Marlin_main.cpp 351 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  320. {
  321. #if 0
  322. char ch=pgm_read_byte(str);
  323. while(ch)
  324. {
  325. MYSERIAL.write(ch);
  326. ch=pgm_read_byte(++str);
  327. }
  328. #else
  329. // hmm, same size as the above version, the compiler did a good job optimizing the above
  330. while( uint8_t ch = pgm_read_byte(str) ){
  331. MYSERIAL.write((char)ch);
  332. ++str;
  333. }
  334. #endif
  335. }
  336. #ifdef SDSUPPORT
  337. #include "SdFatUtil.h"
  338. int freeMemory() { return SdFatUtil::FreeRam(); }
  339. #else
  340. extern "C" {
  341. extern unsigned int __bss_end;
  342. extern unsigned int __heap_start;
  343. extern void *__brkval;
  344. int freeMemory() {
  345. int free_memory;
  346. if ((int)__brkval == 0)
  347. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  348. else
  349. free_memory = ((int)&free_memory) - ((int)__brkval);
  350. return free_memory;
  351. }
  352. }
  353. #endif //!SDSUPPORT
  354. void setup_killpin()
  355. {
  356. #if defined(KILL_PIN) && KILL_PIN > -1
  357. SET_INPUT(KILL_PIN);
  358. WRITE(KILL_PIN,HIGH);
  359. #endif
  360. }
  361. // Set home pin
  362. void setup_homepin(void)
  363. {
  364. #if defined(HOME_PIN) && HOME_PIN > -1
  365. SET_INPUT(HOME_PIN);
  366. WRITE(HOME_PIN,HIGH);
  367. #endif
  368. }
  369. void setup_photpin()
  370. {
  371. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  372. SET_OUTPUT(PHOTOGRAPH_PIN);
  373. WRITE(PHOTOGRAPH_PIN, LOW);
  374. #endif
  375. }
  376. void setup_powerhold()
  377. {
  378. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  379. SET_OUTPUT(SUICIDE_PIN);
  380. WRITE(SUICIDE_PIN, HIGH);
  381. #endif
  382. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  383. SET_OUTPUT(PS_ON_PIN);
  384. #if defined(PS_DEFAULT_OFF)
  385. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  386. #else
  387. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  388. #endif
  389. #endif
  390. }
  391. void suicide()
  392. {
  393. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  394. SET_OUTPUT(SUICIDE_PIN);
  395. WRITE(SUICIDE_PIN, LOW);
  396. #endif
  397. }
  398. void servo_init()
  399. {
  400. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  401. servos[0].attach(SERVO0_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  404. servos[1].attach(SERVO1_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  407. servos[2].attach(SERVO2_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  410. servos[3].attach(SERVO3_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 5)
  413. #error "TODO: enter initalisation code for more servos"
  414. #endif
  415. }
  416. bool fans_check_enabled = true;
  417. #ifdef TMC2130
  418. extern int8_t CrashDetectMenu;
  419. void crashdet_enable()
  420. {
  421. tmc2130_sg_stop_on_crash = true;
  422. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  423. CrashDetectMenu = 1;
  424. }
  425. void crashdet_disable()
  426. {
  427. tmc2130_sg_stop_on_crash = false;
  428. tmc2130_sg_crash = 0;
  429. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  430. CrashDetectMenu = 0;
  431. }
  432. void crashdet_stop_and_save_print()
  433. {
  434. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  435. }
  436. void crashdet_restore_print_and_continue()
  437. {
  438. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  439. // babystep_apply();
  440. }
  441. void crashdet_stop_and_save_print2()
  442. {
  443. cli();
  444. planner_abort_hard(); //abort printing
  445. cmdqueue_reset(); //empty cmdqueue
  446. card.sdprinting = false;
  447. card.closefile();
  448. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  449. st_reset_timer();
  450. sei();
  451. }
  452. void crashdet_detected(uint8_t mask)
  453. {
  454. st_synchronize();
  455. static uint8_t crashDet_counter = 0;
  456. bool automatic_recovery_after_crash = true;
  457. if (crashDet_counter++ == 0) {
  458. crashDetTimer.start();
  459. }
  460. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  461. crashDetTimer.stop();
  462. crashDet_counter = 0;
  463. }
  464. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  465. automatic_recovery_after_crash = false;
  466. crashDetTimer.stop();
  467. crashDet_counter = 0;
  468. }
  469. else {
  470. crashDetTimer.start();
  471. }
  472. lcd_update_enable(true);
  473. lcd_clear();
  474. lcd_update(2);
  475. if (mask & X_AXIS_MASK)
  476. {
  477. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  478. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  479. }
  480. if (mask & Y_AXIS_MASK)
  481. {
  482. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  483. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  484. }
  485. lcd_update_enable(true);
  486. lcd_update(2);
  487. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  488. gcode_G28(true, true, false); //home X and Y
  489. st_synchronize();
  490. if (automatic_recovery_after_crash) {
  491. enquecommand_P(PSTR("CRASH_RECOVER"));
  492. }else{
  493. setTargetHotend(0, active_extruder);
  494. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  495. lcd_update_enable(true);
  496. if (yesno)
  497. {
  498. enquecommand_P(PSTR("CRASH_RECOVER"));
  499. }
  500. else
  501. {
  502. enquecommand_P(PSTR("CRASH_CANCEL"));
  503. }
  504. }
  505. }
  506. void crashdet_recover()
  507. {
  508. crashdet_restore_print_and_continue();
  509. tmc2130_sg_stop_on_crash = true;
  510. }
  511. void crashdet_cancel()
  512. {
  513. saved_printing = false;
  514. tmc2130_sg_stop_on_crash = true;
  515. if (saved_printing_type == PRINTING_TYPE_SD) {
  516. lcd_print_stop();
  517. }else if(saved_printing_type == PRINTING_TYPE_USB){
  518. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  519. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  520. }
  521. }
  522. #endif //TMC2130
  523. void failstats_reset_print()
  524. {
  525. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  526. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  527. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  528. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  529. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  530. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  531. }
  532. #ifdef MESH_BED_LEVELING
  533. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  534. #endif
  535. // Factory reset function
  536. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  537. // Level input parameter sets depth of reset
  538. int er_progress = 0;
  539. static void factory_reset(char level)
  540. {
  541. lcd_clear();
  542. switch (level) {
  543. // Level 0: Language reset
  544. case 0:
  545. Sound_MakeCustom(100,0,false);
  546. lang_reset();
  547. break;
  548. //Level 1: Reset statistics
  549. case 1:
  550. Sound_MakeCustom(100,0,false);
  551. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  552. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  555. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  556. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  557. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  558. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  559. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  560. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  561. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  562. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  564. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  565. lcd_menu_statistics();
  566. break;
  567. // Level 2: Prepare for shipping
  568. case 2:
  569. //lcd_puts_P(PSTR("Factory RESET"));
  570. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  571. // Force language selection at the next boot up.
  572. lang_reset();
  573. // Force the "Follow calibration flow" message at the next boot up.
  574. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  575. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  576. farm_no = 0;
  577. farm_mode = false;
  578. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  579. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  580. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  581. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  582. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  583. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  584. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  588. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  589. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  590. #ifdef FILAMENT_SENSOR
  591. fsensor_enable();
  592. fsensor_autoload_set(true);
  593. #endif //FILAMENT_SENSOR
  594. Sound_MakeCustom(100,0,false);
  595. //_delay_ms(2000);
  596. break;
  597. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  598. case 3:
  599. lcd_puts_P(PSTR("Factory RESET"));
  600. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  601. Sound_MakeCustom(100,0,false);
  602. er_progress = 0;
  603. lcd_puts_at_P(3, 3, PSTR(" "));
  604. lcd_set_cursor(3, 3);
  605. lcd_print(er_progress);
  606. // Erase EEPROM
  607. for (int i = 0; i < 4096; i++) {
  608. eeprom_update_byte((uint8_t*)i, 0xFF);
  609. if (i % 41 == 0) {
  610. er_progress++;
  611. lcd_puts_at_P(3, 3, PSTR(" "));
  612. lcd_set_cursor(3, 3);
  613. lcd_print(er_progress);
  614. lcd_puts_P(PSTR("%"));
  615. }
  616. }
  617. break;
  618. case 4:
  619. bowden_menu();
  620. break;
  621. default:
  622. break;
  623. }
  624. }
  625. extern "C" {
  626. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  627. }
  628. int uart_putchar(char c, FILE *)
  629. {
  630. MYSERIAL.write(c);
  631. return 0;
  632. }
  633. void lcd_splash()
  634. {
  635. lcd_clear(); // clears display and homes screen
  636. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  637. }
  638. void factory_reset()
  639. {
  640. KEEPALIVE_STATE(PAUSED_FOR_USER);
  641. if (!READ(BTN_ENC))
  642. {
  643. _delay_ms(1000);
  644. if (!READ(BTN_ENC))
  645. {
  646. lcd_clear();
  647. lcd_puts_P(PSTR("Factory RESET"));
  648. SET_OUTPUT(BEEPER);
  649. if(eSoundMode!=e_SOUND_MODE_SILENT)
  650. WRITE(BEEPER, HIGH);
  651. while (!READ(BTN_ENC));
  652. WRITE(BEEPER, LOW);
  653. _delay_ms(2000);
  654. char level = reset_menu();
  655. factory_reset(level);
  656. switch (level) {
  657. case 0: _delay_ms(0); break;
  658. case 1: _delay_ms(0); break;
  659. case 2: _delay_ms(0); break;
  660. case 3: _delay_ms(0); break;
  661. }
  662. }
  663. }
  664. KEEPALIVE_STATE(IN_HANDLER);
  665. }
  666. void show_fw_version_warnings() {
  667. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  668. switch (FW_DEV_VERSION) {
  669. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  670. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  671. case(FW_VERSION_DEVEL):
  672. case(FW_VERSION_DEBUG):
  673. lcd_update_enable(false);
  674. lcd_clear();
  675. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  676. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  677. #else
  678. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  679. #endif
  680. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  681. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  682. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  683. lcd_wait_for_click();
  684. break;
  685. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  686. }
  687. lcd_update_enable(true);
  688. }
  689. //! @brief try to check if firmware is on right type of printer
  690. static void check_if_fw_is_on_right_printer(){
  691. #ifdef FILAMENT_SENSOR
  692. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  693. #ifdef IR_SENSOR
  694. swi2c_init();
  695. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  696. if (pat9125_detected){
  697. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  698. #endif //IR_SENSOR
  699. #ifdef PAT9125
  700. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  701. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  702. if (ir_detected){
  703. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  704. #endif //PAT9125
  705. }
  706. #endif //FILAMENT_SENSOR
  707. }
  708. uint8_t check_printer_version()
  709. {
  710. uint8_t version_changed = 0;
  711. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  712. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  713. if (printer_type != PRINTER_TYPE) {
  714. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  715. else version_changed |= 0b10;
  716. }
  717. if (motherboard != MOTHERBOARD) {
  718. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  719. else version_changed |= 0b01;
  720. }
  721. return version_changed;
  722. }
  723. #ifdef BOOTAPP
  724. #include "bootapp.h" //bootloader support
  725. #endif //BOOTAPP
  726. #if (LANG_MODE != 0) //secondary language support
  727. #ifdef W25X20CL
  728. // language update from external flash
  729. #define LANGBOOT_BLOCKSIZE 0x1000u
  730. #define LANGBOOT_RAMBUFFER 0x0800
  731. void update_sec_lang_from_external_flash()
  732. {
  733. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  734. {
  735. uint8_t lang = boot_reserved >> 4;
  736. uint8_t state = boot_reserved & 0xf;
  737. lang_table_header_t header;
  738. uint32_t src_addr;
  739. if (lang_get_header(lang, &header, &src_addr))
  740. {
  741. lcd_puts_at_P(1,3,PSTR("Language update."));
  742. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  743. _delay(100);
  744. boot_reserved = (state + 1) | (lang << 4);
  745. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  746. {
  747. cli();
  748. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  749. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  750. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  751. if (state == 0)
  752. {
  753. //TODO - check header integrity
  754. }
  755. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  756. }
  757. else
  758. {
  759. //TODO - check sec lang data integrity
  760. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  761. }
  762. }
  763. }
  764. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  765. }
  766. #ifdef DEBUG_W25X20CL
  767. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  768. {
  769. lang_table_header_t header;
  770. uint8_t count = 0;
  771. uint32_t addr = 0x00000;
  772. while (1)
  773. {
  774. printf_P(_n("LANGTABLE%d:"), count);
  775. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  776. if (header.magic != LANG_MAGIC)
  777. {
  778. printf_P(_n("NG!\n"));
  779. break;
  780. }
  781. printf_P(_n("OK\n"));
  782. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  783. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  784. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  785. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  786. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  787. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  788. addr += header.size;
  789. codes[count] = header.code;
  790. count ++;
  791. }
  792. return count;
  793. }
  794. void list_sec_lang_from_external_flash()
  795. {
  796. uint16_t codes[8];
  797. uint8_t count = lang_xflash_enum_codes(codes);
  798. printf_P(_n("XFlash lang count = %hhd\n"), count);
  799. }
  800. #endif //DEBUG_W25X20CL
  801. #endif //W25X20CL
  802. #endif //(LANG_MODE != 0)
  803. static void w25x20cl_err_msg()
  804. {
  805. lcd_clear();
  806. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  807. }
  808. // "Setup" function is called by the Arduino framework on startup.
  809. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  810. // are initialized by the main() routine provided by the Arduino framework.
  811. void setup()
  812. {
  813. mmu_init();
  814. ultralcd_init();
  815. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  816. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  817. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  818. spi_init();
  819. lcd_splash();
  820. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  821. #ifdef W25X20CL
  822. bool w25x20cl_success = w25x20cl_init();
  823. if (w25x20cl_success)
  824. {
  825. optiboot_w25x20cl_enter();
  826. #if (LANG_MODE != 0) //secondary language support
  827. update_sec_lang_from_external_flash();
  828. #endif //(LANG_MODE != 0)
  829. }
  830. else
  831. {
  832. w25x20cl_err_msg();
  833. }
  834. #else
  835. const bool w25x20cl_success = true;
  836. #endif //W25X20CL
  837. setup_killpin();
  838. setup_powerhold();
  839. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  840. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  841. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  842. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  843. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  844. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  845. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  846. if (farm_mode)
  847. {
  848. no_response = true; //we need confirmation by recieving PRUSA thx
  849. important_status = 8;
  850. prusa_statistics(8);
  851. selectedSerialPort = 1;
  852. #ifdef TMC2130
  853. //increased extruder current (PFW363)
  854. tmc2130_current_h[E_AXIS] = 36;
  855. tmc2130_current_r[E_AXIS] = 36;
  856. #endif //TMC2130
  857. #ifdef FILAMENT_SENSOR
  858. //disabled filament autoload (PFW360)
  859. fsensor_autoload_set(false);
  860. #endif //FILAMENT_SENSOR
  861. // ~ FanCheck -> on
  862. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  863. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  864. }
  865. MYSERIAL.begin(BAUDRATE);
  866. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  867. #ifndef W25X20CL
  868. SERIAL_PROTOCOLLNPGM("start");
  869. #endif //W25X20CL
  870. stdout = uartout;
  871. SERIAL_ECHO_START;
  872. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  873. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  874. #ifdef DEBUG_SEC_LANG
  875. lang_table_header_t header;
  876. uint32_t src_addr = 0x00000;
  877. if (lang_get_header(1, &header, &src_addr))
  878. {
  879. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  880. #define LT_PRINT_TEST 2
  881. // flash usage
  882. // total p.test
  883. //0 252718 t+c text code
  884. //1 253142 424 170 254
  885. //2 253040 322 164 158
  886. //3 253248 530 135 395
  887. #if (LT_PRINT_TEST==1) //not optimized printf
  888. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  889. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  890. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  891. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  892. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  893. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  894. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  895. #elif (LT_PRINT_TEST==2) //optimized printf
  896. printf_P(
  897. _n(
  898. " _src_addr = 0x%08lx\n"
  899. " _lt_magic = 0x%08lx %S\n"
  900. " _lt_size = 0x%04x (%d)\n"
  901. " _lt_count = 0x%04x (%d)\n"
  902. " _lt_chsum = 0x%04x\n"
  903. " _lt_code = 0x%04x (%c%c)\n"
  904. " _lt_resv1 = 0x%08lx\n"
  905. ),
  906. src_addr,
  907. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  908. header.size, header.size,
  909. header.count, header.count,
  910. header.checksum,
  911. header.code, header.code >> 8, header.code & 0xff,
  912. header.signature
  913. );
  914. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  915. MYSERIAL.print(" _src_addr = 0x");
  916. MYSERIAL.println(src_addr, 16);
  917. MYSERIAL.print(" _lt_magic = 0x");
  918. MYSERIAL.print(header.magic, 16);
  919. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  920. MYSERIAL.print(" _lt_size = 0x");
  921. MYSERIAL.print(header.size, 16);
  922. MYSERIAL.print(" (");
  923. MYSERIAL.print(header.size, 10);
  924. MYSERIAL.println(")");
  925. MYSERIAL.print(" _lt_count = 0x");
  926. MYSERIAL.print(header.count, 16);
  927. MYSERIAL.print(" (");
  928. MYSERIAL.print(header.count, 10);
  929. MYSERIAL.println(")");
  930. MYSERIAL.print(" _lt_chsum = 0x");
  931. MYSERIAL.println(header.checksum, 16);
  932. MYSERIAL.print(" _lt_code = 0x");
  933. MYSERIAL.print(header.code, 16);
  934. MYSERIAL.print(" (");
  935. MYSERIAL.print((char)(header.code >> 8), 0);
  936. MYSERIAL.print((char)(header.code & 0xff), 0);
  937. MYSERIAL.println(")");
  938. MYSERIAL.print(" _lt_resv1 = 0x");
  939. MYSERIAL.println(header.signature, 16);
  940. #endif //(LT_PRINT_TEST==)
  941. #undef LT_PRINT_TEST
  942. #if 0
  943. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  944. for (uint16_t i = 0; i < 1024; i++)
  945. {
  946. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  947. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  948. if ((i % 16) == 15) putchar('\n');
  949. }
  950. #endif
  951. uint16_t sum = 0;
  952. for (uint16_t i = 0; i < header.size; i++)
  953. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  954. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  955. sum -= header.checksum; //subtract checksum
  956. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  957. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  958. if (sum == header.checksum)
  959. printf_P(_n("Checksum OK\n"), sum);
  960. else
  961. printf_P(_n("Checksum NG\n"), sum);
  962. }
  963. else
  964. printf_P(_n("lang_get_header failed!\n"));
  965. #if 0
  966. for (uint16_t i = 0; i < 1024*10; i++)
  967. {
  968. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  969. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  970. if ((i % 16) == 15) putchar('\n');
  971. }
  972. #endif
  973. #if 0
  974. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  975. for (int i = 0; i < 4096; ++i) {
  976. int b = eeprom_read_byte((unsigned char*)i);
  977. if (b != 255) {
  978. SERIAL_ECHO(i);
  979. SERIAL_ECHO(":");
  980. SERIAL_ECHO(b);
  981. SERIAL_ECHOLN("");
  982. }
  983. }
  984. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  985. #endif
  986. #endif //DEBUG_SEC_LANG
  987. // Check startup - does nothing if bootloader sets MCUSR to 0
  988. byte mcu = MCUSR;
  989. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  990. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  991. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  992. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  993. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  994. if (mcu & 1) puts_P(MSG_POWERUP);
  995. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  996. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  997. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  998. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  999. MCUSR = 0;
  1000. //SERIAL_ECHORPGM(MSG_MARLIN);
  1001. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1002. #ifdef STRING_VERSION_CONFIG_H
  1003. #ifdef STRING_CONFIG_H_AUTHOR
  1004. SERIAL_ECHO_START;
  1005. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1006. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1007. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1008. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1009. SERIAL_ECHOPGM("Compiled: ");
  1010. SERIAL_ECHOLNPGM(__DATE__);
  1011. #endif
  1012. #endif
  1013. SERIAL_ECHO_START;
  1014. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1015. SERIAL_ECHO(freeMemory());
  1016. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1017. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1018. //lcd_update_enable(false); // why do we need this?? - andre
  1019. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1020. bool previous_settings_retrieved = false;
  1021. uint8_t hw_changed = check_printer_version();
  1022. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1023. previous_settings_retrieved = Config_RetrieveSettings();
  1024. }
  1025. else { //printer version was changed so use default settings
  1026. Config_ResetDefault();
  1027. }
  1028. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1029. tp_init(); // Initialize temperature loop
  1030. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1031. else
  1032. {
  1033. w25x20cl_err_msg();
  1034. printf_P(_n("W25X20CL not responding.\n"));
  1035. }
  1036. plan_init(); // Initialize planner;
  1037. factory_reset();
  1038. lcd_encoder_diff=0;
  1039. #ifdef TMC2130
  1040. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1041. if (silentMode == 0xff) silentMode = 0;
  1042. tmc2130_mode = TMC2130_MODE_NORMAL;
  1043. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1044. if (crashdet && !farm_mode)
  1045. {
  1046. crashdet_enable();
  1047. puts_P(_N("CrashDetect ENABLED!"));
  1048. }
  1049. else
  1050. {
  1051. crashdet_disable();
  1052. puts_P(_N("CrashDetect DISABLED"));
  1053. }
  1054. #ifdef TMC2130_LINEARITY_CORRECTION
  1055. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1056. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1057. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1058. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1059. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1060. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1061. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1062. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1063. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1064. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1065. #endif //TMC2130_LINEARITY_CORRECTION
  1066. #ifdef TMC2130_VARIABLE_RESOLUTION
  1067. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1068. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1069. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1070. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1071. #else //TMC2130_VARIABLE_RESOLUTION
  1072. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1073. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1074. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1075. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1076. #endif //TMC2130_VARIABLE_RESOLUTION
  1077. #endif //TMC2130
  1078. st_init(); // Initialize stepper, this enables interrupts!
  1079. #ifdef UVLO_SUPPORT
  1080. setup_uvlo_interrupt();
  1081. #endif //UVLO_SUPPORT
  1082. #ifdef TMC2130
  1083. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1084. update_mode_profile();
  1085. tmc2130_init();
  1086. #endif //TMC2130
  1087. #ifdef PSU_Delta
  1088. init_force_z(); // ! important for correct Z-axis initialization
  1089. #endif // PSU_Delta
  1090. setup_photpin();
  1091. servo_init();
  1092. // Reset the machine correction matrix.
  1093. // It does not make sense to load the correction matrix until the machine is homed.
  1094. world2machine_reset();
  1095. #ifdef FILAMENT_SENSOR
  1096. fsensor_init();
  1097. #endif //FILAMENT_SENSOR
  1098. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1099. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1100. #endif
  1101. setup_homepin();
  1102. #ifdef TMC2130
  1103. if (1) {
  1104. // try to run to zero phase before powering the Z motor.
  1105. // Move in negative direction
  1106. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1107. // Round the current micro-micro steps to micro steps.
  1108. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1109. // Until the phase counter is reset to zero.
  1110. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1111. _delay(2);
  1112. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1113. _delay(2);
  1114. }
  1115. }
  1116. #endif //TMC2130
  1117. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1118. enable_z();
  1119. #endif
  1120. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1121. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1122. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1123. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1124. if (farm_mode)
  1125. {
  1126. prusa_statistics(8);
  1127. }
  1128. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1129. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1130. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1131. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1132. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1133. // where all the EEPROM entries are set to 0x0ff.
  1134. // Once a firmware boots up, it forces at least a language selection, which changes
  1135. // EEPROM_LANG to number lower than 0x0ff.
  1136. // 1) Set a high power mode.
  1137. #ifdef TMC2130
  1138. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1139. tmc2130_mode = TMC2130_MODE_NORMAL;
  1140. #endif //TMC2130
  1141. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1142. }
  1143. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1144. // but this times out if a blocking dialog is shown in setup().
  1145. card.initsd();
  1146. #ifdef DEBUG_SD_SPEED_TEST
  1147. if (card.cardOK)
  1148. {
  1149. uint8_t* buff = (uint8_t*)block_buffer;
  1150. uint32_t block = 0;
  1151. uint32_t sumr = 0;
  1152. uint32_t sumw = 0;
  1153. for (int i = 0; i < 1024; i++)
  1154. {
  1155. uint32_t u = _micros();
  1156. bool res = card.card.readBlock(i, buff);
  1157. u = _micros() - u;
  1158. if (res)
  1159. {
  1160. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1161. sumr += u;
  1162. u = _micros();
  1163. res = card.card.writeBlock(i, buff);
  1164. u = _micros() - u;
  1165. if (res)
  1166. {
  1167. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1168. sumw += u;
  1169. }
  1170. else
  1171. {
  1172. printf_P(PSTR("writeBlock %4d error\n"), i);
  1173. break;
  1174. }
  1175. }
  1176. else
  1177. {
  1178. printf_P(PSTR("readBlock %4d error\n"), i);
  1179. break;
  1180. }
  1181. }
  1182. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1183. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1184. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1185. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1186. }
  1187. else
  1188. printf_P(PSTR("Card NG!\n"));
  1189. #endif //DEBUG_SD_SPEED_TEST
  1190. eeprom_init();
  1191. #ifdef SNMM
  1192. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1193. int _z = BOWDEN_LENGTH;
  1194. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1195. }
  1196. #endif
  1197. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1198. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1199. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1200. #if (LANG_MODE != 0) //secondary language support
  1201. #ifdef DEBUG_W25X20CL
  1202. W25X20CL_SPI_ENTER();
  1203. uint8_t uid[8]; // 64bit unique id
  1204. w25x20cl_rd_uid(uid);
  1205. puts_P(_n("W25X20CL UID="));
  1206. for (uint8_t i = 0; i < 8; i ++)
  1207. printf_P(PSTR("%02hhx"), uid[i]);
  1208. putchar('\n');
  1209. list_sec_lang_from_external_flash();
  1210. #endif //DEBUG_W25X20CL
  1211. // lang_reset();
  1212. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1213. lcd_language();
  1214. #ifdef DEBUG_SEC_LANG
  1215. uint16_t sec_lang_code = lang_get_code(1);
  1216. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1217. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1218. lang_print_sec_lang(uartout);
  1219. #endif //DEBUG_SEC_LANG
  1220. #endif //(LANG_MODE != 0)
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1222. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1223. temp_cal_active = false;
  1224. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1225. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1226. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1227. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1228. int16_t z_shift = 0;
  1229. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1230. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1231. temp_cal_active = false;
  1232. }
  1233. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1234. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1235. }
  1236. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1237. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1238. }
  1239. //mbl_mode_init();
  1240. mbl_settings_init();
  1241. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1242. if (SilentModeMenu_MMU == 255) {
  1243. SilentModeMenu_MMU = 1;
  1244. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1245. }
  1246. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1247. setup_fan_interrupt();
  1248. #endif //DEBUG_DISABLE_FANCHECK
  1249. #ifdef PAT9125
  1250. fsensor_setup_interrupt();
  1251. #endif //PAT9125
  1252. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1253. #ifndef DEBUG_DISABLE_STARTMSGS
  1254. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1255. check_if_fw_is_on_right_printer();
  1256. show_fw_version_warnings();
  1257. switch (hw_changed) {
  1258. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1259. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1260. case(0b01):
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1262. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1263. break;
  1264. case(0b10):
  1265. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1266. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1267. break;
  1268. case(0b11):
  1269. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1270. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1271. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1272. break;
  1273. default: break; //no change, show no message
  1274. }
  1275. if (!previous_settings_retrieved) {
  1276. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1277. Config_StoreSettings();
  1278. }
  1279. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1280. lcd_wizard(WizState::Run);
  1281. }
  1282. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1283. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1284. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1285. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1286. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1287. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1288. // Show the message.
  1289. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1290. }
  1291. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1292. // Show the message.
  1293. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1294. lcd_update_enable(true);
  1295. }
  1296. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1297. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1298. lcd_update_enable(true);
  1299. }
  1300. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1301. // Show the message.
  1302. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1303. }
  1304. }
  1305. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1306. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1307. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1308. update_current_firmware_version_to_eeprom();
  1309. lcd_selftest();
  1310. }
  1311. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1312. KEEPALIVE_STATE(IN_PROCESS);
  1313. #endif //DEBUG_DISABLE_STARTMSGS
  1314. lcd_update_enable(true);
  1315. lcd_clear();
  1316. lcd_update(2);
  1317. // Store the currently running firmware into an eeprom,
  1318. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1319. update_current_firmware_version_to_eeprom();
  1320. #ifdef TMC2130
  1321. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1322. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1323. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1324. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1325. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1326. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1327. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1328. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1329. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1330. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1331. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1332. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1333. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1334. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1335. #endif //TMC2130
  1336. #ifdef UVLO_SUPPORT
  1337. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1338. /*
  1339. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1340. else {
  1341. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1342. lcd_update_enable(true);
  1343. lcd_update(2);
  1344. lcd_setstatuspgm(_T(WELCOME_MSG));
  1345. }
  1346. */
  1347. manage_heater(); // Update temperatures
  1348. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1349. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1350. #endif
  1351. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1352. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1353. puts_P(_N("Automatic recovery!"));
  1354. #endif
  1355. recover_print(1);
  1356. }
  1357. else{
  1358. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1359. puts_P(_N("Normal recovery!"));
  1360. #endif
  1361. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1362. else {
  1363. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1364. lcd_update_enable(true);
  1365. lcd_update(2);
  1366. lcd_setstatuspgm(_T(WELCOME_MSG));
  1367. }
  1368. }
  1369. }
  1370. #endif //UVLO_SUPPORT
  1371. fCheckModeInit();
  1372. fSetMmuMode(mmu_enabled);
  1373. KEEPALIVE_STATE(NOT_BUSY);
  1374. #ifdef WATCHDOG
  1375. wdt_enable(WDTO_4S);
  1376. #endif //WATCHDOG
  1377. }
  1378. void trace();
  1379. #define CHUNK_SIZE 64 // bytes
  1380. #define SAFETY_MARGIN 1
  1381. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1382. int chunkHead = 0;
  1383. void serial_read_stream() {
  1384. setAllTargetHotends(0);
  1385. setTargetBed(0);
  1386. lcd_clear();
  1387. lcd_puts_P(PSTR(" Upload in progress"));
  1388. // first wait for how many bytes we will receive
  1389. uint32_t bytesToReceive;
  1390. // receive the four bytes
  1391. char bytesToReceiveBuffer[4];
  1392. for (int i=0; i<4; i++) {
  1393. int data;
  1394. while ((data = MYSERIAL.read()) == -1) {};
  1395. bytesToReceiveBuffer[i] = data;
  1396. }
  1397. // make it a uint32
  1398. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1399. // we're ready, notify the sender
  1400. MYSERIAL.write('+');
  1401. // lock in the routine
  1402. uint32_t receivedBytes = 0;
  1403. while (prusa_sd_card_upload) {
  1404. int i;
  1405. for (i=0; i<CHUNK_SIZE; i++) {
  1406. int data;
  1407. // check if we're not done
  1408. if (receivedBytes == bytesToReceive) {
  1409. break;
  1410. }
  1411. // read the next byte
  1412. while ((data = MYSERIAL.read()) == -1) {};
  1413. receivedBytes++;
  1414. // save it to the chunk
  1415. chunk[i] = data;
  1416. }
  1417. // write the chunk to SD
  1418. card.write_command_no_newline(&chunk[0]);
  1419. // notify the sender we're ready for more data
  1420. MYSERIAL.write('+');
  1421. // for safety
  1422. manage_heater();
  1423. // check if we're done
  1424. if(receivedBytes == bytesToReceive) {
  1425. trace(); // beep
  1426. card.closefile();
  1427. prusa_sd_card_upload = false;
  1428. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1429. }
  1430. }
  1431. }
  1432. /**
  1433. * Output a "busy" message at regular intervals
  1434. * while the machine is not accepting commands.
  1435. */
  1436. void host_keepalive() {
  1437. #ifndef HOST_KEEPALIVE_FEATURE
  1438. return;
  1439. #endif //HOST_KEEPALIVE_FEATURE
  1440. if (farm_mode) return;
  1441. long ms = _millis();
  1442. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1443. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1444. switch (busy_state) {
  1445. case IN_HANDLER:
  1446. case IN_PROCESS:
  1447. SERIAL_ECHO_START;
  1448. SERIAL_ECHOLNPGM("busy: processing");
  1449. break;
  1450. case PAUSED_FOR_USER:
  1451. SERIAL_ECHO_START;
  1452. SERIAL_ECHOLNPGM("busy: paused for user");
  1453. break;
  1454. case PAUSED_FOR_INPUT:
  1455. SERIAL_ECHO_START;
  1456. SERIAL_ECHOLNPGM("busy: paused for input");
  1457. break;
  1458. default:
  1459. break;
  1460. }
  1461. }
  1462. prev_busy_signal_ms = ms;
  1463. }
  1464. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1465. // Before loop(), the setup() function is called by the main() routine.
  1466. void loop()
  1467. {
  1468. KEEPALIVE_STATE(NOT_BUSY);
  1469. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1470. {
  1471. is_usb_printing = true;
  1472. usb_printing_counter--;
  1473. _usb_timer = _millis();
  1474. }
  1475. if (usb_printing_counter == 0)
  1476. {
  1477. is_usb_printing = false;
  1478. }
  1479. if (prusa_sd_card_upload)
  1480. {
  1481. //we read byte-by byte
  1482. serial_read_stream();
  1483. } else
  1484. {
  1485. get_command();
  1486. #ifdef SDSUPPORT
  1487. card.checkautostart(false);
  1488. #endif
  1489. if(buflen)
  1490. {
  1491. cmdbuffer_front_already_processed = false;
  1492. #ifdef SDSUPPORT
  1493. if(card.saving)
  1494. {
  1495. // Saving a G-code file onto an SD-card is in progress.
  1496. // Saving starts with M28, saving until M29 is seen.
