Marlin_main.cpp 332 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. bool prusa_sd_card_upload = false;
  170. unsigned int status_number = 0;
  171. unsigned long total_filament_used;
  172. unsigned int heating_status;
  173. unsigned int heating_status_counter;
  174. bool loading_flag = false;
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. char dir_names[3][9];
  180. bool sortAlpha = false;
  181. float extruder_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. //shortcuts for more readable code
  191. #define _x current_position[X_AXIS]
  192. #define _y current_position[Y_AXIS]
  193. #define _z current_position[Z_AXIS]
  194. #define _e current_position[E_AXIS]
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  202. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  203. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  204. #endif
  205. };
  206. #endif
  207. uint8_t active_extruder = 0;
  208. int fanSpeed=0;
  209. #ifdef FWRETRACT
  210. bool retracted[EXTRUDERS]={false
  211. #if EXTRUDERS > 1
  212. , false
  213. #if EXTRUDERS > 2
  214. , false
  215. #endif
  216. #endif
  217. };
  218. bool retracted_swap[EXTRUDERS]={false
  219. #if EXTRUDERS > 1
  220. , false
  221. #if EXTRUDERS > 2
  222. , false
  223. #endif
  224. #endif
  225. };
  226. float retract_length_swap = RETRACT_LENGTH_SWAP;
  227. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  228. #endif
  229. #ifdef PS_DEFAULT_OFF
  230. bool powersupply = false;
  231. #else
  232. bool powersupply = true;
  233. #endif
  234. bool cancel_heatup = false ;
  235. int8_t busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. const char errormagic[] PROGMEM = "Error:";
  239. const char echomagic[] PROGMEM = "echo:";
  240. bool no_response = false;
  241. uint8_t important_status;
  242. uint8_t saved_filament_type;
  243. // save/restore printing in case that mmu was not responding
  244. bool mmu_print_saved = false;
  245. // storing estimated time to end of print counted by slicer
  246. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  247. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  248. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. bool wizard_active = false; //autoload temporarily disabled during wizard
  251. //===========================================================================
  252. //=============================Private Variables=============================
  253. //===========================================================================
  254. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. // For tracing an arc
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  260. // Determines Absolute or Relative Coordinates.
  261. // Also there is bool axis_relative_modes[] per axis flag.
  262. static bool relative_mode = false;
  263. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  264. //static float tt = 0;
  265. //static float bt = 0;
  266. //Inactivity shutdown variables
  267. static unsigned long previous_millis_cmd = 0;
  268. unsigned long max_inactive_time = 0;
  269. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  270. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  271. unsigned long starttime=0;
  272. unsigned long stoptime=0;
  273. unsigned long _usb_timer = 0;
  274. bool Stopped=false;
  275. #if NUM_SERVOS > 0
  276. Servo servos[NUM_SERVOS];
  277. #endif
  278. bool CooldownNoWait = true;
  279. bool target_direction;
  280. //Insert variables if CHDK is defined
  281. #ifdef CHDK
  282. unsigned long chdkHigh = 0;
  283. boolean chdkActive = false;
  284. #endif
  285. //! @name RAM save/restore printing
  286. //! @{
  287. bool saved_printing = false; //!< Print is paused and saved in RAM
  288. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  289. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  290. static float saved_pos[4] = { 0, 0, 0, 0 };
  291. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  292. static float saved_feedrate2 = 0;
  293. static uint8_t saved_active_extruder = 0;
  294. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  295. static bool saved_extruder_relative_mode = false;
  296. static int saved_fanSpeed = 0; //!< Print fan speed
  297. //! @}
  298. static int saved_feedmultiply_mm = 100;
  299. //===========================================================================
  300. //=============================Routines======================================
  301. //===========================================================================
  302. static void get_arc_coordinates();
  303. static bool setTargetedHotend(int code, uint8_t &extruder);
  304. static void print_time_remaining_init();
  305. static void wait_for_heater(long codenum, uint8_t extruder);
  306. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  307. uint16_t gcode_in_progress = 0;
  308. uint16_t mcode_in_progress = 0;
  309. void serial_echopair_P(const char *s_P, float v)
  310. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  311. void serial_echopair_P(const char *s_P, double v)
  312. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  313. void serial_echopair_P(const char *s_P, unsigned long v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. #ifdef SDSUPPORT
  316. #include "SdFatUtil.h"
  317. int freeMemory() { return SdFatUtil::FreeRam(); }
  318. #else
  319. extern "C" {
  320. extern unsigned int __bss_end;
  321. extern unsigned int __heap_start;
  322. extern void *__brkval;
  323. int freeMemory() {
  324. int free_memory;
  325. if ((int)__brkval == 0)
  326. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  327. else
  328. free_memory = ((int)&free_memory) - ((int)__brkval);
  329. return free_memory;
  330. }
  331. }
  332. #endif //!SDSUPPORT
  333. void setup_killpin()
  334. {
  335. #if defined(KILL_PIN) && KILL_PIN > -1
  336. SET_INPUT(KILL_PIN);
  337. WRITE(KILL_PIN,HIGH);
  338. #endif
  339. }
  340. // Set home pin
  341. void setup_homepin(void)
  342. {
  343. #if defined(HOME_PIN) && HOME_PIN > -1
  344. SET_INPUT(HOME_PIN);
  345. WRITE(HOME_PIN,HIGH);
  346. #endif
  347. }
  348. void setup_photpin()
  349. {
  350. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  351. SET_OUTPUT(PHOTOGRAPH_PIN);
  352. WRITE(PHOTOGRAPH_PIN, LOW);
  353. #endif
  354. }
  355. void setup_powerhold()
  356. {
  357. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  358. SET_OUTPUT(SUICIDE_PIN);
  359. WRITE(SUICIDE_PIN, HIGH);
  360. #endif
  361. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  362. SET_OUTPUT(PS_ON_PIN);
  363. #if defined(PS_DEFAULT_OFF)
  364. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  365. #else
  366. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  367. #endif
  368. #endif
  369. }
  370. void suicide()
  371. {
  372. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  373. SET_OUTPUT(SUICIDE_PIN);
  374. WRITE(SUICIDE_PIN, LOW);
  375. #endif
  376. }
  377. void servo_init()
  378. {
  379. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  380. servos[0].attach(SERVO0_PIN);
  381. #endif
  382. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  383. servos[1].attach(SERVO1_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  386. servos[2].attach(SERVO2_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  389. servos[3].attach(SERVO3_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 5)
  392. #error "TODO: enter initalisation code for more servos"
  393. #endif
  394. }
  395. bool fans_check_enabled = true;
  396. #ifdef TMC2130
  397. extern int8_t CrashDetectMenu;
  398. void crashdet_enable()
  399. {
  400. tmc2130_sg_stop_on_crash = true;
  401. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  402. CrashDetectMenu = 1;
  403. }
  404. void crashdet_disable()
  405. {
  406. tmc2130_sg_stop_on_crash = false;
  407. tmc2130_sg_crash = 0;
  408. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  409. CrashDetectMenu = 0;
  410. }
  411. void crashdet_stop_and_save_print()
  412. {
  413. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  414. }
  415. void crashdet_restore_print_and_continue()
  416. {
  417. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  418. // babystep_apply();
  419. }
  420. void crashdet_stop_and_save_print2()
  421. {
  422. cli();
  423. planner_abort_hard(); //abort printing
  424. cmdqueue_reset(); //empty cmdqueue
  425. card.sdprinting = false;
  426. card.closefile();
  427. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  428. st_reset_timer();
  429. sei();
  430. }
  431. void crashdet_detected(uint8_t mask)
  432. {
  433. st_synchronize();
  434. static uint8_t crashDet_counter = 0;
  435. bool automatic_recovery_after_crash = true;
  436. if (crashDet_counter++ == 0) {
  437. crashDetTimer.start();
  438. }
  439. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  440. crashDetTimer.stop();
  441. crashDet_counter = 0;
  442. }
  443. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  444. automatic_recovery_after_crash = false;
  445. crashDetTimer.stop();
  446. crashDet_counter = 0;
  447. }
  448. else {
  449. crashDetTimer.start();
  450. }
  451. lcd_update_enable(true);
  452. lcd_clear();
  453. lcd_update(2);
  454. if (mask & X_AXIS_MASK)
  455. {
  456. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  457. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  458. }
  459. if (mask & Y_AXIS_MASK)
  460. {
  461. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  462. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  463. }
  464. lcd_update_enable(true);
  465. lcd_update(2);
  466. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  467. gcode_G28(true, true, false); //home X and Y
  468. st_synchronize();
  469. if (automatic_recovery_after_crash) {
  470. enquecommand_P(PSTR("CRASH_RECOVER"));
  471. }else{
  472. setTargetHotend(0, active_extruder);
  473. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  474. lcd_update_enable(true);
  475. if (yesno)
  476. {
  477. enquecommand_P(PSTR("CRASH_RECOVER"));
  478. }
  479. else
  480. {
  481. enquecommand_P(PSTR("CRASH_CANCEL"));
  482. }
  483. }
  484. }
  485. void crashdet_recover()
  486. {
  487. crashdet_restore_print_and_continue();
  488. tmc2130_sg_stop_on_crash = true;
  489. }
  490. void crashdet_cancel()
  491. {
  492. saved_printing = false;
  493. tmc2130_sg_stop_on_crash = true;
  494. if (saved_printing_type == PRINTING_TYPE_SD) {
  495. lcd_print_stop();
  496. }else if(saved_printing_type == PRINTING_TYPE_USB){
  497. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  498. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  499. }
  500. }
  501. #endif //TMC2130
  502. void failstats_reset_print()
  503. {
  504. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  505. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  506. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  510. }
  511. #ifdef MESH_BED_LEVELING
  512. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  513. #endif
  514. // Factory reset function
  515. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  516. // Level input parameter sets depth of reset
  517. int er_progress = 0;
  518. static void factory_reset(char level)
  519. {
  520. lcd_clear();
  521. switch (level) {
  522. // Level 0: Language reset
  523. case 0:
  524. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  525. WRITE(BEEPER, HIGH);
  526. _delay_ms(100);
  527. WRITE(BEEPER, LOW);
  528. lang_reset();
  529. break;
  530. //Level 1: Reset statistics
  531. case 1:
  532. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  533. WRITE(BEEPER, HIGH);
  534. _delay_ms(100);
  535. WRITE(BEEPER, LOW);
  536. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  537. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  548. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  549. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  550. lcd_menu_statistics();
  551. break;
  552. // Level 2: Prepare for shipping
  553. case 2:
  554. //lcd_puts_P(PSTR("Factory RESET"));
  555. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  556. // Force language selection at the next boot up.
  557. lang_reset();
  558. // Force the "Follow calibration flow" message at the next boot up.
  559. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  560. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  561. farm_no = 0;
  562. farm_mode = false;
  563. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  564. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  565. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  566. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  575. #ifdef FILAMENT_SENSOR
  576. fsensor_enable();
  577. fsensor_autoload_set(true);
  578. #endif //FILAMENT_SENSOR
  579. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  580. WRITE(BEEPER, HIGH);
  581. _delay_ms(100);
  582. WRITE(BEEPER, LOW);
  583. //_delay_ms(2000);
  584. break;
  585. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  586. case 3:
  587. lcd_puts_P(PSTR("Factory RESET"));
  588. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  589. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  590. WRITE(BEEPER, HIGH);
  591. _delay_ms(100);
  592. WRITE(BEEPER, LOW);
  593. er_progress = 0;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. // Erase EEPROM
  598. for (int i = 0; i < 4096; i++) {
  599. eeprom_update_byte((uint8_t*)i, 0xFF);
  600. if (i % 41 == 0) {
  601. er_progress++;
  602. lcd_puts_at_P(3, 3, PSTR(" "));
  603. lcd_set_cursor(3, 3);
  604. lcd_print(er_progress);
  605. lcd_puts_P(PSTR("%"));
  606. }
  607. }
  608. break;
  609. case 4:
  610. bowden_menu();
  611. break;
  612. default:
  613. break;
  614. }
  615. }
  616. extern "C" {
  617. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  618. }
  619. int uart_putchar(char c, FILE *)
  620. {
  621. MYSERIAL.write(c);
  622. return 0;
  623. }
  624. void lcd_splash()
  625. {
  626. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  627. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  628. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  629. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  630. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  631. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  632. }
  633. void factory_reset()
  634. {
  635. KEEPALIVE_STATE(PAUSED_FOR_USER);
  636. if (!READ(BTN_ENC))
  637. {
  638. _delay_ms(1000);
  639. if (!READ(BTN_ENC))
  640. {
  641. lcd_clear();
  642. lcd_puts_P(PSTR("Factory RESET"));
  643. SET_OUTPUT(BEEPER);
  644. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  645. WRITE(BEEPER, HIGH);
  646. while (!READ(BTN_ENC));
  647. WRITE(BEEPER, LOW);
  648. _delay_ms(2000);
  649. char level = reset_menu();
  650. factory_reset(level);
  651. switch (level) {
  652. case 0: _delay_ms(0); break;
  653. case 1: _delay_ms(0); break;
  654. case 2: _delay_ms(0); break;
  655. case 3: _delay_ms(0); break;
  656. }
  657. }
  658. }
  659. KEEPALIVE_STATE(IN_HANDLER);
  660. }
  661. void show_fw_version_warnings() {
  662. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  663. switch (FW_DEV_VERSION) {
  664. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  665. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  666. case(FW_VERSION_DEVEL):
  667. case(FW_VERSION_DEBUG):
  668. lcd_update_enable(false);
  669. lcd_clear();
  670. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  671. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  672. #else
  673. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  674. #endif
  675. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  676. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  677. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  678. lcd_wait_for_click();
  679. break;
  680. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  681. }
  682. lcd_update_enable(true);
  683. }
  684. //! @brief try to check if firmware is on right type of printer
  685. static void check_if_fw_is_on_right_printer(){
  686. #ifdef FILAMENT_SENSOR
  687. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  688. #ifdef IR_SENSOR
  689. swi2c_init();
  690. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  691. if (pat9125_detected){
  692. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  693. #endif //IR_SENSOR
  694. #ifdef PAT9125
  695. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  696. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  697. if (ir_detected){
  698. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  699. #endif //PAT9125
  700. }
  701. #endif //FILAMENT_SENSOR
  702. }
  703. uint8_t check_printer_version()
  704. {
  705. uint8_t version_changed = 0;
  706. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  707. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  708. if (printer_type != PRINTER_TYPE) {
  709. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  710. else version_changed |= 0b10;
  711. }
  712. if (motherboard != MOTHERBOARD) {
  713. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  714. else version_changed |= 0b01;
  715. }
  716. return version_changed;
  717. }
  718. #ifdef BOOTAPP
  719. #include "bootapp.h" //bootloader support
  720. #endif //BOOTAPP
  721. #if (LANG_MODE != 0) //secondary language support
  722. #ifdef W25X20CL
  723. // language update from external flash
  724. #define LANGBOOT_BLOCKSIZE 0x1000u
  725. #define LANGBOOT_RAMBUFFER 0x0800
  726. void update_sec_lang_from_external_flash()
  727. {
  728. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  729. {
  730. uint8_t lang = boot_reserved >> 4;
  731. uint8_t state = boot_reserved & 0xf;
  732. lang_table_header_t header;
  733. uint32_t src_addr;
  734. if (lang_get_header(lang, &header, &src_addr))
  735. {
  736. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  737. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  738. _delay(100);
  739. boot_reserved = (state + 1) | (lang << 4);
  740. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  741. {
  742. cli();
  743. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  744. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  745. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  746. if (state == 0)
  747. {
  748. //TODO - check header integrity
  749. }
  750. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  751. }
  752. else
  753. {
  754. //TODO - check sec lang data integrity
  755. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  756. }
  757. }
  758. }
  759. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  760. }
  761. #ifdef DEBUG_W25X20CL
  762. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  763. {
  764. lang_table_header_t header;
  765. uint8_t count = 0;
  766. uint32_t addr = 0x00000;
  767. while (1)
  768. {
  769. printf_P(_n("LANGTABLE%d:"), count);
  770. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  771. if (header.magic != LANG_MAGIC)
  772. {
  773. printf_P(_n("NG!\n"));
  774. break;
  775. }
  776. printf_P(_n("OK\n"));
  777. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  778. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  779. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  780. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  781. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  782. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  783. addr += header.size;
  784. codes[count] = header.code;
  785. count ++;
  786. }
  787. return count;
  788. }
  789. void list_sec_lang_from_external_flash()
  790. {
  791. uint16_t codes[8];
  792. uint8_t count = lang_xflash_enum_codes(codes);
  793. printf_P(_n("XFlash lang count = %hhd\n"), count);
  794. }
  795. #endif //DEBUG_W25X20CL
  796. #endif //W25X20CL
  797. #endif //(LANG_MODE != 0)
  798. static void w25x20cl_err_msg()
  799. {
  800. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  801. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  802. }
  803. // "Setup" function is called by the Arduino framework on startup.
  804. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  805. // are initialized by the main() routine provided by the Arduino framework.
  806. void setup()
  807. {
  808. mmu_init();
  809. ultralcd_init();
  810. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  811. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  812. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  813. spi_init();
  814. lcd_splash();
  815. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  816. #ifdef W25X20CL
  817. bool w25x20cl_success = w25x20cl_init();
  818. if (w25x20cl_success)
  819. {
  820. optiboot_w25x20cl_enter();
  821. #if (LANG_MODE != 0) //secondary language support
  822. update_sec_lang_from_external_flash();
  823. #endif //(LANG_MODE != 0)
  824. }
  825. else
  826. {
  827. w25x20cl_err_msg();
  828. }
  829. #else
  830. const bool w25x20cl_success = true;
  831. #endif //W25X20CL
  832. setup_killpin();
  833. setup_powerhold();
  834. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  835. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  836. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  837. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  838. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  839. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  840. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  841. if (farm_mode)
  842. {
  843. no_response = true; //we need confirmation by recieving PRUSA thx
  844. important_status = 8;
  845. prusa_statistics(8);
  846. selectedSerialPort = 1;
  847. #ifdef TMC2130
  848. //increased extruder current (PFW363)
  849. tmc2130_current_h[E_AXIS] = 36;
  850. tmc2130_current_r[E_AXIS] = 36;
  851. #endif //TMC2130
  852. #ifdef FILAMENT_SENSOR
  853. //disabled filament autoload (PFW360)
  854. fsensor_autoload_set(false);
  855. #endif //FILAMENT_SENSOR
  856. // ~ FanCheck -> on
  857. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  858. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  859. }
  860. MYSERIAL.begin(BAUDRATE);
  861. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  862. #ifndef W25X20CL
  863. SERIAL_PROTOCOLLNPGM("start");
  864. #endif //W25X20CL
  865. stdout = uartout;
  866. SERIAL_ECHO_START;
  867. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  868. #ifdef DEBUG_SEC_LANG
  869. lang_table_header_t header;
  870. uint32_t src_addr = 0x00000;
  871. if (lang_get_header(1, &header, &src_addr))
  872. {
  873. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  874. #define LT_PRINT_TEST 2
  875. // flash usage
  876. // total p.test
  877. //0 252718 t+c text code
  878. //1 253142 424 170 254
  879. //2 253040 322 164 158
  880. //3 253248 530 135 395
  881. #if (LT_PRINT_TEST==1) //not optimized printf
  882. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  883. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  884. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  885. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  886. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  887. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  888. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  889. #elif (LT_PRINT_TEST==2) //optimized printf
  890. printf_P(
  891. _n(
  892. " _src_addr = 0x%08lx\n"
  893. " _lt_magic = 0x%08lx %S\n"
  894. " _lt_size = 0x%04x (%d)\n"
  895. " _lt_count = 0x%04x (%d)\n"
  896. " _lt_chsum = 0x%04x\n"
  897. " _lt_code = 0x%04x (%c%c)\n"
  898. " _lt_resv1 = 0x%08lx\n"
  899. ),
  900. src_addr,
  901. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  902. header.size, header.size,
  903. header.count, header.count,
  904. header.checksum,
  905. header.code, header.code >> 8, header.code & 0xff,
  906. header.signature
  907. );
  908. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  909. MYSERIAL.print(" _src_addr = 0x");
  910. MYSERIAL.println(src_addr, 16);
  911. MYSERIAL.print(" _lt_magic = 0x");
  912. MYSERIAL.print(header.magic, 16);
  913. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  914. MYSERIAL.print(" _lt_size = 0x");
  915. MYSERIAL.print(header.size, 16);
  916. MYSERIAL.print(" (");
  917. MYSERIAL.print(header.size, 10);
  918. MYSERIAL.println(")");
  919. MYSERIAL.print(" _lt_count = 0x");
  920. MYSERIAL.print(header.count, 16);
  921. MYSERIAL.print(" (");
  922. MYSERIAL.print(header.count, 10);
  923. MYSERIAL.println(")");
  924. MYSERIAL.print(" _lt_chsum = 0x");
  925. MYSERIAL.println(header.checksum, 16);
  926. MYSERIAL.print(" _lt_code = 0x");
  927. MYSERIAL.print(header.code, 16);
  928. MYSERIAL.print(" (");
  929. MYSERIAL.print((char)(header.code >> 8), 0);
  930. MYSERIAL.print((char)(header.code & 0xff), 0);
  931. MYSERIAL.println(")");
  932. MYSERIAL.print(" _lt_resv1 = 0x");
  933. MYSERIAL.println(header.signature, 16);
  934. #endif //(LT_PRINT_TEST==)
  935. #undef LT_PRINT_TEST
  936. #if 0
  937. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  938. for (uint16_t i = 0; i < 1024; i++)
  939. {
  940. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  941. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  942. if ((i % 16) == 15) putchar('\n');
  943. }
  944. #endif
  945. uint16_t sum = 0;
  946. for (uint16_t i = 0; i < header.size; i++)
  947. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  948. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  949. sum -= header.checksum; //subtract checksum
  950. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  951. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  952. if (sum == header.checksum)
  953. printf_P(_n("Checksum OK\n"), sum);
  954. else
  955. printf_P(_n("Checksum NG\n"), sum);
  956. }
  957. else
  958. printf_P(_n("lang_get_header failed!\n"));
  959. #if 0
  960. for (uint16_t i = 0; i < 1024*10; i++)
  961. {
  962. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  963. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  964. if ((i % 16) == 15) putchar('\n');
  965. }
  966. #endif
  967. #if 0
  968. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  969. for (int i = 0; i < 4096; ++i) {
  970. int b = eeprom_read_byte((unsigned char*)i);
  971. if (b != 255) {
  972. SERIAL_ECHO(i);
  973. SERIAL_ECHO(":");
  974. SERIAL_ECHO(b);
  975. SERIAL_ECHOLN("");
  976. }
  977. }
  978. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  979. #endif
  980. #endif //DEBUG_SEC_LANG
  981. // Check startup - does nothing if bootloader sets MCUSR to 0
  982. byte mcu = MCUSR;
  983. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  984. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  985. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  986. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  987. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  988. if (mcu & 1) puts_P(MSG_POWERUP);
  989. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  990. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  991. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  992. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  993. MCUSR = 0;
  994. //SERIAL_ECHORPGM(MSG_MARLIN);
  995. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  996. #ifdef STRING_VERSION_CONFIG_H
  997. #ifdef STRING_CONFIG_H_AUTHOR
  998. SERIAL_ECHO_START;
  999. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1000. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1001. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1002. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1003. SERIAL_ECHOPGM("Compiled: ");
  1004. SERIAL_ECHOLNPGM(__DATE__);
  1005. #endif
  1006. #endif
  1007. SERIAL_ECHO_START;
  1008. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1009. SERIAL_ECHO(freeMemory());
  1010. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1011. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1012. //lcd_update_enable(false); // why do we need this?? - andre
  1013. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1014. bool previous_settings_retrieved = false;
  1015. uint8_t hw_changed = check_printer_version();
  1016. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1017. previous_settings_retrieved = Config_RetrieveSettings();
  1018. }
  1019. else { //printer version was changed so use default settings
  1020. Config_ResetDefault();
  1021. }
  1022. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1023. tp_init(); // Initialize temperature loop
  1024. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1025. else
  1026. {
  1027. w25x20cl_err_msg();
  1028. printf_P(_n("W25X20CL not responding.\n"));
  1029. }
  1030. plan_init(); // Initialize planner;
  1031. factory_reset();
  1032. lcd_encoder_diff=0;
  1033. #ifdef TMC2130
  1034. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1035. if (silentMode == 0xff) silentMode = 0;
  1036. tmc2130_mode = TMC2130_MODE_NORMAL;
  1037. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1038. if (crashdet && !farm_mode)
  1039. {
  1040. crashdet_enable();
  1041. puts_P(_N("CrashDetect ENABLED!"));
  1042. }
  1043. else
  1044. {
  1045. crashdet_disable();
  1046. puts_P(_N("CrashDetect DISABLED"));
  1047. }
  1048. #ifdef TMC2130_LINEARITY_CORRECTION
  1049. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1050. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1051. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1052. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1053. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1054. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1055. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1056. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1057. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1058. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1059. #endif //TMC2130_LINEARITY_CORRECTION
  1060. #ifdef TMC2130_VARIABLE_RESOLUTION
  1061. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1062. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1063. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1064. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1065. #else //TMC2130_VARIABLE_RESOLUTION
  1066. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1067. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1068. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1069. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1070. #endif //TMC2130_VARIABLE_RESOLUTION
  1071. #endif //TMC2130
  1072. st_init(); // Initialize stepper, this enables interrupts!
  1073. #ifdef UVLO_SUPPORT
  1074. setup_uvlo_interrupt();
  1075. #endif //UVLO_SUPPORT
  1076. #ifdef TMC2130
  1077. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1078. update_mode_profile();
  1079. tmc2130_init();
  1080. #endif //TMC2130
  1081. setup_photpin();
  1082. servo_init();
  1083. // Reset the machine correction matrix.
  1084. // It does not make sense to load the correction matrix until the machine is homed.
  1085. world2machine_reset();
  1086. #ifdef FILAMENT_SENSOR
  1087. fsensor_init();
  1088. #endif //FILAMENT_SENSOR
  1089. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1090. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1091. #endif
  1092. setup_homepin();
  1093. #ifdef TMC2130
  1094. if (1) {
  1095. // try to run to zero phase before powering the Z motor.
  1096. // Move in negative direction
  1097. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1098. // Round the current micro-micro steps to micro steps.
  1099. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1100. // Until the phase counter is reset to zero.
  1101. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1102. _delay(2);
  1103. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1104. _delay(2);
  1105. }
  1106. }
  1107. #endif //TMC2130
  1108. #if defined(Z_AXIS_ALWAYS_ON)
  1109. enable_z();
  1110. #endif
  1111. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1112. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1113. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1114. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1115. if (farm_mode)
  1116. {
  1117. prusa_statistics(8);
  1118. }
  1119. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1120. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1121. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1122. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1123. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1124. // where all the EEPROM entries are set to 0x0ff.
  1125. // Once a firmware boots up, it forces at least a language selection, which changes
  1126. // EEPROM_LANG to number lower than 0x0ff.
  1127. // 1) Set a high power mode.
  1128. #ifdef TMC2130
  1129. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1130. tmc2130_mode = TMC2130_MODE_NORMAL;
  1131. #endif //TMC2130
  1132. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1133. }
  1134. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1135. // but this times out if a blocking dialog is shown in setup().
  1136. card.initsd();
  1137. #ifdef DEBUG_SD_SPEED_TEST
  1138. if (card.cardOK)
  1139. {
  1140. uint8_t* buff = (uint8_t*)block_buffer;
  1141. uint32_t block = 0;
  1142. uint32_t sumr = 0;
  1143. uint32_t sumw = 0;
  1144. for (int i = 0; i < 1024; i++)
  1145. {
  1146. uint32_t u = _micros();
  1147. bool res = card.card.readBlock(i, buff);
  1148. u = _micros() - u;
  1149. if (res)
  1150. {
  1151. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1152. sumr += u;
  1153. u = _micros();
  1154. res = card.card.writeBlock(i, buff);
  1155. u = _micros() - u;
  1156. if (res)
  1157. {
  1158. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1159. sumw += u;
  1160. }
  1161. else
  1162. {
  1163. printf_P(PSTR("writeBlock %4d error\n"), i);
  1164. break;
  1165. }
  1166. }
  1167. else
  1168. {
  1169. printf_P(PSTR("readBlock %4d error\n"), i);
  1170. break;
  1171. }
  1172. }
  1173. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1174. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1175. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1176. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1177. }
  1178. else
  1179. printf_P(PSTR("Card NG!\n"));
  1180. #endif //DEBUG_SD_SPEED_TEST
  1181. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1182. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1183. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1184. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1185. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1186. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1187. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1188. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1189. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1190. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1191. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1192. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1193. #ifdef SNMM
  1194. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1195. int _z = BOWDEN_LENGTH;
  1196. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1197. }
  1198. #endif
  1199. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1200. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1201. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1202. #if (LANG_MODE != 0) //secondary language support
  1203. #ifdef DEBUG_W25X20CL
  1204. W25X20CL_SPI_ENTER();
  1205. uint8_t uid[8]; // 64bit unique id
  1206. w25x20cl_rd_uid(uid);
  1207. puts_P(_n("W25X20CL UID="));
  1208. for (uint8_t i = 0; i < 8; i ++)
  1209. printf_P(PSTR("%02hhx"), uid[i]);
  1210. putchar('\n');
  1211. list_sec_lang_from_external_flash();
  1212. #endif //DEBUG_W25X20CL
  1213. // lang_reset();
  1214. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1215. lcd_language();
  1216. #ifdef DEBUG_SEC_LANG
  1217. uint16_t sec_lang_code = lang_get_code(1);
  1218. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1219. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1220. lang_print_sec_lang(uartout);
  1221. #endif //DEBUG_SEC_LANG
  1222. #endif //(LANG_MODE != 0)
  1223. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1224. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1225. temp_cal_active = false;
  1226. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1227. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1228. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1229. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1230. int16_t z_shift = 0;
  1231. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1232. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1233. temp_cal_active = false;
  1234. }
  1235. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1236. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1237. }
  1238. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1239. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1240. }
  1241. //mbl_mode_init();
  1242. mbl_settings_init();
  1243. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1244. if (SilentModeMenu_MMU == 255) {
  1245. SilentModeMenu_MMU = 1;
  1246. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1247. }
  1248. check_babystep(); //checking if Z babystep is in allowed range
  1249. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1250. setup_fan_interrupt();
  1251. #endif //DEBUG_DISABLE_FANCHECK
  1252. #ifdef PAT9125
  1253. fsensor_setup_interrupt();
  1254. #endif //PAT9125
  1255. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1256. #ifndef DEBUG_DISABLE_STARTMSGS
  1257. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1258. check_if_fw_is_on_right_printer();
  1259. show_fw_version_warnings();
  1260. switch (hw_changed) {
  1261. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1262. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1263. case(0b01):
  1264. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1265. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1266. break;
  1267. case(0b10):
  1268. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1269. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1270. break;
  1271. case(0b11):
  1272. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1273. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1274. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1275. break;
  1276. default: break; //no change, show no message
  1277. }
  1278. if (!previous_settings_retrieved) {
  1279. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1280. Config_StoreSettings();
  1281. }
  1282. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1283. lcd_wizard(WizState::Run);
  1284. }
  1285. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1286. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1287. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1288. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1289. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1290. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1291. // Show the message.
  1292. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1293. }
  1294. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1295. // Show the message.
  1296. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1297. lcd_update_enable(true);
  1298. }
  1299. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1300. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1301. lcd_update_enable(true);
  1302. }
  1303. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1304. // Show the message.
