1 E"));
  7738. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7739. strcat_P(buf, PSTR(" F"));
  7740. dtostrf(2700, 8, 3, buf + strlen(buf));
  7741. enquecommand(buf, false);
  7742. // Then lift Z axis
  7743. strcpy_P(buf, PSTR("G1 Z"));
  7744. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7745. strcat_P(buf, PSTR(" F"));
  7746. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7747. // At this point the command queue is empty.
  7748. enquecommand(buf, false);
  7749. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7750. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7751. repeatcommand_front();
  7752. #else
  7753. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7754. st_synchronize(); //wait moving
  7755. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7756. memcpy(destination, current_position, sizeof(destination));
  7757. #endif
  7758. }
  7759. }
  7760. void restore_print_from_ram_and_continue(float e_move)
  7761. {
  7762. if (!saved_printing) return;
  7763. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7764. // current_position[axis] = st_get_position_mm(axis);
  7765. active_extruder = saved_active_extruder; //restore active_extruder
  7766. feedrate = saved_feedrate2; //restore feedrate
  7767. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7768. float e = saved_pos[E_AXIS] - e_move;
  7769. plan_set_e_position(e);
  7770. //first move print head in XY to the saved position:
  7771. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7772. st_synchronize();
  7773. //then move Z
  7774. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7775. st_synchronize();
  7776. //and finaly unretract (35mm/s)
  7777. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7778. st_synchronize();
  7779. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7780. memcpy(destination, current_position, sizeof(destination));
  7781. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7782. card.setIndex(saved_sdpos);
  7783. sdpos_atomic = saved_sdpos;
  7784. card.sdprinting = true;
  7785. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7786. }
  7787. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7788. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7789. serial_count = 0;
  7790. FlushSerialRequestResend();
  7791. }
  7792. else {
  7793. //not sd printing nor usb printing
  7794. }
  7795. lcd_setstatuspgm(_T(WELCOME_MSG));
  7796. saved_printing = false;
  7797. }
  7798. void print_world_coordinates()
  7799. {
  7800. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7801. }
  7802. void print_physical_coordinates()
  7803. {
  7804. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7805. }
  7806. void print_mesh_bed_leveling_table()
  7807. {
  7808. SERIAL_ECHOPGM("mesh bed leveling: ");
  7809. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7810. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7811. MYSERIAL.print(mbl.z_values[y][x], 3);
  7812. SERIAL_ECHOPGM(" ");
  7813. }
  7814. SERIAL_ECHOLNPGM("");
  7815. }
  7816. uint16_t print_time_remaining() {
  7817. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7818. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7819. else print_t = print_time_remaining_silent;
  7820. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7821. return print_t;
  7822. }
  7823. uint8_t print_percent_done() {
  7824. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7825. uint8_t percent_done = 0;
  7826. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7827. percent_done = print_percent_done_normal;
  7828. }
  7829. else if (print_percent_done_silent <= 100) {
  7830. percent_done = print_percent_done_silent;
  7831. }
  7832. else {
  7833. percent_done = card.percentDone();
  7834. }
  7835. return percent_done;
  7836. }
  7837. static void print_time_remaining_init() {
  7838. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7839. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7840. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7841. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7842. }
  7843. bool mmu_get_reponse(bool timeout) {
  7844. bool response = true;
  7845. LongTimer mmu_get_reponse_timeout;
  7846. uart2_rx_clr();
  7847. mmu_get_reponse_timeout.start();
  7848. while (!uart2_rx_ok())
  7849. {
  7850. delay_keep_alive(100);
  7851. if (timeout && mmu_get_reponse_timeout.expired(180 * 1000ul)) { //3 minutes timeout
  7852. response = false;
