Marlin_main.cpp 309 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int8_t lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. // For tracing an arc
  402. static float offset[3] = {0.0, 0.0, 0.0};
  403. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  404. // Determines Absolute or Relative Coordinates.
  405. // Also there is bool axis_relative_modes[] per axis flag.
  406. static bool relative_mode = false;
  407. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  408. //static float tt = 0;
  409. //static float bt = 0;
  410. //Inactivity shutdown variables
  411. static unsigned long previous_millis_cmd = 0;
  412. unsigned long max_inactive_time = 0;
  413. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  414. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  415. unsigned long starttime=0;
  416. unsigned long stoptime=0;
  417. unsigned long _usb_timer = 0;
  418. static uint8_t tmp_extruder;
  419. bool extruder_under_pressure = true;
  420. bool Stopped=false;
  421. #if NUM_SERVOS > 0
  422. Servo servos[NUM_SERVOS];
  423. #endif
  424. bool CooldownNoWait = true;
  425. bool target_direction;
  426. //Insert variables if CHDK is defined
  427. #ifdef CHDK
  428. unsigned long chdkHigh = 0;
  429. boolean chdkActive = false;
  430. #endif
  431. // save/restore printing
  432. static uint32_t saved_sdpos = 0;
  433. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  434. static float saved_pos[4] = { 0, 0, 0, 0 };
  435. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  436. static float saved_feedrate2 = 0;
  437. static uint8_t saved_active_extruder = 0;
  438. static bool saved_extruder_under_pressure = false;
  439. static bool saved_extruder_relative_mode = false;
  440. //===========================================================================
  441. //=============================Routines======================================
  442. //===========================================================================
  443. static void get_arc_coordinates();
  444. static bool setTargetedHotend(int code);
  445. static void print_time_remaining_init();
  446. uint16_t gcode_in_progress = 0;
  447. uint16_t mcode_in_progress = 0;
  448. void serial_echopair_P(const char *s_P, float v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, double v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, unsigned long v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. #ifdef SDSUPPORT
  455. #include "SdFatUtil.h"
  456. int freeMemory() { return SdFatUtil::FreeRam(); }
  457. #else
  458. extern "C" {
  459. extern unsigned int __bss_end;
  460. extern unsigned int __heap_start;
  461. extern void *__brkval;
  462. int freeMemory() {
  463. int free_memory;
  464. if ((int)__brkval == 0)
  465. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  466. else
  467. free_memory = ((int)&free_memory) - ((int)__brkval);
  468. return free_memory;
  469. }
  470. }
  471. #endif //!SDSUPPORT
  472. void setup_killpin()
  473. {
  474. #if defined(KILL_PIN) && KILL_PIN > -1
  475. SET_INPUT(KILL_PIN);
  476. WRITE(KILL_PIN,HIGH);
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. SET_OUTPUT(PHOTOGRAPH_PIN);
  491. WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  501. SET_OUTPUT(PS_ON_PIN);
  502. #if defined(PS_DEFAULT_OFF)
  503. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. SET_OUTPUT(SUICIDE_PIN);
  513. WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. }
  534. void stop_and_save_print_to_ram(float z_move, float e_move);
  535. void restore_print_from_ram_and_continue(float e_move);
  536. bool fans_check_enabled = true;
  537. #ifdef TMC2130
  538. extern int8_t CrashDetectMenu;
  539. void crashdet_enable()
  540. {
  541. tmc2130_sg_stop_on_crash = true;
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  543. CrashDetectMenu = 1;
  544. }
  545. void crashdet_disable()
  546. {
  547. tmc2130_sg_stop_on_crash = false;
  548. tmc2130_sg_crash = 0;
  549. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  550. CrashDetectMenu = 0;
  551. }
  552. void crashdet_stop_and_save_print()
  553. {
  554. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  555. }
  556. void crashdet_restore_print_and_continue()
  557. {
  558. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  559. // babystep_apply();
  560. }
  561. void crashdet_stop_and_save_print2()
  562. {
  563. cli();
  564. planner_abort_hard(); //abort printing
  565. cmdqueue_reset(); //empty cmdqueue
  566. card.sdprinting = false;
  567. card.closefile();
  568. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  569. st_reset_timer();
  570. sei();
  571. }
  572. void crashdet_detected(uint8_t mask)
  573. {
  574. st_synchronize();
  575. static uint8_t crashDet_counter = 0;
  576. bool automatic_recovery_after_crash = true;
  577. if (crashDet_counter++ == 0) {
  578. crashDetTimer.start();
  579. }
  580. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  581. crashDetTimer.stop();
  582. crashDet_counter = 0;
  583. }
  584. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  585. automatic_recovery_after_crash = false;
  586. crashDetTimer.stop();
  587. crashDet_counter = 0;
  588. }
  589. else {
  590. crashDetTimer.start();
  591. }
  592. lcd_update_enable(true);
  593. lcd_clear();
  594. lcd_update(2);
  595. if (mask & X_AXIS_MASK)
  596. {
  597. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  598. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  599. }
  600. if (mask & Y_AXIS_MASK)
  601. {
  602. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  603. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  604. }
  605. lcd_update_enable(true);
  606. lcd_update(2);
  607. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  608. gcode_G28(true, true, false); //home X and Y
  609. st_synchronize();
  610. if (automatic_recovery_after_crash) {
  611. enquecommand_P(PSTR("CRASH_RECOVER"));
  612. }else{
  613. HotendTempBckp = degTargetHotend(active_extruder);
  614. setTargetHotend(0, active_extruder);
  615. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  616. lcd_update_enable(true);
  617. if (yesno)
  618. {
  619. char cmd1[10];
  620. strcpy(cmd1, "M109 S");
  621. strcat(cmd1, ftostr3(HotendTempBckp));
  622. enquecommand(cmd1);
  623. enquecommand_P(PSTR("CRASH_RECOVER"));
  624. }
  625. else
  626. {
  627. enquecommand_P(PSTR("CRASH_CANCEL"));
  628. }
  629. }
  630. }
  631. void crashdet_recover()
  632. {
  633. crashdet_restore_print_and_continue();
  634. tmc2130_sg_stop_on_crash = true;
  635. }
  636. void crashdet_cancel()
  637. {
  638. tmc2130_sg_stop_on_crash = true;
  639. if (saved_printing_type == PRINTING_TYPE_SD) {
  640. lcd_print_stop();
  641. }else if(saved_printing_type == PRINTING_TYPE_USB){
  642. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  643. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  644. }
  645. }
  646. #endif //TMC2130
  647. void failstats_reset_print()
  648. {
  649. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  653. }
  654. #ifdef MESH_BED_LEVELING
  655. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  656. #endif
  657. // Factory reset function
  658. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  659. // Level input parameter sets depth of reset
  660. // Quiet parameter masks all waitings for user interact.
  661. int er_progress = 0;
  662. void factory_reset(char level, bool quiet)
  663. {
  664. lcd_clear();
  665. switch (level) {
  666. // Level 0: Language reset
  667. case 0:
  668. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  669. WRITE(BEEPER, HIGH);
  670. _delay_ms(100);
  671. WRITE(BEEPER, LOW);
  672. lang_reset();
  673. break;
  674. //Level 1: Reset statistics
  675. case 1:
  676. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  677. WRITE(BEEPER, HIGH);
  678. _delay_ms(100);
  679. WRITE(BEEPER, LOW);
  680. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  681. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  682. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  683. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  684. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  685. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  686. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  687. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  688. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  689. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  690. lcd_menu_statistics();
  691. break;
  692. // Level 2: Prepare for shipping
  693. case 2:
  694. //lcd_puts_P(PSTR("Factory RESET"));
  695. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  696. // Force language selection at the next boot up.
  697. lang_reset();
  698. // Force the "Follow calibration flow" message at the next boot up.
  699. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  700. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  701. farm_no = 0;
  702. farm_mode = false;
  703. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  704. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  705. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  706. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  707. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  708. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  709. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  710. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  711. #ifdef FILAMENT_SENSOR
  712. fsensor_enable();
  713. fsensor_autoload_set(true);
  714. #endif //FILAMENT_SENSOR
  715. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  716. WRITE(BEEPER, HIGH);
  717. _delay_ms(100);
  718. WRITE(BEEPER, LOW);
  719. //_delay_ms(2000);
  720. break;
  721. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  722. case 3:
  723. lcd_puts_P(PSTR("Factory RESET"));
  724. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  725. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  726. WRITE(BEEPER, HIGH);
  727. _delay_ms(100);
  728. WRITE(BEEPER, LOW);
  729. er_progress = 0;
  730. lcd_puts_at_P(3, 3, PSTR(" "));
  731. lcd_set_cursor(3, 3);
  732. lcd_print(er_progress);
  733. // Erase EEPROM
  734. for (int i = 0; i < 4096; i++) {
  735. eeprom_write_byte((uint8_t*)i, 0xFF);
  736. if (i % 41 == 0) {
  737. er_progress++;
  738. lcd_puts_at_P(3, 3, PSTR(" "));
  739. lcd_set_cursor(3, 3);
  740. lcd_print(er_progress);
  741. lcd_puts_P(PSTR("%"));
  742. }
  743. }
  744. break;
  745. case 4:
  746. bowden_menu();
  747. break;
  748. default:
  749. break;
  750. }
  751. }
  752. FILE _uartout = {0};
  753. int uart_putchar(char c, FILE *stream)
  754. {
  755. MYSERIAL.write(c);
  756. return 0;
  757. }
  758. void lcd_splash()
  759. {
  760. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  761. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  762. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  763. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  764. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  765. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  766. }
  767. void factory_reset()
  768. {
  769. KEEPALIVE_STATE(PAUSED_FOR_USER);
  770. if (!READ(BTN_ENC))
  771. {
  772. _delay_ms(1000);
  773. if (!READ(BTN_ENC))
  774. {
  775. lcd_clear();
  776. lcd_puts_P(PSTR("Factory RESET"));
  777. SET_OUTPUT(BEEPER);
  778. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  779. WRITE(BEEPER, HIGH);
  780. while (!READ(BTN_ENC));
  781. WRITE(BEEPER, LOW);
  782. _delay_ms(2000);
  783. char level = reset_menu();
  784. factory_reset(level, false);
  785. switch (level) {
  786. case 0: _delay_ms(0); break;
  787. case 1: _delay_ms(0); break;
  788. case 2: _delay_ms(0); break;
  789. case 3: _delay_ms(0); break;
  790. }
  791. // _delay_ms(100);
  792. /*
  793. #ifdef MESH_BED_LEVELING
  794. _delay_ms(2000);
  795. if (!READ(BTN_ENC))
  796. {
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. _delay_ms(200);
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. int _z = 0;
  805. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  806. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  807. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  809. }
  810. else
  811. {
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. }
  816. #endif // mesh */
  817. }
  818. }
  819. else
  820. {
  821. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  822. }
  823. KEEPALIVE_STATE(IN_HANDLER);
  824. }
  825. void show_fw_version_warnings() {
  826. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  827. switch (FW_DEV_VERSION) {
  828. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  829. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  830. case(FW_VERSION_DEVEL):
  831. case(FW_VERSION_DEBUG):
  832. lcd_update_enable(false);
  833. lcd_clear();
  834. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  835. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  836. #else
  837. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  838. #endif
  839. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  840. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  841. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  842. lcd_wait_for_click();
  843. break;
  844. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  845. }
  846. lcd_update_enable(true);
  847. }
  848. uint8_t check_printer_version()
  849. {
  850. uint8_t version_changed = 0;
  851. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  852. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  853. if (printer_type != PRINTER_TYPE) {
  854. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  855. else version_changed |= 0b10;
  856. }
  857. if (motherboard != MOTHERBOARD) {
  858. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  859. else version_changed |= 0b01;
  860. }
  861. return version_changed;
  862. }
  863. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  864. {
  865. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  866. }
  867. #ifdef BOOTAPP
  868. #include "bootapp.h" //bootloader support
  869. #endif //BOOTAPP
  870. #if (LANG_MODE != 0) //secondary language support
  871. #ifdef W25X20CL
  872. // language update from external flash
  873. #define LANGBOOT_BLOCKSIZE 0x1000u
  874. #define LANGBOOT_RAMBUFFER 0x0800
  875. void update_sec_lang_from_external_flash()
  876. {
  877. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  878. {
  879. uint8_t lang = boot_reserved >> 4;
  880. uint8_t state = boot_reserved & 0xf;
  881. lang_table_header_t header;
  882. uint32_t src_addr;
  883. if (lang_get_header(lang, &header, &src_addr))
  884. {
  885. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  886. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  887. delay(100);
  888. boot_reserved = (state + 1) | (lang << 4);
  889. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  890. {
  891. cli();
  892. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  893. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  894. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  895. if (state == 0)
  896. {
  897. //TODO - check header integrity
  898. }
  899. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  900. }
  901. else
  902. {
  903. //TODO - check sec lang data integrity
  904. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  905. }
  906. }
  907. }
  908. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  909. }
  910. #ifdef DEBUG_W25X20CL
  911. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  912. {
  913. lang_table_header_t header;
  914. uint8_t count = 0;
  915. uint32_t addr = 0x00000;
  916. while (1)
  917. {
  918. printf_P(_n("LANGTABLE%d:"), count);
  919. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  920. if (header.magic != LANG_MAGIC)
  921. {
  922. printf_P(_n("NG!\n"));
  923. break;
  924. }
  925. printf_P(_n("OK\n"));
  926. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  927. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  928. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  929. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  930. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  931. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  932. addr += header.size;
  933. codes[count] = header.code;
  934. count ++;
  935. }
  936. return count;
  937. }
  938. void list_sec_lang_from_external_flash()
  939. {
  940. uint16_t codes[8];
  941. uint8_t count = lang_xflash_enum_codes(codes);
  942. printf_P(_n("XFlash lang count = %hhd\n"), count);
  943. }
  944. #endif //DEBUG_W25X20CL
  945. #endif //W25X20CL
  946. #endif //(LANG_MODE != 0)
  947. // "Setup" function is called by the Arduino framework on startup.
  948. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  949. // are initialized by the main() routine provided by the Arduino framework.
