| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616 | 
							- #include "Marlin.h"
 
- #include "Configuration.h"
 
- #include "ConfigurationStore.h"
 
- #include "language_all.h"
 
- #include "mesh_bed_calibration.h"
 
- #include "mesh_bed_leveling.h"
 
- #include "stepper.h"
 
- #include "ultralcd.h"
 
- uint8_t world2machine_correction_mode;
 
- float   world2machine_rotation_and_skew[2][2];
 
- float   world2machine_rotation_and_skew_inv[2][2];
 
- float   world2machine_shift[2];
 
- // Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
 
- // Only used for the first row of the points, which may not befully in reach of the sensor.
 
- #define WEIGHT_FIRST_ROW_X_HIGH (1.f)
 
- #define WEIGHT_FIRST_ROW_X_LOW  (0.35f)
 
- #define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)
 
- #define WEIGHT_FIRST_ROW_Y_LOW  (0.0f)
 
- #define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER) // -22 + 23 = 1
 
- #define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER) // -0.6 + 5 = 4.4
 
- // Scaling of the real machine axes against the programmed dimensions in the firmware.
 
- // The correction is tiny, here around 0.5mm on 250mm length.
 
- //#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)
 
- //#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)
 
- #define MACHINE_AXIS_SCALE_X 1.f
 
- #define MACHINE_AXIS_SCALE_Y 1.f
 
- #define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN  (0.8f)
 
- #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X  (0.8f)
 
- #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y  (1.5f)
 
- #define MIN_BED_SENSOR_POINT_RESPONSE_DMR           (2.0f)
 
- //#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
 
- #define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
 
- // Distances toward the print bed edge may not be accurate.
 
- #define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)
 
- // When the measured point center is out of reach of the sensor, Y coordinate will be ignored
 
- // by the Least Squares fitting and the X coordinate will be weighted low.
 
- #define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)
 
- // 0.12 degrees equals to an offset of 0.5mm on 250mm length.
 
- const float bed_skew_angle_mild = (0.12f * M_PI / 180.f);
 
- // 0.25 degrees equals to an offset of 1.1mm on 250mm length.
 
- const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);
 
- // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
 
- // The points are ordered in a zig-zag fashion to speed up the calibration.
 
- #ifdef HEATBED_V2
 
- // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
 
- // The points are the following: center front, center right, center rear, center left.
 
- const float bed_ref_points_4[] PROGMEM = {
 
- 	13.f - BED_ZERO_REF_X,   10.4f - BED_ZERO_REF_Y,
 
- 	221.f - BED_ZERO_REF_X,  10.4f - BED_ZERO_REF_Y,
 
- 	221.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
 
- 	13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
 
- };
 
- const float bed_ref_points[] PROGMEM = {
 
- 	13.f - BED_ZERO_REF_X,   10.4f - BED_ZERO_REF_Y,
 
- 	115.f - BED_ZERO_REF_X,   10.4f - BED_ZERO_REF_Y,
 
- 	216.f - BED_ZERO_REF_X,   10.4f - BED_ZERO_REF_Y,
 
- 	216.f - BED_ZERO_REF_X, 106.4f - BED_ZERO_REF_Y,
 
- 	115.f - BED_ZERO_REF_X, 106.4f - BED_ZERO_REF_Y,
 
- 	13.f - BED_ZERO_REF_X, 106.4f - BED_ZERO_REF_Y,
 
- 	13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
 
- 	115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
 
- 	216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
 
- };
 
- #else
 
- // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
 
- // The points are the following: center front, center right, center rear, center left.
 
- const float bed_ref_points_4[] PROGMEM = {
 
- 	115.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,
 
- 	216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
 
- 	115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
 
- 	13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
 
- };
 
- const float bed_ref_points[] PROGMEM = {
 
-     13.f  - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,
 
-     115.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,
 
-     216.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,
 
-     
 
-     216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
 
-     115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
 
-     13.f  - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
 
-     13.f  - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
 
-     115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
 
-     216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
 
- };
 
- #endif //not HEATBED_V2
 
- static inline float sqr(float x) { return x * x; }
 
- static inline bool point_on_1st_row(const uint8_t i)
 
- {
 
- 	return (i < 2);
 
- }
 
- // Weight of a point coordinate in a least squares optimization.
 
- // The first row of points may not be fully reachable
 
- // and the y values may be shortened a bit by the bed carriage
 
- // pulling the belt up.
 
- static inline float point_weight_x(const uint8_t i, const uint8_t npts, const float &y)
 
- {
 
-     float w = 1.f;
 
-     if (point_on_1st_row(i)) {
 
- 		if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
 
-             w = WEIGHT_FIRST_ROW_X_HIGH;
 
-         } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
 
-             // If the point is fully outside, give it some weight.
 
-             w = WEIGHT_FIRST_ROW_X_LOW;
 
-         } else {
 
-             // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
 
-             float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
 
-             w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;
 
-         }
 
-     }
 
-     return w;
 
- }
 
- // Weight of a point coordinate in a least squares optimization.
 
- // The first row of points may not be fully reachable
 
- // and the y values may be shortened a bit by the bed carriage
 
- // pulling the belt up.
 
- static inline float point_weight_y(const uint8_t i, const uint8_t npts, const float &y)
 
- {
 
-     float w = 1.f;
 
-     if (point_on_1st_row(i)) {
 
-         if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
 
-             w = WEIGHT_FIRST_ROW_Y_HIGH;
 
-         } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
 
-             // If the point is fully outside, give it some weight.
 
-             w = WEIGHT_FIRST_ROW_Y_LOW;
 
-         } else {
 
-             // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
 
-             float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
 
-             w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;
 
-         }
 
-     }
 
-     return w;
 
- }
 
- // Non-Linear Least Squares fitting of the bed to the measured induction points
 
- // using the Gauss-Newton method.
 
- // This method will maintain a unity length of the machine axes,
 
- // which is the correct approach if the sensor points are not measured precisely.
 
- BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
 
-     // Matrix of maximum 9 2D points (18 floats)
 
-     const float  *measured_pts,
 
-     uint8_t       npts,
 
-     const float  *true_pts,
 
-     // Resulting correction matrix.
 
-     float        *vec_x,
 
-     float        *vec_y,
 
-     float        *cntr,
 
-     // Temporary values, 49-18-(2*3)=25 floats
 
-     //    , float *temp
 
-     int8_t        verbosity_level
 
-     )
 
- {
 
- 	float angleDiff;
 
- 	#ifdef SUPPORT_VERBOSITY
 
-     if (verbosity_level >= 10) {
 
- 		SERIAL_ECHOLNPGM("calculate machine skew and offset LS");
 
-         // Show the initial state, before the fitting.
 
-         SERIAL_ECHOPGM("X vector, initial: ");
 
-         MYSERIAL.print(vec_x[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(vec_x[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("Y vector, initial: ");
 
-         MYSERIAL.print(vec_y[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(vec_y[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("center, initial: ");
 
-         MYSERIAL.print(cntr[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(cntr[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         for (uint8_t i = 0; i < npts; ++i) {
 
-             SERIAL_ECHOPGM("point #");
 
-             MYSERIAL.print(int(i));
 
-             SERIAL_ECHOPGM(" measured: (");
 
-             MYSERIAL.print(measured_pts[i * 2], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(measured_pts[i * 2 + 1], 5);
 
-             SERIAL_ECHOPGM("); target: (");
 
-             MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
 
-             SERIAL_ECHOPGM("), error: ");
 
-             MYSERIAL.print(sqrt(
 
-                 sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +
 
-                 sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);
 
-             SERIAL_ECHOLNPGM("");
 
-         }
 
-         delay_keep_alive(100);
 
-     }
 
- 	#endif // SUPPORT_VERBOSITY
 
-     // Run some iterations of the Gauss-Newton method of non-linear least squares.
 
-     // Initial set of parameters:
 
-     // X,Y offset
 
-     cntr[0] = 0.f;
 
-     cntr[1] = 0.f;
 
-     // Rotation of the machine X axis from the bed X axis.
 
-     float a1 = 0;
 
-     // Rotation of the machine Y axis from the bed Y axis.
 
-     float a2 = 0;
 
-     for (int8_t iter = 0; iter < 100; ++iter) {
 
-         float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;
 
-         float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;
 
-         float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;
 
-         float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;
 
-         // Prepare the Normal equation for the Gauss-Newton method.
 
-         float A[4][4] = { 0.f };
 
-         float b[4] = { 0.f };
 
-         float acc;
 
- 		delay_keep_alive(0); //manage heater, reset watchdog, manage inactivity
 
-         for (uint8_t r = 0; r < 4; ++r) {
 
-             for (uint8_t c = 0; c < 4; ++c) {
 
-                 acc = 0;
 
-                 // J^T times J
 
-                 for (uint8_t i = 0; i < npts; ++i) {
 
-                     // First for the residuum in the x axis:
 
-                     if (r != 1 && c != 1) {
 
-                         float a = 
 
-                              (r == 0) ? 1.f :
 
-                             ((r == 2) ? (-s1 * measured_pts[2 * i]) :
 
-                                         (-c2 * measured_pts[2 * i + 1]));
 
-                         float b = 
 
-                              (c == 0) ? 1.f :
 
-                             ((c == 2) ? (-s1 * measured_pts[2 * i]) :
 
-                                         (-c2 * measured_pts[2 * i + 1]));
 
-                         float w = point_weight_x(i, npts, measured_pts[2 * i + 1]);
 
-                         acc += a * b * w;
 
-                     }
 
-                     // Second for the residuum in the y axis. 
 
-                     // The first row of the points have a low weight, because their position may not be known
 
-                     // with a sufficient accuracy.
 
-                     if (r != 0 && c != 0) {
 
-                         float a = 
 
-                              (r == 1) ? 1.f :
 
-                             ((r == 2) ? ( c1 * measured_pts[2 * i]) :
 
-                                         (-s2 * measured_pts[2 * i + 1]));
 
-                         float b = 
 
-                              (c == 1) ? 1.f :
 
-                             ((c == 2) ? ( c1 * measured_pts[2 * i]) :
 
-                                         (-s2 * measured_pts[2 * i + 1]));
 
-                         float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);
 
-                         acc += a * b * w;
 
-                     }
 
-                 }
 
-                 A[r][c] = acc;
 
-             }
 
-             // J^T times f(x)
 
-             acc = 0.f;
 
-             for (uint8_t i = 0; i < npts; ++i) {
 
-                 {
 
-                     float j = 
 
-                          (r == 0) ? 1.f :
 
-                         ((r == 1) ? 0.f :
 
-                         ((r == 2) ? (-s1 * measured_pts[2 * i]) :
 
-                                     (-c2 * measured_pts[2 * i + 1])));
 
-                     float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);
 
-                     float w = point_weight_x(i, npts, measured_pts[2 * i + 1]);
 
-                     acc += j * fx * w;
 
-                 }
 
-                 {
 
-                     float j = 
 
-                          (r == 0) ? 0.f :
 
-                         ((r == 1) ? 1.f :
 
-                         ((r == 2) ? ( c1 * measured_pts[2 * i]) :
 
-                                     (-s2 * measured_pts[2 * i + 1])));
 
-                     float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);
 
-                     float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);
 
-                     acc += j * fy * w;
 
-                 }
 
-             }
 
-             b[r] = -acc;
 
-         }
 
-         // Solve for h by a Gauss iteration method.
 
-         float h[4] = { 0.f };
 
-         for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {
 
-             h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];
 
-             h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];
 
-             h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];
 
-             h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];
 
-         }
 
-         // and update the current position with h.
 