  1497. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1498. card.write_command(CMDBUFFER_CURRENT_STRING);
  1499. if(card.logging)
  1500. process_commands();
  1501. else
  1502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1503. } else {
  1504. card.closefile();
  1505. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1506. }
  1507. } else {
  1508. process_commands();
  1509. }
  1510. #else
  1511. process_commands();
  1512. #endif //SDSUPPORT
  1513. if (! cmdbuffer_front_already_processed && buflen)
  1514. {
  1515. // ptr points to the start of the block currently being processed.
  1516. // The first character in the block is the block type.
  1517. char *ptr = cmdbuffer + bufindr;
  1518. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1519. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1520. union {
  1521. struct {
  1522. char lo;
  1523. char hi;
  1524. } lohi;
  1525. uint16_t value;
  1526. } sdlen;
  1527. sdlen.value = 0;
  1528. {
  1529. // This block locks the interrupts globally for 3.25 us,
  1530. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1531. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1532. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1533. cli();
  1534. // Reset the command to something, which will be ignored by the power panic routine,
  1535. // so this buffer length will not be counted twice.
  1536. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1537. // Extract the current buffer length.
  1538. sdlen.lohi.lo = *ptr ++;
  1539. sdlen.lohi.hi = *ptr;
  1540. // and pass it to the planner queue.
  1541. planner_add_sd_length(sdlen.value);
  1542. sei();
  1543. }
  1544. }
  1545. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1546. cli();
  1547. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1548. // and one for each command to previous block in the planner queue.
  1549. planner_add_sd_length(1);
  1550. sei();
  1551. }
  1552. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1553. // this block's SD card length will not be counted twice as its command type has been replaced
  1554. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1555. cmdqueue_pop_front();
  1556. }
  1557. host_keepalive();
  1558. }
  1559. }
  1560. //check heater every n milliseconds
  1561. manage_heater();
  1562. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1563. checkHitEndstops();
  1564. lcd_update(0);
  1565. #ifdef TMC2130
  1566. tmc2130_check_overtemp();
  1567. if (tmc2130_sg_crash)
  1568. {
  1569. uint8_t crash = tmc2130_sg_crash;
  1570. tmc2130_sg_crash = 0;
  1571. // crashdet_stop_and_save_print();
  1572. switch (crash)
  1573. {
  1574. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1575. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1576. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1577. }
  1578. }
  1579. #endif //TMC2130
  1580. mmu_loop();
  1581. }
  1582. #define DEFINE_PGM_READ_ANY(type, reader) \
  1583. static inline type pgm_read_any(const type *p) \
  1584. { return pgm_read_##reader##_near(p); }
  1585. DEFINE_PGM_READ_ANY(float, float);
  1586. DEFINE_PGM_READ_ANY(signed char, byte);
  1587. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1588. static const PROGMEM type array##_P[3] = \
  1589. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1590. static inline type array(int axis) \
  1591. { return pgm_read_any(&array##_P[axis]); } \
  1592. type array##_ext(int axis) \
  1593. { return pgm_read_any(&array##_P[axis]); }
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1597. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1598. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1599. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1600. static void axis_is_at_home(int axis) {
  1601. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1602. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1603. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1604. }
  1605. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1606. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1607. //! @return original feedmultiply
  1608. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1609. saved_feedrate = feedrate;
  1610. int l_feedmultiply = feedmultiply;
  1611. feedmultiply = 100;
  1612. previous_millis_cmd = _millis();
  1613. enable_endstops(enable_endstops_now);
  1614. return l_feedmultiply;
  1615. }
  1616. //! @param original_feedmultiply feedmultiply to restore
  1617. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1618. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1619. enable_endstops(false);
  1620. #endif
  1621. feedrate = saved_feedrate;
  1622. feedmultiply = original_feedmultiply;
  1623. previous_millis_cmd = _millis();
  1624. }
  1625. #ifdef ENABLE_AUTO_BED_LEVELING
  1626. #ifdef AUTO_BED_LEVELING_GRID
  1627. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1628. {
  1629. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1630. planeNormal.debug("planeNormal");
  1631. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1632. //bedLevel.debug("bedLevel");
  1633. //plan_bed_level_matrix.debug("bed level before");
  1634. //vector_3 uncorrected_position = plan_get_position_mm();
  1635. //uncorrected_position.debug("position before");
  1636. vector_3 corrected_position = plan_get_position();
  1637. // corrected_position.debug("position after");
  1638. current_position[X_AXIS] = corrected_position.x;
  1639. current_position[Y_AXIS] = corrected_position.y;
  1640. current_position[Z_AXIS] = corrected_position.z;
  1641. // put the bed at 0 so we don't go below it.
  1642. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1644. }
  1645. #else // not AUTO_BED_LEVELING_GRID
  1646. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1647. plan_bed_level_matrix.set_to_identity();
  1648. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1649. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1650. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1651. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1652. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1653. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1654. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1655. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1656. vector_3 corrected_position = plan_get_position();
  1657. current_position[X_AXIS] = corrected_position.x;
  1658. current_position[Y_AXIS] = corrected_position.y;
  1659. current_position[Z_AXIS] = corrected_position.z;
  1660. // put the bed at 0 so we don't go below it.
  1661. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1662. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1663. }
  1664. #endif // AUTO_BED_LEVELING_GRID
  1665. static void run_z_probe() {
  1666. plan_bed_level_matrix.set_to_identity();
  1667. feedrate = homing_feedrate[Z_AXIS];
  1668. // move down until you find the bed
  1669. float zPosition = -10;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1671. st_synchronize();
  1672. // we have to let the planner know where we are right now as it is not where we said to go.
  1673. zPosition = st_get_position_mm(Z_AXIS);
  1674. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1675. // move up the retract distance
  1676. zPosition += home_retract_mm(Z_AXIS);
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. // move back down slowly to find bed
  1680. feedrate = homing_feedrate[Z_AXIS]/4;
  1681. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1683. st_synchronize();
  1684. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1685. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1686. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1687. }
  1688. static void do_blocking_move_to(float x, float y, float z) {
  1689. float oldFeedRate = feedrate;
  1690. feedrate = homing_feedrate[Z_AXIS];
  1691. current_position[Z_AXIS] = z;
  1692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1693. st_synchronize();
  1694. feedrate = XY_TRAVEL_SPEED;
  1695. current_position[X_AXIS] = x;
  1696. current_position[Y_AXIS] = y;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1698. st_synchronize();
  1699. feedrate = oldFeedRate;
  1700. }
  1701. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1702. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1703. }
  1704. /// Probe bed height at position (x,y), returns the measured z value
  1705. static float probe_pt(float x, float y, float z_before) {
  1706. // move to right place
  1707. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1708. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1709. run_z_probe();
  1710. float measured_z = current_position[Z_AXIS];
  1711. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1712. SERIAL_PROTOCOLPGM(" x: ");
  1713. SERIAL_PROTOCOL(x);
  1714. SERIAL_PROTOCOLPGM(" y: ");
  1715. SERIAL_PROTOCOL(y);
  1716. SERIAL_PROTOCOLPGM(" z: ");
  1717. SERIAL_PROTOCOL(measured_z);
  1718. SERIAL_PROTOCOLPGM("\n");
  1719. return measured_z;
  1720. }
  1721. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1722. #ifdef LIN_ADVANCE
  1723. /**
  1724. * M900: Set and/or Get advance K factor and WH/D ratio
  1725. *
  1726. * K<factor> Set advance K factor
  1727. * R<ratio> Set ratio directly (overrides WH/D)
  1728. * W<width> H<height> D<diam> Set ratio from WH/D
  1729. */
  1730. inline void gcode_M900() {
  1731. st_synchronize();
  1732. const float newK = code_seen('K') ? code_value_float() : -1;
  1733. if (newK >= 0) extruder_advance_k = newK;
  1734. float newR = code_seen('R') ? code_value_float() : -1;
  1735. if (newR < 0) {
  1736. const float newD = code_seen('D') ? code_value_float() : -1,
  1737. newW = code_seen('W') ? code_value_float() : -1,
  1738. newH = code_seen('H') ? code_value_float() : -1;
  1739. if (newD >= 0 && newW >= 0 && newH >= 0)
  1740. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1741. }
  1742. if (newR >= 0) advance_ed_ratio = newR;
  1743. SERIAL_ECHO_START;
  1744. SERIAL_ECHOPGM("Advance K=");
  1745. SERIAL_ECHOLN(extruder_advance_k);
  1746. SERIAL_ECHOPGM(" E/D=");
  1747. const float ratio = advance_ed_ratio;
  1748. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1749. }
  1750. #endif // LIN_ADVANCE
  1751. bool check_commands() {
  1752. bool end_command_found = false;
  1753. while (buflen)
  1754. {
  1755. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1756. if (!cmdbuffer_front_already_processed)
  1757. cmdqueue_pop_front();
  1758. cmdbuffer_front_already_processed = false;
  1759. }
  1760. return end_command_found;
  1761. }
  1762. #ifdef TMC2130
  1763. bool calibrate_z_auto()
  1764. {
  1765. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1766. lcd_clear();
  1767. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1768. bool endstops_enabled = enable_endstops(true);
  1769. int axis_up_dir = -home_dir(Z_AXIS);
  1770. tmc2130_home_enter(Z_AXIS_MASK);
  1771. current_position[Z_AXIS] = 0;
  1772. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1773. set_destination_to_current();
  1774. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1775. feedrate = homing_feedrate[Z_AXIS];
  1776. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1777. st_synchronize();
  1778. // current_position[axis] = 0;
  1779. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. tmc2130_home_exit();
  1781. enable_endstops(false);
  1782. current_position[Z_AXIS] = 0;
  1783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1784. set_destination_to_current();
  1785. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1786. feedrate = homing_feedrate[Z_AXIS] / 2;
  1787. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1788. st_synchronize();
  1789. enable_endstops(endstops_enabled);
  1790. if (PRINTER_TYPE == PRINTER_MK3) {
  1791. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1792. }
  1793. else {
  1794. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1795. }
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. return true;
  1798. }
  1799. #endif //TMC2130
  1800. #ifdef TMC2130
  1801. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1802. #else
  1803. void homeaxis(int axis, uint8_t cnt)
  1804. #endif //TMC2130
  1805. {
  1806. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1807. #define HOMEAXIS_DO(LETTER) \
  1808. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1809. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1810. {
  1811. int axis_home_dir = home_dir(axis);
  1812. feedrate = homing_feedrate[axis];
  1813. #ifdef TMC2130
  1814. tmc2130_home_enter(X_AXIS_MASK << axis);
  1815. #endif //TMC2130
  1816. // Move away a bit, so that the print head does not touch the end position,
  1817. // and the following movement to endstop has a chance to achieve the required velocity
  1818. // for the stall guard to work.
  1819. current_position[axis] = 0;
  1820. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1821. set_destination_to_current();
  1822. // destination[axis] = 11.f;
  1823. destination[axis] = -3.f * axis_home_dir;
  1824. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1825. st_synchronize();
  1826. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1827. endstops_hit_on_purpose();
  1828. enable_endstops(false);
  1829. current_position[axis] = 0;
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. destination[axis] = 1. * axis_home_dir;
  1832. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1833. st_synchronize();
  1834. // Now continue to move up to the left end stop with the collision detection enabled.
  1835. enable_endstops(true);
  1836. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1837. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1838. st_synchronize();
  1839. for (uint8_t i = 0; i < cnt; i++)
  1840. {
  1841. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1842. endstops_hit_on_purpose();
  1843. enable_endstops(false);
  1844. current_position[axis] = 0;
  1845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1846. destination[axis] = -10.f * axis_home_dir;
  1847. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1848. st_synchronize();
  1849. endstops_hit_on_purpose();
  1850. // Now move left up to the collision, this time with a repeatable velocity.
  1851. enable_endstops(true);
  1852. destination[axis] = 11.f * axis_home_dir;
  1853. #ifdef TMC2130
  1854. feedrate = homing_feedrate[axis];
  1855. #else //TMC2130
  1856. feedrate = homing_feedrate[axis] / 2;
  1857. #endif //TMC2130
  1858. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1859. st_synchronize();
  1860. #ifdef TMC2130
  1861. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1862. if (pstep) pstep[i] = mscnt >> 4;
  1863. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1864. #endif //TMC2130
  1865. }
  1866. endstops_hit_on_purpose();
  1867. enable_endstops(false);
  1868. #ifdef TMC2130
  1869. uint8_t orig = tmc2130_home_origin[axis];
  1870. uint8_t back = tmc2130_home_bsteps[axis];
  1871. if (tmc2130_home_enabled && (orig <= 63))
  1872. {
  1873. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1874. if (back > 0)
  1875. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1876. }
  1877. else
  1878. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1879. tmc2130_home_exit();
  1880. #endif //TMC2130
  1881. axis_is_at_home(axis);
  1882. axis_known_position[axis] = true;
  1883. // Move from minimum
  1884. #ifdef TMC2130
  1885. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1886. #else //TMC2130
  1887. float dist = - axis_home_dir * 0.01f * 64;
  1888. #endif //TMC2130
  1889. current_position[axis] -= dist;
  1890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1891. current_position[axis] += dist;
  1892. destination[axis] = current_position[axis];
  1893. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1894. st_synchronize();
  1895. feedrate = 0.0;
  1896. }
  1897. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1898. {
  1899. #ifdef TMC2130
  1900. FORCE_HIGH_POWER_START;
  1901. #endif
  1902. int axis_home_dir = home_dir(axis);
  1903. current_position[axis] = 0;
  1904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1905. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1906. feedrate = homing_feedrate[axis];
  1907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1908. st_synchronize();
  1909. #ifdef TMC2130
  1910. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1911. FORCE_HIGH_POWER_END;
  1912. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1913. return;
  1914. }
  1915. #endif //TMC2130
  1916. current_position[axis] = 0;
  1917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1918. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1919. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1920. st_synchronize();
  1921. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1922. feedrate = homing_feedrate[axis]/2 ;
  1923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1924. st_synchronize();
  1925. #ifdef TMC2130
  1926. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1927. FORCE_HIGH_POWER_END;
  1928. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1929. return;
  1930. }
  1931. #endif //TMC2130
  1932. axis_is_at_home(axis);
  1933. destination[axis] = current_position[axis];
  1934. feedrate = 0.0;
  1935. endstops_hit_on_purpose();
  1936. axis_known_position[axis] = true;
  1937. #ifdef TMC2130
  1938. FORCE_HIGH_POWER_END;
  1939. #endif
  1940. }
  1941. enable_endstops(endstops_enabled);
  1942. }
  1943. /**/
  1944. void home_xy()
  1945. {
  1946. set_destination_to_current();
  1947. homeaxis(X_AXIS);
  1948. homeaxis(Y_AXIS);
  1949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1950. endstops_hit_on_purpose();
  1951. }
  1952. void refresh_cmd_timeout(void)
  1953. {
  1954. previous_millis_cmd = _millis();
  1955. }
  1956. #ifdef FWRETRACT
  1957. void retract(bool retracting, bool swapretract = false) {
  1958. if(retracting && !retracted[active_extruder]) {
  1959. destination[X_AXIS]=current_position[X_AXIS];
  1960. destination[Y_AXIS]=current_position[Y_AXIS];
  1961. destination[Z_AXIS]=current_position[Z_AXIS];
  1962. destination[E_AXIS]=current_position[E_AXIS];
  1963. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1964. plan_set_e_position(current_position[E_AXIS]);
  1965. float oldFeedrate = feedrate;
  1966. feedrate=cs.retract_feedrate*60;
  1967. retracted[active_extruder]=true;
  1968. prepare_move();
  1969. current_position[Z_AXIS]-=cs.retract_zlift;
  1970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1971. prepare_move();
  1972. feedrate = oldFeedrate;
  1973. } else if(!retracting && retracted[active_extruder]) {
  1974. destination[X_AXIS]=current_position[X_AXIS];
  1975. destination[Y_AXIS]=current_position[Y_AXIS];
  1976. destination[Z_AXIS]=current_position[Z_AXIS];
  1977. destination[E_AXIS]=current_position[E_AXIS];
  1978. current_position[Z_AXIS]+=cs.retract_zlift;
  1979. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1980. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1981. plan_set_e_position(current_position[E_AXIS]);
  1982. float oldFeedrate = feedrate;
  1983. feedrate=cs.retract_recover_feedrate*60;
  1984. retracted[active_extruder]=false;
  1985. prepare_move();
  1986. feedrate = oldFeedrate;
  1987. }
  1988. } //retract
  1989. #endif //FWRETRACT
  1990. void trace() {
  1991. Sound_MakeCustom(25,440,true);
  1992. }
  1993. /*
  1994. void ramming() {
  1995. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1996. if (current_temperature[0] < 230) {
  1997. //PLA
  1998. max_feedrate[E_AXIS] = 50;
  1999. //current_position[E_AXIS] -= 8;
  2000. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2001. //current_position[E_AXIS] += 8;
  2002. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2003. current_position[E_AXIS] += 5.4;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2005. current_position[E_AXIS] += 3.2;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2007. current_position[E_AXIS] += 3;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2009. st_synchronize();
  2010. max_feedrate[E_AXIS] = 80;
  2011. current_position[E_AXIS] -= 82;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2013. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2014. current_position[E_AXIS] -= 20;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2016. current_position[E_AXIS] += 5;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2018. current_position[E_AXIS] += 5;
  2019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2020. current_position[E_AXIS] -= 10;
  2021. st_synchronize();
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2023. current_position[E_AXIS] += 10;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2025. current_position[E_AXIS] -= 10;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2027. current_position[E_AXIS] += 10;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2029. current_position[E_AXIS] -= 10;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2031. st_synchronize();
  2032. }
  2033. else {
  2034. //ABS
  2035. max_feedrate[E_AXIS] = 50;
  2036. //current_position[E_AXIS] -= 8;
  2037. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2038. //current_position[E_AXIS] += 8;
  2039. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2040. current_position[E_AXIS] += 3.1;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2042. current_position[E_AXIS] += 3.1;
  2043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2044. current_position[E_AXIS] += 4;
  2045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2046. st_synchronize();
  2047. //current_position[X_AXIS] += 23; //delay
  2048. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2049. //current_position[X_AXIS] -= 23; //delay
  2050. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2051. _delay(4700);
  2052. max_feedrate[E_AXIS] = 80;
  2053. current_position[E_AXIS] -= 92;
  2054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2055. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2056. current_position[E_AXIS] -= 5;
  2057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2058. current_position[E_AXIS] += 5;
  2059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2060. current_position[E_AXIS] -= 5;
  2061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2062. st_synchronize();
  2063. current_position[E_AXIS] += 5;
  2064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2065. current_position[E_AXIS] -= 5;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2067. current_position[E_AXIS] += 5;
  2068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2069. current_position[E_AXIS] -= 5;
  2070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2071. st_synchronize();
  2072. }
  2073. }
  2074. */
  2075. #ifdef TMC2130
  2076. void force_high_power_mode(bool start_high_power_section) {
  2077. uint8_t silent;
  2078. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2079. if (silent == 1) {
  2080. //we are in silent mode, set to normal mode to enable crash detection
  2081. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2082. st_synchronize();
  2083. cli();
  2084. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2085. update_mode_profile();
  2086. tmc2130_init();
  2087. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2088. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2089. st_reset_timer();
  2090. sei();
  2091. }
  2092. }
  2093. #endif //TMC2130
  2094. #ifdef TMC2130
  2095. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2096. #else
  2097. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2098. #endif //TMC2130
  2099. {
  2100. st_synchronize();
  2101. #if 0
  2102. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2103. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2104. #endif
  2105. // Flag for the display update routine and to disable the print cancelation during homing.
  2106. homing_flag = true;
  2107. // Which axes should be homed?
  2108. bool home_x = home_x_axis;
  2109. bool home_y = home_y_axis;
  2110. bool home_z = home_z_axis;
  2111. // Either all X,Y,Z codes are present, or none of them.
  2112. bool home_all_axes = home_x == home_y && home_x == home_z;
  2113. if (home_all_axes)
  2114. // No X/Y/Z code provided means to home all axes.
  2115. home_x = home_y = home_z = true;
  2116. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2117. if (home_all_axes) {
  2118. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2119. feedrate = homing_feedrate[Z_AXIS];
  2120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2121. st_synchronize();
  2122. }
  2123. #ifdef ENABLE_AUTO_BED_LEVELING
  2124. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2125. #endif //ENABLE_AUTO_BED_LEVELING
  2126. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2127. // the planner will not perform any adjustments in the XY plane.
  2128. // Wait for the motors to stop and update the current position with the absolute values.
  2129. world2machine_revert_to_uncorrected();
  2130. // For mesh bed leveling deactivate the matrix temporarily.
  2131. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2132. // in a single axis only.
  2133. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2134. #ifdef MESH_BED_LEVELING
  2135. uint8_t mbl_was_active = mbl.active;
  2136. mbl.active = 0;
  2137. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2138. #endif
  2139. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2140. // consumed during the first movements following this statement.
  2141. if (home_z)
  2142. babystep_undo();
  2143. saved_feedrate = feedrate;
  2144. int l_feedmultiply = feedmultiply;
  2145. feedmultiply = 100;
  2146. previous_millis_cmd = _millis();
  2147. enable_endstops(true);
  2148. memcpy(destination, current_position, sizeof(destination));
  2149. feedrate = 0.0;
  2150. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2151. if(home_z)
  2152. homeaxis(Z_AXIS);
  2153. #endif
  2154. #ifdef QUICK_HOME
  2155. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2156. if(home_x && home_y) //first diagonal move
  2157. {
  2158. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2159. int x_axis_home_dir = home_dir(X_AXIS);
  2160. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2161. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2162. feedrate = homing_feedrate[X_AXIS];
  2163. if(homing_feedrate[Y_AXIS]<feedrate)
  2164. feedrate = homing_feedrate[Y_AXIS];
  2165. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2166. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2167. } else {
  2168. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2169. }
  2170. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2171. st_synchronize();
  2172. axis_is_at_home(X_AXIS);
  2173. axis_is_at_home(Y_AXIS);
  2174. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2175. destination[X_AXIS] = current_position[X_AXIS];
  2176. destination[Y_AXIS] = current_position[Y_AXIS];
  2177. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2178. feedrate = 0.0;
  2179. st_synchronize();
  2180. endstops_hit_on_purpose();
  2181. current_position[X_AXIS] = destination[X_AXIS];
  2182. current_position[Y_AXIS] = destination[Y_AXIS];
  2183. current_position[Z_AXIS] = destination[Z_AXIS];
  2184. }
  2185. #endif /* QUICK_HOME */
  2186. #ifdef TMC2130
  2187. if(home_x)
  2188. {
  2189. if (!calib)
  2190. homeaxis(X_AXIS);
  2191. else
  2192. tmc2130_home_calibrate(X_AXIS);
  2193. }
  2194. if(home_y)
  2195. {
  2196. if (!calib)
  2197. homeaxis(Y_AXIS);
  2198. else
  2199. tmc2130_home_calibrate(Y_AXIS);
  2200. }
  2201. #else //TMC2130
  2202. if(home_x) homeaxis(X_AXIS);
  2203. if(home_y) homeaxis(Y_AXIS);
  2204. #endif //TMC2130
  2205. if(home_x_axis && home_x_value != 0)
  2206. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2207. if(home_y_axis && home_y_value != 0)
  2208. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2209. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2210. #ifndef Z_SAFE_HOMING
  2211. if(home_z) {
  2212. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2213. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2214. feedrate = max_feedrate[Z_AXIS];
  2215. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2216. st_synchronize();
  2217. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2218. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2219. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2220. {
  2221. homeaxis(X_AXIS);
  2222. homeaxis(Y_AXIS);
  2223. }
  2224. // 1st mesh bed leveling measurement point, corrected.
  2225. world2machine_initialize();
  2226. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2227. world2machine_reset();
  2228. if (destination[Y_AXIS] < Y_MIN_POS)
  2229. destination[Y_AXIS] = Y_MIN_POS;
  2230. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2231. feedrate = homing_feedrate[Z_AXIS]/10;
  2232. current_position[Z_AXIS] = 0;
  2233. enable_endstops(false);
  2234. #ifdef DEBUG_BUILD
  2235. SERIAL_ECHOLNPGM("plan_set_position()");
  2236. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2237. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2238. #endif
  2239. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2240. #ifdef DEBUG_BUILD
  2241. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2242. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2243. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2244. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2245. #endif
  2246. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2247. st_synchronize();
  2248. current_position[X_AXIS] = destination[X_AXIS];
  2249. current_position[Y_AXIS] = destination[Y_AXIS];
  2250. enable_endstops(true);
  2251. endstops_hit_on_purpose();
  2252. homeaxis(Z_AXIS);
  2253. #else // MESH_BED_LEVELING
  2254. homeaxis(Z_AXIS);
  2255. #endif // MESH_BED_LEVELING
  2256. }
  2257. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2258. if(home_all_axes) {
  2259. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2260. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2261. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2262. feedrate = XY_TRAVEL_SPEED/60;
  2263. current_position[Z_AXIS] = 0;
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2266. st_synchronize();
  2267. current_position[X_AXIS] = destination[X_AXIS];
  2268. current_position[Y_AXIS] = destination[Y_AXIS];
  2269. homeaxis(Z_AXIS);
  2270. }
  2271. // Let's see if X and Y are homed and probe is inside bed area.
  2272. if(home_z) {
  2273. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2274. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2275. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2276. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2277. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2278. current_position[Z_AXIS] = 0;
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2281. feedrate = max_feedrate[Z_AXIS];
  2282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2283. st_synchronize();
  2284. homeaxis(Z_AXIS);
  2285. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2286. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2287. SERIAL_ECHO_START;
  2288. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2289. } else {
  2290. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2291. SERIAL_ECHO_START;
  2292. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2293. }
  2294. }
  2295. #endif // Z_SAFE_HOMING
  2296. #endif // Z_HOME_DIR < 0
  2297. if(home_z_axis && home_z_value != 0)
  2298. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2299. #ifdef ENABLE_AUTO_BED_LEVELING
  2300. if(home_z)
  2301. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2302. #endif
  2303. // Set the planner and stepper routine positions.
  2304. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2305. // contains the machine coordinates.
  2306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2307. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2308. enable_endstops(false);
  2309. #endif
  2310. feedrate = saved_feedrate;
  2311. feedmultiply = l_feedmultiply;
  2312. previous_millis_cmd = _millis();
  2313. endstops_hit_on_purpose();
  2314. #ifndef MESH_BED_LEVELING
  2315. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2316. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2317. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2318. lcd_adjust_z();
  2319. #endif
  2320. // Load the machine correction matrix
  2321. world2machine_initialize();
  2322. // and correct the current_position XY axes to match the transformed coordinate system.
  2323. world2machine_update_current();
  2324. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2325. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2326. {
  2327. if (! home_z && mbl_was_active) {
  2328. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2329. mbl.active = true;
  2330. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2331. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2332. }
  2333. }
  2334. else
  2335. {
  2336. st_synchronize();
  2337. homing_flag = false;
  2338. }
  2339. #endif
  2340. if (farm_mode) { prusa_statistics(20); };
  2341. homing_flag = false;
  2342. #if 0
  2343. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2344. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2345. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2346. #endif
  2347. }
  2348. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2349. {
  2350. #ifdef TMC2130
  2351. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2352. #else
  2353. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2354. #endif //TMC2130
  2355. }
  2356. void adjust_bed_reset()
  2357. {
  2358. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2359. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2360. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2361. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2362. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2363. }
  2364. //! @brief Calibrate XYZ
  2365. //! @param onlyZ if true, calibrate only Z axis
  2366. //! @param verbosity_level
  2367. //! @retval true Succeeded
  2368. //! @retval false Failed
  2369. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2370. {
  2371. bool final_result = false;
  2372. #ifdef TMC2130
  2373. FORCE_HIGH_POWER_START;
  2374. #endif // TMC2130
  2375. // Only Z calibration?
  2376. if (!onlyZ)
  2377. {
  2378. setTargetBed(0);
  2379. setAllTargetHotends(0);
  2380. adjust_bed_reset(); //reset bed level correction
  2381. }
  2382. // Disable the default update procedure of the display. We will do a modal dialog.
  2383. lcd_update_enable(false);
  2384. // Let the planner use the uncorrected coordinates.
  2385. mbl.reset();
  2386. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2387. // the planner will not perform any adjustments in the XY plane.
  2388. // Wait for the motors to stop and update the current position with the absolute values.
  2389. world2machine_revert_to_uncorrected();
  2390. // Reset the baby step value applied without moving the axes.
  2391. babystep_reset();
  2392. // Mark all axes as in a need for homing.
  2393. memset(axis_known_position, 0, sizeof(axis_known_position));
  2394. // Home in the XY plane.
  2395. //set_destination_to_current();
  2396. int l_feedmultiply = setup_for_endstop_move();
  2397. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2398. home_xy();
  2399. enable_endstops(false);
  2400. current_position[X_AXIS] += 5;
  2401. current_position[Y_AXIS] += 5;
  2402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2403. st_synchronize();
  2404. // Let the user move the Z axes up to the end stoppers.
  2405. #ifdef TMC2130
  2406. if (calibrate_z_auto())
  2407. {
  2408. #else //TMC2130
  2409. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2410. {
  2411. #endif //TMC2130
  2412. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2413. if(onlyZ){
  2414. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2415. lcd_set_cursor(0, 3);
  2416. lcd_print(1);
  2417. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2418. }else{
  2419. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2420. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2421. lcd_set_cursor(0, 2);
  2422. lcd_print(1);
  2423. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2424. }
  2425. refresh_cmd_timeout();
  2426. #ifndef STEEL_SHEET
  2427. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2428. {
  2429. lcd_wait_for_cool_down();
  2430. }
  2431. #endif //STEEL_SHEET
  2432. if(!onlyZ)
  2433. {
  2434. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2435. #ifdef STEEL_SHEET
  2436. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2437. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2438. #endif //STEEL_SHEET
  2439. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2440. KEEPALIVE_STATE(IN_HANDLER);
  2441. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2442. lcd_set_cursor(0, 2);
  2443. lcd_print(1);
  2444. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2445. }
  2446. bool endstops_enabled = enable_endstops(false);
  2447. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2449. st_synchronize();
  2450. // Move the print head close to the bed.
  2451. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2452. enable_endstops(true);
  2453. #ifdef TMC2130
  2454. tmc2130_home_enter(Z_AXIS_MASK);
  2455. #endif //TMC2130
  2456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2457. st_synchronize();
  2458. #ifdef TMC2130
  2459. tmc2130_home_exit();
  2460. #endif //TMC2130
  2461. enable_endstops(endstops_enabled);
  2462. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2463. {
  2464. if (onlyZ)
  2465. {
  2466. clean_up_after_endstop_move(l_feedmultiply);
  2467. // Z only calibration.
  2468. // Load the machine correction matrix
  2469. world2machine_initialize();
  2470. // and correct the current_position to match the transformed coordinate system.
  2471. world2machine_update_current();
  2472. //FIXME
  2473. bool result = sample_mesh_and_store_reference();
  2474. if (result)
  2475. {
  2476. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2477. // Shipped, the nozzle height has been set already. The user can start printing now.
  2478. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2479. final_result = true;
  2480. // babystep_apply();
  2481. }
  2482. }
  2483. else
  2484. {
  2485. // Reset the baby step value and the baby step applied flag.
  2486. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2487. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2488. // Complete XYZ calibration.
  2489. uint8_t point_too_far_mask = 0;
  2490. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2491. clean_up_after_endstop_move(l_feedmultiply);
  2492. // Print head up.
  2493. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2495. st_synchronize();
  2496. //#ifndef NEW_XYZCAL
  2497. if (result >= 0)
  2498. {
  2499. #ifdef HEATBED_V2
  2500. sample_z();
  2501. #else //HEATBED_V2
  2502. point_too_far_mask = 0;
  2503. // Second half: The fine adjustment.
  2504. // Let the planner use the uncorrected coordinates.
  2505. mbl.reset();
  2506. world2machine_reset();
  2507. // Home in the XY plane.
  2508. int l_feedmultiply = setup_for_endstop_move();
  2509. home_xy();
  2510. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2511. clean_up_after_endstop_move(l_feedmultiply);
  2512. // Print head up.
  2513. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2515. st_synchronize();
  2516. // if (result >= 0) babystep_apply();
  2517. #endif //HEATBED_V2
  2518. }
  2519. //#endif //NEW_XYZCAL
  2520. lcd_update_enable(true);
  2521. lcd_update(2);
  2522. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2523. if (result >= 0)
  2524. {
  2525. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2526. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2527. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2528. final_result = true;
  2529. }
  2530. }
  2531. #ifdef TMC2130
  2532. tmc2130_home_exit();
  2533. #endif
  2534. }
  2535. else
  2536. {
  2537. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2538. final_result = false;
  2539. }
  2540. }
  2541. else
  2542. {
  2543. // Timeouted.
  2544. }
  2545. lcd_update_enable(true);
  2546. #ifdef TMC2130
  2547. FORCE_HIGH_POWER_END;
  2548. #endif // TMC2130
  2549. return final_result;
  2550. }
  2551. void gcode_M114()
  2552. {
  2553. SERIAL_PROTOCOLPGM("X:");
  2554. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2555. SERIAL_PROTOCOLPGM(" Y:");
  2556. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2557. SERIAL_PROTOCOLPGM(" Z:");
  2558. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2559. SERIAL_PROTOCOLPGM(" E:");
  2560. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2561. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2562. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2563. SERIAL_PROTOCOLPGM(" Y:");
  2564. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2565. SERIAL_PROTOCOLPGM(" Z:");
  2566. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2567. SERIAL_PROTOCOLPGM(" E:");
  2568. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2569. SERIAL_PROTOCOLLN("");
  2570. }
  2571. //! extracted code to compute z_shift for M600 in case of filament change operation
  2572. //! requested from fsensors.
  2573. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2574. //! unlike the previous implementation, which was adding 25mm even when the head was
  2575. //! printing at e.g. 24mm height.
  2576. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2577. //! the printout.
  2578. //! This function is templated to enable fast change of computation data type.