  1305. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1306. }
  1307. }
  1308. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1309. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1310. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1311. update_current_firmware_version_to_eeprom();
  1312. lcd_selftest();
  1313. }
  1314. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1315. KEEPALIVE_STATE(IN_PROCESS);
  1316. #endif //DEBUG_DISABLE_STARTMSGS
  1317. lcd_update_enable(true);
  1318. lcd_clear();
  1319. lcd_update(2);
  1320. // Store the currently running firmware into an eeprom,
  1321. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1322. update_current_firmware_version_to_eeprom();
  1323. #ifdef TMC2130
  1324. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1325. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1326. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1327. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1328. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1329. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1330. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1331. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1332. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1333. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1334. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1335. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1336. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1337. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1338. #endif //TMC2130
  1339. #ifdef UVLO_SUPPORT
  1340. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1341. /*
  1342. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1343. else {
  1344. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1345. lcd_update_enable(true);
  1346. lcd_update(2);
  1347. lcd_setstatuspgm(_T(WELCOME_MSG));
  1348. }
  1349. */
  1350. manage_heater(); // Update temperatures
  1351. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1352. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1353. #endif
  1354. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1355. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1356. puts_P(_N("Automatic recovery!"));
  1357. #endif
  1358. recover_print(1);
  1359. }
  1360. else{
  1361. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1362. puts_P(_N("Normal recovery!"));
  1363. #endif
  1364. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1365. else {
  1366. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1367. lcd_update_enable(true);
  1368. lcd_update(2);
  1369. lcd_setstatuspgm(_T(WELCOME_MSG));
  1370. }
  1371. }
  1372. }
  1373. #endif //UVLO_SUPPORT
  1374. fCheckModeInit();
  1375. KEEPALIVE_STATE(NOT_BUSY);
  1376. #ifdef WATCHDOG
  1377. wdt_enable(WDTO_4S);
  1378. #endif //WATCHDOG
  1379. }
  1380. void trace();
  1381. #define CHUNK_SIZE 64 // bytes
  1382. #define SAFETY_MARGIN 1
  1383. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1384. int chunkHead = 0;
  1385. void serial_read_stream() {
  1386. setAllTargetHotends(0);
  1387. setTargetBed(0);
  1388. lcd_clear();
  1389. lcd_puts_P(PSTR(" Upload in progress"));
  1390. // first wait for how many bytes we will receive
  1391. uint32_t bytesToReceive;
  1392. // receive the four bytes
  1393. char bytesToReceiveBuffer[4];
  1394. for (int i=0; i<4; i++) {
  1395. int data;
  1396. while ((data = MYSERIAL.read()) == -1) {};
  1397. bytesToReceiveBuffer[i] = data;
  1398. }
  1399. // make it a uint32
  1400. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1401. // we're ready, notify the sender
  1402. MYSERIAL.write('+');
  1403. // lock in the routine
  1404. uint32_t receivedBytes = 0;
  1405. while (prusa_sd_card_upload) {
  1406. int i;
  1407. for (i=0; i<CHUNK_SIZE; i++) {
  1408. int data;
  1409. // check if we're not done
  1410. if (receivedBytes == bytesToReceive) {
  1411. break;
  1412. }
  1413. // read the next byte
  1414. while ((data = MYSERIAL.read()) == -1) {};
  1415. receivedBytes++;
  1416. // save it to the chunk
  1417. chunk[i] = data;
  1418. }
  1419. // write the chunk to SD
  1420. card.write_command_no_newline(&chunk[0]);
  1421. // notify the sender we're ready for more data
  1422. MYSERIAL.write('+');
  1423. // for safety
  1424. manage_heater();
  1425. // check if we're done
  1426. if(receivedBytes == bytesToReceive) {
  1427. trace(); // beep
  1428. card.closefile();
  1429. prusa_sd_card_upload = false;
  1430. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1431. }
  1432. }
  1433. }
  1434. /**
  1435. * Output a "busy" message at regular intervals
  1436. * while the machine is not accepting commands.
  1437. */
  1438. void host_keepalive() {
  1439. #ifndef HOST_KEEPALIVE_FEATURE
  1440. return;
  1441. #endif //HOST_KEEPALIVE_FEATURE
  1442. if (farm_mode) return;
  1443. long ms = _millis();
  1444. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1445. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1446. switch (busy_state) {
  1447. case IN_HANDLER:
  1448. case IN_PROCESS:
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHOLNPGM("busy: processing");
  1451. break;
  1452. case PAUSED_FOR_USER:
  1453. SERIAL_ECHO_START;
  1454. SERIAL_ECHOLNPGM("busy: paused for user");
  1455. break;
  1456. case PAUSED_FOR_INPUT:
  1457. SERIAL_ECHO_START;
  1458. SERIAL_ECHOLNPGM("busy: paused for input");
  1459. break;
  1460. default:
  1461. break;
  1462. }
  1463. }
  1464. prev_busy_signal_ms = ms;
  1465. }
  1466. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1467. // Before loop(), the setup() function is called by the main() routine.
  1468. void loop()
  1469. {
  1470. KEEPALIVE_STATE(NOT_BUSY);
  1471. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1472. {
  1473. is_usb_printing = true;
  1474. usb_printing_counter--;
  1475. _usb_timer = _millis();
  1476. }
  1477. if (usb_printing_counter == 0)
  1478. {
  1479. is_usb_printing = false;
  1480. }
  1481. if (prusa_sd_card_upload)
  1482. {
  1483. //we read byte-by byte
  1484. serial_read_stream();
  1485. } else
  1486. {
  1487. get_command();
  1488. #ifdef SDSUPPORT
  1489. card.checkautostart(false);
  1490. #endif
  1491. if(buflen)
  1492. {
  1493. cmdbuffer_front_already_processed = false;
  1494. #ifdef SDSUPPORT
  1495. if(card.saving)
  1496. {
  1497. // Saving a G-code file onto an SD-card is in progress.
  1498. // Saving starts with M28, saving until M29 is seen.
  1499. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1500. card.write_command(CMDBUFFER_CURRENT_STRING);
  1501. if(card.logging)
  1502. process_commands();
  1503. else
  1504. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1505. } else {
  1506. card.closefile();
  1507. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1508. }
  1509. } else {
  1510. process_commands();
  1511. }
  1512. #else
  1513. process_commands();
  1514. #endif //SDSUPPORT
  1515. if (! cmdbuffer_front_already_processed && buflen)
  1516. {
  1517. // ptr points to the start of the block currently being processed.
  1518. // The first character in the block is the block type.
  1519. char *ptr = cmdbuffer + bufindr;
  1520. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1521. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1522. union {
  1523. struct {
  1524. char lo;
  1525. char hi;
  1526. } lohi;
  1527. uint16_t value;
  1528. } sdlen;
  1529. sdlen.value = 0;
  1530. {
  1531. // This block locks the interrupts globally for 3.25 us,
  1532. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1533. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1534. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1535. cli();
  1536. // Reset the command to something, which will be ignored by the power panic routine,
  1537. // so this buffer length will not be counted twice.
  1538. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1539. // Extract the current buffer length.
  1540. sdlen.lohi.lo = *ptr ++;
  1541. sdlen.lohi.hi = *ptr;
  1542. // and pass it to the planner queue.
  1543. planner_add_sd_length(sdlen.value);
  1544. sei();
  1545. }
  1546. }
  1547. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1548. cli();
  1549. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1550. // and one for each command to previous block in the planner queue.
  1551. planner_add_sd_length(1);
  1552. sei();
  1553. }
  1554. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1555. // this block's SD card length will not be counted twice as its command type has been replaced
  1556. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1557. cmdqueue_pop_front();
  1558. }
  1559. host_keepalive();
  1560. }
  1561. }
  1562. //check heater every n milliseconds
  1563. manage_heater();
  1564. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1565. checkHitEndstops();
  1566. lcd_update(0);
  1567. #ifdef TMC2130
  1568. tmc2130_check_overtemp();
  1569. if (tmc2130_sg_crash)
  1570. {
  1571. uint8_t crash = tmc2130_sg_crash;
  1572. tmc2130_sg_crash = 0;
  1573. // crashdet_stop_and_save_print();
  1574. switch (crash)
  1575. {
  1576. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1577. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1578. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1579. }
  1580. }
  1581. #endif //TMC2130
  1582. mmu_loop();
  1583. }
  1584. #define DEFINE_PGM_READ_ANY(type, reader) \
  1585. static inline type pgm_read_any(const type *p) \
  1586. { return pgm_read_##reader##_near(p); }
  1587. DEFINE_PGM_READ_ANY(float, float);
  1588. DEFINE_PGM_READ_ANY(signed char, byte);
  1589. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1590. static const PROGMEM type array##_P[3] = \
  1591. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1592. static inline type array(int axis) \
  1593. { return pgm_read_any(&array##_P[axis]); } \
  1594. type array##_ext(int axis) \
  1595. { return pgm_read_any(&array##_P[axis]); }
  1596. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1597. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1598. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1599. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1600. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1601. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1602. static void axis_is_at_home(int axis) {
  1603. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1604. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1605. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1606. }
  1607. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1608. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1609. //! @return original feedmultiply
  1610. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1611. saved_feedrate = feedrate;
  1612. int l_feedmultiply = feedmultiply;
  1613. feedmultiply = 100;
  1614. previous_millis_cmd = _millis();
  1615. enable_endstops(enable_endstops_now);
  1616. return l_feedmultiply;
  1617. }
  1618. //! @param original_feedmultiply feedmultiply to restore
  1619. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1620. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1621. enable_endstops(false);
  1622. #endif
  1623. feedrate = saved_feedrate;
  1624. feedmultiply = original_feedmultiply;
  1625. previous_millis_cmd = _millis();
  1626. }
  1627. #ifdef ENABLE_AUTO_BED_LEVELING
  1628. #ifdef AUTO_BED_LEVELING_GRID
  1629. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1630. {
  1631. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1632. planeNormal.debug("planeNormal");
  1633. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1634. //bedLevel.debug("bedLevel");
  1635. //plan_bed_level_matrix.debug("bed level before");
  1636. //vector_3 uncorrected_position = plan_get_position_mm();
  1637. //uncorrected_position.debug("position before");
  1638. vector_3 corrected_position = plan_get_position();
  1639. // corrected_position.debug("position after");
  1640. current_position[X_AXIS] = corrected_position.x;
  1641. current_position[Y_AXIS] = corrected_position.y;
  1642. current_position[Z_AXIS] = corrected_position.z;
  1643. // put the bed at 0 so we don't go below it.
  1644. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1646. }
  1647. #else // not AUTO_BED_LEVELING_GRID
  1648. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1649. plan_bed_level_matrix.set_to_identity();
  1650. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1651. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1652. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1653. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1654. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1655. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1656. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1657. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1658. vector_3 corrected_position = plan_get_position();
  1659. current_position[X_AXIS] = corrected_position.x;
  1660. current_position[Y_AXIS] = corrected_position.y;
  1661. current_position[Z_AXIS] = corrected_position.z;
  1662. // put the bed at 0 so we don't go below it.
  1663. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1664. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1665. }
  1666. #endif // AUTO_BED_LEVELING_GRID
  1667. static void run_z_probe() {
  1668. plan_bed_level_matrix.set_to_identity();
  1669. feedrate = homing_feedrate[Z_AXIS];
  1670. // move down until you find the bed
  1671. float zPosition = -10;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. // we have to let the planner know where we are right now as it is not where we said to go.
  1675. zPosition = st_get_position_mm(Z_AXIS);
  1676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1677. // move up the retract distance
  1678. zPosition += home_retract_mm(Z_AXIS);
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. // move back down slowly to find bed
  1682. feedrate = homing_feedrate[Z_AXIS]/4;
  1683. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1685. st_synchronize();
  1686. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1687. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1688. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1689. }
  1690. static void do_blocking_move_to(float x, float y, float z) {
  1691. float oldFeedRate = feedrate;
  1692. feedrate = homing_feedrate[Z_AXIS];
  1693. current_position[Z_AXIS] = z;
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1695. st_synchronize();
  1696. feedrate = XY_TRAVEL_SPEED;
  1697. current_position[X_AXIS] = x;
  1698. current_position[Y_AXIS] = y;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1700. st_synchronize();
  1701. feedrate = oldFeedRate;
  1702. }
  1703. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1704. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1705. }
  1706. /// Probe bed height at position (x,y), returns the measured z value
  1707. static float probe_pt(float x, float y, float z_before) {
  1708. // move to right place
  1709. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1710. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1711. run_z_probe();
  1712. float measured_z = current_position[Z_AXIS];
  1713. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1714. SERIAL_PROTOCOLPGM(" x: ");
  1715. SERIAL_PROTOCOL(x);
  1716. SERIAL_PROTOCOLPGM(" y: ");
  1717. SERIAL_PROTOCOL(y);
  1718. SERIAL_PROTOCOLPGM(" z: ");
  1719. SERIAL_PROTOCOL(measured_z);
  1720. SERIAL_PROTOCOLPGM("\n");
  1721. return measured_z;
  1722. }
  1723. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1724. #ifdef LIN_ADVANCE
  1725. /**
  1726. * M900: Set and/or Get advance K factor
  1727. *
  1728. * K<factor> Set advance K factor
  1729. */
  1730. inline void gcode_M900() {
  1731. st_synchronize();
  1732. const float newK = code_seen('K') ? code_value_float() : -1;
  1733. if (newK >= 0 && newK < 10)
  1734. extruder_advance_K = newK;
  1735. else
  1736. SERIAL_ECHOLNPGM("K out of allowed range!");
  1737. SERIAL_ECHO_START;
  1738. SERIAL_ECHOPGM("Advance K=");
  1739. SERIAL_ECHOLN(extruder_advance_K);
  1740. }
  1741. #endif // LIN_ADVANCE
  1742. bool check_commands() {
  1743. bool end_command_found = false;
  1744. while (buflen)
  1745. {
  1746. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1747. if (!cmdbuffer_front_already_processed)
  1748. cmdqueue_pop_front();
  1749. cmdbuffer_front_already_processed = false;
  1750. }
  1751. return end_command_found;
  1752. }
  1753. #ifdef TMC2130
  1754. bool calibrate_z_auto()
  1755. {
  1756. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1757. lcd_clear();
  1758. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1759. bool endstops_enabled = enable_endstops(true);
  1760. int axis_up_dir = -home_dir(Z_AXIS);
  1761. tmc2130_home_enter(Z_AXIS_MASK);
  1762. current_position[Z_AXIS] = 0;
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. set_destination_to_current();
  1765. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1766. feedrate = homing_feedrate[Z_AXIS];
  1767. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1768. st_synchronize();
  1769. // current_position[axis] = 0;
  1770. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. tmc2130_home_exit();
  1772. enable_endstops(false);
  1773. current_position[Z_AXIS] = 0;
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. set_destination_to_current();
  1776. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1777. feedrate = homing_feedrate[Z_AXIS] / 2;
  1778. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1779. st_synchronize();
  1780. enable_endstops(endstops_enabled);
  1781. if (PRINTER_TYPE == PRINTER_MK3) {
  1782. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1783. }
  1784. else {
  1785. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1786. }
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. return true;
  1789. }
  1790. #endif //TMC2130
  1791. #ifdef TMC2130
  1792. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1793. #else
  1794. void homeaxis(int axis, uint8_t cnt)
  1795. #endif //TMC2130
  1796. {
  1797. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1798. #define HOMEAXIS_DO(LETTER) \
  1799. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1800. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1801. {
  1802. int axis_home_dir = home_dir(axis);
  1803. feedrate = homing_feedrate[axis];
  1804. #ifdef TMC2130
  1805. tmc2130_home_enter(X_AXIS_MASK << axis);
  1806. #endif //TMC2130
  1807. // Move away a bit, so that the print head does not touch the end position,
  1808. // and the following movement to endstop has a chance to achieve the required velocity
  1809. // for the stall guard to work.
  1810. current_position[axis] = 0;
  1811. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1812. set_destination_to_current();
  1813. // destination[axis] = 11.f;
  1814. destination[axis] = -3.f * axis_home_dir;
  1815. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1816. st_synchronize();
  1817. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1818. endstops_hit_on_purpose();
  1819. enable_endstops(false);
  1820. current_position[axis] = 0;
  1821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1822. destination[axis] = 1. * axis_home_dir;
  1823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. // Now continue to move up to the left end stop with the collision detection enabled.
  1826. enable_endstops(true);
  1827. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1828. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1829. st_synchronize();
  1830. for (uint8_t i = 0; i < cnt; i++)
  1831. {
  1832. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1833. endstops_hit_on_purpose();
  1834. enable_endstops(false);
  1835. current_position[axis] = 0;
  1836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1837. destination[axis] = -10.f * axis_home_dir;
  1838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1839. st_synchronize();
  1840. endstops_hit_on_purpose();
  1841. // Now move left up to the collision, this time with a repeatable velocity.
  1842. enable_endstops(true);
  1843. destination[axis] = 11.f * axis_home_dir;
  1844. #ifdef TMC2130
  1845. feedrate = homing_feedrate[axis];
  1846. #else //TMC2130
  1847. feedrate = homing_feedrate[axis] / 2;
  1848. #endif //TMC2130
  1849. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1850. st_synchronize();
  1851. #ifdef TMC2130
  1852. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1853. if (pstep) pstep[i] = mscnt >> 4;
  1854. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1855. #endif //TMC2130
  1856. }
  1857. endstops_hit_on_purpose();
  1858. enable_endstops(false);
  1859. #ifdef TMC2130
  1860. uint8_t orig = tmc2130_home_origin[axis];
  1861. uint8_t back = tmc2130_home_bsteps[axis];
  1862. if (tmc2130_home_enabled && (orig <= 63))
  1863. {
  1864. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1865. if (back > 0)
  1866. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1867. }
  1868. else
  1869. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1870. tmc2130_home_exit();
  1871. #endif //TMC2130
  1872. axis_is_at_home(axis);
  1873. axis_known_position[axis] = true;
  1874. // Move from minimum
  1875. #ifdef TMC2130
  1876. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1877. #else //TMC2130
  1878. float dist = - axis_home_dir * 0.01f * 64;
  1879. #endif //TMC2130
  1880. current_position[axis] -= dist;
  1881. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1882. current_position[axis] += dist;
  1883. destination[axis] = current_position[axis];
  1884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1885. st_synchronize();
  1886. feedrate = 0.0;
  1887. }
  1888. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1889. {
  1890. #ifdef TMC2130
  1891. FORCE_HIGH_POWER_START;
  1892. #endif
  1893. int axis_home_dir = home_dir(axis);
  1894. current_position[axis] = 0;
  1895. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1896. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1897. feedrate = homing_feedrate[axis];
  1898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1899. st_synchronize();
  1900. #ifdef TMC2130
  1901. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1902. FORCE_HIGH_POWER_END;
  1903. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1904. return;
  1905. }
  1906. #endif //TMC2130
  1907. current_position[axis] = 0;
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1910. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1911. st_synchronize();
  1912. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1913. feedrate = homing_feedrate[axis]/2 ;
  1914. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1915. st_synchronize();
  1916. #ifdef TMC2130
  1917. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1918. FORCE_HIGH_POWER_END;
  1919. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1920. return;
  1921. }
  1922. #endif //TMC2130
  1923. axis_is_at_home(axis);
  1924. destination[axis] = current_position[axis];
  1925. feedrate = 0.0;
  1926. endstops_hit_on_purpose();
  1927. axis_known_position[axis] = true;
  1928. #ifdef TMC2130
  1929. FORCE_HIGH_POWER_END;
  1930. #endif
  1931. }
  1932. enable_endstops(endstops_enabled);
  1933. }
  1934. /**/
  1935. void home_xy()
  1936. {
  1937. set_destination_to_current();
  1938. homeaxis(X_AXIS);
  1939. homeaxis(Y_AXIS);
  1940. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1941. endstops_hit_on_purpose();
  1942. }
  1943. void refresh_cmd_timeout(void)
  1944. {
  1945. previous_millis_cmd = _millis();
  1946. }
  1947. #ifdef FWRETRACT
  1948. void retract(bool retracting, bool swapretract = false) {
  1949. if(retracting && !retracted[active_extruder]) {
  1950. destination[X_AXIS]=current_position[X_AXIS];
  1951. destination[Y_AXIS]=current_position[Y_AXIS];
  1952. destination[Z_AXIS]=current_position[Z_AXIS];
  1953. destination[E_AXIS]=current_position[E_AXIS];
  1954. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1955. plan_set_e_position(current_position[E_AXIS]);
  1956. float oldFeedrate = feedrate;
  1957. feedrate=cs.retract_feedrate*60;
  1958. retracted[active_extruder]=true;
  1959. prepare_move();
  1960. current_position[Z_AXIS]-=cs.retract_zlift;
  1961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1962. prepare_move();
  1963. feedrate = oldFeedrate;
  1964. } else if(!retracting && retracted[active_extruder]) {
  1965. destination[X_AXIS]=current_position[X_AXIS];
  1966. destination[Y_AXIS]=current_position[Y_AXIS];
  1967. destination[Z_AXIS]=current_position[Z_AXIS];
  1968. destination[E_AXIS]=current_position[E_AXIS];
  1969. current_position[Z_AXIS]+=cs.retract_zlift;
  1970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1971. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1972. plan_set_e_position(current_position[E_AXIS]);
  1973. float oldFeedrate = feedrate;
  1974. feedrate=cs.retract_recover_feedrate*60;
  1975. retracted[active_extruder]=false;
  1976. prepare_move();
  1977. feedrate = oldFeedrate;
  1978. }
  1979. } //retract
  1980. #endif //FWRETRACT
  1981. void trace() {
  1982. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1983. _tone(BEEPER, 440);
  1984. _delay(25);
  1985. _noTone(BEEPER);
  1986. _delay(20);
  1987. }
  1988. /*
  1989. void ramming() {
  1990. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1991. if (current_temperature[0] < 230) {
  1992. //PLA
  1993. max_feedrate[E_AXIS] = 50;
  1994. //current_position[E_AXIS] -= 8;
  1995. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1996. //current_position[E_AXIS] += 8;
  1997. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1998. current_position[E_AXIS] += 5.4;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2000. current_position[E_AXIS] += 3.2;
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2002. current_position[E_AXIS] += 3;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2004. st_synchronize();
  2005. max_feedrate[E_AXIS] = 80;
  2006. current_position[E_AXIS] -= 82;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2008. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2009. current_position[E_AXIS] -= 20;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2011. current_position[E_AXIS] += 5;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2013. current_position[E_AXIS] += 5;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2015. current_position[E_AXIS] -= 10;
  2016. st_synchronize();
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2018. current_position[E_AXIS] += 10;
  2019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2020. current_position[E_AXIS] -= 10;
  2021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2022. current_position[E_AXIS] += 10;
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2024. current_position[E_AXIS] -= 10;
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2026. st_synchronize();
  2027. }
  2028. else {
  2029. //ABS
  2030. max_feedrate[E_AXIS] = 50;
  2031. //current_position[E_AXIS] -= 8;
  2032. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2033. //current_position[E_AXIS] += 8;
  2034. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2035. current_position[E_AXIS] += 3.1;
  2036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2037. current_position[E_AXIS] += 3.1;
  2038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2039. current_position[E_AXIS] += 4;
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2041. st_synchronize();
  2042. //current_position[X_AXIS] += 23; //delay
  2043. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2044. //current_position[X_AXIS] -= 23; //delay
  2045. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2046. _delay(4700);
  2047. max_feedrate[E_AXIS] = 80;
  2048. current_position[E_AXIS] -= 92;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2050. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2051. current_position[E_AXIS] -= 5;
  2052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2053. current_position[E_AXIS] += 5;
  2054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2055. current_position[E_AXIS] -= 5;
  2056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2057. st_synchronize();
  2058. current_position[E_AXIS] += 5;
  2059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2060. current_position[E_AXIS] -= 5;
  2061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2062. current_position[E_AXIS] += 5;
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2064. current_position[E_AXIS] -= 5;
  2065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2066. st_synchronize();
  2067. }
  2068. }
  2069. */
  2070. #ifdef TMC2130
  2071. void force_high_power_mode(bool start_high_power_section) {
  2072. uint8_t silent;
  2073. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2074. if (silent == 1) {
  2075. //we are in silent mode, set to normal mode to enable crash detection
  2076. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2077. st_synchronize();
  2078. cli();
  2079. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2080. update_mode_profile();
  2081. tmc2130_init();
  2082. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2083. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2084. st_reset_timer();
  2085. sei();
  2086. }
  2087. }
  2088. #endif //TMC2130
  2089. #ifdef TMC2130
  2090. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2091. #else
  2092. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2093. #endif //TMC2130
  2094. {
  2095. st_synchronize();
  2096. #if 0
  2097. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2098. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2099. #endif
  2100. // Flag for the display update routine and to disable the print cancelation during homing.
  2101. homing_flag = true;
  2102. // Which axes should be homed?
  2103. bool home_x = home_x_axis;
  2104. bool home_y = home_y_axis;
  2105. bool home_z = home_z_axis;
  2106. // Either all X,Y,Z codes are present, or none of them.
  2107. bool home_all_axes = home_x == home_y && home_x == home_z;
  2108. if (home_all_axes)
  2109. // No X/Y/Z code provided means to home all axes.
  2110. home_x = home_y = home_z = true;
  2111. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2112. if (home_all_axes) {
  2113. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2114. feedrate = homing_feedrate[Z_AXIS];
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2116. st_synchronize();
  2117. }
  2118. #ifdef ENABLE_AUTO_BED_LEVELING
  2119. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2120. #endif //ENABLE_AUTO_BED_LEVELING
  2121. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2122. // the planner will not perform any adjustments in the XY plane.
  2123. // Wait for the motors to stop and update the current position with the absolute values.
  2124. world2machine_revert_to_uncorrected();
  2125. // For mesh bed leveling deactivate the matrix temporarily.
  2126. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2127. // in a single axis only.
  2128. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2129. #ifdef MESH_BED_LEVELING
  2130. uint8_t mbl_was_active = mbl.active;
  2131. mbl.active = 0;
  2132. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2133. #endif
  2134. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2135. // consumed during the first movements following this statement.
  2136. if (home_z)
  2137. babystep_undo();
  2138. saved_feedrate = feedrate;
  2139. int l_feedmultiply = feedmultiply;
  2140. feedmultiply = 100;
  2141. previous_millis_cmd = _millis();
  2142. enable_endstops(true);
  2143. memcpy(destination, current_position, sizeof(destination));
  2144. feedrate = 0.0;
  2145. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2146. if(home_z)
  2147. homeaxis(Z_AXIS);
  2148. #endif
  2149. #ifdef QUICK_HOME
  2150. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2151. if(home_x && home_y) //first diagonal move
  2152. {
  2153. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2154. int x_axis_home_dir = home_dir(X_AXIS);
  2155. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2156. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2157. feedrate = homing_feedrate[X_AXIS];
  2158. if(homing_feedrate[Y_AXIS]<feedrate)
  2159. feedrate = homing_feedrate[Y_AXIS];
  2160. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2161. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2162. } else {
  2163. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2164. }
  2165. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2166. st_synchronize();
  2167. axis_is_at_home(X_AXIS);
  2168. axis_is_at_home(Y_AXIS);
  2169. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2170. destination[X_AXIS] = current_position[X_AXIS];
  2171. destination[Y_AXIS] = current_position[Y_AXIS];
  2172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2173. feedrate = 0.0;
  2174. st_synchronize();
  2175. endstops_hit_on_purpose();
  2176. current_position[X_AXIS] = destination[X_AXIS];
  2177. current_position[Y_AXIS] = destination[Y_AXIS];
  2178. current_position[Z_AXIS] = destination[Z_AXIS];
  2179. }
  2180. #endif /* QUICK_HOME */
  2181. #ifdef TMC2130
  2182. if(home_x)
  2183. {
  2184. if (!calib)
  2185. homeaxis(X_AXIS);
  2186. else
  2187. tmc2130_home_calibrate(X_AXIS);
  2188. }
  2189. if(home_y)
  2190. {
  2191. if (!calib)
  2192. homeaxis(Y_AXIS);
  2193. else
  2194. tmc2130_home_calibrate(Y_AXIS);
  2195. }
  2196. #else //TMC2130
  2197. if(home_x) homeaxis(X_AXIS);
  2198. if(home_y) homeaxis(Y_AXIS);
  2199. #endif //TMC2130
  2200. if(home_x_axis && home_x_value != 0)
  2201. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2202. if(home_y_axis && home_y_value != 0)
  2203. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2204. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2205. #ifndef Z_SAFE_HOMING
  2206. if(home_z) {
  2207. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2208. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2209. feedrate = max_feedrate[Z_AXIS];
  2210. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2211. st_synchronize();
  2212. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2213. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2214. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2215. {
  2216. homeaxis(X_AXIS);
  2217. homeaxis(Y_AXIS);
  2218. }
  2219. // 1st mesh bed leveling measurement point, corrected.
  2220. world2machine_initialize();
  2221. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2222. world2machine_reset();
  2223. if (destination[Y_AXIS] < Y_MIN_POS)
  2224. destination[Y_AXIS] = Y_MIN_POS;
  2225. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2226. feedrate = homing_feedrate[Z_AXIS]/10;
  2227. current_position[Z_AXIS] = 0;
  2228. enable_endstops(false);
  2229. #ifdef DEBUG_BUILD
  2230. SERIAL_ECHOLNPGM("plan_set_position()");
  2231. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2232. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2233. #endif
  2234. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2235. #ifdef DEBUG_BUILD
  2236. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2237. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2238. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2239. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2240. #endif
  2241. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2242. st_synchronize();
  2243. current_position[X_AXIS] = destination[X_AXIS];
  2244. current_position[Y_AXIS] = destination[Y_AXIS];
  2245. enable_endstops(true);
  2246. endstops_hit_on_purpose();
  2247. homeaxis(Z_AXIS);
  2248. #else // MESH_BED_LEVELING
  2249. homeaxis(Z_AXIS);
  2250. #endif // MESH_BED_LEVELING
  2251. }
  2252. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2253. if(home_all_axes) {
  2254. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2255. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2256. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2257. feedrate = XY_TRAVEL_SPEED/60;
  2258. current_position[Z_AXIS] = 0;
  2259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2261. st_synchronize();
  2262. current_position[X_AXIS] = destination[X_AXIS];
  2263. current_position[Y_AXIS] = destination[Y_AXIS];
  2264. homeaxis(Z_AXIS);
  2265. }
  2266. // Let's see if X and Y are homed and probe is inside bed area.
  2267. if(home_z) {
  2268. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2269. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2270. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2271. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2272. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2273. current_position[Z_AXIS] = 0;
  2274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2275. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2276. feedrate = max_feedrate[Z_AXIS];
  2277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2278. st_synchronize();
  2279. homeaxis(Z_AXIS);
  2280. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2281. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2282. SERIAL_ECHO_START;
  2283. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2284. } else {
  2285. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2286. SERIAL_ECHO_START;
  2287. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2288. }
  2289. }
  2290. #endif // Z_SAFE_HOMING
  2291. #endif // Z_HOME_DIR < 0
  2292. if(home_z_axis && home_z_value != 0)
  2293. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2294. #ifdef ENABLE_AUTO_BED_LEVELING
  2295. if(home_z)
  2296. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2297. #endif
  2298. // Set the planner and stepper routine positions.
  2299. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2300. // contains the machine coordinates.
  2301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2302. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2303. enable_endstops(false);
  2304. #endif
  2305. feedrate = saved_feedrate;
  2306. feedmultiply = l_feedmultiply;
  2307. previous_millis_cmd = _millis();
  2308. endstops_hit_on_purpose();
  2309. #ifndef MESH_BED_LEVELING
  2310. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2311. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2312. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2313. lcd_adjust_z();
  2314. #endif
  2315. // Load the machine correction matrix
  2316. world2machine_initialize();
  2317. // and correct the current_position XY axes to match the transformed coordinate system.
