xyzcal.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946
  1. //xyzcal.cpp - xyz calibration with image processing
  2. #include "Configuration_prusa.h"
  3. #ifdef NEW_XYZCAL
  4. #include "xyzcal.h"
  5. #include <avr/wdt.h>
  6. #include "stepper.h"
  7. #include "temperature.h"
  8. #include "sm4.h"
  9. #define XYZCAL_PINDA_HYST_MIN 20 //50um
  10. #define XYZCAL_PINDA_HYST_MAX 100 //250um
  11. #define XYZCAL_PINDA_HYST_DIF 5 //12.5um
  12. #define ENABLE_FANCHECK_INTERRUPT() EIMSK |= (1<<7)
  13. #define DISABLE_FANCHECK_INTERRUPT() EIMSK &= ~(1<<7)
  14. #define _PINDA ((READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)?1:0)
  15. #define DBG(args...) printf_P(args)
  16. //#define DBG(args...)
  17. #ifndef _n
  18. #define _n PSTR
  19. #endif //_n
  20. #define _X ((int16_t)count_position[X_AXIS])
  21. #define _Y ((int16_t)count_position[Y_AXIS])
  22. #define _Z ((int16_t)count_position[Z_AXIS])
  23. #define _E ((int16_t)count_position[E_AXIS])
  24. #define _X_ (count_position[X_AXIS])
  25. #define _Y_ (count_position[Y_AXIS])
  26. #define _Z_ (count_position[Z_AXIS])
  27. #define _E_ (count_position[E_AXIS])
  28. #ifndef M_PI
  29. const constexpr float M_PI = 3.1415926535897932384626433832795f;
  30. #endif
  31. const constexpr uint8_t X_PLUS = 0;
  32. const constexpr uint8_t X_MINUS = 1;
  33. const constexpr uint8_t Y_PLUS = 0;
  34. const constexpr uint8_t Y_MINUS = 1;
  35. const constexpr uint8_t Z_PLUS = 0;
  36. const constexpr uint8_t Z_MINUS = 1;
  37. const constexpr uint8_t X_PLUS_MASK = 0;
  38. const constexpr uint8_t X_MINUS_MASK = X_AXIS_MASK;
  39. const constexpr uint8_t Y_PLUS_MASK = 0;
  40. const constexpr uint8_t Y_MINUS_MASK = Y_AXIS_MASK;
  41. const constexpr uint8_t Z_PLUS_MASK = 0;
  42. const constexpr uint8_t Z_MINUS_MASK = Z_AXIS_MASK;
  43. /// Max. jerk in PrusaSlicer, 10000 = 1 mm/s
  44. const constexpr uint16_t MAX_DELAY = 10000;
  45. const constexpr float MIN_SPEED = 0.01f / (MAX_DELAY * 0.000001f);
  46. /// 200 = 50 mm/s
  47. const constexpr uint16_t Z_MIN_DELAY = 200;
  48. const constexpr uint16_t Z_ACCEL = 1000;
  49. /// \returns positive value always
  50. #define ABS(a) \
  51. ({ __typeof__ (a) _a = (a); \
  52. _a >= 0 ? _a : (-_a); })
  53. /// \returns maximum of the two
  54. #define MAX(a, b) \
  55. ({ __typeof__ (a) _a = (a); \
  56. __typeof__ (b) _b = (b); \
  57. _a >= _b ? _a : _b; })
  58. /// \returns minimum of the two
  59. #define MIN(a, b) \
  60. ({ __typeof__ (a) _a = (a); \
  61. __typeof__ (b) _b = (b); \
  62. _a <= _b ? _a : _b; })
  63. /// swap values
  64. #define SWAP(a, b) \
  65. ({ __typeof__ (a) c = (a); \
  66. a = (b); \
  67. b = c; })
  68. /// Saturates value
  69. /// \returns min if value is less than min
  70. /// \returns max if value is more than min
  71. /// \returns value otherwise
  72. #define CLAMP(value, min, max) \
  73. ({ __typeof__ (value) a_ = (value); \
  74. __typeof__ (min) min_ = (min); \
  75. __typeof__ (max) max_ = (max); \
  76. ( a_ < min_ ? min_ : (a_ <= max_ ? a_ : max_)); })
  77. /// \returns square of the value
  78. #define SQR(a) \
  79. ({ __typeof__ (a) a_ = (a); \
  80. (a_ * a_); })
  81. /// position types
  82. typedef int16_t pos_i16_t;
  83. typedef long pos_i32_t;
  84. typedef float pos_mm_t;
  85. typedef int16_t usteps_t;
  86. uint8_t check_pinda_0();
  87. uint8_t check_pinda_1();
  88. void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
  89. uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd);
  90. uint8_t round_to_u8(float f){
  91. return (uint8_t)(f + .5f);
  92. }
  93. uint16_t round_to_u16(float f){
  94. return (uint16_t)(f + .5f);
  95. }
  96. int16_t round_to_i16(float f){
  97. return (int16_t)(f + .5f);
  98. }
  99. /// converts millimeters to integer position
  100. pos_i16_t mm_2_pos(pos_mm_t mm){
  101. return (pos_i16_t)(0.5f + mm * 100);
  102. }
  103. /// converts integer position to millimeters
  104. pos_mm_t pos_2_mm(pos_i16_t pos){