  2579. //! @return new z_shift value
  2580. template<typename T>
  2581. static T gcode_M600_filament_change_z_shift()
  2582. {
  2583. #ifdef FILAMENTCHANGE_ZADD
  2584. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2585. // avoid floating point arithmetics when not necessary - results in shorter code
  2586. T ztmp = T( current_position[Z_AXIS] );
  2587. T z_shift = 0;
  2588. if(ztmp < T(25)){
  2589. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2590. }
  2591. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2592. #else
  2593. return T(0);
  2594. #endif
  2595. }
  2596. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2597. {
  2598. st_synchronize();
  2599. float lastpos[4];
  2600. if (farm_mode)
  2601. {
  2602. prusa_statistics(22);
  2603. }
  2604. //First backup current position and settings
  2605. int feedmultiplyBckp = feedmultiply;
  2606. float HotendTempBckp = degTargetHotend(active_extruder);
  2607. int fanSpeedBckp = fanSpeed;
  2608. lastpos[X_AXIS] = current_position[X_AXIS];
  2609. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2610. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2611. lastpos[E_AXIS] = current_position[E_AXIS];
  2612. //Retract E
  2613. current_position[E_AXIS] += e_shift;
  2614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2615. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2616. st_synchronize();
  2617. //Lift Z
  2618. current_position[Z_AXIS] += z_shift;
  2619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2620. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2621. st_synchronize();
  2622. //Move XY to side
  2623. current_position[X_AXIS] = x_position;
  2624. current_position[Y_AXIS] = y_position;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2626. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2627. st_synchronize();
  2628. //Beep, manage nozzle heater and wait for user to start unload filament
  2629. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2630. lcd_change_fil_state = 0;
  2631. // Unload filament
  2632. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2633. else unload_filament(); //unload filament for single material (used also in M702)
  2634. //finish moves
  2635. st_synchronize();
  2636. if (!mmu_enabled)
  2637. {
  2638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2639. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2640. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2641. if (lcd_change_fil_state == 0)
  2642. {
  2643. lcd_clear();
  2644. lcd_set_cursor(0, 2);
  2645. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2646. current_position[X_AXIS] -= 100;
  2647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2648. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2649. st_synchronize();
  2650. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2651. }
  2652. }
  2653. if (mmu_enabled)
  2654. {
  2655. if (!automatic) {
  2656. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2657. mmu_M600_wait_and_beep();
  2658. if (saved_printing) {
  2659. lcd_clear();
  2660. lcd_set_cursor(0, 2);
  2661. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2662. mmu_command(MmuCmd::R0);
  2663. manage_response(false, false);
  2664. }
  2665. }
  2666. mmu_M600_load_filament(automatic, HotendTempBckp);
  2667. }
  2668. else
  2669. M600_load_filament();
  2670. if (!automatic) M600_check_state(HotendTempBckp);
  2671. lcd_update_enable(true);
  2672. //Not let's go back to print
  2673. fanSpeed = fanSpeedBckp;
  2674. //Feed a little of filament to stabilize pressure
  2675. if (!automatic)
  2676. {
  2677. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2679. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2680. }
  2681. //Move XY back
  2682. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2683. FILAMENTCHANGE_XYFEED, active_extruder);
  2684. st_synchronize();
  2685. //Move Z back
  2686. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2687. FILAMENTCHANGE_ZFEED, active_extruder);
  2688. st_synchronize();
  2689. //Set E position to original
  2690. plan_set_e_position(lastpos[E_AXIS]);
  2691. memcpy(current_position, lastpos, sizeof(lastpos));
  2692. memcpy(destination, current_position, sizeof(current_position));
  2693. //Recover feed rate
  2694. feedmultiply = feedmultiplyBckp;
  2695. char cmd[9];
  2696. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2697. enquecommand(cmd);
  2698. #ifdef IR_SENSOR
  2699. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2700. fsensor_check_autoload();
  2701. #endif //IR_SENSOR
  2702. lcd_setstatuspgm(_T(WELCOME_MSG));
  2703. custom_message_type = CustomMsg::Status;
  2704. }
  2705. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2706. //!
  2707. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2708. //! during extruding (loading) filament.
  2709. void marlin_rise_z(void)
  2710. {
  2711. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2712. }
  2713. void gcode_M701()
  2714. {
  2715. printf_P(PSTR("gcode_M701 begin\n"));
  2716. if (farm_mode)
  2717. {
  2718. prusa_statistics(22);
  2719. }
  2720. if (mmu_enabled)
  2721. {
  2722. extr_adj(tmp_extruder);//loads current extruder
  2723. mmu_extruder = tmp_extruder;
  2724. }
  2725. else
  2726. {
  2727. enable_z();
  2728. custom_message_type = CustomMsg::FilamentLoading;
  2729. #ifdef FSENSOR_QUALITY
  2730. fsensor_oq_meassure_start(40);
  2731. #endif //FSENSOR_QUALITY
  2732. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2733. current_position[E_AXIS] += 40;
  2734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2735. st_synchronize();
  2736. marlin_rise_z();
  2737. current_position[E_AXIS] += 30;
  2738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2739. load_filament_final_feed(); //slow sequence
  2740. st_synchronize();
  2741. Sound_MakeCustom(50,500,false);
  2742. if (!farm_mode && loading_flag) {
  2743. lcd_load_filament_color_check();
  2744. }
  2745. lcd_update_enable(true);
  2746. lcd_update(2);
  2747. lcd_setstatuspgm(_T(WELCOME_MSG));
  2748. disable_z();
  2749. loading_flag = false;
  2750. custom_message_type = CustomMsg::Status;
  2751. #ifdef FSENSOR_QUALITY
  2752. fsensor_oq_meassure_stop();
  2753. if (!fsensor_oq_result())
  2754. {
  2755. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2756. lcd_update_enable(true);
  2757. lcd_update(2);
  2758. if (disable)
  2759. fsensor_disable();
  2760. }
  2761. #endif //FSENSOR_QUALITY
  2762. }
  2763. }
  2764. /**
  2765. * @brief Get serial number from 32U2 processor
  2766. *
  2767. * Typical format of S/N is:CZPX0917X003XC13518
  2768. *
  2769. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2770. *
  2771. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2772. * reply is transmitted to serial port 1 character by character.
  2773. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2774. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2775. * in any case.
  2776. */
  2777. static void gcode_PRUSA_SN()
  2778. {
  2779. if (farm_mode) {
  2780. selectedSerialPort = 0;
  2781. putchar(';');
  2782. putchar('S');
  2783. int numbersRead = 0;
  2784. ShortTimer timeout;
  2785. timeout.start();
  2786. while (numbersRead < 19) {
  2787. while (MSerial.available() > 0) {
  2788. uint8_t serial_char = MSerial.read();
  2789. selectedSerialPort = 1;
  2790. putchar(serial_char);
  2791. numbersRead++;
  2792. selectedSerialPort = 0;
  2793. }
  2794. if (timeout.expired(100u)) break;
  2795. }
  2796. selectedSerialPort = 1;
  2797. putchar('\n');
  2798. #if 0
  2799. for (int b = 0; b < 3; b++) {
  2800. _tone(BEEPER, 110);
  2801. _delay(50);
  2802. _noTone(BEEPER);
  2803. _delay(50);
  2804. }
  2805. #endif
  2806. } else {
  2807. puts_P(_N("Not in farm mode."));
  2808. }
  2809. }
  2810. #ifdef BACKLASH_X
  2811. extern uint8_t st_backlash_x;
  2812. #endif //BACKLASH_X
  2813. #ifdef BACKLASH_Y
  2814. extern uint8_t st_backlash_y;
  2815. #endif //BACKLASH_Y
  2816. //! \ingroup marlin_main
  2817. //! @brief Parse and process commands
  2818. //!
  2819. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2820. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2821. //!
  2822. //!
  2823. //! Implemented Codes
  2824. //! -------------------
  2825. //!
  2826. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2827. //!
  2828. //!@n PRUSA CODES
  2829. //!@n P F - Returns FW versions
  2830. //!@n P R - Returns revision of printer
  2831. //!
  2832. //!@n G0 -> G1
  2833. //!@n G1 - Coordinated Movement X Y Z E
  2834. //!@n G2 - CW ARC
  2835. //!@n G3 - CCW ARC
  2836. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2837. //!@n G10 - retract filament according to settings of M207
  2838. //!@n G11 - retract recover filament according to settings of M208
  2839. //!@n G28 - Home all Axis
  2840. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2841. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2842. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2843. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2844. //!@n G80 - Automatic mesh bed leveling
  2845. //!@n G81 - Print bed profile
  2846. //!@n G90 - Use Absolute Coordinates
  2847. //!@n G91 - Use Relative Coordinates
  2848. //!@n G92 - Set current position to coordinates given
  2849. //!
  2850. //!@n M Codes
  2851. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2852. //!@n M1 - Same as M0
  2853. //!@n M17 - Enable/Power all stepper motors
  2854. //!@n M18 - Disable all stepper motors; same as M84
  2855. //!@n M20 - List SD card
  2856. //!@n M21 - Init SD card
  2857. //!@n M22 - Release SD card
  2858. //!@n M23 - Select SD file (M23 filename.g)
  2859. //!@n M24 - Start/resume SD print
  2860. //!@n M25 - Pause SD print
  2861. //!@n M26 - Set SD position in bytes (M26 S12345)
  2862. //!@n M27 - Report SD print status
  2863. //!@n M28 - Start SD write (M28 filename.g)
  2864. //!@n M29 - Stop SD write
  2865. //!@n M30 - Delete file from SD (M30 filename.g)
  2866. //!@n M31 - Output time since last M109 or SD card start to serial
  2867. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2868. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2869. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2870. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2871. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2872. //!@n M73 - Show percent done and print time remaining
  2873. //!@n M80 - Turn on Power Supply
  2874. //!@n M81 - Turn off Power Supply
  2875. //!@n M82 - Set E codes absolute (default)
  2876. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2877. //!@n M84 - Disable steppers until next move,
  2878. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2879. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2880. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2881. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2882. //!@n M104 - Set extruder target temp
  2883. //!@n M105 - Read current temp
  2884. //!@n M106 - Fan on
  2885. //!@n M107 - Fan off
  2886. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2887. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2888. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2889. //!@n M112 - Emergency stop
  2890. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2891. //!@n M114 - Output current position to serial port
  2892. //!@n M115 - Capabilities string
  2893. //!@n M117 - display message
  2894. //!@n M119 - Output Endstop status to serial port
  2895. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2896. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2897. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2898. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2899. //!@n M140 - Set bed target temp
  2900. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2901. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2902. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2903. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2904. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2905. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2906. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2907. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2908. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2909. //!@n M206 - set additional homing offset
  2910. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2911. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2912. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2913. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2914. //!@n M220 S<factor in percent>- set speed factor override percentage
  2915. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2916. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2917. //!@n M240 - Trigger a camera to take a photograph
  2918. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2919. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2920. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2921. //!@n M301 - Set PID parameters P I and D
  2922. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2923. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2924. //!@n M304 - Set bed PID parameters P I and D
  2925. //!@n M400 - Finish all moves
  2926. //!@n M401 - Lower z-probe if present
  2927. //!@n M402 - Raise z-probe if present
  2928. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2929. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2930. //!@n M406 - Turn off Filament Sensor extrusion control
  2931. //!@n M407 - Displays measured filament diameter
  2932. //!@n M500 - stores parameters in EEPROM
  2933. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2934. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2935. //!@n M503 - print the current settings (from memory not from EEPROM)
  2936. //!@n M509 - force language selection on next restart
  2937. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2938. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2939. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2940. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2941. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2942. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2943. //!@n M907 - Set digital trimpot motor current using axis codes.
  2944. //!@n M908 - Control digital trimpot directly.
  2945. //!@n M350 - Set microstepping mode.
  2946. //!@n M351 - Toggle MS1 MS2 pins directly.
  2947. //!
  2948. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2949. //!@n M999 - Restart after being stopped by error
  2950. //! <br><br>
  2951. /** @defgroup marlin_main Marlin main */
  2952. /** \ingroup GCodes */
  2953. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  2954. void process_commands()
  2955. {
  2956. #ifdef FANCHECK
  2957. if (fan_check_error){
  2958. if( fan_check_error == EFCE_DETECTED ){
  2959. fan_check_error = EFCE_REPORTED;
  2960. if(is_usb_printing){
  2961. SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSE);
  2962. }
  2963. else{
  2964. lcd_pause_print();
  2965. }
  2966. } // otherwise it has already been reported, so just ignore further processing
  2967. return;
  2968. }
  2969. #endif
  2970. if (!buflen) return; //empty command
  2971. #ifdef FILAMENT_RUNOUT_SUPPORT
  2972. SET_INPUT(FR_SENS);
  2973. #endif
  2974. #ifdef CMDBUFFER_DEBUG
  2975. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2976. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2977. SERIAL_ECHOLNPGM("");
  2978. SERIAL_ECHOPGM("In cmdqueue: ");
  2979. SERIAL_ECHO(buflen);
  2980. SERIAL_ECHOLNPGM("");
  2981. #endif /* CMDBUFFER_DEBUG */
  2982. unsigned long codenum; //throw away variable
  2983. char *starpos = NULL;
  2984. #ifdef ENABLE_AUTO_BED_LEVELING
  2985. float x_tmp, y_tmp, z_tmp, real_z;
  2986. #endif
  2987. // PRUSA GCODES
  2988. KEEPALIVE_STATE(IN_HANDLER);
  2989. #ifdef SNMM
  2990. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2991. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2992. int8_t SilentMode;
  2993. #endif
  2994. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2995. starpos = (strchr(strchr_pointer + 5, '*'));
  2996. if (starpos != NULL)
  2997. *(starpos) = '\0';
  2998. lcd_setstatus(strchr_pointer + 5);
  2999. }
  3000. #ifdef TMC2130
  3001. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3002. {
  3003. //! ### CRASH_DETECTED - TMC2130
  3004. // ---------------------------------
  3005. if(code_seen("CRASH_DETECTED"))
  3006. {
  3007. uint8_t mask = 0;
  3008. if (code_seen('X')) mask |= X_AXIS_MASK;
  3009. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3010. crashdet_detected(mask);
  3011. }
  3012. //! ### CRASH_RECOVER - TMC2130
  3013. // ----------------------------------
  3014. else if(code_seen("CRASH_RECOVER"))
  3015. crashdet_recover();
  3016. //! ### CRASH_CANCEL - TMC2130
  3017. // ----------------------------------
  3018. else if(code_seen("CRASH_CANCEL"))
  3019. crashdet_cancel();
  3020. }
  3021. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3022. {
  3023. //! ### TMC_SET_WAVE_
  3024. // --------------------
  3025. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3026. {
  3027. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3028. axis = (axis == 'E')?3:(axis - 'X');
  3029. if (axis < 4)
  3030. {
  3031. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3032. tmc2130_set_wave(axis, 247, fac);
  3033. }
  3034. }
  3035. //! ### TMC_SET_STEP_
  3036. // ------------------
  3037. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3038. {
  3039. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3040. axis = (axis == 'E')?3:(axis - 'X');
  3041. if (axis < 4)
  3042. {
  3043. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3044. uint16_t res = tmc2130_get_res(axis);
  3045. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3046. }
  3047. }
  3048. //! ### TMC_SET_CHOP_
  3049. // -------------------
  3050. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3051. {
  3052. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3053. axis = (axis == 'E')?3:(axis - 'X');
  3054. if (axis < 4)
  3055. {
  3056. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3057. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3058. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3059. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3060. char* str_end = 0;
  3061. if (CMDBUFFER_CURRENT_STRING[14])
  3062. {
  3063. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3064. if (str_end && *str_end)
  3065. {
  3066. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3067. if (str_end && *str_end)
  3068. {
  3069. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3070. if (str_end && *str_end)
  3071. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3072. }
  3073. }
  3074. }
  3075. tmc2130_chopper_config[axis].toff = chop0;
  3076. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3077. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3078. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3079. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3080. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3081. }
  3082. }
  3083. }
  3084. #ifdef BACKLASH_X
  3085. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3086. {
  3087. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3088. st_backlash_x = bl;
  3089. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3090. }
  3091. #endif //BACKLASH_X
  3092. #ifdef BACKLASH_Y
  3093. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3094. {
  3095. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3096. st_backlash_y = bl;
  3097. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3098. }
  3099. #endif //BACKLASH_Y
  3100. #endif //TMC2130
  3101. else if(code_seen("PRUSA")){
  3102. /*!
  3103. *
  3104. ### PRUSA - Internal command set
  3105. Set of internal PRUSA commands
  3106. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3107. - `Ping`
  3108. - `PRN` - Prints revision of the printer
  3109. - `FAN` - Prints fan details
  3110. - `fn` - Prints farm no.
  3111. - `thx`
  3112. - `uvlo`
  3113. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3114. - `MMURES` - Reset MMU
  3115. - `RESET` - (Careful!)
  3116. - `fv` - ?
  3117. - `M28`
  3118. - `SN`
  3119. - `Fir` - Prints firmware version
  3120. - `Rev`- Prints filament size, elelectronics, nozzle type
  3121. - `Lang` - Reset the language
  3122. - `Lz`
  3123. - `Beat` - Kick farm link timer
  3124. - `FR` - Full factory reset
  3125. - `nozzle D<diameter` - Set the nozzle diameter
  3126. *
  3127. */
  3128. if (code_seen("Ping")) { // PRUSA Ping
  3129. if (farm_mode) {
  3130. PingTime = _millis();
  3131. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3132. }
  3133. }
  3134. else if (code_seen("PRN")) { // PRUSA PRN
  3135. printf_P(_N("%d"), status_number);
  3136. }else if (code_seen("FAN")) { // PRUSA FAN
  3137. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3138. }else if (code_seen("fn")) { // PRUSA fn
  3139. if (farm_mode) {
  3140. printf_P(_N("%d"), farm_no);
  3141. }
  3142. else {
  3143. puts_P(_N("Not in farm mode."));
  3144. }
  3145. }
  3146. else if (code_seen("thx")) // PRUSA thx
  3147. {
  3148. no_response = false;
  3149. }
  3150. else if (code_seen("uvlo")) // PRUSA uvlo
  3151. {
  3152. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3153. enquecommand_P(PSTR("M24"));
  3154. }
  3155. #ifdef FILAMENT_SENSOR
  3156. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3157. {
  3158. fsensor_restore_print_and_continue();
  3159. }
  3160. #endif //FILAMENT_SENSOR
  3161. else if (code_seen("MMURES")) // PRUSA MMURES
  3162. {
  3163. mmu_reset();
  3164. }
  3165. else if (code_seen("RESET")) { // PRUSA RESET
  3166. // careful!
  3167. if (farm_mode) {
  3168. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3169. boot_app_magic = BOOT_APP_MAGIC;
  3170. boot_app_flags = BOOT_APP_FLG_RUN;
  3171. wdt_enable(WDTO_15MS);
  3172. cli();
  3173. while(1);
  3174. #else //WATCHDOG
  3175. asm volatile("jmp 0x3E000");
  3176. #endif //WATCHDOG
  3177. }
  3178. else {
  3179. MYSERIAL.println("Not in farm mode.");
  3180. }
  3181. }else if (code_seen("fv")) { // PRUSA fv
  3182. // get file version
  3183. #ifdef SDSUPPORT
  3184. card.openFile(strchr_pointer + 3,true);
  3185. while (true) {
  3186. uint16_t readByte = card.get();
  3187. MYSERIAL.write(readByte);
  3188. if (readByte=='\n') {
  3189. break;
  3190. }
  3191. }
  3192. card.closefile();
  3193. #endif // SDSUPPORT
  3194. } else if (code_seen("M28")) { // PRUSA M28
  3195. trace();
  3196. prusa_sd_card_upload = true;
  3197. card.openFile(strchr_pointer+4,false);
  3198. } else if (code_seen("SN")) { // PRUSA SN
  3199. gcode_PRUSA_SN();
  3200. } else if(code_seen("Fir")){ // PRUSA Fir
  3201. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3202. } else if(code_seen("Rev")){ // PRUSA Rev
  3203. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3204. } else if(code_seen("Lang")) { // PRUSA Lang
  3205. lang_reset();
  3206. } else if(code_seen("Lz")) { // PRUSA Lz
  3207. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3208. } else if(code_seen("Beat")) { // PRUSA Beat
  3209. // Kick farm link timer
  3210. kicktime = _millis();
  3211. } else if(code_seen("FR")) { // PRUSA FR
  3212. // Factory full reset
  3213. factory_reset(0);
  3214. //-//
  3215. /*
  3216. } else if(code_seen("rrr")) {
  3217. MYSERIAL.println("=== checking ===");
  3218. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3219. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3220. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3221. MYSERIAL.println(farm_mode,DEC);
  3222. MYSERIAL.println(eCheckMode,DEC);
  3223. } else if(code_seen("www")) {
  3224. MYSERIAL.println("=== @ FF ===");
  3225. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3226. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3227. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3228. */
  3229. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3230. uint16_t nDiameter;
  3231. if(code_seen('D'))
  3232. {
  3233. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3234. nozzle_diameter_check(nDiameter);
  3235. }
  3236. else if(code_seen("set") && farm_mode)
  3237. {
  3238. strchr_pointer++; // skip 1st char (~ 's')
  3239. strchr_pointer++; // skip 2nd char (~ 'e')
  3240. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3241. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3242. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3243. }
  3244. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3245. //-// !!! SupportMenu
  3246. /*
  3247. // musi byt PRED "PRUSA model"
  3248. } else if (code_seen("smodel")) { //! PRUSA smodel
  3249. size_t nOffset;
  3250. // ! -> "l"
  3251. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3252. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3253. if(*(strchr_pointer+1+nOffset))
  3254. printer_smodel_check(strchr_pointer);
  3255. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3256. } else if (code_seen("model")) { //! PRUSA model
  3257. uint16_t nPrinterModel;
  3258. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3259. nPrinterModel=(uint16_t)code_value_long();
  3260. if(nPrinterModel!=0)
  3261. printer_model_check(nPrinterModel);
  3262. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3263. } else if (code_seen("version")) { //! PRUSA version
  3264. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3265. while(*strchr_pointer==' ') // skip leading spaces
  3266. strchr_pointer++;
  3267. if(*strchr_pointer!=0)
  3268. fw_version_check(strchr_pointer);
  3269. else SERIAL_PROTOCOLLN(FW_VERSION);
  3270. } else if (code_seen("gcode")) { //! PRUSA gcode
  3271. uint16_t nGcodeLevel;
  3272. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3273. nGcodeLevel=(uint16_t)code_value_long();
  3274. if(nGcodeLevel!=0)
  3275. gcode_level_check(nGcodeLevel);
  3276. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3277. */
  3278. }
  3279. //else if (code_seen('Cal')) {
  3280. // lcd_calibration();
  3281. // }
  3282. }
  3283. else if (code_seen('^')) {
  3284. // nothing, this is a version line
  3285. } else if(code_seen('G'))
  3286. {
  3287. gcode_in_progress = (int)code_value();
  3288. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3289. switch (gcode_in_progress)
  3290. {
  3291. //! ### G0, G1 - Coordinated movement X Y Z E
  3292. // --------------------------------------
  3293. case 0: // G0 -> G1
  3294. case 1: // G1
  3295. if(Stopped == false) {
  3296. #ifdef FILAMENT_RUNOUT_SUPPORT
  3297. if(READ(FR_SENS)){
  3298. int feedmultiplyBckp=feedmultiply;
  3299. float target[4];
  3300. float lastpos[4];
  3301. target[X_AXIS]=current_position[X_AXIS];
  3302. target[Y_AXIS]=current_position[Y_AXIS];
  3303. target[Z_AXIS]=current_position[Z_AXIS];
  3304. target[E_AXIS]=current_position[E_AXIS];
  3305. lastpos[X_AXIS]=current_position[X_AXIS];
  3306. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3307. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3308. lastpos[E_AXIS]=current_position[E_AXIS];
  3309. //retract by E
  3310. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3311. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3312. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3313. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3314. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3315. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3316. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3317. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3318. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3319. //finish moves
  3320. st_synchronize();
  3321. //disable extruder steppers so filament can be removed
  3322. disable_e0();
  3323. disable_e1();
  3324. disable_e2();
  3325. _delay(100);
  3326. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3327. uint8_t cnt=0;
  3328. int counterBeep = 0;
  3329. lcd_wait_interact();
  3330. while(!lcd_clicked()){
  3331. cnt++;
  3332. manage_heater();
  3333. manage_inactivity(true);
  3334. //lcd_update(0);
  3335. if(cnt==0)
  3336. {
  3337. #if BEEPER > 0
  3338. if (counterBeep== 500){
  3339. counterBeep = 0;
  3340. }
  3341. SET_OUTPUT(BEEPER);
  3342. if (counterBeep== 0){
  3343. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3344. WRITE(BEEPER,HIGH);
  3345. }
  3346. if (counterBeep== 20){
  3347. WRITE(BEEPER,LOW);
  3348. }
  3349. counterBeep++;
  3350. #else
  3351. #endif
  3352. }
  3353. }
  3354. WRITE(BEEPER,LOW);
  3355. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3356. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3357. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3358. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3359. lcd_change_fil_state = 0;
  3360. lcd_loading_filament();
  3361. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3362. lcd_change_fil_state = 0;
  3363. lcd_alright();
  3364. switch(lcd_change_fil_state){
  3365. case 2:
  3366. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3367. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3368. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3369. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3370. lcd_loading_filament();
  3371. break;
  3372. case 3:
  3373. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3374. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3375. lcd_loading_color();
  3376. break;
  3377. default:
  3378. lcd_change_success();
  3379. break;
  3380. }
  3381. }
  3382. target[E_AXIS]+= 5;
  3383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3384. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3385. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3386. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3387. //plan_set_e_position(current_position[E_AXIS]);
  3388. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3389. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3390. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3391. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3392. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3393. plan_set_e_position(lastpos[E_AXIS]);
  3394. feedmultiply=feedmultiplyBckp;
  3395. char cmd[9];
  3396. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3397. enquecommand(cmd);
  3398. }
  3399. #endif
  3400. get_coordinates(); // For X Y Z E F
  3401. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3402. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3403. }
  3404. #ifdef FWRETRACT
  3405. if(cs.autoretract_enabled)
  3406. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3407. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3408. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3409. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3410. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3411. retract(!retracted[active_extruder]);
  3412. return;
  3413. }
  3414. }
  3415. #endif //FWRETRACT
  3416. prepare_move();
  3417. //ClearToSend();
  3418. }
  3419. break;
  3420. //! ### G2 - CW ARC
  3421. // ------------------------------
  3422. case 2:
  3423. if(Stopped == false) {
  3424. get_arc_coordinates();
  3425. prepare_arc_move(true);
  3426. }
  3427. break;
  3428. //! ### G3 - CCW ARC
  3429. // -------------------------------
  3430. case 3:
  3431. if(Stopped == false) {
  3432. get_arc_coordinates();
  3433. prepare_arc_move(false);
  3434. }
  3435. break;
  3436. //! ### G4 - Dwell
  3437. // -------------------------------
  3438. case 4:
  3439. codenum = 0;
  3440. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3441. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3442. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3443. st_synchronize();
  3444. codenum += _millis(); // keep track of when we started waiting
  3445. previous_millis_cmd = _millis();
  3446. while(_millis() < codenum) {
  3447. manage_heater();
  3448. manage_inactivity();
  3449. lcd_update(0);
  3450. }
  3451. break;
  3452. #ifdef FWRETRACT
  3453. //! ### G10 Retract
  3454. // ------------------------------
  3455. case 10:
  3456. #if EXTRUDERS > 1
  3457. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3458. retract(true,retracted_swap[active_extruder]);
  3459. #else
  3460. retract(true);
  3461. #endif
  3462. break;
  3463. //! ### G11 - Retract recover
  3464. // -----------------------------
  3465. case 11:
  3466. #if EXTRUDERS > 1
  3467. retract(false,retracted_swap[active_extruder]);
  3468. #else
  3469. retract(false);
  3470. #endif
  3471. break;
  3472. #endif //FWRETRACT
  3473. //! ### G28 - Home all Axis one at a time
  3474. // --------------------------------------------
  3475. case 28:
  3476. {
  3477. long home_x_value = 0;
  3478. long home_y_value = 0;
  3479. long home_z_value = 0;
  3480. // Which axes should be homed?
  3481. bool home_x = code_seen(axis_codes[X_AXIS]);
  3482. home_x_value = code_value_long();
  3483. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3484. home_y_value = code_value_long();
  3485. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3486. home_z_value = code_value_long();
  3487. bool without_mbl = code_seen('W');
  3488. // calibrate?
  3489. #ifdef TMC2130
  3490. bool calib = code_seen('C');
  3491. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3492. #else
  3493. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3494. #endif //TMC2130
  3495. if ((home_x || home_y || without_mbl || home_z) == false) {
  3496. // Push the commands to the front of the message queue in the reverse order!
  3497. // There shall be always enough space reserved for these commands.
  3498. goto case_G80;
  3499. }
  3500. break;
  3501. }
  3502. #ifdef ENABLE_AUTO_BED_LEVELING
  3503. //! ### G29 - Detailed Z-Probe
  3504. // --------------------------------
  3505. case 29:
  3506. {
  3507. #if Z_MIN_PIN == -1
  3508. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3509. #endif
  3510. // Prevent user from running a G29 without first homing in X and Y
  3511. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3512. {
  3513. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3514. SERIAL_ECHO_START;
  3515. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3516. break; // abort G29, since we don't know where we are
  3517. }
  3518. st_synchronize();
  3519. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3520. //vector_3 corrected_position = plan_get_position_mm();
  3521. //corrected_position.debug("position before G29");
  3522. plan_bed_level_matrix.set_to_identity();
  3523. vector_3 uncorrected_position = plan_get_position();
  3524. //uncorrected_position.debug("position durring G29");
  3525. current_position[X_AXIS] = uncorrected_position.x;
  3526. current_position[Y_AXIS] = uncorrected_position.y;
  3527. current_position[Z_AXIS] = uncorrected_position.z;
  3528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3529. int l_feedmultiply = setup_for_endstop_move();
  3530. feedrate = homing_feedrate[Z_AXIS];
  3531. #ifdef AUTO_BED_LEVELING_GRID
  3532. // probe at the points of a lattice grid
  3533. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3534. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3535. // solve the plane equation ax + by + d = z
  3536. // A is the matrix with rows [x y 1] for all the probed points
  3537. // B is the vector of the Z positions
  3538. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3539. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3540. // "A" matrix of the linear system of equations
  3541. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3542. // "B" vector of Z points
  3543. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3544. int probePointCounter = 0;
  3545. bool zig = true;
  3546. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3547. {
  3548. int xProbe, xInc;
  3549. if (zig)
  3550. {
  3551. xProbe = LEFT_PROBE_BED_POSITION;
  3552. //xEnd = RIGHT_PROBE_BED_POSITION;
  3553. xInc = xGridSpacing;
  3554. zig = false;
  3555. } else // zag
  3556. {
  3557. xProbe = RIGHT_PROBE_BED_POSITION;
  3558. //xEnd = LEFT_PROBE_BED_POSITION;
  3559. xInc = -xGridSpacing;
  3560. zig = true;
  3561. }
  3562. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3563. {
  3564. float z_before;
  3565. if (probePointCounter == 0)
  3566. {
  3567. // raise before probing
  3568. z_before = Z_RAISE_BEFORE_PROBING;
  3569. } else
  3570. {
  3571. // raise extruder
  3572. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3573. }
  3574. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3575. eqnBVector[probePointCounter] = measured_z;
  3576. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3577. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3578. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3579. probePointCounter++;
  3580. xProbe += xInc;
  3581. }
  3582. }
  3583. clean_up_after_endstop_move(l_feedmultiply);
  3584. // solve lsq problem
  3585. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3586. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3587. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3588. SERIAL_PROTOCOLPGM(" b: ");
  3589. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3590. SERIAL_PROTOCOLPGM(" d: ");
  3591. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3592. set_bed_level_equation_lsq(plane_equation_coefficients);
  3593. free(plane_equation_coefficients);
  3594. #else // AUTO_BED_LEVELING_GRID not defined
  3595. // Probe at 3 arbitrary points
  3596. // probe 1
  3597. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3598. // probe 2
  3599. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3600. // probe 3
  3601. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3602. clean_up_after_endstop_move(l_feedmultiply);
  3603. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3604. #endif // AUTO_BED_LEVELING_GRID
  3605. st_synchronize();
  3606. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3607. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3608. // When the bed is uneven, this height must be corrected.
  3609. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3610. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3611. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3612. z_tmp = current_position[Z_AXIS];
  3613. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3614. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3616. }
  3617. break;
  3618. #ifndef Z_PROBE_SLED
  3619. //! ### G30 - Single Z Probe
  3620. // ------------------------------------
  3621. case 30:
  3622. {
  3623. st_synchronize();
  3624. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3625. int l_feedmultiply = setup_for_endstop_move();
  3626. feedrate = homing_feedrate[Z_AXIS];
  3627. run_z_probe();
  3628. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3629. SERIAL_PROTOCOLPGM(" X: ");
  3630. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3631. SERIAL_PROTOCOLPGM(" Y: ");
  3632. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3633. SERIAL_PROTOCOLPGM(" Z: ");
  3634. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3635. SERIAL_PROTOCOLPGM("\n");
  3636. clean_up_after_endstop_move(l_feedmultiply);
  3637. }
  3638. break;
  3639. #else
  3640. //! ### G31 - Dock the sled
  3641. // ---------------------------
  3642. case 31:
  3643. dock_sled(true);
  3644. break;
  3645. //! ### G32 - Undock the sled
  3646. // ----------------------------
  3647. case 32:
  3648. dock_sled(false);
  3649. break;
  3650. #endif // Z_PROBE_SLED
  3651. #endif // ENABLE_AUTO_BED_LEVELING
  3652. #ifdef MESH_BED_LEVELING
  3653. //! ### G30 - Single Z Probe
  3654. // ----------------------------
  3655. case 30:
  3656. {
  3657. st_synchronize();
  3658. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3659. int l_feedmultiply = setup_for_endstop_move();
  3660. feedrate = homing_feedrate[Z_AXIS];
  3661. find_bed_induction_sensor_point_z(-10.f, 3);
  3662. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3663. clean_up_after_endstop_move(l_feedmultiply);
  3664. }
  3665. break;
  3666. //! ### G75 - Print temperature interpolation
  3667. // ---------------------------------------------
  3668. case 75:
  3669. {
  3670. for (int i = 40; i <= 110; i++)
  3671. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3672. }
  3673. break;
  3674. //! ### G76 - PINDA probe temperature calibration
  3675. // ------------------------------------------------
  3676. case 76:
  3677. {
  3678. #ifdef PINDA_THERMISTOR
  3679. if (true)
  3680. {
  3681. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3682. //we need to know accurate position of first calibration point
  3683. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3684. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3685. break;
  3686. }
  3687. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3688. {
  3689. // We don't know where we are! HOME!
