temperature.cpp 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. #ifdef FANCHECK
  74. volatile uint8_t fan_check_error = EFCE_OK;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float iState_sum[EXTRUDERS] = { 0 };
  87. static float dState_last[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float iState_sum_min[EXTRUDERS];
  94. static float iState_sum_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. uint8_t fanSpeedBckp = 255;
  122. bool fan_measuring = false;
  123. #endif
  124. #if EXTRUDERS > 3
  125. # error Unsupported number of extruders
  126. #elif EXTRUDERS > 2
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  128. #elif EXTRUDERS > 1
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  130. #else
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  132. #endif
  133. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  136. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  137. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  138. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  139. #ifdef BED_MINTEMP
  140. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  141. #endif
  142. #ifdef BED_MAXTEMP
  143. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  144. #endif
  145. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  146. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  147. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  148. #else
  149. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  150. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  151. #endif
  152. static float analog2temp(int raw, uint8_t e);
  153. static float analog2tempBed(int raw);
  154. static float analog2tempAmbient(int raw);
  155. static void updateTemperaturesFromRawValues();
  156. enum TempRunawayStates
  157. {
  158. TempRunaway_INACTIVE = 0,
  159. TempRunaway_PREHEAT = 1,
  160. TempRunaway_ACTIVE = 2,
  161. };
  162. #ifdef WATCH_TEMP_PERIOD
  163. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  164. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. #endif //WATCH_TEMP_PERIOD
  166. #ifndef SOFT_PWM_SCALE
  167. #define SOFT_PWM_SCALE 0
  168. #endif
  169. //===========================================================================
  170. //============================= functions ============================
  171. //===========================================================================
  172. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  173. static float temp_runaway_status[4];
  174. static float temp_runaway_target[4];
  175. static float temp_runaway_timer[4];
  176. static int temp_runaway_error_counter[4];
  177. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  178. static void temp_runaway_stop(bool isPreheat, bool isBed);
  179. #endif
  180. void PID_autotune(float temp, int extruder, int ncycles)
  181. {
  182. pid_number_of_cycles = ncycles;
  183. pid_tuning_finished = false;
  184. float input = 0.0;
  185. pid_cycle=0;
  186. bool heating = true;
  187. unsigned long temp_millis = _millis();
  188. unsigned long t1=temp_millis;
  189. unsigned long t2=temp_millis;
  190. long t_high = 0;
  191. long t_low = 0;
  192. long bias, d;
  193. float Ku, Tu;
  194. float max = 0, min = 10000;
  195. uint8_t safety_check_cycles = 0;
  196. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  197. float temp_ambient;
  198. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  200. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  201. unsigned long extruder_autofan_last_check = _millis();
  202. #endif
  203. if ((extruder >= EXTRUDERS)
  204. #if (TEMP_BED_PIN <= -1)
  205. ||(extruder < 0)
  206. #endif
  207. ){
  208. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  209. pid_tuning_finished = true;
  210. pid_cycle = 0;
  211. return;
  212. }
  213. SERIAL_ECHOLN("PID Autotune start");
  214. disable_heater(); // switch off all heaters.
  215. if (extruder<0)
  216. {
  217. soft_pwm_bed = (MAX_BED_POWER)/2;
  218. timer02_set_pwm0(soft_pwm_bed << 1);
  219. bias = d = (MAX_BED_POWER)/2;
  220. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  221. }
  222. else
  223. {
  224. soft_pwm[extruder] = (PID_MAX)/2;
  225. bias = d = (PID_MAX)/2;
  226. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  227. }
  228. for(;;) {
  229. #ifdef WATCHDOG
  230. wdt_reset();
  231. #endif //WATCHDOG
  232. if(temp_meas_ready == true) { // temp sample ready
  233. updateTemperaturesFromRawValues();
  234. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  235. max=max(max,input);
  236. min=min(min,input);
  237. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  240. if(_millis() - extruder_autofan_last_check > 2500) {
  241. checkExtruderAutoFans();
  242. extruder_autofan_last_check = _millis();
  243. }
  244. #endif
  245. if(heating == true && input > temp) {
  246. if(_millis() - t2 > 5000) {
  247. heating=false;
  248. if (extruder<0)
  249. {
  250. soft_pwm_bed = (bias - d) >> 1;
  251. timer02_set_pwm0(soft_pwm_bed << 1);
  252. }
  253. else
  254. soft_pwm[extruder] = (bias - d) >> 1;
  255. t1=_millis();
  256. t_high=t1 - t2;
  257. max=temp;
  258. }
  259. }
  260. if(heating == false && input < temp) {
  261. if(_millis() - t1 > 5000) {
  262. heating=true;
  263. t2=_millis();
  264. t_low=t2 - t1;
  265. if(pid_cycle > 0) {
  266. bias += (d*(t_high - t_low))/(t_low + t_high);
  267. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  268. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  269. else d = bias;
  270. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  271. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  272. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  273. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  274. if(pid_cycle > 2) {
  275. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  276. Tu = ((float)(t_low + t_high)/1000.0);
  277. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  278. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  279. _Kp = 0.6*Ku;
  280. _Ki = 2*_Kp/Tu;
  281. _Kd = _Kp*Tu/8;
  282. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. /*
  287. _Kp = 0.33*Ku;
  288. _Ki = _Kp/Tu;
  289. _Kd = _Kp*Tu/3;
  290. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  291. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  292. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  293. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  294. _Kp = 0.2*Ku;
  295. _Ki = 2*_Kp/Tu;
  296. _Kd = _Kp*Tu/3;
  297. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  298. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  299. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  300. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  301. */
  302. }
  303. }
  304. if (extruder<0)
  305. {
  306. soft_pwm_bed = (bias + d) >> 1;
  307. timer02_set_pwm0(soft_pwm_bed << 1);
  308. }
  309. else
  310. soft_pwm[extruder] = (bias + d) >> 1;
  311. pid_cycle++;
  312. min=temp;
  313. }
  314. }
  315. }
  316. if(input > (temp + 20)) {
  317. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  318. pid_tuning_finished = true;
  319. pid_cycle = 0;
  320. return;
  321. }
  322. if(_millis() - temp_millis > 2000) {
  323. int p;
  324. if (extruder<0){
  325. p=soft_pwm_bed;
  326. SERIAL_PROTOCOLPGM("B:");
  327. }else{
  328. p=soft_pwm[extruder];
  329. SERIAL_PROTOCOLPGM("T:");
  330. }
  331. SERIAL_PROTOCOL(input);
  332. SERIAL_PROTOCOLPGM(" @:");
  333. SERIAL_PROTOCOLLN(p);
  334. if (safety_check_cycles == 0) { //save ambient temp
  335. temp_ambient = input;
  336. //SERIAL_ECHOPGM("Ambient T: ");
  337. //MYSERIAL.println(temp_ambient);
  338. safety_check_cycles++;
  339. }
  340. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  341. safety_check_cycles++;
  342. }
  343. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  344. safety_check_cycles++;
  345. //SERIAL_ECHOPGM("Time from beginning: ");
  346. //MYSERIAL.print(safety_check_cycles_count * 2);
  347. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  348. //MYSERIAL.println(input - temp_ambient);
  349. if (abs(input - temp_ambient) < 5.0) {
  350. temp_runaway_stop(false, (extruder<0));
  351. pid_tuning_finished = true;
  352. return;
  353. }
  354. }
  355. temp_millis = _millis();
  356. }
  357. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. if(pid_cycle > ncycles) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. lcd_update(0);