  950. void setup()
  951. {
  952. ultralcd_init();
  953. spi_init();
  954. lcd_splash();
  955. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  956. #ifdef W25X20CL
  957. if (!w25x20cl_init())
  958. kill(_i("External SPI flash W25X20CL not responding."));
  959. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  960. optiboot_w25x20cl_enter();
  961. #endif
  962. #if (LANG_MODE != 0) //secondary language support
  963. #ifdef W25X20CL
  964. if (w25x20cl_init())
  965. update_sec_lang_from_external_flash();
  966. #endif //W25X20CL
  967. #endif //(LANG_MODE != 0)
  968. setup_killpin();
  969. setup_powerhold();
  970. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  971. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  972. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  973. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  974. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  975. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  976. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  977. if (farm_mode)
  978. {
  979. no_response = true; //we need confirmation by recieving PRUSA thx
  980. important_status = 8;
  981. prusa_statistics(8);
  982. selectedSerialPort = 1;
  983. #ifdef TMC2130
  984. //increased extruder current (PFW363)
  985. tmc2130_current_h[E_AXIS] = 36;
  986. tmc2130_current_r[E_AXIS] = 36;
  987. #endif //TMC2130
  988. #ifdef FILAMENT_SENSOR
  989. //disabled filament autoload (PFW360)
  990. fsensor_autoload_set(false);
  991. #endif //FILAMENT_SENSOR
  992. }
  993. MYSERIAL.begin(BAUDRATE);
  994. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  995. stdout = uartout;
  996. SERIAL_PROTOCOLLNPGM("start");
  997. SERIAL_ECHO_START;
  998. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  999. uart2_init();
  1000. #ifdef DEBUG_SEC_LANG
  1001. lang_table_header_t header;
  1002. uint32_t src_addr = 0x00000;
  1003. if (lang_get_header(1, &header, &src_addr))
  1004. {
  1005. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1006. #define LT_PRINT_TEST 2
  1007. // flash usage
  1008. // total p.test
  1009. //0 252718 t+c text code
  1010. //1 253142 424 170 254
  1011. //2 253040 322 164 158
  1012. //3 253248 530 135 395
  1013. #if (LT_PRINT_TEST==1) //not optimized printf
  1014. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1015. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1016. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1017. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1018. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1019. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1020. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1021. #elif (LT_PRINT_TEST==2) //optimized printf
  1022. printf_P(
  1023. _n(
  1024. " _src_addr = 0x%08lx\n"
  1025. " _lt_magic = 0x%08lx %S\n"
  1026. " _lt_size = 0x%04x (%d)\n"
  1027. " _lt_count = 0x%04x (%d)\n"
  1028. " _lt_chsum = 0x%04x\n"
  1029. " _lt_code = 0x%04x (%c%c)\n"
  1030. " _lt_resv1 = 0x%08lx\n"
  1031. ),
  1032. src_addr,
  1033. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1034. header.size, header.size,
  1035. header.count, header.count,
  1036. header.checksum,
  1037. header.code, header.code >> 8, header.code & 0xff,
  1038. header.signature
  1039. );
  1040. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1041. MYSERIAL.print(" _src_addr = 0x");
  1042. MYSERIAL.println(src_addr, 16);
  1043. MYSERIAL.print(" _lt_magic = 0x");
  1044. MYSERIAL.print(header.magic, 16);
  1045. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1046. MYSERIAL.print(" _lt_size = 0x");
  1047. MYSERIAL.print(header.size, 16);
  1048. MYSERIAL.print(" (");
  1049. MYSERIAL.print(header.size, 10);
  1050. MYSERIAL.println(")");
  1051. MYSERIAL.print(" _lt_count = 0x");
  1052. MYSERIAL.print(header.count, 16);
  1053. MYSERIAL.print(" (");
  1054. MYSERIAL.print(header.count, 10);
  1055. MYSERIAL.println(")");
  1056. MYSERIAL.print(" _lt_chsum = 0x");
  1057. MYSERIAL.println(header.checksum, 16);
  1058. MYSERIAL.print(" _lt_code = 0x");
  1059. MYSERIAL.print(header.code, 16);
  1060. MYSERIAL.print(" (");
  1061. MYSERIAL.print((char)(header.code >> 8), 0);
  1062. MYSERIAL.print((char)(header.code & 0xff), 0);
  1063. MYSERIAL.println(")");
  1064. MYSERIAL.print(" _lt_resv1 = 0x");
  1065. MYSERIAL.println(header.signature, 16);
  1066. #endif //(LT_PRINT_TEST==)
  1067. #undef LT_PRINT_TEST
  1068. #if 0
  1069. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1070. for (uint16_t i = 0; i < 1024; i++)
  1071. {
  1072. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1073. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1074. if ((i % 16) == 15) putchar('\n');
  1075. }
  1076. #endif
  1077. uint16_t sum = 0;
  1078. for (uint16_t i = 0; i < header.size; i++)
  1079. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1080. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1081. sum -= header.checksum; //subtract checksum
  1082. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1083. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1084. if (sum == header.checksum)
  1085. printf_P(_n("Checksum OK\n"), sum);
  1086. else
  1087. printf_P(_n("Checksum NG\n"), sum);
  1088. }
  1089. else
  1090. printf_P(_n("lang_get_header failed!\n"));
  1091. #if 0
  1092. for (uint16_t i = 0; i < 1024*10; i++)
  1093. {
  1094. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1095. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1096. if ((i % 16) == 15) putchar('\n');
  1097. }
  1098. #endif
  1099. #if 0
  1100. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1101. for (int i = 0; i < 4096; ++i) {
  1102. int b = eeprom_read_byte((unsigned char*)i);
  1103. if (b != 255) {
  1104. SERIAL_ECHO(i);
  1105. SERIAL_ECHO(":");
  1106. SERIAL_ECHO(b);
  1107. SERIAL_ECHOLN("");
  1108. }
  1109. }
  1110. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1111. #endif
  1112. #endif //DEBUG_SEC_LANG
  1113. // Check startup - does nothing if bootloader sets MCUSR to 0
  1114. byte mcu = MCUSR;
  1115. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1116. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1117. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1118. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1119. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1120. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1121. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1122. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1123. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1124. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1125. MCUSR = 0;
  1126. //SERIAL_ECHORPGM(MSG_MARLIN);
  1127. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1128. #ifdef STRING_VERSION_CONFIG_H
  1129. #ifdef STRING_CONFIG_H_AUTHOR
  1130. SERIAL_ECHO_START;
  1131. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1132. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1133. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1134. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1135. SERIAL_ECHOPGM("Compiled: ");
  1136. SERIAL_ECHOLNPGM(__DATE__);
  1137. #endif
  1138. #endif
  1139. SERIAL_ECHO_START;
  1140. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1141. SERIAL_ECHO(freeMemory());
  1142. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1143. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1144. //lcd_update_enable(false); // why do we need this?? - andre
  1145. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1146. bool previous_settings_retrieved = false;
  1147. uint8_t hw_changed = check_printer_version();
  1148. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1149. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1150. }
  1151. else { //printer version was changed so use default settings
  1152. Config_ResetDefault();
  1153. }
  1154. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1155. tp_init(); // Initialize temperature loop
  1156. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1157. plan_init(); // Initialize planner;
  1158. factory_reset();
  1159. #ifdef TMC2130
  1160. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1161. if (silentMode == 0xff) silentMode = 0;
  1162. tmc2130_mode = TMC2130_MODE_NORMAL;
  1163. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1164. if (crashdet && !farm_mode)
  1165. {
  1166. crashdet_enable();
  1167. puts_P(_N("CrashDetect ENABLED!"));
  1168. }
  1169. else
  1170. {
  1171. crashdet_disable();
  1172. puts_P(_N("CrashDetect DISABLED"));
  1173. }
  1174. #ifdef TMC2130_LINEARITY_CORRECTION
  1175. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1176. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1177. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1178. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1179. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1180. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1181. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1182. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1183. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1184. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1185. #endif //TMC2130_LINEARITY_CORRECTION
  1186. #ifdef TMC2130_VARIABLE_RESOLUTION
  1187. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1188. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1189. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1190. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1191. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1192. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1193. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1194. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1196. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1197. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1198. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1199. #else //TMC2130_VARIABLE_RESOLUTION
  1200. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1201. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1202. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1203. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1204. #endif //TMC2130_VARIABLE_RESOLUTION
  1205. #endif //TMC2130
  1206. st_init(); // Initialize stepper, this enables interrupts!
  1207. #ifdef TMC2130
  1208. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1209. update_mode_profile();
  1210. tmc2130_init();
  1211. #endif //TMC2130
  1212. setup_photpin();
  1213. servo_init();
  1214. // Reset the machine correction matrix.
  1215. // It does not make sense to load the correction matrix until the machine is homed.
  1216. world2machine_reset();
  1217. #ifdef FILAMENT_SENSOR
  1218. fsensor_init();
  1219. #endif //FILAMENT_SENSOR
  1220. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1221. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1222. #endif
  1223. setup_homepin();
  1224. #ifdef TMC2130
  1225. if (1) {
  1226. // try to run to zero phase before powering the Z motor.
  1227. // Move in negative direction
  1228. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1229. // Round the current micro-micro steps to micro steps.
  1230. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1231. // Until the phase counter is reset to zero.
  1232. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1233. delay(2);
  1234. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1235. delay(2);
  1236. }
  1237. }
  1238. #endif //TMC2130
  1239. #if defined(Z_AXIS_ALWAYS_ON)
  1240. enable_z();
  1241. #endif
  1242. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1243. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1244. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1245. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1246. if (farm_mode)
  1247. {
  1248. prusa_statistics(8);
  1249. }
  1250. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1251. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1252. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1253. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1254. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1255. // where all the EEPROM entries are set to 0x0ff.
  1256. // Once a firmware boots up, it forces at least a language selection, which changes
  1257. // EEPROM_LANG to number lower than 0x0ff.
  1258. // 1) Set a high power mode.
  1259. #ifdef TMC2130
  1260. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1261. tmc2130_mode = TMC2130_MODE_NORMAL;
  1262. #endif //TMC2130
  1263. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1264. }
  1265. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1266. // but this times out if a blocking dialog is shown in setup().
  1267. card.initsd();
  1268. #ifdef DEBUG_SD_SPEED_TEST
  1269. if (card.cardOK)
  1270. {
  1271. uint8_t* buff = (uint8_t*)block_buffer;
  1272. uint32_t block = 0;
  1273. uint32_t sumr = 0;
  1274. uint32_t sumw = 0;
  1275. for (int i = 0; i < 1024; i++)
  1276. {
  1277. uint32_t u = micros();
  1278. bool res = card.card.readBlock(i, buff);
  1279. u = micros() - u;
  1280. if (res)
  1281. {
  1282. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1283. sumr += u;
  1284. u = micros();
  1285. res = card.card.writeBlock(i, buff);
  1286. u = micros() - u;
  1287. if (res)
  1288. {
  1289. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1290. sumw += u;
  1291. }
  1292. else
  1293. {
  1294. printf_P(PSTR("writeBlock %4d error\n"), i);
  1295. break;
  1296. }
  1297. }
  1298. else
  1299. {
  1300. printf_P(PSTR("readBlock %4d error\n"), i);
  1301. break;
  1302. }
  1303. }
  1304. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1305. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1306. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1307. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1308. }
  1309. else
  1310. printf_P(PSTR("Card NG!\n"));
  1311. #endif //DEBUG_SD_SPEED_TEST
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1313. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1314. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1315. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1317. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1318. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1319. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1320. #ifdef SNMM
  1321. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1322. int _z = BOWDEN_LENGTH;
  1323. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1324. }
  1325. #endif
  1326. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1327. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1328. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1329. #if (LANG_MODE != 0) //secondary language support
  1330. #ifdef DEBUG_W25X20CL
  1331. W25X20CL_SPI_ENTER();
  1332. uint8_t uid[8]; // 64bit unique id
  1333. w25x20cl_rd_uid(uid);
  1334. puts_P(_n("W25X20CL UID="));
  1335. for (uint8_t i = 0; i < 8; i ++)
  1336. printf_P(PSTR("%02hhx"), uid[i]);
  1337. putchar('\n');
  1338. list_sec_lang_from_external_flash();
  1339. #endif //DEBUG_W25X20CL
  1340. // lang_reset();
  1341. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1342. lcd_language();
  1343. #ifdef DEBUG_SEC_LANG
  1344. uint16_t sec_lang_code = lang_get_code(1);
  1345. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1346. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1347. // lang_print_sec_lang(uartout);
  1348. #endif //DEBUG_SEC_LANG
  1349. #endif //(LANG_MODE != 0)
  1350. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1351. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1352. temp_cal_active = false;
  1353. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1354. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1355. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1356. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1357. int16_t z_shift = 0;
  1358. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1359. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1360. temp_cal_active = false;
  1361. }
  1362. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1363. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1364. }
  1365. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1366. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1367. }
  1368. check_babystep(); //checking if Z babystep is in allowed range
  1369. #ifdef UVLO_SUPPORT
  1370. setup_uvlo_interrupt();
  1371. #endif //UVLO_SUPPORT
  1372. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1373. setup_fan_interrupt();
  1374. #endif //DEBUG_DISABLE_FANCHECK
  1375. #ifdef FILAMENT_SENSOR
  1376. fsensor_setup_interrupt();
  1377. #endif //FILAMENT_SENSOR
  1378. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1379. #ifndef DEBUG_DISABLE_STARTMSGS
  1380. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1381. show_fw_version_warnings();
  1382. switch (hw_changed) {
  1383. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1384. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1385. case(0b01):
  1386. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1387. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1388. break;
  1389. case(0b10):
  1390. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1391. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1392. break;
  1393. case(0b11):
  1394. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1395. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1396. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1397. break;
  1398. default: break; //no change, show no message
  1399. }
  1400. if (!previous_settings_retrieved) {
  1401. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1402. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1403. }
  1404. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1405. lcd_wizard(0);
  1406. }
  1407. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1408. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1409. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1410. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1411. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1412. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1413. // Show the message.
  1414. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1415. }
  1416. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1417. // Show the message.
  1418. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1419. lcd_update_enable(true);
  1420. }
  1421. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1422. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1423. lcd_update_enable(true);
  1424. }
  1425. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1426. // Show the message.
  1427. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1428. }
  1429. }
  1430. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1431. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1432. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1433. update_current_firmware_version_to_eeprom();
  1434. lcd_selftest();
  1435. }
  1436. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1437. KEEPALIVE_STATE(IN_PROCESS);
  1438. #endif //DEBUG_DISABLE_STARTMSGS
  1439. lcd_update_enable(true);
  1440. lcd_clear();
  1441. lcd_update(2);
  1442. // Store the currently running firmware into an eeprom,
  1443. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1444. update_current_firmware_version_to_eeprom();
  1445. #ifdef TMC2130
  1446. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1447. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1448. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1449. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1450. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1451. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1452. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1453. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1454. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1455. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1456. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1457. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1458. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1459. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1460. #endif //TMC2130
  1461. #ifdef UVLO_SUPPORT
  1462. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1463. /*
  1464. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1465. else {
  1466. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1467. lcd_update_enable(true);
  1468. lcd_update(2);
  1469. lcd_setstatuspgm(_T(WELCOME_MSG));
  1470. }
  1471. */
  1472. manage_heater(); // Update temperatures
  1473. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1474. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1475. #endif
  1476. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1477. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1478. puts_P(_N("Automatic recovery!"));
  1479. #endif
  1480. recover_print(1);
  1481. }
  1482. else{
  1483. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1484. puts_P(_N("Normal recovery!"));
  1485. #endif
  1486. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1487. else {
  1488. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1489. lcd_update_enable(true);
  1490. lcd_update(2);
  1491. lcd_setstatuspgm(_T(WELCOME_MSG));
  1492. }
  1493. }
  1494. }
  1495. #endif //UVLO_SUPPORT
  1496. KEEPALIVE_STATE(NOT_BUSY);
  1497. #ifdef WATCHDOG
  1498. wdt_enable(WDTO_4S);
  1499. #endif //WATCHDOG
  1500. }
  1501. void trace();
  1502. #define CHUNK_SIZE 64 // bytes
  1503. #define SAFETY_MARGIN 1
  1504. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1505. int chunkHead = 0;
  1506. void serial_read_stream() {
  1507. setAllTargetHotends(0);
  1508. setTargetBed(0);
  1509. lcd_clear();
  1510. lcd_puts_P(PSTR(" Upload in progress"));
  1511. // first wait for how many bytes we will receive
  1512. uint32_t bytesToReceive;
  1513. // receive the four bytes
  1514. char bytesToReceiveBuffer[4];
  1515. for (int i=0; i<4; i++) {
  1516. int data;
  1517. while ((data = MYSERIAL.read()) == -1) {};
  1518. bytesToReceiveBuffer[i] = data;
  1519. }
  1520. // make it a uint32
  1521. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1522. // we're ready, notify the sender
  1523. MYSERIAL.write('+');
  1524. // lock in the routine
  1525. uint32_t receivedBytes = 0;
  1526. while (prusa_sd_card_upload) {
  1527. int i;
  1528. for (i=0; i<CHUNK_SIZE; i++) {
  1529. int data;
  1530. // check if we're not done
  1531. if (receivedBytes == bytesToReceive) {
  1532. break;
  1533. }
  1534. // read the next byte
  1535. while ((data = MYSERIAL.read()) == -1) {};
  1536. receivedBytes++;
  1537. // save it to the chunk
  1538. chunk[i] = data;
  1539. }
  1540. // write the chunk to SD
  1541. card.write_command_no_newline(&chunk[0]);
  1542. // notify the sender we're ready for more data
  1543. MYSERIAL.write('+');
  1544. // for safety
  1545. manage_heater();
  1546. // check if we're done
  1547. if(receivedBytes == bytesToReceive) {
  1548. trace(); // beep
  1549. card.closefile();
  1550. prusa_sd_card_upload = false;
  1551. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1552. }
  1553. }
  1554. }
  1555. #ifdef HOST_KEEPALIVE_FEATURE
  1556. /**
  1557. * Output a "busy" message at regular intervals
  1558. * while the machine is not accepting commands.