  7853. break;
  7854. }
  7855. }
  7856. return response;
  7857. }
  7858. void mmu_not_responding() {
  7859. printf_P(PSTR("MMU not responding"));
  7860. }
  7861. void mmu_load_to_nozzle() {
  7862. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7863. if (!saved_e_relative_mode) {
  7864. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7865. }
  7866. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7867. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7868. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7869. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7870. if (!saved_e_relative_mode) {
  7871. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7872. }*/
  7873. st_synchronize();
  7874. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7875. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7876. current_position[E_AXIS] += 7.2f;
  7877. float feedrate = 562;
  7878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7879. st_synchronize();
  7880. current_position[E_AXIS] += 14.4f;
  7881. feedrate = 871;
  7882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7883. st_synchronize();
  7884. current_position[E_AXIS] += 36.0f;
  7885. feedrate = 1393;
  7886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7887. st_synchronize();
  7888. current_position[E_AXIS] += 14.4f;
  7889. feedrate = 871;
  7890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7891. st_synchronize();
  7892. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7893. }
  7894. void mmu_switch_extruder(uint8_t extruder) {
  7895. }
  7896. void mmu_M600_load_filament() {
  7897. #ifdef SNMM_V2
  7898. bool response = false;
  7899. tmp_extruder = choose_extruder_menu();
  7900. lcd_update_enable(false);
  7901. lcd_clear();
  7902. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  7903. lcd_print(" ");
  7904. lcd_print(snmm_extruder + 1);
  7905. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7906. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  7907. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  7908. response = mmu_get_reponse(false);
  7909. if (!response) mmu_not_responding();
  7910. snmm_extruder = tmp_extruder; //filament change is finished
  7911. mmu_load_to_nozzle();
  7912. #endif
  7913. }
  7914. void M600_load_filament_movements() {
  7915. #ifdef SNMM
  7916. display_loading();
  7917. do {
  7918. current_position[E_AXIS] += 0.002;
  7919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7920. delay_keep_alive(2);
  7921. } while (!lcd_clicked());
  7922. st_synchronize();
  7923. current_position[E_AXIS] += bowden_length[snmm_extruder];
  7924. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7925. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7927. current_position[E_AXIS] += 40;
  7928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7929. current_position[E_AXIS] += 10;
  7930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7931. #else
  7932. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7934. #endif
  7935. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7937. lcd_loading_filament();
  7938. }
  7939. void M600_load_filament()
  7940. {
  7941. lcd_wait_interact();
  7942. //load_filament_time = millis();
  7943. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7944. #ifdef FILAMENT_SENSOR
  7945. fsensor_autoload_check_start();
  7946. #endif //FILAMENT_SENSOR
  7947. while(!lcd_clicked())
  7948. {
  7949. manage_heater();
  7950. manage_inactivity(true);
  7951. #ifdef FILAMENT_SENSOR
  7952. if (fsensor_check_autoload())
  7953. {
  7954. tone(BEEPER, 1000);
  7955. delay_keep_alive(50);
  7956. noTone(BEEPER);
  7957. break;
  7958. }
  7959. #endif //FILAMENT_SENSOR
  7960. }
  7961. #ifdef FILAMENT_SENSOR
  7962. fsensor_autoload_check_stop();
  7963. #endif //FILAMENT_SENSOR
  7964. KEEPALIVE_STATE(IN_HANDLER);
  7965. #ifdef FILAMENT_SENSOR
  7966. fsensor_oq_meassure_start(70);
  7967. #endif //FILAMENT_SENSOR
  7968. M600_load_filament_movements();
  7969. tone(BEEPER, 500);
  7970. delay_keep_alive(50);
  7971. noTone(BEEPER);
  7972. #ifdef FILAMENT_SENSOR
  7973. fsensor_oq_meassure_stop();
  7974. if (!fsensor_oq_result())
  7975. {
  7976. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7977. lcd_update_enable(true);
  7978. lcd_update(2);
  7979. if (disable)
  7980. fsensor_disable();
  7981. }
  7982. #endif //FILAMENT_SENSOR
  7983. }
  7984. #define FIL_LOAD_LENGTH 60