-         // It may be better to use the Levenberg-Marquart method here,
 
-         // but because we are very close to the solution alread,
 
-         // the simple Gauss-Newton non-linear Least Squares method works well enough.
 
-         cntr[0] += h[0];
 
-         cntr[1] += h[1];
 
-         a1 += h[2];
 
-         a2 += h[3];
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 20) {
 
-             SERIAL_ECHOPGM("iteration: ");
 
-             MYSERIAL.print(int(iter));
 
- 			SERIAL_ECHOPGM("; correction vector: ");
 
-             MYSERIAL.print(h[0], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(h[1], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(h[2], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(h[3], 5);
 
-             SERIAL_ECHOLNPGM("");
 
-             SERIAL_ECHOPGM("corrected x/y: ");
 
-             MYSERIAL.print(cntr[0], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(cntr[0], 5);
 
-             SERIAL_ECHOLNPGM("");
 
-             SERIAL_ECHOPGM("corrected angles: ");
 
-             MYSERIAL.print(180.f * a1 / M_PI, 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(180.f * a2 / M_PI, 5);
 
-             SERIAL_ECHOLNPGM("");
 
-         }
 
- 		#endif // SUPPORT_VERBOSITY
 
-     }
 
-     vec_x[0] =  cos(a1) * MACHINE_AXIS_SCALE_X;
 
-     vec_x[1] =  sin(a1) * MACHINE_AXIS_SCALE_X;
 
-     vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
 
-     vec_y[1] =  cos(a2) * MACHINE_AXIS_SCALE_Y;
 
-     BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
 
-     {
 
-         angleDiff = fabs(a2 - a1);
 
- 		eeprom_update_float((float*)(EEPROM_XYZ_CAL_SKEW), angleDiff); //storing xyz cal. skew to be able to show in support menu later 
 
-         if (angleDiff > bed_skew_angle_mild)
 
-             result = (angleDiff > bed_skew_angle_extreme) ?
 
-                 BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
 
-                 BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
 
-         if (fabs(a1) > bed_skew_angle_extreme ||
 
-             fabs(a2) > bed_skew_angle_extreme)
 
-             result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
 
-     }
 
- 	#ifdef SUPPORT_VERBOSITY
 
-     if (verbosity_level >= 1) {
 
-         SERIAL_ECHOPGM("correction angles: ");
 
-         MYSERIAL.print(180.f * a1 / M_PI, 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(180.f * a2 / M_PI, 5);
 
-         SERIAL_ECHOLNPGM("");
 
-     }
 
-     if (verbosity_level >= 10) {
 
-         // Show the adjusted state, before the fitting.
 
-         SERIAL_ECHOPGM("X vector new, inverted: ");
 
-         MYSERIAL.print(vec_x[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(vec_x[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("Y vector new, inverted: ");
 
-         MYSERIAL.print(vec_y[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(vec_y[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("center new, inverted: ");
 
-         MYSERIAL.print(cntr[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(cntr[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         delay_keep_alive(100);
 
-         SERIAL_ECHOLNPGM("Error after correction: ");
 
-     }
 
- 	#endif // SUPPORT_VERBOSITY
 
-     // Measure the error after correction.
 
-     for (uint8_t i = 0; i < npts; ++i) {
 
-         float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
 
-         float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
 
-         float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
 
-         float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
 
-         float err = sqrt(errX + errY);
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 10) {
 
- 			SERIAL_ECHOPGM("point #");
 
- 			MYSERIAL.print(int(i));
 
- 			SERIAL_ECHOLNPGM(":");
 
- 		}
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		if (point_on_1st_row(i)) {
 
- 				#ifdef SUPPORT_VERBOSITY
 
- 				if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");
 
- 				#endif // SUPPORT_VERBOSITY
 
- 				float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);
 
- 				if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
 
- 					(w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)) {
 
- 					result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
 
- 					#ifdef SUPPORT_VERBOSITY
 
- 					if (verbosity_level >= 20) {
 
- 						SERIAL_ECHOPGM(", weigth Y: ");
 
- 						MYSERIAL.print(w);
 
- 						if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X) SERIAL_ECHOPGM(", error X > max. error X");
 
- 						if (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y) SERIAL_ECHOPGM(", error Y > max. error Y");
 
- 					}
 
- 					#endif // SUPPORT_VERBOSITY
 
- 				}
 
- 		}
 
- 		else {
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if(verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN) {
 
- 				result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
 
- 				#ifdef SUPPORT_VERBOSITY
 
- 				if(verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian"); 
 
- 				#endif // SUPPORT_VERBOSITY
 
- 			}
 
-         }
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 10) {
 
- 			SERIAL_ECHOLNPGM("");
 
-             SERIAL_ECHOPGM("measured: (");
 
-             MYSERIAL.print(measured_pts[i * 2], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(measured_pts[i * 2 + 1], 5);
 
-             SERIAL_ECHOPGM("); corrected: (");
 
-             MYSERIAL.print(x, 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(y, 5);
 
-             SERIAL_ECHOPGM("); target: (");
 
-             MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
 
- 			SERIAL_ECHOLNPGM(")");
 
- 			SERIAL_ECHOPGM("error: ");
 
-             MYSERIAL.print(err);
 
- 			SERIAL_ECHOPGM(", error X: ");
 
- 			MYSERIAL.print(sqrt(errX));
 
- 			SERIAL_ECHOPGM(", error Y: ");
 
- 			MYSERIAL.print(sqrt(errY));
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOLNPGM("");
 
-         }
 
- 		#endif // SUPPORT_VERBOSITY
 
-     }
 
- 	#ifdef SUPPORT_VERBOSITY
 
- 	if (verbosity_level >= 20) {
 
- 		SERIAL_ECHOLNPGM("Max. errors:");
 
- 		SERIAL_ECHOPGM("Max. error X:");
 
- 		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X);
 
- 		SERIAL_ECHOPGM("Max. error Y:");
 
- 		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y);
 
- 		SERIAL_ECHOPGM("Max. error euclidian:");
 
- 		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN);
 
- 		SERIAL_ECHOLNPGM("");
 
- 	}
 
- 	#endif // SUPPORT_VERBOSITY
 
-     #if 0
 
-     if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < bed_skew_angle_mild && fabs(a2) < bed_skew_angle_mild) {
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level > 0)
 
-             SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
 
- 		#endif // SUPPORT_VERBOSITY
 
-         // Just disable the skew correction.
 
-         vec_x[0] = MACHINE_AXIS_SCALE_X;
 
-         vec_x[1] = 0.f;
 
-         vec_y[0] = 0.f;
 
-         vec_y[1] = MACHINE_AXIS_SCALE_Y;
 
-     }
 
-     #else
 
-     if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level > 0)
 
-             SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		// Orthogonalize the axes.
 
-         a1 = 0.5f * (a1 + a2);
 
-         vec_x[0] =  cos(a1) * MACHINE_AXIS_SCALE_X;
 
-         vec_x[1] =  sin(a1) * MACHINE_AXIS_SCALE_X;
 
-         vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;
 
-         vec_y[1] =  cos(a1) * MACHINE_AXIS_SCALE_Y;
 
-         // Refresh the offset.
 
-         cntr[0] = 0.f;
 
-         cntr[1] = 0.f;
 
-         float wx = 0.f;
 
-         float wy = 0.f;
 
-         for (int8_t i = 0; i < npts; ++ i) {
 
-             float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];
 
-             float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];
 
-             float w = point_weight_x(i, npts, y);
 
- 			cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
 
- 			wx += w;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) {
 
- 				MYSERIAL.print(i);
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOLNPGM("Weight_x:");
 
- 				MYSERIAL.print(w);
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOLNPGM("cntr[0]:");
 
- 				MYSERIAL.print(cntr[0]);
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOLNPGM("wx:");
 
- 				MYSERIAL.print(wx);
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
-             w = point_weight_y(i, npts, y);
 
- 			cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
 
- 			wy += w;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) {
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOLNPGM("Weight_y:");
 
- 				MYSERIAL.print(w);
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOLNPGM("cntr[1]:");
 
- 				MYSERIAL.print(cntr[1]);
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOLNPGM("wy:");
 
- 				MYSERIAL.print(wy);
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOLNPGM("");
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 		}
 
-         cntr[0] /= wx;
 
-         cntr[1] /= wy;
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 20) {
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOLNPGM("Final cntr values:");
 
- 			SERIAL_ECHOLNPGM("cntr[0]:");
 
- 			MYSERIAL.print(cntr[0]);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOLNPGM("cntr[1]:");
 
- 			MYSERIAL.print(cntr[1]);
 
- 			SERIAL_ECHOLNPGM("");
 
- 		}
 
- 		#endif // SUPPORT_VERBOSITY
 
-     }
 
-     #endif
 
-     // Invert the transformation matrix made of vec_x, vec_y and cntr.
 
-     {
 
-         float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
 
-         float Ainv[2][2] = {
 
-             { vec_y[1] / d, -vec_y[0] / d },
 
-             { -vec_x[1] / d, vec_x[0] / d }
 
-         };
 
-         float cntrInv[2] = {
 
-             -Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
 
-             -Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
 
-         };
 
-         vec_x[0] = Ainv[0][0];
 
-         vec_x[1] = Ainv[1][0];
 
-         vec_y[0] = Ainv[0][1];
 
-         vec_y[1] = Ainv[1][1];
 
-         cntr[0] = cntrInv[0];
 
-         cntr[1] = cntrInv[1];
 
-     }
 
- 	#ifdef SUPPORT_VERBOSITY
 
-     if (verbosity_level >= 1) {
 
-         // Show the adjusted state, before the fitting.
 
-         SERIAL_ECHOPGM("X vector, adjusted: ");
 
-         MYSERIAL.print(vec_x[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(vec_x[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("Y vector, adjusted: ");
 
-         MYSERIAL.print(vec_y[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(vec_y[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("center, adjusted: ");
 
-         MYSERIAL.print(cntr[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(cntr[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         delay_keep_alive(100);
 
-     }
 
-     if (verbosity_level >= 2) {
 
-         SERIAL_ECHOLNPGM("Difference after correction: ");
 
-         for (uint8_t i = 0; i < npts; ++i) {
 
-             float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];
 
-             float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];
 
-             SERIAL_ECHOPGM("point #");
 
-             MYSERIAL.print(int(i));
 
-             SERIAL_ECHOPGM("measured: (");
 
-             MYSERIAL.print(measured_pts[i * 2], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(measured_pts[i * 2 + 1], 5);
 
-             SERIAL_ECHOPGM("); measured-corrected: (");
 
-             MYSERIAL.print(x, 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(y, 5);
 
-             SERIAL_ECHOPGM("); target: (");
 
-             MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
 
-             SERIAL_ECHOPGM("), error: ");
 
-             MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));
 
-             SERIAL_ECHOLNPGM("");
 
-         }
 
- 		if (verbosity_level >= 20) {
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOLNPGM("Calculate offset and skew returning result:");
 
- 			MYSERIAL.print(int(result));
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOLNPGM("");
 
- 		}
 
-         delay_keep_alive(100);
 
-     }
 
- 	#endif // SUPPORT_VERBOSITY
 
-     return result;
 
- }
 
- void reset_bed_offset_and_skew()
 
- {
 
-     eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
 
-     eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
 
-     eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
 
-     eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
 
-     eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
 
-     eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
 
-     // Reset the 8 16bit offsets.
 