  1559. */
  1560. void host_keepalive() {
  1561. if (farm_mode) return;
  1562. long ms = millis();
  1563. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1564. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1565. switch (busy_state) {
  1566. case IN_HANDLER:
  1567. case IN_PROCESS:
  1568. SERIAL_ECHO_START;
  1569. SERIAL_ECHOLNPGM("busy: processing");
  1570. break;
  1571. case PAUSED_FOR_USER:
  1572. SERIAL_ECHO_START;
  1573. SERIAL_ECHOLNPGM("busy: paused for user");
  1574. break;
  1575. case PAUSED_FOR_INPUT:
  1576. SERIAL_ECHO_START;
  1577. SERIAL_ECHOLNPGM("busy: paused for input");
  1578. break;
  1579. default:
  1580. break;
  1581. }
  1582. }
  1583. prev_busy_signal_ms = ms;
  1584. }
  1585. #endif
  1586. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1587. // Before loop(), the setup() function is called by the main() routine.
  1588. void loop()
  1589. {
  1590. KEEPALIVE_STATE(NOT_BUSY);
  1591. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1592. {
  1593. is_usb_printing = true;
  1594. usb_printing_counter--;
  1595. _usb_timer = millis();
  1596. }
  1597. if (usb_printing_counter == 0)
  1598. {
  1599. is_usb_printing = false;
  1600. }
  1601. if (prusa_sd_card_upload)
  1602. {
  1603. //we read byte-by byte
  1604. serial_read_stream();
  1605. } else
  1606. {
  1607. get_command();
  1608. #ifdef SDSUPPORT
  1609. card.checkautostart(false);
  1610. #endif
  1611. if(buflen)
  1612. {
  1613. cmdbuffer_front_already_processed = false;
  1614. #ifdef SDSUPPORT
  1615. if(card.saving)
  1616. {
  1617. // Saving a G-code file onto an SD-card is in progress.
  1618. // Saving starts with M28, saving until M29 is seen.
  1619. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1620. card.write_command(CMDBUFFER_CURRENT_STRING);
  1621. if(card.logging)
  1622. process_commands();
  1623. else
  1624. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1625. } else {
  1626. card.closefile();
  1627. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1628. }
  1629. } else {
  1630. process_commands();
  1631. }
  1632. #else
  1633. process_commands();
  1634. #endif //SDSUPPORT
  1635. if (! cmdbuffer_front_already_processed && buflen)
  1636. {
  1637. // ptr points to the start of the block currently being processed.
  1638. // The first character in the block is the block type.
  1639. char *ptr = cmdbuffer + bufindr;
  1640. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1641. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1642. union {
  1643. struct {
  1644. char lo;
  1645. char hi;
  1646. } lohi;
  1647. uint16_t value;
  1648. } sdlen;
  1649. sdlen.value = 0;
  1650. {
  1651. // This block locks the interrupts globally for 3.25 us,
  1652. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1653. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1654. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1655. cli();
  1656. // Reset the command to something, which will be ignored by the power panic routine,
  1657. // so this buffer length will not be counted twice.
  1658. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1659. // Extract the current buffer length.
  1660. sdlen.lohi.lo = *ptr ++;
  1661. sdlen.lohi.hi = *ptr;
  1662. // and pass it to the planner queue.
  1663. planner_add_sd_length(sdlen.value);
  1664. sei();
  1665. }
  1666. }
  1667. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1668. cli();
  1669. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1670. // and one for each command to previous block in the planner queue.
  1671. planner_add_sd_length(1);
  1672. sei();
  1673. }
  1674. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1675. // this block's SD card length will not be counted twice as its command type has been replaced
  1676. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1677. cmdqueue_pop_front();
  1678. }
  1679. host_keepalive();
  1680. }
  1681. }
  1682. //check heater every n milliseconds
  1683. manage_heater();
  1684. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1685. checkHitEndstops();
  1686. lcd_update(0);
  1687. #ifdef FILAMENT_SENSOR
  1688. if (mcode_in_progress != 600) //M600 not in progress
  1689. fsensor_update();
  1690. #endif //FILAMENT_SENSOR
  1691. #ifdef TMC2130
  1692. tmc2130_check_overtemp();
  1693. if (tmc2130_sg_crash)
  1694. {
  1695. uint8_t crash = tmc2130_sg_crash;
  1696. tmc2130_sg_crash = 0;
  1697. // crashdet_stop_and_save_print();
  1698. switch (crash)
  1699. {
  1700. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1701. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1702. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1703. }
  1704. }
  1705. #endif //TMC2130
  1706. }
  1707. #define DEFINE_PGM_READ_ANY(type, reader) \
  1708. static inline type pgm_read_any(const type *p) \
  1709. { return pgm_read_##reader##_near(p); }
  1710. DEFINE_PGM_READ_ANY(float, float);
  1711. DEFINE_PGM_READ_ANY(signed char, byte);
  1712. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1713. static const PROGMEM type array##_P[3] = \
  1714. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1715. static inline type array(int axis) \
  1716. { return pgm_read_any(&array##_P[axis]); } \
  1717. type array##_ext(int axis) \
  1718. { return pgm_read_any(&array##_P[axis]); }
  1719. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1720. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1721. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1722. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1723. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1724. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1725. static void axis_is_at_home(int axis) {
  1726. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1727. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1728. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1729. }
  1730. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1731. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1732. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1733. saved_feedrate = feedrate;
  1734. saved_feedmultiply = feedmultiply;
  1735. feedmultiply = 100;
  1736. previous_millis_cmd = millis();
  1737. enable_endstops(enable_endstops_now);
  1738. }
  1739. static void clean_up_after_endstop_move() {
  1740. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1741. enable_endstops(false);
  1742. #endif
  1743. feedrate = saved_feedrate;
  1744. feedmultiply = saved_feedmultiply;
  1745. previous_millis_cmd = millis();
  1746. }
  1747. #ifdef ENABLE_AUTO_BED_LEVELING
  1748. #ifdef AUTO_BED_LEVELING_GRID
  1749. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1750. {
  1751. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1752. planeNormal.debug("planeNormal");
  1753. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1754. //bedLevel.debug("bedLevel");
  1755. //plan_bed_level_matrix.debug("bed level before");
  1756. //vector_3 uncorrected_position = plan_get_position_mm();
  1757. //uncorrected_position.debug("position before");
  1758. vector_3 corrected_position = plan_get_position();
  1759. // corrected_position.debug("position after");
  1760. current_position[X_AXIS] = corrected_position.x;
  1761. current_position[Y_AXIS] = corrected_position.y;
  1762. current_position[Z_AXIS] = corrected_position.z;
  1763. // put the bed at 0 so we don't go below it.
  1764. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1766. }
  1767. #else // not AUTO_BED_LEVELING_GRID
  1768. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1769. plan_bed_level_matrix.set_to_identity();
  1770. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1771. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1772. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1773. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1774. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1775. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1776. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1777. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1778. vector_3 corrected_position = plan_get_position();
  1779. current_position[X_AXIS] = corrected_position.x;
  1780. current_position[Y_AXIS] = corrected_position.y;
  1781. current_position[Z_AXIS] = corrected_position.z;
  1782. // put the bed at 0 so we don't go below it.
  1783. current_position[Z_AXIS] = zprobe_zoffset;
  1784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1785. }
  1786. #endif // AUTO_BED_LEVELING_GRID
  1787. static void run_z_probe() {
  1788. plan_bed_level_matrix.set_to_identity();
  1789. feedrate = homing_feedrate[Z_AXIS];
  1790. // move down until you find the bed
  1791. float zPosition = -10;
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1793. st_synchronize();
  1794. // we have to let the planner know where we are right now as it is not where we said to go.
  1795. zPosition = st_get_position_mm(Z_AXIS);
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1797. // move up the retract distance
  1798. zPosition += home_retract_mm(Z_AXIS);
  1799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. // move back down slowly to find bed
  1802. feedrate = homing_feedrate[Z_AXIS]/4;
  1803. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1805. st_synchronize();
  1806. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1807. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1808. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1809. }
  1810. static void do_blocking_move_to(float x, float y, float z) {
  1811. float oldFeedRate = feedrate;
  1812. feedrate = homing_feedrate[Z_AXIS];
  1813. current_position[Z_AXIS] = z;
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1815. st_synchronize();
  1816. feedrate = XY_TRAVEL_SPEED;
  1817. current_position[X_AXIS] = x;
  1818. current_position[Y_AXIS] = y;
  1819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1820. st_synchronize();
  1821. feedrate = oldFeedRate;
  1822. }
  1823. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1824. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1825. }
  1826. /// Probe bed height at position (x,y), returns the measured z value
  1827. static float probe_pt(float x, float y, float z_before) {
  1828. // move to right place
  1829. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1830. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1831. run_z_probe();
  1832. float measured_z = current_position[Z_AXIS];
  1833. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1834. SERIAL_PROTOCOLPGM(" x: ");
  1835. SERIAL_PROTOCOL(x);
  1836. SERIAL_PROTOCOLPGM(" y: ");
  1837. SERIAL_PROTOCOL(y);
  1838. SERIAL_PROTOCOLPGM(" z: ");
  1839. SERIAL_PROTOCOL(measured_z);
  1840. SERIAL_PROTOCOLPGM("\n");
  1841. return measured_z;
  1842. }
  1843. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1844. #ifdef LIN_ADVANCE
  1845. /**
  1846. * M900: Set and/or Get advance K factor and WH/D ratio
  1847. *
  1848. * K<factor> Set advance K factor
  1849. * R<ratio> Set ratio directly (overrides WH/D)
  1850. * W<width> H<height> D<diam> Set ratio from WH/D
  1851. */
  1852. inline void gcode_M900() {
  1853. st_synchronize();
  1854. const float newK = code_seen('K') ? code_value_float() : -1;
  1855. if (newK >= 0) extruder_advance_k = newK;
  1856. float newR = code_seen('R') ? code_value_float() : -1;
  1857. if (newR < 0) {
  1858. const float newD = code_seen('D') ? code_value_float() : -1,
  1859. newW = code_seen('W') ? code_value_float() : -1,
  1860. newH = code_seen('H') ? code_value_float() : -1;
  1861. if (newD >= 0 && newW >= 0 && newH >= 0)
  1862. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1863. }
  1864. if (newR >= 0) advance_ed_ratio = newR;
  1865. SERIAL_ECHO_START;
  1866. SERIAL_ECHOPGM("Advance K=");
  1867. SERIAL_ECHOLN(extruder_advance_k);
  1868. SERIAL_ECHOPGM(" E/D=");
  1869. const float ratio = advance_ed_ratio;
  1870. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1871. }
  1872. #endif // LIN_ADVANCE
  1873. bool check_commands() {
  1874. bool end_command_found = false;
  1875. while (buflen)
  1876. {
  1877. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1878. if (!cmdbuffer_front_already_processed)
  1879. cmdqueue_pop_front();
  1880. cmdbuffer_front_already_processed = false;
  1881. }
  1882. return end_command_found;
  1883. }
  1884. #ifdef TMC2130
  1885. bool calibrate_z_auto()
  1886. {
  1887. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1888. lcd_clear();
  1889. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1890. bool endstops_enabled = enable_endstops(true);
  1891. int axis_up_dir = -home_dir(Z_AXIS);
  1892. tmc2130_home_enter(Z_AXIS_MASK);
  1893. current_position[Z_AXIS] = 0;
  1894. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1895. set_destination_to_current();
  1896. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1897. feedrate = homing_feedrate[Z_AXIS];
  1898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1899. st_synchronize();
  1900. // current_position[axis] = 0;
  1901. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. tmc2130_home_exit();
  1903. enable_endstops(false);
  1904. current_position[Z_AXIS] = 0;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. set_destination_to_current();
  1907. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1908. feedrate = homing_feedrate[Z_AXIS] / 2;
  1909. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1910. st_synchronize();
  1911. enable_endstops(endstops_enabled);
  1912. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1914. return true;
  1915. }
  1916. #endif //TMC2130
  1917. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1918. {
  1919. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1920. #define HOMEAXIS_DO(LETTER) \
  1921. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1922. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1923. {
  1924. int axis_home_dir = home_dir(axis);
  1925. feedrate = homing_feedrate[axis];
  1926. #ifdef TMC2130
  1927. tmc2130_home_enter(X_AXIS_MASK << axis);
  1928. #endif //TMC2130
  1929. // Move right a bit, so that the print head does not touch the left end position,
  1930. // and the following left movement has a chance to achieve the required velocity
  1931. // for the stall guard to work.
  1932. current_position[axis] = 0;
  1933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. set_destination_to_current();
  1935. // destination[axis] = 11.f;
  1936. destination[axis] = 3.f;
  1937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1938. st_synchronize();
  1939. // Move left away from the possible collision with the collision detection disabled.
  1940. endstops_hit_on_purpose();
  1941. enable_endstops(false);
  1942. current_position[axis] = 0;
  1943. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1944. destination[axis] = - 1.;
  1945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1946. st_synchronize();
  1947. // Now continue to move up to the left end stop with the collision detection enabled.
  1948. enable_endstops(true);
  1949. destination[axis] = - 1.1 * max_length(axis);
  1950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1951. st_synchronize();
  1952. for (uint8_t i = 0; i < cnt; i++)
  1953. {
  1954. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1955. endstops_hit_on_purpose();
  1956. enable_endstops(false);
  1957. current_position[axis] = 0;
  1958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1959. destination[axis] = 10.f;
  1960. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1961. st_synchronize();
  1962. endstops_hit_on_purpose();
  1963. // Now move left up to the collision, this time with a repeatable velocity.