  105. return pos * 0.01f;
  106. }
  107. pos_mm_t pos_2_mm(float pos){
  108. return pos * 0.01f;
  109. }
  110. void xyzcal_meassure_enter(void)
  111. {
  112. DBG(_n("xyzcal_meassure_enter\n"));
  113. disable_heater();
  114. DISABLE_TEMPERATURE_INTERRUPT();
  115. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  116. DISABLE_FANCHECK_INTERRUPT();
  117. #endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  118. DISABLE_STEPPER_DRIVER_INTERRUPT();
  119. #ifdef WATCHDOG
  120. wdt_disable();
  121. #endif //WATCHDOG
  122. sm4_stop_cb = 0;
  123. sm4_update_pos_cb = xyzcal_update_pos;
  124. sm4_calc_delay_cb = xyzcal_calc_delay;
  125. }
  126. void xyzcal_meassure_leave(void)
  127. {
  128. DBG(_n("xyzcal_meassure_leave\n"));
  129. planner_abort_hard();
  130. ENABLE_TEMPERATURE_INTERRUPT();
  131. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  132. ENABLE_FANCHECK_INTERRUPT();
  133. #endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  134. ENABLE_STEPPER_DRIVER_INTERRUPT();
  135. #ifdef WATCHDOG
  136. wdt_enable(WDTO_4S);
  137. #endif //WATCHDOG
  138. sm4_stop_cb = 0;
  139. sm4_update_pos_cb = 0;
  140. sm4_calc_delay_cb = 0;
  141. }
  142. uint8_t check_pinda_0()
  143. {
  144. return _PINDA?0:1;
  145. }
  146. uint8_t check_pinda_1()
  147. {
  148. return _PINDA?1:0;
  149. }
  150. uint8_t xyzcal_dm = 0;
  151. void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t)
  152. {
  153. // DBG(_n("xyzcal_update_pos dx=%d dy=%d dz=%d dir=%02x\n"), dx, dy, dz, xyzcal_dm);
  154. if (xyzcal_dm&1) count_position[0] -= dx; else count_position[0] += dx;
  155. if (xyzcal_dm&2) count_position[1] -= dy; else count_position[1] += dy;
  156. if (xyzcal_dm&4) count_position[2] -= dz; else count_position[2] += dz;
  157. // DBG(_n(" after xyzcal_update_pos x=%ld y=%ld z=%ld\n"), count_position[0], count_position[1], count_position[2]);
  158. }
  159. uint16_t xyzcal_sm4_delay = 0;
  160. //#define SM4_ACCEL_TEST
  161. #ifdef SM4_ACCEL_TEST
  162. uint16_t xyzcal_sm4_v0 = 2000;
  163. uint16_t xyzcal_sm4_vm = 45000;
  164. uint16_t xyzcal_sm4_v = xyzcal_sm4_v0;
  165. uint16_t xyzcal_sm4_ac = 2000;
  166. uint16_t xyzcal_sm4_ac2 = (uint32_t)xyzcal_sm4_ac * 1024 / 10000;
  167. //float xyzcal_sm4_vm = 10000;
  168. #endif //SM4_ACCEL_TEST
  169. #ifdef SM4_ACCEL_TEST
  170. uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd)
  171. {
  172. uint16_t del_us = 0;
  173. if (xyzcal_sm4_v & 0xf000) //>=4096
  174. {
  175. del_us = (uint16_t)62500 / (uint16_t)(xyzcal_sm4_v >> 4);
  176. xyzcal_sm4_v += (xyzcal_sm4_ac2 * del_us + 512) >> 10;
  177. if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;
  178. if (del_us > 25) return del_us - 25;
  179. }
  180. else
  181. {
  182. del_us = (uint32_t)1000000 / xyzcal_sm4_v;
  183. xyzcal_sm4_v += ((uint32_t)xyzcal_sm4_ac2 * del_us + 512) >> 10;
  184. if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;
  185. if (del_us > 50) return del_us - 50;
  186. }
  187. // uint16_t del_us = (uint16_t)(((float)1000000 / xyzcal_sm4_v) + 0.5);
  188. // uint16_t del_us = (uint32_t)1000000 / xyzcal_sm4_v;
  189. // uint16_t del_us = 100;
  190. // uint16_t del_us = (uint16_t)10000 / xyzcal_sm4_v;
  191. // v += (ac * del_us + 500) / 1000;
  192. // xyzcal_sm4_v += (xyzcal_sm4_ac * del_us) / 1000;
  193. // return xyzcal_sm4_delay;
  194. // DBG(_n("xyzcal_calc_delay nd=%d dd=%d v=%d del_us=%d\n"), nd, dd, xyzcal_sm4_v, del_us);
  195. return 0;
  196. }
  197. #else //SM4_ACCEL_TEST
  198. uint16_t xyzcal_calc_delay(uint16_t, uint16_t)
  199. {
  200. return xyzcal_sm4_delay;
  201. }
  202. #endif //SM4_ACCEL_TEST
  203. /// Moves printer to absolute position [x,y,z] defined in integer position system
  204. /// check_pinda == 0: ordinary move
  205. /// check_pinda == 1: stop when PINDA triggered
  206. /// check_pinda == -1: stop when PINDA untriggered
  207. bool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_t check_pinda)
  208. {