  2318. world2machine_update_current();
  2319. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2320. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2321. {
  2322. if (! home_z && mbl_was_active) {
  2323. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2324. mbl.active = true;
  2325. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2326. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2327. }
  2328. }
  2329. else
  2330. {
  2331. st_synchronize();
  2332. homing_flag = false;
  2333. }
  2334. #endif
  2335. if (farm_mode) { prusa_statistics(20); };
  2336. homing_flag = false;
  2337. #if 0
  2338. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2339. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2340. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2341. #endif
  2342. }
  2343. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2344. {
  2345. #ifdef TMC2130
  2346. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2347. #else
  2348. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2349. #endif //TMC2130
  2350. }
  2351. void adjust_bed_reset()
  2352. {
  2353. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2354. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2355. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2356. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2357. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2358. }
  2359. //! @brief Calibrate XYZ
  2360. //! @param onlyZ if true, calibrate only Z axis
  2361. //! @param verbosity_level
  2362. //! @retval true Succeeded
  2363. //! @retval false Failed
  2364. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2365. {
  2366. bool final_result = false;
  2367. #ifdef TMC2130
  2368. FORCE_HIGH_POWER_START;
  2369. #endif // TMC2130
  2370. // Only Z calibration?
  2371. if (!onlyZ)
  2372. {
  2373. setTargetBed(0);
  2374. setAllTargetHotends(0);
  2375. adjust_bed_reset(); //reset bed level correction
  2376. }
  2377. // Disable the default update procedure of the display. We will do a modal dialog.
  2378. lcd_update_enable(false);
  2379. // Let the planner use the uncorrected coordinates.
  2380. mbl.reset();
  2381. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2382. // the planner will not perform any adjustments in the XY plane.
  2383. // Wait for the motors to stop and update the current position with the absolute values.
  2384. world2machine_revert_to_uncorrected();
  2385. // Reset the baby step value applied without moving the axes.
  2386. babystep_reset();
  2387. // Mark all axes as in a need for homing.
  2388. memset(axis_known_position, 0, sizeof(axis_known_position));
  2389. // Home in the XY plane.
  2390. //set_destination_to_current();
  2391. int l_feedmultiply = setup_for_endstop_move();
  2392. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2393. home_xy();
  2394. enable_endstops(false);
  2395. current_position[X_AXIS] += 5;
  2396. current_position[Y_AXIS] += 5;
  2397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2398. st_synchronize();
  2399. // Let the user move the Z axes up to the end stoppers.
  2400. #ifdef TMC2130
  2401. if (calibrate_z_auto())
  2402. {
  2403. #else //TMC2130
  2404. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2405. {
  2406. #endif //TMC2130
  2407. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2408. if(onlyZ){
  2409. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2410. lcd_set_cursor(0, 3);
  2411. lcd_print(1);
  2412. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2413. }else{
  2414. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2415. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2416. lcd_set_cursor(0, 2);
  2417. lcd_print(1);
  2418. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2419. }
  2420. refresh_cmd_timeout();
  2421. #ifndef STEEL_SHEET
  2422. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2423. {
  2424. lcd_wait_for_cool_down();
  2425. }
  2426. #endif //STEEL_SHEET
  2427. if(!onlyZ)
  2428. {
  2429. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2430. #ifdef STEEL_SHEET
  2431. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2432. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2433. #endif //STEEL_SHEET
  2434. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2435. KEEPALIVE_STATE(IN_HANDLER);
  2436. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2437. lcd_set_cursor(0, 2);
  2438. lcd_print(1);
  2439. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2440. }
  2441. bool endstops_enabled = enable_endstops(false);
  2442. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2444. st_synchronize();
  2445. // Move the print head close to the bed.
  2446. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2447. enable_endstops(true);
  2448. #ifdef TMC2130
  2449. tmc2130_home_enter(Z_AXIS_MASK);
  2450. #endif //TMC2130
  2451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2452. st_synchronize();
  2453. #ifdef TMC2130
  2454. tmc2130_home_exit();
  2455. #endif //TMC2130
  2456. enable_endstops(endstops_enabled);
  2457. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2458. {
  2459. if (onlyZ)
  2460. {
  2461. clean_up_after_endstop_move(l_feedmultiply);
  2462. // Z only calibration.
  2463. // Load the machine correction matrix
  2464. world2machine_initialize();
  2465. // and correct the current_position to match the transformed coordinate system.
  2466. world2machine_update_current();
  2467. //FIXME
  2468. bool result = sample_mesh_and_store_reference();
  2469. if (result)
  2470. {
  2471. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2472. // Shipped, the nozzle height has been set already. The user can start printing now.
  2473. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2474. final_result = true;
  2475. // babystep_apply();
  2476. }
  2477. }
  2478. else
  2479. {
  2480. // Reset the baby step value and the baby step applied flag.
  2481. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2482. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2483. // Complete XYZ calibration.
  2484. uint8_t point_too_far_mask = 0;
  2485. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2486. clean_up_after_endstop_move(l_feedmultiply);
  2487. // Print head up.
  2488. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2490. st_synchronize();
  2491. //#ifndef NEW_XYZCAL
  2492. if (result >= 0)
  2493. {
  2494. #ifdef HEATBED_V2
  2495. sample_z();
  2496. #else //HEATBED_V2
  2497. point_too_far_mask = 0;
  2498. // Second half: The fine adjustment.
  2499. // Let the planner use the uncorrected coordinates.
  2500. mbl.reset();
  2501. world2machine_reset();
  2502. // Home in the XY plane.
  2503. int l_feedmultiply = setup_for_endstop_move();
  2504. home_xy();
  2505. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2506. clean_up_after_endstop_move(l_feedmultiply);
  2507. // Print head up.
  2508. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2510. st_synchronize();
  2511. // if (result >= 0) babystep_apply();
  2512. #endif //HEATBED_V2
  2513. }
  2514. //#endif //NEW_XYZCAL
  2515. lcd_update_enable(true);
  2516. lcd_update(2);
  2517. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2518. if (result >= 0)
  2519. {
  2520. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2521. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2522. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2523. final_result = true;
  2524. }
  2525. }
  2526. #ifdef TMC2130
  2527. tmc2130_home_exit();
  2528. #endif
  2529. }
  2530. else
  2531. {
  2532. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2533. final_result = false;
  2534. }
  2535. }
  2536. else
  2537. {
  2538. // Timeouted.
  2539. }
  2540. lcd_update_enable(true);
  2541. #ifdef TMC2130
  2542. FORCE_HIGH_POWER_END;
  2543. #endif // TMC2130
  2544. return final_result;
  2545. }
  2546. void gcode_M114()
  2547. {
  2548. SERIAL_PROTOCOLPGM("X:");
  2549. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2550. SERIAL_PROTOCOLPGM(" Y:");
  2551. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2552. SERIAL_PROTOCOLPGM(" Z:");
  2553. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2554. SERIAL_PROTOCOLPGM(" E:");
  2555. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2556. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2557. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2558. SERIAL_PROTOCOLPGM(" Y:");
  2559. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2560. SERIAL_PROTOCOLPGM(" Z:");
  2561. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2562. SERIAL_PROTOCOLPGM(" E:");
  2563. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2564. SERIAL_PROTOCOLLN("");
  2565. }
  2566. //! extracted code to compute z_shift for M600 in case of filament change operation
  2567. //! requested from fsensors.
  2568. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2569. //! unlike the previous implementation, which was adding 25mm even when the head was
  2570. //! printing at e.g. 24mm height.
  2571. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2572. //! the printout.
  2573. //! This function is templated to enable fast change of computation data type.
  2574. //! @return new z_shift value
  2575. template<typename T>
  2576. static T gcode_M600_filament_change_z_shift()
  2577. {
  2578. #ifdef FILAMENTCHANGE_ZADD
  2579. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2580. // avoid floating point arithmetics when not necessary - results in shorter code
  2581. T ztmp = T( current_position[Z_AXIS] );
  2582. T z_shift = 0;
  2583. if(ztmp < T(25)){
  2584. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2585. }
  2586. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2587. #else
  2588. return T(0);
  2589. #endif
  2590. }
  2591. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2592. {
  2593. st_synchronize();
  2594. float lastpos[4];
  2595. if (farm_mode)
  2596. {
  2597. prusa_statistics(22);
  2598. }
  2599. //First backup current position and settings
  2600. int feedmultiplyBckp = feedmultiply;
  2601. float HotendTempBckp = degTargetHotend(active_extruder);
  2602. int fanSpeedBckp = fanSpeed;
  2603. lastpos[X_AXIS] = current_position[X_AXIS];
  2604. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2605. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2606. lastpos[E_AXIS] = current_position[E_AXIS];
  2607. //Retract E
  2608. current_position[E_AXIS] += e_shift;
  2609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2610. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2611. st_synchronize();
  2612. //Lift Z
  2613. current_position[Z_AXIS] += z_shift;
  2614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2615. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2616. st_synchronize();
  2617. //Move XY to side
  2618. current_position[X_AXIS] = x_position;
  2619. current_position[Y_AXIS] = y_position;
  2620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2621. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2622. st_synchronize();
  2623. //Beep, manage nozzle heater and wait for user to start unload filament
  2624. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2625. lcd_change_fil_state = 0;
  2626. // Unload filament
  2627. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2628. else unload_filament(); //unload filament for single material (used also in M702)
  2629. //finish moves
  2630. st_synchronize();
  2631. if (!mmu_enabled)
  2632. {
  2633. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2634. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2635. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2636. if (lcd_change_fil_state == 0)
  2637. {
  2638. lcd_clear();
  2639. lcd_set_cursor(0, 2);
  2640. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2641. current_position[X_AXIS] -= 100;
  2642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2643. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2644. st_synchronize();
  2645. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2646. }
  2647. }
  2648. if (mmu_enabled)
  2649. {
  2650. if (!automatic) {
  2651. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2652. mmu_M600_wait_and_beep();
  2653. if (saved_printing) {
  2654. lcd_clear();
  2655. lcd_set_cursor(0, 2);
  2656. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2657. mmu_command(MmuCmd::R0);
  2658. manage_response(false, false);
  2659. }
  2660. }
  2661. mmu_M600_load_filament(automatic, HotendTempBckp);
  2662. }
  2663. else
  2664. M600_load_filament();
  2665. if (!automatic) M600_check_state(HotendTempBckp);
  2666. lcd_update_enable(true);
  2667. //Not let's go back to print
  2668. fanSpeed = fanSpeedBckp;
  2669. //Feed a little of filament to stabilize pressure
  2670. if (!automatic)
  2671. {
  2672. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2674. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2675. }
  2676. //Move XY back
  2677. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2678. FILAMENTCHANGE_XYFEED, active_extruder);
  2679. st_synchronize();
  2680. //Move Z back
  2681. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2682. FILAMENTCHANGE_ZFEED, active_extruder);
  2683. st_synchronize();
  2684. //Set E position to original
  2685. plan_set_e_position(lastpos[E_AXIS]);
  2686. memcpy(current_position, lastpos, sizeof(lastpos));
  2687. memcpy(destination, current_position, sizeof(current_position));
  2688. //Recover feed rate
  2689. feedmultiply = feedmultiplyBckp;
  2690. char cmd[9];
  2691. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2692. enquecommand(cmd);
  2693. #ifdef IR_SENSOR
  2694. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2695. fsensor_check_autoload();
  2696. #endif //IR_SENSOR
  2697. lcd_setstatuspgm(_T(WELCOME_MSG));
  2698. custom_message_type = CustomMsg::Status;
  2699. }
  2700. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2701. //!
  2702. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2703. //! during extruding (loading) filament.
  2704. void marlin_rise_z(void)
  2705. {
  2706. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2707. }
  2708. void gcode_M701()
  2709. {
  2710. printf_P(PSTR("gcode_M701 begin\n"));
  2711. if (mmu_enabled)
  2712. {
  2713. extr_adj(tmp_extruder);//loads current extruder
  2714. mmu_extruder = tmp_extruder;
  2715. }
  2716. else
  2717. {
  2718. enable_z();
  2719. custom_message_type = CustomMsg::FilamentLoading;
  2720. #ifdef FSENSOR_QUALITY
  2721. fsensor_oq_meassure_start(40);
  2722. #endif //FSENSOR_QUALITY
  2723. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2724. current_position[E_AXIS] += 40;
  2725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2726. st_synchronize();
  2727. marlin_rise_z();
  2728. current_position[E_AXIS] += 30;
  2729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2730. load_filament_final_feed(); //slow sequence
  2731. st_synchronize();
  2732. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2733. delay_keep_alive(50);
  2734. _noTone(BEEPER);
  2735. if (!farm_mode && loading_flag) {
  2736. lcd_load_filament_color_check();
  2737. }
  2738. lcd_update_enable(true);
  2739. lcd_update(2);
  2740. lcd_setstatuspgm(_T(WELCOME_MSG));
  2741. disable_z();
  2742. loading_flag = false;
  2743. custom_message_type = CustomMsg::Status;
  2744. #ifdef FSENSOR_QUALITY
  2745. fsensor_oq_meassure_stop();
  2746. if (!fsensor_oq_result())
  2747. {
  2748. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2749. lcd_update_enable(true);
  2750. lcd_update(2);
  2751. if (disable)
  2752. fsensor_disable();
  2753. }
  2754. #endif //FSENSOR_QUALITY
  2755. }
  2756. }
  2757. /**
  2758. * @brief Get serial number from 32U2 processor
  2759. *
  2760. * Typical format of S/N is:CZPX0917X003XC13518
  2761. *
  2762. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2763. *
  2764. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2765. * reply is transmitted to serial port 1 character by character.
  2766. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2767. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2768. * in any case.
  2769. */
  2770. static void gcode_PRUSA_SN()
  2771. {
  2772. if (farm_mode) {
  2773. selectedSerialPort = 0;
  2774. putchar(';');
  2775. putchar('S');
  2776. int numbersRead = 0;
  2777. ShortTimer timeout;
  2778. timeout.start();
  2779. while (numbersRead < 19) {
  2780. while (MSerial.available() > 0) {
  2781. uint8_t serial_char = MSerial.read();
  2782. selectedSerialPort = 1;
  2783. putchar(serial_char);
  2784. numbersRead++;
  2785. selectedSerialPort = 0;
  2786. }
  2787. if (timeout.expired(100u)) break;
  2788. }
  2789. selectedSerialPort = 1;
  2790. putchar('\n');
  2791. #if 0
  2792. for (int b = 0; b < 3; b++) {
  2793. _tone(BEEPER, 110);
  2794. _delay(50);
  2795. _noTone(BEEPER);
  2796. _delay(50);
  2797. }
  2798. #endif
  2799. } else {
  2800. puts_P(_N("Not in farm mode."));
  2801. }
  2802. }
  2803. #ifdef BACKLASH_X
  2804. extern uint8_t st_backlash_x;
  2805. #endif //BACKLASH_X
  2806. #ifdef BACKLASH_Y
  2807. extern uint8_t st_backlash_y;
  2808. #endif //BACKLASH_Y
  2809. //! @brief Parse and process commands
  2810. //!
  2811. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2812. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2813. //!
  2814. //! Implemented Codes
  2815. //! -------------------
  2816. //!
  2817. //!@n PRUSA CODES
  2818. //!@n P F - Returns FW versions
  2819. //!@n P R - Returns revision of printer
  2820. //!
  2821. //!@n G0 -> G1
  2822. //!@n G1 - Coordinated Movement X Y Z E
  2823. //!@n G2 - CW ARC
  2824. //!@n G3 - CCW ARC
  2825. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2826. //!@n G10 - retract filament according to settings of M207
  2827. //!@n G11 - retract recover filament according to settings of M208
  2828. //!@n G28 - Home all Axis
  2829. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2830. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2831. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2832. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2833. //!@n G80 - Automatic mesh bed leveling
  2834. //!@n G81 - Print bed profile
  2835. //!@n G90 - Use Absolute Coordinates
  2836. //!@n G91 - Use Relative Coordinates
  2837. //!@n G92 - Set current position to coordinates given
  2838. //!
  2839. //!@n M Codes
  2840. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2841. //!@n M1 - Same as M0
  2842. //!@n M17 - Enable/Power all stepper motors
  2843. //!@n M18 - Disable all stepper motors; same as M84
  2844. //!@n M20 - List SD card
  2845. //!@n M21 - Init SD card
  2846. //!@n M22 - Release SD card
  2847. //!@n M23 - Select SD file (M23 filename.g)
  2848. //!@n M24 - Start/resume SD print
  2849. //!@n M25 - Pause SD print
  2850. //!@n M26 - Set SD position in bytes (M26 S12345)
  2851. //!@n M27 - Report SD print status
  2852. //!@n M28 - Start SD write (M28 filename.g)
  2853. //!@n M29 - Stop SD write
  2854. //!@n M30 - Delete file from SD (M30 filename.g)
  2855. //!@n M31 - Output time since last M109 or SD card start to serial
  2856. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2857. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2858. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2859. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2860. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2861. //!@n M73 - Show percent done and print time remaining
  2862. //!@n M80 - Turn on Power Supply
  2863. //!@n M81 - Turn off Power Supply
  2864. //!@n M82 - Set E codes absolute (default)
  2865. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2866. //!@n M84 - Disable steppers until next move,
  2867. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2868. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2869. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2870. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2871. //!@n M104 - Set extruder target temp
  2872. //!@n M105 - Read current temp
  2873. //!@n M106 - Fan on
  2874. //!@n M107 - Fan off
  2875. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2876. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2877. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2878. //!@n M112 - Emergency stop
  2879. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2880. //!@n M114 - Output current position to serial port
  2881. //!@n M115 - Capabilities string
  2882. //!@n M117 - display message
  2883. //!@n M119 - Output Endstop status to serial port
  2884. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2885. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2886. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2887. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2888. //!@n M140 - Set bed target temp
  2889. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2890. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2891. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2892. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2893. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2894. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2895. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2896. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2897. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2898. //!@n M206 - set additional homing offset
  2899. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2900. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2901. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2902. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2903. //!@n M220 S<factor in percent>- set speed factor override percentage
  2904. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2905. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2906. //!@n M240 - Trigger a camera to take a photograph
  2907. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2908. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2909. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2910. //!@n M301 - Set PID parameters P I and D
  2911. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2912. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2913. //!@n M304 - Set bed PID parameters P I and D
  2914. //!@n M400 - Finish all moves
  2915. //!@n M401 - Lower z-probe if present
  2916. //!@n M402 - Raise z-probe if present
  2917. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2918. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2919. //!@n M406 - Turn off Filament Sensor extrusion control
  2920. //!@n M407 - Displays measured filament diameter
  2921. //!@n M500 - stores parameters in EEPROM
  2922. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2923. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2924. //!@n M503 - print the current settings (from memory not from EEPROM)
  2925. //!@n M509 - force language selection on next restart
  2926. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2927. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2928. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2929. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2930. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2931. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2932. //!@n M907 - Set digital trimpot motor current using axis codes.
  2933. //!@n M908 - Control digital trimpot directly.
  2934. //!@n M350 - Set microstepping mode.
  2935. //!@n M351 - Toggle MS1 MS2 pins directly.
  2936. //!
  2937. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2938. //!@n M999 - Restart after being stopped by error
  2939. void process_commands()
  2940. {
  2941. #ifdef FANCHECK
  2942. if (fan_check_error){
  2943. if( fan_check_error == EFCE_DETECTED ){
  2944. fan_check_error = EFCE_REPORTED;
  2945. lcd_pause_print();
  2946. } // otherwise it has already been reported, so just ignore further processing
  2947. return;
  2948. }
  2949. #endif
  2950. if (!buflen) return; //empty command
  2951. #ifdef FILAMENT_RUNOUT_SUPPORT
  2952. SET_INPUT(FR_SENS);
  2953. #endif
  2954. #ifdef CMDBUFFER_DEBUG
  2955. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2956. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2957. SERIAL_ECHOLNPGM("");
  2958. SERIAL_ECHOPGM("In cmdqueue: ");
  2959. SERIAL_ECHO(buflen);
  2960. SERIAL_ECHOLNPGM("");
  2961. #endif /* CMDBUFFER_DEBUG */
  2962. unsigned long codenum; //throw away variable
  2963. char *starpos = NULL;
  2964. #ifdef ENABLE_AUTO_BED_LEVELING
  2965. float x_tmp, y_tmp, z_tmp, real_z;
  2966. #endif
  2967. // PRUSA GCODES
  2968. KEEPALIVE_STATE(IN_HANDLER);
  2969. #ifdef SNMM
  2970. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2971. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2972. int8_t SilentMode;
  2973. #endif
  2974. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2975. starpos = (strchr(strchr_pointer + 5, '*'));
  2976. if (starpos != NULL)
  2977. *(starpos) = '\0';
  2978. lcd_setstatus(strchr_pointer + 5);
  2979. }
  2980. #ifdef TMC2130
  2981. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2982. {
  2983. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2984. {
  2985. uint8_t mask = 0;
  2986. if (code_seen('X')) mask |= X_AXIS_MASK;
  2987. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2988. crashdet_detected(mask);
  2989. }
  2990. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2991. crashdet_recover();
  2992. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2993. crashdet_cancel();
  2994. }
  2995. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2996. {
  2997. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2998. {
  2999. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3000. axis = (axis == 'E')?3:(axis - 'X');
  3001. if (axis < 4)
  3002. {
  3003. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3004. tmc2130_set_wave(axis, 247, fac);
  3005. }
  3006. }
  3007. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  3008. {
  3009. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3010. axis = (axis == 'E')?3:(axis - 'X');
  3011. if (axis < 4)
  3012. {
  3013. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3014. uint16_t res = tmc2130_get_res(axis);
  3015. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3016. }
  3017. }
  3018. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3019. {
  3020. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3021. axis = (axis == 'E')?3:(axis - 'X');
  3022. if (axis < 4)
  3023. {
  3024. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3025. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3026. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3027. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3028. char* str_end = 0;
  3029. if (CMDBUFFER_CURRENT_STRING[14])
  3030. {
  3031. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3032. if (str_end && *str_end)
  3033. {
  3034. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3035. if (str_end && *str_end)
  3036. {
  3037. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3038. if (str_end && *str_end)
  3039. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3040. }
  3041. }
  3042. }
  3043. tmc2130_chopper_config[axis].toff = chop0;
  3044. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3045. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3046. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3047. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3048. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3049. }
  3050. }
  3051. }
  3052. #ifdef BACKLASH_X
  3053. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3054. {
  3055. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3056. st_backlash_x = bl;
  3057. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3058. }
  3059. #endif //BACKLASH_X
  3060. #ifdef BACKLASH_Y
  3061. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3062. {
  3063. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3064. st_backlash_y = bl;
  3065. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3066. }
  3067. #endif //BACKLASH_Y
  3068. #endif //TMC2130
  3069. else if(code_seen("PRUSA")){
  3070. if (code_seen("Ping")) { //! PRUSA Ping
  3071. if (farm_mode) {
  3072. PingTime = _millis();
  3073. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3074. }
  3075. }
  3076. else if (code_seen("PRN")) { //! PRUSA PRN
  3077. printf_P(_N("%d"), status_number);
  3078. }else if (code_seen("FAN")) { //! PRUSA FAN
  3079. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3080. }else if (code_seen("fn")) { //! PRUSA fn
  3081. if (farm_mode) {
  3082. printf_P(_N("%d"), farm_no);
  3083. }
  3084. else {
  3085. puts_P(_N("Not in farm mode."));
  3086. }
  3087. }
  3088. else if (code_seen("thx")) //! PRUSA thx
  3089. {
  3090. no_response = false;
  3091. }
  3092. else if (code_seen("uvlo")) //! PRUSA uvlo
  3093. {
  3094. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3095. enquecommand_P(PSTR("M24"));
  3096. }
  3097. #ifdef FILAMENT_SENSOR
  3098. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3099. {
  3100. fsensor_restore_print_and_continue();
  3101. }
  3102. #endif //FILAMENT_SENSOR
  3103. else if (code_seen("MMURES")) //! PRUSA MMURES
  3104. {
  3105. mmu_reset();
  3106. }
  3107. else if (code_seen("RESET")) { //! PRUSA RESET
  3108. // careful!
  3109. if (farm_mode) {
  3110. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3111. boot_app_magic = BOOT_APP_MAGIC;
  3112. boot_app_flags = BOOT_APP_FLG_RUN;
  3113. wdt_enable(WDTO_15MS);
  3114. cli();
  3115. while(1);
  3116. #else //WATCHDOG
  3117. asm volatile("jmp 0x3E000");
  3118. #endif //WATCHDOG
  3119. }
  3120. else {
  3121. MYSERIAL.println("Not in farm mode.");
  3122. }
  3123. }else if (code_seen("fv")) { //! PRUSA fv
  3124. // get file version
  3125. #ifdef SDSUPPORT
  3126. card.openFile(strchr_pointer + 3,true);
  3127. while (true) {
  3128. uint16_t readByte = card.get();
  3129. MYSERIAL.write(readByte);
  3130. if (readByte=='\n') {
  3131. break;
  3132. }
  3133. }
  3134. card.closefile();
  3135. #endif // SDSUPPORT
  3136. } else if (code_seen("M28")) { //! PRUSA M28
  3137. trace();
  3138. prusa_sd_card_upload = true;
  3139. card.openFile(strchr_pointer+4,false);
  3140. } else if (code_seen("SN")) { //! PRUSA SN
  3141. gcode_PRUSA_SN();
  3142. } else if(code_seen("Fir")){ //! PRUSA Fir
  3143. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3144. } else if(code_seen("Rev")){ //! PRUSA Rev
  3145. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3146. } else if(code_seen("Lang")) { //! PRUSA Lang
  3147. lang_reset();
  3148. } else if(code_seen("Lz")) { //! PRUSA Lz
  3149. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3150. } else if(code_seen("Beat")) { //! PRUSA Beat
  3151. // Kick farm link timer
  3152. kicktime = _millis();
  3153. } else if(code_seen("FR")) { //! PRUSA FR
  3154. // Factory full reset
  3155. factory_reset(0);
  3156. //-//
  3157. /*
  3158. } else if(code_seen("qqq")) {
  3159. MYSERIAL.println("=== checking ===");
  3160. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3161. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3162. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3163. MYSERIAL.println(farm_mode,DEC);
  3164. MYSERIAL.println(eCheckMode,DEC);
  3165. } else if(code_seen("www")) {
  3166. MYSERIAL.println("=== @ FF ===");
  3167. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3168. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3169. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3170. */
  3171. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3172. uint16_t nDiameter;
  3173. if(code_seen('D'))
  3174. {
  3175. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3176. nozzle_diameter_check(nDiameter);
  3177. }
  3178. else if(code_seen("set") && farm_mode)
  3179. {
  3180. strchr_pointer++; // skip 2nd char (~ 'e')
  3181. strchr_pointer++; // skip 3rd char (~ 't')
  3182. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3183. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)e_NOZZLE_DIAMETER_NULL); // for correct synchronization after farm-mode exiting
  3184. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3185. }
  3186. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3187. }
  3188. //else if (code_seen('Cal')) {
  3189. // lcd_calibration();
  3190. // }
  3191. }
  3192. else if (code_seen('^')) {
  3193. // nothing, this is a version line
  3194. } else if(code_seen('G'))
  3195. {
  3196. gcode_in_progress = (int)code_value();
  3197. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3198. switch (gcode_in_progress)
  3199. {
  3200. case 0: // G0 -> G1
  3201. case 1: // G1
  3202. if(Stopped == false) {
  3203. #ifdef FILAMENT_RUNOUT_SUPPORT
  3204. if(READ(FR_SENS)){
  3205. int feedmultiplyBckp=feedmultiply;
  3206. float target[4];
  3207. float lastpos[4];
  3208. target[X_AXIS]=current_position[X_AXIS];
  3209. target[Y_AXIS]=current_position[Y_AXIS];
  3210. target[Z_AXIS]=current_position[Z_AXIS];
  3211. target[E_AXIS]=current_position[E_AXIS];
  3212. lastpos[X_AXIS]=current_position[X_AXIS];
  3213. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3214. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3215. lastpos[E_AXIS]=current_position[E_AXIS];
  3216. //retract by E
  3217. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3218. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3219. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3220. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3221. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3222. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3223. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3224. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3225. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3226. //finish moves
  3227. st_synchronize();
  3228. //disable extruder steppers so filament can be removed
  3229. disable_e0();
  3230. disable_e1();
  3231. disable_e2();
  3232. _delay(100);
  3233. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3234. uint8_t cnt=0;
  3235. int counterBeep = 0;
  3236. lcd_wait_interact();
  3237. while(!lcd_clicked()){
  3238. cnt++;
  3239. manage_heater();
  3240. manage_inactivity(true);
  3241. //lcd_update(0);
  3242. if(cnt==0)
  3243. {
  3244. #if BEEPER > 0
  3245. if (counterBeep== 500){
  3246. counterBeep = 0;
  3247. }
  3248. SET_OUTPUT(BEEPER);
  3249. if (counterBeep== 0){
  3250. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3251. WRITE(BEEPER,HIGH);
  3252. }
  3253. if (counterBeep== 20){
  3254. WRITE(BEEPER,LOW);
  3255. }
  3256. counterBeep++;
  3257. #else
  3258. #endif
  3259. }
  3260. }
  3261. WRITE(BEEPER,LOW);
  3262. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3263. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3264. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3265. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3266. lcd_change_fil_state = 0;
  3267. lcd_loading_filament();
  3268. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3269. lcd_change_fil_state = 0;
  3270. lcd_alright();
  3271. switch(lcd_change_fil_state){
  3272. case 2:
  3273. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3274. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3275. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3276. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3277. lcd_loading_filament();
  3278. break;
  3279. case 3:
  3280. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3281. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3282. lcd_loading_color();
  3283. break;
  3284. default:
  3285. lcd_change_success();
  3286. break;
  3287. }
  3288. }
  3289. target[E_AXIS]+= 5;
  3290. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3291. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3292. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3293. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3294. //plan_set_e_position(current_position[E_AXIS]);
  3295. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3296. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3297. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3298. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3299. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3300. plan_set_e_position(lastpos[E_AXIS]);
  3301. feedmultiply=feedmultiplyBckp;
  3302. char cmd[9];
  3303. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3304. enquecommand(cmd);
  3305. }
  3306. #endif
  3307. get_coordinates(); // For X Y Z E F
  3308. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3309. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3310. }
  3311. #ifdef FWRETRACT
  3312. if(cs.autoretract_enabled)
  3313. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3314. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3315. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3316. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3317. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3318. retract(!retracted[active_extruder]);
  3319. return;
  3320. }
  3321. }
  3322. #endif //FWRETRACT
  3323. prepare_move();
  3324. //ClearToSend();
  3325. }
  3326. break;
  3327. case 2: // G2 - CW ARC
  3328. if(Stopped == false) {
  3329. get_arc_coordinates();
  3330. prepare_arc_move(true);
  3331. }
  3332. break;
  3333. case 3: // G3 - CCW ARC
  3334. if(Stopped == false) {
  3335. get_arc_coordinates();
  3336. prepare_arc_move(false);
  3337. }
  3338. break;
  3339. case 4: // G4 dwell
  3340. codenum = 0;
  3341. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3342. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3343. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3344. st_synchronize();
  3345. codenum += _millis(); // keep track of when we started waiting
  3346. previous_millis_cmd = _millis();
  3347. while(_millis() < codenum) {
  3348. manage_heater();
  3349. manage_inactivity();
  3350. lcd_update(0);
  3351. }
  3352. break;
  3353. #ifdef FWRETRACT
  3354. case 10: // G10 retract
  3355. #if EXTRUDERS > 1
  3356. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3357. retract(true,retracted_swap[active_extruder]);
  3358. #else
  3359. retract(true);
  3360. #endif
  3361. break;
  3362. case 11: // G11 retract_recover
  3363. #if EXTRUDERS > 1
  3364. retract(false,retracted_swap[active_extruder]);
  3365. #else
  3366. retract(false);
  3367. #endif
  3368. break;
  3369. #endif //FWRETRACT
  3370. case 28: //G28 Home all Axis one at a time
  3371. {
  3372. long home_x_value = 0;
  3373. long home_y_value = 0;
  3374. long home_z_value = 0;
  3375. // Which axes should be homed?
  3376. bool home_x = code_seen(axis_codes[X_AXIS]);
  3377. home_x_value = code_value_long();
  3378. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3379. home_y_value = code_value_long();
  3380. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3381. home_z_value = code_value_long();
  3382. bool without_mbl = code_seen('W');
  3383. // calibrate?