  1964. enable_endstops(true);
  1965. destination[axis] = - 11.f;
  1966. #ifdef TMC2130
  1967. feedrate = homing_feedrate[axis];
  1968. #else //TMC2130
  1969. feedrate = homing_feedrate[axis] / 2;
  1970. #endif //TMC2130
  1971. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1972. st_synchronize();
  1973. #ifdef TMC2130
  1974. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1975. if (pstep) pstep[i] = mscnt >> 4;
  1976. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1977. #endif //TMC2130
  1978. }
  1979. endstops_hit_on_purpose();
  1980. enable_endstops(false);
  1981. #ifdef TMC2130
  1982. uint8_t orig = tmc2130_home_origin[axis];
  1983. uint8_t back = tmc2130_home_bsteps[axis];
  1984. if (tmc2130_home_enabled && (orig <= 63))
  1985. {
  1986. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1987. if (back > 0)
  1988. tmc2130_do_steps(axis, back, 1, 1000);
  1989. }
  1990. else
  1991. tmc2130_do_steps(axis, 8, 2, 1000);
  1992. tmc2130_home_exit();
  1993. #endif //TMC2130
  1994. axis_is_at_home(axis);
  1995. axis_known_position[axis] = true;
  1996. // Move from minimum
  1997. #ifdef TMC2130
  1998. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1999. #else //TMC2130
  2000. float dist = 0.01f * 64;
  2001. #endif //TMC2130
  2002. current_position[axis] -= dist;
  2003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2004. current_position[axis] += dist;
  2005. destination[axis] = current_position[axis];
  2006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2007. st_synchronize();
  2008. feedrate = 0.0;
  2009. }
  2010. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2011. {
  2012. #ifdef TMC2130
  2013. FORCE_HIGH_POWER_START;
  2014. #endif
  2015. int axis_home_dir = home_dir(axis);
  2016. current_position[axis] = 0;
  2017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2018. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2019. feedrate = homing_feedrate[axis];
  2020. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2021. st_synchronize();
  2022. #ifdef TMC2130
  2023. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2024. FORCE_HIGH_POWER_END;
  2025. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2026. return;
  2027. }
  2028. #endif //TMC2130
  2029. current_position[axis] = 0;
  2030. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2031. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2032. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2033. st_synchronize();
  2034. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2035. feedrate = homing_feedrate[axis]/2 ;
  2036. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2037. st_synchronize();
  2038. #ifdef TMC2130
  2039. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2040. FORCE_HIGH_POWER_END;
  2041. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2042. return;
  2043. }
  2044. #endif //TMC2130
  2045. axis_is_at_home(axis);
  2046. destination[axis] = current_position[axis];
  2047. feedrate = 0.0;
  2048. endstops_hit_on_purpose();
  2049. axis_known_position[axis] = true;
  2050. #ifdef TMC2130
  2051. FORCE_HIGH_POWER_END;
  2052. #endif
  2053. }
  2054. enable_endstops(endstops_enabled);
  2055. }
  2056. /**/
  2057. void home_xy()
  2058. {
  2059. set_destination_to_current();
  2060. homeaxis(X_AXIS);
  2061. homeaxis(Y_AXIS);
  2062. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2063. endstops_hit_on_purpose();
  2064. }
  2065. void refresh_cmd_timeout(void)
  2066. {
  2067. previous_millis_cmd = millis();
  2068. }
  2069. #ifdef FWRETRACT
  2070. void retract(bool retracting, bool swapretract = false) {
  2071. if(retracting && !retracted[active_extruder]) {
  2072. destination[X_AXIS]=current_position[X_AXIS];
  2073. destination[Y_AXIS]=current_position[Y_AXIS];
  2074. destination[Z_AXIS]=current_position[Z_AXIS];
  2075. destination[E_AXIS]=current_position[E_AXIS];
  2076. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2077. plan_set_e_position(current_position[E_AXIS]);
  2078. float oldFeedrate = feedrate;
  2079. feedrate=retract_feedrate*60;
  2080. retracted[active_extruder]=true;
  2081. prepare_move();
  2082. current_position[Z_AXIS]-=retract_zlift;
  2083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2084. prepare_move();
  2085. feedrate = oldFeedrate;
  2086. } else if(!retracting && retracted[active_extruder]) {
  2087. destination[X_AXIS]=current_position[X_AXIS];
  2088. destination[Y_AXIS]=current_position[Y_AXIS];
  2089. destination[Z_AXIS]=current_position[Z_AXIS];
  2090. destination[E_AXIS]=current_position[E_AXIS];
  2091. current_position[Z_AXIS]+=retract_zlift;
  2092. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2093. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2094. plan_set_e_position(current_position[E_AXIS]);
  2095. float oldFeedrate = feedrate;
  2096. feedrate=retract_recover_feedrate*60;
  2097. retracted[active_extruder]=false;
  2098. prepare_move();
  2099. feedrate = oldFeedrate;
  2100. }
  2101. } //retract
  2102. #endif //FWRETRACT
  2103. void trace() {
  2104. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2105. tone(BEEPER, 440);
  2106. delay(25);
  2107. noTone(BEEPER);
  2108. delay(20);
  2109. }
  2110. /*
  2111. void ramming() {
  2112. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2113. if (current_temperature[0] < 230) {
  2114. //PLA
  2115. max_feedrate[E_AXIS] = 50;
  2116. //current_position[E_AXIS] -= 8;
  2117. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2118. //current_position[E_AXIS] += 8;
  2119. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2120. current_position[E_AXIS] += 5.4;
  2121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2122. current_position[E_AXIS] += 3.2;
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2124. current_position[E_AXIS] += 3;
  2125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2126. st_synchronize();
  2127. max_feedrate[E_AXIS] = 80;
  2128. current_position[E_AXIS] -= 82;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2130. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2131. current_position[E_AXIS] -= 20;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2133. current_position[E_AXIS] += 5;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2135. current_position[E_AXIS] += 5;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2137. current_position[E_AXIS] -= 10;
  2138. st_synchronize();
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2140. current_position[E_AXIS] += 10;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2142. current_position[E_AXIS] -= 10;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2144. current_position[E_AXIS] += 10;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2146. current_position[E_AXIS] -= 10;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2148. st_synchronize();
  2149. }
  2150. else {
  2151. //ABS
  2152. max_feedrate[E_AXIS] = 50;
  2153. //current_position[E_AXIS] -= 8;
  2154. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2155. //current_position[E_AXIS] += 8;
  2156. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2157. current_position[E_AXIS] += 3.1;
  2158. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2159. current_position[E_AXIS] += 3.1;
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2161. current_position[E_AXIS] += 4;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2163. st_synchronize();
  2164. //current_position[X_AXIS] += 23; //delay
  2165. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2166. //current_position[X_AXIS] -= 23; //delay
  2167. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2168. delay(4700);
  2169. max_feedrate[E_AXIS] = 80;
  2170. current_position[E_AXIS] -= 92;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2172. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2173. current_position[E_AXIS] -= 5;
  2174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2175. current_position[E_AXIS] += 5;
  2176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2177. current_position[E_AXIS] -= 5;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2179. st_synchronize();
  2180. current_position[E_AXIS] += 5;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2182. current_position[E_AXIS] -= 5;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2184. current_position[E_AXIS] += 5;
  2185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2186. current_position[E_AXIS] -= 5;
  2187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2188. st_synchronize();
  2189. }
  2190. }
  2191. */
  2192. #ifdef TMC2130
  2193. void force_high_power_mode(bool start_high_power_section) {
  2194. uint8_t silent;
  2195. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2196. if (silent == 1) {
  2197. //we are in silent mode, set to normal mode to enable crash detection
  2198. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2199. st_synchronize();
  2200. cli();
  2201. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2202. update_mode_profile();
  2203. tmc2130_init();
  2204. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2205. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2206. st_reset_timer();
  2207. sei();
  2208. }
  2209. }
  2210. #endif //TMC2130
  2211. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2212. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2213. }
  2214. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2215. st_synchronize();
  2216. #if 0
  2217. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2218. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2219. #endif
  2220. // Flag for the display update routine and to disable the print cancelation during homing.
  2221. homing_flag = true;
  2222. // Which axes should be homed?
  2223. bool home_x = home_x_axis;
  2224. bool home_y = home_y_axis;
  2225. bool home_z = home_z_axis;
  2226. // Either all X,Y,Z codes are present, or none of them.
  2227. bool home_all_axes = home_x == home_y && home_x == home_z;
  2228. if (home_all_axes)
  2229. // No X/Y/Z code provided means to home all axes.
  2230. home_x = home_y = home_z = true;
  2231. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2232. if (home_all_axes) {
  2233. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2234. feedrate = homing_feedrate[Z_AXIS];
  2235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2236. st_synchronize();
  2237. }
  2238. #ifdef ENABLE_AUTO_BED_LEVELING
  2239. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2240. #endif //ENABLE_AUTO_BED_LEVELING
  2241. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2242. // the planner will not perform any adjustments in the XY plane.
  2243. // Wait for the motors to stop and update the current position with the absolute values.
  2244. world2machine_revert_to_uncorrected();
  2245. // For mesh bed leveling deactivate the matrix temporarily.
  2246. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2247. // in a single axis only.
  2248. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2249. #ifdef MESH_BED_LEVELING
  2250. uint8_t mbl_was_active = mbl.active;
  2251. mbl.active = 0;
  2252. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2253. #endif
  2254. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2255. // consumed during the first movements following this statement.
  2256. if (home_z)
  2257. babystep_undo();
  2258. saved_feedrate = feedrate;
  2259. saved_feedmultiply = feedmultiply;
  2260. feedmultiply = 100;
  2261. previous_millis_cmd = millis();
  2262. enable_endstops(true);
  2263. memcpy(destination, current_position, sizeof(destination));
  2264. feedrate = 0.0;
  2265. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2266. if(home_z)
  2267. homeaxis(Z_AXIS);
  2268. #endif
  2269. #ifdef QUICK_HOME
  2270. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2271. if(home_x && home_y) //first diagonal move
  2272. {
  2273. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2274. int x_axis_home_dir = home_dir(X_AXIS);
  2275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2276. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2277. feedrate = homing_feedrate[X_AXIS];
  2278. if(homing_feedrate[Y_AXIS]<feedrate)
  2279. feedrate = homing_feedrate[Y_AXIS];
  2280. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2281. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2282. } else {
  2283. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2284. }
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2286. st_synchronize();
  2287. axis_is_at_home(X_AXIS);
  2288. axis_is_at_home(Y_AXIS);
  2289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2290. destination[X_AXIS] = current_position[X_AXIS];
  2291. destination[Y_AXIS] = current_position[Y_AXIS];
  2292. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2293. feedrate = 0.0;
  2294. st_synchronize();
  2295. endstops_hit_on_purpose();
  2296. current_position[X_AXIS] = destination[X_AXIS];
  2297. current_position[Y_AXIS] = destination[Y_AXIS];
  2298. current_position[Z_AXIS] = destination[Z_AXIS];
  2299. }
  2300. #endif /* QUICK_HOME */
  2301. #ifdef TMC2130
  2302. if(home_x)
  2303. {
  2304. if (!calib)
  2305. homeaxis(X_AXIS);
  2306. else
  2307. tmc2130_home_calibrate(X_AXIS);
  2308. }
  2309. if(home_y)
  2310. {
  2311. if (!calib)
  2312. homeaxis(Y_AXIS);
  2313. else
  2314. tmc2130_home_calibrate(Y_AXIS);
  2315. }
  2316. #endif //TMC2130
  2317. if(home_x_axis && home_x_value != 0)
  2318. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2319. if(home_y_axis && home_y_value != 0)
  2320. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2321. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2322. #ifndef Z_SAFE_HOMING
  2323. if(home_z) {
  2324. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2325. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2326. feedrate = max_feedrate[Z_AXIS];
  2327. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2328. st_synchronize();
  2329. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2330. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2331. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2332. {
  2333. homeaxis(X_AXIS);
  2334. homeaxis(Y_AXIS);
  2335. }
  2336. // 1st mesh bed leveling measurement point, corrected.
  2337. world2machine_initialize();
  2338. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2339. world2machine_reset();
  2340. if (destination[Y_AXIS] < Y_MIN_POS)
  2341. destination[Y_AXIS] = Y_MIN_POS;
  2342. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2343. feedrate = homing_feedrate[Z_AXIS]/10;
  2344. current_position[Z_AXIS] = 0;
  2345. enable_endstops(false);
  2346. #ifdef DEBUG_BUILD
  2347. SERIAL_ECHOLNPGM("plan_set_position()");
  2348. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2349. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2350. #endif
  2351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2352. #ifdef DEBUG_BUILD
  2353. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2354. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2355. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2356. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2357. #endif
  2358. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2359. st_synchronize();
  2360. current_position[X_AXIS] = destination[X_AXIS];
  2361. current_position[Y_AXIS] = destination[Y_AXIS];
  2362. enable_endstops(true);
  2363. endstops_hit_on_purpose();
  2364. homeaxis(Z_AXIS);
  2365. #else // MESH_BED_LEVELING
  2366. homeaxis(Z_AXIS);
  2367. #endif // MESH_BED_LEVELING
  2368. }
  2369. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2370. if(home_all_axes) {
  2371. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2372. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2373. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2374. feedrate = XY_TRAVEL_SPEED/60;
  2375. current_position[Z_AXIS] = 0;
  2376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2377. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2378. st_synchronize();
  2379. current_position[X_AXIS] = destination[X_AXIS];
  2380. current_position[Y_AXIS] = destination[Y_AXIS];
  2381. homeaxis(Z_AXIS);
  2382. }
  2383. // Let's see if X and Y are homed and probe is inside bed area.
  2384. if(home_z) {
  2385. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2386. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2387. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2388. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2389. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2390. current_position[Z_AXIS] = 0;
  2391. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2392. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2393. feedrate = max_feedrate[Z_AXIS];
  2394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2395. st_synchronize();
  2396. homeaxis(Z_AXIS);
  2397. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2398. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2399. SERIAL_ECHO_START;
  2400. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2401. } else {
  2402. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2403. SERIAL_ECHO_START;
  2404. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2405. }
  2406. }
  2407. #endif // Z_SAFE_HOMING
  2408. #endif // Z_HOME_DIR < 0
  2409. if(home_z_axis && home_z_value != 0)
  2410. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2411. #ifdef ENABLE_AUTO_BED_LEVELING
  2412. if(home_z)
  2413. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2414. #endif
  2415. // Set the planner and stepper routine positions.
  2416. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2417. // contains the machine coordinates.
  2418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2419. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2420. enable_endstops(false);
  2421. #endif
  2422. feedrate = saved_feedrate;
  2423. feedmultiply = saved_feedmultiply;
  2424. previous_millis_cmd = millis();
  2425. endstops_hit_on_purpose();
  2426. #ifndef MESH_BED_LEVELING
  2427. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2428. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2429. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2430. lcd_adjust_z();
  2431. #endif
  2432. // Load the machine correction matrix
  2433. world2machine_initialize();
  2434. // and correct the current_position XY axes to match the transformed coordinate system.
  2435. world2machine_update_current();
  2436. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2437. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2438. {
  2439. if (! home_z && mbl_was_active) {
  2440. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2441. mbl.active = true;
  2442. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2443. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2444. }
  2445. }
  2446. else
  2447. {
  2448. st_synchronize();
  2449. homing_flag = false;
  2450. }
  2451. #endif
  2452. if (farm_mode) { prusa_statistics(20); };
  2453. homing_flag = false;
  2454. #if 0
  2455. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2456. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2457. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2458. #endif
  2459. }
  2460. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2461. {
  2462. bool final_result = false;
  2463. #ifdef TMC2130
  2464. FORCE_HIGH_POWER_START;
  2465. #endif // TMC2130
  2466. // Only Z calibration?
  2467. if (!onlyZ)
  2468. {
  2469. setTargetBed(0);
  2470. setAllTargetHotends(0);
  2471. adjust_bed_reset(); //reset bed level correction
  2472. }
  2473. // Disable the default update procedure of the display. We will do a modal dialog.
  2474. lcd_update_enable(false);
  2475. // Let the planner use the uncorrected coordinates.
  2476. mbl.reset();
  2477. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2478. // the planner will not perform any adjustments in the XY plane.
  2479. // Wait for the motors to stop and update the current position with the absolute values.
  2480. world2machine_revert_to_uncorrected();
  2481. // Reset the baby step value applied without moving the axes.
  2482. babystep_reset();
  2483. // Mark all axes as in a need for homing.
  2484. memset(axis_known_position, 0, sizeof(axis_known_position));
  2485. // Home in the XY plane.
  2486. //set_destination_to_current();
  2487. setup_for_endstop_move();
  2488. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2489. home_xy();
  2490. enable_endstops(false);
  2491. current_position[X_AXIS] += 5;
  2492. current_position[Y_AXIS] += 5;
  2493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2494. st_synchronize();
  2495. // Let the user move the Z axes up to the end stoppers.
  2496. #ifdef TMC2130
  2497. if (calibrate_z_auto())
  2498. {
  2499. #else //TMC2130
  2500. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2501. {
  2502. #endif //TMC2130
  2503. refresh_cmd_timeout();
  2504. #ifndef STEEL_SHEET
  2505. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2506. {
  2507. lcd_wait_for_cool_down();
  2508. }
  2509. #endif //STEEL_SHEET
  2510. if(!onlyZ)
  2511. {
  2512. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2513. #ifdef STEEL_SHEET
  2514. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2515. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2516. #endif //STEEL_SHEET
  2517. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2518. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2519. KEEPALIVE_STATE(IN_HANDLER);
  2520. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2521. lcd_set_cursor(0, 2);
  2522. lcd_print(1);
  2523. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2524. }
  2525. // Move the print head close to the bed.