  209. // DBG(_n("xyzcal_lineXYZ_to x=%d y=%d z=%d check=%d\n"), x, y, z, check_pinda);
  210. x -= (int16_t)count_position[0];
  211. y -= (int16_t)count_position[1];
  212. z -= (int16_t)count_position[2];
  213. xyzcal_dm = ((x<0)?1:0) | ((y<0)?2:0) | ((z<0)?4:0);
  214. sm4_set_dir_bits(xyzcal_dm);
  215. sm4_stop_cb = check_pinda?((check_pinda<0)?check_pinda_0:check_pinda_1):0;
  216. xyzcal_sm4_delay = delay_us;
  217. // uint32_t u = _micros();
  218. bool ret = sm4_line_xyze_ui(abs(x), abs(y), abs(z), 0) ? true : false;
  219. // u = _micros() - u;
  220. return ret;
  221. }
  222. /// Moves printer to absolute position [x,y,z] defined in millimeters
  223. bool xyzcal_lineXYZ_to_float(pos_mm_t x, pos_mm_t y, pos_mm_t z, uint16_t delay_us, int8_t check_pinda){
  224. return xyzcal_lineXYZ_to(mm_2_pos(x), mm_2_pos(y), mm_2_pos(z), delay_us, check_pinda);
  225. }
  226. bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, int16_t rotation, uint16_t delay_us, int8_t check_pinda, uint16_t* pad)
  227. {
  228. bool ret = false;
  229. float r = 0; //radius
  230. uint16_t ad = 0; //angle [deg]
  231. float ar; //angle [rad]
  232. uint8_t dad = 0; //delta angle [deg]
  233. uint8_t dad_min = 4; //delta angle min [deg]
  234. uint8_t dad_max = 16; //delta angle max [deg]
  235. uint8_t k = 720 / (dad_max - dad_min); //delta calculation constant
  236. ad = 0;
  237. if (pad) ad = *pad % 720;
  238. DBG(_n("xyzcal_spiral2 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);
  239. // lcd_set_cursor(0, 4);
  240. // char text[10];
  241. // snprintf(text, 10, "%4d", z0);
  242. // lcd_print(text);
  243. for (; ad < 720; ad++)
  244. {
  245. if (radius > 0)
  246. {
  247. dad = dad_max - (ad / k);
  248. r = (float)(((uint32_t)ad) * radius) / 720;
  249. }
  250. else
  251. {
  252. dad = dad_max - ((719 - ad) / k);
  253. r = (float)(((uint32_t)(719 - ad)) * (-radius)) / 720;
  254. }
  255. ar = (ad + rotation)* (float)M_PI / 180;
  256. int x = (int)(cx + (cos(ar) * r));
  257. int y = (int)(cy + (sin(ar) * r));
  258. int z = (int)(z0 - ((float)((int32_t)dz * ad) / 720));
  259. if (xyzcal_lineXYZ_to(x, y, z, delay_us, check_pinda))
  260. {
  261. ad += dad + 1;
  262. ret = true;
  263. break;
  264. }
  265. ad += dad;
  266. }
  267. if (pad) *pad = ad;
  268. // if(ret){
  269. // lcd_set_cursor(0, 4);
  270. // lcd_print(" ");
  271. // }
  272. return ret;
  273. }
  274. bool xyzcal_spiral8(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, uint16_t delay_us, int8_t check_pinda, uint16_t* pad)
  275. {
  276. bool ret = false;
  277. uint16_t ad = 0;
  278. if (pad) ad = *pad;
  279. DBG(_n("xyzcal_spiral8 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);
  280. if (!ret && (ad < 720))
  281. if ((ret = xyzcal_spiral2(cx, cy, z0 - 0*dz, dz, radius, 0, delay_us, check_pinda, &ad)) != 0)
  282. ad += 0;
  283. if (!ret && (ad < 1440))
  284. if ((ret = xyzcal_spiral2(cx, cy, z0 - 1*dz, dz, -radius, 0, delay_us, check_pinda, &ad)) != 0)
  285. ad += 720;
  286. if (!ret && (ad < 2160))
  287. if ((ret = xyzcal_spiral2(cx, cy, z0 - 2*dz, dz, radius, 180, delay_us, check_pinda, &ad)) != 0)
  288. ad += 1440;
  289. if (!ret && (ad < 2880))
  290. if ((ret = xyzcal_spiral2(cx, cy, z0 - 3*dz, dz, -radius, 180, delay_us, check_pinda, &ad)) != 0)
  291. ad += 2160;
  292. if (pad) *pad = ad;
  293. return ret;
  294. }
  295. #ifdef XYZCAL_MEASSURE_PINDA_HYSTEREZIS
  296. int8_t xyzcal_meassure_pinda_hysterezis(int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t samples)
  297. {
  298. DBG(_n("xyzcal_meassure_pinda_hysterezis\n"));
  299. int8_t ret = -1; // PINDA signal error
  300. int16_t z = _Z;
  301. int16_t sum_up = 0;
  302. int16_t sum_dn = 0;
  303. int16_t up;
  304. int16_t dn;
  305. uint8_t sample;
  306. xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);
  307. xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1);
  308. if (!_PINDA)
  309. {
  310. for (sample = 0; sample < samples; sample++)