  3384. #ifdef TMC2130
  3385. bool calib = code_seen('C');
  3386. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3387. #else
  3388. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3389. #endif //TMC2130
  3390. if ((home_x || home_y || without_mbl || home_z) == false) {
  3391. // Push the commands to the front of the message queue in the reverse order!
  3392. // There shall be always enough space reserved for these commands.
  3393. goto case_G80;
  3394. }
  3395. break;
  3396. }
  3397. #ifdef ENABLE_AUTO_BED_LEVELING
  3398. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3399. {
  3400. #if Z_MIN_PIN == -1
  3401. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3402. #endif
  3403. // Prevent user from running a G29 without first homing in X and Y
  3404. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3405. {
  3406. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3407. SERIAL_ECHO_START;
  3408. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3409. break; // abort G29, since we don't know where we are
  3410. }
  3411. st_synchronize();
  3412. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3413. //vector_3 corrected_position = plan_get_position_mm();
  3414. //corrected_position.debug("position before G29");
  3415. plan_bed_level_matrix.set_to_identity();
  3416. vector_3 uncorrected_position = plan_get_position();
  3417. //uncorrected_position.debug("position durring G29");
  3418. current_position[X_AXIS] = uncorrected_position.x;
  3419. current_position[Y_AXIS] = uncorrected_position.y;
  3420. current_position[Z_AXIS] = uncorrected_position.z;
  3421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3422. int l_feedmultiply = setup_for_endstop_move();
  3423. feedrate = homing_feedrate[Z_AXIS];
  3424. #ifdef AUTO_BED_LEVELING_GRID
  3425. // probe at the points of a lattice grid
  3426. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3427. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3428. // solve the plane equation ax + by + d = z
  3429. // A is the matrix with rows [x y 1] for all the probed points
  3430. // B is the vector of the Z positions
  3431. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3432. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3433. // "A" matrix of the linear system of equations
  3434. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3435. // "B" vector of Z points
  3436. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3437. int probePointCounter = 0;
  3438. bool zig = true;
  3439. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3440. {
  3441. int xProbe, xInc;
  3442. if (zig)
  3443. {
  3444. xProbe = LEFT_PROBE_BED_POSITION;
  3445. //xEnd = RIGHT_PROBE_BED_POSITION;
  3446. xInc = xGridSpacing;
  3447. zig = false;
  3448. } else // zag
  3449. {
  3450. xProbe = RIGHT_PROBE_BED_POSITION;
  3451. //xEnd = LEFT_PROBE_BED_POSITION;
  3452. xInc = -xGridSpacing;
  3453. zig = true;
  3454. }
  3455. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3456. {
  3457. float z_before;
  3458. if (probePointCounter == 0)
  3459. {
  3460. // raise before probing
  3461. z_before = Z_RAISE_BEFORE_PROBING;
  3462. } else
  3463. {
  3464. // raise extruder
  3465. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3466. }
  3467. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3468. eqnBVector[probePointCounter] = measured_z;
  3469. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3470. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3471. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3472. probePointCounter++;
  3473. xProbe += xInc;
  3474. }
  3475. }
  3476. clean_up_after_endstop_move(l_feedmultiply);
  3477. // solve lsq problem
  3478. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3479. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3480. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3481. SERIAL_PROTOCOLPGM(" b: ");
  3482. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3483. SERIAL_PROTOCOLPGM(" d: ");
  3484. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3485. set_bed_level_equation_lsq(plane_equation_coefficients);
  3486. free(plane_equation_coefficients);
  3487. #else // AUTO_BED_LEVELING_GRID not defined
  3488. // Probe at 3 arbitrary points
  3489. // probe 1
  3490. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3491. // probe 2
  3492. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3493. // probe 3
  3494. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3495. clean_up_after_endstop_move(l_feedmultiply);
  3496. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3497. #endif // AUTO_BED_LEVELING_GRID
  3498. st_synchronize();
  3499. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3500. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3501. // When the bed is uneven, this height must be corrected.
  3502. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3503. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3504. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3505. z_tmp = current_position[Z_AXIS];
  3506. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3507. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3509. }
  3510. break;
  3511. #ifndef Z_PROBE_SLED
  3512. case 30: // G30 Single Z Probe
  3513. {
  3514. st_synchronize();
  3515. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3516. int l_feedmultiply = setup_for_endstop_move();
  3517. feedrate = homing_feedrate[Z_AXIS];
  3518. run_z_probe();
  3519. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3520. SERIAL_PROTOCOLPGM(" X: ");
  3521. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3522. SERIAL_PROTOCOLPGM(" Y: ");
  3523. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3524. SERIAL_PROTOCOLPGM(" Z: ");
  3525. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3526. SERIAL_PROTOCOLPGM("\n");
  3527. clean_up_after_endstop_move(l_feedmultiply);
  3528. }
  3529. break;
  3530. #else
  3531. case 31: // dock the sled
  3532. dock_sled(true);
  3533. break;
  3534. case 32: // undock the sled
  3535. dock_sled(false);
  3536. break;
  3537. #endif // Z_PROBE_SLED
  3538. #endif // ENABLE_AUTO_BED_LEVELING
  3539. #ifdef MESH_BED_LEVELING
  3540. case 30: // G30 Single Z Probe
  3541. {
  3542. st_synchronize();
  3543. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3544. int l_feedmultiply = setup_for_endstop_move();
  3545. feedrate = homing_feedrate[Z_AXIS];
  3546. find_bed_induction_sensor_point_z(-10.f, 3);
  3547. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3548. clean_up_after_endstop_move(l_feedmultiply);
  3549. }
  3550. break;
  3551. case 75:
  3552. {
  3553. for (int i = 40; i <= 110; i++)
  3554. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3555. }
  3556. break;
  3557. case 76: //! G76 - PINDA probe temperature calibration
  3558. {
  3559. #ifdef PINDA_THERMISTOR
  3560. if (true)
  3561. {
  3562. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3563. //we need to know accurate position of first calibration point
  3564. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3565. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3566. break;
  3567. }
  3568. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3569. {
  3570. // We don't know where we are! HOME!
  3571. // Push the commands to the front of the message queue in the reverse order!
  3572. // There shall be always enough space reserved for these commands.
  3573. repeatcommand_front(); // repeat G76 with all its parameters
  3574. enquecommand_front_P((PSTR("G28 W0")));
  3575. break;
  3576. }
  3577. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3578. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3579. if (result)
  3580. {
  3581. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3583. current_position[Z_AXIS] = 50;
  3584. current_position[Y_AXIS] = 180;
  3585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3586. st_synchronize();
  3587. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3588. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3589. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3591. st_synchronize();
  3592. gcode_G28(false, false, true);
  3593. }
  3594. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3595. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3596. current_position[Z_AXIS] = 100;
  3597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3598. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3599. lcd_temp_cal_show_result(false);
  3600. break;
  3601. }
  3602. }
  3603. lcd_update_enable(true);
  3604. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3605. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3606. float zero_z;
  3607. int z_shift = 0; //unit: steps
  3608. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3609. if (start_temp < 35) start_temp = 35;
  3610. if (start_temp < current_temperature_pinda) start_temp += 5;
  3611. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3612. // setTargetHotend(200, 0);
  3613. setTargetBed(70 + (start_temp - 30));
  3614. custom_message_type = CustomMsg::TempCal;
  3615. custom_message_state = 1;
  3616. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3617. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3619. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3620. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3622. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3624. st_synchronize();
  3625. while (current_temperature_pinda < start_temp)
  3626. {
  3627. delay_keep_alive(1000);
  3628. serialecho_temperatures();
  3629. }
  3630. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3631. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3633. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3634. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3636. st_synchronize();
  3637. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3638. if (find_z_result == false) {
  3639. lcd_temp_cal_show_result(find_z_result);
  3640. break;
  3641. }
  3642. zero_z = current_position[Z_AXIS];
  3643. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3644. int i = -1; for (; i < 5; i++)
  3645. {
  3646. float temp = (40 + i * 5);
  3647. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3648. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3649. if (start_temp <= temp) break;
  3650. }
  3651. for (i++; i < 5; i++)
  3652. {
  3653. float temp = (40 + i * 5);
  3654. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3655. custom_message_state = i + 2;
  3656. setTargetBed(50 + 10 * (temp - 30) / 5);
  3657. // setTargetHotend(255, 0);
  3658. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3660. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3661. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3663. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3665. st_synchronize();
  3666. while (current_temperature_pinda < temp)
  3667. {
  3668. delay_keep_alive(1000);
  3669. serialecho_temperatures();
  3670. }
  3671. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3673. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3674. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3676. st_synchronize();
  3677. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3678. if (find_z_result == false) {
  3679. lcd_temp_cal_show_result(find_z_result);
  3680. break;
  3681. }
  3682. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3683. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3684. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3685. }
  3686. lcd_temp_cal_show_result(true);
  3687. break;
  3688. }
  3689. #endif //PINDA_THERMISTOR
  3690. setTargetBed(PINDA_MIN_T);
  3691. float zero_z;
  3692. int z_shift = 0; //unit: steps
  3693. int t_c; // temperature
  3694. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3695. // We don't know where we are! HOME!
  3696. // Push the commands to the front of the message queue in the reverse order!
  3697. // There shall be always enough space reserved for these commands.
  3698. repeatcommand_front(); // repeat G76 with all its parameters
  3699. enquecommand_front_P((PSTR("G28 W0")));
  3700. break;
  3701. }
  3702. puts_P(_N("PINDA probe calibration start"));
  3703. custom_message_type = CustomMsg::TempCal;
  3704. custom_message_state = 1;
  3705. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3706. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3707. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3708. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3710. st_synchronize();
  3711. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3712. delay_keep_alive(1000);
  3713. serialecho_temperatures();
  3714. }
  3715. //enquecommand_P(PSTR("M190 S50"));
  3716. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3717. delay_keep_alive(1000);
  3718. serialecho_temperatures();
  3719. }
  3720. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3721. current_position[Z_AXIS] = 5;
  3722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3723. current_position[X_AXIS] = BED_X0;
  3724. current_position[Y_AXIS] = BED_Y0;
  3725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3726. st_synchronize();
  3727. find_bed_induction_sensor_point_z(-1.f);
  3728. zero_z = current_position[Z_AXIS];
  3729. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3730. for (int i = 0; i<5; i++) {
  3731. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3732. custom_message_state = i + 2;
  3733. t_c = 60 + i * 10;
  3734. setTargetBed(t_c);
  3735. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3736. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3737. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3739. st_synchronize();
  3740. while (degBed() < t_c) {
  3741. delay_keep_alive(1000);
  3742. serialecho_temperatures();
  3743. }
  3744. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3745. delay_keep_alive(1000);
  3746. serialecho_temperatures();
  3747. }
  3748. current_position[Z_AXIS] = 5;
  3749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3750. current_position[X_AXIS] = BED_X0;
  3751. current_position[Y_AXIS] = BED_Y0;
  3752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3753. st_synchronize();
  3754. find_bed_induction_sensor_point_z(-1.f);
  3755. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3756. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3757. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3758. }
  3759. custom_message_type = CustomMsg::Status;
  3760. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3761. puts_P(_N("Temperature calibration done."));
  3762. disable_x();
  3763. disable_y();
  3764. disable_z();
  3765. disable_e0();
  3766. disable_e1();
  3767. disable_e2();
  3768. setTargetBed(0); //set bed target temperature back to 0
  3769. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3770. temp_cal_active = true;
  3771. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3772. lcd_update_enable(true);
  3773. lcd_update(2);
  3774. }
  3775. break;
  3776. /**
  3777. * G80: Mesh-based Z probe, probes a grid and produces a
  3778. * mesh to compensate for variable bed height
  3779. *
  3780. * The S0 report the points as below
  3781. * @code{.unparsed}
  3782. * +----> X-axis
  3783. * |
  3784. * |
  3785. * v Y-axis
  3786. * @endcode
  3787. */
  3788. case 80:
  3789. #ifdef MK1BP
  3790. break;
  3791. #endif //MK1BP
  3792. case_G80:
  3793. {
  3794. mesh_bed_leveling_flag = true;
  3795. static bool run = false;
  3796. #ifdef SUPPORT_VERBOSITY
  3797. int8_t verbosity_level = 0;
  3798. if (code_seen('V')) {
  3799. // Just 'V' without a number counts as V1.
  3800. char c = strchr_pointer[1];
  3801. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3802. }
  3803. #endif //SUPPORT_VERBOSITY
  3804. // Firstly check if we know where we are
  3805. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3806. // We don't know where we are! HOME!
  3807. // Push the commands to the front of the message queue in the reverse order!
  3808. // There shall be always enough space reserved for these commands.
  3809. if (lcd_commands_type != LcdCommands::StopPrint) {
  3810. repeatcommand_front(); // repeat G80 with all its parameters
  3811. enquecommand_front_P((PSTR("G28 W0")));
  3812. }
  3813. else {
  3814. mesh_bed_leveling_flag = false;
  3815. }
  3816. break;
  3817. }
  3818. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3819. if (code_seen('N')) {
  3820. nMeasPoints = code_value_uint8();
  3821. if (nMeasPoints != 7) {
  3822. nMeasPoints = 3;
  3823. }
  3824. }
  3825. else {
  3826. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3827. }
  3828. uint8_t nProbeRetry = 3;
  3829. if (code_seen('R')) {
  3830. nProbeRetry = code_value_uint8();
  3831. if (nProbeRetry > 10) {
  3832. nProbeRetry = 10;
  3833. }
  3834. }
  3835. else {
  3836. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3837. }
  3838. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3839. bool temp_comp_start = true;
  3840. #ifdef PINDA_THERMISTOR
  3841. temp_comp_start = false;
  3842. #endif //PINDA_THERMISTOR
  3843. if (temp_comp_start)
  3844. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3845. if (lcd_commands_type != LcdCommands::StopPrint) {
  3846. temp_compensation_start();
  3847. run = true;
  3848. repeatcommand_front(); // repeat G80 with all its parameters
  3849. enquecommand_front_P((PSTR("G28 W0")));
  3850. }
  3851. else {
  3852. mesh_bed_leveling_flag = false;
  3853. }
  3854. break;
  3855. }
  3856. run = false;
  3857. if (lcd_commands_type == LcdCommands::StopPrint) {
  3858. mesh_bed_leveling_flag = false;
  3859. break;
  3860. }
  3861. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3862. CustomMsg custom_message_type_old = custom_message_type;
  3863. unsigned int custom_message_state_old = custom_message_state;
  3864. custom_message_type = CustomMsg::MeshBedLeveling;
  3865. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3866. lcd_update(1);
  3867. mbl.reset(); //reset mesh bed leveling
  3868. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3869. // consumed during the first movements following this statement.
  3870. babystep_undo();
  3871. // Cycle through all points and probe them
  3872. // First move up. During this first movement, the babystepping will be reverted.
  3873. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3875. // The move to the first calibration point.
  3876. current_position[X_AXIS] = BED_X0;
  3877. current_position[Y_AXIS] = BED_Y0;
  3878. #ifdef SUPPORT_VERBOSITY
  3879. if (verbosity_level >= 1)
  3880. {
  3881. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3882. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3883. }
  3884. #else //SUPPORT_VERBOSITY
  3885. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3886. #endif //SUPPORT_VERBOSITY
  3887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3888. // Wait until the move is finished.
  3889. st_synchronize();
  3890. uint8_t mesh_point = 0; //index number of calibration point
  3891. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3892. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3893. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3894. #ifdef SUPPORT_VERBOSITY
  3895. if (verbosity_level >= 1) {
  3896. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3897. }
  3898. #endif // SUPPORT_VERBOSITY
  3899. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3900. const char *kill_message = NULL;
  3901. while (mesh_point != nMeasPoints * nMeasPoints) {
  3902. // Get coords of a measuring point.
  3903. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3904. uint8_t iy = mesh_point / nMeasPoints;
  3905. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3906. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3907. custom_message_state--;
  3908. mesh_point++;
  3909. continue; //skip
  3910. }*/
  3911. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3912. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3913. {
  3914. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3915. }
  3916. float z0 = 0.f;
  3917. if (has_z && (mesh_point > 0)) {
  3918. uint16_t z_offset_u = 0;
  3919. if (nMeasPoints == 7) {
  3920. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3921. }
  3922. else {
  3923. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3924. }
  3925. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3926. #ifdef SUPPORT_VERBOSITY
  3927. if (verbosity_level >= 1) {
  3928. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3929. }
  3930. #endif // SUPPORT_VERBOSITY
  3931. }
  3932. // Move Z up to MESH_HOME_Z_SEARCH.
  3933. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3934. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3935. float init_z_bckp = current_position[Z_AXIS];
  3936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3937. st_synchronize();
  3938. // Move to XY position of the sensor point.
  3939. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3940. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3941. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3942. #ifdef SUPPORT_VERBOSITY
  3943. if (verbosity_level >= 1) {
  3944. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3945. SERIAL_PROTOCOL(mesh_point);
  3946. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3947. }
  3948. #else //SUPPORT_VERBOSITY
  3949. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3950. #endif // SUPPORT_VERBOSITY
  3951. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3953. st_synchronize();
  3954. // Go down until endstop is hit
  3955. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3956. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3957. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3958. break;
  3959. }
  3960. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3961. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3962. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3964. st_synchronize();
  3965. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3966. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3967. break;
  3968. }
  3969. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3970. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3971. break;
  3972. }
  3973. }
  3974. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3975. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3976. break;
  3977. }
  3978. #ifdef SUPPORT_VERBOSITY
  3979. if (verbosity_level >= 10) {
  3980. SERIAL_ECHOPGM("X: ");
  3981. MYSERIAL.print(current_position[X_AXIS], 5);
  3982. SERIAL_ECHOLNPGM("");
  3983. SERIAL_ECHOPGM("Y: ");
  3984. MYSERIAL.print(current_position[Y_AXIS], 5);
  3985. SERIAL_PROTOCOLPGM("\n");
  3986. }
  3987. #endif // SUPPORT_VERBOSITY
  3988. float offset_z = 0;
  3989. #ifdef PINDA_THERMISTOR
  3990. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3991. #endif //PINDA_THERMISTOR
  3992. // #ifdef SUPPORT_VERBOSITY
  3993. /* if (verbosity_level >= 1)
  3994. {
  3995. SERIAL_ECHOPGM("mesh bed leveling: ");
  3996. MYSERIAL.print(current_position[Z_AXIS], 5);
  3997. SERIAL_ECHOPGM(" offset: ");
  3998. MYSERIAL.print(offset_z, 5);
  3999. SERIAL_ECHOLNPGM("");
  4000. }*/
  4001. // #endif // SUPPORT_VERBOSITY
  4002. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4003. custom_message_state--;
  4004. mesh_point++;
  4005. lcd_update(1);
  4006. }
  4007. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4008. #ifdef SUPPORT_VERBOSITY
  4009. if (verbosity_level >= 20) {
  4010. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4011. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4012. MYSERIAL.print(current_position[Z_AXIS], 5);
  4013. }
  4014. #endif // SUPPORT_VERBOSITY
  4015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4016. st_synchronize();
  4017. if (mesh_point != nMeasPoints * nMeasPoints) {
  4018. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4019. bool bState;
  4020. do { // repeat until Z-leveling o.k.
  4021. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4022. #ifdef TMC2130
  4023. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4024. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4025. #else // TMC2130
  4026. lcd_wait_for_click_delay(0); // ~ no timeout
  4027. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4028. #endif // TMC2130
  4029. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4030. bState=enable_z_endstop(false);
  4031. current_position[Z_AXIS] -= 1;
  4032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4033. st_synchronize();
  4034. enable_z_endstop(true);
  4035. #ifdef TMC2130
  4036. tmc2130_home_enter(Z_AXIS_MASK);
  4037. #endif // TMC2130
  4038. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4040. st_synchronize();
  4041. #ifdef TMC2130
  4042. tmc2130_home_exit();
  4043. #endif // TMC2130
  4044. enable_z_endstop(bState);
  4045. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4046. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4047. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4048. lcd_update_enable(true); // display / status-line recovery
  4049. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4050. repeatcommand_front(); // re-run (i.e. of "G80")
  4051. break;
  4052. }
  4053. clean_up_after_endstop_move(l_feedmultiply);
  4054. // SERIAL_ECHOLNPGM("clean up finished ");
  4055. bool apply_temp_comp = true;
  4056. #ifdef PINDA_THERMISTOR
  4057. apply_temp_comp = false;
  4058. #endif
  4059. if (apply_temp_comp)
  4060. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4061. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4062. // SERIAL_ECHOLNPGM("babystep applied");
  4063. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4064. #ifdef SUPPORT_VERBOSITY
  4065. if (verbosity_level >= 1) {
  4066. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4067. }
  4068. #endif // SUPPORT_VERBOSITY
  4069. for (uint8_t i = 0; i < 4; ++i) {
  4070. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4071. long correction = 0;
  4072. if (code_seen(codes[i]))
  4073. correction = code_value_long();
  4074. else if (eeprom_bed_correction_valid) {
  4075. unsigned char *addr = (i < 2) ?
  4076. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4077. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4078. correction = eeprom_read_int8(addr);
  4079. }
  4080. if (correction == 0)
  4081. continue;
  4082. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4083. SERIAL_ERROR_START;
  4084. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4085. SERIAL_ECHO(correction);
  4086. SERIAL_ECHOLNPGM(" microns");
  4087. }
  4088. else {
  4089. float offset = float(correction) * 0.001f;
  4090. switch (i) {
  4091. case 0:
  4092. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4093. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4094. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4095. }
  4096. }
  4097. break;
  4098. case 1:
  4099. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4100. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4101. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4102. }
  4103. }
  4104. break;
  4105. case 2:
  4106. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4107. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4108. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4109. }
  4110. }
  4111. break;
  4112. case 3:
  4113. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4114. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4115. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4116. }
  4117. }
  4118. break;
  4119. }
  4120. }
  4121. }
  4122. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4123. if (nMeasPoints == 3) {
  4124. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4125. }
  4126. /*
  4127. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4128. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4129. SERIAL_PROTOCOLPGM(",");
  4130. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4131. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4132. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4133. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4134. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4135. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4136. SERIAL_PROTOCOLPGM(" ");
  4137. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4138. }
  4139. SERIAL_PROTOCOLPGM("\n");
  4140. }
  4141. */
  4142. if (nMeasPoints == 7 && magnet_elimination) {
  4143. mbl_interpolation(nMeasPoints);
  4144. }
  4145. /*
  4146. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4147. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4148. SERIAL_PROTOCOLPGM(",");
  4149. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4150. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4151. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4152. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4153. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4154. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4155. SERIAL_PROTOCOLPGM(" ");
  4156. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4157. }
  4158. SERIAL_PROTOCOLPGM("\n");
  4159. }
  4160. */
  4161. // SERIAL_ECHOLNPGM("Upsample finished");
  4162. mbl.active = 1; //activate mesh bed leveling
  4163. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4164. go_home_with_z_lift();
  4165. // SERIAL_ECHOLNPGM("Go home finished");
  4166. //unretract (after PINDA preheat retraction)
  4167. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4168. current_position[E_AXIS] += default_retraction;
  4169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4170. }
  4171. KEEPALIVE_STATE(NOT_BUSY);
  4172. // Restore custom message state
  4173. lcd_setstatuspgm(_T(WELCOME_MSG));
  4174. custom_message_type = custom_message_type_old;
  4175. custom_message_state = custom_message_state_old;
  4176. mesh_bed_leveling_flag = false;
  4177. mesh_bed_run_from_menu = false;
  4178. lcd_update(2);
  4179. }
  4180. break;
  4181. /**
  4182. * G81: Print mesh bed leveling status and bed profile if activated
  4183. */
  4184. case 81:
  4185. if (mbl.active) {
  4186. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4187. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4188. SERIAL_PROTOCOLPGM(",");
  4189. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4190. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4191. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4192. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4193. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4194. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4195. SERIAL_PROTOCOLPGM(" ");
  4196. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4197. }
  4198. SERIAL_PROTOCOLPGM("\n");
  4199. }
  4200. }
  4201. else
  4202. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4203. break;
  4204. #if 0
  4205. /**
  4206. * G82: Single Z probe at current location
  4207. *
  4208. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4209. *
  4210. */
  4211. case 82:
  4212. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4213. int l_feedmultiply = setup_for_endstop_move();
  4214. find_bed_induction_sensor_point_z();
  4215. clean_up_after_endstop_move(l_feedmultiply);
  4216. SERIAL_PROTOCOLPGM("Bed found at: ");
  4217. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4218. SERIAL_PROTOCOLPGM("\n");
  4219. break;
  4220. /**
  4221. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4222. */
  4223. case 83:
  4224. {
  4225. int babystepz = code_seen('S') ? code_value() : 0;
  4226. int BabyPosition = code_seen('P') ? code_value() : 0;
  4227. if (babystepz != 0) {
  4228. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4229. // Is the axis indexed starting with zero or one?
  4230. if (BabyPosition > 4) {
  4231. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4232. }else{
  4233. // Save it to the eeprom
  4234. babystepLoadZ = babystepz;
  4235. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4236. // adjust the Z
  4237. babystepsTodoZadd(babystepLoadZ);
  4238. }
  4239. }
  4240. }
  4241. break;
  4242. /**
  4243. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4244. */
  4245. case 84:
  4246. babystepsTodoZsubtract(babystepLoadZ);
  4247. // babystepLoadZ = 0;
  4248. break;
  4249. /**
  4250. * G85: Prusa3D specific: Pick best babystep
  4251. */
  4252. case 85:
  4253. lcd_pick_babystep();
  4254. break;
  4255. #endif
  4256. /**
  4257. * G86: Prusa3D specific: Disable babystep correction after home.
  4258. * This G-code will be performed at the start of a calibration script.
  4259. */
  4260. case 86:
  4261. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4262. break;
  4263. /**
  4264. * G87: Prusa3D specific: Enable babystep correction after home
  4265. * This G-code will be performed at the end of a calibration script.
  4266. */
  4267. case 87:
  4268. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4269. break;
  4270. /**
  4271. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4272. */
  4273. case 88:
  4274. break;
  4275. #endif // ENABLE_MESH_BED_LEVELING
  4276. case 90: // G90
  4277. relative_mode = false;
  4278. break;
  4279. case 91: // G91
  4280. relative_mode = true;
  4281. break;
  4282. case 92: // G92
  4283. if(!code_seen(axis_codes[E_AXIS]))
  4284. st_synchronize();
  4285. for(int8_t i=0; i < NUM_AXIS; i++) {
  4286. if(code_seen(axis_codes[i])) {
  4287. if(i == E_AXIS) {
  4288. current_position[i] = code_value();
  4289. plan_set_e_position(current_position[E_AXIS]);
  4290. }
  4291. else {
  4292. current_position[i] = code_value()+cs.add_homing[i];
  4293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4294. }
  4295. }
  4296. }
  4297. break;
  4298. case 98: //! G98 (activate farm mode)
  4299. farm_mode = 1;
  4300. PingTime = _millis();
  4301. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4302. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4303. SilentModeMenu = SILENT_MODE_OFF;
  4304. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4305. fCheckModeInit(); // alternatively invoke printer reset
  4306. break;
  4307. case 99: //! G99 (deactivate farm mode)
  4308. farm_mode = 0;
  4309. lcd_printer_connected();
  4310. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4311. lcd_update(2);
  4312. fCheckModeInit(); // alternatively invoke printer reset
  4313. break;
  4314. default:
  4315. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4316. }
  4317. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4318. gcode_in_progress = 0;
  4319. } // end if(code_seen('G'))
  4320. else if(code_seen('M'))
  4321. {
  4322. int index;
  4323. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4324. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4325. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4326. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4327. } else
  4328. {
  4329. mcode_in_progress = (int)code_value();
  4330. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4331. switch(mcode_in_progress)
  4332. {
  4333. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4334. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4335. {
  4336. char *src = strchr_pointer + 2;
  4337. codenum = 0;
  4338. bool hasP = false, hasS = false;
  4339. if (code_seen('P')) {
  4340. codenum = code_value(); // milliseconds to wait
  4341. hasP = codenum > 0;
  4342. }
  4343. if (code_seen('S')) {
  4344. codenum = code_value() * 1000; // seconds to wait
  4345. hasS = codenum > 0;
  4346. }
  4347. starpos = strchr(src, '*');
  4348. if (starpos != NULL) *(starpos) = '\0';
  4349. while (*src == ' ') ++src;
  4350. if (!hasP && !hasS && *src != '\0') {
  4351. lcd_setstatus(src);
  4352. } else {
  4353. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4354. }
  4355. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4356. st_synchronize();
  4357. previous_millis_cmd = _millis();
  4358. if (codenum > 0){
  4359. codenum += _millis(); // keep track of when we started waiting
  4360. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4361. while(_millis() < codenum && !lcd_clicked()){
  4362. manage_heater();
  4363. manage_inactivity(true);
  4364. lcd_update(0);
  4365. }
  4366. KEEPALIVE_STATE(IN_HANDLER);
  4367. lcd_ignore_click(false);
  4368. }else{
  4369. marlin_wait_for_click();
  4370. }
  4371. if (IS_SD_PRINTING)
  4372. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4373. else
  4374. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4375. }
  4376. break;
  4377. case 17:
  4378. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4379. enable_x();
  4380. enable_y();
  4381. enable_z();
  4382. enable_e0();
  4383. enable_e1();
  4384. enable_e2();
  4385. break;
  4386. #ifdef SDSUPPORT
  4387. case 20: // M20 - list SD card
  4388. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4389. card.ls();
  4390. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4391. break;
  4392. case 21: // M21 - init SD card
  4393. card.initsd();
  4394. break;
  4395. case 22: //M22 - release SD card
  4396. card.release();
  4397. break;
  4398. case 23: //M23 - Select file
  4399. starpos = (strchr(strchr_pointer + 4,'*'));
  4400. if(starpos!=NULL)
  4401. *(starpos)='\0';
  4402. card.openFile(strchr_pointer + 4,true);
  4403. break;
  4404. case 24: //M24 - Start SD print
  4405. if (!card.paused)
  4406. failstats_reset_print();
  4407. card.startFileprint();
  4408. starttime=_millis();
  4409. break;
  4410. case 25: //M25 - Pause SD print
  4411. card.pauseSDPrint();
  4412. break;
  4413. case 26: //M26 - Set SD index
  4414. if(card.cardOK && code_seen('S')) {
  4415. card.setIndex(code_value_long());
  4416. }
  4417. break;
  4418. case 27: //M27 - Get SD status
  4419. card.getStatus();
  4420. break;
  4421. case 28: //M28 - Start SD write
  4422. starpos = (strchr(strchr_pointer + 4,'*'));
  4423. if(starpos != NULL){
  4424. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4425. strchr_pointer = strchr(npos,' ') + 1;
  4426. *(starpos) = '\0';
  4427. }
  4428. card.openFile(strchr_pointer+4,false);
  4429. break;
  4430. case 29: //M29 - Stop SD write
  4431. //processed in write to file routine above
  4432. //card,saving = false;
  4433. break;
  4434. case 30: //M30 <filename> Delete File
  4435. if (card.cardOK){
  4436. card.closefile();
  4437. starpos = (strchr(strchr_pointer + 4,'*'));
  4438. if(starpos != NULL){
  4439. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4440. strchr_pointer = strchr(npos,' ') + 1;
  4441. *(starpos) = '\0';
  4442. }
  4443. card.removeFile(strchr_pointer + 4);
  4444. }
  4445. break;
  4446. case 32: //M32 - Select file and start SD print
  4447. {
  4448. if(card.sdprinting) {
  4449. st_synchronize();
  4450. }
  4451. starpos = (strchr(strchr_pointer + 4,'*'));
  4452. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4453. if(namestartpos==NULL)
  4454. {
  4455. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4456. }
  4457. else
  4458. namestartpos++; //to skip the '!'
  4459. if(starpos!=NULL)
  4460. *(starpos)='\0';
  4461. bool call_procedure=(code_seen('P'));
  4462. if(strchr_pointer>namestartpos)
  4463. call_procedure=false; //false alert, 'P' found within filename
  4464. if( card.cardOK )
  4465. {
  4466. card.openFile(namestartpos,true,!call_procedure);
  4467. if(code_seen('S'))
  4468. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4469. card.setIndex(code_value_long());
  4470. card.startFileprint();
  4471. if(!call_procedure)
  4472. starttime=_millis(); //procedure calls count as normal print time.