-     for (int8_t i = 0; i < 4; ++ i)
 
-         eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
 
- }
 
- bool is_bed_z_jitter_data_valid()
 
- // offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
 
- {
 
-     for (int8_t i = 0; i < 8; ++ i)
 
-         if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
 
-             return false;
 
-     return true;
 
- }
 
- static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
 
- {
 
-     world2machine_rotation_and_skew[0][0] = vec_x[0];
 
-     world2machine_rotation_and_skew[1][0] = vec_x[1];
 
-     world2machine_rotation_and_skew[0][1] = vec_y[0];
 
-     world2machine_rotation_and_skew[1][1] = vec_y[1];
 
-     world2machine_shift[0] = cntr[0];
 
-     world2machine_shift[1] = cntr[1];
 
-     // No correction.
 
-     world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
 
-     if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
 
-         // Shift correction.
 
-         world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
 
-     if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
 
-         world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
 
-         // Rotation & skew correction.
 
-         world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
 
-         // Invert the world2machine matrix.
 
-         float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
 
-         world2machine_rotation_and_skew_inv[0][0] =  world2machine_rotation_and_skew[1][1] / d;
 
-         world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
 
-         world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
 
-         world2machine_rotation_and_skew_inv[1][1] =  world2machine_rotation_and_skew[0][0] / d;
 
-     } else {
 
-         world2machine_rotation_and_skew_inv[0][0] = 1.f;
 
-         world2machine_rotation_and_skew_inv[0][1] = 0.f;
 
-         world2machine_rotation_and_skew_inv[1][0] = 0.f;
 
-         world2machine_rotation_and_skew_inv[1][1] = 1.f;
 
-     }
 
- }
 
- void world2machine_reset()
 
- {
 
-     const float vx[] = { 1.f, 0.f };
 
-     const float vy[] = { 0.f, 1.f };
 
-     const float cntr[] = { 0.f, 0.f };
 
-     world2machine_update(vx, vy, cntr);
 
- }
 
- void world2machine_revert_to_uncorrected()
 
- {
 
-     if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {
 
-         // Reset the machine correction matrix.
 
-         const float vx[] = { 1.f, 0.f };
 
-         const float vy[] = { 0.f, 1.f };
 
-         const float cntr[] = { 0.f, 0.f };
 
-         world2machine_update(vx, vy, cntr);
 
-         // Wait for the motors to stop and update the current position with the absolute values.
 
-         st_synchronize();
 
-         current_position[X_AXIS] = st_get_position_mm(X_AXIS);
 
-         current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
 
-     }
 
- }
 
- static inline bool vec_undef(const float v[2])
 
- {
 
-     const uint32_t *vx = (const uint32_t*)v;
 
-     return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
 
- }
 
- void world2machine_initialize()
 
- {
 
-     //SERIAL_ECHOLNPGM("world2machine_initialize");
 
-     float cntr[2] = {
 
-         eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
 
-         eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
 
-     };
 
-     float vec_x[2] = {
 
-         eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
 
-         eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
 
-     };
 
-     float vec_y[2] = {
 
-         eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
 
-         eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
 
-     };
 
-     bool reset = false;
 
-     if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
 
- //        SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
 
-         reset = true;
 
-     }
 
-     else {
 
-         // Length of the vec_x shall be close to unity.
 
-         float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
 
-         if (l < 0.9 || l > 1.1) {
 
- //			SERIAL_ECHOLNPGM("X vector length:");
 
- //			MYSERIAL.println(l);
 
- //            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
 
-             reset = true;
 
-         }
 
-         // Length of the vec_y shall be close to unity.
 
-         l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
 
-         if (l < 0.9 || l > 1.1) {
 
- //			SERIAL_ECHOLNPGM("Y vector length:");
 
- //			MYSERIAL.println(l);
 
- //            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");
 
-             reset = true;
 
-         }
 
-         // Correction of the zero point shall be reasonably small.
 
-         l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
 
-         if (l > 15.f) {
 
- //			SERIAL_ECHOLNPGM("Zero point correction:");
 
- //			MYSERIAL.println(l);
 
- //            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
 
-             reset = true;
 
-         }
 
-         // vec_x and vec_y shall be nearly perpendicular.
 
-         l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
 
-         if (fabs(l) > 0.1f) {
 
- //            SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
 
-             reset = true;
 
-         }
 
-     }
 
-     if (reset) {
 
- //        SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
 
-         reset_bed_offset_and_skew();
 
-         world2machine_reset();
 
-     } else {
 
-         world2machine_update(vec_x, vec_y, cntr);
 
-         /*
 
-         SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
 
-         SERIAL_ECHOPGM(", offset ");
 
-         MYSERIAL.print(world2machine_shift[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_shift[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         */
 
-     }
 
- }
 
- // When switching from absolute to corrected coordinates,
 
- // this will get the absolute coordinates from the servos,
 
- // applies the inverse world2machine transformation
 
- // and stores the result into current_position[x,y].
 
- void world2machine_update_current()
 
- {
 
-     float x = current_position[X_AXIS] - world2machine_shift[0];
 
-     float y = current_position[Y_AXIS] - world2machine_shift[1];
 
-     current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
 
-     current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
 
- }
 
- static inline void go_xyz(float x, float y, float z, float fr)
 
- {
 
-     plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
 
-     st_synchronize();
 
- }
 
- static inline void go_xy(float x, float y, float fr)
 
- {
 
-     plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
 
-     st_synchronize();
 
- }
 
- static inline void go_to_current(float fr)
 
- {
 
-     plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
 
-     st_synchronize();
 
- }
 
- static inline void update_current_position_xyz()
 
- {
 
-       current_position[X_AXIS] = st_get_position_mm(X_AXIS);
 
-       current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
 
-       current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
 
-       plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 
- }
 
- static inline void update_current_position_z()
 
- {
 
-       current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
 
-       plan_set_z_position(current_position[Z_AXIS]);
 
- }
 
- // At the current position, find the Z stop.
 
- inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int verbosity_level)
 
- {
 
- 	#ifdef SUPPORT_VERBOSITY
 
-     if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
 
- 	#endif // SUPPORT_VERBOSITY
 
- 	bool endstops_enabled  = enable_endstops(true);
 
-     bool endstop_z_enabled = enable_z_endstop(false);
 
-     float z = 0.f;
 
-     endstop_z_hit_on_purpose();
 
-     // move down until you find the bed
 
-     current_position[Z_AXIS] = minimum_z;
 
-     go_to_current(homing_feedrate[Z_AXIS]/60);
 
-     // we have to let the planner know where we are right now as it is not where we said to go.
 
-     update_current_position_z();
 
-     if (! endstop_z_hit_on_purpose())
 
-         goto error;
 
-     for (uint8_t i = 0; i < n_iter; ++ i) {
 
-         // Move up the retract distance.
 
-         current_position[Z_AXIS] += .5f;
 
-         go_to_current(homing_feedrate[Z_AXIS]/60);
 
-         // Move back down slowly to find bed.
 
-         current_position[Z_AXIS] = minimum_z;
 
-         go_to_current(homing_feedrate[Z_AXIS]/(4*60));
 
-         // we have to let the planner know where we are right now as it is not where we said to go.
 
-         update_current_position_z();
 
-         if (! endstop_z_hit_on_purpose())
 
-             goto error;
 
- //        SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
 
- //        MYSERIAL.print(current_position[Z_AXIS], 5);
 
- //        SERIAL_ECHOLNPGM("");
 
-         z += current_position[Z_AXIS];
 
-     }
 
-     current_position[Z_AXIS] = z;
 
-     if (n_iter > 1)
 
-         current_position[Z_AXIS] /= float(n_iter);
 
-     enable_endstops(endstops_enabled);
 
-     enable_z_endstop(endstop_z_enabled);
 
- //    SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");
 
-     return true;
 
- error:
 
- //    SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");
 
-     enable_endstops(endstops_enabled);
 
-     enable_z_endstop(endstop_z_enabled);
 
-     return false;
 
- }
 
- // Search around the current_position[X,Y],
 
- // look for the induction sensor response.
 
- // Adjust the  current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
 
- #define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
 
- #define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)
 
- #define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP  (1.f)
 
- #define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP   (0.2f)
 
- inline bool find_bed_induction_sensor_point_xy(int verbosity_level)
 
- {
 
- 	#ifdef SUPPORT_VERBOSITY
 
- 	if(verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
 
- 	#endif // SUPPORT_VERBOSITY
 
- 	float feedrate = homing_feedrate[X_AXIS] / 60.f;
 
-     bool found = false;
 
-     {
 
-         float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
 
-         float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
 
-         float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
 
-         float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
 
-         uint8_t nsteps_y;
 
-         uint8_t i;
 
- 		if (x0 < X_MIN_POS) {
 
- 			x0 = X_MIN_POS;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");
 
- 			#endif // SUPPORT_VERBOSITY
 
- 		}
 
- 		if (x1 > X_MAX_POS) {
 
- 			x1 = X_MAX_POS;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");
 
- 			#endif // SUPPORT_VERBOSITY
 
- 		}
 
- 		if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {
 
- 			y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");
 
- 			#endif // SUPPORT_VERBOSITY
 
- 		}
 
- 		if (y1 > Y_MAX_POS) {
 
- 			y1 = Y_MAX_POS;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");
 
- 			#endif // SUPPORT_VERBOSITY
 
- 		}
 
-         nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
 
-         enable_endstops(false);
 
-         bool  dir_positive = true;
 
- //        go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
 
-         go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
 
-         // Continously lower the Z axis.
 
-         endstops_hit_on_purpose();
 
-         enable_z_endstop(true);
 
-         while (current_position[Z_AXIS] > -10.f) {
 
-             // Do nsteps_y zig-zag movements.
 
-             current_position[Y_AXIS] = y0;
 
-             for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {
 
-                 // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
 
-                 current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
 
-                 go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
 
-                 dir_positive = ! dir_positive;
 
-                 if (endstop_z_hit_on_purpose())
 
-                     goto endloop;
 
-             }
 
-             for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {
 
-                 // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
 
-                 current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
 
-                 go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
 
-                 dir_positive = ! dir_positive;
 
-                 if (endstop_z_hit_on_purpose())
 
-                     goto endloop;
 
-             }
 
-         }
 
-         endloop:
 
- //        SERIAL_ECHOLN("First hit");
 
-         // we have to let the planner know where we are right now as it is not where we said to go.
 
-         update_current_position_xyz();
 
-         // Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
 
-         for (int8_t iter = 0; iter < 3; ++ iter) {
 
-             if (iter > 0) {
 
-                 // Slightly lower the Z axis to get a reliable trigger.
 
-                 current_position[Z_AXIS] -= 0.02f;
 
-                 go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
 
-             }
 
-             // Do nsteps_y zig-zag movements.
 
-             float a, b;
 
-             enable_endstops(false);
 
-             enable_z_endstop(false);
 
-             current_position[Y_AXIS] = y0;
 
-             go_xy(x0, current_position[Y_AXIS], feedrate);
 
-             enable_z_endstop(true);
 
-             found = false;
 
-             for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
 
-                 go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
 
-                 if (endstop_z_hit_on_purpose()) {
 
-                     found = true;
 
-                     break;
 
-                 }
 
-             }
 
-             update_current_position_xyz();
 
-             if (! found) {
 
- //                SERIAL_ECHOLN("Search in Y - not found");
 
-                 continue;
 
-             }
 
- //            SERIAL_ECHOLN("Search in Y - found");
 
-             a = current_position[Y_AXIS];
 
-             enable_z_endstop(false);
 
-             current_position[Y_AXIS] = y1;
 
-             go_xy(x0, current_position[Y_AXIS], feedrate);
 
-             enable_z_endstop(true);
 
-             found = false;
 
-             for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
 
-                 go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
 
-                 if (endstop_z_hit_on_purpose()) {
 
-                     found = true;
 
-                     break;
 
-                 }
 
-             }
 
-             update_current_position_xyz();
 
-             if (! found) {
 
- //                SERIAL_ECHOLN("Search in Y2 - not found");
 
-                 continue;
 
-             }
 
- //            SERIAL_ECHOLN("Search in Y2 - found");
 
-             b = current_position[Y_AXIS];
 
-             current_position[Y_AXIS] = 0.5f * (a + b);
 
-             // Search in the X direction along a cross.
 