  2526. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2527. bool endstops_enabled = enable_endstops(true);
  2528. #ifdef TMC2130
  2529. tmc2130_home_enter(Z_AXIS_MASK);
  2530. #endif //TMC2130
  2531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2532. st_synchronize();
  2533. #ifdef TMC2130
  2534. tmc2130_home_exit();
  2535. #endif //TMC2130
  2536. enable_endstops(endstops_enabled);
  2537. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2538. {
  2539. int8_t verbosity_level = 0;
  2540. if (code_seen('V'))
  2541. {
  2542. // Just 'V' without a number counts as V1.
  2543. char c = strchr_pointer[1];
  2544. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2545. }
  2546. if (onlyZ)
  2547. {
  2548. clean_up_after_endstop_move();
  2549. // Z only calibration.
  2550. // Load the machine correction matrix
  2551. world2machine_initialize();
  2552. // and correct the current_position to match the transformed coordinate system.
  2553. world2machine_update_current();
  2554. //FIXME
  2555. bool result = sample_mesh_and_store_reference();
  2556. if (result)
  2557. {
  2558. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2559. // Shipped, the nozzle height has been set already. The user can start printing now.
  2560. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2561. final_result = true;
  2562. // babystep_apply();
  2563. }
  2564. }
  2565. else
  2566. {
  2567. // Reset the baby step value and the baby step applied flag.
  2568. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2569. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2570. // Complete XYZ calibration.
  2571. uint8_t point_too_far_mask = 0;
  2572. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2573. clean_up_after_endstop_move();
  2574. // Print head up.
  2575. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2577. st_synchronize();
  2578. //#ifndef NEW_XYZCAL
  2579. if (result >= 0)
  2580. {
  2581. #ifdef HEATBED_V2
  2582. sample_z();
  2583. #else //HEATBED_V2
  2584. point_too_far_mask = 0;
  2585. // Second half: The fine adjustment.
  2586. // Let the planner use the uncorrected coordinates.
  2587. mbl.reset();
  2588. world2machine_reset();
  2589. // Home in the XY plane.
  2590. setup_for_endstop_move();
  2591. home_xy();
  2592. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2593. clean_up_after_endstop_move();
  2594. // Print head up.
  2595. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2597. st_synchronize();
  2598. // if (result >= 0) babystep_apply();
  2599. #endif //HEATBED_V2
  2600. }
  2601. //#endif //NEW_XYZCAL
  2602. lcd_update_enable(true);
  2603. lcd_update(2);
  2604. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2605. if (result >= 0)
  2606. {
  2607. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2608. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2609. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2610. final_result = true;
  2611. }
  2612. }
  2613. #ifdef TMC2130
  2614. tmc2130_home_exit();
  2615. #endif
  2616. }
  2617. else
  2618. {
  2619. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2620. final_result = false;
  2621. }
  2622. }
  2623. else
  2624. {
  2625. // Timeouted.
  2626. }
  2627. lcd_update_enable(true);
  2628. #ifdef TMC2130
  2629. FORCE_HIGH_POWER_END;
  2630. #endif // TMC2130
  2631. return final_result;
  2632. }
  2633. void gcode_M114()
  2634. {
  2635. SERIAL_PROTOCOLPGM("X:");
  2636. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2637. SERIAL_PROTOCOLPGM(" Y:");
  2638. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2639. SERIAL_PROTOCOLPGM(" Z:");
  2640. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2641. SERIAL_PROTOCOLPGM(" E:");
  2642. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2643. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2644. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2645. SERIAL_PROTOCOLPGM(" Y:");
  2646. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2647. SERIAL_PROTOCOLPGM(" Z:");
  2648. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2649. SERIAL_PROTOCOLPGM(" E:");
  2650. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2651. SERIAL_PROTOCOLLN("");
  2652. }
  2653. void gcode_M600(bool automatic) {
  2654. st_synchronize();
  2655. float lastpos[4];
  2656. if (farm_mode)
  2657. {
  2658. prusa_statistics(22);
  2659. }
  2660. feedmultiplyBckp=feedmultiply;
  2661. int8_t TooLowZ = 0;
  2662. float HotendTempBckp = degTargetHotend(active_extruder);
  2663. int fanSpeedBckp = fanSpeed;
  2664. lastpos[X_AXIS]=current_position[X_AXIS];
  2665. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2666. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2667. lastpos[E_AXIS]=current_position[E_AXIS];
  2668. //Restract extruder
  2669. if(code_seen('E'))
  2670. {
  2671. current_position[E_AXIS]+= code_value();
  2672. }
  2673. else
  2674. {
  2675. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2676. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2677. #endif
  2678. }
  2679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2680. //Lift Z
  2681. if(code_seen('Z'))
  2682. {
  2683. current_position[Z_AXIS]+= code_value();
  2684. }
  2685. else
  2686. {
  2687. #ifdef FILAMENTCHANGE_ZADD
  2688. current_position[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2689. if(current_position[Z_AXIS] < 10){
  2690. current_position[Z_AXIS]+= 10 ;
  2691. TooLowZ = 1;
  2692. }else{
  2693. TooLowZ = 0;
  2694. }
  2695. #endif
  2696. }
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2698. //Move XY to side
  2699. if(code_seen('X'))
  2700. {
  2701. current_position[X_AXIS]+= code_value();
  2702. }
  2703. else
  2704. {
  2705. #ifdef FILAMENTCHANGE_XPOS
  2706. current_position[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2707. #endif
  2708. }
  2709. if(code_seen('Y'))
  2710. {
  2711. current_position[Y_AXIS]= code_value();
  2712. }
  2713. else
  2714. {
  2715. #ifdef FILAMENTCHANGE_YPOS
  2716. current_position[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2717. #endif
  2718. }
  2719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2720. st_synchronize();
  2721. if(!automatic) M600_wait_for_user();
  2722. lcd_change_fil_state = 0;
  2723. // Unload filament
  2724. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  2725. KEEPALIVE_STATE(IN_HANDLER);
  2726. custom_message = true;
  2727. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  2728. if (code_seen('L'))
  2729. {
  2730. current_position[E_AXIS] += code_value();
  2731. }
  2732. else
  2733. {
  2734. #ifdef SNMM
  2735. #else
  2736. #ifdef FILAMENTCHANGE_FINALRETRACT
  2737. current_position[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  2738. #endif
  2739. #endif // SNMM
  2740. }
  2741. #ifdef SNMM
  2742. current_position[E_AXIS] += 12;
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500, active_extruder);
  2744. current_position[E_AXIS] += 6;
  2745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  2746. current_position[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  2747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  2748. st_synchronize();
  2749. current_position[E_AXIS] += (FIL_COOLING);
  2750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  2751. current_position[E_AXIS] += (FIL_COOLING*-1);
  2752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  2753. current_position[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  2754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  2755. st_synchronize();
  2756. #else
  2757. // plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2758. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500 / 60, active_extruder);
  2759. current_position[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  2760. st_synchronize();
  2761. #ifdef TMC2130
  2762. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  2763. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  2764. #else
  2765. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  2766. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2767. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2768. #endif //TMC2130
  2769. current_position[E_AXIS] -= 45;
  2770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  2771. st_synchronize();
  2772. current_position[E_AXIS] -= 15;
  2773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  2774. st_synchronize();
  2775. current_position[E_AXIS] -= 20;
  2776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  2777. st_synchronize();
  2778. #ifdef TMC2130
  2779. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  2780. #else
  2781. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2782. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  2783. else st_current_set(2, tmp_motor_loud[2]);
  2784. #endif //TMC2130
  2785. #endif // SNMM
  2786. //finish moves
  2787. st_synchronize();
  2788. //disable extruder steppers so filament can be removed
  2789. disable_e0();
  2790. disable_e1();
  2791. disable_e2();
  2792. delay(100);
  2793. #ifdef SNMM_V2
  2794. fprintf_P(uart2io, PSTR("U0\n"));
  2795. // get response
  2796. bool response = mmu_get_reponse(false);
  2797. if (!response) mmu_not_responding();
  2798. #else
  2799. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  2800. WRITE(BEEPER, HIGH);
  2801. counterBeep = 0;
  2802. while(!lcd_clicked() && (counterBeep < 50)) {
  2803. if(counterBeep > 5) WRITE(BEEPER, LOW);
  2804. delay_keep_alive(100);
  2805. counterBeep++;
  2806. }
  2807. WRITE(BEEPER, LOW);
  2808. #endif
  2809. if (!automatic) {
  2810. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2811. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2812. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2813. //lcd_return_to_status();
  2814. lcd_update_enable(true);
  2815. }
  2816. #ifdef SNMM_V2
  2817. mmu_M600_load_filament(automatic);
  2818. #else
  2819. M600_load_filament();
  2820. #endif
  2821. if(!automatic) M600_check_state();
  2822. //Not let's go back to print
  2823. fanSpeed = fanSpeedBckp;
  2824. //Feed a little of filament to stabilize pressure
  2825. current_position[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  2826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2827. //Retract
  2828. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2830. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 70, active_extruder); //should do nothing
  2831. //Move XY back
  2832. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2833. //Move Z back
  2834. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2835. current_position[E_AXIS]= current_position[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2836. //Unretract
  2837. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2838. //Set E position to original
  2839. plan_set_e_position(lastpos[E_AXIS]);
  2840. memcpy(current_position, lastpos, sizeof(lastpos));
  2841. memcpy(destination, current_position, sizeof(current_position));
  2842. //Recover feed rate
  2843. feedmultiply=feedmultiplyBckp;
  2844. char cmd[9];
  2845. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2846. enquecommand(cmd);
  2847. lcd_setstatuspgm(_T(WELCOME_MSG));
  2848. custom_message = false;
  2849. custom_message_type = 0;
  2850. }
  2851. void gcode_M701()
  2852. {
  2853. printf_P(PSTR("gcode_M701 begin\n"));
  2854. #if defined (SNMM) || defined (SNMM_V2)
  2855. extr_adj(snmm_extruder);//loads current extruder
  2856. #else //defined (SNMM) || defined (SNMM_V2)
  2857. enable_z();
  2858. custom_message = true;
  2859. custom_message_type = 2;
  2860. #ifdef FILAMENT_SENSOR
  2861. fsensor_oq_meassure_start(40);
  2862. #endif //FILAMENT_SENSOR
  2863. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2864. current_position[E_AXIS] += 40;
  2865. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2866. st_synchronize();
  2867. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2868. current_position[E_AXIS] += 30;
  2869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2870. st_synchronize();
  2871. current_position[E_AXIS] += 25;
  2872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2873. st_synchronize();
  2874. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2875. tone(BEEPER, 500);
  2876. delay_keep_alive(50);
  2877. noTone(BEEPER);
  2878. if (!farm_mode && loading_flag) {
  2879. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2880. while (!clean) {
  2881. lcd_update_enable(true);
  2882. lcd_update(2);
  2883. current_position[E_AXIS] += 25;
  2884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2885. st_synchronize();
  2886. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2887. }
  2888. }
  2889. lcd_update_enable(true);
  2890. lcd_update(2);
  2891. lcd_setstatuspgm(_T(WELCOME_MSG));
  2892. disable_z();
  2893. loading_flag = false;
  2894. custom_message = false;
  2895. custom_message_type = 0;
  2896. #ifdef FILAMENT_SENSOR
  2897. fsensor_oq_meassure_stop();
  2898. if (!fsensor_oq_result())
  2899. {
  2900. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2901. lcd_update_enable(true);
  2902. lcd_update(2);
  2903. if (disable)
  2904. fsensor_disable();
  2905. }
  2906. #endif //FILAMENT_SENSOR
  2907. #endif //defined (SNMM) || defined (SNMM_V2)
  2908. }
  2909. /**
  2910. * @brief Get serial number from 32U2 processor
  2911. *
  2912. * Typical format of S/N is:CZPX0917X003XC13518
  2913. *
  2914. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2915. *
  2916. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2917. * reply is transmitted to serial port 1 character by character.
  2918. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2919. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2920. * in any case.
  2921. */
  2922. static void gcode_PRUSA_SN()
  2923. {
  2924. if (farm_mode) {
  2925. selectedSerialPort = 0;
  2926. putchar(';');
  2927. putchar('S');
  2928. int numbersRead = 0;
  2929. ShortTimer timeout;
  2930. timeout.start();
  2931. while (numbersRead < 19) {
  2932. while (MSerial.available() > 0) {
  2933. uint8_t serial_char = MSerial.read();
  2934. selectedSerialPort = 1;
  2935. putchar(serial_char);
  2936. numbersRead++;
  2937. selectedSerialPort = 0;
  2938. }
  2939. if (timeout.expired(100u)) break;
  2940. }
  2941. selectedSerialPort = 1;
  2942. putchar('\n');
  2943. #if 0
  2944. for (int b = 0; b < 3; b++) {
  2945. tone(BEEPER, 110);
  2946. delay(50);
  2947. noTone(BEEPER);
  2948. delay(50);
  2949. }
  2950. #endif
  2951. } else {
  2952. puts_P(_N("Not in farm mode."));
  2953. }
  2954. }
  2955. #ifdef BACKLASH_X
  2956. extern uint8_t st_backlash_x;
  2957. #endif //BACKLASH_X
  2958. #ifdef BACKLASH_Y
  2959. extern uint8_t st_backlash_y;
  2960. #endif //BACKLASH_Y
  2961. void process_commands()
  2962. {
  2963. if (!buflen) return; //empty command
  2964. #ifdef FILAMENT_RUNOUT_SUPPORT
  2965. SET_INPUT(FR_SENS);
  2966. #endif
  2967. #ifdef CMDBUFFER_DEBUG
  2968. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2969. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2970. SERIAL_ECHOLNPGM("");
  2971. SERIAL_ECHOPGM("In cmdqueue: ");
  2972. SERIAL_ECHO(buflen);
  2973. SERIAL_ECHOLNPGM("");
  2974. #endif /* CMDBUFFER_DEBUG */
  2975. unsigned long codenum; //throw away variable
  2976. char *starpos = NULL;
  2977. #ifdef ENABLE_AUTO_BED_LEVELING
  2978. float x_tmp, y_tmp, z_tmp, real_z;
  2979. #endif
  2980. // PRUSA GCODES
  2981. KEEPALIVE_STATE(IN_HANDLER);
  2982. #ifdef SNMM
  2983. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2984. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2985. int8_t SilentMode;
  2986. #endif
  2987. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2988. starpos = (strchr(strchr_pointer + 5, '*'));
  2989. if (starpos != NULL)
  2990. *(starpos) = '\0';
  2991. lcd_setstatus(strchr_pointer + 5);
  2992. }
  2993. #ifdef TMC2130
  2994. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2995. {
  2996. if(code_seen("CRASH_DETECTED"))
  2997. {
  2998. uint8_t mask = 0;
  2999. if (code_seen("X")) mask |= X_AXIS_MASK;
  3000. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  3001. crashdet_detected(mask);
  3002. }
  3003. else if(code_seen("CRASH_RECOVER"))
  3004. crashdet_recover();
  3005. else if(code_seen("CRASH_CANCEL"))
  3006. crashdet_cancel();
  3007. }
  3008. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3009. {
  3010. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3011. {
  3012. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3013. axis = (axis == 'E')?3:(axis - 'X');
  3014. if (axis < 4)
  3015. {
  3016. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3017. tmc2130_set_wave(axis, 247, fac);
  3018. }
  3019. }
  3020. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3021. {
  3022. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3023. axis = (axis == 'E')?3:(axis - 'X');
  3024. if (axis < 4)
  3025. {
  3026. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3027. uint16_t res = tmc2130_get_res(axis);
  3028. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3029. }
  3030. }
  3031. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3032. {
  3033. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3034. axis = (axis == 'E')?3:(axis - 'X');
  3035. if (axis < 4)
  3036. {
  3037. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3038. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3039. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3040. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3041. char* str_end = 0;
  3042. if (CMDBUFFER_CURRENT_STRING[14])
  3043. {
  3044. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3045. if (str_end && *str_end)
  3046. {
  3047. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3048. if (str_end && *str_end)
  3049. {
  3050. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3051. if (str_end && *str_end)
  3052. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3053. }
  3054. }
  3055. }
  3056. tmc2130_chopper_config[axis].toff = chop0;
  3057. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3058. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3059. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3060. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3061. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3062. }
  3063. }
  3064. }
  3065. #ifdef BACKLASH_X
  3066. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3067. {
  3068. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3069. st_backlash_x = bl;
  3070. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3071. }
  3072. #endif //BACKLASH_X
  3073. #ifdef BACKLASH_Y
  3074. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3075. {
  3076. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3077. st_backlash_y = bl;
  3078. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3079. }
  3080. #endif //BACKLASH_Y
  3081. #endif //TMC2130
  3082. else if(code_seen("PRUSA")){
  3083. if (code_seen("Ping")) { //PRUSA Ping
  3084. if (farm_mode) {
  3085. PingTime = millis();
  3086. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3087. }
  3088. }
  3089. else if (code_seen("PRN")) {
  3090. printf_P(_N("%d"), status_number);
  3091. }else if (code_seen("FAN")) {
  3092. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3093. }else if (code_seen("fn")) {
  3094. if (farm_mode) {
  3095. printf_P(_N("%d"), farm_no);
  3096. }
  3097. else {
  3098. puts_P(_N("Not in farm mode."));
  3099. }
  3100. }
  3101. else if (code_seen("thx")) {
  3102. no_response = false;
  3103. }
  3104. else if (code_seen("uvlo")) {
  3105. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3106. enquecommand_P(PSTR("M24"));
  3107. }
  3108. else if (code_seen("MMURES")) {
  3109. fprintf_P(uart2io, PSTR("X0"));
  3110. }
  3111. else if (code_seen("RESET")) {
  3112. // careful!