  4473. }
  4474. } break;
  4475. case 928: //M928 - Start SD write
  4476. starpos = (strchr(strchr_pointer + 5,'*'));
  4477. if(starpos != NULL){
  4478. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4479. strchr_pointer = strchr(npos,' ') + 1;
  4480. *(starpos) = '\0';
  4481. }
  4482. card.openLogFile(strchr_pointer+5);
  4483. break;
  4484. #endif //SDSUPPORT
  4485. case 31: //M31 take time since the start of the SD print or an M109 command
  4486. {
  4487. stoptime=_millis();
  4488. char time[30];
  4489. unsigned long t=(stoptime-starttime)/1000;
  4490. int sec,min;
  4491. min=t/60;
  4492. sec=t%60;
  4493. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4494. SERIAL_ECHO_START;
  4495. SERIAL_ECHOLN(time);
  4496. lcd_setstatus(time);
  4497. autotempShutdown();
  4498. }
  4499. break;
  4500. case 42: //M42 -Change pin status via gcode
  4501. if (code_seen('S'))
  4502. {
  4503. int pin_status = code_value();
  4504. int pin_number = LED_PIN;
  4505. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4506. pin_number = code_value();
  4507. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4508. {
  4509. if (sensitive_pins[i] == pin_number)
  4510. {
  4511. pin_number = -1;
  4512. break;
  4513. }
  4514. }
  4515. #if defined(FAN_PIN) && FAN_PIN > -1
  4516. if (pin_number == FAN_PIN)
  4517. fanSpeed = pin_status;
  4518. #endif
  4519. if (pin_number > -1)
  4520. {
  4521. pinMode(pin_number, OUTPUT);
  4522. digitalWrite(pin_number, pin_status);
  4523. analogWrite(pin_number, pin_status);
  4524. }
  4525. }
  4526. break;
  4527. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4528. // Reset the baby step value and the baby step applied flag.
  4529. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4530. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4531. // Reset the skew and offset in both RAM and EEPROM.
  4532. reset_bed_offset_and_skew();
  4533. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4534. // the planner will not perform any adjustments in the XY plane.
  4535. // Wait for the motors to stop and update the current position with the absolute values.
  4536. world2machine_revert_to_uncorrected();
  4537. break;
  4538. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4539. {
  4540. int8_t verbosity_level = 0;
  4541. bool only_Z = code_seen('Z');
  4542. #ifdef SUPPORT_VERBOSITY
  4543. if (code_seen('V'))
  4544. {
  4545. // Just 'V' without a number counts as V1.
  4546. char c = strchr_pointer[1];
  4547. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4548. }
  4549. #endif //SUPPORT_VERBOSITY
  4550. gcode_M45(only_Z, verbosity_level);
  4551. }
  4552. break;
  4553. /*
  4554. case 46:
  4555. {
  4556. // M46: Prusa3D: Show the assigned IP address.
  4557. uint8_t ip[4];
  4558. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4559. if (hasIP) {
  4560. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4561. SERIAL_ECHO(int(ip[0]));
  4562. SERIAL_ECHOPGM(".");
  4563. SERIAL_ECHO(int(ip[1]));
  4564. SERIAL_ECHOPGM(".");
  4565. SERIAL_ECHO(int(ip[2]));
  4566. SERIAL_ECHOPGM(".");
  4567. SERIAL_ECHO(int(ip[3]));
  4568. SERIAL_ECHOLNPGM("");
  4569. } else {
  4570. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4571. }
  4572. break;
  4573. }
  4574. */
  4575. case 47:
  4576. //! M47: Prusa3D: Show end stops dialog on the display.
  4577. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4578. lcd_diag_show_end_stops();
  4579. KEEPALIVE_STATE(IN_HANDLER);
  4580. break;
  4581. #if 0
  4582. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4583. {
  4584. // Disable the default update procedure of the display. We will do a modal dialog.
  4585. lcd_update_enable(false);
  4586. // Let the planner use the uncorrected coordinates.
  4587. mbl.reset();
  4588. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4589. // the planner will not perform any adjustments in the XY plane.
  4590. // Wait for the motors to stop and update the current position with the absolute values.
  4591. world2machine_revert_to_uncorrected();
  4592. // Move the print head close to the bed.
  4593. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4595. st_synchronize();
  4596. // Home in the XY plane.
  4597. set_destination_to_current();
  4598. int l_feedmultiply = setup_for_endstop_move();
  4599. home_xy();
  4600. int8_t verbosity_level = 0;
  4601. if (code_seen('V')) {
  4602. // Just 'V' without a number counts as V1.
  4603. char c = strchr_pointer[1];
  4604. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4605. }
  4606. bool success = scan_bed_induction_points(verbosity_level);
  4607. clean_up_after_endstop_move(l_feedmultiply);
  4608. // Print head up.
  4609. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4611. st_synchronize();
  4612. lcd_update_enable(true);
  4613. break;
  4614. }
  4615. #endif
  4616. #ifdef ENABLE_AUTO_BED_LEVELING
  4617. #ifdef Z_PROBE_REPEATABILITY_TEST
  4618. //! M48 Z-Probe repeatability measurement function.
  4619. //!
  4620. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4621. //!
  4622. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4623. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4624. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4625. //! regenerated.
  4626. //!
  4627. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4628. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4629. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4630. //!
  4631. case 48: // M48 Z-Probe repeatability
  4632. {
  4633. #if Z_MIN_PIN == -1
  4634. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4635. #endif
  4636. double sum=0.0;
  4637. double mean=0.0;
  4638. double sigma=0.0;
  4639. double sample_set[50];
  4640. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4641. double X_current, Y_current, Z_current;
  4642. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4643. if (code_seen('V') || code_seen('v')) {
  4644. verbose_level = code_value();
  4645. if (verbose_level<0 || verbose_level>4 ) {
  4646. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4647. goto Sigma_Exit;
  4648. }
  4649. }
  4650. if (verbose_level > 0) {
  4651. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4652. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4653. }
  4654. if (code_seen('n')) {
  4655. n_samples = code_value();
  4656. if (n_samples<4 || n_samples>50 ) {
  4657. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4658. goto Sigma_Exit;
  4659. }
  4660. }
  4661. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4662. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4663. Z_current = st_get_position_mm(Z_AXIS);
  4664. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4665. ext_position = st_get_position_mm(E_AXIS);
  4666. if (code_seen('X') || code_seen('x') ) {
  4667. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4668. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4669. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4670. goto Sigma_Exit;
  4671. }
  4672. }
  4673. if (code_seen('Y') || code_seen('y') ) {
  4674. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4675. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4676. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4677. goto Sigma_Exit;
  4678. }
  4679. }
  4680. if (code_seen('L') || code_seen('l') ) {
  4681. n_legs = code_value();
  4682. if ( n_legs==1 )
  4683. n_legs = 2;
  4684. if ( n_legs<0 || n_legs>15 ) {
  4685. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4686. goto Sigma_Exit;
  4687. }
  4688. }
  4689. //
  4690. // Do all the preliminary setup work. First raise the probe.
  4691. //
  4692. st_synchronize();
  4693. plan_bed_level_matrix.set_to_identity();
  4694. plan_buffer_line( X_current, Y_current, Z_start_location,
  4695. ext_position,
  4696. homing_feedrate[Z_AXIS]/60,
  4697. active_extruder);
  4698. st_synchronize();
  4699. //
  4700. // Now get everything to the specified probe point So we can safely do a probe to
  4701. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4702. // use that as a starting point for each probe.
  4703. //
  4704. if (verbose_level > 2)
  4705. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4706. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4707. ext_position,
  4708. homing_feedrate[X_AXIS]/60,
  4709. active_extruder);
  4710. st_synchronize();
  4711. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4712. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4713. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4714. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4715. //
  4716. // OK, do the inital probe to get us close to the bed.
  4717. // Then retrace the right amount and use that in subsequent probes
  4718. //
  4719. int l_feedmultiply = setup_for_endstop_move();
  4720. run_z_probe();
  4721. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4722. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4723. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4724. ext_position,
  4725. homing_feedrate[X_AXIS]/60,
  4726. active_extruder);
  4727. st_synchronize();
  4728. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4729. for( n=0; n<n_samples; n++) {
  4730. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4731. if ( n_legs) {
  4732. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4733. int rotational_direction, l;
  4734. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4735. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4736. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4737. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4738. //SERIAL_ECHOPAIR(" theta: ",theta);
  4739. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4740. //SERIAL_PROTOCOLLNPGM("");
  4741. for( l=0; l<n_legs-1; l++) {
  4742. if (rotational_direction==1)
  4743. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4744. else
  4745. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4746. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4747. if ( radius<0.0 )
  4748. radius = -radius;
  4749. X_current = X_probe_location + cos(theta) * radius;
  4750. Y_current = Y_probe_location + sin(theta) * radius;
  4751. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4752. X_current = X_MIN_POS;
  4753. if ( X_current>X_MAX_POS)
  4754. X_current = X_MAX_POS;
  4755. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4756. Y_current = Y_MIN_POS;
  4757. if ( Y_current>Y_MAX_POS)
  4758. Y_current = Y_MAX_POS;
  4759. if (verbose_level>3 ) {
  4760. SERIAL_ECHOPAIR("x: ", X_current);
  4761. SERIAL_ECHOPAIR("y: ", Y_current);
  4762. SERIAL_PROTOCOLLNPGM("");
  4763. }
  4764. do_blocking_move_to( X_current, Y_current, Z_current );
  4765. }
  4766. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4767. }
  4768. int l_feedmultiply = setup_for_endstop_move();
  4769. run_z_probe();
  4770. sample_set[n] = current_position[Z_AXIS];
  4771. //
  4772. // Get the current mean for the data points we have so far
  4773. //
  4774. sum=0.0;
  4775. for( j=0; j<=n; j++) {
  4776. sum = sum + sample_set[j];
  4777. }
  4778. mean = sum / (double (n+1));
  4779. //
  4780. // Now, use that mean to calculate the standard deviation for the
  4781. // data points we have so far
  4782. //
  4783. sum=0.0;
  4784. for( j=0; j<=n; j++) {
  4785. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4786. }
  4787. sigma = sqrt( sum / (double (n+1)) );
  4788. if (verbose_level > 1) {
  4789. SERIAL_PROTOCOL(n+1);
  4790. SERIAL_PROTOCOL(" of ");
  4791. SERIAL_PROTOCOL(n_samples);
  4792. SERIAL_PROTOCOLPGM(" z: ");
  4793. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4794. }
  4795. if (verbose_level > 2) {
  4796. SERIAL_PROTOCOL(" mean: ");
  4797. SERIAL_PROTOCOL_F(mean,6);
  4798. SERIAL_PROTOCOL(" sigma: ");
  4799. SERIAL_PROTOCOL_F(sigma,6);
  4800. }
  4801. if (verbose_level > 0)
  4802. SERIAL_PROTOCOLPGM("\n");
  4803. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4804. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4805. st_synchronize();
  4806. }
  4807. _delay(1000);
  4808. clean_up_after_endstop_move(l_feedmultiply);
  4809. // enable_endstops(true);
  4810. if (verbose_level > 0) {
  4811. SERIAL_PROTOCOLPGM("Mean: ");
  4812. SERIAL_PROTOCOL_F(mean, 6);
  4813. SERIAL_PROTOCOLPGM("\n");
  4814. }
  4815. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4816. SERIAL_PROTOCOL_F(sigma, 6);
  4817. SERIAL_PROTOCOLPGM("\n\n");
  4818. Sigma_Exit:
  4819. break;
  4820. }
  4821. #endif // Z_PROBE_REPEATABILITY_TEST
  4822. #endif // ENABLE_AUTO_BED_LEVELING
  4823. case 73: //M73 show percent done and time remaining
  4824. if(code_seen('P')) print_percent_done_normal = code_value();
  4825. if(code_seen('R')) print_time_remaining_normal = code_value();
  4826. if(code_seen('Q')) print_percent_done_silent = code_value();
  4827. if(code_seen('S')) print_time_remaining_silent = code_value();
  4828. {
  4829. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4830. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4831. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4832. }
  4833. break;
  4834. case 104: // M104
  4835. {
  4836. uint8_t extruder;
  4837. if(setTargetedHotend(104,extruder)){
  4838. break;
  4839. }
  4840. if (code_seen('S'))
  4841. {
  4842. setTargetHotendSafe(code_value(), extruder);
  4843. }
  4844. setWatch();
  4845. break;
  4846. }
  4847. case 112: // M112 -Emergency Stop
  4848. kill(_n(""), 3);
  4849. break;
  4850. case 140: // M140 set bed temp
  4851. if (code_seen('S')) setTargetBed(code_value());
  4852. break;
  4853. case 105 : // M105
  4854. {
  4855. uint8_t extruder;
  4856. if(setTargetedHotend(105, extruder)){
  4857. break;
  4858. }
  4859. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4860. SERIAL_PROTOCOLPGM("ok T:");
  4861. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4862. SERIAL_PROTOCOLPGM(" /");
  4863. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4864. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4865. SERIAL_PROTOCOLPGM(" B:");
  4866. SERIAL_PROTOCOL_F(degBed(),1);
  4867. SERIAL_PROTOCOLPGM(" /");
  4868. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4869. #endif //TEMP_BED_PIN
  4870. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4871. SERIAL_PROTOCOLPGM(" T");
  4872. SERIAL_PROTOCOL(cur_extruder);
  4873. SERIAL_PROTOCOLPGM(":");
  4874. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4875. SERIAL_PROTOCOLPGM(" /");
  4876. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4877. }
  4878. #else
  4879. SERIAL_ERROR_START;
  4880. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4881. #endif
  4882. SERIAL_PROTOCOLPGM(" @:");
  4883. #ifdef EXTRUDER_WATTS
  4884. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4885. SERIAL_PROTOCOLPGM("W");
  4886. #else
  4887. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4888. #endif
  4889. SERIAL_PROTOCOLPGM(" B@:");
  4890. #ifdef BED_WATTS
  4891. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4892. SERIAL_PROTOCOLPGM("W");
  4893. #else
  4894. SERIAL_PROTOCOL(getHeaterPower(-1));
  4895. #endif
  4896. #ifdef PINDA_THERMISTOR
  4897. SERIAL_PROTOCOLPGM(" P:");
  4898. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4899. #endif //PINDA_THERMISTOR
  4900. #ifdef AMBIENT_THERMISTOR
  4901. SERIAL_PROTOCOLPGM(" A:");
  4902. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4903. #endif //AMBIENT_THERMISTOR
  4904. #ifdef SHOW_TEMP_ADC_VALUES
  4905. {float raw = 0.0;
  4906. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4907. SERIAL_PROTOCOLPGM(" ADC B:");
  4908. SERIAL_PROTOCOL_F(degBed(),1);
  4909. SERIAL_PROTOCOLPGM("C->");
  4910. raw = rawBedTemp();
  4911. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4912. SERIAL_PROTOCOLPGM(" Rb->");
  4913. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4914. SERIAL_PROTOCOLPGM(" Rxb->");
  4915. SERIAL_PROTOCOL_F(raw, 5);
  4916. #endif
  4917. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4918. SERIAL_PROTOCOLPGM(" T");
  4919. SERIAL_PROTOCOL(cur_extruder);
  4920. SERIAL_PROTOCOLPGM(":");
  4921. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4922. SERIAL_PROTOCOLPGM("C->");
  4923. raw = rawHotendTemp(cur_extruder);
  4924. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4925. SERIAL_PROTOCOLPGM(" Rt");
  4926. SERIAL_PROTOCOL(cur_extruder);
  4927. SERIAL_PROTOCOLPGM("->");
  4928. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4929. SERIAL_PROTOCOLPGM(" Rx");
  4930. SERIAL_PROTOCOL(cur_extruder);
  4931. SERIAL_PROTOCOLPGM("->");
  4932. SERIAL_PROTOCOL_F(raw, 5);
  4933. }}
  4934. #endif
  4935. SERIAL_PROTOCOLLN("");
  4936. KEEPALIVE_STATE(NOT_BUSY);
  4937. return;
  4938. break;
  4939. }
  4940. case 109:
  4941. {// M109 - Wait for extruder heater to reach target.
  4942. uint8_t extruder;
  4943. if(setTargetedHotend(109, extruder)){
  4944. break;
  4945. }
  4946. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4947. heating_status = 1;
  4948. if (farm_mode) { prusa_statistics(1); };
  4949. #ifdef AUTOTEMP
  4950. autotemp_enabled=false;
  4951. #endif
  4952. if (code_seen('S')) {
  4953. setTargetHotendSafe(code_value(), extruder);
  4954. CooldownNoWait = true;
  4955. } else if (code_seen('R')) {
  4956. setTargetHotendSafe(code_value(), extruder);
  4957. CooldownNoWait = false;
  4958. }
  4959. #ifdef AUTOTEMP
  4960. if (code_seen('S')) autotemp_min=code_value();
  4961. if (code_seen('B')) autotemp_max=code_value();
  4962. if (code_seen('F'))
  4963. {
  4964. autotemp_factor=code_value();
  4965. autotemp_enabled=true;
  4966. }
  4967. #endif
  4968. setWatch();
  4969. codenum = _millis();
  4970. /* See if we are heating up or cooling down */
  4971. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4972. KEEPALIVE_STATE(NOT_BUSY);
  4973. cancel_heatup = false;
  4974. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4975. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4976. KEEPALIVE_STATE(IN_HANDLER);
  4977. heating_status = 2;
  4978. if (farm_mode) { prusa_statistics(2); };
  4979. //starttime=_millis();
  4980. previous_millis_cmd = _millis();
  4981. }
  4982. break;
  4983. case 190: // M190 - Wait for bed heater to reach target.
  4984. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4985. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4986. heating_status = 3;
  4987. if (farm_mode) { prusa_statistics(1); };
  4988. if (code_seen('S'))
  4989. {
  4990. setTargetBed(code_value());
  4991. CooldownNoWait = true;
  4992. }
  4993. else if (code_seen('R'))
  4994. {
  4995. setTargetBed(code_value());
  4996. CooldownNoWait = false;
  4997. }
  4998. codenum = _millis();
  4999. cancel_heatup = false;
  5000. target_direction = isHeatingBed(); // true if heating, false if cooling
  5001. KEEPALIVE_STATE(NOT_BUSY);
  5002. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5003. {
  5004. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5005. {
  5006. if (!farm_mode) {
  5007. float tt = degHotend(active_extruder);
  5008. SERIAL_PROTOCOLPGM("T:");
  5009. SERIAL_PROTOCOL(tt);
  5010. SERIAL_PROTOCOLPGM(" E:");
  5011. SERIAL_PROTOCOL((int)active_extruder);
  5012. SERIAL_PROTOCOLPGM(" B:");
  5013. SERIAL_PROTOCOL_F(degBed(), 1);
  5014. SERIAL_PROTOCOLLN("");
  5015. }
  5016. codenum = _millis();
  5017. }
  5018. manage_heater();
  5019. manage_inactivity();
  5020. lcd_update(0);
  5021. }
  5022. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5023. KEEPALIVE_STATE(IN_HANDLER);
  5024. heating_status = 4;
  5025. previous_millis_cmd = _millis();
  5026. #endif
  5027. break;
  5028. #if defined(FAN_PIN) && FAN_PIN > -1
  5029. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5030. if (code_seen('S')){
  5031. fanSpeed=constrain(code_value(),0,255);
  5032. }
  5033. else {
  5034. fanSpeed=255;
  5035. }
  5036. break;
  5037. case 107: //M107 Fan Off
  5038. fanSpeed = 0;
  5039. break;
  5040. #endif //FAN_PIN
  5041. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5042. case 80: // M80 - Turn on Power Supply
  5043. SET_OUTPUT(PS_ON_PIN); //GND
  5044. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5045. // If you have a switch on suicide pin, this is useful
  5046. // if you want to start another print with suicide feature after
  5047. // a print without suicide...
  5048. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5049. SET_OUTPUT(SUICIDE_PIN);
  5050. WRITE(SUICIDE_PIN, HIGH);
  5051. #endif
  5052. powersupply = true;
  5053. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5054. lcd_update(0);
  5055. break;
  5056. #endif
  5057. case 81: // M81 - Turn off Power Supply
  5058. disable_heater();
  5059. st_synchronize();
  5060. disable_e0();
  5061. disable_e1();
  5062. disable_e2();
  5063. finishAndDisableSteppers();
  5064. fanSpeed = 0;
  5065. _delay(1000); // Wait a little before to switch off
  5066. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5067. st_synchronize();
  5068. suicide();
  5069. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5070. SET_OUTPUT(PS_ON_PIN);
  5071. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5072. #endif
  5073. powersupply = false;
  5074. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5075. lcd_update(0);
  5076. break;
  5077. case 82:
  5078. axis_relative_modes[3] = false;
  5079. break;
  5080. case 83:
  5081. axis_relative_modes[3] = true;
  5082. break;
  5083. case 18: //compatibility
  5084. case 84: // M84
  5085. if(code_seen('S')){
  5086. stepper_inactive_time = code_value() * 1000;
  5087. }
  5088. else
  5089. {
  5090. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5091. if(all_axis)
  5092. {
  5093. st_synchronize();
  5094. disable_e0();
  5095. disable_e1();
  5096. disable_e2();
  5097. finishAndDisableSteppers();
  5098. }
  5099. else
  5100. {
  5101. st_synchronize();
  5102. if (code_seen('X')) disable_x();
  5103. if (code_seen('Y')) disable_y();
  5104. if (code_seen('Z')) disable_z();
  5105. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5106. if (code_seen('E')) {
  5107. disable_e0();
  5108. disable_e1();
  5109. disable_e2();
  5110. }
  5111. #endif
  5112. }
  5113. }
  5114. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5115. print_time_remaining_init();
  5116. snmm_filaments_used = 0;
  5117. break;
  5118. case 85: // M85
  5119. if(code_seen('S')) {
  5120. max_inactive_time = code_value() * 1000;
  5121. }
  5122. break;
  5123. #ifdef SAFETYTIMER
  5124. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5125. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5126. if (code_seen('S')) {
  5127. safetytimer_inactive_time = code_value() * 1000;
  5128. safetyTimer.start();
  5129. }
  5130. break;
  5131. #endif
  5132. case 92: // M92
  5133. for(int8_t i=0; i < NUM_AXIS; i++)
  5134. {
  5135. if(code_seen(axis_codes[i]))
  5136. {
  5137. if(i == 3) { // E
  5138. float value = code_value();
  5139. if(value < 20.0) {
  5140. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5141. cs.max_jerk[E_AXIS] *= factor;
  5142. max_feedrate[i] *= factor;
  5143. axis_steps_per_sqr_second[i] *= factor;
  5144. }
  5145. cs.axis_steps_per_unit[i] = value;
  5146. }
  5147. else {
  5148. cs.axis_steps_per_unit[i] = code_value();
  5149. }
  5150. }
  5151. }
  5152. break;
  5153. case 110: //! M110 N<line number> - reset line pos
  5154. if (code_seen('N'))
  5155. gcode_LastN = code_value_long();
  5156. break;
  5157. case 113: // M113 - Get or set Host Keepalive interval
  5158. if (code_seen('S')) {
  5159. host_keepalive_interval = (uint8_t)code_value_short();
  5160. // NOMORE(host_keepalive_interval, 60);
  5161. }
  5162. else {
  5163. SERIAL_ECHO_START;
  5164. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5165. SERIAL_PROTOCOLLN("");
  5166. }
  5167. break;
  5168. case 115: // M115
  5169. if (code_seen('V')) {
  5170. // Report the Prusa version number.
  5171. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5172. } else if (code_seen('U')) {
  5173. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5174. // pause the print and ask the user to upgrade the firmware.
  5175. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5176. } else {
  5177. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5178. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5179. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5180. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5181. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5182. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5183. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5184. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5185. SERIAL_ECHOPGM(" UUID:");
  5186. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5187. }
  5188. break;
  5189. /* case 117: // M117 display message
  5190. starpos = (strchr(strchr_pointer + 5,'*'));
  5191. if(starpos!=NULL)
  5192. *(starpos)='\0';
  5193. lcd_setstatus(strchr_pointer + 5);
  5194. break;*/
  5195. case 114: // M114
  5196. gcode_M114();
  5197. break;
  5198. case 120: //! M120 - Disable endstops
  5199. enable_endstops(false) ;
  5200. break;
  5201. case 121: //! M121 - Enable endstops
  5202. enable_endstops(true) ;
  5203. break;
  5204. case 119: // M119
  5205. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5206. SERIAL_PROTOCOLLN("");
  5207. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5208. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5209. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5210. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5211. }else{
  5212. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5213. }
  5214. SERIAL_PROTOCOLLN("");
  5215. #endif
  5216. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5217. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5218. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5219. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5220. }else{
  5221. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5222. }
  5223. SERIAL_PROTOCOLLN("");
  5224. #endif
  5225. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5226. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5227. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5228. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5229. }else{
  5230. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5231. }
  5232. SERIAL_PROTOCOLLN("");
  5233. #endif
  5234. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5235. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5236. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5237. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5238. }else{
  5239. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5240. }
  5241. SERIAL_PROTOCOLLN("");
  5242. #endif
  5243. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5244. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5245. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5246. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5247. }else{
  5248. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5249. }
  5250. SERIAL_PROTOCOLLN("");
  5251. #endif
  5252. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5253. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5254. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5255. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5256. }else{
  5257. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5258. }
  5259. SERIAL_PROTOCOLLN("");
  5260. #endif
  5261. break;
  5262. //TODO: update for all axis, use for loop
  5263. #ifdef BLINKM
  5264. case 150: // M150
  5265. {
  5266. byte red;
  5267. byte grn;
  5268. byte blu;
  5269. if(code_seen('R')) red = code_value();
  5270. if(code_seen('U')) grn = code_value();
  5271. if(code_seen('B')) blu = code_value();
  5272. SendColors(red,grn,blu);
  5273. }
  5274. break;
  5275. #endif //BLINKM
  5276. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5277. {
  5278. uint8_t extruder = active_extruder;
  5279. if(code_seen('T')) {
  5280. extruder = code_value();
  5281. if(extruder >= EXTRUDERS) {
  5282. SERIAL_ECHO_START;
  5283. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5284. break;
  5285. }
  5286. }
  5287. if(code_seen('D')) {
  5288. float diameter = (float)code_value();
  5289. if (diameter == 0.0) {
  5290. // setting any extruder filament size disables volumetric on the assumption that
  5291. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5292. // for all extruders
  5293. cs.volumetric_enabled = false;
  5294. } else {
  5295. cs.filament_size[extruder] = (float)code_value();
  5296. // make sure all extruders have some sane value for the filament size
  5297. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5298. #if EXTRUDERS > 1
  5299. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5300. #if EXTRUDERS > 2
  5301. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5302. #endif
  5303. #endif
  5304. cs.volumetric_enabled = true;
  5305. }
  5306. } else {
  5307. //reserved for setting filament diameter via UFID or filament measuring device
  5308. break;
  5309. }
  5310. calculate_extruder_multipliers();
  5311. }
  5312. break;
  5313. case 201: // M201
  5314. for (int8_t i = 0; i < NUM_AXIS; i++)
  5315. {
  5316. if (code_seen(axis_codes[i]))
  5317. {
  5318. unsigned long val = code_value();
  5319. #ifdef TMC2130
  5320. unsigned long val_silent = val;
  5321. if ((i == X_AXIS) || (i == Y_AXIS))
  5322. {
  5323. if (val > NORMAL_MAX_ACCEL_XY)
  5324. val = NORMAL_MAX_ACCEL_XY;
  5325. if (val_silent > SILENT_MAX_ACCEL_XY)
  5326. val_silent = SILENT_MAX_ACCEL_XY;
  5327. }
  5328. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5329. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5330. #else //TMC2130
  5331. max_acceleration_units_per_sq_second[i] = val;
  5332. #endif //TMC2130
  5333. }
  5334. }
  5335. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5336. reset_acceleration_rates();
  5337. break;
  5338. #if 0 // Not used for Sprinter/grbl gen6
  5339. case 202: // M202
  5340. for(int8_t i=0; i < NUM_AXIS; i++) {
  5341. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5342. }
  5343. break;
  5344. #endif
  5345. case 203: // M203 max feedrate mm/sec
  5346. for (int8_t i = 0; i < NUM_AXIS; i++)
  5347. {
  5348. if (code_seen(axis_codes[i]))
  5349. {
  5350. float val = code_value();
  5351. #ifdef TMC2130
  5352. float val_silent = val;
  5353. if ((i == X_AXIS) || (i == Y_AXIS))
  5354. {
  5355. if (val > NORMAL_MAX_FEEDRATE_XY)
  5356. val = NORMAL_MAX_FEEDRATE_XY;
  5357. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5358. val_silent = SILENT_MAX_FEEDRATE_XY;
  5359. }
  5360. cs.max_feedrate_normal[i] = val;
  5361. cs.max_feedrate_silent[i] = val_silent;
  5362. #else //TMC2130
  5363. max_feedrate[i] = val;
  5364. #endif //TMC2130
  5365. }
  5366. }
  5367. break;
  5368. case 204:
  5369. //! M204 acclereration settings.
  5370. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5371. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5372. {
  5373. if(code_seen('S')) {
  5374. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5375. // and it is also generated by Slic3r to control acceleration per extrusion type
  5376. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5377. cs.acceleration = code_value();
  5378. // Interpret the T value as retract acceleration in the old Marlin format.
  5379. if(code_seen('T'))
  5380. cs.retract_acceleration = code_value();
  5381. } else {
  5382. // New acceleration format, compatible with the upstream Marlin.
  5383. if(code_seen('P'))
  5384. cs.acceleration = code_value();
  5385. if(code_seen('R'))
  5386. cs.retract_acceleration = code_value();
  5387. if(code_seen('T')) {
  5388. // Interpret the T value as the travel acceleration in the new Marlin format.