  311. {
  312. dn = _Z;
  313. if (!xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1)) break;
  314. dn = dn - _Z;
  315. up = _Z;
  316. if (!xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1)) break;
  317. up = _Z - up;
  318. DBG(_n("%d. up=%d dn=%d\n"), sample, up, dn);
  319. sum_up += up;
  320. sum_dn += dn;
  321. if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)
  322. {
  323. ret = -2; // difference between up-dn to high
  324. break;
  325. }
  326. }
  327. if (sample == samples)
  328. {
  329. up = sum_up / samples;
  330. dn = sum_dn / samples;
  331. uint16_t hyst = (up + dn) / 2;
  332. if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)
  333. ret = -2; // difference between up-dn to high
  334. else if ((hyst < XYZCAL_PINDA_HYST_MIN) || (hyst > XYZCAL_PINDA_HYST_MAX))
  335. ret = -3; // hysterezis out of range
  336. else
  337. ret = hyst;
  338. }
  339. }
  340. xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0);
  341. return ret;
  342. }
  343. #endif //XYZCAL_MEASSURE_PINDA_HYSTEREZIS
  344. void print_hysterezis(int16_t min_z, int16_t max_z, int16_t step){
  345. int16_t delay_us = 600;
  346. int16_t trigger = 0;
  347. int16_t untrigger = 0;
  348. DBG(_n("Hysterezis\n"));
  349. xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 0);
  350. for (int16_t z = min_z; z <= max_z; z += step){
  351. xyzcal_lineXYZ_to(_X, _Y, z, delay_us, -1);
  352. untrigger = _Z;
  353. xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0);
  354. xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);
  355. trigger = _Z;
  356. //xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 0);
  357. DBG(_n("min, trigger, untrigger, max: [%d %d %d %d]\n"), _Z, trigger, untrigger, z);
  358. }
  359. }
  360. void update_position_1_step(uint8_t axis, uint8_t dir){
  361. int8_t add = dir ? -1 : 1;
  362. if (axis & X_AXIS_MASK)
  363. _X_ += dir & X_AXIS_MASK ? -1 : 1;
  364. if (axis & Y_AXIS_MASK)
  365. _Y_ += dir & Y_AXIS_MASK ? -1 : 1;
  366. if (axis & Z_AXIS_MASK)
  367. _Z_ += dir & Z_AXIS_MASK ? -1 : 1;
  368. }
  369. void set_axis_dir(uint8_t axis, uint8_t dir){
  370. if (axis & X_AXIS_MASK)
  371. sm4_set_dir(X_AXIS, dir & X_AXIS_MASK);
  372. if (axis & Y_AXIS_MASK)
  373. sm4_set_dir(Y_AXIS, dir & Y_AXIS_MASK);
  374. if (axis & Z_AXIS_MASK)
  375. sm4_set_dir(Z_AXIS, dir & Z_AXIS_MASK);
  376. }
  377. /// Accelerate up to max.speed (defined by @min_delay_us)
  378. /// does not update global positions
  379. void accelerate_1_step(uint8_t axis, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us){
  380. sm4_do_step(axis);
  381. /// keep max speed (avoid extra computation)
  382. if (acc > 0 && delay_us == min_delay_us){
  383. delayMicroseconds(delay_us);
  384. return;
  385. }
  386. // v1 = v0 + a * t
  387. // 0.01 = length of a step
  388. const float t0 = delay_us * 0.000001f;
  389. const float v1 = (0.01f / t0 + acc * t0);
  390. uint16_t t1;
  391. if (v1 <= 0.16f){ ///< slowest speed convertible to uint16_t delay
  392. t1 = MAX_DELAY; ///< already too slow so it wants to move back
  393. } else {
  394. /// don't exceed max.speed
  395. t1 = MAX(min_delay_us, round_to_u16(0.01f / v1 * 1000000.f));
  396. }
  397. /// make sure delay has changed a bit at least
  398. if (t1 == delay_us && acc != 0){
  399. if (acc > 0)
  400. t1--;
  401. else
  402. t1++;
  403. }
  404. //DBG(_n("%d "), t1);
  405. delayMicroseconds(t1);
  406. delay_us = t1;
  407. }
  408. /// Goes defined number of steps while accelerating
  409. /// updates global positions
  410. void accelerate(uint8_t axis, uint8_t dir, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us, uint16_t steps){
  411. set_axis_dir(axis, dir);
  412. while (steps--){
  413. accelerate_1_step(axis, acc, delay_us, min_delay_us);
  414. update_position_1_step(axis, dir);
  415. }
  416. }
  417. /// keeps speed and then it decelerates to a complete stop (if possible)