  3690. // Push the commands to the front of the message queue in the reverse order!
  3691. // There shall be always enough space reserved for these commands.
  3692. repeatcommand_front(); // repeat G76 with all its parameters
  3693. enquecommand_front_P((PSTR("G28 W0")));
  3694. break;
  3695. }
  3696. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3697. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3698. if (result)
  3699. {
  3700. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3702. current_position[Z_AXIS] = 50;
  3703. current_position[Y_AXIS] = 180;
  3704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3705. st_synchronize();
  3706. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3707. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3708. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3710. st_synchronize();
  3711. gcode_G28(false, false, true);
  3712. }
  3713. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3714. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3715. current_position[Z_AXIS] = 100;
  3716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3717. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3718. lcd_temp_cal_show_result(false);
  3719. break;
  3720. }
  3721. }
  3722. lcd_update_enable(true);
  3723. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3724. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3725. float zero_z;
  3726. int z_shift = 0; //unit: steps
  3727. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3728. if (start_temp < 35) start_temp = 35;
  3729. if (start_temp < current_temperature_pinda) start_temp += 5;
  3730. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3731. // setTargetHotend(200, 0);
  3732. setTargetBed(70 + (start_temp - 30));
  3733. custom_message_type = CustomMsg::TempCal;
  3734. custom_message_state = 1;
  3735. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3736. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3738. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3739. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3741. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3743. st_synchronize();
  3744. while (current_temperature_pinda < start_temp)
  3745. {
  3746. delay_keep_alive(1000);
  3747. serialecho_temperatures();
  3748. }
  3749. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3750. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3752. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3753. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3755. st_synchronize();
  3756. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3757. if (find_z_result == false) {
  3758. lcd_temp_cal_show_result(find_z_result);
  3759. break;
  3760. }
  3761. zero_z = current_position[Z_AXIS];
  3762. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3763. int i = -1; for (; i < 5; i++)
  3764. {
  3765. float temp = (40 + i * 5);
  3766. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3767. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3768. if (start_temp <= temp) break;
  3769. }
  3770. for (i++; i < 5; i++)
  3771. {
  3772. float temp = (40 + i * 5);
  3773. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3774. custom_message_state = i + 2;
  3775. setTargetBed(50 + 10 * (temp - 30) / 5);
  3776. // setTargetHotend(255, 0);
  3777. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3779. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3780. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3782. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3784. st_synchronize();
  3785. while (current_temperature_pinda < temp)
  3786. {
  3787. delay_keep_alive(1000);
  3788. serialecho_temperatures();
  3789. }
  3790. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3792. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3793. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3795. st_synchronize();
  3796. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3797. if (find_z_result == false) {
  3798. lcd_temp_cal_show_result(find_z_result);
  3799. break;
  3800. }
  3801. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3802. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3803. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3804. }
  3805. lcd_temp_cal_show_result(true);
  3806. break;
  3807. }
  3808. #endif //PINDA_THERMISTOR
  3809. setTargetBed(PINDA_MIN_T);
  3810. float zero_z;
  3811. int z_shift = 0; //unit: steps
  3812. int t_c; // temperature
  3813. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3814. // We don't know where we are! HOME!
  3815. // Push the commands to the front of the message queue in the reverse order!
  3816. // There shall be always enough space reserved for these commands.
  3817. repeatcommand_front(); // repeat G76 with all its parameters
  3818. enquecommand_front_P((PSTR("G28 W0")));
  3819. break;
  3820. }
  3821. puts_P(_N("PINDA probe calibration start"));
  3822. custom_message_type = CustomMsg::TempCal;
  3823. custom_message_state = 1;
  3824. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3825. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3826. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3827. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3829. st_synchronize();
  3830. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3831. delay_keep_alive(1000);
  3832. serialecho_temperatures();
  3833. }
  3834. //enquecommand_P(PSTR("M190 S50"));
  3835. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3836. delay_keep_alive(1000);
  3837. serialecho_temperatures();
  3838. }
  3839. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3840. current_position[Z_AXIS] = 5;
  3841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3842. current_position[X_AXIS] = BED_X0;
  3843. current_position[Y_AXIS] = BED_Y0;
  3844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3845. st_synchronize();
  3846. find_bed_induction_sensor_point_z(-1.f);
  3847. zero_z = current_position[Z_AXIS];
  3848. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3849. for (int i = 0; i<5; i++) {
  3850. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3851. custom_message_state = i + 2;
  3852. t_c = 60 + i * 10;
  3853. setTargetBed(t_c);
  3854. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3855. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3856. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3858. st_synchronize();
  3859. while (degBed() < t_c) {
  3860. delay_keep_alive(1000);
  3861. serialecho_temperatures();
  3862. }
  3863. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3864. delay_keep_alive(1000);
  3865. serialecho_temperatures();
  3866. }
  3867. current_position[Z_AXIS] = 5;
  3868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3869. current_position[X_AXIS] = BED_X0;
  3870. current_position[Y_AXIS] = BED_Y0;
  3871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3872. st_synchronize();
  3873. find_bed_induction_sensor_point_z(-1.f);
  3874. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3875. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3876. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3877. }
  3878. custom_message_type = CustomMsg::Status;
  3879. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3880. puts_P(_N("Temperature calibration done."));
  3881. disable_x();
  3882. disable_y();
  3883. disable_z();
  3884. disable_e0();
  3885. disable_e1();
  3886. disable_e2();
  3887. setTargetBed(0); //set bed target temperature back to 0
  3888. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3889. temp_cal_active = true;
  3890. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3891. lcd_update_enable(true);
  3892. lcd_update(2);
  3893. }
  3894. break;
  3895. //! ### G80 - Mesh-based Z probe
  3896. // -----------------------------------
  3897. /*
  3898. * Probes a grid and produces a mesh to compensate for variable bed height
  3899. * The S0 report the points as below
  3900. * +----> X-axis
  3901. * |
  3902. * |
  3903. * v Y-axis
  3904. */
  3905. case 80:
  3906. #ifdef MK1BP
  3907. break;
  3908. #endif //MK1BP
  3909. case_G80:
  3910. {
  3911. mesh_bed_leveling_flag = true;
  3912. static bool run = false;
  3913. #ifdef SUPPORT_VERBOSITY
  3914. int8_t verbosity_level = 0;
  3915. if (code_seen('V')) {
  3916. // Just 'V' without a number counts as V1.
  3917. char c = strchr_pointer[1];
  3918. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3919. }
  3920. #endif //SUPPORT_VERBOSITY
  3921. // Firstly check if we know where we are
  3922. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3923. // We don't know where we are! HOME!
  3924. // Push the commands to the front of the message queue in the reverse order!
  3925. // There shall be always enough space reserved for these commands.
  3926. if (lcd_commands_type != LcdCommands::StopPrint) {
  3927. repeatcommand_front(); // repeat G80 with all its parameters
  3928. enquecommand_front_P((PSTR("G28 W0")));
  3929. }
  3930. else {
  3931. mesh_bed_leveling_flag = false;
  3932. }
  3933. break;
  3934. }
  3935. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3936. if (code_seen('N')) {
  3937. nMeasPoints = code_value_uint8();
  3938. if (nMeasPoints != 7) {
  3939. nMeasPoints = 3;
  3940. }
  3941. }
  3942. else {
  3943. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3944. }
  3945. uint8_t nProbeRetry = 3;
  3946. if (code_seen('R')) {
  3947. nProbeRetry = code_value_uint8();
  3948. if (nProbeRetry > 10) {
  3949. nProbeRetry = 10;
  3950. }
  3951. }
  3952. else {
  3953. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3954. }
  3955. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3956. bool temp_comp_start = true;
  3957. #ifdef PINDA_THERMISTOR
  3958. temp_comp_start = false;
  3959. #endif //PINDA_THERMISTOR
  3960. if (temp_comp_start)
  3961. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3962. if (lcd_commands_type != LcdCommands::StopPrint) {
  3963. temp_compensation_start();
  3964. run = true;
  3965. repeatcommand_front(); // repeat G80 with all its parameters
  3966. enquecommand_front_P((PSTR("G28 W0")));
  3967. }
  3968. else {
  3969. mesh_bed_leveling_flag = false;
  3970. }
  3971. break;
  3972. }
  3973. run = false;
  3974. if (lcd_commands_type == LcdCommands::StopPrint) {
  3975. mesh_bed_leveling_flag = false;
  3976. break;
  3977. }
  3978. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3979. CustomMsg custom_message_type_old = custom_message_type;
  3980. unsigned int custom_message_state_old = custom_message_state;
  3981. custom_message_type = CustomMsg::MeshBedLeveling;
  3982. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3983. lcd_update(1);
  3984. mbl.reset(); //reset mesh bed leveling
  3985. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3986. // consumed during the first movements following this statement.
  3987. babystep_undo();
  3988. // Cycle through all points and probe them
  3989. // First move up. During this first movement, the babystepping will be reverted.
  3990. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3992. // The move to the first calibration point.
  3993. current_position[X_AXIS] = BED_X0;
  3994. current_position[Y_AXIS] = BED_Y0;
  3995. #ifdef SUPPORT_VERBOSITY
  3996. if (verbosity_level >= 1)
  3997. {
  3998. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3999. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4000. }
  4001. #else //SUPPORT_VERBOSITY
  4002. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4003. #endif //SUPPORT_VERBOSITY
  4004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  4005. // Wait until the move is finished.
  4006. st_synchronize();
  4007. uint8_t mesh_point = 0; //index number of calibration point
  4008. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4009. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4010. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4011. #ifdef SUPPORT_VERBOSITY
  4012. if (verbosity_level >= 1) {
  4013. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4014. }
  4015. #endif // SUPPORT_VERBOSITY
  4016. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4017. const char *kill_message = NULL;
  4018. while (mesh_point != nMeasPoints * nMeasPoints) {
  4019. // Get coords of a measuring point.
  4020. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4021. uint8_t iy = mesh_point / nMeasPoints;
  4022. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4023. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4024. custom_message_state--;
  4025. mesh_point++;
  4026. continue; //skip
  4027. }*/
  4028. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4029. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4030. {
  4031. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4032. }
  4033. float z0 = 0.f;
  4034. if (has_z && (mesh_point > 0)) {
  4035. uint16_t z_offset_u = 0;
  4036. if (nMeasPoints == 7) {
  4037. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4038. }
  4039. else {
  4040. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4041. }
  4042. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4043. #ifdef SUPPORT_VERBOSITY
  4044. if (verbosity_level >= 1) {
  4045. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4046. }
  4047. #endif // SUPPORT_VERBOSITY
  4048. }
  4049. // Move Z up to MESH_HOME_Z_SEARCH.
  4050. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4051. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4052. float init_z_bckp = current_position[Z_AXIS];
  4053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4054. st_synchronize();
  4055. // Move to XY position of the sensor point.
  4056. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4057. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4058. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4059. #ifdef SUPPORT_VERBOSITY
  4060. if (verbosity_level >= 1) {
  4061. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4062. SERIAL_PROTOCOL(mesh_point);
  4063. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4064. }
  4065. #else //SUPPORT_VERBOSITY
  4066. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4067. #endif // SUPPORT_VERBOSITY
  4068. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  4070. st_synchronize();
  4071. // Go down until endstop is hit
  4072. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4073. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4074. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4075. break;
  4076. }
  4077. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4078. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4079. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4081. st_synchronize();
  4082. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4083. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4084. break;
  4085. }
  4086. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4087. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4088. break;
  4089. }
  4090. }
  4091. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4092. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4093. break;
  4094. }
  4095. #ifdef SUPPORT_VERBOSITY
  4096. if (verbosity_level >= 10) {
  4097. SERIAL_ECHOPGM("X: ");
  4098. MYSERIAL.print(current_position[X_AXIS], 5);
  4099. SERIAL_ECHOLNPGM("");
  4100. SERIAL_ECHOPGM("Y: ");
  4101. MYSERIAL.print(current_position[Y_AXIS], 5);
  4102. SERIAL_PROTOCOLPGM("\n");
  4103. }
  4104. #endif // SUPPORT_VERBOSITY
  4105. float offset_z = 0;
  4106. #ifdef PINDA_THERMISTOR
  4107. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4108. #endif //PINDA_THERMISTOR
  4109. // #ifdef SUPPORT_VERBOSITY
  4110. /* if (verbosity_level >= 1)
  4111. {
  4112. SERIAL_ECHOPGM("mesh bed leveling: ");
  4113. MYSERIAL.print(current_position[Z_AXIS], 5);
  4114. SERIAL_ECHOPGM(" offset: ");
  4115. MYSERIAL.print(offset_z, 5);
  4116. SERIAL_ECHOLNPGM("");
  4117. }*/
  4118. // #endif // SUPPORT_VERBOSITY
  4119. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4120. custom_message_state--;
  4121. mesh_point++;
  4122. lcd_update(1);
  4123. }
  4124. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4125. #ifdef SUPPORT_VERBOSITY
  4126. if (verbosity_level >= 20) {
  4127. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4128. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4129. MYSERIAL.print(current_position[Z_AXIS], 5);
  4130. }
  4131. #endif // SUPPORT_VERBOSITY
  4132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4133. st_synchronize();
  4134. if (mesh_point != nMeasPoints * nMeasPoints) {
  4135. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4136. bool bState;
  4137. do { // repeat until Z-leveling o.k.
  4138. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4139. #ifdef TMC2130
  4140. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4141. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4142. #else // TMC2130
  4143. lcd_wait_for_click_delay(0); // ~ no timeout
  4144. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4145. #endif // TMC2130
  4146. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4147. bState=enable_z_endstop(false);
  4148. current_position[Z_AXIS] -= 1;
  4149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4150. st_synchronize();
  4151. enable_z_endstop(true);
  4152. #ifdef TMC2130
  4153. tmc2130_home_enter(Z_AXIS_MASK);
  4154. #endif // TMC2130
  4155. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4157. st_synchronize();
  4158. #ifdef TMC2130
  4159. tmc2130_home_exit();
  4160. #endif // TMC2130
  4161. enable_z_endstop(bState);
  4162. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4163. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4164. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4165. lcd_update_enable(true); // display / status-line recovery
  4166. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4167. repeatcommand_front(); // re-run (i.e. of "G80")
  4168. break;
  4169. }
  4170. clean_up_after_endstop_move(l_feedmultiply);
  4171. // SERIAL_ECHOLNPGM("clean up finished ");
  4172. bool apply_temp_comp = true;
  4173. #ifdef PINDA_THERMISTOR
  4174. apply_temp_comp = false;
  4175. #endif
  4176. if (apply_temp_comp)
  4177. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4178. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4179. // SERIAL_ECHOLNPGM("babystep applied");
  4180. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4181. #ifdef SUPPORT_VERBOSITY
  4182. if (verbosity_level >= 1) {
  4183. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4184. }
  4185. #endif // SUPPORT_VERBOSITY
  4186. for (uint8_t i = 0; i < 4; ++i) {
  4187. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4188. long correction = 0;
  4189. if (code_seen(codes[i]))
  4190. correction = code_value_long();
  4191. else if (eeprom_bed_correction_valid) {
  4192. unsigned char *addr = (i < 2) ?
  4193. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4194. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4195. correction = eeprom_read_int8(addr);
  4196. }
  4197. if (correction == 0)
  4198. continue;
  4199. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4200. SERIAL_ERROR_START;
  4201. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4202. SERIAL_ECHO(correction);
  4203. SERIAL_ECHOLNPGM(" microns");
  4204. }
  4205. else {
  4206. float offset = float(correction) * 0.001f;
  4207. switch (i) {
  4208. case 0:
  4209. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4210. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4211. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4212. }
  4213. }
  4214. break;
  4215. case 1:
  4216. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4217. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4218. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4219. }
  4220. }
  4221. break;
  4222. case 2:
  4223. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4224. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4225. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4226. }
  4227. }
  4228. break;
  4229. case 3:
  4230. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4231. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4232. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4233. }
  4234. }
  4235. break;
  4236. }
  4237. }
  4238. }
  4239. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4240. if (nMeasPoints == 3) {
  4241. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4242. }
  4243. /*
  4244. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4245. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4246. SERIAL_PROTOCOLPGM(",");
  4247. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4248. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4249. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4250. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4251. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4252. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4253. SERIAL_PROTOCOLPGM(" ");
  4254. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4255. }
  4256. SERIAL_PROTOCOLPGM("\n");
  4257. }
  4258. */
  4259. if (nMeasPoints == 7 && magnet_elimination) {
  4260. mbl_interpolation(nMeasPoints);
  4261. }
  4262. /*
  4263. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4264. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4265. SERIAL_PROTOCOLPGM(",");
  4266. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4267. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4268. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4269. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4270. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4271. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4272. SERIAL_PROTOCOLPGM(" ");
  4273. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4274. }
  4275. SERIAL_PROTOCOLPGM("\n");
  4276. }
  4277. */
  4278. // SERIAL_ECHOLNPGM("Upsample finished");
  4279. mbl.active = 1; //activate mesh bed leveling
  4280. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4281. go_home_with_z_lift();
  4282. // SERIAL_ECHOLNPGM("Go home finished");
  4283. //unretract (after PINDA preheat retraction)
  4284. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4285. current_position[E_AXIS] += default_retraction;
  4286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4287. }
  4288. KEEPALIVE_STATE(NOT_BUSY);
  4289. // Restore custom message state
  4290. lcd_setstatuspgm(_T(WELCOME_MSG));
  4291. custom_message_type = custom_message_type_old;
  4292. custom_message_state = custom_message_state_old;
  4293. mesh_bed_leveling_flag = false;
  4294. mesh_bed_run_from_menu = false;
  4295. lcd_update(2);
  4296. }
  4297. break;
  4298. //! ### G81 - Mesh bed leveling status
  4299. // -----------------------------------------
  4300. /*
  4301. * Prints mesh bed leveling status and bed profile if activated
  4302. */
  4303. case 81:
  4304. if (mbl.active) {
  4305. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4306. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4307. SERIAL_PROTOCOLPGM(",");
  4308. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4309. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4310. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4311. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4312. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4313. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4314. SERIAL_PROTOCOLPGM(" ");
  4315. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4316. }
  4317. SERIAL_PROTOCOLPGM("\n");
  4318. }
  4319. }
  4320. else
  4321. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4322. break;
  4323. #if 0
  4324. /*
  4325. * G82: Single Z probe at current location
  4326. *
  4327. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4328. *
  4329. */
  4330. case 82:
  4331. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4332. int l_feedmultiply = setup_for_endstop_move();
  4333. find_bed_induction_sensor_point_z();
  4334. clean_up_after_endstop_move(l_feedmultiply);
  4335. SERIAL_PROTOCOLPGM("Bed found at: ");
  4336. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4337. SERIAL_PROTOCOLPGM("\n");
  4338. break;
  4339. /*
  4340. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4341. */
  4342. case 83:
  4343. {
  4344. int babystepz = code_seen('S') ? code_value() : 0;
  4345. int BabyPosition = code_seen('P') ? code_value() : 0;
  4346. if (babystepz != 0) {
  4347. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4348. // Is the axis indexed starting with zero or one?
  4349. if (BabyPosition > 4) {
  4350. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4351. }else{
  4352. // Save it to the eeprom
  4353. babystepLoadZ = babystepz;
  4354. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4355. // adjust the Z
  4356. babystepsTodoZadd(babystepLoadZ);
  4357. }
  4358. }
  4359. }
  4360. break;
  4361. /*
  4362. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4363. */
  4364. case 84:
  4365. babystepsTodoZsubtract(babystepLoadZ);
  4366. // babystepLoadZ = 0;
  4367. break;
  4368. /*
  4369. * G85: Prusa3D specific: Pick best babystep
  4370. */
  4371. case 85:
  4372. lcd_pick_babystep();
  4373. break;
  4374. #endif
  4375. /**
  4376. * ### G86 - Disable babystep correction after home
  4377. *
  4378. * This G-code will be performed at the start of a calibration script.
  4379. * (Prusa3D specific)
  4380. */
  4381. case 86:
  4382. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4383. break;
  4384. /**
  4385. * ### G87 - Enable babystep correction after home
  4386. *
  4387. *
  4388. * This G-code will be performed at the end of a calibration script.
  4389. * (Prusa3D specific)
  4390. */
  4391. case 87:
  4392. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4393. break;
  4394. /**
  4395. * ### G88 - Reserved
  4396. *
  4397. * Currently has no effect.
  4398. */
  4399. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4400. case 88:
  4401. break;
  4402. #endif // ENABLE_MESH_BED_LEVELING
  4403. //! ### G90 - Switch off relative mode
  4404. // -------------------------------
  4405. case 90:
  4406. relative_mode = false;
  4407. break;
  4408. //! ### G91 - Switch on relative mode
  4409. // -------------------------------
  4410. case 91:
  4411. relative_mode = true;
  4412. break;
  4413. //! ### G92 - Set position
  4414. // -----------------------------
  4415. case 92:
  4416. if(!code_seen(axis_codes[E_AXIS]))
  4417. st_synchronize();
  4418. for(int8_t i=0; i < NUM_AXIS; i++) {
  4419. if(code_seen(axis_codes[i])) {
  4420. if(i == E_AXIS) {
  4421. current_position[i] = code_value();
  4422. plan_set_e_position(current_position[E_AXIS]);
  4423. }
  4424. else {
  4425. current_position[i] = code_value()+cs.add_homing[i];
  4426. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4427. }
  4428. }
  4429. }
  4430. break;
  4431. //! ### G98 - Activate farm mode
  4432. // -----------------------------------
  4433. case 98:
  4434. farm_mode = 1;
  4435. PingTime = _millis();
  4436. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4437. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4438. SilentModeMenu = SILENT_MODE_OFF;
  4439. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4440. fCheckModeInit(); // alternatively invoke printer reset
  4441. break;
  4442. //! ### G99 - Deactivate farm mode
  4443. // -------------------------------------
  4444. case 99:
  4445. farm_mode = 0;
  4446. lcd_printer_connected();
  4447. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4448. lcd_update(2);
  4449. fCheckModeInit(); // alternatively invoke printer reset
  4450. break;
  4451. default:
  4452. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4453. }
  4454. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4455. gcode_in_progress = 0;
  4456. } // end if(code_seen('G'))
  4457. //! ---------------------------------------------------------------------------------
  4458. else if(code_seen('M'))
  4459. {
  4460. int index;
  4461. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4462. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4463. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4464. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4465. } else
  4466. {
  4467. mcode_in_progress = (int)code_value();
  4468. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4469. switch(mcode_in_progress)
  4470. {
  4471. //! ### M0, M1 - Stop the printer
  4472. // ---------------------------------------------------------------
  4473. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4474. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4475. {
  4476. char *src = strchr_pointer + 2;
  4477. codenum = 0;
  4478. bool hasP = false, hasS = false;
  4479. if (code_seen('P')) {
  4480. codenum = code_value(); // milliseconds to wait
  4481. hasP = codenum > 0;
  4482. }
  4483. if (code_seen('S')) {
  4484. codenum = code_value() * 1000; // seconds to wait
  4485. hasS = codenum > 0;
  4486. }
  4487. starpos = strchr(src, '*');
  4488. if (starpos != NULL) *(starpos) = '\0';
  4489. while (*src == ' ') ++src;
  4490. if (!hasP && !hasS && *src != '\0') {
  4491. lcd_setstatus(src);
  4492. } else {
  4493. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4494. }
  4495. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4496. st_synchronize();
  4497. previous_millis_cmd = _millis();
  4498. if (codenum > 0){
  4499. codenum += _millis(); // keep track of when we started waiting
  4500. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4501. while(_millis() < codenum && !lcd_clicked()){
  4502. manage_heater();
  4503. manage_inactivity(true);
  4504. lcd_update(0);
  4505. }
  4506. KEEPALIVE_STATE(IN_HANDLER);
  4507. lcd_ignore_click(false);
  4508. }else{
  4509. marlin_wait_for_click();
  4510. }
  4511. if (IS_SD_PRINTING)
  4512. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4513. else
  4514. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4515. }
  4516. break;
  4517. //! ### M17 - Enable axes
  4518. // ---------------------------------
  4519. case 17:
  4520. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4521. enable_x();
  4522. enable_y();
  4523. enable_z();
  4524. enable_e0();
  4525. enable_e1();
  4526. enable_e2();
  4527. break;
  4528. #ifdef SDSUPPORT
  4529. //! ### M20 - SD Card file list
  4530. // -----------------------------------
  4531. case 20:
  4532. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4533. card.ls();
  4534. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4535. break;
  4536. //! ### M21 - Init SD card
  4537. // ------------------------------------
  4538. case 21:
  4539. card.initsd();
  4540. break;
  4541. //! ### M22 - Release SD card
  4542. // -----------------------------------
  4543. case 22:
  4544. card.release();
  4545. break;
  4546. //! ### M23 - Select file
  4547. // -----------------------------------
  4548. case 23:
  4549. starpos = (strchr(strchr_pointer + 4,'*'));
  4550. if(starpos!=NULL)
  4551. *(starpos)='\0';
  4552. card.openFile(strchr_pointer + 4,true);
  4553. break;
  4554. //! ### M24 - Start SD print
  4555. // ----------------------------------
  4556. case 24:
  4557. if (!card.paused)
  4558. failstats_reset_print();
  4559. card.startFileprint();
  4560. starttime=_millis();
  4561. break;
  4562. //! ### M25 - Pause SD print
  4563. // ----------------------------------
  4564. case 25:
  4565. card.pauseSDPrint();
  4566. break;
  4567. //! ### M26 - Set SD index
  4568. // ----------------------------------
  4569. case 26:
  4570. if(card.cardOK && code_seen('S')) {
  4571. card.setIndex(code_value_long());
  4572. }
  4573. break;
  4574. //! ### M27 - Get SD status
  4575. // ----------------------------------
  4576. case 27:
  4577. card.getStatus();
  4578. break;
  4579. //! ### M28 - Start SD write
  4580. // ---------------------------------
  4581. case 28:
  4582. starpos = (strchr(strchr_pointer + 4,'*'));
  4583. if(starpos != NULL){
  4584. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4585. strchr_pointer = strchr(npos,' ') + 1;
  4586. *(starpos) = '\0';
  4587. }
  4588. card.openFile(strchr_pointer+4,false);
  4589. break;
  4590. //! ### M29 - Stop SD write
  4591. // -------------------------------------
  4592. //! Currently has no effect.
  4593. case 29:
  4594. //processed in write to file routine above
  4595. //card,saving = false;
  4596. break;
  4597. //! ### M30 - Delete file <filename>
  4598. // ----------------------------------
  4599. case 30:
  4600. if (card.cardOK){
  4601. card.closefile();
  4602. starpos = (strchr(strchr_pointer + 4,'*'));
  4603. if(starpos != NULL){
  4604. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4605. strchr_pointer = strchr(npos,' ') + 1;
  4606. *(starpos) = '\0';
  4607. }
  4608. card.removeFile(strchr_pointer + 4);
  4609. }
  4610. break;
  4611. //! ### M32 - Select file and start SD print
  4612. // ------------------------------------
  4613. case 32:
  4614. {
  4615. if(card.sdprinting) {
  4616. st_synchronize();
  4617. }
  4618. starpos = (strchr(strchr_pointer + 4,'*'));
  4619. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4620. if(namestartpos==NULL)
  4621. {
  4622. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4623. }
  4624. else
  4625. namestartpos++; //to skip the '!'
  4626. if(starpos!=NULL)
  4627. *(starpos)='\0';
  4628. bool call_procedure=(code_seen('P'));
  4629. if(strchr_pointer>namestartpos)
  4630. call_procedure=false; //false alert, 'P' found within filename
  4631. if( card.cardOK )
  4632. {
  4633. card.openFile(namestartpos,true,!call_procedure);
  4634. if(code_seen('S'))
  4635. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4636. card.setIndex(code_value_long());
  4637. card.startFileprint();
  4638. if(!call_procedure)
  4639. starttime=_millis(); //procedure calls count as normal print time.
  4640. }
  4641. } break;
  4642. //! ### M982 - Start SD write
  4643. // ---------------------------------
  4644. case 928:
  4645. starpos = (strchr(strchr_pointer + 5,'*'));
  4646. if(starpos != NULL){
  4647. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4648. strchr_pointer = strchr(npos,' ') + 1;
  4649. *(starpos) = '\0';
  4650. }
  4651. card.openLogFile(strchr_pointer+5);
  4652. break;
  4653. #endif //SDSUPPORT
  4654. //! ### M31 - Report current print time
  4655. // --------------------------------------------------
  4656. case 31: //M31 take time since the start of the SD print or an M109 command
  4657. {
  4658. stoptime=_millis();
  4659. char time[30];
  4660. unsigned long t=(stoptime-starttime)/1000;
  4661. int sec,min;
  4662. min=t/60;
  4663. sec=t%60;
  4664. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4665. SERIAL_ECHO_START;
  4666. SERIAL_ECHOLN(time);
  4667. lcd_setstatus(time);
  4668. autotempShutdown();
  4669. }
  4670. break;
  4671. //! ### M42 - Set pin state
  4672. // -----------------------------
  4673. case 42:
  4674. if (code_seen('S'))
  4675. {
  4676. int pin_status = code_value();
  4677. int pin_number = LED_PIN;
  4678. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4679. pin_number = code_value();
  4680. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4681. {
  4682. if (sensitive_pins[i] == pin_number)
  4683. {
  4684. pin_number = -1;
  4685. break;
  4686. }
  4687. }
  4688. #if defined(FAN_PIN) && FAN_PIN > -1
  4689. if (pin_number == FAN_PIN)
  4690. fanSpeed = pin_status;
  4691. #endif
  4692. if (pin_number > -1)
  4693. {
  4694. pinMode(pin_number, OUTPUT);
  4695. digitalWrite(pin_number, pin_status);
  4696. analogWrite(pin_number, pin_status);
  4697. }
  4698. }
  4699. break;
  4700. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4701. // --------------------------------------------------------------------
  4702. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4703. // Reset the baby step value and the baby step applied flag.
  4704. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4705. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4706. // Reset the skew and offset in both RAM and EEPROM.
  4707. reset_bed_offset_and_skew();
  4708. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4709. // the planner will not perform any adjustments in the XY plane.
  4710. // Wait for the motors to stop and update the current position with the absolute values.
  4711. world2machine_revert_to_uncorrected();
  4712. break;
  4713. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4714. // ------------------------------------------------------
  4715. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4716. {
  4717. int8_t verbosity_level = 0;
  4718. bool only_Z = code_seen('Z');
  4719. #ifdef SUPPORT_VERBOSITY
  4720. if (code_seen('V'))
  4721. {
  4722. // Just 'V' without a number counts as V1.
  4723. char c = strchr_pointer[1];
  4724. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4725. }
  4726. #endif //SUPPORT_VERBOSITY
  4727. gcode_M45(only_Z, verbosity_level);
  4728. }
  4729. break;
  4730. /*
  4731. case 46:
  4732. {
  4733. // M46: Prusa3D: Show the assigned IP address.
  4734. uint8_t ip[4];
  4735. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4736. if (hasIP) {
  4737. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4738. SERIAL_ECHO(int(ip[0]));
  4739. SERIAL_ECHOPGM(".");
  4740. SERIAL_ECHO(int(ip[1]));
  4741. SERIAL_ECHOPGM(".");
  4742. SERIAL_ECHO(int(ip[2]));
  4743. SERIAL_ECHOPGM(".");
  4744. SERIAL_ECHO(int(ip[3]));
  4745. SERIAL_ECHOLNPGM("");
  4746. } else {
  4747. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4748. }
  4749. break;
  4750. }
  4751. */
  4752. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4753. // ----------------------------------------------------
  4754. case 47:
  4755. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4756. lcd_diag_show_end_stops();
  4757. KEEPALIVE_STATE(IN_HANDLER);
  4758. break;
  4759. #if 0
  4760. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4761. {
  4762. // Disable the default update procedure of the display. We will do a modal dialog.
  4763. lcd_update_enable(false);
  4764. // Let the planner use the uncorrected coordinates.
  4765. mbl.reset();
  4766. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4767. // the planner will not perform any adjustments in the XY plane.
  4768. // Wait for the motors to stop and update the current position with the absolute values.
  4769. world2machine_revert_to_uncorrected();
  4770. // Move the print head close to the bed.
  4771. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4773. st_synchronize();
  4774. // Home in the XY plane.
  4775. set_destination_to_current();
  4776. int l_feedmultiply = setup_for_endstop_move();
  4777. home_xy();
  4778. int8_t verbosity_level = 0;
  4779. if (code_seen('V')) {
  4780. // Just 'V' without a number counts as V1.
  4781. char c = strchr_pointer[1];
  4782. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4783. }
  4784. bool success = scan_bed_induction_points(verbosity_level);
  4785. clean_up_after_endstop_move(l_feedmultiply);
  4786. // Print head up.
  4787. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4789. st_synchronize();
  4790. lcd_update_enable(true);
  4791. break;
  4792. }
  4793. #endif
  4794. #ifdef ENABLE_AUTO_BED_LEVELING
  4795. #ifdef Z_PROBE_REPEATABILITY_TEST
  4796. //! ### M48 - Z-Probe repeatability measurement function.
  4797. // ------------------------------------------------------
  4798. //!
  4799. //! _Usage:_
  4800. //!
  4801. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4802. //!