  370. }
  371. }
  372. void updatePID()
  373. {
  374. #ifdef PIDTEMP
  375. for(int e = 0; e < EXTRUDERS; e++) {
  376. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  377. }
  378. #endif
  379. #ifdef PIDTEMPBED
  380. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  381. #endif
  382. }
  383. int getHeaterPower(int heater) {
  384. if (heater<0)
  385. return soft_pwm_bed;
  386. return soft_pwm[heater];
  387. }
  388. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  390. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  391. #if defined(FAN_PIN) && FAN_PIN > -1
  392. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  396. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  397. #endif
  398. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  399. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  400. #endif
  401. #endif
  402. void setExtruderAutoFanState(int pin, bool state)
  403. {
  404. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  405. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  406. pinMode(pin, OUTPUT);
  407. digitalWrite(pin, newFanSpeed);
  408. //analogWrite(pin, newFanSpeed);
  409. }
  410. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  411. void countFanSpeed()
  412. {
  413. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  414. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  416. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  417. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  418. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  419. SERIAL_ECHOLNPGM(" ");*/
  420. fan_edge_counter[0] = 0;
  421. fan_edge_counter[1] = 0;
  422. }
  423. //#define SIMULATE_FAN_ERRORS
  424. #ifdef SIMULATE_FAN_ERRORS
  425. struct FanSpeedErrorSimulator {
  426. unsigned long lastMillis = 0;
  427. bool state = false; // zatim mam 0 - klid, 1 reportuju chybu
  428. //! @return pocet simulovanych chyb
  429. inline uint8_t step(){
  430. unsigned long ms = _millis();
  431. switch(state){
  432. case false:
  433. if( (ms - lastMillis) > 120000UL ){ // funkcni ventilator chci 2 minuty
  434. state = true;
  435. lastMillis = ms;
  436. SERIAL_ECHOLNPGM("SIM Fan error");
  437. }
  438. break;
  439. case true:
  440. if( (ms - lastMillis) > 20000UL ){ // vypadek ventilatoru chci uz 20s,
  441. //abych stihl udelat pokusnej resume print, kdyz jeste jsou rozbity vetraky
  442. state = false;
  443. lastMillis = ms;
  444. SERIAL_ECHOLNPGM("SIM Fan ok");
  445. }
  446. break;
  447. }
  448. return state ? 20 : 0;
  449. }
  450. };
  451. static FanSpeedErrorSimulator fanSpeedErrorSimulator;
  452. #endif
  453. void checkFanSpeed()
  454. {
  455. uint8_t max_print_fan_errors = 0;
  456. uint8_t max_extruder_fan_errors = 0;
  457. #ifdef FAN_SOFT_PWM
  458. max_print_fan_errors = 3; //15 seconds
  459. max_extruder_fan_errors = 2; //10seconds
  460. #else //FAN_SOFT_PWM
  461. max_print_fan_errors = 15; //15 seconds
  462. max_extruder_fan_errors = 5; //5 seconds
  463. #endif //FAN_SOFT_PWM
  464. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  465. static unsigned char fan_speed_errors[2] = { 0,0 };
  466. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  467. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  468. else fan_speed_errors[0] = 0;
  469. #endif
  470. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  471. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  472. else fan_speed_errors[1] = 0;
  473. #endif
  474. #ifdef SIMULATE_FAN_ERRORS
  475. fan_speed_errors[0] = fanSpeedErrorSimulator.step();
  476. #endif
  477. // drop the fan_check_error flag when both fans are ok
  478. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  479. // we may even send some info to the LCD from here
  480. fan_check_error = EFCE_OK;
  481. }
  482. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  483. fan_speed_errors[0] = 0;
  484. fanSpeedError(0); //extruder fan
  485. }
  486. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  487. fan_speed_errors[1] = 0;
  488. fanSpeedError(1); //print fan
  489. }
  490. }
  491. void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  492. SERIAL_ECHOLNRPGM(serialMsg);
  493. if (get_message_level() == 0) {
  494. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT)){
  495. WRITE(BEEPER, HIGH);
  496. delayMicroseconds(200);
  497. WRITE(BEEPER, LOW);
  498. delayMicroseconds(100); // what is this wait for?
  499. }
  500. LCD_ALERTMESSAGERPGM(lcdMsg);
  501. }
  502. }
  503. void fanSpeedError(unsigned char _fan) {
  504. if (get_message_level() != 0 && isPrintPaused) return;
  505. //to ensure that target temp. is not set to zero in case taht we are resuming print
  506. if (card.sdprinting) {
  507. if (heating_status != 0) {
  508. lcd_print_stop();
  509. }
  510. else {
  511. fan_check_error = EFCE_DETECTED;
  512. }
  513. }
  514. else {
  515. setTargetHotend0(0);
  516. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  517. }
  518. switch (_fan) {
  519. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  520. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), PSTR("Err: EXTR. FAN ERROR") );
  521. break;
  522. case 1:
  523. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), PSTR("Err: PRINT FAN ERROR") );
  524. break;
  525. }
  526. }
  527. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  528. void checkExtruderAutoFans()
  529. {
  530. uint8_t fanState = 0;
  531. // which fan pins need to be turned on?
  532. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  533. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  534. fanState |= 1;
  535. #endif
  536. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  537. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  538. {
  539. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  540. fanState |= 1;
  541. else
  542. fanState |= 2;
  543. }
  544. #endif
  545. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  546. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  547. {
  548. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  549. fanState |= 1;
  550. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  551. fanState |= 2;
  552. else
  553. fanState |= 4;
  554. }
  555. #endif
  556. // update extruder auto fan states
  557. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  558. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  559. #endif
  560. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  561. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  562. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  563. #endif
  564. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  565. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  566. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  567. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  568. #endif
  569. }
  570. #endif // any extruder auto fan pins set
  571. // ready for eventually parameters adjusting
  572. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  573. //void resetPID(uint8_t extruder)
  574. {
  575. }
  576. void manage_heater()
  577. {
  578. #ifdef WATCHDOG
  579. wdt_reset();
  580. #endif //WATCHDOG
  581. float pid_input;
  582. float pid_output;
  583. if(temp_meas_ready != true) //better readability
  584. return;
  585. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  586. updateTemperaturesFromRawValues();
  587. check_max_temp();
  588. check_min_temp();
  589. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  590. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  591. #endif
  592. for(int e = 0; e < EXTRUDERS; e++)
  593. {
  594. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  595. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  596. #endif
  597. #ifdef PIDTEMP
  598. pid_input = current_temperature[e];
  599. #ifndef PID_OPENLOOP
  600. if(target_temperature[e] == 0) {
  601. pid_output = 0;
  602. pid_reset[e] = true;
  603. } else {
  604. pid_error[e] = target_temperature[e] - pid_input;
  605. if(pid_reset[e]) {
  606. iState_sum[e] = 0.0;
  607. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  608. pid_reset[e] = false;
  609. }
  610. #ifndef PonM
  611. pTerm[e] = cs.Kp * pid_error[e];
  612. iState_sum[e] += pid_error[e];
  613. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  614. iTerm[e] = cs.Ki * iState_sum[e];