  418. /// it goes defined number of steps
  419. /// returns after each step
  420. /// \returns true if step was done
  421. /// does not update global positions
  422. bool go_and_stop_1_step(uint8_t axis, int16_t dec, uint16_t &delay_us, uint16_t &steps){
  423. if (steps <= 0 || dec <= 0)
  424. return false;
  425. /// deceleration distance in steps, s = 1/2 v^2 / a
  426. uint16_t s = round_to_u16(100 * 0.5f * SQR(0.01f) / (SQR((float)delay_us) * dec));
  427. if (steps > s){
  428. /// go steady
  429. sm4_do_step(axis);
  430. delayMicroseconds(delay_us);
  431. } else {
  432. /// decelerate
  433. accelerate_1_step(axis, -dec, delay_us, delay_us);
  434. }
  435. --steps;
  436. return true;
  437. }
  438. /// \param dir sets direction of movement
  439. /// updates global positions
  440. void go_and_stop(uint8_t axis, uint8_t dir, int16_t dec, uint16_t &delay_us, uint16_t steps){
  441. set_axis_dir(axis, dir);
  442. while (go_and_stop_1_step(axis, dec, delay_us, steps)){
  443. update_position_1_step(axis, dir);
  444. }
  445. }
  446. /// goes all the way to stop
  447. /// \returns steps done
  448. /// updates global positions
  449. void stop_smoothly(uint8_t axis, uint8_t dir, int16_t dec, uint16_t &delay_us){
  450. if (dec <= 0)
  451. return;
  452. set_axis_dir(axis, dir);
  453. while (delay_us < MAX_DELAY){
  454. accelerate_1_step(axis, -dec, delay_us, delay_us);
  455. update_position_1_step(axis, dir);
  456. }
  457. }
  458. void xyzcal_scan_pixels_32x32_Zhop(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t *pixels){
  459. if (!pixels)
  460. return;
  461. int16_t z_trig;
  462. uint16_t line_buffer[32];
  463. uint16_t current_delay_us = MAX_DELAY; ///< defines current speed
  464. xyzcal_lineXYZ_to(cx - 1024, cy - 1024, min_z, delay_us, 0);
  465. int16_t start_z;
  466. uint16_t steps_to_go;
  467. for (uint8_t r = 0; r < 32; r++){ ///< Y axis
  468. xyzcal_lineXYZ_to(_X, cy - 1024 + r * 64, _Z, delay_us, 0);
  469. for (uint8_t d = 0; d < 2; ++d){
  470. xyzcal_lineXYZ_to((d & 1) ? (cx + 1024) : (cx - 1024), _Y, min_z, delay_us, 0);
  471. sm4_set_dir(X_AXIS, d);
  472. for (uint8_t c = 0; c < 32; c++){ ///< X axis
  473. z_trig = min_z;
  474. /// move up to un-trigger (surpress hysteresis)
  475. sm4_set_dir(Z_AXIS, Z_PLUS);
  476. /// speed up from stop, go half the way
  477. current_delay_us = MAX_DELAY;
  478. for (start_z = _Z; _Z < (max_z + start_z) / 2; ++_Z_){
  479. if (!_PINDA){
  480. break;
  481. }
  482. accelerate_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
  483. }
  484. if (_PINDA){
  485. steps_to_go = MAX(0, max_z - _Z);
  486. while (_PINDA && _Z < max_z){
  487. go_and_stop_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);
  488. ++_Z_;
  489. }
  490. }
  491. stop_smoothly(Z_AXIS_MASK, Z_PLUS_MASK, Z_ACCEL, current_delay_us);
  492. /// move down to trigger
  493. sm4_set_dir(Z_AXIS, Z_MINUS);
  494. /// speed up
  495. current_delay_us = MAX_DELAY;
  496. for (start_z = _Z; _Z > (min_z + start_z) / 2; --_Z_){
  497. if (_PINDA){
  498. z_trig = _Z;
  499. break;
  500. }
  501. accelerate_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
  502. }
  503. /// slow down
  504. if (!_PINDA){
  505. steps_to_go = MAX(0, _Z - min_z);
  506. while (!_PINDA && _Z > min_z){
  507. go_and_stop_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);
  508. --_Z_;
  509. }
  510. z_trig = _Z;
  511. }
  512. /// slow down to stop but not lower than min_z
  513. while (_Z > min_z && current_delay_us < MAX_DELAY){
  514. accelerate_1_step(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);
  515. --_Z_;
  516. }
  517. if (d == 0){
  518. line_buffer[c] = (uint16_t)(z_trig - min_z);
  519. } else {
  520. /// data reversed in X
  521. // DBG(_n("%04x"), (line_buffer[31 - c] + (z - min_z)) / 2);
  522. /// save average of both directions
  523. pixels[(uint16_t)r * 32 + (31 - c)] = (uint8_t)MIN((uint32_t)255, ((uint32_t)line_buffer[31 - c] + (z_trig - min_z)) / 2);