  4803. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4804. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4805. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4806. //! regenerated.
  4807. //!
  4808. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4809. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4810. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4811. //!
  4812. case 48: // M48 Z-Probe repeatability
  4813. {
  4814. #if Z_MIN_PIN == -1
  4815. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4816. #endif
  4817. double sum=0.0;
  4818. double mean=0.0;
  4819. double sigma=0.0;
  4820. double sample_set[50];
  4821. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4822. double X_current, Y_current, Z_current;
  4823. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4824. if (code_seen('V') || code_seen('v')) {
  4825. verbose_level = code_value();
  4826. if (verbose_level<0 || verbose_level>4 ) {
  4827. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4828. goto Sigma_Exit;
  4829. }
  4830. }
  4831. if (verbose_level > 0) {
  4832. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4833. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4834. }
  4835. if (code_seen('n')) {
  4836. n_samples = code_value();
  4837. if (n_samples<4 || n_samples>50 ) {
  4838. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4839. goto Sigma_Exit;
  4840. }
  4841. }
  4842. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4843. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4844. Z_current = st_get_position_mm(Z_AXIS);
  4845. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4846. ext_position = st_get_position_mm(E_AXIS);
  4847. if (code_seen('X') || code_seen('x') ) {
  4848. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4849. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4850. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4851. goto Sigma_Exit;
  4852. }
  4853. }
  4854. if (code_seen('Y') || code_seen('y') ) {
  4855. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4856. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4857. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4858. goto Sigma_Exit;
  4859. }
  4860. }
  4861. if (code_seen('L') || code_seen('l') ) {
  4862. n_legs = code_value();
  4863. if ( n_legs==1 )
  4864. n_legs = 2;
  4865. if ( n_legs<0 || n_legs>15 ) {
  4866. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4867. goto Sigma_Exit;
  4868. }
  4869. }
  4870. //
  4871. // Do all the preliminary setup work. First raise the probe.
  4872. //
  4873. st_synchronize();
  4874. plan_bed_level_matrix.set_to_identity();
  4875. plan_buffer_line( X_current, Y_current, Z_start_location,
  4876. ext_position,
  4877. homing_feedrate[Z_AXIS]/60,
  4878. active_extruder);
  4879. st_synchronize();
  4880. //
  4881. // Now get everything to the specified probe point So we can safely do a probe to
  4882. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4883. // use that as a starting point for each probe.
  4884. //
  4885. if (verbose_level > 2)
  4886. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4887. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4888. ext_position,
  4889. homing_feedrate[X_AXIS]/60,
  4890. active_extruder);
  4891. st_synchronize();
  4892. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4893. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4894. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4895. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4896. //
  4897. // OK, do the inital probe to get us close to the bed.
  4898. // Then retrace the right amount and use that in subsequent probes
  4899. //
  4900. int l_feedmultiply = setup_for_endstop_move();
  4901. run_z_probe();
  4902. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4903. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4904. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4905. ext_position,
  4906. homing_feedrate[X_AXIS]/60,
  4907. active_extruder);
  4908. st_synchronize();
  4909. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4910. for( n=0; n<n_samples; n++) {
  4911. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4912. if ( n_legs) {
  4913. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4914. int rotational_direction, l;
  4915. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4916. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4917. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4918. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4919. //SERIAL_ECHOPAIR(" theta: ",theta);
  4920. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4921. //SERIAL_PROTOCOLLNPGM("");
  4922. for( l=0; l<n_legs-1; l++) {
  4923. if (rotational_direction==1)
  4924. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4925. else
  4926. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4927. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4928. if ( radius<0.0 )
  4929. radius = -radius;
  4930. X_current = X_probe_location + cos(theta) * radius;
  4931. Y_current = Y_probe_location + sin(theta) * radius;
  4932. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4933. X_current = X_MIN_POS;
  4934. if ( X_current>X_MAX_POS)
  4935. X_current = X_MAX_POS;
  4936. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4937. Y_current = Y_MIN_POS;
  4938. if ( Y_current>Y_MAX_POS)
  4939. Y_current = Y_MAX_POS;
  4940. if (verbose_level>3 ) {
  4941. SERIAL_ECHOPAIR("x: ", X_current);
  4942. SERIAL_ECHOPAIR("y: ", Y_current);
  4943. SERIAL_PROTOCOLLNPGM("");
  4944. }
  4945. do_blocking_move_to( X_current, Y_current, Z_current );
  4946. }
  4947. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4948. }
  4949. int l_feedmultiply = setup_for_endstop_move();
  4950. run_z_probe();
  4951. sample_set[n] = current_position[Z_AXIS];
  4952. //
  4953. // Get the current mean for the data points we have so far
  4954. //
  4955. sum=0.0;
  4956. for( j=0; j<=n; j++) {
  4957. sum = sum + sample_set[j];
  4958. }
  4959. mean = sum / (double (n+1));
  4960. //
  4961. // Now, use that mean to calculate the standard deviation for the
  4962. // data points we have so far
  4963. //
  4964. sum=0.0;
  4965. for( j=0; j<=n; j++) {
  4966. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4967. }
  4968. sigma = sqrt( sum / (double (n+1)) );
  4969. if (verbose_level > 1) {
  4970. SERIAL_PROTOCOL(n+1);
  4971. SERIAL_PROTOCOL(" of ");
  4972. SERIAL_PROTOCOL(n_samples);
  4973. SERIAL_PROTOCOLPGM(" z: ");
  4974. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4975. }
  4976. if (verbose_level > 2) {
  4977. SERIAL_PROTOCOL(" mean: ");
  4978. SERIAL_PROTOCOL_F(mean,6);
  4979. SERIAL_PROTOCOL(" sigma: ");
  4980. SERIAL_PROTOCOL_F(sigma,6);
  4981. }
  4982. if (verbose_level > 0)
  4983. SERIAL_PROTOCOLPGM("\n");
  4984. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4985. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4986. st_synchronize();
  4987. }
  4988. _delay(1000);
  4989. clean_up_after_endstop_move(l_feedmultiply);
  4990. // enable_endstops(true);
  4991. if (verbose_level > 0) {
  4992. SERIAL_PROTOCOLPGM("Mean: ");
  4993. SERIAL_PROTOCOL_F(mean, 6);
  4994. SERIAL_PROTOCOLPGM("\n");
  4995. }
  4996. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4997. SERIAL_PROTOCOL_F(sigma, 6);
  4998. SERIAL_PROTOCOLPGM("\n\n");
  4999. Sigma_Exit:
  5000. break;
  5001. }
  5002. #endif // Z_PROBE_REPEATABILITY_TEST
  5003. #endif // ENABLE_AUTO_BED_LEVELING
  5004. //! ### M73 - Set/get print progress
  5005. // -------------------------------------
  5006. //! _Usage:_
  5007. //!
  5008. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5009. //!
  5010. case 73: //M73 show percent done and time remaining
  5011. if(code_seen('P')) print_percent_done_normal = code_value();
  5012. if(code_seen('R')) print_time_remaining_normal = code_value();
  5013. if(code_seen('Q')) print_percent_done_silent = code_value();
  5014. if(code_seen('S')) print_time_remaining_silent = code_value();
  5015. {
  5016. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5017. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5018. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5019. }
  5020. break;
  5021. //! ### M104 - Set hotend temperature
  5022. // -----------------------------------------
  5023. case 104: // M104
  5024. {
  5025. uint8_t extruder;
  5026. if(setTargetedHotend(104,extruder)){
  5027. break;
  5028. }
  5029. if (code_seen('S'))
  5030. {
  5031. setTargetHotendSafe(code_value(), extruder);
  5032. }
  5033. setWatch();
  5034. break;
  5035. }
  5036. //! ### M112 - Emergency stop
  5037. // -----------------------------------------
  5038. case 112:
  5039. kill(_n(""), 3);
  5040. break;
  5041. //! ### M140 - Set bed temperature
  5042. // -----------------------------------------
  5043. case 140:
  5044. if (code_seen('S')) setTargetBed(code_value());
  5045. break;
  5046. //! ### M105 - Report temperatures
  5047. // -----------------------------------------
  5048. case 105:
  5049. {
  5050. uint8_t extruder;
  5051. if(setTargetedHotend(105, extruder)){
  5052. break;
  5053. }
  5054. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5055. SERIAL_PROTOCOLPGM("ok T:");
  5056. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5057. SERIAL_PROTOCOLPGM(" /");
  5058. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5059. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5060. SERIAL_PROTOCOLPGM(" B:");
  5061. SERIAL_PROTOCOL_F(degBed(),1);
  5062. SERIAL_PROTOCOLPGM(" /");
  5063. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5064. #endif //TEMP_BED_PIN
  5065. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5066. SERIAL_PROTOCOLPGM(" T");
  5067. SERIAL_PROTOCOL(cur_extruder);
  5068. SERIAL_PROTOCOLPGM(":");
  5069. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5070. SERIAL_PROTOCOLPGM(" /");
  5071. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5072. }
  5073. #else
  5074. SERIAL_ERROR_START;
  5075. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5076. #endif
  5077. SERIAL_PROTOCOLPGM(" @:");
  5078. #ifdef EXTRUDER_WATTS
  5079. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5080. SERIAL_PROTOCOLPGM("W");
  5081. #else
  5082. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5083. #endif
  5084. SERIAL_PROTOCOLPGM(" B@:");
  5085. #ifdef BED_WATTS
  5086. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5087. SERIAL_PROTOCOLPGM("W");
  5088. #else
  5089. SERIAL_PROTOCOL(getHeaterPower(-1));
  5090. #endif
  5091. #ifdef PINDA_THERMISTOR
  5092. SERIAL_PROTOCOLPGM(" P:");
  5093. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5094. #endif //PINDA_THERMISTOR
  5095. #ifdef AMBIENT_THERMISTOR
  5096. SERIAL_PROTOCOLPGM(" A:");
  5097. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5098. #endif //AMBIENT_THERMISTOR
  5099. #ifdef SHOW_TEMP_ADC_VALUES
  5100. {float raw = 0.0;
  5101. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5102. SERIAL_PROTOCOLPGM(" ADC B:");
  5103. SERIAL_PROTOCOL_F(degBed(),1);
  5104. SERIAL_PROTOCOLPGM("C->");
  5105. raw = rawBedTemp();
  5106. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5107. SERIAL_PROTOCOLPGM(" Rb->");
  5108. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5109. SERIAL_PROTOCOLPGM(" Rxb->");
  5110. SERIAL_PROTOCOL_F(raw, 5);
  5111. #endif
  5112. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5113. SERIAL_PROTOCOLPGM(" T");
  5114. SERIAL_PROTOCOL(cur_extruder);
  5115. SERIAL_PROTOCOLPGM(":");
  5116. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5117. SERIAL_PROTOCOLPGM("C->");
  5118. raw = rawHotendTemp(cur_extruder);
  5119. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5120. SERIAL_PROTOCOLPGM(" Rt");
  5121. SERIAL_PROTOCOL(cur_extruder);
  5122. SERIAL_PROTOCOLPGM("->");
  5123. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5124. SERIAL_PROTOCOLPGM(" Rx");
  5125. SERIAL_PROTOCOL(cur_extruder);
  5126. SERIAL_PROTOCOLPGM("->");
  5127. SERIAL_PROTOCOL_F(raw, 5);
  5128. }}
  5129. #endif
  5130. SERIAL_PROTOCOLLN("");
  5131. KEEPALIVE_STATE(NOT_BUSY);
  5132. return;
  5133. break;
  5134. }
  5135. //! ### M109 - Wait for extruder temperature
  5136. // -------------------------------------------------
  5137. case 109:
  5138. {
  5139. uint8_t extruder;
  5140. if(setTargetedHotend(109, extruder)){
  5141. break;
  5142. }
  5143. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5144. heating_status = 1;
  5145. if (farm_mode) { prusa_statistics(1); };
  5146. #ifdef AUTOTEMP
  5147. autotemp_enabled=false;
  5148. #endif
  5149. if (code_seen('S')) {
  5150. setTargetHotendSafe(code_value(), extruder);
  5151. CooldownNoWait = true;
  5152. } else if (code_seen('R')) {
  5153. setTargetHotendSafe(code_value(), extruder);
  5154. CooldownNoWait = false;
  5155. }
  5156. #ifdef AUTOTEMP
  5157. if (code_seen('S')) autotemp_min=code_value();
  5158. if (code_seen('B')) autotemp_max=code_value();
  5159. if (code_seen('F'))
  5160. {
  5161. autotemp_factor=code_value();
  5162. autotemp_enabled=true;
  5163. }
  5164. #endif
  5165. setWatch();
  5166. codenum = _millis();
  5167. /* See if we are heating up or cooling down */
  5168. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5169. KEEPALIVE_STATE(NOT_BUSY);
  5170. cancel_heatup = false;
  5171. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5172. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5173. KEEPALIVE_STATE(IN_HANDLER);
  5174. heating_status = 2;
  5175. if (farm_mode) { prusa_statistics(2); };
  5176. //starttime=_millis();
  5177. previous_millis_cmd = _millis();
  5178. }
  5179. break;
  5180. //! ### M190 - Wait for bed temperature
  5181. // ---------------------------------------
  5182. case 190:
  5183. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5184. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5185. heating_status = 3;
  5186. if (farm_mode) { prusa_statistics(1); };
  5187. if (code_seen('S'))
  5188. {
  5189. setTargetBed(code_value());
  5190. CooldownNoWait = true;
  5191. }
  5192. else if (code_seen('R'))
  5193. {
  5194. setTargetBed(code_value());
  5195. CooldownNoWait = false;
  5196. }
  5197. codenum = _millis();
  5198. cancel_heatup = false;
  5199. target_direction = isHeatingBed(); // true if heating, false if cooling
  5200. KEEPALIVE_STATE(NOT_BUSY);
  5201. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5202. {
  5203. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5204. {
  5205. if (!farm_mode) {
  5206. float tt = degHotend(active_extruder);
  5207. SERIAL_PROTOCOLPGM("T:");
  5208. SERIAL_PROTOCOL(tt);
  5209. SERIAL_PROTOCOLPGM(" E:");
  5210. SERIAL_PROTOCOL((int)active_extruder);
  5211. SERIAL_PROTOCOLPGM(" B:");
  5212. SERIAL_PROTOCOL_F(degBed(), 1);
  5213. SERIAL_PROTOCOLLN("");
  5214. }
  5215. codenum = _millis();
  5216. }
  5217. manage_heater();
  5218. manage_inactivity();
  5219. lcd_update(0);
  5220. }
  5221. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5222. KEEPALIVE_STATE(IN_HANDLER);
  5223. heating_status = 4;
  5224. previous_millis_cmd = _millis();
  5225. #endif
  5226. break;
  5227. #if defined(FAN_PIN) && FAN_PIN > -1
  5228. //! ### M106 - Set fan speed
  5229. // -------------------------------------------
  5230. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5231. if (code_seen('S')){
  5232. fanSpeed=constrain(code_value(),0,255);
  5233. }
  5234. else {
  5235. fanSpeed=255;
  5236. }
  5237. break;
  5238. //! ### M107 - Fan off
  5239. // -------------------------------
  5240. case 107:
  5241. fanSpeed = 0;
  5242. break;
  5243. #endif //FAN_PIN
  5244. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5245. //! ### M80 - Turn on the Power Supply
  5246. // -------------------------------
  5247. case 80:
  5248. SET_OUTPUT(PS_ON_PIN); //GND
  5249. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5250. // If you have a switch on suicide pin, this is useful
  5251. // if you want to start another print with suicide feature after
  5252. // a print without suicide...
  5253. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5254. SET_OUTPUT(SUICIDE_PIN);
  5255. WRITE(SUICIDE_PIN, HIGH);
  5256. #endif
  5257. powersupply = true;
  5258. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5259. lcd_update(0);
  5260. break;
  5261. #endif
  5262. //! ### M81 - Turn off Power Supply
  5263. // --------------------------------------
  5264. case 81:
  5265. disable_heater();
  5266. st_synchronize();
  5267. disable_e0();
  5268. disable_e1();
  5269. disable_e2();
  5270. finishAndDisableSteppers();
  5271. fanSpeed = 0;
  5272. _delay(1000); // Wait a little before to switch off
  5273. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5274. st_synchronize();
  5275. suicide();
  5276. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5277. SET_OUTPUT(PS_ON_PIN);
  5278. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5279. #endif
  5280. powersupply = false;
  5281. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5282. lcd_update(0);
  5283. break;
  5284. //! ### M82 - Set E axis to absolute mode
  5285. // ---------------------------------------
  5286. case 82:
  5287. axis_relative_modes[3] = false;
  5288. break;
  5289. //! ### M83 - Set E axis to relative mode
  5290. // ---------------------------------------
  5291. case 83:
  5292. axis_relative_modes[3] = true;
  5293. break;
  5294. //! ### M84, M18 - Disable steppers
  5295. //---------------------------------------
  5296. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5297. //!
  5298. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5299. //!
  5300. case 18: //compatibility
  5301. case 84: // M84
  5302. if(code_seen('S')){
  5303. stepper_inactive_time = code_value() * 1000;
  5304. }
  5305. else
  5306. {
  5307. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5308. if(all_axis)
  5309. {
  5310. st_synchronize();
  5311. disable_e0();
  5312. disable_e1();
  5313. disable_e2();
  5314. finishAndDisableSteppers();
  5315. }
  5316. else
  5317. {
  5318. st_synchronize();
  5319. if (code_seen('X')) disable_x();
  5320. if (code_seen('Y')) disable_y();
  5321. if (code_seen('Z')) disable_z();
  5322. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5323. if (code_seen('E')) {
  5324. disable_e0();
  5325. disable_e1();
  5326. disable_e2();
  5327. }
  5328. #endif
  5329. }
  5330. }
  5331. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5332. print_time_remaining_init();
  5333. snmm_filaments_used = 0;
  5334. break;
  5335. //! ### M85 - Set max inactive time
  5336. // ---------------------------------------
  5337. case 85: // M85
  5338. if(code_seen('S')) {
  5339. max_inactive_time = code_value() * 1000;
  5340. }
  5341. break;
  5342. #ifdef SAFETYTIMER
  5343. //! ### M86 - Set safety timer expiration time
  5344. //!
  5345. //! _Usage:_
  5346. //! M86 S<seconds>
  5347. //!
  5348. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5349. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5350. case 86:
  5351. if (code_seen('S')) {
  5352. safetytimer_inactive_time = code_value() * 1000;
  5353. safetyTimer.start();
  5354. }
  5355. break;
  5356. #endif
  5357. //! ### M92 Set Axis steps-per-unit
  5358. // ---------------------------------------
  5359. //! Same syntax as G92
  5360. case 92:
  5361. for(int8_t i=0; i < NUM_AXIS; i++)
  5362. {
  5363. if(code_seen(axis_codes[i]))
  5364. {
  5365. if(i == 3) { // E
  5366. float value = code_value();
  5367. if(value < 20.0) {
  5368. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5369. cs.max_jerk[E_AXIS] *= factor;
  5370. max_feedrate[i] *= factor;
  5371. axis_steps_per_sqr_second[i] *= factor;
  5372. }
  5373. cs.axis_steps_per_unit[i] = value;
  5374. }
  5375. else {
  5376. cs.axis_steps_per_unit[i] = code_value();
  5377. }
  5378. }
  5379. }
  5380. break;
  5381. //! ### M110 - Set Line number
  5382. // ---------------------------------------
  5383. case 110:
  5384. if (code_seen('N'))
  5385. gcode_LastN = code_value_long();
  5386. break;
  5387. //! ### M113 - Get or set host keep-alive interval
  5388. // ------------------------------------------
  5389. case 113:
  5390. if (code_seen('S')) {
  5391. host_keepalive_interval = (uint8_t)code_value_short();
  5392. // NOMORE(host_keepalive_interval, 60);
  5393. }
  5394. else {
  5395. SERIAL_ECHO_START;
  5396. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5397. SERIAL_PROTOCOLLN("");
  5398. }
  5399. break;
  5400. //! ### M115 - Firmware info
  5401. // --------------------------------------
  5402. //! Print the firmware info and capabilities
  5403. //!
  5404. //! M115 [V] [U<version>]
  5405. //!
  5406. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5407. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5408. //! pause the print for 30s and ask the user to upgrade the firmware.
  5409. case 115: // M115
  5410. if (code_seen('V')) {
  5411. // Report the Prusa version number.
  5412. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5413. } else if (code_seen('U')) {
  5414. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5415. // pause the print for 30s and ask the user to upgrade the firmware.
  5416. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5417. } else {
  5418. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5419. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5420. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5421. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5422. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5423. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5424. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5425. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5426. SERIAL_ECHOPGM(" UUID:");
  5427. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5428. }
  5429. break;
  5430. //! ### M114 - Get current position
  5431. // -------------------------------------
  5432. case 114:
  5433. gcode_M114();
  5434. break;
  5435. //! ### M117 - Set LCD Message
  5436. // --------------------------------------
  5437. /*
  5438. M117 moved up to get the high priority
  5439. case 117: // M117 display message
  5440. starpos = (strchr(strchr_pointer + 5,'*'));
  5441. if(starpos!=NULL)
  5442. *(starpos)='\0';
  5443. lcd_setstatus(strchr_pointer + 5);
  5444. break;*/
  5445. //! ### M120 - Disable endstops
  5446. // ----------------------------------------
  5447. case 120:
  5448. enable_endstops(false) ;
  5449. break;
  5450. //! ### M121 - Enable endstops
  5451. // ----------------------------------------
  5452. case 121:
  5453. enable_endstops(true) ;
  5454. break;
  5455. //! ### M119 - Get endstop states
  5456. // ----------------------------------------
  5457. case 119:
  5458. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5459. SERIAL_PROTOCOLLN("");
  5460. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5461. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5462. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5463. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5464. }else{
  5465. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5466. }
  5467. SERIAL_PROTOCOLLN("");
  5468. #endif
  5469. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5470. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5471. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5472. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5473. }else{
  5474. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5475. }
  5476. SERIAL_PROTOCOLLN("");
  5477. #endif
  5478. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5479. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5480. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5481. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5482. }else{
  5483. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5484. }
  5485. SERIAL_PROTOCOLLN("");
  5486. #endif
  5487. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5488. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5489. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5490. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5491. }else{
  5492. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5493. }
  5494. SERIAL_PROTOCOLLN("");
  5495. #endif
  5496. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5497. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5498. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5499. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5500. }else{
  5501. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5502. }
  5503. SERIAL_PROTOCOLLN("");
  5504. #endif
  5505. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5506. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5507. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5508. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5509. }else{
  5510. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5511. }
  5512. SERIAL_PROTOCOLLN("");
  5513. #endif
  5514. break;
  5515. //TODO: update for all axis, use for loop
  5516. #ifdef BLINKM
  5517. //! ### M150 - Set RGB(W) Color
  5518. // -------------------------------------------
  5519. case 150:
  5520. {
  5521. byte red;
  5522. byte grn;
  5523. byte blu;
  5524. if(code_seen('R')) red = code_value();
  5525. if(code_seen('U')) grn = code_value();
  5526. if(code_seen('B')) blu = code_value();
  5527. SendColors(red,grn,blu);
  5528. }
  5529. break;
  5530. #endif //BLINKM
  5531. //! ### M200 - Set filament diameter
  5532. // ----------------------------------------
  5533. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5534. {
  5535. uint8_t extruder = active_extruder;
  5536. if(code_seen('T')) {
  5537. extruder = code_value();
  5538. if(extruder >= EXTRUDERS) {
  5539. SERIAL_ECHO_START;
  5540. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5541. break;
  5542. }
  5543. }
  5544. if(code_seen('D')) {
  5545. float diameter = (float)code_value();
  5546. if (diameter == 0.0) {
  5547. // setting any extruder filament size disables volumetric on the assumption that
  5548. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5549. // for all extruders
  5550. cs.volumetric_enabled = false;
  5551. } else {
  5552. cs.filament_size[extruder] = (float)code_value();
  5553. // make sure all extruders have some sane value for the filament size
  5554. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5555. #if EXTRUDERS > 1
  5556. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5557. #if EXTRUDERS > 2
  5558. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5559. #endif
  5560. #endif
  5561. cs.volumetric_enabled = true;
  5562. }
  5563. } else {
  5564. //reserved for setting filament diameter via UFID or filament measuring device
  5565. break;
  5566. }
  5567. calculate_extruder_multipliers();
  5568. }
  5569. break;
  5570. //! ### M201 - Set Print Max Acceleration
  5571. // -------------------------------------------
  5572. case 201:
  5573. for (int8_t i = 0; i < NUM_AXIS; i++)
  5574. {
  5575. if (code_seen(axis_codes[i]))
  5576. {
  5577. unsigned long val = code_value();
  5578. #ifdef TMC2130
  5579. unsigned long val_silent = val;
  5580. if ((i == X_AXIS) || (i == Y_AXIS))
  5581. {
  5582. if (val > NORMAL_MAX_ACCEL_XY)
  5583. val = NORMAL_MAX_ACCEL_XY;
  5584. if (val_silent > SILENT_MAX_ACCEL_XY)
  5585. val_silent = SILENT_MAX_ACCEL_XY;
  5586. }
  5587. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5588. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5589. #else //TMC2130
  5590. max_acceleration_units_per_sq_second[i] = val;
  5591. #endif //TMC2130
  5592. }
  5593. }
  5594. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5595. reset_acceleration_rates();
  5596. break;
  5597. #if 0 // Not used for Sprinter/grbl gen6
  5598. case 202: // M202
  5599. for(int8_t i=0; i < NUM_AXIS; i++) {
  5600. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5601. }
  5602. break;
  5603. #endif
  5604. //! ### M203 - Set Max Feedrate
  5605. // ---------------------------------------
  5606. case 203: // M203 max feedrate mm/sec
  5607. for (int8_t i = 0; i < NUM_AXIS; i++)
  5608. {
  5609. if (code_seen(axis_codes[i]))
  5610. {
  5611. float val = code_value();
  5612. #ifdef TMC2130
  5613. float val_silent = val;
  5614. if ((i == X_AXIS) || (i == Y_AXIS))
  5615. {
  5616. if (val > NORMAL_MAX_FEEDRATE_XY)
  5617. val = NORMAL_MAX_FEEDRATE_XY;
  5618. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5619. val_silent = SILENT_MAX_FEEDRATE_XY;
  5620. }
  5621. cs.max_feedrate_normal[i] = val;
  5622. cs.max_feedrate_silent[i] = val_silent;
  5623. #else //TMC2130
  5624. max_feedrate[i] = val;
  5625. #endif //TMC2130
  5626. }
  5627. }
  5628. break;
  5629. //! ### M204 - Acceleration settings
  5630. // ------------------------------------------
  5631. //! Supporting old format:
  5632. //!
  5633. //! M204 S[normal moves] T[filmanent only moves]
  5634. //!
  5635. //! and new format:
  5636. //!
  5637. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5638. case 204:
  5639. {
  5640. if(code_seen('S')) {
  5641. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5642. // and it is also generated by Slic3r to control acceleration per extrusion type
  5643. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5644. cs.acceleration = code_value();
  5645. // Interpret the T value as retract acceleration in the old Marlin format.
  5646. if(code_seen('T'))
  5647. cs.retract_acceleration = code_value();
  5648. } else {
  5649. // New acceleration format, compatible with the upstream Marlin.
  5650. if(code_seen('P'))
  5651. cs.acceleration = code_value();
  5652. if(code_seen('R'))
  5653. cs.retract_acceleration = code_value();
  5654. if(code_seen('T')) {
  5655. // Interpret the T value as the travel acceleration in the new Marlin format.
  5656. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5657. // travel_acceleration = code_value();
  5658. }
  5659. }
  5660. }
  5661. break;
  5662. //! ### M205 - Set advanced settings
  5663. // ---------------------------------------------
  5664. //! Set some advanced settings related to movement.
  5665. //!
  5666. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5667. /*!