  3113. if (farm_mode) {
  3114. #ifdef WATCHDOG
  3115. boot_app_magic = BOOT_APP_MAGIC;
  3116. boot_app_flags = BOOT_APP_FLG_RUN;
  3117. wdt_enable(WDTO_15MS);
  3118. cli();
  3119. while(1);
  3120. #else //WATCHDOG
  3121. asm volatile("jmp 0x3E000");
  3122. #endif //WATCHDOG
  3123. }
  3124. else {
  3125. MYSERIAL.println("Not in farm mode.");
  3126. }
  3127. }else if (code_seen("fv")) {
  3128. // get file version
  3129. #ifdef SDSUPPORT
  3130. card.openFile(strchr_pointer + 3,true);
  3131. while (true) {
  3132. uint16_t readByte = card.get();
  3133. MYSERIAL.write(readByte);
  3134. if (readByte=='\n') {
  3135. break;
  3136. }
  3137. }
  3138. card.closefile();
  3139. #endif // SDSUPPORT
  3140. } else if (code_seen("M28")) {
  3141. trace();
  3142. prusa_sd_card_upload = true;
  3143. card.openFile(strchr_pointer+4,false);
  3144. } else if (code_seen("SN")) {
  3145. gcode_PRUSA_SN();
  3146. } else if(code_seen("Fir")){
  3147. SERIAL_PROTOCOLLN(FW_VERSION);
  3148. } else if(code_seen("Rev")){
  3149. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3150. } else if(code_seen("Lang")) {
  3151. lang_reset();
  3152. } else if(code_seen("Lz")) {
  3153. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3154. } else if(code_seen("Beat")) {
  3155. // Kick farm link timer
  3156. kicktime = millis();
  3157. } else if(code_seen("FR")) {
  3158. // Factory full reset
  3159. factory_reset(0,true);
  3160. }
  3161. //else if (code_seen('Cal')) {
  3162. // lcd_calibration();
  3163. // }
  3164. }
  3165. else if (code_seen('^')) {
  3166. // nothing, this is a version line
  3167. } else if(code_seen('G'))
  3168. {
  3169. gcode_in_progress = (int)code_value();
  3170. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3171. switch (gcode_in_progress)
  3172. {
  3173. case 0: // G0 -> G1
  3174. case 1: // G1
  3175. if(Stopped == false) {
  3176. #ifdef FILAMENT_RUNOUT_SUPPORT
  3177. if(READ(FR_SENS)){
  3178. feedmultiplyBckp=feedmultiply;
  3179. float target[4];
  3180. float lastpos[4];
  3181. target[X_AXIS]=current_position[X_AXIS];
  3182. target[Y_AXIS]=current_position[Y_AXIS];
  3183. target[Z_AXIS]=current_position[Z_AXIS];
  3184. target[E_AXIS]=current_position[E_AXIS];
  3185. lastpos[X_AXIS]=current_position[X_AXIS];
  3186. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3187. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3188. lastpos[E_AXIS]=current_position[E_AXIS];
  3189. //retract by E
  3190. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3191. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3192. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3193. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3194. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3195. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3196. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3197. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3199. //finish moves
  3200. st_synchronize();
  3201. //disable extruder steppers so filament can be removed
  3202. disable_e0();
  3203. disable_e1();
  3204. disable_e2();
  3205. delay(100);
  3206. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3207. uint8_t cnt=0;
  3208. int counterBeep = 0;
  3209. lcd_wait_interact();
  3210. while(!lcd_clicked()){
  3211. cnt++;
  3212. manage_heater();
  3213. manage_inactivity(true);
  3214. //lcd_update(0);
  3215. if(cnt==0)
  3216. {
  3217. #if BEEPER > 0
  3218. if (counterBeep== 500){
  3219. counterBeep = 0;
  3220. }
  3221. SET_OUTPUT(BEEPER);
  3222. if (counterBeep== 0){
  3223. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3224. WRITE(BEEPER,HIGH);
  3225. }
  3226. if (counterBeep== 20){
  3227. WRITE(BEEPER,LOW);
  3228. }
  3229. counterBeep++;
  3230. #else
  3231. #endif
  3232. }
  3233. }
  3234. WRITE(BEEPER,LOW);
  3235. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3236. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3237. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3238. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3239. lcd_change_fil_state = 0;
  3240. lcd_loading_filament();
  3241. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3242. lcd_change_fil_state = 0;
  3243. lcd_alright();
  3244. switch(lcd_change_fil_state){
  3245. case 2:
  3246. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3247. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3248. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3249. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3250. lcd_loading_filament();
  3251. break;
  3252. case 3:
  3253. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3254. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3255. lcd_loading_color();
  3256. break;
  3257. default:
  3258. lcd_change_success();
  3259. break;
  3260. }
  3261. }
  3262. target[E_AXIS]+= 5;
  3263. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3264. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3265. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3266. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3267. //plan_set_e_position(current_position[E_AXIS]);
  3268. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3269. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3270. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3271. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3272. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3273. plan_set_e_position(lastpos[E_AXIS]);
  3274. feedmultiply=feedmultiplyBckp;
  3275. char cmd[9];
  3276. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3277. enquecommand(cmd);
  3278. }
  3279. #endif
  3280. get_coordinates(); // For X Y Z E F
  3281. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3282. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3283. }
  3284. #ifdef FWRETRACT
  3285. if(autoretract_enabled)
  3286. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3287. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3288. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3289. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3290. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3291. retract(!retracted[active_extruder]);
  3292. return;
  3293. }
  3294. }
  3295. #endif //FWRETRACT
  3296. prepare_move();
  3297. //ClearToSend();
  3298. }
  3299. break;
  3300. case 2: // G2 - CW ARC
  3301. if(Stopped == false) {
  3302. get_arc_coordinates();
  3303. prepare_arc_move(true);
  3304. }
  3305. break;
  3306. case 3: // G3 - CCW ARC
  3307. if(Stopped == false) {
  3308. get_arc_coordinates();
  3309. prepare_arc_move(false);
  3310. }
  3311. break;
  3312. case 4: // G4 dwell
  3313. codenum = 0;
  3314. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3315. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3316. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3317. st_synchronize();
  3318. codenum += millis(); // keep track of when we started waiting
  3319. previous_millis_cmd = millis();
  3320. while(millis() < codenum) {
  3321. manage_heater();
  3322. manage_inactivity();
  3323. lcd_update(0);
  3324. }
  3325. break;
  3326. #ifdef FWRETRACT
  3327. case 10: // G10 retract
  3328. #if EXTRUDERS > 1
  3329. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3330. retract(true,retracted_swap[active_extruder]);
  3331. #else
  3332. retract(true);
  3333. #endif
  3334. break;
  3335. case 11: // G11 retract_recover
  3336. #if EXTRUDERS > 1
  3337. retract(false,retracted_swap[active_extruder]);
  3338. #else
  3339. retract(false);
  3340. #endif
  3341. break;
  3342. #endif //FWRETRACT
  3343. case 28: //G28 Home all Axis one at a time
  3344. {
  3345. long home_x_value = 0;
  3346. long home_y_value = 0;
  3347. long home_z_value = 0;
  3348. // Which axes should be homed?
  3349. bool home_x = code_seen(axis_codes[X_AXIS]);
  3350. home_x_value = code_value_long();
  3351. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3352. home_y_value = code_value_long();
  3353. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3354. home_z_value = code_value_long();
  3355. bool without_mbl = code_seen('W');
  3356. // calibrate?
  3357. bool calib = code_seen('C');
  3358. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3359. if ((home_x || home_y || without_mbl || home_z) == false) {
  3360. // Push the commands to the front of the message queue in the reverse order!
  3361. // There shall be always enough space reserved for these commands.
  3362. goto case_G80;
  3363. }
  3364. break;
  3365. }
  3366. #ifdef ENABLE_AUTO_BED_LEVELING
  3367. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3368. {
  3369. #if Z_MIN_PIN == -1
  3370. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3371. #endif
  3372. // Prevent user from running a G29 without first homing in X and Y
  3373. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3374. {
  3375. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3376. SERIAL_ECHO_START;
  3377. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3378. break; // abort G29, since we don't know where we are
  3379. }
  3380. st_synchronize();
  3381. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3382. //vector_3 corrected_position = plan_get_position_mm();
  3383. //corrected_position.debug("position before G29");
  3384. plan_bed_level_matrix.set_to_identity();
  3385. vector_3 uncorrected_position = plan_get_position();
  3386. //uncorrected_position.debug("position durring G29");
  3387. current_position[X_AXIS] = uncorrected_position.x;
  3388. current_position[Y_AXIS] = uncorrected_position.y;
  3389. current_position[Z_AXIS] = uncorrected_position.z;
  3390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3391. setup_for_endstop_move();
  3392. feedrate = homing_feedrate[Z_AXIS];
  3393. #ifdef AUTO_BED_LEVELING_GRID
  3394. // probe at the points of a lattice grid
  3395. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3396. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3397. // solve the plane equation ax + by + d = z
  3398. // A is the matrix with rows [x y 1] for all the probed points
  3399. // B is the vector of the Z positions
  3400. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3401. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3402. // "A" matrix of the linear system of equations
  3403. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3404. // "B" vector of Z points
  3405. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3406. int probePointCounter = 0;
  3407. bool zig = true;
  3408. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3409. {
  3410. int xProbe, xInc;
  3411. if (zig)
  3412. {
  3413. xProbe = LEFT_PROBE_BED_POSITION;
  3414. //xEnd = RIGHT_PROBE_BED_POSITION;
  3415. xInc = xGridSpacing;
  3416. zig = false;
  3417. } else // zag
  3418. {
  3419. xProbe = RIGHT_PROBE_BED_POSITION;
  3420. //xEnd = LEFT_PROBE_BED_POSITION;
  3421. xInc = -xGridSpacing;
  3422. zig = true;
  3423. }
  3424. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3425. {
  3426. float z_before;
  3427. if (probePointCounter == 0)
  3428. {
  3429. // raise before probing
  3430. z_before = Z_RAISE_BEFORE_PROBING;
  3431. } else
  3432. {
  3433. // raise extruder
  3434. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3435. }
  3436. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3437. eqnBVector[probePointCounter] = measured_z;
  3438. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3439. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3440. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3441. probePointCounter++;
  3442. xProbe += xInc;
  3443. }
  3444. }
  3445. clean_up_after_endstop_move();
  3446. // solve lsq problem
  3447. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3448. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3449. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3450. SERIAL_PROTOCOLPGM(" b: ");
  3451. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3452. SERIAL_PROTOCOLPGM(" d: ");
  3453. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3454. set_bed_level_equation_lsq(plane_equation_coefficients);
  3455. free(plane_equation_coefficients);
  3456. #else // AUTO_BED_LEVELING_GRID not defined
  3457. // Probe at 3 arbitrary points
  3458. // probe 1
  3459. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3460. // probe 2
  3461. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3462. // probe 3
  3463. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3464. clean_up_after_endstop_move();
  3465. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3466. #endif // AUTO_BED_LEVELING_GRID
  3467. st_synchronize();
  3468. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3469. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3470. // When the bed is uneven, this height must be corrected.
  3471. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3472. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3473. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3474. z_tmp = current_position[Z_AXIS];
  3475. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3476. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3477. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3478. }
  3479. break;
  3480. #ifndef Z_PROBE_SLED
  3481. case 30: // G30 Single Z Probe
  3482. {
  3483. st_synchronize();
  3484. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3485. setup_for_endstop_move();
  3486. feedrate = homing_feedrate[Z_AXIS];
  3487. run_z_probe();
  3488. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3489. SERIAL_PROTOCOLPGM(" X: ");
  3490. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3491. SERIAL_PROTOCOLPGM(" Y: ");
  3492. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3493. SERIAL_PROTOCOLPGM(" Z: ");
  3494. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3495. SERIAL_PROTOCOLPGM("\n");
  3496. clean_up_after_endstop_move();
  3497. }
  3498. break;
  3499. #else
  3500. case 31: // dock the sled
  3501. dock_sled(true);
  3502. break;
  3503. case 32: // undock the sled
  3504. dock_sled(false);
  3505. break;
  3506. #endif // Z_PROBE_SLED
  3507. #endif // ENABLE_AUTO_BED_LEVELING
  3508. #ifdef MESH_BED_LEVELING
  3509. case 30: // G30 Single Z Probe
  3510. {
  3511. st_synchronize();
  3512. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3513. setup_for_endstop_move();
  3514. feedrate = homing_feedrate[Z_AXIS];
  3515. find_bed_induction_sensor_point_z(-10.f, 3);
  3516. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3517. clean_up_after_endstop_move();
  3518. }
  3519. break;
  3520. case 75:
  3521. {
  3522. for (int i = 40; i <= 110; i++)
  3523. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3524. }
  3525. break;
  3526. case 76: //PINDA probe temperature calibration
  3527. {
  3528. #ifdef PINDA_THERMISTOR
  3529. if (true)
  3530. {
  3531. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3532. //we need to know accurate position of first calibration point
  3533. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3534. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3535. break;
  3536. }
  3537. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3538. {
  3539. // We don't know where we are! HOME!
  3540. // Push the commands to the front of the message queue in the reverse order!
  3541. // There shall be always enough space reserved for these commands.