-             found = false;
 
-             enable_z_endstop(false);
 
-             go_xy(x0, current_position[Y_AXIS], feedrate);
 
-             enable_z_endstop(true);
 
-             go_xy(x1, current_position[Y_AXIS], feedrate);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
- //                SERIAL_ECHOLN("Search X span 0 - not found");
 
-                 continue;
 
-             }
 
- //            SERIAL_ECHOLN("Search X span 0 - found");
 
-             a = current_position[X_AXIS];
 
-             enable_z_endstop(false);
 
-             go_xy(x1, current_position[Y_AXIS], feedrate);
 
-             enable_z_endstop(true);
 
-             go_xy(x0, current_position[Y_AXIS], feedrate);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
- //                SERIAL_ECHOLN("Search X span 1 - not found");
 
-                 continue;
 
-             }
 
- //            SERIAL_ECHOLN("Search X span 1 - found");
 
-             b = current_position[X_AXIS];
 
-             // Go to the center.
 
-             enable_z_endstop(false);
 
-             current_position[X_AXIS] = 0.5f * (a + b);
 
-             go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
 
-             found = true;
 
- #if 1
 
-             // Search in the Y direction along a cross.
 
-             found = false;
 
-             enable_z_endstop(false);
 
-             go_xy(current_position[X_AXIS], y0, feedrate);
 
-             enable_z_endstop(true);
 
-             go_xy(current_position[X_AXIS], y1, feedrate);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
- //                SERIAL_ECHOLN("Search Y2 span 0 - not found");
 
-                 continue;
 
-             }
 
- //            SERIAL_ECHOLN("Search Y2 span 0 - found");
 
-             a = current_position[Y_AXIS];
 
-             enable_z_endstop(false);
 
-             go_xy(current_position[X_AXIS], y1, feedrate);
 
-             enable_z_endstop(true);
 
-             go_xy(current_position[X_AXIS], y0, feedrate);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
- //                SERIAL_ECHOLN("Search Y2 span 1 - not found");
 
-                 continue;
 
-             }
 
- //            SERIAL_ECHOLN("Search Y2 span 1 - found");
 
-             b = current_position[Y_AXIS];
 
-             // Go to the center.
 
-             enable_z_endstop(false);
 
-             current_position[Y_AXIS] = 0.5f * (a + b);
 
-             go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
 
-             found = true;
 
- #endif
 
-             break;
 
-         }
 
-     }
 
-     enable_z_endstop(false);
 
-     return found;
 
- }
 
- // Search around the current_position[X,Y,Z].
 
- // It is expected, that the induction sensor is switched on at the current position.
 
- // Look around this center point by painting a star around the point.
 
- inline bool improve_bed_induction_sensor_point()
 
- {
 
-     static const float search_radius = 8.f;
 
-     bool  endstops_enabled  = enable_endstops(false);
 
-     bool  endstop_z_enabled = enable_z_endstop(false);
 
-     bool  found = false;
 
-     float feedrate = homing_feedrate[X_AXIS] / 60.f;
 
-     float center_old_x = current_position[X_AXIS];
 
-     float center_old_y = current_position[Y_AXIS];
 
-     float center_x = 0.f;
 
-     float center_y = 0.f;
 
-     for (uint8_t iter = 0; iter < 4; ++ iter) {
 
-         switch (iter) {
 
-         case 0:
 
-             destination[X_AXIS] = center_old_x - search_radius * 0.707;
 
-             destination[Y_AXIS] = center_old_y - search_radius * 0.707;
 
-             break;
 
-         case 1:
 
-             destination[X_AXIS] = center_old_x + search_radius * 0.707;
 
-             destination[Y_AXIS] = center_old_y + search_radius * 0.707;
 
-             break;
 
-         case 2:
 
-             destination[X_AXIS] = center_old_x + search_radius * 0.707;
 
-             destination[Y_AXIS] = center_old_y - search_radius * 0.707;
 
-             break;
 
-         case 3:
 
-         default:
 
-             destination[X_AXIS] = center_old_x - search_radius * 0.707;
 
-             destination[Y_AXIS] = center_old_y + search_radius * 0.707;
 
-             break;
 
-         }
 
-         // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
 
-         float vx = destination[X_AXIS] - center_old_x;
 
-         float vy = destination[Y_AXIS] - center_old_y;
 
-         float l  = sqrt(vx*vx+vy*vy);
 
-         float t;
 
-         if (destination[X_AXIS] < X_MIN_POS) {
 
-             // Exiting the bed at xmin.
 
-             t = (center_x - X_MIN_POS) / l;
 
-             destination[X_AXIS] = X_MIN_POS;
 
-             destination[Y_AXIS] = center_old_y + t * vy;
 
-         } else if (destination[X_AXIS] > X_MAX_POS) {
 
-             // Exiting the bed at xmax.
 
-             t = (X_MAX_POS - center_x) / l;
 
-             destination[X_AXIS] = X_MAX_POS;
 
-             destination[Y_AXIS] = center_old_y + t * vy;
 
-         }
 
-         if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {
 
-             // Exiting the bed at ymin.
 
-             t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;
 
-             destination[X_AXIS] = center_old_x + t * vx;
 
-             destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
 
-         } else if (destination[Y_AXIS] > Y_MAX_POS) {
 
-             // Exiting the bed at xmax.
 
-             t = (Y_MAX_POS - center_y) / l;
 
-             destination[X_AXIS] = center_old_x + t * vx;
 
-             destination[Y_AXIS] = Y_MAX_POS;
 
-         }
 
-         // Move away from the measurement point.
 
-         enable_endstops(false);
 
-         go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
 
-         // Move towards the measurement point, until the induction sensor triggers.
 
-         enable_endstops(true);
 
-         go_xy(center_old_x, center_old_y, feedrate);
 
-         update_current_position_xyz();
 
- //        if (! endstop_z_hit_on_purpose()) return false;
 
-         center_x += current_position[X_AXIS];
 
-         center_y += current_position[Y_AXIS];
 
-     }
 
-     // Calculate the new center, move to the new center.
 
-     center_x /= 4.f;
 
-     center_y /= 4.f;
 
-     current_position[X_AXIS] = center_x;
 
-     current_position[Y_AXIS] = center_y;
 
-     enable_endstops(false);
 
-     go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
 
-     enable_endstops(endstops_enabled);
 
-     enable_z_endstop(endstop_z_enabled);
 
-     return found;
 
- }
 
- static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
 
- {
 
-     SERIAL_ECHOPGM("Measured ");
 
-     SERIAL_ECHORPGM(type);
 
-     SERIAL_ECHOPGM(" ");
 
-     MYSERIAL.print(x, 5);
 
-     SERIAL_ECHOPGM(", ");
 
-     MYSERIAL.print(y, 5);
 
-     SERIAL_ECHOPGM(", ");
 
-     MYSERIAL.print(z, 5);
 
-     SERIAL_ECHOLNPGM("");
 
- }
 
- // Search around the current_position[X,Y,Z].
 
- // It is expected, that the induction sensor is switched on at the current position.
 
- // Look around this center point by painting a star around the point.
 
- #define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
 
- inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
 
- {
 
-     float center_old_x = current_position[X_AXIS];
 
-     float center_old_y = current_position[Y_AXIS];
 
-     float a, b;
 
-     bool  point_small = false;
 
-     enable_endstops(false);
 
-     {
 
-         float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
 
-         float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
 
-         if (x0 < X_MIN_POS)
 
-             x0 = X_MIN_POS;
 
-         if (x1 > X_MAX_POS)
 
-             x1 = X_MAX_POS;
 
-         // Search in the X direction along a cross.
 
-         enable_z_endstop(false);
 
-         go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-         enable_z_endstop(true);
 
-         go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-         update_current_position_xyz();
 
-         if (! endstop_z_hit_on_purpose()) {
 
-             current_position[X_AXIS] = center_old_x;
 
-             goto canceled;
 
-         }
 
-         a = current_position[X_AXIS];
 
-         enable_z_endstop(false);
 
-         go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-         enable_z_endstop(true);
 
-         go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-         update_current_position_xyz();
 
-         if (! endstop_z_hit_on_purpose()) {
 
-             current_position[X_AXIS] = center_old_x;
 
-             goto canceled;
 
-         }
 
-         b = current_position[X_AXIS];
 
-         if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
 
- 			#ifdef SUPPORT_VERBOSITY
 
-             if (verbosity_level >= 5) {
 
-                 SERIAL_ECHOPGM("Point width too small: ");
 
-                 SERIAL_ECHO(b - a);
 
-                 SERIAL_ECHOLNPGM("");
 
-             }
 
- 			#endif // SUPPORT_VERBOSITY
 
-             // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
 
-             if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
 
-                 // Don't use the new X value.
 
-                 current_position[X_AXIS] = center_old_x;
 
-                 goto canceled;
 
-             } else {
 
-                 // Use the new value, but force the Z axis to go a bit lower.
 
-                 point_small = true;
 
-             }
 
-         }
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 5) {
 
-             debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-             debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-         }
 
- 		#endif // SUPPORT_VERBOSITY
 
-         // Go to the center.
 
-         enable_z_endstop(false);
 
-         current_position[X_AXIS] = 0.5f * (a + b);
 
-         go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-     }
 
-     {
 
-         float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
 
-         float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
 
-         if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
 
-             y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
 
-         if (y1 > Y_MAX_POS)
 
-             y1 = Y_MAX_POS;
 
-         // Search in the Y direction along a cross.
 
-         enable_z_endstop(false);
 
-         go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
 
-         if (lift_z_on_min_y) {
 
-             // The first row of points are very close to the end stop.
 
-             // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
 
-             go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);
 
-             // and go back.
 
-             go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
 
-         }
 
-         if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
 
-             // Already triggering before we started the move.
 
-             // Shift the trigger point slightly outwards.
 
-             // a = current_position[Y_AXIS] - 1.5f;
 
-             a = current_position[Y_AXIS];
 
-         } else {
 
-             enable_z_endstop(true);
 
-             go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
-                 current_position[Y_AXIS] = center_old_y;
 
-                 goto canceled;
 
-             }
 
-             a = current_position[Y_AXIS];
 
-         }
 
-         enable_z_endstop(false);
 
-         go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
 
-         enable_z_endstop(true);
 
-         go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
 
-         update_current_position_xyz();
 
-         if (! endstop_z_hit_on_purpose()) {
 
-             current_position[Y_AXIS] = center_old_y;
 
-             goto canceled;
 
-         }
 
-         b = current_position[Y_AXIS];
 
-         if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
 
-             // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 5) {
 
-                 SERIAL_ECHOPGM("Point height too small: ");
 
-                 SERIAL_ECHO(b - a);
 
-                 SERIAL_ECHOLNPGM("");
 
-             }
 
- 			#endif // SUPPORT_VERBOSITY
 
-             if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
 
-                 // Don't use the new Y value.
 