  615. // PID_K1 defined in Configuration.h in the PID settings
  616. #define K2 (1.0-PID_K1)
  617. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  618. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  619. if (pid_output > PID_MAX) {
  620. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  621. pid_output=PID_MAX;
  622. } else if (pid_output < 0) {
  623. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  624. pid_output=0;
  625. }
  626. #else // PonM ("Proportional on Measurement" method)
  627. iState_sum[e] += cs.Ki * pid_error[e];
  628. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  629. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  630. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  631. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  632. pid_output = constrain(pid_output, 0, PID_MAX);
  633. #endif // PonM
  634. }
  635. dState_last[e] = pid_input;
  636. #else
  637. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  638. #endif //PID_OPENLOOP
  639. #ifdef PID_DEBUG
  640. SERIAL_ECHO_START;
  641. SERIAL_ECHO(" PID_DEBUG ");
  642. SERIAL_ECHO(e);
  643. SERIAL_ECHO(": Input ");
  644. SERIAL_ECHO(pid_input);
  645. SERIAL_ECHO(" Output ");
  646. SERIAL_ECHO(pid_output);
  647. SERIAL_ECHO(" pTerm ");
  648. SERIAL_ECHO(pTerm[e]);
  649. SERIAL_ECHO(" iTerm ");
  650. SERIAL_ECHO(iTerm[e]);
  651. SERIAL_ECHO(" dTerm ");
  652. SERIAL_ECHOLN(-dTerm[e]);
  653. #endif //PID_DEBUG
  654. #else /* PID off */
  655. pid_output = 0;
  656. if(current_temperature[e] < target_temperature[e]) {
  657. pid_output = PID_MAX;
  658. }
  659. #endif
  660. // Check if temperature is within the correct range
  661. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  662. {
  663. soft_pwm[e] = (int)pid_output >> 1;
  664. }
  665. else
  666. {
  667. soft_pwm[e] = 0;
  668. }
  669. #ifdef WATCH_TEMP_PERIOD
  670. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  671. {
  672. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  673. {
  674. setTargetHotend(0, e);
  675. LCD_MESSAGEPGM("Heating failed");
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOLN("Heating failed");
  678. }else{
  679. watchmillis[e] = 0;
  680. }
  681. }
  682. #endif
  683. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  684. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  685. disable_heater();
  686. if(IsStopped() == false) {
  687. SERIAL_ERROR_START;
  688. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  689. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  690. }
  691. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  692. Stop();
  693. #endif
  694. }
  695. #endif
  696. } // End extruder for loop
  697. #define FAN_CHECK_PERIOD 5000 //5s
  698. #define FAN_CHECK_DURATION 100 //100ms
  699. #ifndef DEBUG_DISABLE_FANCHECK
  700. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  701. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  702. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  703. #ifdef FAN_SOFT_PWM
  704. #ifdef FANCHECK
  705. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  706. extruder_autofan_last_check = _millis();
  707. fanSpeedBckp = fanSpeedSoftPwm;
  708. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  709. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  710. fanSpeedSoftPwm = 255;
  711. }
  712. fan_measuring = true;
  713. }
  714. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  715. countFanSpeed();
  716. checkFanSpeed();
  717. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  718. fanSpeedSoftPwm = fanSpeedBckp;
  719. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  720. extruder_autofan_last_check = _millis();
  721. fan_measuring = false;
  722. }
  723. #endif //FANCHECK
  724. checkExtruderAutoFans();
  725. #else //FAN_SOFT_PWM
  726. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  727. {
  728. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  729. countFanSpeed();
  730. checkFanSpeed();
  731. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  732. checkExtruderAutoFans();
  733. extruder_autofan_last_check = _millis();
  734. }
  735. #endif //FAN_SOFT_PWM
  736. #endif
  737. #endif //DEBUG_DISABLE_FANCHECK
  738. #ifndef PIDTEMPBED
  739. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  740. return;
  741. previous_millis_bed_heater = _millis();
  742. #endif
  743. #if TEMP_SENSOR_BED != 0
  744. #ifdef PIDTEMPBED
  745. pid_input = current_temperature_bed;
  746. #ifndef PID_OPENLOOP
  747. pid_error_bed = target_temperature_bed - pid_input;
  748. pTerm_bed = cs.bedKp * pid_error_bed;
  749. temp_iState_bed += pid_error_bed;
  750. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  751. iTerm_bed = cs.bedKi * temp_iState_bed;
  752. //PID_K1 defined in Configuration.h in the PID settings
  753. #define K2 (1.0-PID_K1)
  754. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  755. temp_dState_bed = pid_input;
  756. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  757. if (pid_output > MAX_BED_POWER) {
  758. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  759. pid_output=MAX_BED_POWER;
  760. } else if (pid_output < 0){
  761. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  762. pid_output=0;
  763. }
  764. #else
  765. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  766. #endif //PID_OPENLOOP
  767. if(current_temperature_bed < BED_MAXTEMP)
  768. {
  769. soft_pwm_bed = (int)pid_output >> 1;
  770. timer02_set_pwm0(soft_pwm_bed << 1);
  771. }
  772. else {
  773. soft_pwm_bed = 0;
  774. timer02_set_pwm0(soft_pwm_bed << 1);
  775. }
  776. #elif !defined(BED_LIMIT_SWITCHING)
  777. // Check if temperature is within the correct range
  778. if(current_temperature_bed < BED_MAXTEMP)
  779. {
  780. if(current_temperature_bed >= target_temperature_bed)
  781. {
  782. soft_pwm_bed = 0;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. }
  785. else
  786. {
  787. soft_pwm_bed = MAX_BED_POWER>>1;
  788. timer02_set_pwm0(soft_pwm_bed << 1);
  789. }
  790. }
  791. else
  792. {
  793. soft_pwm_bed = 0;
  794. timer02_set_pwm0(soft_pwm_bed << 1);
  795. WRITE(HEATER_BED_PIN,LOW);
  796. }
  797. #else //#ifdef BED_LIMIT_SWITCHING
  798. // Check if temperature is within the correct band
  799. if(current_temperature_bed < BED_MAXTEMP)
  800. {
  801. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  802. {
  803. soft_pwm_bed = 0;
  804. timer02_set_pwm0(soft_pwm_bed << 1);
  805. }
  806. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  807. {
  808. soft_pwm_bed = MAX_BED_POWER>>1;
  809. timer02_set_pwm0(soft_pwm_bed << 1);
  810. }
  811. }
  812. else
  813. {
  814. soft_pwm_bed = 0;
  815. timer02_set_pwm0(soft_pwm_bed << 1);
  816. WRITE(HEATER_BED_PIN,LOW);
  817. }
  818. #endif
  819. if(target_temperature_bed==0)
  820. {
  821. soft_pwm_bed = 0;
  822. timer02_set_pwm0(soft_pwm_bed << 1);
  823. }
  824. #endif
  825. host_keepalive();
  826. }
  827. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  828. // Derived from RepRap FiveD extruder::getTemperature()
  829. // For hot end temperature measurement.
  830. static float analog2temp(int raw, uint8_t e) {
  831. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  832. if(e > EXTRUDERS)
  833. #else
  834. if(e >= EXTRUDERS)
  835. #endif
  836. {
  837. SERIAL_ERROR_START;
  838. SERIAL_ERROR((int)e);
  839. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  840. kill(PSTR(""), 6);
  841. return 0.0;
  842. }
  843. #ifdef HEATER_0_USES_MAX6675
  844. if (e == 0)
  845. {
  846. return 0.25 * raw;
  847. }
  848. #endif
  849. if(heater_ttbl_map[e] != NULL)
  850. {
  851. float celsius = 0;
  852. uint8_t i;
  853. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  854. for (i=1; i<heater_ttbllen_map[e]; i++)
  855. {
  856. if (PGM_RD_W((*tt)[i][0]) > raw)
  857. {
  858. celsius = PGM_RD_W((*tt)[i-1][1]) +
  859. (raw - PGM_RD_W((*tt)[i-1][0])) *
  860. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  861. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  862. break;
  863. }
  864. }
  865. // Overflow: Set to last value in the table
  866. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  867. return celsius;
  868. }
  869. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  870. }
  871. // Derived from RepRap FiveD extruder::getTemperature()
  872. // For bed temperature measurement.