  5389. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5390. // travel_acceleration = code_value();
  5391. }
  5392. }
  5393. }
  5394. break;
  5395. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5396. {
  5397. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5398. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5399. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5400. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5401. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5402. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5403. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5404. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5405. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5406. }
  5407. break;
  5408. case 206: // M206 additional homing offset
  5409. for(int8_t i=0; i < 3; i++)
  5410. {
  5411. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5412. }
  5413. break;
  5414. #ifdef FWRETRACT
  5415. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5416. {
  5417. if(code_seen('S'))
  5418. {
  5419. cs.retract_length = code_value() ;
  5420. }
  5421. if(code_seen('F'))
  5422. {
  5423. cs.retract_feedrate = code_value()/60 ;
  5424. }
  5425. if(code_seen('Z'))
  5426. {
  5427. cs.retract_zlift = code_value() ;
  5428. }
  5429. }break;
  5430. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5431. {
  5432. if(code_seen('S'))
  5433. {
  5434. cs.retract_recover_length = code_value() ;
  5435. }
  5436. if(code_seen('F'))
  5437. {
  5438. cs.retract_recover_feedrate = code_value()/60 ;
  5439. }
  5440. }break;
  5441. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5442. {
  5443. if(code_seen('S'))
  5444. {
  5445. int t= code_value() ;
  5446. switch(t)
  5447. {
  5448. case 0:
  5449. {
  5450. cs.autoretract_enabled=false;
  5451. retracted[0]=false;
  5452. #if EXTRUDERS > 1
  5453. retracted[1]=false;
  5454. #endif
  5455. #if EXTRUDERS > 2
  5456. retracted[2]=false;
  5457. #endif
  5458. }break;
  5459. case 1:
  5460. {
  5461. cs.autoretract_enabled=true;
  5462. retracted[0]=false;
  5463. #if EXTRUDERS > 1
  5464. retracted[1]=false;
  5465. #endif
  5466. #if EXTRUDERS > 2
  5467. retracted[2]=false;
  5468. #endif
  5469. }break;
  5470. default:
  5471. SERIAL_ECHO_START;
  5472. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5473. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5474. SERIAL_ECHOLNPGM("\"(1)");
  5475. }
  5476. }
  5477. }break;
  5478. #endif // FWRETRACT
  5479. #if EXTRUDERS > 1
  5480. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5481. {
  5482. uint8_t extruder;
  5483. if(setTargetedHotend(218, extruder)){
  5484. break;
  5485. }
  5486. if(code_seen('X'))
  5487. {
  5488. extruder_offset[X_AXIS][extruder] = code_value();
  5489. }
  5490. if(code_seen('Y'))
  5491. {
  5492. extruder_offset[Y_AXIS][extruder] = code_value();
  5493. }
  5494. SERIAL_ECHO_START;
  5495. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5496. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5497. {
  5498. SERIAL_ECHO(" ");
  5499. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5500. SERIAL_ECHO(",");
  5501. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5502. }
  5503. SERIAL_ECHOLN("");
  5504. }break;
  5505. #endif
  5506. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5507. {
  5508. if (code_seen('B')) //backup current speed factor
  5509. {
  5510. saved_feedmultiply_mm = feedmultiply;
  5511. }
  5512. if(code_seen('S'))
  5513. {
  5514. feedmultiply = code_value() ;
  5515. }
  5516. if (code_seen('R')) { //restore previous feedmultiply
  5517. feedmultiply = saved_feedmultiply_mm;
  5518. }
  5519. }
  5520. break;
  5521. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5522. {
  5523. if(code_seen('S'))
  5524. {
  5525. int tmp_code = code_value();
  5526. if (code_seen('T'))
  5527. {
  5528. uint8_t extruder;
  5529. if(setTargetedHotend(221, extruder)){
  5530. break;
  5531. }
  5532. extruder_multiply[extruder] = tmp_code;
  5533. }
  5534. else
  5535. {
  5536. extrudemultiply = tmp_code ;
  5537. }
  5538. }
  5539. calculate_extruder_multipliers();
  5540. }
  5541. break;
  5542. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5543. {
  5544. if(code_seen('P')){
  5545. int pin_number = code_value(); // pin number
  5546. int pin_state = -1; // required pin state - default is inverted
  5547. if(code_seen('S')) pin_state = code_value(); // required pin state
  5548. if(pin_state >= -1 && pin_state <= 1){
  5549. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5550. {
  5551. if (sensitive_pins[i] == pin_number)
  5552. {
  5553. pin_number = -1;
  5554. break;
  5555. }
  5556. }
  5557. if (pin_number > -1)
  5558. {
  5559. int target = LOW;
  5560. st_synchronize();
  5561. pinMode(pin_number, INPUT);
  5562. switch(pin_state){
  5563. case 1:
  5564. target = HIGH;
  5565. break;
  5566. case 0:
  5567. target = LOW;
  5568. break;
  5569. case -1:
  5570. target = !digitalRead(pin_number);
  5571. break;
  5572. }
  5573. while(digitalRead(pin_number) != target){
  5574. manage_heater();
  5575. manage_inactivity();
  5576. lcd_update(0);
  5577. }
  5578. }
  5579. }
  5580. }
  5581. }
  5582. break;
  5583. #if NUM_SERVOS > 0
  5584. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5585. {
  5586. int servo_index = -1;
  5587. int servo_position = 0;
  5588. if (code_seen('P'))
  5589. servo_index = code_value();
  5590. if (code_seen('S')) {
  5591. servo_position = code_value();
  5592. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5593. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5594. servos[servo_index].attach(0);
  5595. #endif
  5596. servos[servo_index].write(servo_position);
  5597. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5598. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5599. servos[servo_index].detach();
  5600. #endif
  5601. }
  5602. else {
  5603. SERIAL_ECHO_START;
  5604. SERIAL_ECHO("Servo ");
  5605. SERIAL_ECHO(servo_index);
  5606. SERIAL_ECHOLN(" out of range");
  5607. }
  5608. }
  5609. else if (servo_index >= 0) {
  5610. SERIAL_PROTOCOL(MSG_OK);
  5611. SERIAL_PROTOCOL(" Servo ");
  5612. SERIAL_PROTOCOL(servo_index);
  5613. SERIAL_PROTOCOL(": ");
  5614. SERIAL_PROTOCOL(servos[servo_index].read());
  5615. SERIAL_PROTOCOLLN("");
  5616. }
  5617. }
  5618. break;
  5619. #endif // NUM_SERVOS > 0
  5620. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5621. case 300: // M300
  5622. {
  5623. int beepS = code_seen('S') ? code_value() : 110;
  5624. int beepP = code_seen('P') ? code_value() : 1000;
  5625. if (beepS > 0)
  5626. {
  5627. #if BEEPER > 0
  5628. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5629. _tone(BEEPER, beepS);
  5630. _delay(beepP);
  5631. _noTone(BEEPER);
  5632. #endif
  5633. }
  5634. else
  5635. {
  5636. _delay(beepP);
  5637. }
  5638. }
  5639. break;
  5640. #endif // M300
  5641. #ifdef PIDTEMP
  5642. case 301: // M301
  5643. {
  5644. if(code_seen('P')) cs.Kp = code_value();
  5645. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5646. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5647. #ifdef PID_ADD_EXTRUSION_RATE
  5648. if(code_seen('C')) Kc = code_value();
  5649. #endif
  5650. updatePID();
  5651. SERIAL_PROTOCOLRPGM(MSG_OK);
  5652. SERIAL_PROTOCOL(" p:");
  5653. SERIAL_PROTOCOL(cs.Kp);
  5654. SERIAL_PROTOCOL(" i:");
  5655. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5656. SERIAL_PROTOCOL(" d:");
  5657. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5658. #ifdef PID_ADD_EXTRUSION_RATE
  5659. SERIAL_PROTOCOL(" c:");
  5660. //Kc does not have scaling applied above, or in resetting defaults
  5661. SERIAL_PROTOCOL(Kc);
  5662. #endif
  5663. SERIAL_PROTOCOLLN("");
  5664. }
  5665. break;
  5666. #endif //PIDTEMP
  5667. #ifdef PIDTEMPBED
  5668. case 304: // M304
  5669. {
  5670. if(code_seen('P')) cs.bedKp = code_value();
  5671. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5672. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5673. updatePID();
  5674. SERIAL_PROTOCOLRPGM(MSG_OK);
  5675. SERIAL_PROTOCOL(" p:");
  5676. SERIAL_PROTOCOL(cs.bedKp);
  5677. SERIAL_PROTOCOL(" i:");
  5678. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5679. SERIAL_PROTOCOL(" d:");
  5680. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5681. SERIAL_PROTOCOLLN("");
  5682. }
  5683. break;
  5684. #endif //PIDTEMP
  5685. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5686. {
  5687. #ifdef CHDK
  5688. SET_OUTPUT(CHDK);
  5689. WRITE(CHDK, HIGH);
  5690. chdkHigh = _millis();
  5691. chdkActive = true;
  5692. #else
  5693. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5694. const uint8_t NUM_PULSES=16;
  5695. const float PULSE_LENGTH=0.01524;
  5696. for(int i=0; i < NUM_PULSES; i++) {
  5697. WRITE(PHOTOGRAPH_PIN, HIGH);
  5698. _delay_ms(PULSE_LENGTH);
  5699. WRITE(PHOTOGRAPH_PIN, LOW);
  5700. _delay_ms(PULSE_LENGTH);
  5701. }
  5702. _delay(7.33);
  5703. for(int i=0; i < NUM_PULSES; i++) {
  5704. WRITE(PHOTOGRAPH_PIN, HIGH);
  5705. _delay_ms(PULSE_LENGTH);
  5706. WRITE(PHOTOGRAPH_PIN, LOW);
  5707. _delay_ms(PULSE_LENGTH);
  5708. }
  5709. #endif
  5710. #endif //chdk end if
  5711. }
  5712. break;
  5713. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5714. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5715. {
  5716. float temp = .0;
  5717. if (code_seen('S')) temp=code_value();
  5718. set_extrude_min_temp(temp);
  5719. }
  5720. break;
  5721. #endif
  5722. case 303: // M303 PID autotune
  5723. {
  5724. float temp = 150.0;
  5725. int e=0;
  5726. int c=5;
  5727. if (code_seen('E')) e=code_value();
  5728. if (e<0)
  5729. temp=70;
  5730. if (code_seen('S')) temp=code_value();
  5731. if (code_seen('C')) c=code_value();
  5732. PID_autotune(temp, e, c);
  5733. }
  5734. break;
  5735. case 400: // M400 finish all moves
  5736. {
  5737. st_synchronize();
  5738. }
  5739. break;
  5740. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5741. {
  5742. //! currently three different materials are needed (default, flex and PVA)
  5743. //! add storing this information for different load/unload profiles etc. in the future
  5744. //!firmware does not wait for "ok" from mmu
  5745. if (mmu_enabled)
  5746. {
  5747. uint8_t extruder = 255;
  5748. uint8_t filament = FILAMENT_UNDEFINED;
  5749. if(code_seen('E')) extruder = code_value();
  5750. if(code_seen('F')) filament = code_value();
  5751. mmu_set_filament_type(extruder, filament);
  5752. }
  5753. }
  5754. break;
  5755. case 500: // M500 Store settings in EEPROM
  5756. {
  5757. Config_StoreSettings();
  5758. }
  5759. break;
  5760. case 501: // M501 Read settings from EEPROM
  5761. {
  5762. Config_RetrieveSettings();
  5763. }
  5764. break;
  5765. case 502: // M502 Revert to default settings
  5766. {
  5767. Config_ResetDefault();
  5768. }
  5769. break;
  5770. case 503: // M503 print settings currently in memory
  5771. {
  5772. Config_PrintSettings();
  5773. }
  5774. break;
  5775. case 509: //M509 Force language selection
  5776. {
  5777. lang_reset();
  5778. SERIAL_ECHO_START;
  5779. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5780. }
  5781. break;
  5782. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5783. case 540:
  5784. {
  5785. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5786. }
  5787. break;
  5788. #endif
  5789. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5790. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5791. {
  5792. float value;
  5793. if (code_seen('Z'))
  5794. {
  5795. value = code_value();
  5796. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5797. {
  5798. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5799. SERIAL_ECHO_START;
  5800. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5801. SERIAL_PROTOCOLLN("");
  5802. }
  5803. else
  5804. {
  5805. SERIAL_ECHO_START;
  5806. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5807. SERIAL_ECHORPGM(MSG_Z_MIN);
  5808. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5809. SERIAL_ECHORPGM(MSG_Z_MAX);
  5810. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5811. SERIAL_PROTOCOLLN("");
  5812. }
  5813. }
  5814. else
  5815. {
  5816. SERIAL_ECHO_START;
  5817. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5818. SERIAL_ECHO(-cs.zprobe_zoffset);
  5819. SERIAL_PROTOCOLLN("");
  5820. }
  5821. break;
  5822. }
  5823. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5824. #ifdef FILAMENTCHANGEENABLE
  5825. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5826. {
  5827. st_synchronize();
  5828. float x_position = current_position[X_AXIS];
  5829. float y_position = current_position[Y_AXIS];
  5830. float z_shift = 0; // is it necessary to be a float?
  5831. float e_shift_init = 0;
  5832. float e_shift_late = 0;
  5833. bool automatic = false;
  5834. //Retract extruder
  5835. if(code_seen('E'))
  5836. {
  5837. e_shift_init = code_value();
  5838. }
  5839. else
  5840. {
  5841. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5842. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5843. #endif
  5844. }
  5845. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5846. if (code_seen('L'))
  5847. {
  5848. e_shift_late = code_value();
  5849. }
  5850. else
  5851. {
  5852. #ifdef FILAMENTCHANGE_FINALRETRACT
  5853. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5854. #endif
  5855. }
  5856. //Lift Z
  5857. if(code_seen('Z'))
  5858. {
  5859. z_shift = code_value();
  5860. }
  5861. else
  5862. {
  5863. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5864. }
  5865. //Move XY to side
  5866. if(code_seen('X'))
  5867. {
  5868. x_position = code_value();
  5869. }
  5870. else
  5871. {
  5872. #ifdef FILAMENTCHANGE_XPOS
  5873. x_position = FILAMENTCHANGE_XPOS;
  5874. #endif
  5875. }
  5876. if(code_seen('Y'))
  5877. {
  5878. y_position = code_value();
  5879. }
  5880. else
  5881. {
  5882. #ifdef FILAMENTCHANGE_YPOS
  5883. y_position = FILAMENTCHANGE_YPOS ;
  5884. #endif
  5885. }
  5886. if (mmu_enabled && code_seen("AUTO"))
  5887. automatic = true;
  5888. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5889. }
  5890. break;
  5891. #endif //FILAMENTCHANGEENABLE
  5892. case 601: //! M601 - Pause print
  5893. {
  5894. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5895. lcd_pause_print();
  5896. }
  5897. break;
  5898. case 602: { //! M602 - Resume print
  5899. lcd_resume_print();
  5900. }
  5901. break;
  5902. #ifdef PINDA_THERMISTOR
  5903. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5904. {
  5905. int set_target_pinda = 0;
  5906. if (code_seen('S')) {
  5907. set_target_pinda = code_value();
  5908. }
  5909. else {
  5910. break;
  5911. }
  5912. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5913. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5914. SERIAL_PROTOCOL(set_target_pinda);
  5915. SERIAL_PROTOCOLLN("");
  5916. codenum = _millis();
  5917. cancel_heatup = false;
  5918. bool is_pinda_cooling = false;
  5919. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5920. is_pinda_cooling = true;
  5921. }
  5922. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5923. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5924. {
  5925. SERIAL_PROTOCOLPGM("P:");
  5926. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5927. SERIAL_PROTOCOLPGM("/");
  5928. SERIAL_PROTOCOL(set_target_pinda);
  5929. SERIAL_PROTOCOLLN("");
  5930. codenum = _millis();
  5931. }
  5932. manage_heater();
  5933. manage_inactivity();
  5934. lcd_update(0);
  5935. }
  5936. LCD_MESSAGERPGM(MSG_OK);
  5937. break;
  5938. }
  5939. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5940. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5941. uint8_t cal_status = calibration_status_pinda();
  5942. int16_t usteps = 0;
  5943. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5944. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5945. for (uint8_t i = 0; i < 6; i++)
  5946. {
  5947. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5948. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5949. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5950. SERIAL_PROTOCOLPGM(", ");
  5951. SERIAL_PROTOCOL(35 + (i * 5));
  5952. SERIAL_PROTOCOLPGM(", ");
  5953. SERIAL_PROTOCOL(usteps);
  5954. SERIAL_PROTOCOLPGM(", ");
  5955. SERIAL_PROTOCOL(mm * 1000);
  5956. SERIAL_PROTOCOLLN("");
  5957. }
  5958. }
  5959. else if (code_seen('!')) { // ! - Set factory default values
  5960. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5961. int16_t z_shift = 8; //40C - 20um - 8usteps
  5962. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5963. z_shift = 24; //45C - 60um - 24usteps
  5964. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5965. z_shift = 48; //50C - 120um - 48usteps
  5966. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5967. z_shift = 80; //55C - 200um - 80usteps
  5968. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5969. z_shift = 120; //60C - 300um - 120usteps
  5970. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5971. SERIAL_PROTOCOLLN("factory restored");
  5972. }
  5973. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5974. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5975. int16_t z_shift = 0;
  5976. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5977. SERIAL_PROTOCOLLN("zerorized");
  5978. }
  5979. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5980. int16_t usteps = code_value();
  5981. if (code_seen('I')) {
  5982. uint8_t index = code_value();
  5983. if (index < 5) {
  5984. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5985. SERIAL_PROTOCOLLN("OK");
  5986. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5987. for (uint8_t i = 0; i < 6; i++)
  5988. {
  5989. usteps = 0;
  5990. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5991. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5992. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5993. SERIAL_PROTOCOLPGM(", ");
  5994. SERIAL_PROTOCOL(35 + (i * 5));
  5995. SERIAL_PROTOCOLPGM(", ");
  5996. SERIAL_PROTOCOL(usteps);
  5997. SERIAL_PROTOCOLPGM(", ");
  5998. SERIAL_PROTOCOL(mm * 1000);
  5999. SERIAL_PROTOCOLLN("");
  6000. }
  6001. }
  6002. }
  6003. }
  6004. else {
  6005. SERIAL_PROTOCOLPGM("no valid command");
  6006. }
  6007. break;
  6008. #endif //PINDA_THERMISTOR
  6009. #ifdef LIN_ADVANCE
  6010. case 900: // M900: Set LIN_ADVANCE options.
  6011. gcode_M900();
  6012. break;
  6013. #endif
  6014. case 907: // M907 Set digital trimpot motor current using axis codes.
  6015. {
  6016. #ifdef TMC2130
  6017. for (int i = 0; i < NUM_AXIS; i++)
  6018. if(code_seen(axis_codes[i]))
  6019. {
  6020. long cur_mA = code_value_long();
  6021. uint8_t val = tmc2130_cur2val(cur_mA);
  6022. tmc2130_set_current_h(i, val);
  6023. tmc2130_set_current_r(i, val);
  6024. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6025. }
  6026. #else //TMC2130
  6027. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6028. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6029. if(code_seen('B')) st_current_set(4,code_value());
  6030. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6031. #endif
  6032. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6033. if(code_seen('X')) st_current_set(0, code_value());
  6034. #endif
  6035. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6036. if(code_seen('Z')) st_current_set(1, code_value());
  6037. #endif
  6038. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6039. if(code_seen('E')) st_current_set(2, code_value());
  6040. #endif
  6041. #endif //TMC2130
  6042. }
  6043. break;
  6044. case 908: // M908 Control digital trimpot directly.
  6045. {
  6046. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6047. uint8_t channel,current;
  6048. if(code_seen('P')) channel=code_value();
  6049. if(code_seen('S')) current=code_value();
  6050. digitalPotWrite(channel, current);
  6051. #endif
  6052. }
  6053. break;
  6054. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6055. case 910: //! M910 - TMC2130 init
  6056. {
  6057. tmc2130_init();
  6058. }
  6059. break;
  6060. case 911: //! M911 - Set TMC2130 holding currents
  6061. {
  6062. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6063. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6064. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6065. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6066. }
  6067. break;
  6068. case 912: //! M912 - Set TMC2130 running currents
  6069. {
  6070. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6071. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6072. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6073. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6074. }
  6075. break;
  6076. case 913: //! M913 - Print TMC2130 currents
  6077. {
  6078. tmc2130_print_currents();
  6079. }
  6080. break;
  6081. case 914: //! M914 - Set normal mode
  6082. {
  6083. tmc2130_mode = TMC2130_MODE_NORMAL;
  6084. update_mode_profile();
  6085. tmc2130_init();
  6086. }
  6087. break;
  6088. case 915: //! M915 - Set silent mode
  6089. {
  6090. tmc2130_mode = TMC2130_MODE_SILENT;
  6091. update_mode_profile();
  6092. tmc2130_init();
  6093. }
  6094. break;
  6095. case 916: //! M916 - Set sg_thrs
  6096. {
  6097. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6098. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6099. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6100. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6101. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6102. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6103. }
  6104. break;
  6105. case 917: //! M917 - Set TMC2130 pwm_ampl
  6106. {
  6107. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6108. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6109. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6110. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6111. }
  6112. break;
  6113. case 918: //! M918 - Set TMC2130 pwm_grad
  6114. {
  6115. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6116. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6117. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6118. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6119. }
  6120. break;
  6121. #endif //TMC2130_SERVICE_CODES_M910_M918
  6122. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6123. {
  6124. #ifdef TMC2130
  6125. if(code_seen('E'))
  6126. {
  6127. uint16_t res_new = code_value();
  6128. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6129. {
  6130. st_synchronize();
  6131. uint8_t axis = E_AXIS;
  6132. uint16_t res = tmc2130_get_res(axis);
  6133. tmc2130_set_res(axis, res_new);
  6134. cs.axis_ustep_resolution[axis] = res_new;
  6135. if (res_new > res)
  6136. {
  6137. uint16_t fac = (res_new / res);
  6138. cs.axis_steps_per_unit[axis] *= fac;
  6139. position[E_AXIS] *= fac;
  6140. }
  6141. else
  6142. {
  6143. uint16_t fac = (res / res_new);
  6144. cs.axis_steps_per_unit[axis] /= fac;
  6145. position[E_AXIS] /= fac;
  6146. }
  6147. }
  6148. }
  6149. #else //TMC2130
  6150. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6151. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6152. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6153. if(code_seen('B')) microstep_mode(4,code_value());
  6154. microstep_readings();
  6155. #endif
  6156. #endif //TMC2130
  6157. }
  6158. break;
  6159. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6160. {
  6161. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6162. if(code_seen('S')) switch((int)code_value())
  6163. {
  6164. case 1:
  6165. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6166. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6167. break;
  6168. case 2:
  6169. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6170. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6171. break;
  6172. }
  6173. microstep_readings();
  6174. #endif
  6175. }
  6176. break;
  6177. case 701: //! M701 - load filament
  6178. {
  6179. if (mmu_enabled && code_seen('E'))
  6180. tmp_extruder = code_value();
  6181. gcode_M701();
  6182. }
  6183. break;
  6184. case 702: //! M702 [U C] -
  6185. {
  6186. #ifdef SNMM
  6187. if (code_seen('U'))
  6188. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6189. else if (code_seen('C'))
  6190. extr_unload(); //! if "C" unload just current filament
  6191. else
  6192. extr_unload_all(); //! otherwise unload all filaments
  6193. #else
  6194. if (code_seen('C')) {
  6195. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6196. }
  6197. else {
  6198. if(mmu_enabled) extr_unload(); //! unload current filament
  6199. else unload_filament();
  6200. }
  6201. #endif //SNMM
  6202. }
  6203. break;
  6204. case 999: // M999: Restart after being stopped
  6205. Stopped = false;
  6206. lcd_reset_alert_level();
  6207. gcode_LastN = Stopped_gcode_LastN;
  6208. FlushSerialRequestResend();
  6209. break;
  6210. default:
  6211. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6212. }
  6213. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6214. mcode_in_progress = 0;
  6215. }
  6216. }
  6217. // end if(code_seen('M')) (end of M codes)
  6218. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6219. //! select filament in case of MMU_V2
  6220. //! if extruder is "?", open menu to let the user select extruder/filament
  6221. //!
  6222. //! For MMU_V2:
  6223. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6224. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6225. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6226. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6227. else if(code_seen('T'))
  6228. {
  6229. int index;
  6230. bool load_to_nozzle = false;
  6231. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6232. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6233. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6234. SERIAL_ECHOLNPGM("Invalid T code.");
  6235. }
  6236. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6237. if (mmu_enabled)
  6238. {
  6239. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6240. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6241. {
  6242. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6243. }
  6244. else
  6245. {
  6246. st_synchronize();
  6247. mmu_command(MmuCmd::T0 + tmp_extruder);
  6248. manage_response(true, true, MMU_TCODE_MOVE);
  6249. }
  6250. }
  6251. }
  6252. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6253. if (mmu_enabled)
  6254. {
  6255. st_synchronize();
  6256. mmu_continue_loading(is_usb_printing);
  6257. mmu_extruder = tmp_extruder; //filament change is finished
  6258. mmu_load_to_nozzle();
  6259. }
  6260. }
  6261. else {
  6262. if (*(strchr_pointer + index) == '?')
  6263. {
  6264. if(mmu_enabled)
  6265. {
  6266. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6267. load_to_nozzle = true;
  6268. } else
  6269. {
  6270. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6271. }
  6272. }
  6273. else {
  6274. tmp_extruder = code_value();
  6275. if (mmu_enabled && lcd_autoDepleteEnabled())
  6276. {
  6277. tmp_extruder = ad_getAlternative(tmp_extruder);
  6278. }
  6279. }
  6280. st_synchronize();
  6281. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6282. if (mmu_enabled)
  6283. {
  6284. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6285. {
  6286. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6287. }
  6288. else
  6289. {
  6290. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6291. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6292. {
  6293. mmu_command(MmuCmd::K0 + tmp_extruder);
  6294. manage_response(true, true, MMU_UNLOAD_MOVE);
  6295. }
  6296. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6297. mmu_command(MmuCmd::T0 + tmp_extruder);
  6298. manage_response(true, true, MMU_TCODE_MOVE);
  6299. mmu_continue_loading(is_usb_printing);
  6300. mmu_extruder = tmp_extruder; //filament change is finished
  6301. if (load_to_nozzle)// for single material usage with mmu
  6302. {
  6303. mmu_load_to_nozzle();
  6304. }
  6305. }
  6306. }
  6307. else
  6308. {
  6309. #ifdef SNMM
  6310. mmu_extruder = tmp_extruder;
  6311. _delay(100);
  6312. disable_e0();
  6313. disable_e1();
  6314. disable_e2();
  6315. pinMode(E_MUX0_PIN, OUTPUT);
  6316. pinMode(E_MUX1_PIN, OUTPUT);
  6317. _delay(100);
  6318. SERIAL_ECHO_START;
  6319. SERIAL_ECHO("T:");
  6320. SERIAL_ECHOLN((int)tmp_extruder);
  6321. switch (tmp_extruder) {
  6322. case 1:
  6323. WRITE(E_MUX0_PIN, HIGH);
  6324. WRITE(E_MUX1_PIN, LOW);
  6325. break;
  6326. case 2:
  6327. WRITE(E_MUX0_PIN, LOW);
  6328. WRITE(E_MUX1_PIN, HIGH);
  6329. break;
  6330. case 3:
  6331. WRITE(E_MUX0_PIN, HIGH);
  6332. WRITE(E_MUX1_PIN, HIGH);
  6333. break;
  6334. default:
  6335. WRITE(E_MUX0_PIN, LOW);
  6336. WRITE(E_MUX1_PIN, LOW);
  6337. break;
  6338. }
  6339. _delay(100);
  6340. #else //SNMM
  6341. if (tmp_extruder >= EXTRUDERS) {
  6342. SERIAL_ECHO_START;
  6343. SERIAL_ECHOPGM("T");
  6344. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6345. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6346. }
  6347. else {
  6348. #if EXTRUDERS > 1
  6349. boolean make_move = false;
  6350. #endif
  6351. if (code_seen('F')) {
  6352. #if EXTRUDERS > 1
  6353. make_move = true;
  6354. #endif
  6355. next_feedrate = code_value();
  6356. if (next_feedrate > 0.0) {
  6357. feedrate = next_feedrate;
  6358. }
  6359. }
  6360. #if EXTRUDERS > 1
  6361. if (tmp_extruder != active_extruder) {
  6362. // Save current position to return to after applying extruder offset
  6363. memcpy(destination, current_position, sizeof(destination));
  6364. // Offset extruder (only by XY)
  6365. int i;
  6366. for (i = 0; i < 2; i++) {
  6367. current_position[i] = current_position[i] -
  6368. extruder_offset[i][active_extruder] +
  6369. extruder_offset[i][tmp_extruder];
  6370. }
  6371. // Set the new active extruder and position
  6372. active_extruder = tmp_extruder;
  6373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6374. // Move to the old position if 'F' was in the parameters
  6375. if (make_move && Stopped == false) {
  6376. prepare_move();
  6377. }
  6378. }
  6379. #endif
  6380. SERIAL_ECHO_START;
  6381. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6382. SERIAL_PROTOCOLLN((int)active_extruder);
  6383. }
  6384. #endif //SNMM
  6385. }
  6386. }
  6387. } // end if(code_seen('T')) (end of T codes)
  6388. else if (code_seen('D')) // D codes (debug)
  6389. {
  6390. switch((int)code_value())
  6391. {
  6392. case -1: //! D-1 - Endless loop
  6393. dcode__1(); break;
  6394. #ifdef DEBUG_DCODES
  6395. case 0: //! D0 - Reset
  6396. dcode_0(); break;
  6397. case 1: //! D1 - Clear EEPROM
  6398. dcode_1(); break;
  6399. case 2: //! D2 - Read/Write RAM
  6400. dcode_2(); break;
  6401. #endif //DEBUG_DCODES
  6402. #ifdef DEBUG_DCODE3
  6403. case 3: //! D3 - Read/Write EEPROM
  6404. dcode_3(); break;
  6405. #endif //DEBUG_DCODE3
  6406. #ifdef DEBUG_DCODES
  6407. case 4: //! D4 - Read/Write PIN
  6408. dcode_4(); break;
  6409. #endif //DEBUG_DCODES
  6410. #ifdef DEBUG_DCODE5
  6411. case 5: // D5 - Read/Write FLASH
  6412. dcode_5(); break;
  6413. break;
  6414. #endif //DEBUG_DCODE5
  6415. #ifdef DEBUG_DCODES
  6416. case 6: // D6 - Read/Write external FLASH
  6417. dcode_6(); break;
  6418. case 7: //! D7 - Read/Write Bootloader
  6419. dcode_7(); break;
  6420. case 8: //! D8 - Read/Write PINDA
  6421. dcode_8(); break;
  6422. case 9: //! D9 - Read/Write ADC
  6423. dcode_9(); break;
  6424. case 10: //! D10 - XYZ calibration = OK
  6425. dcode_10(); break;
  6426. #endif //DEBUG_DCODES
  6427. #ifdef HEATBED_ANALYSIS
  6428. case 80:
  6429. {
  6430. float dimension_x = 40;
  6431. float dimension_y = 40;
  6432. int points_x = 40;
  6433. int points_y = 40;
  6434. float offset_x = 74;
  6435. float offset_y = 33;
  6436. if (code_seen('E')) dimension_x = code_value();
  6437. if (code_seen('F')) dimension_y = code_value();
  6438. if (code_seen('G')) {points_x = code_value(); }
  6439. if (code_seen('H')) {points_y = code_value(); }
  6440. if (code_seen('I')) {offset_x = code_value(); }
  6441. if (code_seen('J')) {offset_y = code_value(); }
  6442. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6443. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6444. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6445. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6446. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6447. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6448. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6449. }break;
  6450. case 81:
  6451. {
  6452. float dimension_x = 40;
  6453. float dimension_y = 40;
  6454. int points_x = 40;
  6455. int points_y = 40;
  6456. float offset_x = 74;
  6457. float offset_y = 33;
  6458. if (code_seen('E')) dimension_x = code_value();
  6459. if (code_seen('F')) dimension_y = code_value();
  6460. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6461. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6462. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6463. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6464. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6465. } break;
  6466. #endif //HEATBED_ANALYSIS
  6467. #ifdef DEBUG_DCODES
  6468. case 106: //D106 print measured fan speed for different pwm values
  6469. {
  6470. for (int i = 255; i > 0; i = i - 5) {
  6471. fanSpeed = i;
  6472. //delay_keep_alive(2000);
  6473. for (int j = 0; j < 100; j++) {
  6474. delay_keep_alive(100);
  6475. }
  6476. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6477. }
  6478. }break;
  6479. #ifdef TMC2130
  6480. case 2130: //! D2130 - TMC2130
  6481. dcode_2130(); break;
  6482. #endif //TMC2130
  6483. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6484. case 9125: //! D9125 - FILAMENT_SENSOR
  6485. dcode_9125(); break;
  6486. #endif //FILAMENT_SENSOR
  6487. #endif //DEBUG_DCODES
  6488. }
  6489. }
  6490. else
  6491. {
  6492. SERIAL_ECHO_START;
  6493. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6494. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6495. SERIAL_ECHOLNPGM("\"(2)");
  6496. }
  6497. KEEPALIVE_STATE(NOT_BUSY);
  6498. ClearToSend();
  6499. }
  6500. void FlushSerialRequestResend()
  6501. {
  6502. //char cmdbuffer[bufindr][100]="Resend:";
  6503. MYSERIAL.flush();
  6504. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6505. }
  6506. // Confirm the execution of a command, if sent from a serial line.
  6507. // Execution of a command from a SD card will not be confirmed.