  5668. - `S` - Minimum feedrate for print moves (unit/s)
  5669. - `T` - Minimum feedrate for travel moves (units/s)
  5670. - `B` - Minimum segment time (us)
  5671. - `X` - Maximum X jerk (units/s), similarly for other axes
  5672. */
  5673. case 205:
  5674. {
  5675. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5676. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5677. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5678. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5679. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5680. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5681. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5682. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5683. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5684. }
  5685. break;
  5686. //! ### M206 - Set additional homing offsets
  5687. // ----------------------------------------------
  5688. case 206:
  5689. for(int8_t i=0; i < 3; i++)
  5690. {
  5691. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5692. }
  5693. break;
  5694. #ifdef FWRETRACT
  5695. //! ### M207 - Set firmware retraction
  5696. // --------------------------------------------------
  5697. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5698. {
  5699. if(code_seen('S'))
  5700. {
  5701. cs.retract_length = code_value() ;
  5702. }
  5703. if(code_seen('F'))
  5704. {
  5705. cs.retract_feedrate = code_value()/60 ;
  5706. }
  5707. if(code_seen('Z'))
  5708. {
  5709. cs.retract_zlift = code_value() ;
  5710. }
  5711. }break;
  5712. //! ### M208 - Set retract recover length
  5713. // --------------------------------------------
  5714. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5715. {
  5716. if(code_seen('S'))
  5717. {
  5718. cs.retract_recover_length = code_value() ;
  5719. }
  5720. if(code_seen('F'))
  5721. {
  5722. cs.retract_recover_feedrate = code_value()/60 ;
  5723. }
  5724. }break;
  5725. //! ### M209 - Enable/disable automatict retract
  5726. // ---------------------------------------------
  5727. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5728. {
  5729. if(code_seen('S'))
  5730. {
  5731. int t= code_value() ;
  5732. switch(t)
  5733. {
  5734. case 0:
  5735. {
  5736. cs.autoretract_enabled=false;
  5737. retracted[0]=false;
  5738. #if EXTRUDERS > 1
  5739. retracted[1]=false;
  5740. #endif
  5741. #if EXTRUDERS > 2
  5742. retracted[2]=false;
  5743. #endif
  5744. }break;
  5745. case 1:
  5746. {
  5747. cs.autoretract_enabled=true;
  5748. retracted[0]=false;
  5749. #if EXTRUDERS > 1
  5750. retracted[1]=false;
  5751. #endif
  5752. #if EXTRUDERS > 2
  5753. retracted[2]=false;
  5754. #endif
  5755. }break;
  5756. default:
  5757. SERIAL_ECHO_START;
  5758. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5759. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5760. SERIAL_ECHOLNPGM("\"(1)");
  5761. }
  5762. }
  5763. }break;
  5764. #endif // FWRETRACT
  5765. #if EXTRUDERS > 1
  5766. // ### M218 - Set hotend offset
  5767. // ----------------------------------------
  5768. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5769. {
  5770. uint8_t extruder;
  5771. if(setTargetedHotend(218, extruder)){
  5772. break;
  5773. }
  5774. if(code_seen('X'))
  5775. {
  5776. extruder_offset[X_AXIS][extruder] = code_value();
  5777. }
  5778. if(code_seen('Y'))
  5779. {
  5780. extruder_offset[Y_AXIS][extruder] = code_value();
  5781. }
  5782. SERIAL_ECHO_START;
  5783. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5784. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5785. {
  5786. SERIAL_ECHO(" ");
  5787. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5788. SERIAL_ECHO(",");
  5789. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5790. }
  5791. SERIAL_ECHOLN("");
  5792. }break;
  5793. #endif
  5794. //! ### M220 Set feedrate percentage
  5795. // -----------------------------------------------
  5796. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5797. {
  5798. if (code_seen('B')) //backup current speed factor
  5799. {
  5800. saved_feedmultiply_mm = feedmultiply;
  5801. }
  5802. if(code_seen('S'))
  5803. {
  5804. feedmultiply = code_value() ;
  5805. }
  5806. if (code_seen('R')) { //restore previous feedmultiply
  5807. feedmultiply = saved_feedmultiply_mm;
  5808. }
  5809. }
  5810. break;
  5811. //! ### M221 - Set extrude factor override percentage
  5812. // ----------------------------------------------------
  5813. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5814. {
  5815. if(code_seen('S'))
  5816. {
  5817. int tmp_code = code_value();
  5818. if (code_seen('T'))
  5819. {
  5820. uint8_t extruder;
  5821. if(setTargetedHotend(221, extruder)){
  5822. break;
  5823. }
  5824. extruder_multiply[extruder] = tmp_code;
  5825. }
  5826. else
  5827. {
  5828. extrudemultiply = tmp_code ;
  5829. }
  5830. }
  5831. calculate_extruder_multipliers();
  5832. }
  5833. break;
  5834. //! ### M226 - Wait for Pin state
  5835. // ------------------------------------------
  5836. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5837. {
  5838. if(code_seen('P')){
  5839. int pin_number = code_value(); // pin number
  5840. int pin_state = -1; // required pin state - default is inverted
  5841. if(code_seen('S')) pin_state = code_value(); // required pin state
  5842. if(pin_state >= -1 && pin_state <= 1){
  5843. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5844. {
  5845. if (sensitive_pins[i] == pin_number)
  5846. {
  5847. pin_number = -1;
  5848. break;
  5849. }
  5850. }
  5851. if (pin_number > -1)
  5852. {
  5853. int target = LOW;
  5854. st_synchronize();
  5855. pinMode(pin_number, INPUT);
  5856. switch(pin_state){
  5857. case 1:
  5858. target = HIGH;
  5859. break;
  5860. case 0:
  5861. target = LOW;
  5862. break;
  5863. case -1:
  5864. target = !digitalRead(pin_number);
  5865. break;
  5866. }
  5867. while(digitalRead(pin_number) != target){
  5868. manage_heater();
  5869. manage_inactivity();
  5870. lcd_update(0);
  5871. }
  5872. }
  5873. }
  5874. }
  5875. }
  5876. break;
  5877. #if NUM_SERVOS > 0
  5878. //! ### M280 - Set/Get servo position
  5879. // --------------------------------------------
  5880. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5881. {
  5882. int servo_index = -1;
  5883. int servo_position = 0;
  5884. if (code_seen('P'))
  5885. servo_index = code_value();
  5886. if (code_seen('S')) {
  5887. servo_position = code_value();
  5888. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5889. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5890. servos[servo_index].attach(0);
  5891. #endif
  5892. servos[servo_index].write(servo_position);
  5893. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5894. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5895. servos[servo_index].detach();
  5896. #endif
  5897. }
  5898. else {
  5899. SERIAL_ECHO_START;
  5900. SERIAL_ECHO("Servo ");
  5901. SERIAL_ECHO(servo_index);
  5902. SERIAL_ECHOLN(" out of range");
  5903. }
  5904. }
  5905. else if (servo_index >= 0) {
  5906. SERIAL_PROTOCOL(MSG_OK);
  5907. SERIAL_PROTOCOL(" Servo ");
  5908. SERIAL_PROTOCOL(servo_index);
  5909. SERIAL_PROTOCOL(": ");
  5910. SERIAL_PROTOCOL(servos[servo_index].read());
  5911. SERIAL_PROTOCOLLN("");
  5912. }
  5913. }
  5914. break;
  5915. #endif // NUM_SERVOS > 0
  5916. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5917. //! ### M300 - Play tone
  5918. // -----------------------
  5919. case 300: // M300
  5920. {
  5921. int beepS = code_seen('S') ? code_value() : 110;
  5922. int beepP = code_seen('P') ? code_value() : 1000;
  5923. if (beepS > 0)
  5924. {
  5925. #if BEEPER > 0
  5926. Sound_MakeCustom(beepP,beepS,false);
  5927. #endif
  5928. }
  5929. else
  5930. {
  5931. _delay(beepP);
  5932. }
  5933. }
  5934. break;
  5935. #endif // M300
  5936. #ifdef PIDTEMP
  5937. //! ### M301 - Set hotend PID
  5938. // ---------------------------------------
  5939. case 301:
  5940. {
  5941. if(code_seen('P')) cs.Kp = code_value();
  5942. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5943. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5944. #ifdef PID_ADD_EXTRUSION_RATE
  5945. if(code_seen('C')) Kc = code_value();
  5946. #endif
  5947. updatePID();
  5948. SERIAL_PROTOCOLRPGM(MSG_OK);
  5949. SERIAL_PROTOCOL(" p:");
  5950. SERIAL_PROTOCOL(cs.Kp);
  5951. SERIAL_PROTOCOL(" i:");
  5952. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5953. SERIAL_PROTOCOL(" d:");
  5954. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5955. #ifdef PID_ADD_EXTRUSION_RATE
  5956. SERIAL_PROTOCOL(" c:");
  5957. //Kc does not have scaling applied above, or in resetting defaults
  5958. SERIAL_PROTOCOL(Kc);
  5959. #endif
  5960. SERIAL_PROTOCOLLN("");
  5961. }
  5962. break;
  5963. #endif //PIDTEMP
  5964. #ifdef PIDTEMPBED
  5965. //! ### M304 - Set bed PID
  5966. // --------------------------------------
  5967. case 304:
  5968. {
  5969. if(code_seen('P')) cs.bedKp = code_value();
  5970. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5971. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5972. updatePID();
  5973. SERIAL_PROTOCOLRPGM(MSG_OK);
  5974. SERIAL_PROTOCOL(" p:");
  5975. SERIAL_PROTOCOL(cs.bedKp);
  5976. SERIAL_PROTOCOL(" i:");
  5977. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5978. SERIAL_PROTOCOL(" d:");
  5979. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5980. SERIAL_PROTOCOLLN("");
  5981. }
  5982. break;
  5983. #endif //PIDTEMP
  5984. //! ### M240 - Trigger camera
  5985. // --------------------------------------------
  5986. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5987. {
  5988. #ifdef CHDK
  5989. SET_OUTPUT(CHDK);
  5990. WRITE(CHDK, HIGH);
  5991. chdkHigh = _millis();
  5992. chdkActive = true;
  5993. #else
  5994. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5995. const uint8_t NUM_PULSES=16;
  5996. const float PULSE_LENGTH=0.01524;
  5997. for(int i=0; i < NUM_PULSES; i++) {
  5998. WRITE(PHOTOGRAPH_PIN, HIGH);
  5999. _delay_ms(PULSE_LENGTH);
  6000. WRITE(PHOTOGRAPH_PIN, LOW);
  6001. _delay_ms(PULSE_LENGTH);
  6002. }
  6003. _delay(7.33);
  6004. for(int i=0; i < NUM_PULSES; i++) {
  6005. WRITE(PHOTOGRAPH_PIN, HIGH);
  6006. _delay_ms(PULSE_LENGTH);
  6007. WRITE(PHOTOGRAPH_PIN, LOW);
  6008. _delay_ms(PULSE_LENGTH);
  6009. }
  6010. #endif
  6011. #endif //chdk end if
  6012. }
  6013. break;
  6014. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6015. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6016. // -------------------------------------------------------------------
  6017. case 302:
  6018. {
  6019. float temp = .0;
  6020. if (code_seen('S')) temp=code_value();
  6021. set_extrude_min_temp(temp);
  6022. }
  6023. break;
  6024. #endif
  6025. //! ### M303 - PID autotune
  6026. // -------------------------------------
  6027. case 303:
  6028. {
  6029. float temp = 150.0;
  6030. int e=0;
  6031. int c=5;
  6032. if (code_seen('E')) e=code_value();
  6033. if (e<0)
  6034. temp=70;
  6035. if (code_seen('S')) temp=code_value();
  6036. if (code_seen('C')) c=code_value();
  6037. PID_autotune(temp, e, c);
  6038. }
  6039. break;
  6040. //! ### M400 - Wait for all moves to finish
  6041. // -----------------------------------------
  6042. case 400:
  6043. {
  6044. st_synchronize();
  6045. }
  6046. break;
  6047. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6048. // ----------------------------------------------
  6049. case 403:
  6050. {
  6051. // currently three different materials are needed (default, flex and PVA)
  6052. // add storing this information for different load/unload profiles etc. in the future
  6053. // firmware does not wait for "ok" from mmu
  6054. if (mmu_enabled)
  6055. {
  6056. uint8_t extruder = 255;
  6057. uint8_t filament = FILAMENT_UNDEFINED;
  6058. if(code_seen('E')) extruder = code_value();
  6059. if(code_seen('F')) filament = code_value();
  6060. mmu_set_filament_type(extruder, filament);
  6061. }
  6062. }
  6063. break;
  6064. //! ### M500 - Store settings in EEPROM
  6065. // -----------------------------------------
  6066. case 500:
  6067. {
  6068. Config_StoreSettings();
  6069. }
  6070. break;
  6071. //! ### M501 - Read settings from EEPROM
  6072. // ----------------------------------------
  6073. case 501:
  6074. {
  6075. Config_RetrieveSettings();
  6076. }
  6077. break;
  6078. //! ### M502 - Revert all settings to factory default
  6079. // -------------------------------------------------
  6080. case 502:
  6081. {
  6082. Config_ResetDefault();
  6083. }
  6084. break;
  6085. //! ### M503 - Repport all settings currently in memory
  6086. // -------------------------------------------------
  6087. case 503:
  6088. {
  6089. Config_PrintSettings();
  6090. }
  6091. break;
  6092. //! ### M509 - Force language selection
  6093. // ------------------------------------------------
  6094. case 509:
  6095. {
  6096. lang_reset();
  6097. SERIAL_ECHO_START;
  6098. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6099. }
  6100. break;
  6101. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6102. //! ### M540 - Abort print on endstop hit (enable/disable)
  6103. // -----------------------------------------------------
  6104. case 540:
  6105. {
  6106. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6107. }
  6108. break;
  6109. #endif
  6110. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6111. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6112. {
  6113. float value;
  6114. if (code_seen('Z'))
  6115. {
  6116. value = code_value();
  6117. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6118. {
  6119. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6120. SERIAL_ECHO_START;
  6121. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6122. SERIAL_PROTOCOLLN("");
  6123. }
  6124. else
  6125. {
  6126. SERIAL_ECHO_START;
  6127. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6128. SERIAL_ECHORPGM(MSG_Z_MIN);
  6129. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6130. SERIAL_ECHORPGM(MSG_Z_MAX);
  6131. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6132. SERIAL_PROTOCOLLN("");
  6133. }
  6134. }
  6135. else
  6136. {
  6137. SERIAL_ECHO_START;
  6138. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6139. SERIAL_ECHO(-cs.zprobe_zoffset);
  6140. SERIAL_PROTOCOLLN("");
  6141. }
  6142. break;
  6143. }
  6144. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6145. #ifdef FILAMENTCHANGEENABLE
  6146. //! ### M600 - Initiate Filament change procedure
  6147. // --------------------------------------
  6148. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6149. {
  6150. st_synchronize();
  6151. float x_position = current_position[X_AXIS];
  6152. float y_position = current_position[Y_AXIS];
  6153. float z_shift = 0; // is it necessary to be a float?
  6154. float e_shift_init = 0;
  6155. float e_shift_late = 0;
  6156. bool automatic = false;
  6157. //Retract extruder
  6158. if(code_seen('E'))
  6159. {
  6160. e_shift_init = code_value();
  6161. }
  6162. else
  6163. {
  6164. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6165. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6166. #endif
  6167. }
  6168. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6169. if (code_seen('L'))
  6170. {
  6171. e_shift_late = code_value();
  6172. }
  6173. else
  6174. {
  6175. #ifdef FILAMENTCHANGE_FINALRETRACT
  6176. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6177. #endif
  6178. }
  6179. //Lift Z
  6180. if(code_seen('Z'))
  6181. {
  6182. z_shift = code_value();
  6183. }
  6184. else
  6185. {
  6186. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6187. }
  6188. //Move XY to side
  6189. if(code_seen('X'))
  6190. {
  6191. x_position = code_value();
  6192. }
  6193. else
  6194. {
  6195. #ifdef FILAMENTCHANGE_XPOS
  6196. x_position = FILAMENTCHANGE_XPOS;
  6197. #endif
  6198. }
  6199. if(code_seen('Y'))
  6200. {
  6201. y_position = code_value();
  6202. }
  6203. else
  6204. {
  6205. #ifdef FILAMENTCHANGE_YPOS
  6206. y_position = FILAMENTCHANGE_YPOS ;
  6207. #endif
  6208. }
  6209. if (mmu_enabled && code_seen("AUTO"))
  6210. automatic = true;
  6211. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6212. }
  6213. break;
  6214. #endif //FILAMENTCHANGEENABLE
  6215. //! ### M601 - Pause print
  6216. // -------------------------------
  6217. case 601:
  6218. {
  6219. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6220. lcd_pause_print();
  6221. }
  6222. break;
  6223. //! ### M602 - Resume print
  6224. // -------------------------------
  6225. case 602: {
  6226. lcd_resume_print();
  6227. }
  6228. break;
  6229. //! ### M603 - Stop print
  6230. // -------------------------------
  6231. case 603: {
  6232. lcd_print_stop();
  6233. }
  6234. #ifdef PINDA_THERMISTOR
  6235. //! ### M860 - Wait for extruder temperature (PINDA)
  6236. // --------------------------------------------------------------
  6237. /*!
  6238. Wait for PINDA thermistor to reach target temperature
  6239. M860 [S<target_temperature>]
  6240. */
  6241. case 860:
  6242. {
  6243. int set_target_pinda = 0;
  6244. if (code_seen('S')) {
  6245. set_target_pinda = code_value();
  6246. }
  6247. else {
  6248. break;
  6249. }
  6250. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6251. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6252. SERIAL_PROTOCOL(set_target_pinda);
  6253. SERIAL_PROTOCOLLN("");
  6254. codenum = _millis();
  6255. cancel_heatup = false;
  6256. bool is_pinda_cooling = false;
  6257. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6258. is_pinda_cooling = true;
  6259. }
  6260. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6261. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6262. {
  6263. SERIAL_PROTOCOLPGM("P:");
  6264. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6265. SERIAL_PROTOCOLPGM("/");
  6266. SERIAL_PROTOCOL(set_target_pinda);
  6267. SERIAL_PROTOCOLLN("");
  6268. codenum = _millis();
  6269. }
  6270. manage_heater();
  6271. manage_inactivity();
  6272. lcd_update(0);
  6273. }
  6274. LCD_MESSAGERPGM(MSG_OK);
  6275. break;
  6276. }
  6277. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6278. // -----------------------------------------------------------
  6279. /*!
  6280. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6281. - `?` - Print current EEPROM offset values
  6282. - `!` - Set factory default values
  6283. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6284. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6285. */
  6286. case 861:
  6287. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6288. uint8_t cal_status = calibration_status_pinda();
  6289. int16_t usteps = 0;
  6290. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6291. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6292. for (uint8_t i = 0; i < 6; i++)
  6293. {
  6294. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6295. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6296. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6297. SERIAL_PROTOCOLPGM(", ");
  6298. SERIAL_PROTOCOL(35 + (i * 5));
  6299. SERIAL_PROTOCOLPGM(", ");
  6300. SERIAL_PROTOCOL(usteps);
  6301. SERIAL_PROTOCOLPGM(", ");
  6302. SERIAL_PROTOCOL(mm * 1000);
  6303. SERIAL_PROTOCOLLN("");
  6304. }
  6305. }
  6306. else if (code_seen('!')) { // ! - Set factory default values
  6307. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6308. int16_t z_shift = 8; //40C - 20um - 8usteps
  6309. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6310. z_shift = 24; //45C - 60um - 24usteps
  6311. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6312. z_shift = 48; //50C - 120um - 48usteps
  6313. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6314. z_shift = 80; //55C - 200um - 80usteps
  6315. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6316. z_shift = 120; //60C - 300um - 120usteps
  6317. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6318. SERIAL_PROTOCOLLN("factory restored");
  6319. }
  6320. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6321. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6322. int16_t z_shift = 0;
  6323. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6324. SERIAL_PROTOCOLLN("zerorized");
  6325. }
  6326. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6327. int16_t usteps = code_value();
  6328. if (code_seen('I')) {
  6329. uint8_t index = code_value();
  6330. if (index < 5) {
  6331. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6332. SERIAL_PROTOCOLLN("OK");
  6333. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6334. for (uint8_t i = 0; i < 6; i++)
  6335. {
  6336. usteps = 0;
  6337. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6338. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6339. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6340. SERIAL_PROTOCOLPGM(", ");
  6341. SERIAL_PROTOCOL(35 + (i * 5));
  6342. SERIAL_PROTOCOLPGM(", ");
  6343. SERIAL_PROTOCOL(usteps);
  6344. SERIAL_PROTOCOLPGM(", ");
  6345. SERIAL_PROTOCOL(mm * 1000);
  6346. SERIAL_PROTOCOLLN("");
  6347. }
  6348. }
  6349. }
  6350. }
  6351. else {
  6352. SERIAL_PROTOCOLPGM("no valid command");
  6353. }
  6354. break;
  6355. #endif //PINDA_THERMISTOR
  6356. //! ### M862 - Print checking
  6357. // ----------------------------------------------
  6358. /*!
  6359. Checks the parameters of the printer and gcode and performs compatibility check
  6360. - M862.1 [ P<nozzle_diameter> | Q ]
  6361. - M862.2 [ P<model_code> | Q ]
  6362. - M862.3 [ P<model_name> | Q ]
  6363. - M862.4 [ P<fw_version> | Q]
  6364. - M862.5 [ P<gcode_level> | Q]
  6365. When run with P<> argument, the check is performed against the input value.
  6366. When run with Q argument, the current value is shown.
  6367. */
  6368. case 862: // M862: print checking
  6369. float nDummy;
  6370. uint8_t nCommand;
  6371. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6372. switch((ClPrintChecking)nCommand)
  6373. {
  6374. case ClPrintChecking::_Nozzle: // ~ .1
  6375. uint16_t nDiameter;
  6376. if(code_seen('P'))
  6377. {
  6378. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6379. nozzle_diameter_check(nDiameter);
  6380. }
  6381. /*
  6382. else if(code_seen('S')&&farm_mode)
  6383. {
  6384. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6385. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6386. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6387. }
  6388. */
  6389. else if(code_seen('Q'))
  6390. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6391. break;
  6392. case ClPrintChecking::_Model: // ~ .2
  6393. if(code_seen('P'))
  6394. {
  6395. uint16_t nPrinterModel;
  6396. nPrinterModel=(uint16_t)code_value_long();
  6397. printer_model_check(nPrinterModel);
  6398. }
  6399. else if(code_seen('Q'))
  6400. SERIAL_PROTOCOLLN(nPrinterType);
  6401. break;
  6402. case ClPrintChecking::_Smodel: // ~ .3
  6403. if(code_seen('P'))
  6404. printer_smodel_check(strchr_pointer);
  6405. else if(code_seen('Q'))
  6406. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6407. break;
  6408. case ClPrintChecking::_Version: // ~ .4
  6409. if(code_seen('P'))
  6410. fw_version_check(++strchr_pointer);
  6411. else if(code_seen('Q'))
  6412. SERIAL_PROTOCOLLN(FW_VERSION);
  6413. break;
  6414. case ClPrintChecking::_Gcode: // ~ .5
  6415. if(code_seen('P'))
  6416. {
  6417. uint16_t nGcodeLevel;
  6418. nGcodeLevel=(uint16_t)code_value_long();
  6419. gcode_level_check(nGcodeLevel);
  6420. }
  6421. else if(code_seen('Q'))
  6422. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6423. break;
  6424. }
  6425. break;
  6426. #ifdef LIN_ADVANCE
  6427. //! ### M900 - Set Linear advance options
  6428. // ----------------------------------------------
  6429. case 900:
  6430. gcode_M900();
  6431. break;
  6432. #endif
  6433. //! ### M907 - Set digital trimpot motor current using axis codes
  6434. // ---------------------------------------------------------------
  6435. case 907:
  6436. {
  6437. #ifdef TMC2130
  6438. for (int i = 0; i < NUM_AXIS; i++)
  6439. if(code_seen(axis_codes[i]))
  6440. {
  6441. long cur_mA = code_value_long();
  6442. uint8_t val = tmc2130_cur2val(cur_mA);
  6443. tmc2130_set_current_h(i, val);
  6444. tmc2130_set_current_r(i, val);
  6445. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6446. }
  6447. #else //TMC2130
  6448. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6449. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6450. if(code_seen('B')) st_current_set(4,code_value());
  6451. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6452. #endif
  6453. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6454. if(code_seen('X')) st_current_set(0, code_value());
  6455. #endif
  6456. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6457. if(code_seen('Z')) st_current_set(1, code_value());
  6458. #endif
  6459. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6460. if(code_seen('E')) st_current_set(2, code_value());
  6461. #endif
  6462. #endif //TMC2130
  6463. }
  6464. break;
  6465. //! ### M908 - Control digital trimpot directly
  6466. // ---------------------------------------------------------
  6467. case 908:
  6468. {
  6469. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6470. uint8_t channel,current;
  6471. if(code_seen('P')) channel=code_value();
  6472. if(code_seen('S')) current=code_value();
  6473. digitalPotWrite(channel, current);
  6474. #endif
  6475. }
  6476. break;
  6477. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6478. //! ### M910 - TMC2130 init
  6479. // -----------------------------------------------
  6480. case 910:
  6481. {
  6482. tmc2130_init();
  6483. }
  6484. break;
  6485. //! ### M911 - Set TMC2130 holding currents
  6486. // -------------------------------------------------
  6487. case 911:
  6488. {
  6489. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6490. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6491. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6492. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6493. }
  6494. break;
  6495. //! ### M912 - Set TMC2130 running currents
  6496. // -----------------------------------------------
  6497. case 912:
  6498. {
  6499. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6500. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6501. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6502. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6503. }
  6504. break;
  6505. //! ### M913 - Print TMC2130 currents
  6506. // -----------------------------
  6507. case 913:
  6508. {
  6509. tmc2130_print_currents();
  6510. }
  6511. break;
  6512. //! ### M914 - Set TMC2130 normal mode
  6513. // ------------------------------
  6514. case 914:
  6515. {
  6516. tmc2130_mode = TMC2130_MODE_NORMAL;
  6517. update_mode_profile();
  6518. tmc2130_init();
  6519. }
  6520. break;
  6521. //! ### M95 - Set TMC2130 silent mode
  6522. // ------------------------------
  6523. case 915:
  6524. {
  6525. tmc2130_mode = TMC2130_MODE_SILENT;
  6526. update_mode_profile();
  6527. tmc2130_init();
  6528. }
  6529. break;
  6530. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6531. // -------------------------------------------------------
  6532. case 916:
  6533. {
  6534. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6535. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6536. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6537. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6538. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6539. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6540. }
  6541. break;
  6542. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6543. // --------------------------------------------------------------
  6544. case 917:
  6545. {
  6546. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6547. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6548. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6549. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6550. }
  6551. break;
  6552. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6553. // -------------------------------------------------------------
  6554. case 918:
  6555. {
  6556. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6557. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6558. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6559. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6560. }
  6561. break;
  6562. #endif //TMC2130_SERVICE_CODES_M910_M918
  6563. //! ### M350 - Set microstepping mode
  6564. // ---------------------------------------------------
  6565. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6566. case 350:
  6567. {
  6568. #ifdef TMC2130
  6569. if(code_seen('E'))
  6570. {
  6571. uint16_t res_new = code_value();
  6572. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6573. {
  6574. st_synchronize();
  6575. uint8_t axis = E_AXIS;
  6576. uint16_t res = tmc2130_get_res(axis);
  6577. tmc2130_set_res(axis, res_new);
  6578. cs.axis_ustep_resolution[axis] = res_new;
  6579. if (res_new > res)
  6580. {
  6581. uint16_t fac = (res_new / res);
  6582. cs.axis_steps_per_unit[axis] *= fac;
  6583. position[E_AXIS] *= fac;
  6584. }
  6585. else
  6586. {
  6587. uint16_t fac = (res / res_new);
  6588. cs.axis_steps_per_unit[axis] /= fac;
  6589. position[E_AXIS] /= fac;
  6590. }
  6591. }
  6592. }
  6593. #else //TMC2130
  6594. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6595. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6596. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6597. if(code_seen('B')) microstep_mode(4,code_value());
  6598. microstep_readings();
  6599. #endif
  6600. #endif //TMC2130
  6601. }
  6602. break;
  6603. //! ### M351 - Toggle Microstep Pins
  6604. // -----------------------------------
  6605. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6606. //!
  6607. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6608. case 351:
  6609. {
  6610. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6611. if(code_seen('S')) switch((int)code_value())
  6612. {
  6613. case 1:
  6614. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6615. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6616. break;
  6617. case 2:
  6618. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6619. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6620. break;
  6621. }
  6622. microstep_readings();
  6623. #endif
  6624. }
  6625. break;
  6626. //! ### M701 - Load filament
  6627. // -------------------------
  6628. case 701:
  6629. {
  6630. if (mmu_enabled && code_seen('E'))
  6631. tmp_extruder = code_value();
  6632. gcode_M701();
  6633. }
  6634. break;
  6635. //! ### M702 - Unload filament
  6636. // ------------------------
  6637. /*!
  6638. M702 [U C]
  6639. - `U` Unload all filaments used in current print
  6640. - `C` Unload just current filament
  6641. - without any parameters unload all filaments
  6642. */
  6643. case 702:
  6644. {
  6645. #ifdef SNMM
  6646. if (code_seen('U'))
  6647. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6648. else if (code_seen('C'))
  6649. extr_unload(); //! if "C" unload just current filament
  6650. else
  6651. extr_unload_all(); //! otherwise unload all filaments
  6652. #else
  6653. if (code_seen('C')) {
  6654. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6655. }
  6656. else {
  6657. if(mmu_enabled) extr_unload(); //! unload current filament
  6658. else unload_filament();
  6659. }
  6660. #endif //SNMM
  6661. }
  6662. break;
  6663. //! ### M999 - Restart after being stopped
  6664. // ------------------------------------
  6665. case 999:
  6666. Stopped = false;
  6667. lcd_reset_alert_level();
  6668. gcode_LastN = Stopped_gcode_LastN;
  6669. FlushSerialRequestResend();
  6670. break;
  6671. default:
  6672. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6673. }
  6674. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6675. mcode_in_progress = 0;
  6676. }
  6677. }
  6678. // end if(code_seen('M')) (end of M codes)
  6679. //! -----------------------------------------------------------------------------------------
  6680. //! T Codes
  6681. //!
  6682. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6683. //! select filament in case of MMU_V2
  6684. //! if extruder is "?", open menu to let the user select extruder/filament
  6685. //!
  6686. //! For MMU_V2:
  6687. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6688. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6689. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6690. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6691. else if(code_seen('T'))
  6692. {
  6693. int index;
  6694. bool load_to_nozzle = false;
  6695. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6696. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6697. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6698. SERIAL_ECHOLNPGM("Invalid T code.");
  6699. }
  6700. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6701. if (mmu_enabled)
  6702. {
  6703. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6704. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6705. {
  6706. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6707. }
  6708. else
  6709. {
  6710. st_synchronize();
  6711. mmu_command(MmuCmd::T0 + tmp_extruder);
  6712. manage_response(true, true, MMU_TCODE_MOVE);
  6713. }
  6714. }
  6715. }
  6716. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6717. if (mmu_enabled)
  6718. {
  6719. st_synchronize();
  6720. mmu_continue_loading(is_usb_printing);
  6721. mmu_extruder = tmp_extruder; //filament change is finished
  6722. mmu_load_to_nozzle();
  6723. }
  6724. }
  6725. else {
  6726. if (*(strchr_pointer + index) == '?')
  6727. {
  6728. if(mmu_enabled)
  6729. {
  6730. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6731. load_to_nozzle = true;
  6732. } else
  6733. {
  6734. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6735. }
  6736. }
  6737. else {
  6738. tmp_extruder = code_value();
  6739. if (mmu_enabled && lcd_autoDepleteEnabled())
  6740. {
  6741. tmp_extruder = ad_getAlternative(tmp_extruder);
  6742. }
  6743. }
  6744. st_synchronize();
  6745. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6746. if (mmu_enabled)
  6747. {
  6748. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6749. {
  6750. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6751. }
  6752. else
  6753. {
  6754. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6755. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6756. {
  6757. mmu_command(MmuCmd::K0 + tmp_extruder);
  6758. manage_response(true, true, MMU_UNLOAD_MOVE);
  6759. }
  6760. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6761. mmu_command(MmuCmd::T0 + tmp_extruder);
  6762. manage_response(true, true, MMU_TCODE_MOVE);
  6763. mmu_continue_loading(is_usb_printing);
  6764. mmu_extruder = tmp_extruder; //filament change is finished
  6765. if (load_to_nozzle)// for single material usage with mmu
  6766. {
  6767. mmu_load_to_nozzle();
  6768. }
  6769. }
  6770. }
  6771. else
  6772. {
  6773. #ifdef SNMM
  6774. #ifdef LIN_ADVANCE
  6775. if (mmu_extruder != tmp_extruder)
  6776. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6777. #endif
  6778. mmu_extruder = tmp_extruder;
  6779. _delay(100);
  6780. disable_e0();
  6781. disable_e1();
  6782. disable_e2();
  6783. pinMode(E_MUX0_PIN, OUTPUT);
  6784. pinMode(E_MUX1_PIN, OUTPUT);
  6785. _delay(100);
  6786. SERIAL_ECHO_START;
  6787. SERIAL_ECHO("T:");
  6788. SERIAL_ECHOLN((int)tmp_extruder);
  6789. switch (tmp_extruder) {
  6790. case 1:
  6791. WRITE(E_MUX0_PIN, HIGH);
  6792. WRITE(E_MUX1_PIN, LOW);
  6793. break;
  6794. case 2:
  6795. WRITE(E_MUX0_PIN, LOW);
  6796. WRITE(E_MUX1_PIN, HIGH);
  6797. break;
  6798. case 3:
  6799. WRITE(E_MUX0_PIN, HIGH);
  6800. WRITE(E_MUX1_PIN, HIGH);
  6801. break;
  6802. default:
  6803. WRITE(E_MUX0_PIN, LOW);
  6804. WRITE(E_MUX1_PIN, LOW);
  6805. break;
  6806. }
  6807. _delay(100);
  6808. #else //SNMM
  6809. if (tmp_extruder >= EXTRUDERS) {
  6810. SERIAL_ECHO_START;
  6811. SERIAL_ECHOPGM("T");
  6812. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6813. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6814. }
  6815. else {
  6816. #if EXTRUDERS > 1
  6817. boolean make_move = false;
  6818. #endif
  6819. if (code_seen('F')) {
  6820. #if EXTRUDERS > 1
  6821. make_move = true;
  6822. #endif
  6823. next_feedrate = code_value();
  6824. if (next_feedrate > 0.0) {
  6825. feedrate = next_feedrate;
  6826. }
  6827. }
  6828. #if EXTRUDERS > 1
  6829. if (tmp_extruder != active_extruder) {
  6830. // Save current position to return to after applying extruder offset
  6831. memcpy(destination, current_position, sizeof(destination));
  6832. // Offset extruder (only by XY)
  6833. int i;
  6834. for (i = 0; i < 2; i++) {
  6835. current_position[i] = current_position[i] -
  6836. extruder_offset[i][active_extruder] +
  6837. extruder_offset[i][tmp_extruder];
  6838. }
  6839. // Set the new active extruder and position
  6840. active_extruder = tmp_extruder;
  6841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6842. // Move to the old position if 'F' was in the parameters
  6843. if (make_move && Stopped == false) {
  6844. prepare_move();
  6845. }
  6846. }
  6847. #endif
  6848. SERIAL_ECHO_START;
  6849. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6850. SERIAL_PROTOCOLLN((int)active_extruder);
  6851. }
  6852. #endif //SNMM
  6853. }
  6854. }
  6855. } // end if(code_seen('T')) (end of T codes)
  6856. //! ----------------------------------------------------------------------------------------------
  6857. else if (code_seen('D')) // D codes (debug)
  6858. {
  6859. switch((int)code_value())
  6860. {
  6861. //! ### D-1 - Endless loop
  6862. // -------------------
  6863. case -1:
  6864. dcode__1(); break;
  6865. #ifdef DEBUG_DCODES
  6866. //! ### D0 - Reset
  6867. // --------------
  6868. case 0:
  6869. dcode_0(); break;
  6870. //! ### D1 - Clear EEPROM
  6871. // ------------------
  6872. case 1:
  6873. dcode_1(); break;
  6874. //! ### D2 - Read/Write RAM
  6875. // --------------------
  6876. case 2:
  6877. dcode_2(); break;
  6878. #endif //DEBUG_DCODES
  6879. #ifdef DEBUG_DCODE3
  6880. //! ### D3 - Read/Write EEPROM
  6881. // -----------------------
  6882. case 3:
  6883. dcode_3(); break;
  6884. #endif //DEBUG_DCODE3
  6885. #ifdef DEBUG_DCODES
  6886. //! ### D4 - Read/Write PIN
  6887. // ---------------------
  6888. case 4:
  6889. dcode_4(); break;
  6890. #endif //DEBUG_DCODES
  6891. #ifdef DEBUG_DCODE5
  6892. //! ### D5 - Read/Write FLASH
  6893. // ------------------------
  6894. case 5:
  6895. dcode_5(); break;
  6896. break;
  6897. #endif //DEBUG_DCODE5
  6898. #ifdef DEBUG_DCODES
  6899. //! ### D6 - Read/Write external FLASH
  6900. // ---------------------------------------
  6901. case 6:
  6902. dcode_6(); break;
  6903. //! ### D7 - Read/Write Bootloader
  6904. // -------------------------------
  6905. case 7:
  6906. dcode_7(); break;
  6907. //! ### D8 - Read/Write PINDA
  6908. // ---------------------------
  6909. case 8:
  6910. dcode_8(); break;
  6911. // ### D9 - Read/Write ADC
  6912. // ------------------------
  6913. case 9:
  6914. dcode_9(); break;
  6915. //! ### D10 - XYZ calibration = OK
  6916. // ------------------------------
  6917. case 10:
  6918. dcode_10(); break;
  6919. #endif //DEBUG_DCODES
  6920. #ifdef HEATBED_ANALYSIS
  6921. //! ### D80 - Bed check
  6922. // ---------------------
  6923. /*!
  6924. - `E` - dimension x
  6925. - `F` - dimention y
  6926. - `G` - points_x
  6927. - `H` - points_y
  6928. - `I` - offset_x
  6929. - `J` - offset_y
  6930. */
  6931. case 80:
  6932. {
  6933. float dimension_x = 40;
  6934. float dimension_y = 40;
  6935. int points_x = 40;
  6936. int points_y = 40;
  6937. float offset_x = 74;
  6938. float offset_y = 33;
  6939. if (code_seen('E')) dimension_x = code_value();
  6940. if (code_seen('F')) dimension_y = code_value();
  6941. if (code_seen('G')) {points_x = code_value(); }
  6942. if (code_seen('H')) {points_y = code_value(); }
  6943. if (code_seen('I')) {offset_x = code_value(); }
  6944. if (code_seen('J')) {offset_y = code_value(); }
  6945. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6946. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6947. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6948. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6949. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6950. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6951. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6952. }break;
  6953. //! ### D81 - Bed analysis
  6954. // -----------------------------
  6955. /*!
  6956. - `E` - dimension x
  6957. - `F` - dimention y
  6958. - `G` - points_x
  6959. - `H` - points_y
  6960. - `I` - offset_x
  6961. - `J` - offset_y
  6962. */
  6963. case 81:
  6964. {
  6965. float dimension_x = 40;
  6966. float dimension_y = 40;
  6967. int points_x = 40;
  6968. int points_y = 40;
  6969. float offset_x = 74;
  6970. float offset_y = 33;
  6971. if (code_seen('E')) dimension_x = code_value();
  6972. if (code_seen('F')) dimension_y = code_value();
  6973. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6974. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6975. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6976. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6977. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6978. } break;
  6979. #endif //HEATBED_ANALYSIS
  6980. #ifdef DEBUG_DCODES
  6981. //! ### D106 print measured fan speed for different pwm values
  6982. // --------------------------------------------------------------
  6983. case 106:
  6984. {
  6985. for (int i = 255; i > 0; i = i - 5) {
  6986. fanSpeed = i;
  6987. //delay_keep_alive(2000);
  6988. for (int j = 0; j < 100; j++) {
  6989. delay_keep_alive(100);
  6990. }
  6991. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6992. }
  6993. }break;
  6994. #ifdef TMC2130
  6995. //! ### D2130 - TMC2130 Trinamic stepper controller
  6996. // ---------------------------
  6997. /*!