-                 current_position[Y_AXIS] = center_old_y;
 
-                 goto canceled;
 
-             } else {
 
-                 // Use the new value, but force the Z axis to go a bit lower.
 
-                 point_small = true;
 
-             }
 
-         }
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 5) {
 
-             debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
 
-             debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
 
-         }
 
- 		#endif // SUPPORT_VERBOSITY
 
-         // Go to the center.
 
-         enable_z_endstop(false);
 
-         current_position[Y_AXIS] = 0.5f * (a + b);
 
-         go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-     }
 
-     // If point is small but not too small, then force the Z axis to be lowered a bit,
 
-     // but use the new value. This is important when the initial position was off in one axis,
 
-     // for example if the initial calibration was shifted in the Y axis systematically.
 
-     // Then this first step will center.
 
-     return ! point_small;
 
- canceled:
 
-     // Go back to the center.
 
-     enable_z_endstop(false);
 
-     go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-     return false;
 
- }
 
- // Searching the front points, where one cannot move the sensor head in front of the sensor point.
 
- // Searching in a zig-zag movement in a plane for the maximum width of the response.
 
- // This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.
 
- // If this function failed, the Y coordinate will never be outside the working space.
 
- #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)
 
- #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
 
- inline bool improve_bed_induction_sensor_point3(int verbosity_level)
 
- {	
 
-     float center_old_x = current_position[X_AXIS];
 
-     float center_old_y = current_position[Y_AXIS];
 
-     float a, b;
 
-     bool  result = true;
 
- 	#ifdef SUPPORT_VERBOSITY
 
- 	if (verbosity_level >= 20) MYSERIAL.println("Improve bed induction sensor point3");
 
- 	#endif // SUPPORT_VERBOSITY
 
-     // Was the sensor point detected too far in the minus Y axis?
 
-     // If yes, the center of the induction point cannot be reached by the machine.
 
-     {
 
-         float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-         float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-         float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-         float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-         float y = y0;
 
-         if (x0 < X_MIN_POS)
 
-             x0 = X_MIN_POS;
 
-         if (x1 > X_MAX_POS)
 
-             x1 = X_MAX_POS;
 
-         if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
 
-             y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
 
-         if (y1 > Y_MAX_POS)
 
-             y1 = Y_MAX_POS;
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 20) {
 
-             SERIAL_ECHOPGM("Initial position: ");
 
-             SERIAL_ECHO(center_old_x);
 
-             SERIAL_ECHOPGM(", ");
 
-             SERIAL_ECHO(center_old_y);
 
-             SERIAL_ECHOLNPGM("");
 
-         }
 
- 		#endif // SUPPORT_VERBOSITY
 
-         // Search in the positive Y direction, until a maximum diameter is found.
 
-         // (the next diameter is smaller than the current one.)
 
-         float dmax = 0.f;
 
-         float xmax1 = 0.f;
 
-         float xmax2 = 0.f;
 
-         for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
 
-             enable_z_endstop(false);
 
-             go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-             enable_z_endstop(true);
 
-             go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
-                 continue;
 
-                 // SERIAL_PROTOCOLPGM("Failed 1\n");
 
-                 // current_position[X_AXIS] = center_old_x;
 
-                 // goto canceled;
 
-             }
 
-             a = current_position[X_AXIS];
 
-             enable_z_endstop(false);
 
-             go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-             enable_z_endstop(true);
 
-             go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
-                 continue;
 
-                 // SERIAL_PROTOCOLPGM("Failed 2\n");
 
-                 // current_position[X_AXIS] = center_old_x;
 
-                 // goto canceled;
 
-             }
 
-             b = current_position[X_AXIS];
 
- 			#ifdef SUPPORT_VERBOSITY
 
-             if (verbosity_level >= 5) {
 
-                 debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-                 debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-             }
 
- 			#endif // SUPPORT_VERBOSITY
 
-             float d = b - a;
 
-             if (d > dmax) {
 
-                 xmax1 = 0.5f * (a + b);
 
-                 dmax = d;
 
-             } else if (dmax > 0.) {
 
-                 y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
 
-                 break;
 
-             }
 
-         }
 
-         if (dmax == 0.) {
 
- 			#ifdef SUPPORT_VERBOSITY
 
-             if (verbosity_level > 0)
 
-                 SERIAL_PROTOCOLPGM("failed - not found\n");
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			current_position[X_AXIS] = center_old_x;
 
-             current_position[Y_AXIS] = center_old_y;
 
-             goto canceled;
 
-         }
 
-         {
 
-             // Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.
 
-             enable_z_endstop(false);
 
-             go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
 
-             enable_z_endstop(true);
 
-             go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
-                 current_position[Y_AXIS] = center_old_y;
 
-                 goto canceled;
 
-             }
 
- 			#ifdef SUPPORT_VERBOSITY
 
-             if (verbosity_level >= 5)
 
-                 debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			y1 = current_position[Y_AXIS];
 
-         }
 
-         if (y1 <= y0) {
 
-             // Either the induction sensor is too high, or the induction sensor target is out of reach.
 
-             current_position[Y_AXIS] = center_old_y;
 
-             goto canceled;
 
-         }
 
-         // Search in the negative Y direction, until a maximum diameter is found.
 
-         dmax = 0.f;
 
-         // if (y0 + 1.f < y1)
 
-         //    y1 = y0 + 1.f;
 
-         for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
 
-             enable_z_endstop(false);
 
-             go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-             enable_z_endstop(true);
 
-             go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
-                 continue;
 
-                 /*
 
-                 current_position[X_AXIS] = center_old_x;
 
-                 SERIAL_PROTOCOLPGM("Failed 3\n");
 
-                 goto canceled;
 
-                 */
 
-             }
 
-             a = current_position[X_AXIS];
 
-             enable_z_endstop(false);
 
-             go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-             enable_z_endstop(true);
 
-             go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
-                 continue;
 
-                 /*
 
-                 current_position[X_AXIS] = center_old_x;
 
-                 SERIAL_PROTOCOLPGM("Failed 4\n");
 
-                 goto canceled;
 
-                 */
 
-             }
 
-             b = current_position[X_AXIS];
 
- 			#ifdef SUPPORT_VERBOSITY
 
-             if (verbosity_level >= 5) {
 
-                 debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-                 debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-             }
 
- 			#endif // SUPPORT_VERBOSITY
 
-             float d = b - a;
 
-             if (d > dmax) {
 
-                 xmax2 = 0.5f * (a + b);
 
-                 dmax = d;
 
-             } else if (dmax > 0.) {
 
-                 y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
 
-                 break;
 
-             }
 
-         }
 
-         float xmax, ymax;
 
-         if (dmax == 0.f) {
 
-             // Only the hit in the positive direction found.
 
-             xmax = xmax1;
 
-             ymax = y0;
 
-         } else {
 
-             // Both positive and negative directions found.
 
-             xmax = xmax2;
 
-             ymax = 0.5f * (y0 + y1);
 
-             for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
 
-                 enable_z_endstop(false);
 
-                 go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-                 enable_z_endstop(true);
 
-                 go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-                 update_current_position_xyz();
 
-                 if (! endstop_z_hit_on_purpose()) {
 
-                     continue;
 
-                     /*
 
-                     current_position[X_AXIS] = center_old_x;
 
-                     SERIAL_PROTOCOLPGM("Failed 3\n");
 
-                     goto canceled;
 
-                     */
 
-                 }
 
-                 a = current_position[X_AXIS];
 
-                 enable_z_endstop(false);
 
-                 go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-                 enable_z_endstop(true);
 
-                 go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-                 update_current_position_xyz();
 
-                 if (! endstop_z_hit_on_purpose()) {
 
-                     continue;
 
-                     /*
 
-                     current_position[X_AXIS] = center_old_x;
 
-                     SERIAL_PROTOCOLPGM("Failed 4\n");
 
-                     goto canceled;
 
-                     */
 
-                 }
 
-                 b = current_position[X_AXIS];
 
- 				#ifdef SUPPORT_VERBOSITY
 
-                 if (verbosity_level >= 5) {
 
-                     debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-                     debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
 
-                 }
 
- 				#endif // SUPPORT_VERBOSITY
 
-                 float d = b - a;
 
-                 if (d > dmax) {
 
-                     xmax = 0.5f * (a + b);
 
-                     ymax = y;
 
-                     dmax = d;
 
-                 }
 
-             }
 
-         }
 
-         {
 
-             // Compare the distance in the Y+ direction with the diameter in the X direction.
 
-             // Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.
 
-             enable_z_endstop(false);
 
-             go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
 
-             enable_z_endstop(true);
 
-             go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
 
-             update_current_position_xyz();
 
-             if (! endstop_z_hit_on_purpose()) {
 
-                 current_position[Y_AXIS] = center_old_y;
 
-                 goto canceled;
 
-             }
 
- 			#ifdef SUPPORT_VERBOSITY
 
-             if (verbosity_level >= 5)
 
-                 debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
 
-                 // Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
 
-                 // First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
 
-                 if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
 
- 					#ifdef SUPPORT_VERBOSITY
 
- 					if (verbosity_level >= 5) {
 
-                         SERIAL_ECHOPGM("Partial point diameter too small: ");
 
-                         SERIAL_ECHO(dmax);
 
-                         SERIAL_ECHOLNPGM("");
 
-                     }
 
- 					#endif // SUPPORT_VERBOSITY
 
-                     result = false;
 
-                 } else {
 
-                     // Estimate the circle radius from the maximum diameter and height:
 
-                     float h = current_position[Y_AXIS] - ymax;
 
-                     float r = dmax * dmax / (8.f * h) + 0.5f * h;
 
-                     if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
 
- 						#ifdef SUPPORT_VERBOSITY
 
- 						if (verbosity_level >= 5) {
 
-                             SERIAL_ECHOPGM("Partial point estimated radius too small: ");
 
-                             SERIAL_ECHO(r);
 
-                             SERIAL_ECHOPGM(", dmax:");
 
-                             SERIAL_ECHO(dmax);
 
-                             SERIAL_ECHOPGM(", h:");
 
-                             SERIAL_ECHO(h);
 
-                             SERIAL_ECHOLNPGM("");
 
-                         }
 
- 						#endif // SUPPORT_VERBOSITY
 
-                         result = false;
 
-                     } else {
 
-                         // The point may end up outside of the machine working space.
 
-                         // That is all right as it helps to improve the accuracy of the measurement point
 
-                         // due to averaging.
 
-                         // For the y correction, use an average of dmax/2 and the estimated radius.
 
-                         r = 0.5f * (0.5f * dmax + r);
 
-                         ymax = current_position[Y_AXIS] - r;
 
-                     }
 
-                 }
 
-             } else {
 
-                 // If the diameter of the detected spot was smaller than a minimum allowed,
 
-                 // the induction sensor is probably too high. Returning false will force
 
-                 // the sensor to be lowered a tiny bit.
 
-                 result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;
 
-                 if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)
 
-                     // Only in case both left and right y tangents are known, use them.
 
-                     // If y0 is close to the bed edge, it may not be symmetric to the right tangent.
 
-                     ymax = 0.5f * ymax + 0.25f * (y0 + y1);
 
-             }
 
-         }
 
-         // Go to the center.
 