  873. static float analog2tempBed(int raw) {
  874. #ifdef BED_USES_THERMISTOR
  875. float celsius = 0;
  876. byte i;
  877. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  878. {
  879. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  880. {
  881. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  882. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  883. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  884. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  885. break;
  886. }
  887. }
  888. // Overflow: Set to last value in the table
  889. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  890. // temperature offset adjustment
  891. #ifdef BED_OFFSET
  892. float _offset = BED_OFFSET;
  893. float _offset_center = BED_OFFSET_CENTER;
  894. float _offset_start = BED_OFFSET_START;
  895. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  896. float _second_koef = (_offset / 2) / (100 - _offset_center);
  897. if (celsius >= _offset_start && celsius <= _offset_center)
  898. {
  899. celsius = celsius + (_first_koef * (celsius - _offset_start));
  900. }
  901. else if (celsius > _offset_center && celsius <= 100)
  902. {
  903. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  904. }
  905. else if (celsius > 100)
  906. {
  907. celsius = celsius + _offset;
  908. }
  909. #endif
  910. return celsius;
  911. #elif defined BED_USES_AD595
  912. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  913. #else
  914. return 0;
  915. #endif
  916. }
  917. #ifdef AMBIENT_THERMISTOR
  918. static float analog2tempAmbient(int raw)
  919. {
  920. float celsius = 0;
  921. byte i;
  922. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  923. {
  924. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  925. {
  926. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  927. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  928. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  929. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  930. break;
  931. }
  932. }
  933. // Overflow: Set to last value in the table
  934. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  935. return celsius;
  936. }
  937. #endif //AMBIENT_THERMISTOR
  938. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  939. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  940. static void updateTemperaturesFromRawValues()
  941. {
  942. for(uint8_t e=0;e<EXTRUDERS;e++)
  943. {
  944. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  945. }
  946. #ifdef PINDA_THERMISTOR
  947. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  948. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  949. #endif
  950. #ifdef AMBIENT_THERMISTOR
  951. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  952. #endif
  953. #ifdef DEBUG_HEATER_BED_SIM
  954. current_temperature_bed = target_temperature_bed;
  955. #else //DEBUG_HEATER_BED_SIM
  956. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  957. #endif //DEBUG_HEATER_BED_SIM
  958. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  959. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  960. #endif
  961. CRITICAL_SECTION_START;
  962. temp_meas_ready = false;
  963. CRITICAL_SECTION_END;
  964. }
  965. void tp_init()
  966. {
  967. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  968. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  969. MCUCR=(1<<JTD);
  970. MCUCR=(1<<JTD);
  971. #endif
  972. // Finish init of mult extruder arrays
  973. for(int e = 0; e < EXTRUDERS; e++) {
  974. // populate with the first value
  975. maxttemp[e] = maxttemp[0];
  976. #ifdef PIDTEMP
  977. iState_sum_min[e] = 0.0;
  978. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  979. #endif //PIDTEMP
  980. #ifdef PIDTEMPBED
  981. temp_iState_min_bed = 0.0;
  982. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  983. #endif //PIDTEMPBED
  984. }
  985. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  986. SET_OUTPUT(HEATER_0_PIN);
  987. #endif
  988. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  989. SET_OUTPUT(HEATER_1_PIN);
  990. #endif
  991. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  992. SET_OUTPUT(HEATER_2_PIN);
  993. #endif
  994. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  995. SET_OUTPUT(HEATER_BED_PIN);
  996. #endif
  997. #if defined(FAN_PIN) && (FAN_PIN > -1)
  998. SET_OUTPUT(FAN_PIN);
  999. #ifdef FAST_PWM_FAN
  1000. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  1001. #endif
  1002. #ifdef FAN_SOFT_PWM
  1003. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1004. #endif
  1005. #endif
  1006. #ifdef HEATER_0_USES_MAX6675
  1007. #ifndef SDSUPPORT
  1008. SET_OUTPUT(SCK_PIN);
  1009. WRITE(SCK_PIN,0);
  1010. SET_OUTPUT(MOSI_PIN);
  1011. WRITE(MOSI_PIN,1);
  1012. SET_INPUT(MISO_PIN);
  1013. WRITE(MISO_PIN,1);
  1014. #endif
  1015. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  1016. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  1017. pinMode(SS_PIN, OUTPUT);
  1018. digitalWrite(SS_PIN,0);
  1019. pinMode(MAX6675_SS, OUTPUT);
  1020. digitalWrite(MAX6675_SS,1);
  1021. #endif
  1022. adc_init();
  1023. #ifdef SYSTEM_TIMER_2
  1024. timer02_init();
  1025. OCR2B = 128;
  1026. TIMSK2 |= (1<<OCIE2B);
  1027. #else //SYSTEM_TIMER_2
  1028. // Use timer0 for temperature measurement
  1029. // Interleave temperature interrupt with millies interrupt
  1030. OCR0B = 128;
  1031. TIMSK0 |= (1<<OCIE0B);
  1032. #endif //SYSTEM_TIMER_2
  1033. // Wait for temperature measurement to settle
  1034. _delay(250);
  1035. #ifdef HEATER_0_MINTEMP
  1036. minttemp[0] = HEATER_0_MINTEMP;
  1037. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1038. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1039. minttemp_raw[0] += OVERSAMPLENR;
  1040. #else
  1041. minttemp_raw[0] -= OVERSAMPLENR;
  1042. #endif
  1043. }
  1044. #endif //MINTEMP
  1045. #ifdef HEATER_0_MAXTEMP
  1046. maxttemp[0] = HEATER_0_MAXTEMP;
  1047. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1048. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1049. maxttemp_raw[0] -= OVERSAMPLENR;
  1050. #else
  1051. maxttemp_raw[0] += OVERSAMPLENR;
  1052. #endif
  1053. }
  1054. #endif //MAXTEMP
  1055. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1056. minttemp[1] = HEATER_1_MINTEMP;
  1057. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1058. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1059. minttemp_raw[1] += OVERSAMPLENR;
  1060. #else
  1061. minttemp_raw[1] -= OVERSAMPLENR;
  1062. #endif
  1063. }
  1064. #endif // MINTEMP 1
  1065. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1066. maxttemp[1] = HEATER_1_MAXTEMP;
  1067. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1068. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1069. maxttemp_raw[1] -= OVERSAMPLENR;
  1070. #else
  1071. maxttemp_raw[1] += OVERSAMPLENR;
  1072. #endif
  1073. }
  1074. #endif //MAXTEMP 1
  1075. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1076. minttemp[2] = HEATER_2_MINTEMP;
  1077. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1078. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1079. minttemp_raw[2] += OVERSAMPLENR;
  1080. #else
  1081. minttemp_raw[2] -= OVERSAMPLENR;
  1082. #endif
  1083. }
  1084. #endif //MINTEMP 2
  1085. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1086. maxttemp[2] = HEATER_2_MAXTEMP;
  1087. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1088. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1089. maxttemp_raw[2] -= OVERSAMPLENR;
  1090. #else
  1091. maxttemp_raw[2] += OVERSAMPLENR;
  1092. #endif
  1093. }
  1094. #endif //MAXTEMP 2
  1095. #ifdef BED_MINTEMP
  1096. /* No bed MINTEMP error implemented?!? */
  1097. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1098. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1099. bed_minttemp_raw += OVERSAMPLENR;
  1100. #else
  1101. bed_minttemp_raw -= OVERSAMPLENR;
  1102. #endif
  1103. }
  1104. #endif //BED_MINTEMP
  1105. #ifdef BED_MAXTEMP
  1106. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1107. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1108. bed_maxttemp_raw -= OVERSAMPLENR;
  1109. #else
  1110. bed_maxttemp_raw += OVERSAMPLENR;
  1111. #endif
  1112. }
  1113. #endif //BED_MAXTEMP