  6998. D2130<axis><command>[subcommand][value]
  6999. - <command>:
  7000. - '0' current off
  7001. - '1' current on
  7002. - '+' single step
  7003. - * value sereval steps
  7004. - '-' dtto oposite direction
  7005. - '?' read register
  7006. - * "mres"
  7007. - * "step"
  7008. - * "mscnt"
  7009. - * "mscuract"
  7010. - * "wave"
  7011. - '!' set register
  7012. - * "mres"
  7013. - * "step"
  7014. - * "wave"
  7015. - '@' home calibrate axis
  7016. Example:
  7017. D2130E?wave ... print extruder microstep linearity compensation curve
  7018. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7019. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7020. */
  7021. case 2130:
  7022. dcode_2130(); break;
  7023. #endif //TMC2130
  7024. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7025. //! ### D9125 - FILAMENT_SENSOR
  7026. // ---------------------------------
  7027. case 9125:
  7028. dcode_9125(); break;
  7029. #endif //FILAMENT_SENSOR
  7030. #endif //DEBUG_DCODES
  7031. }
  7032. }
  7033. else
  7034. {
  7035. SERIAL_ECHO_START;
  7036. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7037. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7038. SERIAL_ECHOLNPGM("\"(2)");
  7039. }
  7040. KEEPALIVE_STATE(NOT_BUSY);
  7041. ClearToSend();
  7042. }
  7043. /** @defgroup GCodes G-Code List
  7044. */
  7045. // ---------------------------------------------------
  7046. void FlushSerialRequestResend()
  7047. {
  7048. //char cmdbuffer[bufindr][100]="Resend:";
  7049. MYSERIAL.flush();
  7050. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7051. }
  7052. // Confirm the execution of a command, if sent from a serial line.
  7053. // Execution of a command from a SD card will not be confirmed.
  7054. void ClearToSend()
  7055. {
  7056. previous_millis_cmd = _millis();
  7057. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7058. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7059. }
  7060. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7061. void update_currents() {
  7062. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7063. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7064. float tmp_motor[3];
  7065. //SERIAL_ECHOLNPGM("Currents updated: ");
  7066. if (destination[Z_AXIS] < Z_SILENT) {
  7067. //SERIAL_ECHOLNPGM("LOW");
  7068. for (uint8_t i = 0; i < 3; i++) {
  7069. st_current_set(i, current_low[i]);
  7070. /*MYSERIAL.print(int(i));
  7071. SERIAL_ECHOPGM(": ");
  7072. MYSERIAL.println(current_low[i]);*/
  7073. }
  7074. }
  7075. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7076. //SERIAL_ECHOLNPGM("HIGH");
  7077. for (uint8_t i = 0; i < 3; i++) {
  7078. st_current_set(i, current_high[i]);
  7079. /*MYSERIAL.print(int(i));
  7080. SERIAL_ECHOPGM(": ");
  7081. MYSERIAL.println(current_high[i]);*/
  7082. }
  7083. }
  7084. else {
  7085. for (uint8_t i = 0; i < 3; i++) {
  7086. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7087. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7088. st_current_set(i, tmp_motor[i]);
  7089. /*MYSERIAL.print(int(i));
  7090. SERIAL_ECHOPGM(": ");
  7091. MYSERIAL.println(tmp_motor[i]);*/
  7092. }
  7093. }
  7094. }
  7095. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7096. void get_coordinates()
  7097. {
  7098. bool seen[4]={false,false,false,false};
  7099. for(int8_t i=0; i < NUM_AXIS; i++) {
  7100. if(code_seen(axis_codes[i]))
  7101. {
  7102. bool relative = axis_relative_modes[i] || relative_mode;
  7103. destination[i] = (float)code_value();
  7104. if (i == E_AXIS) {
  7105. float emult = extruder_multiplier[active_extruder];
  7106. if (emult != 1.) {
  7107. if (! relative) {
  7108. destination[i] -= current_position[i];
  7109. relative = true;
  7110. }
  7111. destination[i] *= emult;
  7112. }
  7113. }
  7114. if (relative)
  7115. destination[i] += current_position[i];
  7116. seen[i]=true;
  7117. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7118. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7119. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7120. }
  7121. else destination[i] = current_position[i]; //Are these else lines really needed?
  7122. }
  7123. if(code_seen('F')) {
  7124. next_feedrate = code_value();
  7125. #ifdef MAX_SILENT_FEEDRATE
  7126. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7127. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7128. #endif //MAX_SILENT_FEEDRATE
  7129. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7130. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7131. {
  7132. // float e_max_speed =
  7133. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7134. }
  7135. }
  7136. }
  7137. void get_arc_coordinates()
  7138. {
  7139. #ifdef SF_ARC_FIX
  7140. bool relative_mode_backup = relative_mode;
  7141. relative_mode = true;
  7142. #endif
  7143. get_coordinates();
  7144. #ifdef SF_ARC_FIX
  7145. relative_mode=relative_mode_backup;
  7146. #endif
  7147. if(code_seen('I')) {
  7148. offset[0] = code_value();
  7149. }
  7150. else {
  7151. offset[0] = 0.0;
  7152. }
  7153. if(code_seen('J')) {
  7154. offset[1] = code_value();
  7155. }
  7156. else {
  7157. offset[1] = 0.0;
  7158. }
  7159. }
  7160. void clamp_to_software_endstops(float target[3])
  7161. {
  7162. #ifdef DEBUG_DISABLE_SWLIMITS
  7163. return;
  7164. #endif //DEBUG_DISABLE_SWLIMITS
  7165. world2machine_clamp(target[0], target[1]);
  7166. // Clamp the Z coordinate.
  7167. if (min_software_endstops) {
  7168. float negative_z_offset = 0;
  7169. #ifdef ENABLE_AUTO_BED_LEVELING
  7170. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7171. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7172. #endif
  7173. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7174. }
  7175. if (max_software_endstops) {
  7176. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7177. }
  7178. }
  7179. #ifdef MESH_BED_LEVELING
  7180. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7181. float dx = x - current_position[X_AXIS];
  7182. float dy = y - current_position[Y_AXIS];
  7183. float dz = z - current_position[Z_AXIS];
  7184. int n_segments = 0;
  7185. if (mbl.active) {
  7186. float len = abs(dx) + abs(dy);
  7187. if (len > 0)
  7188. // Split to 3cm segments or shorter.
  7189. n_segments = int(ceil(len / 30.f));
  7190. }
  7191. if (n_segments > 1) {
  7192. float de = e - current_position[E_AXIS];
  7193. for (int i = 1; i < n_segments; ++ i) {
  7194. float t = float(i) / float(n_segments);
  7195. if (saved_printing || (mbl.active == false)) return;
  7196. plan_buffer_line(
  7197. current_position[X_AXIS] + t * dx,
  7198. current_position[Y_AXIS] + t * dy,
  7199. current_position[Z_AXIS] + t * dz,
  7200. current_position[E_AXIS] + t * de,
  7201. feed_rate, extruder);
  7202. }
  7203. }
  7204. // The rest of the path.
  7205. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7206. current_position[X_AXIS] = x;
  7207. current_position[Y_AXIS] = y;
  7208. current_position[Z_AXIS] = z;
  7209. current_position[E_AXIS] = e;
  7210. }
  7211. #endif // MESH_BED_LEVELING
  7212. void prepare_move()
  7213. {
  7214. clamp_to_software_endstops(destination);
  7215. previous_millis_cmd = _millis();
  7216. // Do not use feedmultiply for E or Z only moves
  7217. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7218. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7219. }
  7220. else {
  7221. #ifdef MESH_BED_LEVELING
  7222. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7223. #else
  7224. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7225. #endif
  7226. }
  7227. for(int8_t i=0; i < NUM_AXIS; i++) {
  7228. current_position[i] = destination[i];
  7229. }
  7230. }
  7231. void prepare_arc_move(char isclockwise) {
  7232. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7233. // Trace the arc
  7234. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7235. // As far as the parser is concerned, the position is now == target. In reality the
  7236. // motion control system might still be processing the action and the real tool position
  7237. // in any intermediate location.
  7238. for(int8_t i=0; i < NUM_AXIS; i++) {
  7239. current_position[i] = destination[i];
  7240. }
  7241. previous_millis_cmd = _millis();
  7242. }
  7243. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7244. #if defined(FAN_PIN)
  7245. #if CONTROLLERFAN_PIN == FAN_PIN
  7246. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7247. #endif
  7248. #endif
  7249. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7250. unsigned long lastMotorCheck = 0;
  7251. void controllerFan()
  7252. {
  7253. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7254. {
  7255. lastMotorCheck = _millis();
  7256. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7257. #if EXTRUDERS > 2
  7258. || !READ(E2_ENABLE_PIN)
  7259. #endif
  7260. #if EXTRUDER > 1
  7261. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7262. || !READ(X2_ENABLE_PIN)
  7263. #endif
  7264. || !READ(E1_ENABLE_PIN)
  7265. #endif
  7266. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7267. {
  7268. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7269. }
  7270. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7271. {
  7272. digitalWrite(CONTROLLERFAN_PIN, 0);
  7273. analogWrite(CONTROLLERFAN_PIN, 0);
  7274. }
  7275. else
  7276. {
  7277. // allows digital or PWM fan output to be used (see M42 handling)
  7278. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7279. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7280. }
  7281. }
  7282. }
  7283. #endif
  7284. #ifdef TEMP_STAT_LEDS
  7285. static bool blue_led = false;
  7286. static bool red_led = false;
  7287. static uint32_t stat_update = 0;
  7288. void handle_status_leds(void) {
  7289. float max_temp = 0.0;
  7290. if(_millis() > stat_update) {
  7291. stat_update += 500; // Update every 0.5s
  7292. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7293. max_temp = max(max_temp, degHotend(cur_extruder));
  7294. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7295. }
  7296. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7297. max_temp = max(max_temp, degTargetBed());
  7298. max_temp = max(max_temp, degBed());
  7299. #endif
  7300. if((max_temp > 55.0) && (red_led == false)) {
  7301. digitalWrite(STAT_LED_RED, 1);
  7302. digitalWrite(STAT_LED_BLUE, 0);
  7303. red_led = true;
  7304. blue_led = false;
  7305. }
  7306. if((max_temp < 54.0) && (blue_led == false)) {
  7307. digitalWrite(STAT_LED_RED, 0);
  7308. digitalWrite(STAT_LED_BLUE, 1);
  7309. red_led = false;
  7310. blue_led = true;
  7311. }
  7312. }
  7313. }
  7314. #endif
  7315. #ifdef SAFETYTIMER
  7316. /**
  7317. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7318. *
  7319. * Full screen blocking notification message is shown after heater turning off.
  7320. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7321. * damage print.
  7322. *
  7323. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7324. */
  7325. static void handleSafetyTimer()
  7326. {
  7327. #if (EXTRUDERS > 1)
  7328. #error Implemented only for one extruder.
  7329. #endif //(EXTRUDERS > 1)
  7330. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7331. {
  7332. safetyTimer.stop();
  7333. }
  7334. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7335. {
  7336. safetyTimer.start();
  7337. }
  7338. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7339. {
  7340. setTargetBed(0);
  7341. setAllTargetHotends(0);
  7342. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7343. }
  7344. }
  7345. #endif //SAFETYTIMER
  7346. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7347. {
  7348. bool bInhibitFlag;
  7349. #ifdef FILAMENT_SENSOR
  7350. if (mmu_enabled == false)
  7351. {
  7352. //-// if (mcode_in_progress != 600) //M600 not in progress
  7353. #ifdef PAT9125
  7354. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7355. #endif // PAT9125
  7356. #ifdef IR_SENSOR
  7357. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7358. #endif // IR_SENSOR
  7359. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7360. {
  7361. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  7362. {
  7363. if (fsensor_check_autoload())
  7364. {
  7365. #ifdef PAT9125
  7366. fsensor_autoload_check_stop();
  7367. #endif //PAT9125
  7368. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7369. if(0)
  7370. {
  7371. Sound_MakeCustom(50,1000,false);
  7372. loading_flag = true;
  7373. enquecommand_front_P((PSTR("M701")));
  7374. }
  7375. else
  7376. {
  7377. /*
  7378. lcd_update_enable(false);
  7379. show_preheat_nozzle_warning();
  7380. lcd_update_enable(true);
  7381. */
  7382. eFilamentAction=FilamentAction::AutoLoad;
  7383. bFilamentFirstRun=false;
  7384. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7385. {
  7386. bFilamentPreheatState=true;
  7387. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7388. menu_submenu(mFilamentItemForce);
  7389. }
  7390. else
  7391. {
  7392. menu_submenu(mFilamentMenu);
  7393. lcd_timeoutToStatus.start();
  7394. }
  7395. }
  7396. }
  7397. }
  7398. else
  7399. {
  7400. #ifdef PAT9125
  7401. fsensor_autoload_check_stop();
  7402. #endif //PAT9125
  7403. fsensor_update();
  7404. }
  7405. }
  7406. }
  7407. #endif //FILAMENT_SENSOR
  7408. #ifdef SAFETYTIMER
  7409. handleSafetyTimer();
  7410. #endif //SAFETYTIMER
  7411. #if defined(KILL_PIN) && KILL_PIN > -1
  7412. static int killCount = 0; // make the inactivity button a bit less responsive
  7413. const int KILL_DELAY = 10000;
  7414. #endif
  7415. if(buflen < (BUFSIZE-1)){
  7416. get_command();
  7417. }
  7418. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7419. if(max_inactive_time)
  7420. kill(_n(""), 4);
  7421. if(stepper_inactive_time) {
  7422. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7423. {
  7424. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7425. disable_x();
  7426. disable_y();
  7427. disable_z();
  7428. disable_e0();
  7429. disable_e1();
  7430. disable_e2();
  7431. }
  7432. }
  7433. }
  7434. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7435. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7436. {
  7437. chdkActive = false;
  7438. WRITE(CHDK, LOW);
  7439. }
  7440. #endif
  7441. #if defined(KILL_PIN) && KILL_PIN > -1
  7442. // Check if the kill button was pressed and wait just in case it was an accidental
  7443. // key kill key press
  7444. // -------------------------------------------------------------------------------
  7445. if( 0 == READ(KILL_PIN) )
  7446. {
  7447. killCount++;
  7448. }
  7449. else if (killCount > 0)
  7450. {
  7451. killCount--;
  7452. }
  7453. // Exceeded threshold and we can confirm that it was not accidental
  7454. // KILL the machine
  7455. // ----------------------------------------------------------------
  7456. if ( killCount >= KILL_DELAY)
  7457. {
  7458. kill("", 5);
  7459. }
  7460. #endif
  7461. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7462. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7463. #endif
  7464. #ifdef EXTRUDER_RUNOUT_PREVENT
  7465. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7466. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7467. {
  7468. bool oldstatus=READ(E0_ENABLE_PIN);
  7469. enable_e0();
  7470. float oldepos=current_position[E_AXIS];
  7471. float oldedes=destination[E_AXIS];
  7472. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7473. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7474. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7475. current_position[E_AXIS]=oldepos;
  7476. destination[E_AXIS]=oldedes;
  7477. plan_set_e_position(oldepos);
  7478. previous_millis_cmd=_millis();
  7479. st_synchronize();
  7480. WRITE(E0_ENABLE_PIN,oldstatus);
  7481. }
  7482. #endif
  7483. #ifdef TEMP_STAT_LEDS
  7484. handle_status_leds();
  7485. #endif
  7486. check_axes_activity();
  7487. mmu_loop();
  7488. }
  7489. void kill(const char *full_screen_message, unsigned char id)
  7490. {
  7491. printf_P(_N("KILL: %d\n"), id);
  7492. //return;
  7493. cli(); // Stop interrupts
  7494. disable_heater();
  7495. disable_x();
  7496. // SERIAL_ECHOLNPGM("kill - disable Y");
  7497. disable_y();
  7498. disable_z();
  7499. disable_e0();
  7500. disable_e1();
  7501. disable_e2();
  7502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7503. pinMode(PS_ON_PIN,INPUT);
  7504. #endif
  7505. SERIAL_ERROR_START;
  7506. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7507. if (full_screen_message != NULL) {
  7508. SERIAL_ERRORLNRPGM(full_screen_message);
  7509. lcd_display_message_fullscreen_P(full_screen_message);
  7510. } else {
  7511. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7512. }
  7513. // FMC small patch to update the LCD before ending
  7514. sei(); // enable interrupts
  7515. for ( int i=5; i--; lcd_update(0))
  7516. {
  7517. _delay(200);
  7518. }
  7519. cli(); // disable interrupts
  7520. suicide();
  7521. while(1)
  7522. {
  7523. #ifdef WATCHDOG
  7524. wdt_reset();
  7525. #endif //WATCHDOG
  7526. /* Intentionally left empty */
  7527. } // Wait for reset
  7528. }
  7529. void Stop()
  7530. {
  7531. disable_heater();
  7532. if(Stopped == false) {
  7533. Stopped = true;
  7534. lcd_print_stop();
  7535. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7536. SERIAL_ERROR_START;
  7537. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7538. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7539. }
  7540. }
  7541. bool IsStopped() { return Stopped; };
  7542. #ifdef FAST_PWM_FAN
  7543. void setPwmFrequency(uint8_t pin, int val)
  7544. {
  7545. val &= 0x07;
  7546. switch(digitalPinToTimer(pin))
  7547. {
  7548. #if defined(TCCR0A)
  7549. case TIMER0A:
  7550. case TIMER0B:
  7551. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7552. // TCCR0B |= val;
  7553. break;
  7554. #endif
  7555. #if defined(TCCR1A)
  7556. case TIMER1A:
  7557. case TIMER1B:
  7558. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7559. // TCCR1B |= val;
  7560. break;
  7561. #endif
  7562. #if defined(TCCR2)
  7563. case TIMER2:
  7564. case TIMER2:
  7565. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7566. TCCR2 |= val;
  7567. break;
  7568. #endif
  7569. #if defined(TCCR2A)
  7570. case TIMER2A:
  7571. case TIMER2B:
  7572. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7573. TCCR2B |= val;
  7574. break;
  7575. #endif
  7576. #if defined(TCCR3A)
  7577. case TIMER3A:
  7578. case TIMER3B:
  7579. case TIMER3C:
  7580. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7581. TCCR3B |= val;
  7582. break;
  7583. #endif
  7584. #if defined(TCCR4A)
  7585. case TIMER4A:
  7586. case TIMER4B:
  7587. case TIMER4C:
  7588. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7589. TCCR4B |= val;
  7590. break;
  7591. #endif
  7592. #if defined(TCCR5A)
  7593. case TIMER5A:
  7594. case TIMER5B:
  7595. case TIMER5C:
  7596. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7597. TCCR5B |= val;
  7598. break;
  7599. #endif
  7600. }
  7601. }
  7602. #endif //FAST_PWM_FAN
  7603. //! @brief Get and validate extruder number
  7604. //!
  7605. //! If it is not specified, active_extruder is returned in parameter extruder.
  7606. //! @param [in] code M code number
  7607. //! @param [out] extruder
  7608. //! @return error
  7609. //! @retval true Invalid extruder specified in T code
  7610. //! @retval false Valid extruder specified in T code, or not specifiead
  7611. bool setTargetedHotend(int code, uint8_t &extruder)
  7612. {
  7613. extruder = active_extruder;
  7614. if(code_seen('T')) {
  7615. extruder = code_value();
  7616. if(extruder >= EXTRUDERS) {
  7617. SERIAL_ECHO_START;
  7618. switch(code){
  7619. case 104:
  7620. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7621. break;
  7622. case 105:
  7623. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7624. break;
  7625. case 109:
  7626. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7627. break;
  7628. case 218:
  7629. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7630. break;
  7631. case 221:
  7632. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7633. break;
  7634. }
  7635. SERIAL_PROTOCOLLN((int)extruder);
  7636. return true;
  7637. }
  7638. }
  7639. return false;
  7640. }
  7641. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7642. {
  7643. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7644. {
  7645. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7646. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7647. }
  7648. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7649. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7650. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7651. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7652. total_filament_used = 0;
  7653. }
  7654. float calculate_extruder_multiplier(float diameter) {
  7655. float out = 1.f;
  7656. if (cs.volumetric_enabled && diameter > 0.f) {
  7657. float area = M_PI * diameter * diameter * 0.25;
  7658. out = 1.f / area;
  7659. }
  7660. if (extrudemultiply != 100)
  7661. out *= float(extrudemultiply) * 0.01f;
  7662. return out;
  7663. }
  7664. void calculate_extruder_multipliers() {
  7665. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7666. #if EXTRUDERS > 1
  7667. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7668. #if EXTRUDERS > 2
  7669. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7670. #endif
  7671. #endif
  7672. }
  7673. void delay_keep_alive(unsigned int ms)
  7674. {
  7675. for (;;) {
  7676. manage_heater();
  7677. // Manage inactivity, but don't disable steppers on timeout.
  7678. manage_inactivity(true);
  7679. lcd_update(0);
  7680. if (ms == 0)
  7681. break;
  7682. else if (ms >= 50) {
  7683. _delay(50);
  7684. ms -= 50;
  7685. } else {
  7686. _delay(ms);
  7687. ms = 0;
  7688. }
  7689. }
  7690. }
  7691. static void wait_for_heater(long codenum, uint8_t extruder) {
  7692. #ifdef TEMP_RESIDENCY_TIME
  7693. long residencyStart;
  7694. residencyStart = -1;
  7695. /* continue to loop until we have reached the target temp
  7696. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7697. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7698. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7699. #else
  7700. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7701. #endif //TEMP_RESIDENCY_TIME
  7702. if ((_millis() - codenum) > 1000UL)
  7703. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7704. if (!farm_mode) {
  7705. SERIAL_PROTOCOLPGM("T:");
  7706. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7707. SERIAL_PROTOCOLPGM(" E:");
  7708. SERIAL_PROTOCOL((int)extruder);
  7709. #ifdef TEMP_RESIDENCY_TIME
  7710. SERIAL_PROTOCOLPGM(" W:");
  7711. if (residencyStart > -1)
  7712. {
  7713. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7714. SERIAL_PROTOCOLLN(codenum);
  7715. }
  7716. else
  7717. {
  7718. SERIAL_PROTOCOLLN("?");
  7719. }
  7720. }
  7721. #else
  7722. SERIAL_PROTOCOLLN("");
  7723. #endif
  7724. codenum = _millis();
  7725. }
  7726. manage_heater();
  7727. manage_inactivity(true); //do not disable steppers
  7728. lcd_update(0);
  7729. #ifdef TEMP_RESIDENCY_TIME
  7730. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7731. or when current temp falls outside the hysteresis after target temp was reached */
  7732. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7733. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7734. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7735. {
  7736. residencyStart = _millis();
  7737. }
  7738. #endif //TEMP_RESIDENCY_TIME
  7739. }
  7740. }
  7741. void check_babystep()
  7742. {
  7743. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7744. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7745. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7746. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7747. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7748. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7749. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7750. babystep_z);
  7751. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7752. lcd_update_enable(true);
  7753. }
  7754. }
  7755. #ifdef HEATBED_ANALYSIS
  7756. void d_setup()
  7757. {
  7758. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7759. pinMode(D_DATA, INPUT_PULLUP);
  7760. pinMode(D_REQUIRE, OUTPUT);
  7761. digitalWrite(D_REQUIRE, HIGH);
  7762. }
  7763. float d_ReadData()
  7764. {
  7765. int digit[13];
  7766. String mergeOutput;
  7767. float output;
  7768. digitalWrite(D_REQUIRE, HIGH);
  7769. for (int i = 0; i<13; i++)
  7770. {
  7771. for (int j = 0; j < 4; j++)
  7772. {
  7773. while (digitalRead(D_DATACLOCK) == LOW) {}
  7774. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7775. bitWrite(digit[i], j, digitalRead(D_DATA));
  7776. }
  7777. }
  7778. digitalWrite(D_REQUIRE, LOW);
  7779. mergeOutput = "";
  7780. output = 0;
  7781. for (int r = 5; r <= 10; r++) //Merge digits
  7782. {
  7783. mergeOutput += digit[r];
  7784. }
  7785. output = mergeOutput.toFloat();
  7786. if (digit[4] == 8) //Handle sign
  7787. {
  7788. output *= -1;
  7789. }
  7790. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7791. {
  7792. output /= 10;
  7793. }
  7794. return output;
  7795. }
  7796. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7797. int t1 = 0;
  7798. int t_delay = 0;
  7799. int digit[13];
  7800. int m;
  7801. char str[3];
  7802. //String mergeOutput;
  7803. char mergeOutput[15];
  7804. float output;
  7805. int mesh_point = 0; //index number of calibration point
  7806. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7807. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7808. float mesh_home_z_search = 4;
  7809. float measure_z_height = 0.2f;
  7810. float row[x_points_num];
  7811. int ix = 0;
  7812. int iy = 0;
  7813. const char* filename_wldsd = "mesh.txt";
  7814. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7815. char numb_wldsd[8]; // (" -A.BCD" + null)
  7816. #ifdef MICROMETER_LOGGING
  7817. d_setup();
  7818. #endif //MICROMETER_LOGGING
  7819. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7820. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7821. unsigned int custom_message_type_old = custom_message_type;
  7822. unsigned int custom_message_state_old = custom_message_state;
  7823. <<<<<<< HEAD
  7824. custom_message_type = CustomMsg::MeshBedLeveling;
  7825. =======
  7826. custom_message_type = CustomMsgTypes::MESHBL;
  7827. >>>>>>> origin/code-size-reduction
  7828. custom_message_state = (x_points_num * y_points_num) + 10;
  7829. lcd_update(1);
  7830. //mbl.reset();
  7831. babystep_undo();
  7832. card.openFile(filename_wldsd, false);
  7833. /*destination[Z_AXIS] = mesh_home_z_search;
  7834. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7835. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7836. for(int8_t i=0; i < NUM_AXIS; i++) {
  7837. current_position[i] = destination[i];
  7838. }
  7839. st_synchronize();
  7840. */
  7841. destination[Z_AXIS] = measure_z_height;
  7842. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7843. for(int8_t i=0; i < NUM_AXIS; i++) {
  7844. current_position[i] = destination[i];
  7845. }
  7846. st_synchronize();
  7847. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7848. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7849. SERIAL_PROTOCOL(x_points_num);
  7850. SERIAL_PROTOCOLPGM(",");
  7851. SERIAL_PROTOCOL(y_points_num);
  7852. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7853. SERIAL_PROTOCOL(mesh_home_z_search);
  7854. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7855. SERIAL_PROTOCOL(x_dimension);
  7856. SERIAL_PROTOCOLPGM(",");
  7857. SERIAL_PROTOCOL(y_dimension);
  7858. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7859. while (mesh_point != x_points_num * y_points_num) {
  7860. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7861. iy = mesh_point / x_points_num;
  7862. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7863. float z0 = 0.f;
  7864. /*destination[Z_AXIS] = mesh_home_z_search;
  7865. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7866. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7867. for(int8_t i=0; i < NUM_AXIS; i++) {
  7868. current_position[i] = destination[i];
  7869. }
  7870. st_synchronize();*/
  7871. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7872. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7873. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7874. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7875. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7876. for(int8_t i=0; i < NUM_AXIS; i++) {
  7877. current_position[i] = destination[i];
  7878. }
  7879. st_synchronize();
  7880. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7881. delay_keep_alive(1000);
  7882. #ifdef MICROMETER_LOGGING
  7883. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7884. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7885. //strcat(data_wldsd, numb_wldsd);
  7886. //MYSERIAL.println(data_wldsd);
  7887. //delay(1000);
  7888. //delay(3000);
  7889. //t1 = millis();
  7890. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7891. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7892. memset(digit, 0, sizeof(digit));
  7893. //cli();
  7894. digitalWrite(D_REQUIRE, LOW);
  7895. for (int i = 0; i<13; i++)
  7896. {
  7897. //t1 = millis();
  7898. for (int j = 0; j < 4; j++)
  7899. {
  7900. while (digitalRead(D_DATACLOCK) == LOW) {}
  7901. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7902. //printf_P(PSTR("Done %d\n"), j);
  7903. bitWrite(digit[i], j, digitalRead(D_DATA));
  7904. }
  7905. //t_delay = (millis() - t1);
  7906. //SERIAL_PROTOCOLPGM(" ");
  7907. //SERIAL_PROTOCOL_F(t_delay, 5);
  7908. //SERIAL_PROTOCOLPGM(" ");
  7909. }
  7910. //sei();
  7911. digitalWrite(D_REQUIRE, HIGH);
  7912. mergeOutput[0] = '\0';
  7913. output = 0;
  7914. for (int r = 5; r <= 10; r++) //Merge digits
  7915. {
  7916. sprintf(str, "%d", digit[r]);
  7917. strcat(mergeOutput, str);
  7918. }
  7919. output = atof(mergeOutput);
  7920. if (digit[4] == 8) //Handle sign
  7921. {
  7922. output *= -1;
  7923. }
  7924. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7925. {
  7926. output *= 0.1;
  7927. }
  7928. //output = d_ReadData();
  7929. //row[ix] = current_position[Z_AXIS];
  7930. //row[ix] = d_ReadData();
  7931. row[ix] = output;
  7932. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7933. memset(data_wldsd, 0, sizeof(data_wldsd));
  7934. for (int i = 0; i < x_points_num; i++) {
  7935. SERIAL_PROTOCOLPGM(" ");
  7936. SERIAL_PROTOCOL_F(row[i], 5);
  7937. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7938. dtostrf(row[i], 7, 3, numb_wldsd);
  7939. strcat(data_wldsd, numb_wldsd);
  7940. }
  7941. card.write_command(data_wldsd);
  7942. SERIAL_PROTOCOLPGM("\n");
  7943. }
  7944. custom_message_state--;
  7945. mesh_point++;
  7946. lcd_update(1);
  7947. }
  7948. #endif //MICROMETER_LOGGING
  7949. card.closefile();
  7950. //clean_up_after_endstop_move(l_feedmultiply);
  7951. }
  7952. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7953. int t1 = 0;
  7954. int t_delay = 0;
  7955. int digit[13];
  7956. int m;
  7957. char str[3];
  7958. //String mergeOutput;
  7959. char mergeOutput[15];
  7960. float output;
  7961. int mesh_point = 0; //index number of calibration point
  7962. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7963. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7964. float mesh_home_z_search = 4;
  7965. float row[x_points_num];
  7966. int ix = 0;
  7967. int iy = 0;
  7968. const char* filename_wldsd = "wldsd.txt";
  7969. char data_wldsd[70];
  7970. char numb_wldsd[10];
  7971. d_setup();
  7972. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7973. // We don't know where we are! HOME!
  7974. // Push the commands to the front of the message queue in the reverse order!
  7975. // There shall be always enough space reserved for these commands.