  3542. repeatcommand_front(); // repeat G76 with all its parameters
  3543. enquecommand_front_P((PSTR("G28 W0")));
  3544. break;
  3545. }
  3546. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3547. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3548. if (result)
  3549. {
  3550. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3552. current_position[Z_AXIS] = 50;
  3553. current_position[Y_AXIS] = 180;
  3554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3555. st_synchronize();
  3556. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3557. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3558. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3560. st_synchronize();
  3561. gcode_G28(false, false, true);
  3562. }
  3563. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3564. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3565. current_position[Z_AXIS] = 100;
  3566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3567. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3568. lcd_temp_cal_show_result(false);
  3569. break;
  3570. }
  3571. }
  3572. lcd_update_enable(true);
  3573. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3574. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3575. float zero_z;
  3576. int z_shift = 0; //unit: steps
  3577. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3578. if (start_temp < 35) start_temp = 35;
  3579. if (start_temp < current_temperature_pinda) start_temp += 5;
  3580. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3581. // setTargetHotend(200, 0);
  3582. setTargetBed(70 + (start_temp - 30));
  3583. custom_message = true;
  3584. custom_message_type = 4;
  3585. custom_message_state = 1;
  3586. custom_message = _T(MSG_TEMP_CALIBRATION);
  3587. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3589. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3590. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3592. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3594. st_synchronize();
  3595. while (current_temperature_pinda < start_temp)
  3596. {
  3597. delay_keep_alive(1000);
  3598. serialecho_temperatures();
  3599. }
  3600. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3601. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3604. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3606. st_synchronize();
  3607. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3608. if (find_z_result == false) {
  3609. lcd_temp_cal_show_result(find_z_result);
  3610. break;
  3611. }
  3612. zero_z = current_position[Z_AXIS];
  3613. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3614. int i = -1; for (; i < 5; i++)
  3615. {
  3616. float temp = (40 + i * 5);
  3617. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3618. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3619. if (start_temp <= temp) break;
  3620. }
  3621. for (i++; i < 5; i++)
  3622. {
  3623. float temp = (40 + i * 5);
  3624. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3625. custom_message_state = i + 2;
  3626. setTargetBed(50 + 10 * (temp - 30) / 5);
  3627. // setTargetHotend(255, 0);
  3628. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3630. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3631. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3633. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3635. st_synchronize();
  3636. while (current_temperature_pinda < temp)
  3637. {
  3638. delay_keep_alive(1000);
  3639. serialecho_temperatures();
  3640. }
  3641. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3643. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3644. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3646. st_synchronize();
  3647. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3648. if (find_z_result == false) {
  3649. lcd_temp_cal_show_result(find_z_result);
  3650. break;
  3651. }
  3652. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3653. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3654. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3655. }
  3656. lcd_temp_cal_show_result(true);
  3657. break;
  3658. }
  3659. #endif //PINDA_THERMISTOR
  3660. setTargetBed(PINDA_MIN_T);
  3661. float zero_z;
  3662. int z_shift = 0; //unit: steps
  3663. int t_c; // temperature
  3664. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3665. // We don't know where we are! HOME!
  3666. // Push the commands to the front of the message queue in the reverse order!
  3667. // There shall be always enough space reserved for these commands.
  3668. repeatcommand_front(); // repeat G76 with all its parameters
  3669. enquecommand_front_P((PSTR("G28 W0")));
  3670. break;
  3671. }
  3672. puts_P(_N("PINDA probe calibration start"));
  3673. custom_message = true;
  3674. custom_message_type = 4;
  3675. custom_message_state = 1;
  3676. custom_message = _T(MSG_TEMP_CALIBRATION);
  3677. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3678. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3679. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3681. st_synchronize();
  3682. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3683. delay_keep_alive(1000);
  3684. serialecho_temperatures();
  3685. }
  3686. //enquecommand_P(PSTR("M190 S50"));
  3687. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3688. delay_keep_alive(1000);
  3689. serialecho_temperatures();
  3690. }
  3691. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3692. current_position[Z_AXIS] = 5;
  3693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3694. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3695. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3697. st_synchronize();
  3698. find_bed_induction_sensor_point_z(-1.f);
  3699. zero_z = current_position[Z_AXIS];
  3700. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3701. for (int i = 0; i<5; i++) {
  3702. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3703. custom_message_state = i + 2;
  3704. t_c = 60 + i * 10;
  3705. setTargetBed(t_c);
  3706. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3707. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3708. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3710. st_synchronize();
  3711. while (degBed() < t_c) {
  3712. delay_keep_alive(1000);
  3713. serialecho_temperatures();
  3714. }
  3715. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3716. delay_keep_alive(1000);
  3717. serialecho_temperatures();
  3718. }
  3719. current_position[Z_AXIS] = 5;
  3720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3721. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3722. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3724. st_synchronize();
  3725. find_bed_induction_sensor_point_z(-1.f);
  3726. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3727. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3729. }
  3730. custom_message_type = 0;
  3731. custom_message = false;
  3732. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3733. puts_P(_N("Temperature calibration done."));
  3734. disable_x();
  3735. disable_y();
  3736. disable_z();
  3737. disable_e0();
  3738. disable_e1();
  3739. disable_e2();
  3740. setTargetBed(0); //set bed target temperature back to 0
  3741. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3742. temp_cal_active = true;
  3743. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3744. lcd_update_enable(true);
  3745. lcd_update(2);
  3746. }
  3747. break;
  3748. #ifdef DIS
  3749. case 77:
  3750. {
  3751. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3752. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3753. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3754. float dimension_x = 40;
  3755. float dimension_y = 40;
  3756. int points_x = 40;
  3757. int points_y = 40;
  3758. float offset_x = 74;
  3759. float offset_y = 33;
  3760. if (code_seen('X')) dimension_x = code_value();
  3761. if (code_seen('Y')) dimension_y = code_value();
  3762. if (code_seen('XP')) points_x = code_value();
  3763. if (code_seen('YP')) points_y = code_value();
  3764. if (code_seen('XO')) offset_x = code_value();
  3765. if (code_seen('YO')) offset_y = code_value();
  3766. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3767. } break;
  3768. #endif
  3769. case 79: {
  3770. for (int i = 255; i > 0; i = i - 5) {
  3771. fanSpeed = i;
  3772. //delay_keep_alive(2000);
  3773. for (int j = 0; j < 100; j++) {
  3774. delay_keep_alive(100);
  3775. }
  3776. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3777. }
  3778. }break;
  3779. /**
  3780. * G80: Mesh-based Z probe, probes a grid and produces a
  3781. * mesh to compensate for variable bed height
  3782. *
  3783. * The S0 report the points as below
  3784. *
  3785. * +----> X-axis
  3786. * |
  3787. * |
  3788. * v Y-axis
  3789. *
  3790. */
  3791. case 80:
  3792. #ifdef MK1BP
  3793. break;
  3794. #endif //MK1BP
  3795. case_G80:
  3796. {
  3797. mesh_bed_leveling_flag = true;
  3798. static bool run = false;
  3799. #ifdef SUPPORT_VERBOSITY
  3800. int8_t verbosity_level = 0;
  3801. if (code_seen('V')) {
  3802. // Just 'V' without a number counts as V1.
  3803. char c = strchr_pointer[1];
  3804. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3805. }
  3806. #endif //SUPPORT_VERBOSITY
  3807. // Firstly check if we know where we are
  3808. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3809. // We don't know where we are! HOME!
  3810. // Push the commands to the front of the message queue in the reverse order!
  3811. // There shall be always enough space reserved for these commands.
  3812. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3813. repeatcommand_front(); // repeat G80 with all its parameters
  3814. enquecommand_front_P((PSTR("G28 W0")));
  3815. }
  3816. else {
  3817. mesh_bed_leveling_flag = false;
  3818. }
  3819. break;
  3820. }
  3821. bool temp_comp_start = true;
  3822. #ifdef PINDA_THERMISTOR
  3823. temp_comp_start = false;
  3824. #endif //PINDA_THERMISTOR
  3825. if (temp_comp_start)
  3826. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3827. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3828. temp_compensation_start();
  3829. run = true;
  3830. repeatcommand_front(); // repeat G80 with all its parameters
  3831. enquecommand_front_P((PSTR("G28 W0")));
  3832. }
  3833. else {
  3834. mesh_bed_leveling_flag = false;
  3835. }
  3836. break;
  3837. }
  3838. run = false;
  3839. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3840. mesh_bed_leveling_flag = false;
  3841. break;
  3842. }
  3843. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3844. bool custom_message_old = custom_message;
  3845. unsigned int custom_message_type_old = custom_message_type;
  3846. unsigned int custom_message_state_old = custom_message_state;
  3847. custom_message = true;
  3848. custom_message_type = 1;
  3849. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3850. lcd_update(1);
  3851. mbl.reset(); //reset mesh bed leveling
  3852. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3853. // consumed during the first movements following this statement.
  3854. babystep_undo();
  3855. // Cycle through all points and probe them
  3856. // First move up. During this first movement, the babystepping will be reverted.
  3857. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3859. // The move to the first calibration point.
  3860. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3861. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3862. #ifdef SUPPORT_VERBOSITY
  3863. if (verbosity_level >= 1)
  3864. {
  3865. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3866. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3867. }
  3868. #endif //SUPPORT_VERBOSITY
  3869. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3871. // Wait until the move is finished.
  3872. st_synchronize();
  3873. int mesh_point = 0; //index number of calibration point
  3874. int ix = 0;
  3875. int iy = 0;
  3876. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3877. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3878. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3879. #ifdef SUPPORT_VERBOSITY
  3880. if (verbosity_level >= 1) {
  3881. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3882. }
  3883. #endif // SUPPORT_VERBOSITY
  3884. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3885. const char *kill_message = NULL;
  3886. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3887. // Get coords of a measuring point.
  3888. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3889. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3890. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3891. float z0 = 0.f;
  3892. if (has_z && mesh_point > 0) {
  3893. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3894. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3895. //#if 0
  3896. #ifdef SUPPORT_VERBOSITY
  3897. if (verbosity_level >= 1) {
  3898. SERIAL_ECHOLNPGM("");
  3899. SERIAL_ECHOPGM("Bed leveling, point: ");
  3900. MYSERIAL.print(mesh_point);
  3901. SERIAL_ECHOPGM(", calibration z: ");
  3902. MYSERIAL.print(z0, 5);
  3903. SERIAL_ECHOLNPGM("");
  3904. }
  3905. #endif // SUPPORT_VERBOSITY
  3906. //#endif
  3907. }
  3908. // Move Z up to MESH_HOME_Z_SEARCH.
  3909. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3911. st_synchronize();
  3912. // Move to XY position of the sensor point.
  3913. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3914. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3915. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3916. #ifdef SUPPORT_VERBOSITY
  3917. if (verbosity_level >= 1) {
  3918. SERIAL_PROTOCOL(mesh_point);
  3919. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3920. }
  3921. #endif // SUPPORT_VERBOSITY
  3922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3923. st_synchronize();
  3924. // Go down until endstop is hit
  3925. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3926. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3927. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3928. break;
  3929. }
  3930. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3931. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3932. break;
  3933. }
  3934. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3935. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3936. break;
  3937. }
  3938. #ifdef SUPPORT_VERBOSITY
  3939. if (verbosity_level >= 10) {
  3940. SERIAL_ECHOPGM("X: ");
  3941. MYSERIAL.print(current_position[X_AXIS], 5);
  3942. SERIAL_ECHOLNPGM("");
  3943. SERIAL_ECHOPGM("Y: ");
  3944. MYSERIAL.print(current_position[Y_AXIS], 5);
  3945. SERIAL_PROTOCOLPGM("\n");
  3946. }
  3947. #endif // SUPPORT_VERBOSITY
  3948. float offset_z = 0;
  3949. #ifdef PINDA_THERMISTOR
  3950. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3951. #endif //PINDA_THERMISTOR
  3952. // #ifdef SUPPORT_VERBOSITY
  3953. /* if (verbosity_level >= 1)
  3954. {
  3955. SERIAL_ECHOPGM("mesh bed leveling: ");
  3956. MYSERIAL.print(current_position[Z_AXIS], 5);
  3957. SERIAL_ECHOPGM(" offset: ");
  3958. MYSERIAL.print(offset_z, 5);
  3959. SERIAL_ECHOLNPGM("");
  3960. }*/
  3961. // #endif // SUPPORT_VERBOSITY
  3962. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3963. custom_message_state--;
  3964. mesh_point++;
  3965. lcd_update(1);
  3966. }
  3967. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3968. #ifdef SUPPORT_VERBOSITY
  3969. if (verbosity_level >= 20) {
  3970. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3971. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3972. MYSERIAL.print(current_position[Z_AXIS], 5);
  3973. }
  3974. #endif // SUPPORT_VERBOSITY
  3975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3976. st_synchronize();
  3977. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3978. kill(kill_message);
  3979. SERIAL_ECHOLNPGM("killed");
  3980. }
  3981. clean_up_after_endstop_move();
  3982. // SERIAL_ECHOLNPGM("clean up finished ");
  3983. bool apply_temp_comp = true;
  3984. #ifdef PINDA_THERMISTOR
  3985. apply_temp_comp = false;
  3986. #endif
  3987. if (apply_temp_comp)
  3988. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3989. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3990. // SERIAL_ECHOLNPGM("babystep applied");
  3991. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3992. #ifdef SUPPORT_VERBOSITY
  3993. if (verbosity_level >= 1) {
  3994. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3995. }
  3996. #endif // SUPPORT_VERBOSITY
  3997. for (uint8_t i = 0; i < 4; ++i) {
  3998. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3999. long correction = 0;
  4000. if (code_seen(codes[i]))
  4001. correction = code_value_long();
  4002. else if (eeprom_bed_correction_valid) {
  4003. unsigned char *addr = (i < 2) ?
  4004. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4005. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4006. correction = eeprom_read_int8(addr);
  4007. }
  4008. if (correction == 0)
  4009. continue;
  4010. float offset = float(correction) * 0.001f;
  4011. if (fabs(offset) > 0.101f) {
  4012. SERIAL_ERROR_START;
  4013. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4014. SERIAL_ECHO(offset);
  4015. SERIAL_ECHOLNPGM(" microns");
  4016. }
  4017. else {
  4018. switch (i) {
  4019. case 0:
  4020. for (uint8_t row = 0; row < 3; ++row) {
  4021. mbl.z_values[row][1] += 0.5f * offset;
  4022. mbl.z_values[row][0] += offset;
  4023. }
  4024. break;
  4025. case 1:
  4026. for (uint8_t row = 0; row < 3; ++row) {
  4027. mbl.z_values[row][1] += 0.5f * offset;
  4028. mbl.z_values[row][2] += offset;
  4029. }
  4030. break;
  4031. case 2:
  4032. for (uint8_t col = 0; col < 3; ++col) {
  4033. mbl.z_values[1][col] += 0.5f * offset;
  4034. mbl.z_values[0][col] += offset;
  4035. }
  4036. break;
  4037. case 3:
  4038. for (uint8_t col = 0; col < 3; ++col) {
  4039. mbl.z_values[1][col] += 0.5f * offset;
  4040. mbl.z_values[2][col] += offset;
  4041. }
  4042. break;
  4043. }
  4044. }
  4045. }
  4046. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4047. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4048. // SERIAL_ECHOLNPGM("Upsample finished");
  4049. mbl.active = 1; //activate mesh bed leveling
  4050. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4051. go_home_with_z_lift();
  4052. // SERIAL_ECHOLNPGM("Go home finished");
  4053. //unretract (after PINDA preheat retraction)
  4054. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4055. current_position[E_AXIS] += DEFAULT_RETRACTION;
  4056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4057. }
  4058. KEEPALIVE_STATE(NOT_BUSY);
  4059. // Restore custom message state
  4060. lcd_setstatuspgm(_T(WELCOME_MSG));
  4061. custom_message = custom_message_old;
  4062. custom_message_type = custom_message_type_old;
  4063. custom_message_state = custom_message_state_old;
  4064. mesh_bed_leveling_flag = false;
  4065. mesh_bed_run_from_menu = false;
  4066. lcd_update(2);
  4067. }
  4068. break;
  4069. /**
  4070. * G81: Print mesh bed leveling status and bed profile if activated
  4071. */
  4072. case 81:
  4073. if (mbl.active) {
  4074. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4075. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4076. SERIAL_PROTOCOLPGM(",");
  4077. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4078. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4079. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4080. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4081. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4082. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4083. SERIAL_PROTOCOLPGM(" ");
  4084. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4085. }
  4086. SERIAL_PROTOCOLPGM("\n");
  4087. }
  4088. }
  4089. else
  4090. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4091. break;
  4092. #if 0
  4093. /**
  4094. * G82: Single Z probe at current location
  4095. *
  4096. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4097. *
  4098. */
  4099. case 82:
  4100. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4101. setup_for_endstop_move();
  4102. find_bed_induction_sensor_point_z();
  4103. clean_up_after_endstop_move();
  4104. SERIAL_PROTOCOLPGM("Bed found at: ");
  4105. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4106. SERIAL_PROTOCOLPGM("\n");
  4107. break;
  4108. /**
  4109. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4110. */
  4111. case 83:
  4112. {
  4113. int babystepz = code_seen('S') ? code_value() : 0;
  4114. int BabyPosition = code_seen('P') ? code_value() : 0;
  4115. if (babystepz != 0) {
  4116. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4117. // Is the axis indexed starting with zero or one?