  6508. void ClearToSend()
  6509. {
  6510. previous_millis_cmd = _millis();
  6511. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6512. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6513. }
  6514. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6515. void update_currents() {
  6516. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6517. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6518. float tmp_motor[3];
  6519. //SERIAL_ECHOLNPGM("Currents updated: ");
  6520. if (destination[Z_AXIS] < Z_SILENT) {
  6521. //SERIAL_ECHOLNPGM("LOW");
  6522. for (uint8_t i = 0; i < 3; i++) {
  6523. st_current_set(i, current_low[i]);
  6524. /*MYSERIAL.print(int(i));
  6525. SERIAL_ECHOPGM(": ");
  6526. MYSERIAL.println(current_low[i]);*/
  6527. }
  6528. }
  6529. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6530. //SERIAL_ECHOLNPGM("HIGH");
  6531. for (uint8_t i = 0; i < 3; i++) {
  6532. st_current_set(i, current_high[i]);
  6533. /*MYSERIAL.print(int(i));
  6534. SERIAL_ECHOPGM(": ");
  6535. MYSERIAL.println(current_high[i]);*/
  6536. }
  6537. }
  6538. else {
  6539. for (uint8_t i = 0; i < 3; i++) {
  6540. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6541. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6542. st_current_set(i, tmp_motor[i]);
  6543. /*MYSERIAL.print(int(i));
  6544. SERIAL_ECHOPGM(": ");
  6545. MYSERIAL.println(tmp_motor[i]);*/
  6546. }
  6547. }
  6548. }
  6549. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6550. void get_coordinates()
  6551. {
  6552. bool seen[4]={false,false,false,false};
  6553. for(int8_t i=0; i < NUM_AXIS; i++) {
  6554. if(code_seen(axis_codes[i]))
  6555. {
  6556. bool relative = axis_relative_modes[i] || relative_mode;
  6557. destination[i] = (float)code_value();
  6558. if (i == E_AXIS) {
  6559. float emult = extruder_multiplier[active_extruder];
  6560. if (emult != 1.) {
  6561. if (! relative) {
  6562. destination[i] -= current_position[i];
  6563. relative = true;
  6564. }
  6565. destination[i] *= emult;
  6566. }
  6567. }
  6568. if (relative)
  6569. destination[i] += current_position[i];
  6570. seen[i]=true;
  6571. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6572. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6573. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6574. }
  6575. else destination[i] = current_position[i]; //Are these else lines really needed?
  6576. }
  6577. if(code_seen('F')) {
  6578. next_feedrate = code_value();
  6579. #ifdef MAX_SILENT_FEEDRATE
  6580. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6581. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6582. #endif //MAX_SILENT_FEEDRATE
  6583. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6584. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6585. {
  6586. // float e_max_speed =
  6587. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6588. }
  6589. }
  6590. }
  6591. void get_arc_coordinates()
  6592. {
  6593. #ifdef SF_ARC_FIX
  6594. bool relative_mode_backup = relative_mode;
  6595. relative_mode = true;
  6596. #endif
  6597. get_coordinates();
  6598. #ifdef SF_ARC_FIX
  6599. relative_mode=relative_mode_backup;
  6600. #endif
  6601. if(code_seen('I')) {
  6602. offset[0] = code_value();
  6603. }
  6604. else {
  6605. offset[0] = 0.0;
  6606. }
  6607. if(code_seen('J')) {
  6608. offset[1] = code_value();
  6609. }
  6610. else {
  6611. offset[1] = 0.0;
  6612. }
  6613. }
  6614. void clamp_to_software_endstops(float target[3])
  6615. {
  6616. #ifdef DEBUG_DISABLE_SWLIMITS
  6617. return;
  6618. #endif //DEBUG_DISABLE_SWLIMITS
  6619. world2machine_clamp(target[0], target[1]);
  6620. // Clamp the Z coordinate.
  6621. if (min_software_endstops) {
  6622. float negative_z_offset = 0;
  6623. #ifdef ENABLE_AUTO_BED_LEVELING
  6624. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6625. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6626. #endif
  6627. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6628. }
  6629. if (max_software_endstops) {
  6630. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6631. }
  6632. }
  6633. #ifdef MESH_BED_LEVELING
  6634. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6635. float dx = x - current_position[X_AXIS];
  6636. float dy = y - current_position[Y_AXIS];
  6637. float dz = z - current_position[Z_AXIS];
  6638. int n_segments = 0;
  6639. if (mbl.active) {
  6640. float len = abs(dx) + abs(dy);
  6641. if (len > 0)
  6642. // Split to 3cm segments or shorter.
  6643. n_segments = int(ceil(len / 30.f));
  6644. }
  6645. if (n_segments > 1) {
  6646. float de = e - current_position[E_AXIS];
  6647. for (int i = 1; i < n_segments; ++ i) {
  6648. float t = float(i) / float(n_segments);
  6649. if (saved_printing || (mbl.active == false)) return;
  6650. plan_buffer_line(
  6651. current_position[X_AXIS] + t * dx,
  6652. current_position[Y_AXIS] + t * dy,
  6653. current_position[Z_AXIS] + t * dz,
  6654. current_position[E_AXIS] + t * de,
  6655. feed_rate, extruder);
  6656. }
  6657. }
  6658. // The rest of the path.
  6659. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6660. current_position[X_AXIS] = x;
  6661. current_position[Y_AXIS] = y;
  6662. current_position[Z_AXIS] = z;
  6663. current_position[E_AXIS] = e;
  6664. }
  6665. #endif // MESH_BED_LEVELING
  6666. void prepare_move()
  6667. {
  6668. clamp_to_software_endstops(destination);
  6669. previous_millis_cmd = _millis();
  6670. // Do not use feedmultiply for E or Z only moves
  6671. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6672. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6673. }
  6674. else {
  6675. #ifdef MESH_BED_LEVELING
  6676. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6677. #else
  6678. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6679. #endif
  6680. }
  6681. for(int8_t i=0; i < NUM_AXIS; i++) {
  6682. current_position[i] = destination[i];
  6683. }
  6684. }
  6685. void prepare_arc_move(char isclockwise) {
  6686. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6687. // Trace the arc
  6688. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6689. // As far as the parser is concerned, the position is now == target. In reality the
  6690. // motion control system might still be processing the action and the real tool position
  6691. // in any intermediate location.
  6692. for(int8_t i=0; i < NUM_AXIS; i++) {
  6693. current_position[i] = destination[i];
  6694. }
  6695. previous_millis_cmd = _millis();
  6696. }
  6697. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6698. #if defined(FAN_PIN)
  6699. #if CONTROLLERFAN_PIN == FAN_PIN
  6700. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6701. #endif
  6702. #endif
  6703. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6704. unsigned long lastMotorCheck = 0;
  6705. void controllerFan()
  6706. {
  6707. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6708. {
  6709. lastMotorCheck = _millis();
  6710. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6711. #if EXTRUDERS > 2
  6712. || !READ(E2_ENABLE_PIN)
  6713. #endif
  6714. #if EXTRUDER > 1
  6715. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6716. || !READ(X2_ENABLE_PIN)
  6717. #endif
  6718. || !READ(E1_ENABLE_PIN)
  6719. #endif
  6720. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6721. {
  6722. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6723. }
  6724. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6725. {
  6726. digitalWrite(CONTROLLERFAN_PIN, 0);
  6727. analogWrite(CONTROLLERFAN_PIN, 0);
  6728. }
  6729. else
  6730. {
  6731. // allows digital or PWM fan output to be used (see M42 handling)
  6732. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6733. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6734. }
  6735. }
  6736. }
  6737. #endif
  6738. #ifdef TEMP_STAT_LEDS
  6739. static bool blue_led = false;
  6740. static bool red_led = false;
  6741. static uint32_t stat_update = 0;
  6742. void handle_status_leds(void) {
  6743. float max_temp = 0.0;
  6744. if(_millis() > stat_update) {
  6745. stat_update += 500; // Update every 0.5s
  6746. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6747. max_temp = max(max_temp, degHotend(cur_extruder));
  6748. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6749. }
  6750. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6751. max_temp = max(max_temp, degTargetBed());
  6752. max_temp = max(max_temp, degBed());
  6753. #endif
  6754. if((max_temp > 55.0) && (red_led == false)) {
  6755. digitalWrite(STAT_LED_RED, 1);
  6756. digitalWrite(STAT_LED_BLUE, 0);
  6757. red_led = true;
  6758. blue_led = false;
  6759. }
  6760. if((max_temp < 54.0) && (blue_led == false)) {
  6761. digitalWrite(STAT_LED_RED, 0);
  6762. digitalWrite(STAT_LED_BLUE, 1);
  6763. red_led = false;
  6764. blue_led = true;
  6765. }
  6766. }
  6767. }
  6768. #endif
  6769. #ifdef SAFETYTIMER
  6770. /**
  6771. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6772. *
  6773. * Full screen blocking notification message is shown after heater turning off.
  6774. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6775. * damage print.
  6776. *
  6777. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6778. */
  6779. static void handleSafetyTimer()
  6780. {
  6781. #if (EXTRUDERS > 1)
  6782. #error Implemented only for one extruder.
  6783. #endif //(EXTRUDERS > 1)
  6784. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6785. {
  6786. safetyTimer.stop();
  6787. }
  6788. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6789. {
  6790. safetyTimer.start();
  6791. }
  6792. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6793. {
  6794. setTargetBed(0);
  6795. setAllTargetHotends(0);
  6796. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6797. }
  6798. }
  6799. #endif //SAFETYTIMER
  6800. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6801. {
  6802. bool bInhibitFlag;
  6803. #ifdef FILAMENT_SENSOR
  6804. if (mmu_enabled == false)
  6805. {
  6806. //-// if (mcode_in_progress != 600) //M600 not in progress
  6807. #ifdef PAT9125
  6808. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6809. #endif // PAT9125
  6810. #ifdef IR_SENSOR
  6811. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6812. #endif // IR_SENSOR
  6813. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6814. {
  6815. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  6816. {
  6817. if (fsensor_check_autoload())
  6818. {
  6819. #ifdef PAT9125
  6820. fsensor_autoload_check_stop();
  6821. #endif //PAT9125
  6822. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6823. if(0)
  6824. {
  6825. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6826. _tone(BEEPER, 1000);
  6827. delay_keep_alive(50);
  6828. _noTone(BEEPER);
  6829. loading_flag = true;
  6830. enquecommand_front_P((PSTR("M701")));
  6831. }
  6832. else
  6833. {
  6834. /*
  6835. lcd_update_enable(false);
  6836. show_preheat_nozzle_warning();
  6837. lcd_update_enable(true);
  6838. */
  6839. eFilamentAction=FilamentAction::AutoLoad;
  6840. bFilamentFirstRun=false;
  6841. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6842. {
  6843. bFilamentPreheatState=true;
  6844. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6845. menu_submenu(mFilamentItemForce);
  6846. }
  6847. else
  6848. {
  6849. menu_submenu(mFilamentMenu);
  6850. lcd_timeoutToStatus.start();
  6851. }
  6852. }
  6853. }
  6854. }
  6855. else
  6856. {
  6857. #ifdef PAT9125
  6858. fsensor_autoload_check_stop();
  6859. #endif //PAT9125
  6860. fsensor_update();
  6861. }
  6862. }
  6863. }
  6864. #endif //FILAMENT_SENSOR
  6865. #ifdef SAFETYTIMER
  6866. handleSafetyTimer();
  6867. #endif //SAFETYTIMER
  6868. #if defined(KILL_PIN) && KILL_PIN > -1
  6869. static int killCount = 0; // make the inactivity button a bit less responsive
  6870. const int KILL_DELAY = 10000;
  6871. #endif
  6872. if(buflen < (BUFSIZE-1)){
  6873. get_command();
  6874. }
  6875. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6876. if(max_inactive_time)
  6877. kill(_n(""), 4);
  6878. if(stepper_inactive_time) {
  6879. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6880. {
  6881. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6882. disable_x();
  6883. disable_y();
  6884. disable_z();
  6885. disable_e0();
  6886. disable_e1();
  6887. disable_e2();
  6888. }
  6889. }
  6890. }
  6891. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6892. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6893. {
  6894. chdkActive = false;
  6895. WRITE(CHDK, LOW);
  6896. }
  6897. #endif
  6898. #if defined(KILL_PIN) && KILL_PIN > -1
  6899. // Check if the kill button was pressed and wait just in case it was an accidental
  6900. // key kill key press
  6901. // -------------------------------------------------------------------------------
  6902. if( 0 == READ(KILL_PIN) )
  6903. {
  6904. killCount++;
  6905. }
  6906. else if (killCount > 0)
  6907. {
  6908. killCount--;
  6909. }
  6910. // Exceeded threshold and we can confirm that it was not accidental
  6911. // KILL the machine
  6912. // ----------------------------------------------------------------
  6913. if ( killCount >= KILL_DELAY)
  6914. {
  6915. kill("", 5);
  6916. }
  6917. #endif
  6918. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6919. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6920. #endif
  6921. #ifdef EXTRUDER_RUNOUT_PREVENT
  6922. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6923. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6924. {
  6925. bool oldstatus=READ(E0_ENABLE_PIN);
  6926. enable_e0();
  6927. float oldepos=current_position[E_AXIS];
  6928. float oldedes=destination[E_AXIS];
  6929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6930. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6931. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6932. current_position[E_AXIS]=oldepos;
  6933. destination[E_AXIS]=oldedes;
  6934. plan_set_e_position(oldepos);
  6935. previous_millis_cmd=_millis();
  6936. st_synchronize();
  6937. WRITE(E0_ENABLE_PIN,oldstatus);
  6938. }
  6939. #endif
  6940. #ifdef TEMP_STAT_LEDS
  6941. handle_status_leds();
  6942. #endif
  6943. check_axes_activity();
  6944. mmu_loop();
  6945. }
  6946. void kill(const char *full_screen_message, unsigned char id)
  6947. {
  6948. printf_P(_N("KILL: %d\n"), id);
  6949. //return;
  6950. cli(); // Stop interrupts
  6951. disable_heater();
  6952. disable_x();
  6953. // SERIAL_ECHOLNPGM("kill - disable Y");
  6954. disable_y();
  6955. disable_z();
  6956. disable_e0();
  6957. disable_e1();
  6958. disable_e2();
  6959. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6960. pinMode(PS_ON_PIN,INPUT);
  6961. #endif
  6962. SERIAL_ERROR_START;
  6963. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  6964. if (full_screen_message != NULL) {
  6965. SERIAL_ERRORLNRPGM(full_screen_message);
  6966. lcd_display_message_fullscreen_P(full_screen_message);
  6967. } else {
  6968. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  6969. }
  6970. // FMC small patch to update the LCD before ending
  6971. sei(); // enable interrupts
  6972. for ( int i=5; i--; lcd_update(0))
  6973. {
  6974. _delay(200);
  6975. }
  6976. cli(); // disable interrupts
  6977. suicide();
  6978. while(1)
  6979. {
  6980. #ifdef WATCHDOG
  6981. wdt_reset();
  6982. #endif //WATCHDOG
  6983. /* Intentionally left empty */
  6984. } // Wait for reset
  6985. }
  6986. void Stop()
  6987. {
  6988. disable_heater();
  6989. if(Stopped == false) {
  6990. Stopped = true;
  6991. lcd_print_stop();
  6992. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6993. SERIAL_ERROR_START;
  6994. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6995. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6996. }
  6997. }
  6998. bool IsStopped() { return Stopped; };
  6999. #ifdef FAST_PWM_FAN
  7000. void setPwmFrequency(uint8_t pin, int val)
  7001. {
  7002. val &= 0x07;
  7003. switch(digitalPinToTimer(pin))
  7004. {
  7005. #if defined(TCCR0A)
  7006. case TIMER0A:
  7007. case TIMER0B:
  7008. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7009. // TCCR0B |= val;
  7010. break;
  7011. #endif
  7012. #if defined(TCCR1A)
  7013. case TIMER1A:
  7014. case TIMER1B:
  7015. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7016. // TCCR1B |= val;
  7017. break;
  7018. #endif
  7019. #if defined(TCCR2)
  7020. case TIMER2:
  7021. case TIMER2:
  7022. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7023. TCCR2 |= val;
  7024. break;
  7025. #endif
  7026. #if defined(TCCR2A)
  7027. case TIMER2A:
  7028. case TIMER2B:
  7029. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7030. TCCR2B |= val;
  7031. break;
  7032. #endif
  7033. #if defined(TCCR3A)
  7034. case TIMER3A:
  7035. case TIMER3B:
  7036. case TIMER3C:
  7037. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7038. TCCR3B |= val;
  7039. break;
  7040. #endif
  7041. #if defined(TCCR4A)
  7042. case TIMER4A:
  7043. case TIMER4B:
  7044. case TIMER4C:
  7045. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7046. TCCR4B |= val;
  7047. break;
  7048. #endif
  7049. #if defined(TCCR5A)
  7050. case TIMER5A:
  7051. case TIMER5B:
  7052. case TIMER5C:
  7053. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7054. TCCR5B |= val;
  7055. break;
  7056. #endif
  7057. }
  7058. }
  7059. #endif //FAST_PWM_FAN
  7060. //! @brief Get and validate extruder number
  7061. //!
  7062. //! If it is not specified, active_extruder is returned in parameter extruder.
  7063. //! @param [in] code M code number
  7064. //! @param [out] extruder
  7065. //! @return error
  7066. //! @retval true Invalid extruder specified in T code
  7067. //! @retval false Valid extruder specified in T code, or not specifiead
  7068. bool setTargetedHotend(int code, uint8_t &extruder)
  7069. {
  7070. extruder = active_extruder;
  7071. if(code_seen('T')) {
  7072. extruder = code_value();
  7073. if(extruder >= EXTRUDERS) {
  7074. SERIAL_ECHO_START;
  7075. switch(code){
  7076. case 104:
  7077. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7078. break;
  7079. case 105:
  7080. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7081. break;
  7082. case 109:
  7083. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7084. break;
  7085. case 218:
  7086. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7087. break;
  7088. case 221:
  7089. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7090. break;
  7091. }
  7092. SERIAL_PROTOCOLLN((int)extruder);
  7093. return true;
  7094. }
  7095. }
  7096. return false;
  7097. }
  7098. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7099. {
  7100. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7101. {
  7102. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7103. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7104. }
  7105. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7106. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7107. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7108. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7109. total_filament_used = 0;
  7110. }
  7111. float calculate_extruder_multiplier(float diameter) {
  7112. float out = 1.f;
  7113. if (cs.volumetric_enabled && diameter > 0.f) {
  7114. float area = M_PI * diameter * diameter * 0.25;
  7115. out = 1.f / area;
  7116. }
  7117. if (extrudemultiply != 100)
  7118. out *= float(extrudemultiply) * 0.01f;
  7119. return out;
  7120. }
  7121. void calculate_extruder_multipliers() {
  7122. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7123. #if EXTRUDERS > 1
  7124. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7125. #if EXTRUDERS > 2
  7126. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7127. #endif
  7128. #endif
  7129. }
  7130. void delay_keep_alive(unsigned int ms)
  7131. {
  7132. for (;;) {
  7133. manage_heater();
  7134. // Manage inactivity, but don't disable steppers on timeout.
  7135. manage_inactivity(true);
  7136. lcd_update(0);
  7137. if (ms == 0)
  7138. break;
  7139. else if (ms >= 50) {
  7140. _delay(50);
  7141. ms -= 50;
  7142. } else {
  7143. _delay(ms);
  7144. ms = 0;
  7145. }
  7146. }
  7147. }
  7148. static void wait_for_heater(long codenum, uint8_t extruder) {
  7149. #ifdef TEMP_RESIDENCY_TIME
  7150. long residencyStart;
  7151. residencyStart = -1;
  7152. /* continue to loop until we have reached the target temp
  7153. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7154. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7155. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7156. #else
  7157. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7158. #endif //TEMP_RESIDENCY_TIME
  7159. if ((_millis() - codenum) > 1000UL)
  7160. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7161. if (!farm_mode) {
  7162. SERIAL_PROTOCOLPGM("T:");
  7163. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7164. SERIAL_PROTOCOLPGM(" E:");
  7165. SERIAL_PROTOCOL((int)extruder);
  7166. #ifdef TEMP_RESIDENCY_TIME
  7167. SERIAL_PROTOCOLPGM(" W:");
  7168. if (residencyStart > -1)
  7169. {
  7170. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7171. SERIAL_PROTOCOLLN(codenum);
  7172. }
  7173. else
  7174. {
  7175. SERIAL_PROTOCOLLN("?");
  7176. }
  7177. }
  7178. #else
  7179. SERIAL_PROTOCOLLN("");
  7180. #endif
  7181. codenum = _millis();
  7182. }
  7183. manage_heater();
  7184. manage_inactivity(true); //do not disable steppers
  7185. lcd_update(0);
  7186. #ifdef TEMP_RESIDENCY_TIME
  7187. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7188. or when current temp falls outside the hysteresis after target temp was reached */
  7189. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7190. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7191. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7192. {
  7193. residencyStart = _millis();
  7194. }
  7195. #endif //TEMP_RESIDENCY_TIME
  7196. }
  7197. }
  7198. void check_babystep()
  7199. {
  7200. int babystep_z;
  7201. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7202. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7203. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7204. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7205. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7206. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7207. lcd_update_enable(true);
  7208. }
  7209. }
  7210. #ifdef HEATBED_ANALYSIS
  7211. void d_setup()
  7212. {
  7213. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7214. pinMode(D_DATA, INPUT_PULLUP);
  7215. pinMode(D_REQUIRE, OUTPUT);
  7216. digitalWrite(D_REQUIRE, HIGH);
  7217. }
  7218. float d_ReadData()
  7219. {
  7220. int digit[13];
  7221. String mergeOutput;
  7222. float output;
  7223. digitalWrite(D_REQUIRE, HIGH);
  7224. for (int i = 0; i<13; i++)
  7225. {
  7226. for (int j = 0; j < 4; j++)
  7227. {
  7228. while (digitalRead(D_DATACLOCK) == LOW) {}
  7229. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7230. bitWrite(digit[i], j, digitalRead(D_DATA));
  7231. }
  7232. }
  7233. digitalWrite(D_REQUIRE, LOW);
  7234. mergeOutput = "";
  7235. output = 0;
  7236. for (int r = 5; r <= 10; r++) //Merge digits
  7237. {
  7238. mergeOutput += digit[r];
  7239. }
  7240. output = mergeOutput.toFloat();
  7241. if (digit[4] == 8) //Handle sign
  7242. {
  7243. output *= -1;
  7244. }
  7245. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7246. {
  7247. output /= 10;
  7248. }
  7249. return output;
  7250. }
  7251. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7252. int t1 = 0;
  7253. int t_delay = 0;
  7254. int digit[13];
  7255. int m;
  7256. char str[3];
  7257. //String mergeOutput;
  7258. char mergeOutput[15];
  7259. float output;
  7260. int mesh_point = 0; //index number of calibration point
  7261. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7262. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7263. float mesh_home_z_search = 4;
  7264. float measure_z_height = 0.2f;
  7265. float row[x_points_num];
  7266. int ix = 0;
  7267. int iy = 0;
  7268. const char* filename_wldsd = "mesh.txt";
  7269. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7270. char numb_wldsd[8]; // (" -A.BCD" + null)
  7271. #ifdef MICROMETER_LOGGING
  7272. d_setup();
  7273. #endif //MICROMETER_LOGGING
  7274. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7275. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7276. unsigned int custom_message_type_old = custom_message_type;
  7277. unsigned int custom_message_state_old = custom_message_state;
  7278. custom_message_type = CustomMsg::MeshBedLeveling;
  7279. custom_message_state = (x_points_num * y_points_num) + 10;
  7280. lcd_update(1);
  7281. //mbl.reset();
  7282. babystep_undo();
  7283. card.openFile(filename_wldsd, false);
  7284. /*destination[Z_AXIS] = mesh_home_z_search;
  7285. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7286. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7287. for(int8_t i=0; i < NUM_AXIS; i++) {
  7288. current_position[i] = destination[i];
  7289. }
  7290. st_synchronize();
  7291. */
  7292. destination[Z_AXIS] = measure_z_height;
  7293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7294. for(int8_t i=0; i < NUM_AXIS; i++) {
  7295. current_position[i] = destination[i];
  7296. }
  7297. st_synchronize();
  7298. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7299. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7300. SERIAL_PROTOCOL(x_points_num);
  7301. SERIAL_PROTOCOLPGM(",");
  7302. SERIAL_PROTOCOL(y_points_num);
  7303. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7304. SERIAL_PROTOCOL(mesh_home_z_search);
  7305. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7306. SERIAL_PROTOCOL(x_dimension);
  7307. SERIAL_PROTOCOLPGM(",");
  7308. SERIAL_PROTOCOL(y_dimension);
  7309. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7310. while (mesh_point != x_points_num * y_points_num) {
  7311. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7312. iy = mesh_point / x_points_num;
  7313. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7314. float z0 = 0.f;
  7315. /*destination[Z_AXIS] = mesh_home_z_search;
  7316. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7317. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7318. for(int8_t i=0; i < NUM_AXIS; i++) {
  7319. current_position[i] = destination[i];
  7320. }
  7321. st_synchronize();*/
  7322. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7323. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7324. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7325. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7326. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7327. for(int8_t i=0; i < NUM_AXIS; i++) {
  7328. current_position[i] = destination[i];
  7329. }
  7330. st_synchronize();
  7331. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7332. delay_keep_alive(1000);
  7333. #ifdef MICROMETER_LOGGING
  7334. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7335. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7336. //strcat(data_wldsd, numb_wldsd);
  7337. //MYSERIAL.println(data_wldsd);
  7338. //delay(1000);
  7339. //delay(3000);
  7340. //t1 = millis();
  7341. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7342. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7343. memset(digit, 0, sizeof(digit));
  7344. //cli();
  7345. digitalWrite(D_REQUIRE, LOW);
  7346. for (int i = 0; i<13; i++)
  7347. {
  7348. //t1 = millis();
  7349. for (int j = 0; j < 4; j++)
  7350. {
  7351. while (digitalRead(D_DATACLOCK) == LOW) {}
  7352. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7353. //printf_P(PSTR("Done %d\n"), j);
  7354. bitWrite(digit[i], j, digitalRead(D_DATA));
  7355. }
  7356. //t_delay = (millis() - t1);
  7357. //SERIAL_PROTOCOLPGM(" ");
  7358. //SERIAL_PROTOCOL_F(t_delay, 5);
  7359. //SERIAL_PROTOCOLPGM(" ");
  7360. }
  7361. //sei();
  7362. digitalWrite(D_REQUIRE, HIGH);
  7363. mergeOutput[0] = '\0';
  7364. output = 0;
  7365. for (int r = 5; r <= 10; r++) //Merge digits
  7366. {
  7367. sprintf(str, "%d", digit[r]);
  7368. strcat(mergeOutput, str);
  7369. }
  7370. output = atof(mergeOutput);
  7371. if (digit[4] == 8) //Handle sign
  7372. {
  7373. output *= -1;
  7374. }
  7375. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7376. {
  7377. output *= 0.1;
  7378. }
  7379. //output = d_ReadData();
  7380. //row[ix] = current_position[Z_AXIS];
  7381. //row[ix] = d_ReadData();
  7382. row[ix] = output;
  7383. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7384. memset(data_wldsd, 0, sizeof(data_wldsd));
  7385. for (int i = 0; i < x_points_num; i++) {
  7386. SERIAL_PROTOCOLPGM(" ");
  7387. SERIAL_PROTOCOL_F(row[i], 5);
  7388. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7389. dtostrf(row[i], 7, 3, numb_wldsd);
  7390. strcat(data_wldsd, numb_wldsd);
  7391. }
  7392. card.write_command(data_wldsd);
  7393. SERIAL_PROTOCOLPGM("\n");
  7394. }
  7395. custom_message_state--;
  7396. mesh_point++;
  7397. lcd_update(1);
  7398. }
  7399. #endif //MICROMETER_LOGGING
  7400. card.closefile();
  7401. //clean_up_after_endstop_move(l_feedmultiply);
  7402. }
  7403. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7404. int t1 = 0;
  7405. int t_delay = 0;
  7406. int digit[13];
  7407. int m;
  7408. char str[3];
  7409. //String mergeOutput;
  7410. char mergeOutput[15];
  7411. float output;
  7412. int mesh_point = 0; //index number of calibration point
  7413. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7414. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7415. float mesh_home_z_search = 4;
  7416. float row[x_points_num];
  7417. int ix = 0;
  7418. int iy = 0;
  7419. const char* filename_wldsd = "wldsd.txt";
  7420. char data_wldsd[70];
  7421. char numb_wldsd[10];
  7422. d_setup();
  7423. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7424. // We don't know where we are! HOME!
  7425. // Push the commands to the front of the message queue in the reverse order!
  7426. // There shall be always enough space reserved for these commands.