-         enable_z_endstop(false);
 
-         current_position[X_AXIS] = xmax;
 
-         current_position[Y_AXIS] = ymax;
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 20) {
 
-             SERIAL_ECHOPGM("Adjusted position: ");
 
-             SERIAL_ECHO(current_position[X_AXIS]);
 
-             SERIAL_ECHOPGM(", ");
 
-             SERIAL_ECHO(current_position[Y_AXIS]);
 
-             SERIAL_ECHOLNPGM("");
 
-         }
 
- 		#endif // SUPPORT_VERBOSITY
 
-         // Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
 
-         // Only clamp the coordinate to go.
 
-         go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);
 
-         // delay_keep_alive(3000);
 
-     }
 
-     if (result)
 
-         return true;
 
-     // otherwise clamp the Y coordinate
 
- canceled:
 
-     // Go back to the center.
 
-     enable_z_endstop(false);
 
-     if (current_position[Y_AXIS] < Y_MIN_POS)
 
-         current_position[Y_AXIS] = Y_MIN_POS;
 
-     go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
-     return false;
 
- }
 
- // Scan the mesh bed induction points one by one by a left-right zig-zag movement,
 
- // write the trigger coordinates to the serial line.
 
- // Useful for visualizing the behavior of the bed induction detector.
 
- inline void scan_bed_induction_sensor_point()
 
- {
 
-     float center_old_x = current_position[X_AXIS];
 
-     float center_old_y = current_position[Y_AXIS];
 
-     float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-     float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-     float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-     float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
 
-     float y = y0;
 
-     if (x0 < X_MIN_POS)
 
-         x0 = X_MIN_POS;
 
-     if (x1 > X_MAX_POS)
 
-         x1 = X_MAX_POS;
 
-     if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
 
-         y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
 
-     if (y1 > Y_MAX_POS)
 
-         y1 = Y_MAX_POS;
 
-     for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
 
-         enable_z_endstop(false);
 
-         go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-         enable_z_endstop(true);
 
-         go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-         update_current_position_xyz();
 
-         if (endstop_z_hit_on_purpose())
 
-             debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
 
-         enable_z_endstop(false);
 
-         go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
 
-         enable_z_endstop(true);
 
-         go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
 
-         update_current_position_xyz();
 
-         if (endstop_z_hit_on_purpose())
 
-             debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
 
-     }
 
-     enable_z_endstop(false);
 
-     current_position[X_AXIS] = center_old_x;
 
-     current_position[Y_AXIS] = center_old_y;
 
-     go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
 
- }
 
- #define MESH_BED_CALIBRATION_SHOW_LCD
 
- BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level, uint8_t &too_far_mask)
 
- {	
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     // Reusing the z_values memory for the measurement cache.
 
-     // 7x7=49 floats, good for 16 (x,y,z) vectors.
 
-     float *pts = &mbl.z_values[0][0];
 
-     float *vec_x = pts + 2 * 4;
 
-     float *vec_y = vec_x + 2;
 
-     float *cntr  = vec_y + 2;
 
-     memset(pts, 0, sizeof(float) * 7 * 7);
 
- 	uint8_t iteration = 0; 
 
- 	BedSkewOffsetDetectionResultType result;
 
- //    SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
 
- //    SERIAL_ECHO(int(verbosity_level));
 
- //    SERIAL_ECHOPGM("");
 
- 	
 
- 	while (iteration < 3) {
 
- 		SERIAL_ECHOPGM("Iteration: ");
 
- 		MYSERIAL.println(int(iteration + 1));
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 20) {
 
- 		SERIAL_ECHOLNPGM("Vectors: ");
 
- 		
 
- 			SERIAL_ECHOPGM("vec_x[0]:");
 
- 			MYSERIAL.print(vec_x[0], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOPGM("vec_x[1]:");
 
- 			MYSERIAL.print(vec_x[1], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOPGM("vec_y[0]:");
 
- 			MYSERIAL.print(vec_y[0], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOPGM("vec_y[1]:");
 
- 			MYSERIAL.print(vec_y[1], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOPGM("cntr[0]:");
 
- 			MYSERIAL.print(cntr[0], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOPGM("cntr[1]:");
 
- 			MYSERIAL.print(cntr[1], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 		}
 
- 		#endif // SUPPORT_VERBOSITY
 
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
 
-     uint8_t next_line;
 
-     lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1, next_line);
 
-     if (next_line > 3)
 
-         next_line = 3;
 
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
 
-     // Collect the rear 2x3 points.
 
- 	current_position[Z_AXIS] = MESH_HOME_Z_SEARCH + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
 
- 	for (int k = 0; k < 4; ++k) {
 
- 		// Don't let the manage_inactivity() function remove power from the motors.
 
- 		refresh_cmd_timeout();
 
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
 
- 		lcd_implementation_print_at(0, next_line, k + 1);
 
- 		lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
 
- 		if (iteration > 0) {
 
- 			lcd_print_at_PGM(0, next_line + 1, MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION);
 
- 			lcd_implementation_print(int(iteration + 1));
 
- 		}
 
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
 
- 		float *pt = pts + k * 2;
 
- 		// Go up to z_initial.
 
- 		go_to_current(homing_feedrate[Z_AXIS] / 60.f);
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 20) {
 
- 			// Go to Y0, wait, then go to Y-4.
 
- 			current_position[Y_AXIS] = 0.f;
 
- 			go_to_current(homing_feedrate[X_AXIS] / 60.f);
 
- 			SERIAL_ECHOLNPGM("At Y0");
 
- 			delay_keep_alive(5000);
 
- 			current_position[Y_AXIS] = Y_MIN_POS;
 
- 			go_to_current(homing_feedrate[X_AXIS] / 60.f);
 
- 			SERIAL_ECHOLNPGM("At Y-4");
 
- 			delay_keep_alive(5000);
 
- 		}
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		// Go to the measurement point position.
 
- 		//if (iteration == 0) {
 
- 			current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);
 
- 			current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2 + 1);
 
- 		/*}
 
- 		else {
 
- 			// if first iteration failed, count corrected point coordinates as initial
 
- 			// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
 
- 			
 
- 			current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[0] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[0];
 
- 			current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[1];
 
- 			// The calibration points are very close to the min Y.
 
- 			if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
 
- 				current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
 
- 		}*/
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 20) {
 
- 			SERIAL_ECHOPGM("current_position[X_AXIS]:");
 
- 			MYSERIAL.print(current_position[X_AXIS], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOPGM("current_position[Y_AXIS]:");
 
- 			MYSERIAL.print(current_position[Y_AXIS], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 			SERIAL_ECHOPGM("current_position[Z_AXIS]:");
 
- 			MYSERIAL.print(current_position[Z_AXIS], 5);
 
- 			SERIAL_ECHOLNPGM("");
 
- 		}
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		go_to_current(homing_feedrate[X_AXIS] / 60.f);
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 10)
 
- 			delay_keep_alive(3000);
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		if (!find_bed_induction_sensor_point_xy(verbosity_level))
 
- 			return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
 
- #if 1
 
- 		
 
- 			if (k == 0 || k == 1) {
 
- 				// Improve the position of the 1st row sensor points by a zig-zag movement.
 
- 				find_bed_induction_sensor_point_z();
 
- 				int8_t i = 4;
 
- 				for (;;) {
 
- 					if (improve_bed_induction_sensor_point3(verbosity_level))
 
- 						break;
 
- 					if (--i == 0)
 
- 						return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
 
- 					// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
 
- 					current_position[Z_AXIS] -= 0.025f;
 
- 					enable_endstops(false);
 
- 					enable_z_endstop(false);
 
- 					go_to_current(homing_feedrate[Z_AXIS]);
 
- 				}
 
- 				if (i == 0)
 
- 					// not found
 
- 					return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
 
- 			}
 
- #endif
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 10)
 
- 				delay_keep_alive(3000);
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			// Save the detected point position and then clamp the Y coordinate, which may have been estimated
 
- 			// to lie outside the machine working space.
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) {
 
- 				SERIAL_ECHOLNPGM("Measured:");
 
- 				MYSERIAL.println(current_position[X_AXIS]);
 
- 				MYSERIAL.println(current_position[Y_AXIS]);
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			pt[0] = (pt[0] * iteration) / (iteration + 1);
 
- 			pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average
 
- 			pt[1] = (pt[1] * iteration) / (iteration + 1);
 
- 			pt[1] += (current_position[Y_AXIS] / (iteration + 1));
 
- 			
 
- 			
 
- 			//pt[0] += current_position[X_AXIS];
 
- 			//if(iteration > 0) pt[0] = pt[0] / 2;
 
- 						
 
- 			//pt[1] += current_position[Y_AXIS];
 
- 			//if (iteration > 0) pt[1] = pt[1] / 2;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) {
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOPGM("pt[0]:");
 
- 				MYSERIAL.println(pt[0]);
 
- 				SERIAL_ECHOPGM("pt[1]:");
 
- 				MYSERIAL.println(pt[1]);
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			if (current_position[Y_AXIS] < Y_MIN_POS)
 
- 				current_position[Y_AXIS] = Y_MIN_POS;
 
- 			// Start searching for the other points at 3mm above the last point.
 
- 			current_position[Z_AXIS] += 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
 
- 			//cntr[0] += pt[0];
 
- 			//cntr[1] += pt[1];
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 10 && k == 0) {
 
- 				// Show the zero. Test, whether the Y motor skipped steps.
 
- 				current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
 
- 				go_to_current(homing_feedrate[X_AXIS] / 60.f);
 
- 				delay_keep_alive(3000);
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 		}
 
- 		delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity
 
- 		
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 20) {
 
- 			// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
 
- 			delay_keep_alive(3000);
 
- 			for (int8_t mesh_point = 0; mesh_point < 4; ++mesh_point) {
 
- 				// Don't let the manage_inactivity() function remove power from the motors.
 
- 				refresh_cmd_timeout();
 
- 				// Go to the measurement point.
 
- 				// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
 
- 				current_position[X_AXIS] = pts[mesh_point * 2];
 
- 				current_position[Y_AXIS] = pts[mesh_point * 2 + 1];
 
- 				go_to_current(homing_feedrate[X_AXIS] / 60);
 
- 				delay_keep_alive(3000);
 
- 			}
 
- 		}
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		if (pts[1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
 
- 			too_far_mask |= 1 << 1; //front center point is out of reach
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOPGM("WARNING: Front point not reachable. Y coordinate:");
 
- 				MYSERIAL.print(pts[1]);
 
- 				SERIAL_ECHOPGM(" < ");
 
- 				MYSERIAL.println(Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
 
- 		}
 
- 		result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
 
- 		delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity
 
- 		
 
- 		if (result >= 0) {
 
- 			world2machine_update(vec_x, vec_y, cntr);
 
- #if 1
 
- 			// Fearlessly store the calibration values into the eeprom.
 
- 			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0), cntr[0]);
 
- 			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4), cntr[1]);
 
- 			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0), vec_x[0]);
 
- 			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4), vec_x[1]);
 
- 			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);
 
- 			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);
 
- #endif
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 10) {
 
- 				// Length of the vec_x
 
- 				float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
 
- 				SERIAL_ECHOLNPGM("X vector length:");
 
- 				MYSERIAL.println(l);
 
- 				// Length of the vec_y
 
- 				l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
 
- 				SERIAL_ECHOLNPGM("Y vector length:");
 
- 				MYSERIAL.println(l);
 
- 				// Zero point correction
 
- 				l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
 
- 				SERIAL_ECHOLNPGM("Zero point correction:");
 
- 				MYSERIAL.println(l);
 
- 				// vec_x and vec_y shall be nearly perpendicular.
 