  1114. }
  1115. void setWatch()
  1116. {
  1117. #ifdef WATCH_TEMP_PERIOD
  1118. for (int e = 0; e < EXTRUDERS; e++)
  1119. {
  1120. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1121. {
  1122. watch_start_temp[e] = degHotend(e);
  1123. watchmillis[e] = _millis();
  1124. }
  1125. }
  1126. #endif
  1127. }
  1128. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1129. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1130. {
  1131. float __delta;
  1132. float __hysteresis = 0;
  1133. int __timeout = 0;
  1134. bool temp_runaway_check_active = false;
  1135. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1136. static int __preheat_counter[2] = { 0,0};
  1137. static int __preheat_errors[2] = { 0,0};
  1138. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1139. {
  1140. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1141. if (_isbed)
  1142. {
  1143. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1144. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1145. }
  1146. #endif
  1147. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1148. if (!_isbed)
  1149. {
  1150. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1151. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1152. }
  1153. #endif
  1154. temp_runaway_timer[_heater_id] = _millis();
  1155. if (_output == 0)
  1156. {
  1157. temp_runaway_check_active = false;
  1158. temp_runaway_error_counter[_heater_id] = 0;
  1159. }
  1160. if (temp_runaway_target[_heater_id] != _target_temperature)
  1161. {
  1162. if (_target_temperature > 0)
  1163. {
  1164. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1165. temp_runaway_target[_heater_id] = _target_temperature;
  1166. __preheat_start[_heater_id] = _current_temperature;
  1167. __preheat_counter[_heater_id] = 0;
  1168. }
  1169. else
  1170. {
  1171. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1172. temp_runaway_target[_heater_id] = _target_temperature;
  1173. }
  1174. }
  1175. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1176. {
  1177. __preheat_counter[_heater_id]++;
  1178. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1179. {
  1180. /*SERIAL_ECHOPGM("Heater:");
  1181. MYSERIAL.print(_heater_id);
  1182. SERIAL_ECHOPGM(" T:");
  1183. MYSERIAL.print(_current_temperature);
  1184. SERIAL_ECHOPGM(" Tstart:");
  1185. MYSERIAL.print(__preheat_start[_heater_id]);
  1186. SERIAL_ECHOPGM(" delta:");
  1187. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1188. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1189. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1190. __delta=2.0;
  1191. if(_isbed)
  1192. {
  1193. __delta=3.0;
  1194. if(_current_temperature>90.0) __delta=2.0;
  1195. if(_current_temperature>105.0) __delta=0.6;
  1196. }
  1197. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1198. __preheat_errors[_heater_id]++;
  1199. /*SERIAL_ECHOPGM(" Preheat errors:");
  1200. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1201. }
  1202. else {
  1203. //SERIAL_ECHOLNPGM("");
  1204. __preheat_errors[_heater_id] = 0;
  1205. }
  1206. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1207. {
  1208. if (farm_mode) { prusa_statistics(0); }
  1209. temp_runaway_stop(true, _isbed);
  1210. if (farm_mode) { prusa_statistics(91); }
  1211. }
  1212. __preheat_start[_heater_id] = _current_temperature;
  1213. __preheat_counter[_heater_id] = 0;
  1214. }
  1215. }
  1216. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1217. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1218. {
  1219. /*SERIAL_ECHOPGM("Heater:");
  1220. MYSERIAL.print(_heater_id);
  1221. MYSERIAL.println(" ->tempRunaway");*/
  1222. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1223. temp_runaway_check_active = false;
  1224. temp_runaway_error_counter[_heater_id] = 0;
  1225. }
  1226. if (_output > 0)
  1227. {
  1228. temp_runaway_check_active = true;
  1229. }
  1230. if (temp_runaway_check_active)
  1231. {
  1232. // we are in range
  1233. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1234. {
  1235. temp_runaway_check_active = false;
  1236. temp_runaway_error_counter[_heater_id] = 0;
  1237. }
  1238. else
  1239. {
  1240. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1241. {
  1242. temp_runaway_error_counter[_heater_id]++;
  1243. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1244. {
  1245. if (farm_mode) { prusa_statistics(0); }
  1246. temp_runaway_stop(false, _isbed);
  1247. if (farm_mode) { prusa_statistics(90); }
  1248. }
  1249. }
  1250. }
  1251. }
  1252. }
  1253. }
  1254. void temp_runaway_stop(bool isPreheat, bool isBed)
  1255. {
  1256. cancel_heatup = true;
  1257. quickStop();
  1258. if (card.sdprinting)
  1259. {
  1260. card.sdprinting = false;
  1261. card.closefile();
  1262. }
  1263. // Clean the input command queue
  1264. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1265. cmdqueue_reset();
  1266. disable_heater();
  1267. disable_x();
  1268. disable_y();
  1269. disable_e0();
  1270. disable_e1();
  1271. disable_e2();
  1272. manage_heater();
  1273. lcd_update(0);
  1274. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1275. WRITE(BEEPER, HIGH);
  1276. delayMicroseconds(500);
  1277. WRITE(BEEPER, LOW);
  1278. delayMicroseconds(100);
  1279. if (isPreheat)
  1280. {
  1281. Stop();
  1282. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1283. SERIAL_ERROR_START;
  1284. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1285. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1286. SET_OUTPUT(FAN_PIN);
  1287. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1288. #ifdef FAN_SOFT_PWM
  1289. fanSpeedSoftPwm = 255;
  1290. #else //FAN_SOFT_PWM
  1291. analogWrite(FAN_PIN, 255);
  1292. #endif //FAN_SOFT_PWM
  1293. fanSpeed = 255;
  1294. delayMicroseconds(2000);
  1295. }
  1296. else
  1297. {
  1298. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1299. SERIAL_ERROR_START;
  1300. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1301. }
  1302. }
  1303. #endif
  1304. void disable_heater()
  1305. {
  1306. setAllTargetHotends(0);
  1307. setTargetBed(0);
  1308. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1309. target_temperature[0]=0;
  1310. soft_pwm[0]=0;
  1311. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1312. WRITE(HEATER_0_PIN,LOW);
  1313. #endif
  1314. #endif
  1315. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1316. target_temperature[1]=0;
  1317. soft_pwm[1]=0;
  1318. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1319. WRITE(HEATER_1_PIN,LOW);
  1320. #endif
  1321. #endif
  1322. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1323. target_temperature[2]=0;
  1324. soft_pwm[2]=0;
  1325. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1326. WRITE(HEATER_2_PIN,LOW);
  1327. #endif
  1328. #endif
  1329. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1330. target_temperature_bed=0;
  1331. soft_pwm_bed=0;
  1332. timer02_set_pwm0(soft_pwm_bed << 1);
  1333. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1334. WRITE(HEATER_BED_PIN,LOW);
  1335. #endif
  1336. #endif
  1337. }
  1338. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1339. //! than raw const char * of the messages themselves.
  1340. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1341. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1342. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1343. //! remember the last alert message sent to the LCD
  1344. //! to prevent flicker and improve speed
  1345. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1346. void max_temp_error(uint8_t e) {
  1347. disable_heater();
  1348. if(IsStopped() == false) {
  1349. SERIAL_ERROR_START;
  1350. SERIAL_ERRORLN((int)e);
  1351. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1352. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1353. }
  1354. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1355. Stop();
  1356. #endif
  1357. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1358. SET_OUTPUT(FAN_PIN);
  1359. SET_OUTPUT(BEEPER);
  1360. WRITE(FAN_PIN, 1);
  1361. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1362. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1363. WRITE(BEEPER, 1);
  1364. // fanSpeed will consumed by the check_axes_activity() routine.