  7427. repeatcommand_front(); // repeat G80 with all its parameters
  7428. enquecommand_front_P((PSTR("G28 W0")));
  7429. enquecommand_front_P((PSTR("G1 Z5")));
  7430. return;
  7431. }
  7432. unsigned int custom_message_type_old = custom_message_type;
  7433. unsigned int custom_message_state_old = custom_message_state;
  7434. custom_message_type = CustomMsg::MeshBedLeveling;
  7435. custom_message_state = (x_points_num * y_points_num) + 10;
  7436. lcd_update(1);
  7437. mbl.reset();
  7438. babystep_undo();
  7439. card.openFile(filename_wldsd, false);
  7440. current_position[Z_AXIS] = mesh_home_z_search;
  7441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7442. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7443. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7444. int l_feedmultiply = setup_for_endstop_move(false);
  7445. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7446. SERIAL_PROTOCOL(x_points_num);
  7447. SERIAL_PROTOCOLPGM(",");
  7448. SERIAL_PROTOCOL(y_points_num);
  7449. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7450. SERIAL_PROTOCOL(mesh_home_z_search);
  7451. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7452. SERIAL_PROTOCOL(x_dimension);
  7453. SERIAL_PROTOCOLPGM(",");
  7454. SERIAL_PROTOCOL(y_dimension);
  7455. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7456. while (mesh_point != x_points_num * y_points_num) {
  7457. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7458. iy = mesh_point / x_points_num;
  7459. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7460. float z0 = 0.f;
  7461. current_position[Z_AXIS] = mesh_home_z_search;
  7462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7463. st_synchronize();
  7464. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7465. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7467. st_synchronize();
  7468. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7469. break;
  7470. card.closefile();
  7471. }
  7472. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7473. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7474. //strcat(data_wldsd, numb_wldsd);
  7475. //MYSERIAL.println(data_wldsd);
  7476. //_delay(1000);
  7477. //_delay(3000);
  7478. //t1 = _millis();
  7479. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7480. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7481. memset(digit, 0, sizeof(digit));
  7482. //cli();
  7483. digitalWrite(D_REQUIRE, LOW);
  7484. for (int i = 0; i<13; i++)
  7485. {
  7486. //t1 = _millis();
  7487. for (int j = 0; j < 4; j++)
  7488. {
  7489. while (digitalRead(D_DATACLOCK) == LOW) {}
  7490. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7491. bitWrite(digit[i], j, digitalRead(D_DATA));
  7492. }
  7493. //t_delay = (_millis() - t1);
  7494. //SERIAL_PROTOCOLPGM(" ");
  7495. //SERIAL_PROTOCOL_F(t_delay, 5);
  7496. //SERIAL_PROTOCOLPGM(" ");
  7497. }
  7498. //sei();
  7499. digitalWrite(D_REQUIRE, HIGH);
  7500. mergeOutput[0] = '\0';
  7501. output = 0;
  7502. for (int r = 5; r <= 10; r++) //Merge digits
  7503. {
  7504. sprintf(str, "%d", digit[r]);
  7505. strcat(mergeOutput, str);
  7506. }
  7507. output = atof(mergeOutput);
  7508. if (digit[4] == 8) //Handle sign
  7509. {
  7510. output *= -1;
  7511. }
  7512. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7513. {
  7514. output *= 0.1;
  7515. }
  7516. //output = d_ReadData();
  7517. //row[ix] = current_position[Z_AXIS];
  7518. memset(data_wldsd, 0, sizeof(data_wldsd));
  7519. for (int i = 0; i <3; i++) {
  7520. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7521. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7522. strcat(data_wldsd, numb_wldsd);
  7523. strcat(data_wldsd, ";");
  7524. }
  7525. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7526. dtostrf(output, 8, 5, numb_wldsd);
  7527. strcat(data_wldsd, numb_wldsd);
  7528. //strcat(data_wldsd, ";");
  7529. card.write_command(data_wldsd);
  7530. //row[ix] = d_ReadData();
  7531. row[ix] = output; // current_position[Z_AXIS];
  7532. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7533. for (int i = 0; i < x_points_num; i++) {
  7534. SERIAL_PROTOCOLPGM(" ");
  7535. SERIAL_PROTOCOL_F(row[i], 5);
  7536. }
  7537. SERIAL_PROTOCOLPGM("\n");
  7538. }
  7539. custom_message_state--;
  7540. mesh_point++;
  7541. lcd_update(1);
  7542. }
  7543. card.closefile();
  7544. clean_up_after_endstop_move(l_feedmultiply);
  7545. }
  7546. #endif //HEATBED_ANALYSIS
  7547. void temp_compensation_start() {
  7548. custom_message_type = CustomMsg::TempCompPreheat;
  7549. custom_message_state = PINDA_HEAT_T + 1;
  7550. lcd_update(2);
  7551. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7552. current_position[E_AXIS] -= default_retraction;
  7553. }
  7554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7555. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7556. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7557. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7559. st_synchronize();
  7560. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7561. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7562. delay_keep_alive(1000);
  7563. custom_message_state = PINDA_HEAT_T - i;
  7564. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7565. else lcd_update(1);
  7566. }
  7567. custom_message_type = CustomMsg::Status;
  7568. custom_message_state = 0;
  7569. }
  7570. void temp_compensation_apply() {
  7571. int i_add;
  7572. int z_shift = 0;
  7573. float z_shift_mm;
  7574. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7575. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7576. i_add = (target_temperature_bed - 60) / 10;
  7577. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7578. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7579. }else {
  7580. //interpolation
  7581. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7582. }
  7583. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7585. st_synchronize();
  7586. plan_set_z_position(current_position[Z_AXIS]);
  7587. }
  7588. else {
  7589. //we have no temp compensation data
  7590. }
  7591. }
  7592. float temp_comp_interpolation(float inp_temperature) {
  7593. //cubic spline interpolation
  7594. int n, i, j;
  7595. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7596. int shift[10];
  7597. int temp_C[10];
  7598. n = 6; //number of measured points
  7599. shift[0] = 0;
  7600. for (i = 0; i < n; i++) {
  7601. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7602. temp_C[i] = 50 + i * 10; //temperature in C
  7603. #ifdef PINDA_THERMISTOR
  7604. temp_C[i] = 35 + i * 5; //temperature in C
  7605. #else
  7606. temp_C[i] = 50 + i * 10; //temperature in C
  7607. #endif
  7608. x[i] = (float)temp_C[i];
  7609. f[i] = (float)shift[i];
  7610. }
  7611. if (inp_temperature < x[0]) return 0;
  7612. for (i = n - 1; i>0; i--) {
  7613. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7614. h[i - 1] = x[i] - x[i - 1];
  7615. }
  7616. //*********** formation of h, s , f matrix **************
  7617. for (i = 1; i<n - 1; i++) {
  7618. m[i][i] = 2 * (h[i - 1] + h[i]);
  7619. if (i != 1) {
  7620. m[i][i - 1] = h[i - 1];
  7621. m[i - 1][i] = h[i - 1];
  7622. }
  7623. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7624. }
  7625. //*********** forward elimination **************
  7626. for (i = 1; i<n - 2; i++) {
  7627. temp = (m[i + 1][i] / m[i][i]);
  7628. for (j = 1; j <= n - 1; j++)
  7629. m[i + 1][j] -= temp*m[i][j];
  7630. }
  7631. //*********** backward substitution *********
  7632. for (i = n - 2; i>0; i--) {
  7633. sum = 0;
  7634. for (j = i; j <= n - 2; j++)
  7635. sum += m[i][j] * s[j];
  7636. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7637. }
  7638. for (i = 0; i<n - 1; i++)
  7639. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7640. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7641. b = s[i] / 2;
  7642. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7643. d = f[i];
  7644. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7645. }
  7646. return sum;
  7647. }
  7648. #ifdef PINDA_THERMISTOR
  7649. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7650. {
  7651. if (!temp_cal_active) return 0;
  7652. if (!calibration_status_pinda()) return 0;
  7653. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7654. }
  7655. #endif //PINDA_THERMISTOR
  7656. void long_pause() //long pause print
  7657. {
  7658. st_synchronize();
  7659. start_pause_print = _millis();
  7660. //retract
  7661. current_position[E_AXIS] -= default_retraction;
  7662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7663. //lift z
  7664. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7665. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7667. //Move XY to side
  7668. current_position[X_AXIS] = X_PAUSE_POS;
  7669. current_position[Y_AXIS] = Y_PAUSE_POS;
  7670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7671. // Turn off the print fan
  7672. fanSpeed = 0;
  7673. st_synchronize();
  7674. }
  7675. void serialecho_temperatures() {
  7676. float tt = degHotend(active_extruder);
  7677. SERIAL_PROTOCOLPGM("T:");
  7678. SERIAL_PROTOCOL(tt);
  7679. SERIAL_PROTOCOLPGM(" E:");
  7680. SERIAL_PROTOCOL((int)active_extruder);
  7681. SERIAL_PROTOCOLPGM(" B:");
  7682. SERIAL_PROTOCOL_F(degBed(), 1);
  7683. SERIAL_PROTOCOLLN("");
  7684. }
  7685. extern uint32_t sdpos_atomic;
  7686. #ifdef UVLO_SUPPORT
  7687. void uvlo_()
  7688. {
  7689. unsigned long time_start = _millis();
  7690. bool sd_print = card.sdprinting;
  7691. // Conserve power as soon as possible.
  7692. disable_x();
  7693. disable_y();
  7694. #ifdef TMC2130
  7695. tmc2130_set_current_h(Z_AXIS, 20);
  7696. tmc2130_set_current_r(Z_AXIS, 20);
  7697. tmc2130_set_current_h(E_AXIS, 20);
  7698. tmc2130_set_current_r(E_AXIS, 20);
  7699. #endif //TMC2130
  7700. // Indicate that the interrupt has been triggered.
  7701. // SERIAL_ECHOLNPGM("UVLO");
  7702. // Read out the current Z motor microstep counter. This will be later used
  7703. // for reaching the zero full step before powering off.
  7704. uint16_t z_microsteps = 0;
  7705. #ifdef TMC2130
  7706. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7707. #endif //TMC2130
  7708. // Calculate the file position, from which to resume this print.
  7709. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7710. {
  7711. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7712. sd_position -= sdlen_planner;
  7713. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7714. sd_position -= sdlen_cmdqueue;
  7715. if (sd_position < 0) sd_position = 0;
  7716. }
  7717. // Backup the feedrate in mm/min.
  7718. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7719. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7720. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7721. // are in action.
  7722. planner_abort_hard();
  7723. // Store the current extruder position.
  7724. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7725. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7726. // Clean the input command queue.
  7727. cmdqueue_reset();
  7728. card.sdprinting = false;
  7729. // card.closefile();
  7730. // Enable stepper driver interrupt to move Z axis.
  7731. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7732. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7733. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7734. sei();
  7735. plan_buffer_line(
  7736. current_position[X_AXIS],
  7737. current_position[Y_AXIS],
  7738. current_position[Z_AXIS],
  7739. current_position[E_AXIS] - default_retraction,
  7740. 95, active_extruder);
  7741. st_synchronize();
  7742. disable_e0();
  7743. plan_buffer_line(
  7744. current_position[X_AXIS],
  7745. current_position[Y_AXIS],
  7746. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7747. current_position[E_AXIS] - default_retraction,
  7748. 40, active_extruder);
  7749. st_synchronize();
  7750. disable_e0();
  7751. plan_buffer_line(
  7752. current_position[X_AXIS],
  7753. current_position[Y_AXIS],
  7754. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7755. current_position[E_AXIS] - default_retraction,
  7756. 40, active_extruder);
  7757. st_synchronize();
  7758. disable_e0();
  7759. disable_z();
  7760. // Move Z up to the next 0th full step.
  7761. // Write the file position.
  7762. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7763. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7764. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7765. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7766. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7767. // Scale the z value to 1u resolution.
  7768. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7769. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7770. }
  7771. // Read out the current Z motor microstep counter. This will be later used
  7772. // for reaching the zero full step before powering off.
  7773. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7774. // Store the current position.
  7775. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7776. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7777. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7778. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7779. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7780. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7781. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7782. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7783. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7784. #if EXTRUDERS > 1
  7785. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7786. #if EXTRUDERS > 2
  7787. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7788. #endif
  7789. #endif
  7790. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7791. #ifdef LIN_ADVANCE
  7792. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  7793. #endif
  7794. // Finaly store the "power outage" flag.
  7795. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7796. st_synchronize();
  7797. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7798. disable_z();
  7799. // Increment power failure counter
  7800. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7801. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7802. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7803. #if 0
  7804. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7805. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7807. st_synchronize();
  7808. #endif
  7809. wdt_enable(WDTO_500MS);
  7810. WRITE(BEEPER,HIGH);
  7811. while(1)
  7812. ;
  7813. }
  7814. void uvlo_tiny()
  7815. {
  7816. uint16_t z_microsteps=0;
  7817. // Conserve power as soon as possible.
  7818. disable_x();
  7819. disable_y();
  7820. disable_e0();
  7821. #ifdef TMC2130
  7822. tmc2130_set_current_h(Z_AXIS, 20);
  7823. tmc2130_set_current_r(Z_AXIS, 20);
  7824. #endif //TMC2130
  7825. // Read out the current Z motor microstep counter
  7826. #ifdef TMC2130
  7827. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7828. #endif //TMC2130
  7829. planner_abort_hard();
  7830. disable_z();
  7831. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7832. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7833. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7834. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7835. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7836. }
  7837. //after multiple power panics current Z axis is unknow
  7838. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7839. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7840. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7841. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7842. }
  7843. // Finaly store the "power outage" flag.
  7844. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7845. // Increment power failure counter
  7846. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7847. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7848. wdt_enable(WDTO_500MS);
  7849. WRITE(BEEPER,HIGH);
  7850. while(1)
  7851. ;
  7852. }
  7853. #endif //UVLO_SUPPORT
  7854. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7855. void setup_fan_interrupt() {
  7856. //INT7
  7857. DDRE &= ~(1 << 7); //input pin
  7858. PORTE &= ~(1 << 7); //no internal pull-up
  7859. //start with sensing rising edge
  7860. EICRB &= ~(1 << 6);
  7861. EICRB |= (1 << 7);
  7862. //enable INT7 interrupt
  7863. EIMSK |= (1 << 7);
  7864. }
  7865. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7866. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7867. ISR(INT7_vect) {
  7868. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7869. #ifdef FAN_SOFT_PWM
  7870. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7871. #else //FAN_SOFT_PWM
  7872. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7873. #endif //FAN_SOFT_PWM
  7874. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7875. t_fan_rising_edge = millis_nc();
  7876. }
  7877. else { //interrupt was triggered by falling edge
  7878. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7879. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7880. }
  7881. }
  7882. EICRB ^= (1 << 6); //change edge
  7883. }
  7884. #endif
  7885. #ifdef UVLO_SUPPORT
  7886. void setup_uvlo_interrupt() {
  7887. DDRE &= ~(1 << 4); //input pin
  7888. PORTE &= ~(1 << 4); //no internal pull-up
  7889. //sensing falling edge
  7890. EICRB |= (1 << 0);
  7891. EICRB &= ~(1 << 1);
  7892. //enable INT4 interrupt
  7893. EIMSK |= (1 << 4);
  7894. }
  7895. ISR(INT4_vect) {
  7896. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7897. SERIAL_ECHOLNPGM("INT4");
  7898. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  7899. //Don't change || to && because in some case the printer can be moving although IS_SD_PRINTING is zero
  7900. if((IS_SD_PRINTING ) || (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  7901. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7902. }
  7903. void recover_print(uint8_t automatic) {
  7904. char cmd[30];
  7905. lcd_update_enable(true);
  7906. lcd_update(2);
  7907. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7908. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7909. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7910. // Lift the print head, so one may remove the excess priming material.
  7911. if(!bTiny&&(current_position[Z_AXIS]<25))
  7912. enquecommand_P(PSTR("G1 Z25 F800"));
  7913. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7914. enquecommand_P(PSTR("G28 X Y"));
  7915. // Set the target bed and nozzle temperatures and wait.
  7916. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7917. enquecommand(cmd);
  7918. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7919. enquecommand(cmd);
  7920. enquecommand_P(PSTR("M83")); //E axis relative mode
  7921. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7922. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7923. if(automatic == 0){
  7924. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7925. }
  7926. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7927. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7928. // Restart the print.
  7929. restore_print_from_eeprom();
  7930. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7931. }
  7932. void recover_machine_state_after_power_panic(bool bTiny)
  7933. {
  7934. char cmd[30];
  7935. // 1) Recover the logical cordinates at the time of the power panic.
  7936. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7937. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7938. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7939. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7940. mbl.active = false;
  7941. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7942. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7943. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7944. // Scale the z value to 10u resolution.
  7945. int16_t v;
  7946. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7947. if (v != 0)
  7948. mbl.active = true;
  7949. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7950. }
  7951. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7952. // The current position after power panic is moved to the next closest 0th full step.
  7953. if(bTiny){
  7954. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  7955. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  7956. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7957. //after multiple power panics the print is slightly in the air so get it little bit down.
  7958. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  7959. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  7960. }
  7961. else{
  7962. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7963. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  7964. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7965. }
  7966. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7967. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7968. sprintf_P(cmd, PSTR("G92 E"));
  7969. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7970. enquecommand(cmd);
  7971. }
  7972. memcpy(destination, current_position, sizeof(destination));
  7973. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7974. print_world_coordinates();
  7975. // 3) Initialize the logical to physical coordinate system transformation.
  7976. world2machine_initialize();
  7977. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7978. // print_mesh_bed_leveling_table();
  7979. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7980. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7981. babystep_load();
  7982. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7984. // 6) Power up the motors, mark their positions as known.
  7985. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7986. axis_known_position[X_AXIS] = true; enable_x();
  7987. axis_known_position[Y_AXIS] = true; enable_y();
  7988. axis_known_position[Z_AXIS] = true; enable_z();
  7989. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7990. print_physical_coordinates();
  7991. // 7) Recover the target temperatures.
  7992. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7993. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7994. // 8) Recover extruder multipilers
  7995. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7996. #if EXTRUDERS > 1
  7997. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7998. #if EXTRUDERS > 2
  7999. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8000. #endif
  8001. #endif
  8002. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8003. #ifdef LIN_ADVANCE
  8004. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  8005. #endif
  8006. }
  8007. void restore_print_from_eeprom() {
  8008. int feedrate_rec;
  8009. uint8_t fan_speed_rec;
  8010. char cmd[30];
  8011. char filename[13];
  8012. uint8_t depth = 0;
  8013. char dir_name[9];
  8014. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8015. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8016. SERIAL_ECHOPGM("Feedrate:");
  8017. MYSERIAL.println(feedrate_rec);
  8018. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8019. MYSERIAL.println(int(depth));
  8020. for (int i = 0; i < depth; i++) {
  8021. for (int j = 0; j < 8; j++) {
  8022. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8023. }
  8024. dir_name[8] = '\0';
  8025. MYSERIAL.println(dir_name);
  8026. strcpy(dir_names[i], dir_name);
  8027. card.chdir(dir_name);
  8028. }
  8029. for (int i = 0; i < 8; i++) {
  8030. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8031. }
  8032. filename[8] = '\0';
  8033. MYSERIAL.print(filename);
  8034. strcat_P(filename, PSTR(".gco"));
  8035. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8036. enquecommand(cmd);
  8037. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8038. SERIAL_ECHOPGM("Position read from eeprom:");
  8039. MYSERIAL.println(position);
  8040. // E axis relative mode.
  8041. enquecommand_P(PSTR("M83"));
  8042. // Move to the XY print position in logical coordinates, where the print has been killed.
  8043. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8044. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8045. strcat_P(cmd, PSTR(" F2000"));
  8046. enquecommand(cmd);
  8047. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8048. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8049. // Move the Z axis down to the print, in logical coordinates.
  8050. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8051. enquecommand(cmd);
  8052. // Unretract.
  8053. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8054. // Set the feedrate saved at the power panic.
  8055. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8056. enquecommand(cmd);
  8057. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8058. {
  8059. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8060. }
  8061. // Set the fan speed saved at the power panic.
  8062. strcpy_P(cmd, PSTR("M106 S"));
  8063. strcat(cmd, itostr3(int(fan_speed_rec)));
  8064. enquecommand(cmd);
  8065. // Set a position in the file.
  8066. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8067. enquecommand(cmd);
  8068. enquecommand_P(PSTR("G4 S0"));
  8069. enquecommand_P(PSTR("PRUSA uvlo"));
  8070. }
  8071. #endif //UVLO_SUPPORT
  8072. //! @brief Immediately stop print moves
  8073. //!
  8074. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8075. //! If printing from sd card, position in file is saved.
  8076. //! If printing from USB, line number is saved.
  8077. //!
  8078. //! @param z_move
  8079. //! @param e_move
  8080. void stop_and_save_print_to_ram(float z_move, float e_move)
  8081. {
  8082. if (saved_printing) return;
  8083. #if 0
  8084. unsigned char nplanner_blocks;
  8085. #endif
  8086. unsigned char nlines;
  8087. uint16_t sdlen_planner;
  8088. uint16_t sdlen_cmdqueue;
  8089. cli();
  8090. if (card.sdprinting) {
  8091. #if 0
  8092. nplanner_blocks = number_of_blocks();
  8093. #endif
  8094. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8095. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8096. saved_sdpos -= sdlen_planner;
  8097. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8098. saved_sdpos -= sdlen_cmdqueue;
  8099. saved_printing_type = PRINTING_TYPE_SD;
  8100. }
  8101. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8102. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8103. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8104. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8105. saved_sdpos -= nlines;
  8106. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8107. saved_printing_type = PRINTING_TYPE_USB;
  8108. }
  8109. else {
  8110. saved_printing_type = PRINTING_TYPE_NONE;
  8111. //not sd printing nor usb printing
  8112. }
  8113. #if 0
  8114. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8115. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8116. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8117. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8118. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8119. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8120. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8121. {
  8122. card.setIndex(saved_sdpos);
  8123. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8124. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8125. MYSERIAL.print(char(card.get()));
  8126. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8127. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8128. MYSERIAL.print(char(card.get()));
  8129. SERIAL_ECHOLNPGM("End of command buffer");
  8130. }
  8131. {
  8132. // Print the content of the planner buffer, line by line:
  8133. card.setIndex(saved_sdpos);
  8134. int8_t iline = 0;
  8135. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8136. SERIAL_ECHOPGM("Planner line (from file): ");
  8137. MYSERIAL.print(int(iline), DEC);
  8138. SERIAL_ECHOPGM(", length: ");
  8139. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8140. SERIAL_ECHOPGM(", steps: (");
  8141. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8142. SERIAL_ECHOPGM(",");
  8143. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8144. SERIAL_ECHOPGM(",");
  8145. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8146. SERIAL_ECHOPGM(",");
  8147. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8148. SERIAL_ECHOPGM("), events: ");
  8149. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8150. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8151. MYSERIAL.print(char(card.get()));
  8152. }
  8153. }
  8154. {
  8155. // Print the content of the command buffer, line by line:
  8156. int8_t iline = 0;
  8157. union {
  8158. struct {
  8159. char lo;
  8160. char hi;
  8161. } lohi;
  8162. uint16_t value;
  8163. } sdlen_single;
  8164. int _bufindr = bufindr;
  8165. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8166. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8167. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8168. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8169. }
  8170. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8171. MYSERIAL.print(int(iline), DEC);
  8172. SERIAL_ECHOPGM(", type: ");
  8173. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8174. SERIAL_ECHOPGM(", len: ");
  8175. MYSERIAL.println(sdlen_single.value, DEC);
  8176. // Print the content of the buffer line.
  8177. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8178. SERIAL_ECHOPGM("Buffer line (from file): ");
  8179. MYSERIAL.println(int(iline), DEC);
  8180. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8181. MYSERIAL.print(char(card.get()));
  8182. if (-- _buflen == 0)
  8183. break;
  8184. // First skip the current command ID and iterate up to the end of the string.
  8185. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8186. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8187. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8188. // If the end of the buffer was empty,
  8189. if (_bufindr == sizeof(cmdbuffer)) {
  8190. // skip to the start and find the nonzero command.
  8191. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8192. }
  8193. }
  8194. }
  8195. #endif
  8196. #if 0
  8197. saved_feedrate2 = feedrate; //save feedrate
  8198. #else
  8199. // Try to deduce the feedrate from the first block of the planner.
  8200. // Speed is in mm/min.
  8201. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8202. #endif
  8203. planner_abort_hard(); //abort printing
  8204. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8205. saved_active_extruder = active_extruder; //save active_extruder
  8206. saved_extruder_temperature = degTargetHotend(active_extruder);
  8207. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8208. saved_fanSpeed = fanSpeed;
  8209. cmdqueue_reset(); //empty cmdqueue
  8210. card.sdprinting = false;
  8211. // card.closefile();
  8212. saved_printing = true;
  8213. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8214. st_reset_timer();
  8215. sei();
  8216. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8217. #if 1
  8218. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8219. char buf[48];
  8220. // First unretract (relative extrusion)
  8221. if(!saved_extruder_relative_mode){
  8222. enquecommand(PSTR("M83"), true);
  8223. }
  8224. //retract 45mm/s
  8225. // A single sprintf may not be faster, but is definitely 20B shorter
  8226. // than a sequence of commands building the string piece by piece
  8227. // A snprintf would have been a safer call, but since it is not used
  8228. // in the whole program, its implementation would bring more bytes to the total size
  8229. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8230. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8231. enquecommand(buf, false);
  8232. // Then lift Z axis
  8233. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8234. // At this point the command queue is empty.
  8235. enquecommand(buf, false);
  8236. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8237. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8238. repeatcommand_front();
  8239. #else
  8240. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8241. st_synchronize(); //wait moving
  8242. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8243. memcpy(destination, current_position, sizeof(destination));
  8244. #endif
  8245. }
  8246. }
  8247. //! @brief Restore print from ram
  8248. //!
  8249. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8250. //! waits for extruder temperature restore, then restores position and continues
  8251. //! print moves.
  8252. //! Internaly lcd_update() is called by wait_for_heater().
  8253. //!
  8254. //! @param e_move
  8255. void restore_print_from_ram_and_continue(float e_move)
  8256. {
  8257. if (!saved_printing) return;
  8258. #ifdef FANCHECK
  8259. // Do not allow resume printing if fans are still not ok
  8260. if( fan_check_error != EFCE_OK )return;
  8261. #endif
  8262. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8263. // current_position[axis] = st_get_position_mm(axis);
  8264. active_extruder = saved_active_extruder; //restore active_extruder
  8265. if (saved_extruder_temperature) {
  8266. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8267. heating_status = 1;
  8268. wait_for_heater(_millis(), saved_active_extruder);
  8269. heating_status = 2;
  8270. }
  8271. feedrate = saved_feedrate2; //restore feedrate
  8272. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8273. fanSpeed = saved_fanSpeed;
  8274. float e = saved_pos[E_AXIS] - e_move;
  8275. plan_set_e_position(e);
  8276. //first move print head in XY to the saved position:
  8277. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8278. st_synchronize();
  8279. //then move Z
  8280. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8281. st_synchronize();
  8282. //and finaly unretract (35mm/s)
  8283. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8284. st_synchronize();
  8285. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8286. memcpy(destination, current_position, sizeof(destination));
  8287. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8288. card.setIndex(saved_sdpos);
  8289. sdpos_atomic = saved_sdpos;
  8290. card.sdprinting = true;
  8291. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8292. }
  8293. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8294. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8295. serial_count = 0;
  8296. FlushSerialRequestResend();
  8297. }
  8298. else {
  8299. //not sd printing nor usb printing
  8300. }
  8301. lcd_setstatuspgm(_T(WELCOME_MSG));
  8302. saved_printing = false;
  8303. }
  8304. void print_world_coordinates()
  8305. {
  8306. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8307. }
  8308. void print_physical_coordinates()
  8309. {
  8310. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8311. }
  8312. void print_mesh_bed_leveling_table()
  8313. {
  8314. SERIAL_ECHOPGM("mesh bed leveling: ");
  8315. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8316. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8317. MYSERIAL.print(mbl.z_values[y][x], 3);
  8318. SERIAL_ECHOPGM(" ");
  8319. }
  8320. SERIAL_ECHOLNPGM("");
  8321. }
  8322. uint16_t print_time_remaining() {
  8323. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8324. #ifdef TMC2130
  8325. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8326. else print_t = print_time_remaining_silent;
  8327. #else
  8328. print_t = print_time_remaining_normal;
  8329. #endif //TMC2130
  8330. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8331. return print_t;
  8332. }
  8333. uint8_t calc_percent_done()
  8334. {
  8335. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8336. uint8_t percent_done = 0;
  8337. #ifdef TMC2130
  8338. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8339. percent_done = print_percent_done_normal;
  8340. }
  8341. else if (print_percent_done_silent <= 100) {
  8342. percent_done = print_percent_done_silent;
  8343. }
  8344. #else
  8345. if (print_percent_done_normal <= 100) {
  8346. percent_done = print_percent_done_normal;
  8347. }
  8348. #endif //TMC2130
  8349. else {
  8350. percent_done = card.percentDone();
  8351. }
  8352. return percent_done;
  8353. }
  8354. static void print_time_remaining_init()
  8355. {
  8356. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8357. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8358. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8359. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8360. }
  8361. void load_filament_final_feed()
  8362. {
  8363. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8365. }
  8366. //! @brief Wait for user to check the state
  8367. //! @par nozzle_temp nozzle temperature to load filament
  8368. void M600_check_state(float nozzle_temp)
  8369. {
  8370. lcd_change_fil_state = 0;
  8371. while (lcd_change_fil_state != 1)
  8372. {
  8373. lcd_change_fil_state = 0;
  8374. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8375. lcd_alright();
  8376. KEEPALIVE_STATE(IN_HANDLER);
  8377. switch(lcd_change_fil_state)
  8378. {
  8379. // Filament failed to load so load it again
  8380. case 2:
  8381. if (mmu_enabled)
  8382. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8383. else
  8384. M600_load_filament_movements();
  8385. break;
  8386. // Filament loaded properly but color is not clear
  8387. case 3:
  8388. st_synchronize();
  8389. load_filament_final_feed();
  8390. lcd_loading_color();
  8391. st_synchronize();
  8392. break;
  8393. // Everything good
  8394. default:
  8395. lcd_change_success();
  8396. break;
  8397. }
  8398. }
  8399. }
  8400. //! @brief Wait for user action
  8401. //!
  8402. //! Beep, manage nozzle heater and wait for user to start unload filament
  8403. //! If times out, active extruder temperature is set to 0.
  8404. //!
  8405. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8406. void M600_wait_for_user(float HotendTempBckp) {
  8407. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8408. int counterBeep = 0;
  8409. unsigned long waiting_start_time = _millis();
  8410. uint8_t wait_for_user_state = 0;
  8411. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8412. bool bFirst=true;
  8413. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8414. manage_heater();
  8415. manage_inactivity(true);
  8416. #if BEEPER > 0
  8417. if (counterBeep == 500) {
  8418. counterBeep = 0;
  8419. }
  8420. SET_OUTPUT(BEEPER);
  8421. if (counterBeep == 0) {
  8422. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8423. {
  8424. bFirst=false;
  8425. WRITE(BEEPER, HIGH);
  8426. }
  8427. }
  8428. if (counterBeep == 20) {
  8429. WRITE(BEEPER, LOW);
  8430. }
  8431. counterBeep++;
  8432. #endif //BEEPER > 0
  8433. switch (wait_for_user_state) {
  8434. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8435. delay_keep_alive(4);
  8436. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8437. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8438. wait_for_user_state = 1;
  8439. setAllTargetHotends(0);
  8440. st_synchronize();
  8441. disable_e0();
  8442. disable_e1();
  8443. disable_e2();
  8444. }
  8445. break;
  8446. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8447. delay_keep_alive(4);
  8448. if (lcd_clicked()) {
  8449. setTargetHotend(HotendTempBckp, active_extruder);
  8450. lcd_wait_for_heater();
  8451. wait_for_user_state = 2;
  8452. }
  8453. break;
  8454. case 2: //waiting for nozzle to reach target temperature
  8455. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8456. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8457. waiting_start_time = _millis();
  8458. wait_for_user_state = 0;
  8459. }
  8460. else {
  8461. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8462. lcd_set_cursor(1, 4);
  8463. lcd_print(ftostr3(degHotend(active_extruder)));
  8464. }
  8465. break;
  8466. }
  8467. }
  8468. WRITE(BEEPER, LOW);
  8469. }
  8470. void M600_load_filament_movements()
  8471. {
  8472. #ifdef SNMM
  8473. display_loading();
  8474. do
  8475. {
  8476. current_position[E_AXIS] += 0.002;
  8477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8478. delay_keep_alive(2);
  8479. }
  8480. while (!lcd_clicked());
  8481. st_synchronize();
  8482. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8484. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8486. current_position[E_AXIS] += 40;
  8487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8488. current_position[E_AXIS] += 10;
  8489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8490. #else
  8491. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8493. #endif
  8494. load_filament_final_feed();
  8495. lcd_loading_filament();
  8496. st_synchronize();
  8497. }
  8498. void M600_load_filament() {
  8499. //load filament for single material and SNMM
  8500. lcd_wait_interact();
  8501. //load_filament_time = _millis();
  8502. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8503. #ifdef PAT9125
  8504. fsensor_autoload_check_start();
  8505. #endif //PAT9125
  8506. while(!lcd_clicked())
  8507. {
  8508. manage_heater();
  8509. manage_inactivity(true);
  8510. #ifdef FILAMENT_SENSOR
  8511. if (fsensor_check_autoload())
  8512. {
  8513. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8514. _tone(BEEPER, 1000);
  8515. delay_keep_alive(50);
  8516. _noTone(BEEPER);
  8517. break;
  8518. }
  8519. #endif //FILAMENT_SENSOR
  8520. }
  8521. #ifdef PAT9125
  8522. fsensor_autoload_check_stop();
  8523. #endif //PAT9125
  8524. KEEPALIVE_STATE(IN_HANDLER);
  8525. #ifdef FSENSOR_QUALITY
  8526. fsensor_oq_meassure_start(70);
  8527. #endif //FSENSOR_QUALITY
  8528. M600_load_filament_movements();
  8529. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8530. _tone(BEEPER, 500);
  8531. delay_keep_alive(50);
  8532. _noTone(BEEPER);
  8533. #ifdef FSENSOR_QUALITY
  8534. fsensor_oq_meassure_stop();
  8535. if (!fsensor_oq_result())
  8536. {
  8537. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8538. lcd_update_enable(true);
  8539. lcd_update(2);
  8540. if (disable)
  8541. fsensor_disable();
  8542. }
  8543. #endif //FSENSOR_QUALITY
  8544. lcd_update_enable(false);
  8545. }
  8546. //! @brief Wait for click
  8547. //!
  8548. //! Set
  8549. void marlin_wait_for_click()
  8550. {
  8551. int8_t busy_state_backup = busy_state;
  8552. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8553. lcd_consume_click();
  8554. while(!lcd_clicked())
  8555. {
  8556. manage_heater();
  8557. manage_inactivity(true);
  8558. lcd_update(0);
  8559. }
  8560. KEEPALIVE_STATE(busy_state_backup);
  8561. }
  8562. #define FIL_LOAD_LENGTH 60