  7976. repeatcommand_front(); // repeat G80 with all its parameters
  7977. enquecommand_front_P((PSTR("G28 W0")));
  7978. enquecommand_front_P((PSTR("G1 Z5")));
  7979. return;
  7980. }
  7981. unsigned int custom_message_type_old = custom_message_type;
  7982. unsigned int custom_message_state_old = custom_message_state;
  7983. <<<<<<< HEAD
  7984. custom_message_type = CustomMsg::MeshBedLeveling;
  7985. =======
  7986. custom_message_type = CustomMsgTypes::MESHBL;
  7987. >>>>>>> origin/code-size-reduction
  7988. custom_message_state = (x_points_num * y_points_num) + 10;
  7989. lcd_update(1);
  7990. mbl.reset();
  7991. babystep_undo();
  7992. card.openFile(filename_wldsd, false);
  7993. current_position[Z_AXIS] = mesh_home_z_search;
  7994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7995. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7996. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7997. int l_feedmultiply = setup_for_endstop_move(false);
  7998. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7999. SERIAL_PROTOCOL(x_points_num);
  8000. SERIAL_PROTOCOLPGM(",");
  8001. SERIAL_PROTOCOL(y_points_num);
  8002. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8003. SERIAL_PROTOCOL(mesh_home_z_search);
  8004. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8005. SERIAL_PROTOCOL(x_dimension);
  8006. SERIAL_PROTOCOLPGM(",");
  8007. SERIAL_PROTOCOL(y_dimension);
  8008. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8009. while (mesh_point != x_points_num * y_points_num) {
  8010. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8011. iy = mesh_point / x_points_num;
  8012. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8013. float z0 = 0.f;
  8014. current_position[Z_AXIS] = mesh_home_z_search;
  8015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8016. st_synchronize();
  8017. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8018. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  8020. st_synchronize();
  8021. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8022. break;
  8023. card.closefile();
  8024. }
  8025. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8026. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8027. //strcat(data_wldsd, numb_wldsd);
  8028. //MYSERIAL.println(data_wldsd);
  8029. //_delay(1000);
  8030. //_delay(3000);
  8031. //t1 = _millis();
  8032. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8033. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8034. memset(digit, 0, sizeof(digit));
  8035. //cli();
  8036. digitalWrite(D_REQUIRE, LOW);
  8037. for (int i = 0; i<13; i++)
  8038. {
  8039. //t1 = _millis();
  8040. for (int j = 0; j < 4; j++)
  8041. {
  8042. while (digitalRead(D_DATACLOCK) == LOW) {}
  8043. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8044. bitWrite(digit[i], j, digitalRead(D_DATA));
  8045. }
  8046. //t_delay = (_millis() - t1);
  8047. //SERIAL_PROTOCOLPGM(" ");
  8048. //SERIAL_PROTOCOL_F(t_delay, 5);
  8049. //SERIAL_PROTOCOLPGM(" ");
  8050. }
  8051. //sei();
  8052. digitalWrite(D_REQUIRE, HIGH);
  8053. mergeOutput[0] = '\0';
  8054. output = 0;
  8055. for (int r = 5; r <= 10; r++) //Merge digits
  8056. {
  8057. sprintf(str, "%d", digit[r]);
  8058. strcat(mergeOutput, str);
  8059. }
  8060. output = atof(mergeOutput);
  8061. if (digit[4] == 8) //Handle sign
  8062. {
  8063. output *= -1;
  8064. }
  8065. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8066. {
  8067. output *= 0.1;
  8068. }
  8069. //output = d_ReadData();
  8070. //row[ix] = current_position[Z_AXIS];
  8071. memset(data_wldsd, 0, sizeof(data_wldsd));
  8072. for (int i = 0; i <3; i++) {
  8073. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8074. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8075. strcat(data_wldsd, numb_wldsd);
  8076. strcat(data_wldsd, ";");
  8077. }
  8078. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8079. dtostrf(output, 8, 5, numb_wldsd);
  8080. strcat(data_wldsd, numb_wldsd);
  8081. //strcat(data_wldsd, ";");
  8082. card.write_command(data_wldsd);
  8083. //row[ix] = d_ReadData();
  8084. row[ix] = output; // current_position[Z_AXIS];
  8085. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8086. for (int i = 0; i < x_points_num; i++) {
  8087. SERIAL_PROTOCOLPGM(" ");
  8088. SERIAL_PROTOCOL_F(row[i], 5);
  8089. }
  8090. SERIAL_PROTOCOLPGM("\n");
  8091. }
  8092. custom_message_state--;
  8093. mesh_point++;
  8094. lcd_update(1);
  8095. }
  8096. card.closefile();
  8097. clean_up_after_endstop_move(l_feedmultiply);
  8098. }
  8099. #endif //HEATBED_ANALYSIS
  8100. void temp_compensation_start() {
  8101. custom_message_type = CustomMsg::TempCompPreheat;
  8102. custom_message_state = PINDA_HEAT_T + 1;
  8103. lcd_update(2);
  8104. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8105. current_position[E_AXIS] -= default_retraction;
  8106. }
  8107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8108. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8109. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8110. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  8112. st_synchronize();
  8113. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8114. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8115. delay_keep_alive(1000);
  8116. custom_message_state = PINDA_HEAT_T - i;
  8117. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8118. else lcd_update(1);
  8119. }
  8120. custom_message_type = CustomMsg::Status;
  8121. custom_message_state = 0;
  8122. }
  8123. void temp_compensation_apply() {
  8124. int i_add;
  8125. int z_shift = 0;
  8126. float z_shift_mm;
  8127. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8128. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8129. i_add = (target_temperature_bed - 60) / 10;
  8130. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8131. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8132. }else {
  8133. //interpolation
  8134. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8135. }
  8136. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8138. st_synchronize();
  8139. plan_set_z_position(current_position[Z_AXIS]);
  8140. }
  8141. else {
  8142. //we have no temp compensation data
  8143. }
  8144. }
  8145. float temp_comp_interpolation(float inp_temperature) {
  8146. //cubic spline interpolation
  8147. int n, i, j;
  8148. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8149. int shift[10];
  8150. int temp_C[10];
  8151. n = 6; //number of measured points
  8152. shift[0] = 0;
  8153. for (i = 0; i < n; i++) {
  8154. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8155. temp_C[i] = 50 + i * 10; //temperature in C
  8156. #ifdef PINDA_THERMISTOR
  8157. temp_C[i] = 35 + i * 5; //temperature in C
  8158. #else
  8159. temp_C[i] = 50 + i * 10; //temperature in C
  8160. #endif
  8161. x[i] = (float)temp_C[i];
  8162. f[i] = (float)shift[i];
  8163. }
  8164. if (inp_temperature < x[0]) return 0;
  8165. for (i = n - 1; i>0; i--) {
  8166. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8167. h[i - 1] = x[i] - x[i - 1];
  8168. }
  8169. //*********** formation of h, s , f matrix **************
  8170. for (i = 1; i<n - 1; i++) {
  8171. m[i][i] = 2 * (h[i - 1] + h[i]);
  8172. if (i != 1) {
  8173. m[i][i - 1] = h[i - 1];
  8174. m[i - 1][i] = h[i - 1];
  8175. }
  8176. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8177. }
  8178. //*********** forward elimination **************
  8179. for (i = 1; i<n - 2; i++) {
  8180. temp = (m[i + 1][i] / m[i][i]);
  8181. for (j = 1; j <= n - 1; j++)
  8182. m[i + 1][j] -= temp*m[i][j];
  8183. }
  8184. //*********** backward substitution *********
  8185. for (i = n - 2; i>0; i--) {
  8186. sum = 0;
  8187. for (j = i; j <= n - 2; j++)
  8188. sum += m[i][j] * s[j];
  8189. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8190. }
  8191. for (i = 0; i<n - 1; i++)
  8192. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8193. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8194. b = s[i] / 2;
  8195. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8196. d = f[i];
  8197. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8198. }
  8199. return sum;
  8200. }
  8201. #ifdef PINDA_THERMISTOR
  8202. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8203. {
  8204. if (!temp_cal_active) return 0;
  8205. if (!calibration_status_pinda()) return 0;
  8206. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8207. }
  8208. #endif //PINDA_THERMISTOR
  8209. void long_pause() //long pause print
  8210. {
  8211. st_synchronize();
  8212. start_pause_print = _millis();
  8213. //retract
  8214. current_position[E_AXIS] -= default_retraction;
  8215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8216. //lift z
  8217. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8218. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  8220. //Move XY to side
  8221. current_position[X_AXIS] = X_PAUSE_POS;
  8222. current_position[Y_AXIS] = Y_PAUSE_POS;
  8223. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8224. // Turn off the print fan
  8225. fanSpeed = 0;
  8226. st_synchronize();
  8227. }
  8228. void serialecho_temperatures() {
  8229. float tt = degHotend(active_extruder);
  8230. SERIAL_PROTOCOLPGM("T:");
  8231. SERIAL_PROTOCOL(tt);
  8232. SERIAL_PROTOCOLPGM(" E:");
  8233. SERIAL_PROTOCOL((int)active_extruder);
  8234. SERIAL_PROTOCOLPGM(" B:");
  8235. SERIAL_PROTOCOL_F(degBed(), 1);
  8236. SERIAL_PROTOCOLLN("");
  8237. }
  8238. extern uint32_t sdpos_atomic;
  8239. #ifdef UVLO_SUPPORT
  8240. void uvlo_()
  8241. {
  8242. unsigned long time_start = _millis();
  8243. bool sd_print = card.sdprinting;
  8244. // Conserve power as soon as possible.
  8245. disable_x();
  8246. disable_y();
  8247. #ifdef TMC2130
  8248. tmc2130_set_current_h(Z_AXIS, 20);
  8249. tmc2130_set_current_r(Z_AXIS, 20);
  8250. tmc2130_set_current_h(E_AXIS, 20);
  8251. tmc2130_set_current_r(E_AXIS, 20);
  8252. #endif //TMC2130
  8253. // Indicate that the interrupt has been triggered.
  8254. // SERIAL_ECHOLNPGM("UVLO");
  8255. // Read out the current Z motor microstep counter. This will be later used
  8256. // for reaching the zero full step before powering off.
  8257. uint16_t z_microsteps = 0;
  8258. #ifdef TMC2130
  8259. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8260. #endif //TMC2130
  8261. // Calculate the file position, from which to resume this print.
  8262. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8263. {
  8264. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8265. sd_position -= sdlen_planner;
  8266. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8267. sd_position -= sdlen_cmdqueue;
  8268. if (sd_position < 0) sd_position = 0;
  8269. }
  8270. // Backup the feedrate in mm/min.
  8271. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8272. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8273. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8274. // are in action.
  8275. planner_abort_hard();
  8276. // Store the current extruder position.
  8277. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8278. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8279. // Clean the input command queue.
  8280. cmdqueue_reset();
  8281. card.sdprinting = false;
  8282. // card.closefile();
  8283. // Enable stepper driver interrupt to move Z axis.
  8284. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8285. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8286. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8287. sei();
  8288. plan_buffer_line(
  8289. current_position[X_AXIS],
  8290. current_position[Y_AXIS],
  8291. current_position[Z_AXIS],
  8292. current_position[E_AXIS] - default_retraction,
  8293. 95, active_extruder);
  8294. st_synchronize();
  8295. disable_e0();
  8296. plan_buffer_line(
  8297. current_position[X_AXIS],
  8298. current_position[Y_AXIS],
  8299. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8300. current_position[E_AXIS] - default_retraction,
  8301. 40, active_extruder);
  8302. st_synchronize();
  8303. disable_e0();
  8304. plan_buffer_line(
  8305. current_position[X_AXIS],
  8306. current_position[Y_AXIS],
  8307. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8308. current_position[E_AXIS] - default_retraction,
  8309. 40, active_extruder);
  8310. st_synchronize();
  8311. disable_e0();
  8312. disable_z();
  8313. // Move Z up to the next 0th full step.
  8314. // Write the file position.
  8315. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8316. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8317. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8318. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8319. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8320. // Scale the z value to 1u resolution.
  8321. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8322. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8323. }
  8324. // Read out the current Z motor microstep counter. This will be later used
  8325. // for reaching the zero full step before powering off.
  8326. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8327. // Store the current position.
  8328. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8329. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8330. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8331. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8332. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8333. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8334. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8335. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8336. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8337. #if EXTRUDERS > 1
  8338. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8339. #if EXTRUDERS > 2
  8340. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8341. #endif
  8342. #endif
  8343. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8344. // Finaly store the "power outage" flag.
  8345. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8346. st_synchronize();
  8347. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8348. disable_z();
  8349. // Increment power failure counter
  8350. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8351. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8352. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8353. #if 0
  8354. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8355. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8357. st_synchronize();
  8358. #endif
  8359. wdt_enable(WDTO_500MS);
  8360. WRITE(BEEPER,HIGH);
  8361. while(1)
  8362. ;
  8363. }
  8364. void uvlo_tiny()
  8365. {
  8366. uint16_t z_microsteps=0;
  8367. // Conserve power as soon as possible.
  8368. disable_x();
  8369. disable_y();
  8370. disable_e0();
  8371. #ifdef TMC2130
  8372. tmc2130_set_current_h(Z_AXIS, 20);
  8373. tmc2130_set_current_r(Z_AXIS, 20);
  8374. #endif //TMC2130
  8375. // Read out the current Z motor microstep counter
  8376. #ifdef TMC2130
  8377. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8378. #endif //TMC2130
  8379. planner_abort_hard();
  8380. disable_z();
  8381. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8382. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8383. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8384. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8385. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8386. }
  8387. //after multiple power panics current Z axis is unknow
  8388. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8389. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8390. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8391. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8392. }
  8393. // Finaly store the "power outage" flag.
  8394. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8395. // Increment power failure counter
  8396. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8397. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8398. wdt_enable(WDTO_500MS);
  8399. WRITE(BEEPER,HIGH);
  8400. while(1)
  8401. ;
  8402. }
  8403. #endif //UVLO_SUPPORT
  8404. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8405. void setup_fan_interrupt() {
  8406. //INT7
  8407. DDRE &= ~(1 << 7); //input pin
  8408. PORTE &= ~(1 << 7); //no internal pull-up
  8409. //start with sensing rising edge
  8410. EICRB &= ~(1 << 6);
  8411. EICRB |= (1 << 7);
  8412. //enable INT7 interrupt
  8413. EIMSK |= (1 << 7);
  8414. }
  8415. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8416. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8417. ISR(INT7_vect) {
  8418. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8419. #ifdef FAN_SOFT_PWM
  8420. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8421. #else //FAN_SOFT_PWM
  8422. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8423. #endif //FAN_SOFT_PWM
  8424. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8425. t_fan_rising_edge = millis_nc();
  8426. }
  8427. else { //interrupt was triggered by falling edge
  8428. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8429. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8430. }
  8431. }
  8432. EICRB ^= (1 << 6); //change edge
  8433. }
  8434. #endif
  8435. #ifdef UVLO_SUPPORT
  8436. void setup_uvlo_interrupt() {
  8437. DDRE &= ~(1 << 4); //input pin
  8438. PORTE &= ~(1 << 4); //no internal pull-up
  8439. //sensing falling edge
  8440. EICRB |= (1 << 0);
  8441. EICRB &= ~(1 << 1);
  8442. //enable INT4 interrupt
  8443. EIMSK |= (1 << 4);
  8444. }
  8445. ISR(INT4_vect) {
  8446. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8447. SERIAL_ECHOLNPGM("INT4");
  8448. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8449. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8450. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8451. }
  8452. void recover_print(uint8_t automatic) {
  8453. char cmd[30];
  8454. lcd_update_enable(true);
  8455. lcd_update(2);
  8456. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8457. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8458. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8459. // Lift the print head, so one may remove the excess priming material.
  8460. if(!bTiny&&(current_position[Z_AXIS]<25))
  8461. enquecommand_P(PSTR("G1 Z25 F800"));
  8462. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8463. enquecommand_P(PSTR("G28 X Y"));
  8464. // Set the target bed and nozzle temperatures and wait.
  8465. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8466. enquecommand(cmd);
  8467. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8468. enquecommand(cmd);
  8469. enquecommand_P(PSTR("M83")); //E axis relative mode
  8470. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8471. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8472. if(automatic == 0){
  8473. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8474. }
  8475. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8476. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8477. // Restart the print.
  8478. restore_print_from_eeprom();
  8479. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8480. }
  8481. void recover_machine_state_after_power_panic(bool bTiny)
  8482. {
  8483. char cmd[30];
  8484. // 1) Recover the logical cordinates at the time of the power panic.
  8485. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8486. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8487. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8488. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8489. mbl.active = false;
  8490. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8491. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8492. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8493. // Scale the z value to 10u resolution.
  8494. int16_t v;
  8495. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8496. if (v != 0)
  8497. mbl.active = true;
  8498. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8499. }
  8500. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8501. // The current position after power panic is moved to the next closest 0th full step.
  8502. if(bTiny){
  8503. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8504. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8505. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8506. //after multiple power panics the print is slightly in the air so get it little bit down.
  8507. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8508. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8509. }
  8510. else{
  8511. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8512. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8513. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8514. }
  8515. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8516. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8517. sprintf_P(cmd, PSTR("G92 E"));
  8518. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8519. enquecommand(cmd);
  8520. }
  8521. memcpy(destination, current_position, sizeof(destination));
  8522. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8523. print_world_coordinates();
  8524. // 3) Initialize the logical to physical coordinate system transformation.
  8525. world2machine_initialize();
  8526. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8527. // print_mesh_bed_leveling_table();
  8528. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8529. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8530. babystep_load();
  8531. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8532. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8533. // 6) Power up the motors, mark their positions as known.
  8534. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8535. axis_known_position[X_AXIS] = true; enable_x();
  8536. axis_known_position[Y_AXIS] = true; enable_y();
  8537. axis_known_position[Z_AXIS] = true; enable_z();
  8538. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8539. print_physical_coordinates();
  8540. // 7) Recover the target temperatures.
  8541. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8542. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8543. // 8) Recover extruder multipilers
  8544. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8545. #if EXTRUDERS > 1
  8546. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8547. #if EXTRUDERS > 2
  8548. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8549. #endif
  8550. #endif
  8551. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8552. }
  8553. void restore_print_from_eeprom() {
  8554. int feedrate_rec;
  8555. uint8_t fan_speed_rec;
  8556. char cmd[30];
  8557. char filename[13];
  8558. uint8_t depth = 0;
  8559. char dir_name[9];
  8560. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8561. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8562. SERIAL_ECHOPGM("Feedrate:");
  8563. MYSERIAL.println(feedrate_rec);
  8564. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8565. MYSERIAL.println(int(depth));
  8566. for (int i = 0; i < depth; i++) {
  8567. for (int j = 0; j < 8; j++) {
  8568. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8569. }
  8570. dir_name[8] = '\0';
  8571. MYSERIAL.println(dir_name);
  8572. strcpy(dir_names[i], dir_name);
  8573. card.chdir(dir_name);
  8574. }
  8575. for (int i = 0; i < 8; i++) {
  8576. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8577. }
  8578. filename[8] = '\0';
  8579. MYSERIAL.print(filename);
  8580. strcat_P(filename, PSTR(".gco"));
  8581. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8582. enquecommand(cmd);
  8583. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8584. SERIAL_ECHOPGM("Position read from eeprom:");
  8585. MYSERIAL.println(position);
  8586. // E axis relative mode.
  8587. enquecommand_P(PSTR("M83"));
  8588. // Move to the XY print position in logical coordinates, where the print has been killed.
  8589. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8590. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8591. strcat_P(cmd, PSTR(" F2000"));
  8592. enquecommand(cmd);
  8593. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8594. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8595. // Move the Z axis down to the print, in logical coordinates.
  8596. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8597. enquecommand(cmd);
  8598. // Unretract.
  8599. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8600. // Set the feedrate saved at the power panic.
  8601. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8602. enquecommand(cmd);
  8603. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8604. {
  8605. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8606. }
  8607. // Set the fan speed saved at the power panic.
  8608. strcpy_P(cmd, PSTR("M106 S"));
  8609. strcat(cmd, itostr3(int(fan_speed_rec)));
  8610. enquecommand(cmd);
  8611. // Set a position in the file.
  8612. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8613. enquecommand(cmd);
  8614. enquecommand_P(PSTR("G4 S0"));
  8615. enquecommand_P(PSTR("PRUSA uvlo"));
  8616. }
  8617. #endif //UVLO_SUPPORT
  8618. //! @brief Immediately stop print moves
  8619. //!
  8620. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8621. //! If printing from sd card, position in file is saved.
  8622. //! If printing from USB, line number is saved.
  8623. //!
  8624. //! @param z_move
  8625. //! @param e_move
  8626. void stop_and_save_print_to_ram(float z_move, float e_move)
  8627. {
  8628. if (saved_printing) return;
  8629. #if 0
  8630. unsigned char nplanner_blocks;
  8631. #endif
  8632. unsigned char nlines;
  8633. uint16_t sdlen_planner;
  8634. uint16_t sdlen_cmdqueue;
  8635. cli();
  8636. if (card.sdprinting) {
  8637. #if 0
  8638. nplanner_blocks = number_of_blocks();
  8639. #endif
  8640. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8641. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8642. saved_sdpos -= sdlen_planner;
  8643. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8644. saved_sdpos -= sdlen_cmdqueue;
  8645. saved_printing_type = PRINTING_TYPE_SD;
  8646. }
  8647. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8648. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8649. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8650. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8651. saved_sdpos -= nlines;
  8652. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8653. saved_printing_type = PRINTING_TYPE_USB;
  8654. }
  8655. else {
  8656. saved_printing_type = PRINTING_TYPE_NONE;
  8657. //not sd printing nor usb printing
  8658. }
  8659. #if 0
  8660. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8661. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8662. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8663. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8664. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8665. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8666. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8667. {
  8668. card.setIndex(saved_sdpos);
  8669. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8670. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8671. MYSERIAL.print(char(card.get()));
  8672. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8673. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8674. MYSERIAL.print(char(card.get()));
  8675. SERIAL_ECHOLNPGM("End of command buffer");
  8676. }
  8677. {
  8678. // Print the content of the planner buffer, line by line:
  8679. card.setIndex(saved_sdpos);
  8680. int8_t iline = 0;
  8681. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8682. SERIAL_ECHOPGM("Planner line (from file): ");
  8683. MYSERIAL.print(int(iline), DEC);
  8684. SERIAL_ECHOPGM(", length: ");
  8685. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8686. SERIAL_ECHOPGM(", steps: (");
  8687. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8688. SERIAL_ECHOPGM(",");
  8689. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8690. SERIAL_ECHOPGM(",");
  8691. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8692. SERIAL_ECHOPGM(",");
  8693. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8694. SERIAL_ECHOPGM("), events: ");
  8695. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8696. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8697. MYSERIAL.print(char(card.get()));
  8698. }
  8699. }
  8700. {
  8701. // Print the content of the command buffer, line by line:
  8702. int8_t iline = 0;
  8703. union {
  8704. struct {
  8705. char lo;
  8706. char hi;
  8707. } lohi;
  8708. uint16_t value;
  8709. } sdlen_single;
  8710. int _bufindr = bufindr;
  8711. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8712. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8713. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8714. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8715. }
  8716. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8717. MYSERIAL.print(int(iline), DEC);
  8718. SERIAL_ECHOPGM(", type: ");
  8719. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8720. SERIAL_ECHOPGM(", len: ");
  8721. MYSERIAL.println(sdlen_single.value, DEC);
  8722. // Print the content of the buffer line.
  8723. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8724. SERIAL_ECHOPGM("Buffer line (from file): ");
  8725. MYSERIAL.println(int(iline), DEC);
  8726. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8727. MYSERIAL.print(char(card.get()));
  8728. if (-- _buflen == 0)
  8729. break;
  8730. // First skip the current command ID and iterate up to the end of the string.
  8731. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8732. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8733. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8734. // If the end of the buffer was empty,
  8735. if (_bufindr == sizeof(cmdbuffer)) {
  8736. // skip to the start and find the nonzero command.
  8737. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8738. }
  8739. }
  8740. }
  8741. #endif
  8742. #if 0
  8743. saved_feedrate2 = feedrate; //save feedrate
  8744. #else
  8745. // Try to deduce the feedrate from the first block of the planner.
  8746. // Speed is in mm/min.
  8747. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8748. #endif
  8749. planner_abort_hard(); //abort printing
  8750. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8751. saved_active_extruder = active_extruder; //save active_extruder
  8752. saved_extruder_temperature = degTargetHotend(active_extruder);
  8753. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8754. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8755. saved_fanSpeed = fanSpeed;
  8756. cmdqueue_reset(); //empty cmdqueue
  8757. card.sdprinting = false;
  8758. // card.closefile();
  8759. saved_printing = true;
  8760. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8761. st_reset_timer();
  8762. sei();
  8763. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8764. #if 1
  8765. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8766. char buf[48];
  8767. // First unretract (relative extrusion)
  8768. if(!saved_extruder_relative_mode){
  8769. enquecommand(PSTR("M83"), true);
  8770. }
  8771. //retract 45mm/s
  8772. // A single sprintf may not be faster, but is definitely 20B shorter
  8773. // than a sequence of commands building the string piece by piece
  8774. // A snprintf would have been a safer call, but since it is not used
  8775. // in the whole program, its implementation would bring more bytes to the total size
  8776. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8777. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8778. enquecommand(buf, false);
  8779. // Then lift Z axis
  8780. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8781. // At this point the command queue is empty.
  8782. enquecommand(buf, false);
  8783. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8784. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8785. repeatcommand_front();
  8786. #else
  8787. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8788. st_synchronize(); //wait moving
  8789. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8790. memcpy(destination, current_position, sizeof(destination));
  8791. #endif
  8792. }
  8793. }
  8794. //! @brief Restore print from ram
  8795. //!
  8796. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8797. //! print fan speed, waits for extruder temperature restore, then restores
  8798. //! position and continues print moves.
  8799. //!
  8800. //! Internally lcd_update() is called by wait_for_heater().
  8801. //!
  8802. //! @param e_move
  8803. void restore_print_from_ram_and_continue(float e_move)
  8804. {
  8805. if (!saved_printing) return;
  8806. #ifdef FANCHECK
  8807. // Do not allow resume printing if fans are still not ok
  8808. if( fan_check_error != EFCE_OK )return;
  8809. #endif
  8810. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8811. // current_position[axis] = st_get_position_mm(axis);
  8812. active_extruder = saved_active_extruder; //restore active_extruder
  8813. fanSpeed = saved_fanSpeed;
  8814. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8815. {
  8816. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8817. heating_status = 1;
  8818. wait_for_heater(_millis(), saved_active_extruder);
  8819. heating_status = 2;
  8820. }
  8821. feedrate = saved_feedrate2; //restore feedrate
  8822. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8823. float e = saved_pos[E_AXIS] - e_move;
  8824. plan_set_e_position(e);
  8825. #ifdef FANCHECK
  8826. fans_check_enabled = false;
  8827. #endif
  8828. //first move print head in XY to the saved position:
  8829. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8830. st_synchronize();
  8831. //then move Z
  8832. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8833. st_synchronize();
  8834. //and finaly unretract (35mm/s)
  8835. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8836. st_synchronize();
  8837. #ifdef FANCHECK
  8838. fans_check_enabled = true;
  8839. #endif
  8840. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8841. memcpy(destination, current_position, sizeof(destination));
  8842. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8843. card.setIndex(saved_sdpos);
  8844. sdpos_atomic = saved_sdpos;
  8845. card.sdprinting = true;
  8846. }
  8847. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8848. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8849. serial_count = 0;
  8850. FlushSerialRequestResend();
  8851. }
  8852. else {
  8853. //not sd printing nor usb printing
  8854. }
  8855. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8856. lcd_setstatuspgm(_T(WELCOME_MSG));
  8857. saved_printing = false;
  8858. }
  8859. void print_world_coordinates()
  8860. {
  8861. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8862. }
  8863. void print_physical_coordinates()
  8864. {
  8865. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8866. }
  8867. void print_mesh_bed_leveling_table()
  8868. {
  8869. SERIAL_ECHOPGM("mesh bed leveling: ");
  8870. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8871. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8872. MYSERIAL.print(mbl.z_values[y][x], 3);
  8873. SERIAL_ECHOPGM(" ");
  8874. }
  8875. SERIAL_ECHOLNPGM("");
  8876. }
  8877. uint16_t print_time_remaining() {
  8878. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8879. #ifdef TMC2130
  8880. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8881. else print_t = print_time_remaining_silent;
  8882. #else
  8883. print_t = print_time_remaining_normal;
  8884. #endif //TMC2130
  8885. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8886. return print_t;
  8887. }
  8888. uint8_t calc_percent_done()
  8889. {
  8890. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8891. uint8_t percent_done = 0;
  8892. #ifdef TMC2130
  8893. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8894. percent_done = print_percent_done_normal;
  8895. }
  8896. else if (print_percent_done_silent <= 100) {
  8897. percent_done = print_percent_done_silent;
  8898. }
  8899. #else
  8900. if (print_percent_done_normal <= 100) {
  8901. percent_done = print_percent_done_normal;
  8902. }
  8903. #endif //TMC2130
  8904. else {
  8905. percent_done = card.percentDone();
  8906. }
  8907. return percent_done;
  8908. }
  8909. static void print_time_remaining_init()
  8910. {
  8911. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8912. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8913. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8914. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8915. }
  8916. void load_filament_final_feed()
  8917. {
  8918. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8920. }
  8921. //! @brief Wait for user to check the state
  8922. //! @par nozzle_temp nozzle temperature to load filament
  8923. void M600_check_state(float nozzle_temp)
  8924. {
  8925. lcd_change_fil_state = 0;
  8926. while (lcd_change_fil_state != 1)
  8927. {
  8928. lcd_change_fil_state = 0;
  8929. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8930. lcd_alright();
  8931. KEEPALIVE_STATE(IN_HANDLER);
  8932. switch(lcd_change_fil_state)
  8933. {
  8934. // Filament failed to load so load it again
  8935. case 2:
  8936. if (mmu_enabled)
  8937. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8938. else
  8939. M600_load_filament_movements();
  8940. break;
  8941. // Filament loaded properly but color is not clear
  8942. case 3:
  8943. st_synchronize();
  8944. load_filament_final_feed();
  8945. lcd_loading_color();
  8946. st_synchronize();
  8947. break;
  8948. // Everything good
  8949. default:
  8950. lcd_change_success();
  8951. break;
  8952. }
  8953. }
  8954. }
  8955. //! @brief Wait for user action
  8956. //!
  8957. //! Beep, manage nozzle heater and wait for user to start unload filament
  8958. //! If times out, active extruder temperature is set to 0.
  8959. //!
  8960. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8961. void M600_wait_for_user(float HotendTempBckp) {
  8962. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8963. int counterBeep = 0;
  8964. unsigned long waiting_start_time = _millis();
  8965. uint8_t wait_for_user_state = 0;
  8966. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8967. bool bFirst=true;
  8968. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8969. manage_heater();
  8970. manage_inactivity(true);
  8971. #if BEEPER > 0
  8972. if (counterBeep == 500) {
  8973. counterBeep = 0;
  8974. }
  8975. SET_OUTPUT(BEEPER);
  8976. if (counterBeep == 0) {
  8977. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8978. {
  8979. bFirst=false;
  8980. WRITE(BEEPER, HIGH);
  8981. }
  8982. }
  8983. if (counterBeep == 20) {
  8984. WRITE(BEEPER, LOW);
  8985. }
  8986. counterBeep++;
  8987. #endif //BEEPER > 0
  8988. switch (wait_for_user_state) {
  8989. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8990. delay_keep_alive(4);
  8991. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8992. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8993. wait_for_user_state = 1;
  8994. setAllTargetHotends(0);
  8995. st_synchronize();
  8996. disable_e0();
  8997. disable_e1();
  8998. disable_e2();
  8999. }
  9000. break;
  9001. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9002. delay_keep_alive(4);
  9003. if (lcd_clicked()) {
  9004. setTargetHotend(HotendTempBckp, active_extruder);
  9005. lcd_wait_for_heater();
  9006. wait_for_user_state = 2;
  9007. }
  9008. break;
  9009. case 2: //waiting for nozzle to reach target temperature
  9010. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9011. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9012. waiting_start_time = _millis();
  9013. wait_for_user_state = 0;
  9014. }
  9015. else {
  9016. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9017. lcd_set_cursor(1, 4);
  9018. lcd_print(ftostr3(degHotend(active_extruder)));
  9019. }
  9020. break;
  9021. }
  9022. }
  9023. WRITE(BEEPER, LOW);
  9024. }
  9025. void M600_load_filament_movements()
  9026. {
  9027. #ifdef SNMM
  9028. display_loading();
  9029. do
  9030. {
  9031. current_position[E_AXIS] += 0.002;
  9032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  9033. delay_keep_alive(2);
  9034. }
  9035. while (!lcd_clicked());
  9036. st_synchronize();
  9037. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  9039. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  9041. current_position[E_AXIS] += 40;
  9042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  9043. current_position[E_AXIS] += 10;
  9044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  9045. #else
  9046. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9048. #endif
  9049. load_filament_final_feed();
  9050. lcd_loading_filament();
  9051. st_synchronize();
  9052. }
  9053. void M600_load_filament() {
  9054. //load filament for single material and SNMM
  9055. lcd_wait_interact();
  9056. //load_filament_time = _millis();
  9057. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9058. #ifdef PAT9125
  9059. fsensor_autoload_check_start();
  9060. #endif //PAT9125
  9061. while(!lcd_clicked())
  9062. {
  9063. manage_heater();
  9064. manage_inactivity(true);
  9065. #ifdef FILAMENT_SENSOR
  9066. if (fsensor_check_autoload())
  9067. {
  9068. Sound_MakeCustom(50,1000,false);
  9069. break;
  9070. }
  9071. #endif //FILAMENT_SENSOR
  9072. }
  9073. #ifdef PAT9125
  9074. fsensor_autoload_check_stop();
  9075. #endif //PAT9125
  9076. KEEPALIVE_STATE(IN_HANDLER);
  9077. #ifdef FSENSOR_QUALITY
  9078. fsensor_oq_meassure_start(70);
  9079. #endif //FSENSOR_QUALITY
  9080. M600_load_filament_movements();
  9081. Sound_MakeCustom(50,1000,false);
  9082. #ifdef FSENSOR_QUALITY
  9083. fsensor_oq_meassure_stop();
  9084. if (!fsensor_oq_result())
  9085. {
  9086. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9087. lcd_update_enable(true);
  9088. lcd_update(2);
  9089. if (disable)
  9090. fsensor_disable();
  9091. }
  9092. #endif //FSENSOR_QUALITY
  9093. lcd_update_enable(false);
  9094. }
  9095. //! @brief Wait for click
  9096. //!
  9097. //! Set
  9098. void marlin_wait_for_click()
  9099. {
  9100. int8_t busy_state_backup = busy_state;
  9101. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9102. lcd_consume_click();
  9103. while(!lcd_clicked())
  9104. {
  9105. manage_heater();
  9106. manage_inactivity(true);
  9107. lcd_update(0);
  9108. }
  9109. KEEPALIVE_STATE(busy_state_backup);
  9110. }
  9111. #define FIL_LOAD_LENGTH 60
  9112. #ifdef PSU_Delta
  9113. bool bEnableForce_z;
  9114. void init_force_z()
  9115. {
  9116. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9117. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9118. disable_force_z();
  9119. }
  9120. void check_force_z()
  9121. {
  9122. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9123. init_force_z(); // causes enforced switching into disable-state
  9124. }
  9125. void disable_force_z()
  9126. {
  9127. uint16_t z_microsteps=0;
  9128. if(!bEnableForce_z)
  9129. return; // motor already disabled (may be ;-p )
  9130. bEnableForce_z=false;
  9131. // alignment to full-step
  9132. #ifdef TMC2130
  9133. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  9134. #endif // TMC2130
  9135. planner_abort_hard();
  9136. sei();
  9137. plan_buffer_line(
  9138. current_position[X_AXIS],
  9139. current_position[Y_AXIS],
  9140. current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  9141. current_position[E_AXIS],
  9142. 40, active_extruder);
  9143. st_synchronize();
  9144. // switching to silent mode
  9145. #ifdef TMC2130
  9146. tmc2130_mode=TMC2130_MODE_SILENT;
  9147. update_mode_profile();
  9148. tmc2130_init(true);
  9149. #endif // TMC2130
  9150. axis_known_position[Z_AXIS]=false;
  9151. }
  9152. void enable_force_z()
  9153. {
  9154. if(bEnableForce_z)
  9155. return; // motor already enabled (may be ;-p )
  9156. bEnableForce_z=true;
  9157. // mode recovering
  9158. #ifdef TMC2130
  9159. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9160. update_mode_profile();
  9161. tmc2130_init(true);
  9162. #endif // TMC2130
  9163. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9164. }
  9165. #endif // PSU_Delta