  1365. fanSpeed=255;
  1366. if (farm_mode) { prusa_statistics(93); }
  1367. }
  1368. void min_temp_error(uint8_t e) {
  1369. #ifdef DEBUG_DISABLE_MINTEMP
  1370. return;
  1371. #endif
  1372. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1373. disable_heater();
  1374. static const char err[] PROGMEM = "Err: MINTEMP";
  1375. if(IsStopped() == false) {
  1376. SERIAL_ERROR_START;
  1377. SERIAL_ERRORLN((int)e);
  1378. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1379. lcd_setalertstatuspgm(err);
  1380. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1381. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1382. // we are already stopped due to some error, only update the status message without flickering
  1383. lcd_updatestatuspgm(err);
  1384. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1385. }
  1386. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1387. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1388. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1389. // lcd_print_stop();
  1390. // }
  1391. Stop();
  1392. #endif
  1393. if (farm_mode) { prusa_statistics(92); }
  1394. }
  1395. void bed_max_temp_error(void) {
  1396. #if HEATER_BED_PIN > -1
  1397. WRITE(HEATER_BED_PIN, 0);
  1398. #endif
  1399. if(IsStopped() == false) {
  1400. SERIAL_ERROR_START;
  1401. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1402. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1403. }
  1404. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1405. Stop();
  1406. #endif
  1407. }
  1408. void bed_min_temp_error(void) {
  1409. #ifdef DEBUG_DISABLE_MINTEMP
  1410. return;
  1411. #endif
  1412. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1413. #if HEATER_BED_PIN > -1
  1414. WRITE(HEATER_BED_PIN, 0);
  1415. #endif
  1416. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1417. if(IsStopped() == false) {
  1418. SERIAL_ERROR_START;
  1419. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1420. lcd_setalertstatuspgm(err);
  1421. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1422. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1423. // we are already stopped due to some error, only update the status message without flickering
  1424. lcd_updatestatuspgm(err);
  1425. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1426. }
  1427. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1428. Stop();
  1429. #endif
  1430. }
  1431. #ifdef HEATER_0_USES_MAX6675
  1432. #define MAX6675_HEAT_INTERVAL 250
  1433. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1434. int max6675_temp = 2000;
  1435. int read_max6675()
  1436. {
  1437. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1438. return max6675_temp;
  1439. max6675_previous_millis = _millis();
  1440. max6675_temp = 0;
  1441. #ifdef PRR
  1442. PRR &= ~(1<<PRSPI);
  1443. #elif defined PRR0
  1444. PRR0 &= ~(1<<PRSPI);
  1445. #endif
  1446. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1447. // enable TT_MAX6675
  1448. WRITE(MAX6675_SS, 0);
  1449. // ensure 100ns delay - a bit extra is fine
  1450. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1451. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1452. // read MSB
  1453. SPDR = 0;
  1454. for (;(SPSR & (1<<SPIF)) == 0;);
  1455. max6675_temp = SPDR;
  1456. max6675_temp <<= 8;
  1457. // read LSB
  1458. SPDR = 0;
  1459. for (;(SPSR & (1<<SPIF)) == 0;);
  1460. max6675_temp |= SPDR;
  1461. // disable TT_MAX6675
  1462. WRITE(MAX6675_SS, 1);
  1463. if (max6675_temp & 4)
  1464. {
  1465. // thermocouple open
  1466. max6675_temp = 2000;
  1467. }
  1468. else
  1469. {
  1470. max6675_temp = max6675_temp >> 3;
  1471. }
  1472. return max6675_temp;
  1473. }
  1474. #endif
  1475. extern "C" {
  1476. void adc_ready(void) //callback from adc when sampling finished
  1477. {
  1478. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1479. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1480. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1481. #ifdef VOLT_PWR_PIN
  1482. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1483. #endif
  1484. #ifdef AMBIENT_THERMISTOR
  1485. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1486. #endif //AMBIENT_THERMISTOR
  1487. #ifdef VOLT_BED_PIN
  1488. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1489. #endif
  1490. temp_meas_ready = true;
  1491. }
  1492. } // extern "C"
  1493. // Timer2 (originaly timer0) is shared with millies
  1494. #ifdef SYSTEM_TIMER_2
  1495. ISR(TIMER2_COMPB_vect)
  1496. #else //SYSTEM_TIMER_2
  1497. ISR(TIMER0_COMPB_vect)
  1498. #endif //SYSTEM_TIMER_2
  1499. {
  1500. static bool _lock = false;
  1501. if (_lock) return;
  1502. _lock = true;
  1503. asm("sei");
  1504. if (!temp_meas_ready) adc_cycle();
  1505. lcd_buttons_update();
  1506. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1507. static unsigned char soft_pwm_0;
  1508. #ifdef SLOW_PWM_HEATERS
  1509. static unsigned char slow_pwm_count = 0;
  1510. static unsigned char state_heater_0 = 0;
  1511. static unsigned char state_timer_heater_0 = 0;
  1512. #endif
  1513. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1514. static unsigned char soft_pwm_1;
  1515. #ifdef SLOW_PWM_HEATERS
  1516. static unsigned char state_heater_1 = 0;
  1517. static unsigned char state_timer_heater_1 = 0;
  1518. #endif
  1519. #endif
  1520. #if EXTRUDERS > 2
  1521. static unsigned char soft_pwm_2;
  1522. #ifdef SLOW_PWM_HEATERS
  1523. static unsigned char state_heater_2 = 0;
  1524. static unsigned char state_timer_heater_2 = 0;
  1525. #endif
  1526. #endif
  1527. #if HEATER_BED_PIN > -1
  1528. static unsigned char soft_pwm_b;
  1529. #ifdef SLOW_PWM_HEATERS
  1530. static unsigned char state_heater_b = 0;
  1531. static unsigned char state_timer_heater_b = 0;
  1532. #endif
  1533. #endif
  1534. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1535. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1536. #endif
  1537. #ifndef SLOW_PWM_HEATERS
  1538. /*
  1539. * standard PWM modulation
  1540. */
  1541. if (pwm_count == 0)
  1542. {
  1543. soft_pwm_0 = soft_pwm[0];
  1544. if(soft_pwm_0 > 0)
  1545. {
  1546. WRITE(HEATER_0_PIN,1);
  1547. #ifdef HEATERS_PARALLEL
  1548. WRITE(HEATER_1_PIN,1);
  1549. #endif
  1550. } else WRITE(HEATER_0_PIN,0);
  1551. #if EXTRUDERS > 1
  1552. soft_pwm_1 = soft_pwm[1];
  1553. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1554. #endif
  1555. #if EXTRUDERS > 2
  1556. soft_pwm_2 = soft_pwm[2];
  1557. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1558. #endif
  1559. }
  1560. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1561. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1562. {
  1563. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1564. #ifndef SYSTEM_TIMER_2
  1565. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1566. #endif //SYSTEM_TIMER_2
  1567. }
  1568. #endif
  1569. #ifdef FAN_SOFT_PWM
  1570. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1571. {
  1572. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1573. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1574. }
  1575. #endif
  1576. if(soft_pwm_0 < pwm_count)
  1577. {
  1578. WRITE(HEATER_0_PIN,0);