  524. }
  525. /// move to the next point and move Z up diagonally (if needed)
  526. current_delay_us = MAX_DELAY;
  527. // const int8_t dir = (d & 1) ? -1 : 1;
  528. const int16_t end_x = ((d & 1) ? 1 : -1) * (64 * (16 - c) - 32) + cx;
  529. const int16_t length_x = ABS(end_x - _X);
  530. const int16_t half_x = length_x / 2;
  531. int16_t x = 0;
  532. /// don't go up if PINDA not triggered
  533. const bool up = _PINDA;
  534. int8_t axis = up ? X_AXIS_MASK | Z_AXIS_MASK : X_AXIS_MASK;
  535. uint8_t dir = Z_PLUS_MASK | (d & 1 ? X_MINUS_MASK : X_PLUS_MASK);
  536. // sm4_set_dir(Z_AXIS, Z_PLUS);
  537. /// speed up
  538. accelerate(axis, dir, Z_ACCEL, current_delay_us, Z_MIN_DELAY, half_x);
  539. // for (x = 0; x <= half_x; ++x)
  540. // {
  541. // accelerate_1_step(axis, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
  542. // if (up)
  543. // ++_Z_;
  544. // }
  545. /// slow down
  546. go_and_stop(axis, dir, Z_ACCEL, current_delay_us, length_x - half_x);
  547. // steps_to_go = length_x - half_x;
  548. // for (; x < length_x; ++x){
  549. // go_and_stop_1_step(axis, Z_ACCEL, current_delay_us, steps_to_go);
  550. // if (up)
  551. // ++_Z_;
  552. // }
  553. // count_position[0] = end_x;
  554. }
  555. }
  556. // DBG(_n("\n\n"));
  557. }
  558. }
  559. /// Returns rate of match
  560. /// max match = 132, min match = 0
  561. uint8_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r){
  562. uint8_t thr = 16;
  563. uint8_t match = 0;
  564. for (uint8_t i = 0; i < 12; ++i){
  565. for (uint8_t j = 0; j < 12; ++j){
  566. /// skip corners (3 pixels in each)
  567. if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue;
  568. if (((j == 0) || (j == 11)) && ((i < 2) || (i >= 10))) continue;
  569. const uint16_t idx = (c + j) + 32 * ((uint16_t)r + i);
  570. const bool high_pix = pixels[idx] > thr;
  571. const bool high_pat = pattern[i] & (1 << j);
  572. if (high_pix == high_pat)
  573. match++;
  574. }
  575. }
  576. return match;
  577. }
  578. /// Searches for best match of pattern by shifting it
  579. /// Returns rate of match and the best location
  580. /// max match = 132, min match = 0
  581. uint8_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr){
  582. if (!pixels || !pattern || !pc || !pr)
  583. return -1;
  584. uint8_t max_c = 0;
  585. uint8_t max_r = 0;
  586. uint8_t max_match = 0;
  587. // DBG(_n("Matching:\n"));
  588. /// pixel precision
  589. for (uint8_t r = 0; r < (32 - 12); ++r){
  590. for (uint8_t c = 0; c < (32 - 12); ++c){
  591. const uint8_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r);
  592. if (max_match < match){
  593. max_c = c;
  594. max_r = r;
  595. max_match = match;
  596. }
  597. // DBG(_n("%d "), match);
  598. }
  599. // DBG(_n("\n"));
  600. }
  601. DBG(_n("max_c=%d max_r=%d max_match=%d pixel\n"), max_c, max_r, max_match);
  602. *pc = max_c;
  603. *pr = max_r;
  604. return max_match;
  605. }
  606. uint8_t xyzcal_xycoords2point(int16_t x, int16_t y)
  607. {
  608. uint8_t ix = (x > 10000)?1:0;
  609. uint8_t iy = (y > 10000)?1:0;
  610. return iy?(3-ix):ix;
  611. }
  612. //MK3
  613. #if ((MOTHERBOARD == BOARD_EINSY_1_0a))
  614. const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
  615. const int16_t xyzcal_point_ycoords[4] PROGMEM = {600, 600, 19800, 19800};
  616. #endif //((MOTHERBOARD == BOARD_EINSY_1_0a))
  617. //MK2.5
  618. #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
  619. const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
  620. const int16_t xyzcal_point_ycoords[4] PROGMEM = {700, 700, 19800, 19800};
  621. #endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
  622. const uint16_t xyzcal_point_pattern[12] PROGMEM = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000};
  623. bool xyzcal_searchZ(void)
  624. {
  625. DBG(_n("xyzcal_searchZ x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
  626. int16_t x0 = _X;
  627. int16_t y0 = _Y;
  628. int16_t z0 = _Z;