- 				l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
 
- 				SERIAL_ECHOLNPGM("Perpendicularity");
 
- 				MYSERIAL.println(fabs(l));
 
- 				SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
 
- 			world2machine_update_current();
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) {
 
- 				// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
 
- 				delay_keep_alive(3000);
 
- 				for (int8_t mesh_point = 0; mesh_point < 9; ++mesh_point) {
 
- 					// Don't let the manage_inactivity() function remove power from the motors.
 
- 					refresh_cmd_timeout();
 
- 					// Go to the measurement point.
 
- 					// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
 
- 					current_position[X_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2);
 
- 					current_position[Y_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2 + 1);
 
- 					go_to_current(homing_feedrate[X_AXIS] / 60);
 
- 					delay_keep_alive(3000);
 
- 				}
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			return result;
 
- 		}		
 
- 		if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED && too_far_mask == 2) return result; //if fitting failed and front center point is out of reach, terminate calibration and inform user
 
- 		iteration++;
 
- 	}
 
- 	return result;    
 
- }
 
- BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask)
 
- {
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     // Mask of the first three points. Are they too far?
 
-     too_far_mask = 0;
 
-     // Reusing the z_values memory for the measurement cache.
 
-     // 7x7=49 floats, good for 16 (x,y,z) vectors.
 
-     float *pts = &mbl.z_values[0][0];
 
-     float *vec_x = pts + 2 * 9;
 
-     float *vec_y = vec_x + 2;
 
-     float *cntr  = vec_y + 2;
 
-     memset(pts, 0, sizeof(float) * 7 * 7);
 
- 	#ifdef SUPPORT_VERBOSITY
 
- 	if (verbosity_level >= 10) SERIAL_ECHOLNPGM("Improving bed offset and skew");
 
- 	#endif // SUPPORT_VERBOSITY
 
-     // Cache the current correction matrix.
 
-     world2machine_initialize();
 
-     vec_x[0] = world2machine_rotation_and_skew[0][0];
 
-     vec_x[1] = world2machine_rotation_and_skew[1][0];
 
-     vec_y[0] = world2machine_rotation_and_skew[0][1];
 
-     vec_y[1] = world2machine_rotation_and_skew[1][1];
 
-     cntr[0] = world2machine_shift[0];
 
-     cntr[1] = world2machine_shift[1];
 
-     // and reset the correction matrix, so the planner will not do anything.
 
-     world2machine_reset();
 
-     bool endstops_enabled  = enable_endstops(false);
 
-     bool endstop_z_enabled = enable_z_endstop(false);
 
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
 
-     uint8_t next_line;
 
-     lcd_display_message_fullscreen_P(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1, next_line);
 
-     if (next_line > 3)
 
-         next_line = 3;
 
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
 
-     // Collect a matrix of 9x9 points.
 
-     BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
 
-     for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
 
-         // Don't let the manage_inactivity() function remove power from the motors.
 
-         refresh_cmd_timeout();
 
-         // Print the decrasing ID of the measurement point.
 
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
 
-         lcd_implementation_print_at(0, next_line, mesh_point+1);
 
-         lcd_printPGM(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);
 
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
 
-         // Move up.
 
-         current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-         enable_endstops(false);
 
-         enable_z_endstop(false);
 
-         go_to_current(homing_feedrate[Z_AXIS]/60);
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 20) {
 
-             // Go to Y0, wait, then go to Y-4.
 
-             current_position[Y_AXIS] = 0.f;
 
-             go_to_current(homing_feedrate[X_AXIS] / 60.f);
 
-             SERIAL_ECHOLNPGM("At Y0");
 
-             delay_keep_alive(5000);
 
-             current_position[Y_AXIS] = Y_MIN_POS;
 
-             go_to_current(homing_feedrate[X_AXIS] / 60.f);
 
- 			SERIAL_ECHOLNPGM("At Y_MIN_POS");
 
-             delay_keep_alive(5000);
 
-         }
 
- 		#endif // SUPPORT_VERBOSITY
 
-         // Go to the measurement point.
 
-         // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
 
-         current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[0];
 
-         current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
 
-         // The calibration points are very close to the min Y.
 
-         if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){
 
-             current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) {
 
- 				SERIAL_ECHOPGM("Calibration point ");
 
- 				SERIAL_ECHO(mesh_point);
 
- 				SERIAL_ECHOPGM("lower than Ymin. Y coordinate clamping was used.");
 
- 				SERIAL_ECHOLNPGM("");
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 		}
 
-         go_to_current(homing_feedrate[X_AXIS]/60);
 
-         // Find its Z position by running the normal vertical search.
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 10)
 
-             delay_keep_alive(3000);
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		find_bed_induction_sensor_point_z();
 
- 		#ifdef SUPPORT_VERBOSITY
 
- 		if (verbosity_level >= 10)
 
-             delay_keep_alive(3000);
 
- 		#endif // SUPPORT_VERBOSITY
 
- 		// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
 
-         current_position[Z_AXIS] -= 0.025f;
 
-         // Improve the point position by searching its center in a current plane.
 
-         int8_t n_errors = 3;
 
-         for (int8_t iter = 0; iter < 8; ) {
 
- 			#ifdef SUPPORT_VERBOSITY
 
-             if (verbosity_level > 20) {
 
-                 SERIAL_ECHOPGM("Improving bed point ");
 
-                 SERIAL_ECHO(mesh_point);
 
-                 SERIAL_ECHOPGM(", iteration ");
 
-                 SERIAL_ECHO(iter);
 
-                 SERIAL_ECHOPGM(", z");
 
-                 MYSERIAL.print(current_position[Z_AXIS], 5);
 
-                 SERIAL_ECHOLNPGM("");
 
-             }
 
- 			#endif // SUPPORT_VERBOSITY
 
-             bool found = false;
 
-             if (mesh_point < 2) {
 
-                 // Because the sensor cannot move in front of the first row
 
-                 // of the sensor points, the y position cannot be measured
 
-                 // by a cross center method.
 
-                 // Use a zig-zag search for the first row of the points.
 
-                 found = improve_bed_induction_sensor_point3(verbosity_level);
 
-             } else {
 
-                 switch (method) {
 
-                     case 0: found = improve_bed_induction_sensor_point(); break;
 
-                     case 1: found = improve_bed_induction_sensor_point2(mesh_point < 2, verbosity_level); break;
 
-                     default: break;
 
-                 }
 
-             }
 
-             if (found) {
 
-                 if (iter > 3) {
 
-                     // Average the last 4 measurements.
 
-                     pts[mesh_point*2  ] += current_position[X_AXIS];
 
-                     pts[mesh_point*2+1] += current_position[Y_AXIS];
 
-                 }
 
-                 if (current_position[Y_AXIS] < Y_MIN_POS)
 
-                     current_position[Y_AXIS] = Y_MIN_POS;
 
-                 ++ iter;
 
-             } else if (n_errors -- == 0) {
 
-                 // Give up.
 
-                 result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
 
-                 goto canceled;
 
-             } else {
 
-                 // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
 
-                 current_position[Z_AXIS] -= 0.05f;
 
-                 enable_endstops(false);
 
-                 enable_z_endstop(false);
 
-                 go_to_current(homing_feedrate[Z_AXIS]);
 
- 				#ifdef SUPPORT_VERBOSITY
 
-                 if (verbosity_level >= 5) {
 
-                     SERIAL_ECHOPGM("Improving bed point ");
 
-                     SERIAL_ECHO(mesh_point);
 
-                     SERIAL_ECHOPGM(", iteration ");
 
-                     SERIAL_ECHO(iter);
 
-                     SERIAL_ECHOPGM(" failed. Lowering z to ");
 
-                     MYSERIAL.print(current_position[Z_AXIS], 5);
 
-                     SERIAL_ECHOLNPGM("");
 
-                 }
 
- 				#endif // SUPPORT_VERBOSITY
 
-             }
 
-         }
 
- 		#ifdef SUPPORT_VERBOSITY
 
-         if (verbosity_level >= 10)
 
-             delay_keep_alive(3000);
 
- 		#endif // SUPPORT_VERBOSITY
 
-     }
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     // Average the last 4 measurements.
 
-     for (int8_t i = 0; i < 8; ++ i)
 
-         pts[i] *= (1.f/4.f);
 
-     enable_endstops(false);
 
-     enable_z_endstop(false);
 
- 	#ifdef SUPPORT_VERBOSITY
 
-     if (verbosity_level >= 5) {
 
-         // Test the positions. Are the positions reproducible?
 
- 		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-         for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
 
-             // Don't let the manage_inactivity() function remove power from the motors.
 
-             refresh_cmd_timeout();
 
-             // Go to the measurement point.
 
-             // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
 
-             current_position[X_AXIS] = pts[mesh_point*2];
 
-             current_position[Y_AXIS] = pts[mesh_point*2+1];
 
-             if (verbosity_level >= 10) {
 
-                 go_to_current(homing_feedrate[X_AXIS]/60);
 
-                 delay_keep_alive(3000);
 
-             }
 
-             SERIAL_ECHOPGM("Final measured bed point ");
 
-             SERIAL_ECHO(mesh_point);
 
-             SERIAL_ECHOPGM(": ");
 
-             MYSERIAL.print(current_position[X_AXIS], 5);
 
-             SERIAL_ECHOPGM(", ");
 
-             MYSERIAL.print(current_position[Y_AXIS], 5);
 
-             SERIAL_ECHOLNPGM("");
 
-         }
 
-     }
 
- 	#endif // SUPPORT_VERBOSITY
 
-     {
 
-         // First fill in the too_far_mask from the measured points.
 
-         for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point)
 
-             if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
 
-                 too_far_mask |= 1 << mesh_point;
 
-         result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
 
-         if (result < 0) {
 
-             SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");
 
-             goto canceled;
 
-         }
 
-         // In case of success, update the too_far_mask from the calculated points.
 
-         for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point) {
 
-             float y = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
 
- 			distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
 
- 			#ifdef SUPPORT_VERBOSITY
 
- 			if (verbosity_level >= 20) {
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOPGM("Distance from min:");
 
- 				MYSERIAL.print(distance_from_min[mesh_point]);
 
- 				SERIAL_ECHOLNPGM("");
 
- 				SERIAL_ECHOPGM("y:");
 
- 				MYSERIAL.print(y);
 
- 				SERIAL_ECHOLNPGM("");
 
- 			}
 
- 			#endif // SUPPORT_VERBOSITY
 
- 			if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
 
-                 too_far_mask |= 1 << mesh_point;
 
-         }
 
-     }
 
-     world2machine_update(vec_x, vec_y, cntr);
 
- #if 1
 
-     // Fearlessly store the calibration values into the eeprom.
 
-     eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
 
-     eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
 
-     eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
 
-     eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
 
-     eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
 
-     eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
 
- #endif
 
-     // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
 
- 	world2machine_update_current();
 
-     enable_endstops(false);
 
-     enable_z_endstop(false);
 
- 	#ifdef SUPPORT_VERBOSITY
 
-     if (verbosity_level >= 5) {
 
-         // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
 
-         delay_keep_alive(3000);
 
- 		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-         for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
 
-             // Don't let the manage_inactivity() function remove power from the motors.
 
-             refresh_cmd_timeout();
 
-             // Go to the measurement point.
 