  1579. #ifdef HEATERS_PARALLEL
  1580. WRITE(HEATER_1_PIN,0);
  1581. #endif
  1582. }
  1583. #if EXTRUDERS > 1
  1584. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1585. #endif
  1586. #if EXTRUDERS > 2
  1587. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1588. #endif
  1589. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1590. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))) WRITE(HEATER_BED_PIN,0);
  1591. #endif
  1592. #ifdef FAN_SOFT_PWM
  1593. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1594. #endif
  1595. pwm_count += (1 << SOFT_PWM_SCALE);
  1596. pwm_count &= 0x7f;
  1597. #else //ifndef SLOW_PWM_HEATERS
  1598. /*
  1599. * SLOW PWM HEATERS
  1600. *
  1601. * for heaters drived by relay
  1602. */
  1603. #ifndef MIN_STATE_TIME
  1604. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1605. #endif
  1606. if (slow_pwm_count == 0) {
  1607. // EXTRUDER 0
  1608. soft_pwm_0 = soft_pwm[0];
  1609. if (soft_pwm_0 > 0) {
  1610. // turn ON heather only if the minimum time is up
  1611. if (state_timer_heater_0 == 0) {
  1612. // if change state set timer
  1613. if (state_heater_0 == 0) {
  1614. state_timer_heater_0 = MIN_STATE_TIME;
  1615. }
  1616. state_heater_0 = 1;
  1617. WRITE(HEATER_0_PIN, 1);
  1618. #ifdef HEATERS_PARALLEL
  1619. WRITE(HEATER_1_PIN, 1);
  1620. #endif
  1621. }
  1622. } else {
  1623. // turn OFF heather only if the minimum time is up
  1624. if (state_timer_heater_0 == 0) {
  1625. // if change state set timer
  1626. if (state_heater_0 == 1) {
  1627. state_timer_heater_0 = MIN_STATE_TIME;
  1628. }
  1629. state_heater_0 = 0;
  1630. WRITE(HEATER_0_PIN, 0);
  1631. #ifdef HEATERS_PARALLEL
  1632. WRITE(HEATER_1_PIN, 0);
  1633. #endif
  1634. }
  1635. }
  1636. #if EXTRUDERS > 1
  1637. // EXTRUDER 1
  1638. soft_pwm_1 = soft_pwm[1];
  1639. if (soft_pwm_1 > 0) {
  1640. // turn ON heather only if the minimum time is up
  1641. if (state_timer_heater_1 == 0) {
  1642. // if change state set timer
  1643. if (state_heater_1 == 0) {
  1644. state_timer_heater_1 = MIN_STATE_TIME;
  1645. }
  1646. state_heater_1 = 1;
  1647. WRITE(HEATER_1_PIN, 1);
  1648. }
  1649. } else {
  1650. // turn OFF heather only if the minimum time is up
  1651. if (state_timer_heater_1 == 0) {
  1652. // if change state set timer
  1653. if (state_heater_1 == 1) {
  1654. state_timer_heater_1 = MIN_STATE_TIME;
  1655. }
  1656. state_heater_1 = 0;
  1657. WRITE(HEATER_1_PIN, 0);
  1658. }
  1659. }
  1660. #endif
  1661. #if EXTRUDERS > 2
  1662. // EXTRUDER 2
  1663. soft_pwm_2 = soft_pwm[2];
  1664. if (soft_pwm_2 > 0) {
  1665. // turn ON heather only if the minimum time is up
  1666. if (state_timer_heater_2 == 0) {
  1667. // if change state set timer
  1668. if (state_heater_2 == 0) {
  1669. state_timer_heater_2 = MIN_STATE_TIME;
  1670. }
  1671. state_heater_2 = 1;
  1672. WRITE(HEATER_2_PIN, 1);
  1673. }
  1674. } else {
  1675. // turn OFF heather only if the minimum time is up
  1676. if (state_timer_heater_2 == 0) {
  1677. // if change state set timer
  1678. if (state_heater_2 == 1) {
  1679. state_timer_heater_2 = MIN_STATE_TIME;
  1680. }
  1681. state_heater_2 = 0;
  1682. WRITE(HEATER_2_PIN, 0);
  1683. }
  1684. }
  1685. #endif
  1686. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1687. // BED
  1688. soft_pwm_b = soft_pwm_bed;
  1689. if (soft_pwm_b > 0) {
  1690. // turn ON heather only if the minimum time is up
  1691. if (state_timer_heater_b == 0) {
  1692. // if change state set timer
  1693. if (state_heater_b == 0) {
  1694. state_timer_heater_b = MIN_STATE_TIME;
  1695. }
  1696. state_heater_b = 1;
  1697. //WRITE(HEATER_BED_PIN, 1);
  1698. }
  1699. } else {
  1700. // turn OFF heather only if the minimum time is up
  1701. if (state_timer_heater_b == 0) {
  1702. // if change state set timer
  1703. if (state_heater_b == 1) {
  1704. state_timer_heater_b = MIN_STATE_TIME;
  1705. }
  1706. state_heater_b = 0;
  1707. WRITE(HEATER_BED_PIN, 0);
  1708. }
  1709. }
  1710. #endif
  1711. } // if (slow_pwm_count == 0)
  1712. // EXTRUDER 0
  1713. if (soft_pwm_0 < slow_pwm_count) {
  1714. // turn OFF heather only if the minimum time is up
  1715. if (state_timer_heater_0 == 0) {
  1716. // if change state set timer
  1717. if (state_heater_0 == 1) {
  1718. state_timer_heater_0 = MIN_STATE_TIME;
  1719. }
  1720. state_heater_0 = 0;
  1721. WRITE(HEATER_0_PIN, 0);
  1722. #ifdef HEATERS_PARALLEL
  1723. WRITE(HEATER_1_PIN, 0);
  1724. #endif
  1725. }
  1726. }
  1727. #if EXTRUDERS > 1
  1728. // EXTRUDER 1
  1729. if (soft_pwm_1 < slow_pwm_count) {
  1730. // turn OFF heather only if the minimum time is up
  1731. if (state_timer_heater_1 == 0) {
  1732. // if change state set timer
  1733. if (state_heater_1 == 1) {
  1734. state_timer_heater_1 = MIN_STATE_TIME;
  1735. }
  1736. state_heater_1 = 0;
  1737. WRITE(HEATER_1_PIN, 0);
  1738. }
  1739. }
  1740. #endif
  1741. #if EXTRUDERS > 2
  1742. // EXTRUDER 2
  1743. if (soft_pwm_2 < slow_pwm_count) {
  1744. // turn OFF heather only if the minimum time is up
  1745. if (state_timer_heater_2 == 0) {
  1746. // if change state set timer
  1747. if (state_heater_2 == 1) {
  1748. state_timer_heater_2 = MIN_STATE_TIME;
  1749. }
  1750. state_heater_2 = 0;
  1751. WRITE(HEATER_2_PIN, 0);
  1752. }
  1753. }
  1754. #endif
  1755. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1756. // BED
  1757. if (soft_pwm_b < slow_pwm_count) {
  1758. // turn OFF heather only if the minimum time is up
  1759. if (state_timer_heater_b == 0) {
  1760. // if change state set timer
  1761. if (state_heater_b == 1) {
  1762. state_timer_heater_b = MIN_STATE_TIME;
  1763. }
  1764. state_heater_b = 0;
  1765. WRITE(HEATER_BED_PIN, 0);
  1766. }
  1767. }
  1768. #endif
  1769. #ifdef FAN_SOFT_PWM
  1770. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1771. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1772. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1773. }
  1774. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1775. #endif
  1776. pwm_count += (1 << SOFT_PWM_SCALE);
  1777. pwm_count &= 0x7f;
  1778. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1779. if ((pwm_count % 64) == 0) {
  1780. slow_pwm_count++;
  1781. slow_pwm_count &= 0x7f;
  1782. // Extruder 0
  1783. if (state_timer_heater_0 > 0) {
  1784. state_timer_heater_0--;
  1785. }
  1786. #if EXTRUDERS > 1
  1787. // Extruder 1
  1788. if (state_timer_heater_1 > 0)
  1789. state_timer_heater_1--;
  1790. #endif
  1791. #if EXTRUDERS > 2
  1792. // Extruder 2
  1793. if (state_timer_heater_2 > 0)
  1794. state_timer_heater_2--;
  1795. #endif
  1796. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1797. // Bed
  1798. if (state_timer_heater_b > 0)
  1799. state_timer_heater_b--;
  1800. #endif
  1801. } //if ((pwm_count % 64) == 0) {
  1802. #endif //ifndef SLOW_PWM_HEATERS
  1803. #ifdef BABYSTEPPING
  1804. for(uint8_t axis=0;axis<3;axis++)
  1805. {
  1806. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1807. if(curTodo>0)
  1808. {
  1809. asm("cli");
  1810. babystep(axis,/*fwd*/true);
  1811. babystepsTodo[axis]--; //less to do next time
  1812. asm("sei");
  1813. }
  1814. else
  1815. if(curTodo<0)