  629. // int16_t min_z = -6000;
  630. // int16_t dz = 100;
  631. int16_t z = z0;
  632. while (z > -2300) //-6mm + 0.25mm
  633. {
  634. uint16_t ad = 0;
  635. if (xyzcal_spiral8(x0, y0, z, 100, 900, 320, 1, &ad)) //dz=100 radius=900 delay=400
  636. {
  637. int16_t x_on = _X;
  638. int16_t y_on = _Y;
  639. int16_t z_on = _Z;
  640. DBG(_n(" ON-SIGNAL at x=%d y=%d z=%d ad=%d\n"), x_on, y_on, z_on, ad);
  641. return true;
  642. }
  643. z -= 400;
  644. }
  645. DBG(_n("xyzcal_searchZ no signal\n x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
  646. return false;
  647. }
  648. /// returns value of any location within data
  649. /// uses bilinear interpolation
  650. float get_value(uint8_t * matrix_32x32, float c, float r){
  651. if (c <= 0 || r <= 0 || c >= 31 || r >= 31)
  652. return 0;
  653. /// calculate weights of nearby points
  654. const float wc1 = c - floor(c);
  655. const float wr1 = r - floor(r);
  656. const float wc0 = 1 - wc1;
  657. const float wr0 = 1 - wr1;
  658. const float w00 = wc0 * wr0;
  659. const float w01 = wc0 * wr1;
  660. const float w10 = wc1 * wr0;
  661. const float w11 = wc1 * wr1;
  662. const uint16_t c0 = c;
  663. const uint16_t c1 = c0 + 1;
  664. const uint16_t r0 = r;
  665. const uint16_t r1 = r0 + 1;
  666. const uint16_t idx00 = c0 + 32 * r0;
  667. const uint16_t idx01 = c0 + 32 * r1;
  668. const uint16_t idx10 = c1 + 32 * r0;
  669. const uint16_t idx11 = c1 + 32 * r1;
  670. /// bilinear resampling
  671. return w00 * matrix_32x32[idx00] + w01 * matrix_32x32[idx01] + w10 * matrix_32x32[idx10] + w11 * matrix_32x32[idx11];
  672. }
  673. const constexpr float m_infinity = -1000.f;
  674. /// replaces the highest number by m_infinity
  675. void remove_highest(float *points, const uint8_t num_points){
  676. if (num_points <= 0)
  677. return;
  678. float max = points[0];
  679. uint8_t max_i = 0;
  680. for (uint8_t i = 0; i < num_points; ++i){
  681. if (max < points[i]){
  682. max = points[i];
  683. max_i = i;
  684. }
  685. }
  686. points[max_i] = m_infinity;
  687. }
  688. /// return the highest number in the list
  689. float highest(float *points, const uint8_t num_points){
  690. if (num_points <= 0)
  691. return 0;
  692. float max = points[0];
  693. for (uint8_t i = 0; i < num_points; ++i){
  694. if (max < points[i]){
  695. max = points[i];
  696. }
  697. }
  698. return max;
  699. }
  700. /// Searches for circle iteratively
  701. /// Uses points on the perimeter. If point is high it pushes circle out of the center (shift or change of radius),
  702. /// otherwise to the center.
  703. /// Algorithm is stopped after fixed number of iterations. Move is limited to 0.5 px per iteration.
  704. void dynamic_circle(uint8_t *matrix_32x32, float &x, float &y, float &r, uint8_t iterations){
  705. /// circle of 10.5 diameter has 33 in circumference, don't go much above
  706. const constexpr uint8_t num_points = 33;
  707. float points[num_points];
  708. float pi_2_div_num_points = 2 * M_PI / num_points;
  709. const constexpr uint8_t target_z = 32; ///< target z height of the circle
  710. float norm;
  711. float angle;
  712. float max_val = 0.5f;
  713. const uint8_t blocks = 7;
  714. float shifts_x[blocks];
  715. float shifts_y[blocks];
  716. float shifts_r[blocks];
  717. for (int8_t i = iterations; i > 0; --i){
  718. // DBG(_n(" [%f, %f][%f] circle\n"), x, y, r);
  719. /// read points on the circle
  720. for (uint8_t p = 0; p < num_points; ++p){
  721. angle = p * pi_2_div_num_points;
  722. points[p] = get_value(matrix_32x32, r * cos(angle) + x, r * sin(angle) + y) - target_z;
  723. // DBG(_n("%f "), points[p]);
  724. }
  725. // DBG(_n(" points\n"));
  726. /// sum blocks
  727. for (uint8_t j = 0; j < blocks; ++j){
  728. shifts_x[j] = shifts_y[j] = shifts_r[j] = 0;
  729. /// first part
  730. for (uint8_t p = 0; p < num_points * 3 / 4; ++p){
  731. uint8_t idx = (p + j * num_points / blocks) % num_points;