-             // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
 
-             current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2);
 
-             current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2+1);
 
-             if (verbosity_level >= 10) {
 
-                 go_to_current(homing_feedrate[X_AXIS]/60);
 
-                 delay_keep_alive(3000);
 
-             }
 
-             {
 
-                 float x, y;
 
-                 world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);
 
-                 SERIAL_ECHOPGM("Final calculated bed point ");
 
-                 SERIAL_ECHO(mesh_point);
 
-                 SERIAL_ECHOPGM(": ");
 
-                 MYSERIAL.print(x, 5);
 
-                 SERIAL_ECHOPGM(", ");
 
-                 MYSERIAL.print(y, 5);
 
-                 SERIAL_ECHOLNPGM("");
 
-             }
 
-         }
 
-     }
 
- 	#endif // SUPPORT_VERBOSITY
 
- 	//make space
 
- 	current_position[Z_AXIS] += 150;
 
- 	go_to_current(homing_feedrate[Z_AXIS] / 60);
 
- 	//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder););
 
- 	lcd_show_fullscreen_message_and_wait_P(MSG_PLACE_STEEL_SHEET);
 
-     // Sample Z heights for the mesh bed leveling.
 
-     // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
 
-     if (! sample_mesh_and_store_reference())
 
-         goto canceled;
 
-     enable_endstops(endstops_enabled);
 
-     enable_z_endstop(endstop_z_enabled);
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     return result;
 
- canceled:
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     // Print head up.
 
-     current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-     go_to_current(homing_feedrate[Z_AXIS]/60);
 
-     // Store the identity matrix to EEPROM.
 
-     reset_bed_offset_and_skew();
 
-     enable_endstops(endstops_enabled);
 
-     enable_z_endstop(endstop_z_enabled);
 
-     return result;
 
- }
 
- void go_home_with_z_lift()
 
- {
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     // Go home.
 
-     // First move up to a safe height.
 
-     current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-     go_to_current(homing_feedrate[Z_AXIS]/60);
 
-     // Second move to XY [0, 0].
 
-     current_position[X_AXIS] = X_MIN_POS+0.2;
 
-     current_position[Y_AXIS] = Y_MIN_POS+0.2;
 
-     // Clamp to the physical coordinates.
 
-     world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
 
-     go_to_current(homing_feedrate[X_AXIS]/60);
 
-     // Third move up to a safe height.
 
-     current_position[Z_AXIS] = Z_MIN_POS;
 
-     go_to_current(homing_feedrate[Z_AXIS]/60);    
 
- }
 
- // Sample the 9 points of the bed and store them into the EEPROM as a reference.
 
- // When calling this function, the X, Y, Z axes should be already homed,
 
- // and the world2machine correction matrix should be active.
 
- // Returns false if the reference values are more than 3mm far away.
 
- bool sample_mesh_and_store_reference()
 
- {
 
-     bool endstops_enabled  = enable_endstops(false);
 
-     bool endstop_z_enabled = enable_z_endstop(false);
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
 
-     uint8_t next_line;
 
-     lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1, next_line);
 
-     if (next_line > 3)
 
-         next_line = 3;
 
-     // display "point xx of yy"
 
-     lcd_implementation_print_at(0, next_line, 1);
 
-     lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
 
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
 
-     // Sample Z heights for the mesh bed leveling.
 
-     // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
 
-     {
 
-         // The first point defines the reference.
 
-         current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-         go_to_current(homing_feedrate[Z_AXIS]/60);
 
-         current_position[X_AXIS] = pgm_read_float(bed_ref_points);
 
-         current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
 
-         world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
 
-         go_to_current(homing_feedrate[X_AXIS]/60);
 
-         memcpy(destination, current_position, sizeof(destination));
 
-         enable_endstops(true);
 
-         homeaxis(Z_AXIS);
 
-         enable_endstops(false);
 
-         find_bed_induction_sensor_point_z();
 
-         mbl.set_z(0, 0, current_position[Z_AXIS]);
 
-     }
 
-     for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
 
-         // Don't let the manage_inactivity() function remove power from the motors.
 
-         refresh_cmd_timeout();
 
-         // Print the decrasing ID of the measurement point.
 
-         current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-         go_to_current(homing_feedrate[Z_AXIS]/60);
 
-         current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
 
-         current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
 
-         world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
 
-         go_to_current(homing_feedrate[X_AXIS]/60);
 
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
 
-         // display "point xx of yy"
 
-         lcd_implementation_print_at(0, next_line, mesh_point+1);
 
-         lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
 
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
 
-         find_bed_induction_sensor_point_z();
 
-         // Get cords of measuring point
 
-         int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
 
-         int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
 
-         if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
 
-         mbl.set_z(ix, iy, current_position[Z_AXIS]);
 
-     }
 
-     {
 
-         // Verify the span of the Z values.
 
-         float zmin = mbl.z_values[0][0];
 
-         float zmax = zmax;
 
-         for (int8_t j = 0; j < 3; ++ j)
 
-            for (int8_t i = 0; i < 3; ++ i) {
 
-                 zmin = min(zmin, mbl.z_values[j][i]);
 
-                 zmax = min(zmax, mbl.z_values[j][i]);
 
-            }
 
-         if (zmax - zmin > 3.f) {
 
-             // The span of the Z offsets is extreme. Give up.
 
-             // Homing failed on some of the points.
 
-             SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
 
-             return false;
 
-         }
 
-     }
 
-     // Store the correction values to EEPROM.
 
-     // Offsets of the Z heiths of the calibration points from the first point.
 
-     // The offsets are saved as 16bit signed int, scaled to tenths of microns.
 
-     {
 
-         uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
 
-         for (int8_t j = 0; j < 3; ++ j)
 
-             for (int8_t i = 0; i < 3; ++ i) {
 
-                 if (i == 0 && j == 0)
 
-                     continue;
 
-                 float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
 
-                 int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
 
-                 eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
 
-                 #if 0
 
-                 {
 
-                     uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
 
-                     float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
 
-                     SERIAL_ECHOPGM("Bed point ");
 
-                     SERIAL_ECHO(i);
 
-                     SERIAL_ECHOPGM(",");
 
-                     SERIAL_ECHO(j);
 
-                     SERIAL_ECHOPGM(", differences: written ");
 
-                     MYSERIAL.print(dif, 5);
 
-                     SERIAL_ECHOPGM(", read: ");
 
-                     MYSERIAL.print(dif2, 5);
 
-                     SERIAL_ECHOLNPGM("");
 
-                 }
 
-                 #endif
 
-                 addr += 2;
 
-             }
 
-     }
 
-     mbl.upsample_3x3();
 
-     mbl.active = true;
 
-     go_home_with_z_lift();
 
-     enable_endstops(endstops_enabled);
 
-     enable_z_endstop(endstop_z_enabled);
 
-     return true;
 
- }
 
- bool scan_bed_induction_points(int8_t verbosity_level)
 
- {
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     // Reusing the z_values memory for the measurement cache.
 
-     // 7x7=49 floats, good for 16 (x,y,z) vectors.
 
-     float *pts = &mbl.z_values[0][0];
 
-     float *vec_x = pts + 2 * 9;
 
-     float *vec_y = vec_x + 2;
 
-     float *cntr  = vec_y + 2;
 
-     memset(pts, 0, sizeof(float) * 7 * 7);
 
-     // Cache the current correction matrix.
 
-     world2machine_initialize();
 
-     vec_x[0] = world2machine_rotation_and_skew[0][0];
 
-     vec_x[1] = world2machine_rotation_and_skew[1][0];
 
-     vec_y[0] = world2machine_rotation_and_skew[0][1];
 
-     vec_y[1] = world2machine_rotation_and_skew[1][1];
 
-     cntr[0] = world2machine_shift[0];
 
-     cntr[1] = world2machine_shift[1];
 
-     // and reset the correction matrix, so the planner will not do anything.
 
-     world2machine_reset();
 
-     bool endstops_enabled  = enable_endstops(false);
 
-     bool endstop_z_enabled = enable_z_endstop(false);
 
-     // Collect a matrix of 9x9 points.
 
-     for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
 
-         // Don't let the manage_inactivity() function remove power from the motors.
 
-         refresh_cmd_timeout();
 
-         // Move up.
 
-         current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
 
-         enable_endstops(false);
 
-         enable_z_endstop(false);
 
-         go_to_current(homing_feedrate[Z_AXIS]/60);
 
-         // Go to the measurement point.
 
-         // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
 
-         current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
 
-         current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
 
-         // The calibration points are very close to the min Y.
 
-         if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
 
-             current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
 
-         go_to_current(homing_feedrate[X_AXIS]/60);
 
-         find_bed_induction_sensor_point_z();
 
-         scan_bed_induction_sensor_point();
 
-     }
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     enable_endstops(false);
 
-     enable_z_endstop(false);
 
-     // Don't let the manage_inactivity() function remove power from the motors.
 
-     refresh_cmd_timeout();
 
-     enable_endstops(endstops_enabled);
 
-     enable_z_endstop(endstop_z_enabled);
 
-     return true;
 
- }
 
- // Shift a Z axis by a given delta.
 
- // To replace loading of the babystep correction.
 
- static void shift_z(float delta)
 
- {
 
-     plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - delta, current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
 
-     st_synchronize();
 
-     plan_set_z_position(current_position[Z_AXIS]);
 
- }
 
- #define BABYSTEP_LOADZ_BY_PLANNER
 
- // Number of baby steps applied
 
- static int babystepLoadZ = 0;
 
- void babystep_load()
 
- {
 
-     // Apply Z height correction aka baby stepping before mesh bed leveling gets activated.
 
-     if(calibration_status() < CALIBRATION_STATUS_LIVE_ADJUST)
 
-     {
 
-         check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0
 
-         
 
-         // End of G80: Apply the baby stepping value.
 
-         EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
 
-                             
 
-     #if 0
 
-         SERIAL_ECHO("Z baby step: ");
 
-         SERIAL_ECHO(babystepLoadZ);
 
-         SERIAL_ECHO(", current Z: ");
 
-         SERIAL_ECHO(current_position[Z_AXIS]);
 
-         SERIAL_ECHO("correction: ");
 
-         SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
 
-         SERIAL_ECHOLN("");
 
-     #endif
 
-     }
 
- }
 
- void babystep_apply()
 
- {
 
-     babystep_load();
 
- #ifdef BABYSTEP_LOADZ_BY_PLANNER
 
-     shift_z(- float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
 
- #else
 
-     babystepsTodoZadd(babystepLoadZ);
 
- #endif /* BABYSTEP_LOADZ_BY_PLANNER */
 
- }
 
- void babystep_undo()
 
- {
 
- #ifdef BABYSTEP_LOADZ_BY_PLANNER
 
-       shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
 
- #else
 
-       babystepsTodoZsubtract(babystepLoadZ);
 
- #endif /* BABYSTEP_LOADZ_BY_PLANNER */
 
-       babystepLoadZ = 0;
 
- }
 
- void babystep_reset()
 
- {
 
-       babystepLoadZ = 0;    
 
- }
 
- void count_xyz_details() {
 
- 	float a1, a2;
 
- 	float cntr[2] = {
 
- 		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0)),
 
- 		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4))
 
- 	};
 
- 	float vec_x[2] = {
 
- 		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0)),
 
- 		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4))
 
- 	};
 
- 	float vec_y[2] = {
 
- 		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0)),
 
- 		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4))
 
- 	};
 
- 	a2 = -1 * asin(vec_y[0] / MACHINE_AXIS_SCALE_Y);
 
- 	a1 = asin(vec_x[1] / MACHINE_AXIS_SCALE_X);
 
- 	//angleDiff = fabs(a2 - a1);
 
- 	for (uint8_t mesh_point = 0; mesh_point < 2; ++mesh_point) {
 
- 		float y = vec_x[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2 + 1) + cntr[1];
 
- 		distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
 
- 	}
 
- }
 
- /*countDistanceFromMin() {
 
- }*/
 
 
  |