  1816. {
  1817. asm("cli");
  1818. babystep(axis,/*fwd*/false);
  1819. babystepsTodo[axis]++; //less to do next time
  1820. asm("sei");
  1821. }
  1822. }
  1823. #endif //BABYSTEPPING
  1824. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1825. check_fans();
  1826. #endif //(defined(TACH_0))
  1827. _lock = false;
  1828. }
  1829. void check_max_temp()
  1830. {
  1831. //heater
  1832. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1833. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1834. #else
  1835. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1836. #endif
  1837. max_temp_error(0);
  1838. }
  1839. //bed
  1840. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1841. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1842. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1843. #else
  1844. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1845. #endif
  1846. target_temperature_bed = 0;
  1847. bed_max_temp_error();
  1848. }
  1849. #endif
  1850. }
  1851. //! number of repeating the same state with consecutive step() calls
  1852. //! used to slow down text switching
  1853. struct alert_automaton_mintemp {
  1854. private:
  1855. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1856. enum class States : uint8_t { INIT = 0, TEMP_ABOVE_MINTEMP, SHOW_PLEASE_RESTART, SHOW_MINTEMP };
  1857. States state = States::INIT;
  1858. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1859. void substep(States next_state){
  1860. if( repeat == 0 ){
  1861. state = next_state; // advance to the next state
  1862. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1863. } else {
  1864. --repeat;
  1865. }
  1866. }
  1867. public:
  1868. //! brief state automaton step routine
  1869. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1870. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1871. void step(float current_temp, float mintemp){
  1872. static const char m2[] PROGMEM = "MINTEMP fixed";
  1873. static const char m1[] PROGMEM = "Please restart";
  1874. switch(state){
  1875. case States::INIT: // initial state - check hysteresis
  1876. if( current_temp > mintemp ){
  1877. state = States::TEMP_ABOVE_MINTEMP;
  1878. }
  1879. // otherwise keep the Err MINTEMP alert message on the display,
  1880. // i.e. do not transfer to state 1
  1881. break;
  1882. case States::TEMP_ABOVE_MINTEMP: // the temperature has risen above the hysteresis check
  1883. lcd_setalertstatuspgm(m2);
  1884. substep(States::SHOW_MINTEMP);
  1885. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1886. break;
  1887. case States::SHOW_PLEASE_RESTART: // displaying "Please restart"
  1888. lcd_updatestatuspgm(m1);
  1889. substep(States::SHOW_MINTEMP);
  1890. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1891. break;
  1892. case States::SHOW_MINTEMP: // displaying "MINTEMP fixed"
  1893. lcd_updatestatuspgm(m2);
  1894. substep(States::SHOW_PLEASE_RESTART);
  1895. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1896. break;
  1897. }
  1898. }
  1899. };
  1900. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1901. void check_min_temp_heater0()
  1902. {
  1903. //heater
  1904. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1905. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1906. #else
  1907. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1908. #endif
  1909. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1910. min_temp_error(0);
  1911. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1912. // no recovery, just force the user to restart the printer
  1913. // which is a safer variant than just continuing printing
  1914. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1915. // we shall signalize, that MINTEMP has been fixed
  1916. // Code notice: normally the alert_automaton instance would have been placed here
  1917. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1918. // due to stupid compiler that takes 16 more bytes.
  1919. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1920. }
  1921. }
  1922. void check_min_temp_bed()
  1923. {
  1924. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1925. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1926. #else
  1927. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1928. #endif
  1929. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1930. bed_min_temp_error();
  1931. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1932. // no recovery, just force the user to restart the printer
  1933. // which is a safer variant than just continuing printing
  1934. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1935. }
  1936. }
  1937. void check_min_temp()
  1938. {
  1939. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1940. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1941. #ifdef AMBIENT_THERMISTOR
  1942. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1943. { // ambient temperature is low
  1944. #endif //AMBIENT_THERMISTOR
  1945. // *** 'common' part of code for MK2.5 & MK3
  1946. // * nozzle checking
  1947. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1948. { // ~ nozzle heating is on
  1949. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1950. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1951. {
  1952. bCheckingOnHeater=true; // not necessary
  1953. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1954. }
  1955. }
  1956. else { // ~ nozzle heating is off
  1957. oTimer4minTempHeater.start();
  1958. bCheckingOnHeater=false;
  1959. }
  1960. // * bed checking
  1961. if(target_temperature_bed>BED_MINTEMP)
  1962. { // ~ bed heating is on
  1963. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1964. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1965. {
  1966. bCheckingOnBed=true; // not necessary
  1967. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1968. }
  1969. }
  1970. else { // ~ bed heating is off
  1971. oTimer4minTempBed.start();
  1972. bCheckingOnBed=false;
  1973. }
  1974. // *** end of 'common' part
  1975. #ifdef AMBIENT_THERMISTOR
  1976. }
  1977. else { // ambient temperature is standard
  1978. check_min_temp_heater0();
  1979. check_min_temp_bed();
  1980. }
  1981. #endif //AMBIENT_THERMISTOR
  1982. }
  1983. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1984. void check_fans() {
  1985. #ifdef FAN_SOFT_PWM
  1986. if (READ(TACH_0) != fan_state[0]) {
  1987. if(fan_measuring) fan_edge_counter[0] ++;
  1988. fan_state[0] = !fan_state[0];
  1989. }
  1990. #else //FAN_SOFT_PWM
  1991. if (READ(TACH_0) != fan_state[0]) {
  1992. fan_edge_counter[0] ++;
  1993. fan_state[0] = !fan_state[0];
  1994. }
  1995. #endif
  1996. //if (READ(TACH_1) != fan_state[1]) {
  1997. // fan_edge_counter[1] ++;
  1998. // fan_state[1] = !fan_state[1];
  1999. //}
  2000. }
  2001. #endif //TACH_0
  2002. #ifdef PIDTEMP
  2003. // Apply the scale factors to the PID values
  2004. float scalePID_i(float i)
  2005. {
  2006. return i*PID_dT;
  2007. }
  2008. float unscalePID_i(float i)
  2009. {
  2010. return i/PID_dT;
  2011. }
  2012. float scalePID_d(float d)
  2013. {
  2014. return d/PID_dT;
  2015. }
  2016. float unscalePID_d(float d)
  2017. {
  2018. return d*PID_dT;
  2019. }
  2020. #endif //PIDTEMP