  732. angle = idx * pi_2_div_num_points;
  733. shifts_x[j] += cos(angle) * points[idx];
  734. shifts_y[j] += sin(angle) * points[idx];
  735. shifts_r[j] += points[idx];
  736. }
  737. }
  738. /// remove extreme values (slow but simple)
  739. for (uint8_t j = 0; j < blocks / 2; ++j){
  740. remove_highest(shifts_x, blocks);
  741. remove_highest(shifts_y, blocks);
  742. remove_highest(shifts_r, blocks);
  743. }
  744. /// median is the highest now
  745. norm = 1.f / (32.f * (num_points * 3 / 4));
  746. x += CLAMP(highest(shifts_x, blocks) * norm, -max_val, max_val);
  747. y += CLAMP(highest(shifts_y, blocks) * norm, -max_val, max_val);
  748. r += CLAMP(highest(shifts_r, blocks) * norm, -max_val, max_val);
  749. r = MAX(2, r);
  750. }
  751. DBG(_n(" [%f, %f][%f] final circle\n"), x, y, r);
  752. }
  753. /// Prints matrix in hex to debug output (serial line)
  754. void print_image(uint8_t *matrix_32x32){
  755. for (uint8_t y = 0; y < 32; ++y){
  756. const uint16_t idx_y = y * 32;
  757. for (uint8_t x = 0; x < 32; ++x){
  758. DBG(_n("%02x"), matrix_32x32[idx_y + x]);
  759. }
  760. DBG(_n("\n"));
  761. }
  762. DBG(_n("\n"));
  763. }
  764. /// scans area around the current head location and
  765. /// searches for the center of the calibration pin
  766. bool xyzcal_scan_and_process(void){
  767. DBG(_n("sizeof(block_buffer)=%d\n"), sizeof(block_t)*BLOCK_BUFFER_SIZE);
  768. bool ret = false;
  769. int16_t x = _X;
  770. int16_t y = _Y;
  771. int16_t z = _Z;
  772. uint8_t *matrix32 = (uint8_t *)block_buffer;
  773. uint16_t *pattern = (uint16_t *)(matrix32 + 32 * 32);
  774. xyzcal_scan_pixels_32x32_Zhop(x, y, z - 72, 2400, 200, matrix32);
  775. print_image(matrix32);
  776. for (uint8_t i = 0; i < 12; i++){
  777. pattern[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern + i));
  778. // DBG(_n(" pattern[%d]=%d\n"), i, pattern[i]);
  779. }
  780. /// SEARCH FOR BINARY CIRCLE
  781. uint8_t uc = 0;
  782. uint8_t ur = 0;
  783. /// max match = 132, 1/2 good = 66, 2/3 good = 88
  784. if (xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern, &uc, &ur) >= 88){
  785. /// find precise circle
  786. /// move to the center of the pattern (+5.5)
  787. float xf = uc + 5.5f;
  788. float yf = ur + 5.5f;
  789. float radius = 5; ///< default radius
  790. const uint8_t iterations = 20;
  791. dynamic_circle(matrix32, xf, yf, radius, iterations);
  792. if (ABS(xf - (uc + 5.5f)) > 3 || ABS(yf - (ur + 5.5f)) > 3 || ABS(radius - 5) > 3){
  793. DBG(_n(" [%f %f][%f] mm divergence\n"), xf - (uc + 5.5f), yf - (ur + 5.5f), radius - 5);
  794. /// dynamic algorithm diverged, use original position instead
  795. xf = uc + 5.5f;
  796. yf = ur + 5.5f;
  797. }
  798. /// move to the center of area and convert to position
  799. xf = (float)x + (xf - 15.5f) * 64;
  800. yf = (float)y + (yf - 15.5f) * 64;
  801. DBG(_n(" [%f %f] mm pattern center\n"), pos_2_mm(xf), pos_2_mm(yf));
  802. x = round_to_i16(xf);
  803. y = round_to_i16(yf);
  804. xyzcal_lineXYZ_to(x, y, z, 200, 0);
  805. ret = true;
  806. }
  807. /// wipe buffer
  808. for (uint16_t i = 0; i < sizeof(block_t)*BLOCK_BUFFER_SIZE; i++)
  809. matrix32[i] = 0;
  810. return ret;
  811. }
  812. bool xyzcal_find_bed_induction_sensor_point_xy(void){
  813. bool ret = false;
  814. DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
  815. st_synchronize();
  816. pos_i16_t x = _X;
  817. pos_i16_t y = _Y;
  818. pos_i16_t z = _Z;
  819. uint8_t point = xyzcal_xycoords2point(x, y);
  820. x = pgm_read_word((uint16_t *)(xyzcal_point_xcoords + point));
  821. y = pgm_read_word((uint16_t *)(xyzcal_point_ycoords + point));
  822. DBG(_n("point=%d x=%d y=%d z=%d\n"), point, x, y, z);
  823. xyzcal_meassure_enter();
  824. xyzcal_lineXYZ_to(x, y, z, 200, 0);
  825. if (xyzcal_searchZ()){
  826. xyzcal_lineXYZ_to(x, y, _Z, 200, 0);
  827. ret = xyzcal_scan_and_process();
  828. }
  829. xyzcal_meassure_leave();
  830. return ret;
  831. }
  832. #endif //NEW_XYZCAL