  4118. if (BabyPosition > 4) {
  4119. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4120. }else{
  4121. // Save it to the eeprom
  4122. babystepLoadZ = babystepz;
  4123. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4124. // adjust the Z
  4125. babystepsTodoZadd(babystepLoadZ);
  4126. }
  4127. }
  4128. }
  4129. break;
  4130. /**
  4131. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4132. */
  4133. case 84:
  4134. babystepsTodoZsubtract(babystepLoadZ);
  4135. // babystepLoadZ = 0;
  4136. break;
  4137. /**
  4138. * G85: Prusa3D specific: Pick best babystep
  4139. */
  4140. case 85:
  4141. lcd_pick_babystep();
  4142. break;
  4143. #endif
  4144. /**
  4145. * G86: Prusa3D specific: Disable babystep correction after home.
  4146. * This G-code will be performed at the start of a calibration script.
  4147. */
  4148. case 86:
  4149. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4150. break;
  4151. /**
  4152. * G87: Prusa3D specific: Enable babystep correction after home
  4153. * This G-code will be performed at the end of a calibration script.
  4154. */
  4155. case 87:
  4156. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4157. break;
  4158. /**
  4159. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4160. */
  4161. case 88:
  4162. break;
  4163. #endif // ENABLE_MESH_BED_LEVELING
  4164. case 90: // G90
  4165. relative_mode = false;
  4166. break;
  4167. case 91: // G91
  4168. relative_mode = true;
  4169. break;
  4170. case 92: // G92
  4171. if(!code_seen(axis_codes[E_AXIS]))
  4172. st_synchronize();
  4173. for(int8_t i=0; i < NUM_AXIS; i++) {
  4174. if(code_seen(axis_codes[i])) {
  4175. if(i == E_AXIS) {
  4176. current_position[i] = code_value();
  4177. plan_set_e_position(current_position[E_AXIS]);
  4178. }
  4179. else {
  4180. current_position[i] = code_value()+add_homing[i];
  4181. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4182. }
  4183. }
  4184. }
  4185. break;
  4186. case 98: // G98 (activate farm mode)
  4187. farm_mode = 1;
  4188. PingTime = millis();
  4189. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4190. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4191. SilentModeMenu = SILENT_MODE_OFF;
  4192. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4193. break;
  4194. case 99: // G99 (deactivate farm mode)
  4195. farm_mode = 0;
  4196. lcd_printer_connected();
  4197. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4198. lcd_update(2);
  4199. break;
  4200. default:
  4201. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4202. }
  4203. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4204. gcode_in_progress = 0;
  4205. } // end if(code_seen('G'))
  4206. else if(code_seen('M'))
  4207. {
  4208. int index;
  4209. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4210. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4211. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4212. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4213. } else
  4214. {
  4215. mcode_in_progress = (int)code_value();
  4216. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4217. switch(mcode_in_progress)
  4218. {
  4219. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4220. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4221. {
  4222. char *src = strchr_pointer + 2;
  4223. codenum = 0;
  4224. bool hasP = false, hasS = false;
  4225. if (code_seen('P')) {
  4226. codenum = code_value(); // milliseconds to wait
  4227. hasP = codenum > 0;
  4228. }
  4229. if (code_seen('S')) {
  4230. codenum = code_value() * 1000; // seconds to wait
  4231. hasS = codenum > 0;
  4232. }
  4233. starpos = strchr(src, '*');
  4234. if (starpos != NULL) *(starpos) = '\0';
  4235. while (*src == ' ') ++src;
  4236. if (!hasP && !hasS && *src != '\0') {
  4237. lcd_setstatus(src);
  4238. } else {
  4239. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4240. }
  4241. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4242. st_synchronize();
  4243. previous_millis_cmd = millis();
  4244. if (codenum > 0){
  4245. codenum += millis(); // keep track of when we started waiting
  4246. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4247. while(millis() < codenum && !lcd_clicked()){
  4248. manage_heater();
  4249. manage_inactivity(true);
  4250. lcd_update(0);
  4251. }
  4252. KEEPALIVE_STATE(IN_HANDLER);
  4253. lcd_ignore_click(false);
  4254. }else{
  4255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4256. while(!lcd_clicked()){
  4257. manage_heater();
  4258. manage_inactivity(true);
  4259. lcd_update(0);
  4260. }
  4261. KEEPALIVE_STATE(IN_HANDLER);
  4262. }
  4263. if (IS_SD_PRINTING)
  4264. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4265. else
  4266. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4267. }
  4268. break;
  4269. case 17:
  4270. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4271. enable_x();
  4272. enable_y();
  4273. enable_z();
  4274. enable_e0();
  4275. enable_e1();
  4276. enable_e2();
  4277. break;
  4278. #ifdef SDSUPPORT
  4279. case 20: // M20 - list SD card
  4280. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4281. card.ls();
  4282. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4283. break;
  4284. case 21: // M21 - init SD card
  4285. card.initsd();
  4286. break;
  4287. case 22: //M22 - release SD card
  4288. card.release();
  4289. break;
  4290. case 23: //M23 - Select file
  4291. starpos = (strchr(strchr_pointer + 4,'*'));
  4292. if(starpos!=NULL)
  4293. *(starpos)='\0';
  4294. card.openFile(strchr_pointer + 4,true);
  4295. break;
  4296. case 24: //M24 - Start SD print
  4297. if (!card.paused)
  4298. failstats_reset_print();
  4299. card.startFileprint();
  4300. starttime=millis();
  4301. break;
  4302. case 25: //M25 - Pause SD print
  4303. card.pauseSDPrint();
  4304. break;
  4305. case 26: //M26 - Set SD index
  4306. if(card.cardOK && code_seen('S')) {
  4307. card.setIndex(code_value_long());
  4308. }
  4309. break;
  4310. case 27: //M27 - Get SD status
  4311. card.getStatus();
  4312. break;
  4313. case 28: //M28 - Start SD write
  4314. starpos = (strchr(strchr_pointer + 4,'*'));
  4315. if(starpos != NULL){
  4316. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4317. strchr_pointer = strchr(npos,' ') + 1;
  4318. *(starpos) = '\0';
  4319. }
  4320. card.openFile(strchr_pointer+4,false);
  4321. break;
  4322. case 29: //M29 - Stop SD write
  4323. //processed in write to file routine above
  4324. //card,saving = false;
  4325. break;
  4326. case 30: //M30 <filename> Delete File
  4327. if (card.cardOK){
  4328. card.closefile();
  4329. starpos = (strchr(strchr_pointer + 4,'*'));
  4330. if(starpos != NULL){
  4331. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4332. strchr_pointer = strchr(npos,' ') + 1;
  4333. *(starpos) = '\0';
  4334. }
  4335. card.removeFile(strchr_pointer + 4);
  4336. }
  4337. break;
  4338. case 32: //M32 - Select file and start SD print
  4339. {
  4340. if(card.sdprinting) {
  4341. st_synchronize();
  4342. }
  4343. starpos = (strchr(strchr_pointer + 4,'*'));
  4344. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4345. if(namestartpos==NULL)
  4346. {
  4347. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4348. }
  4349. else
  4350. namestartpos++; //to skip the '!'
  4351. if(starpos!=NULL)
  4352. *(starpos)='\0';
  4353. bool call_procedure=(code_seen('P'));
  4354. if(strchr_pointer>namestartpos)
  4355. call_procedure=false; //false alert, 'P' found within filename
  4356. if( card.cardOK )
  4357. {
  4358. card.openFile(namestartpos,true,!call_procedure);
  4359. if(code_seen('S'))
  4360. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4361. card.setIndex(code_value_long());
  4362. card.startFileprint();
  4363. if(!call_procedure)
  4364. starttime=millis(); //procedure calls count as normal print time.
  4365. }
  4366. } break;
  4367. case 928: //M928 - Start SD write
  4368. starpos = (strchr(strchr_pointer + 5,'*'));
  4369. if(starpos != NULL){
  4370. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4371. strchr_pointer = strchr(npos,' ') + 1;
  4372. *(starpos) = '\0';
  4373. }
  4374. card.openLogFile(strchr_pointer+5);
  4375. break;
  4376. #endif //SDSUPPORT
  4377. case 31: //M31 take time since the start of the SD print or an M109 command
  4378. {
  4379. stoptime=millis();
  4380. char time[30];
  4381. unsigned long t=(stoptime-starttime)/1000;
  4382. int sec,min;
  4383. min=t/60;
  4384. sec=t%60;
  4385. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4386. SERIAL_ECHO_START;
  4387. SERIAL_ECHOLN(time);
  4388. lcd_setstatus(time);
  4389. autotempShutdown();
  4390. }
  4391. break;
  4392. case 42: //M42 -Change pin status via gcode
  4393. if (code_seen('S'))
  4394. {
  4395. int pin_status = code_value();
  4396. int pin_number = LED_PIN;
  4397. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4398. pin_number = code_value();
  4399. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4400. {
  4401. if (sensitive_pins[i] == pin_number)
  4402. {
  4403. pin_number = -1;
  4404. break;
  4405. }
  4406. }
  4407. #if defined(FAN_PIN) && FAN_PIN > -1
  4408. if (pin_number == FAN_PIN)
  4409. fanSpeed = pin_status;
  4410. #endif
  4411. if (pin_number > -1)
  4412. {
  4413. pinMode(pin_number, OUTPUT);
  4414. digitalWrite(pin_number, pin_status);
  4415. analogWrite(pin_number, pin_status);
  4416. }
  4417. }
  4418. break;
  4419. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4420. // Reset the baby step value and the baby step applied flag.
  4421. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4422. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4423. // Reset the skew and offset in both RAM and EEPROM.
  4424. reset_bed_offset_and_skew();
  4425. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4426. // the planner will not perform any adjustments in the XY plane.
  4427. // Wait for the motors to stop and update the current position with the absolute values.
  4428. world2machine_revert_to_uncorrected();
  4429. break;
  4430. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4431. {
  4432. int8_t verbosity_level = 0;
  4433. bool only_Z = code_seen('Z');
  4434. #ifdef SUPPORT_VERBOSITY
  4435. if (code_seen('V'))
  4436. {
  4437. // Just 'V' without a number counts as V1.
  4438. char c = strchr_pointer[1];
  4439. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4440. }
  4441. #endif //SUPPORT_VERBOSITY
  4442. gcode_M45(only_Z, verbosity_level);
  4443. }
  4444. break;
  4445. /*
  4446. case 46:
  4447. {
  4448. // M46: Prusa3D: Show the assigned IP address.
  4449. uint8_t ip[4];
  4450. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4451. if (hasIP) {
  4452. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4453. SERIAL_ECHO(int(ip[0]));
  4454. SERIAL_ECHOPGM(".");
  4455. SERIAL_ECHO(int(ip[1]));
  4456. SERIAL_ECHOPGM(".");
  4457. SERIAL_ECHO(int(ip[2]));
  4458. SERIAL_ECHOPGM(".");
  4459. SERIAL_ECHO(int(ip[3]));
  4460. SERIAL_ECHOLNPGM("");
  4461. } else {
  4462. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4463. }
  4464. break;
  4465. }
  4466. */
  4467. case 47:
  4468. // M47: Prusa3D: Show end stops dialog on the display.
  4469. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4470. lcd_diag_show_end_stops();
  4471. KEEPALIVE_STATE(IN_HANDLER);
  4472. break;
  4473. #if 0
  4474. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4475. {
  4476. // Disable the default update procedure of the display. We will do a modal dialog.
  4477. lcd_update_enable(false);
  4478. // Let the planner use the uncorrected coordinates.
  4479. mbl.reset();
  4480. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4481. // the planner will not perform any adjustments in the XY plane.
  4482. // Wait for the motors to stop and update the current position with the absolute values.
  4483. world2machine_revert_to_uncorrected();
  4484. // Move the print head close to the bed.
  4485. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4487. st_synchronize();
  4488. // Home in the XY plane.
  4489. set_destination_to_current();
  4490. setup_for_endstop_move();
  4491. home_xy();
  4492. int8_t verbosity_level = 0;
  4493. if (code_seen('V')) {
  4494. // Just 'V' without a number counts as V1.
  4495. char c = strchr_pointer[1];
  4496. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4497. }
  4498. bool success = scan_bed_induction_points(verbosity_level);
  4499. clean_up_after_endstop_move();
  4500. // Print head up.
  4501. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4503. st_synchronize();
  4504. lcd_update_enable(true);
  4505. break;
  4506. }
  4507. #endif
  4508. // M48 Z-Probe repeatability measurement function.
  4509. //
  4510. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4511. //
  4512. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4513. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4514. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4515. // regenerated.
  4516. //
  4517. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4518. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4519. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4520. //
  4521. #ifdef ENABLE_AUTO_BED_LEVELING
  4522. #ifdef Z_PROBE_REPEATABILITY_TEST
  4523. case 48: // M48 Z-Probe repeatability
  4524. {
  4525. #if Z_MIN_PIN == -1
  4526. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4527. #endif
  4528. double sum=0.0;
  4529. double mean=0.0;
  4530. double sigma=0.0;
  4531. double sample_set[50];
  4532. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4533. double X_current, Y_current, Z_current;
  4534. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4535. if (code_seen('V') || code_seen('v')) {
  4536. verbose_level = code_value();
  4537. if (verbose_level<0 || verbose_level>4 ) {
  4538. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4539. goto Sigma_Exit;
  4540. }
  4541. }
  4542. if (verbose_level > 0) {
  4543. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4544. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4545. }
  4546. if (code_seen('n')) {
  4547. n_samples = code_value();
  4548. if (n_samples<4 || n_samples>50 ) {
  4549. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4550. goto Sigma_Exit;
  4551. }
  4552. }
  4553. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4554. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4555. Z_current = st_get_position_mm(Z_AXIS);
  4556. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4557. ext_position = st_get_position_mm(E_AXIS);
  4558. if (code_seen('X') || code_seen('x') ) {
  4559. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4560. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4561. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4562. goto Sigma_Exit;
  4563. }
  4564. }
  4565. if (code_seen('Y') || code_seen('y') ) {
  4566. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4567. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4568. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4569. goto Sigma_Exit;
  4570. }
  4571. }
  4572. if (code_seen('L') || code_seen('l') ) {
  4573. n_legs = code_value();
  4574. if ( n_legs==1 )
  4575. n_legs = 2;
  4576. if ( n_legs<0 || n_legs>15 ) {
  4577. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4578. goto Sigma_Exit;
  4579. }
  4580. }
  4581. //
  4582. // Do all the preliminary setup work. First raise the probe.
  4583. //
  4584. st_synchronize();
  4585. plan_bed_level_matrix.set_to_identity();
  4586. plan_buffer_line( X_current, Y_current, Z_start_location,
  4587. ext_position,
  4588. homing_feedrate[Z_AXIS]/60,
  4589. active_extruder);
  4590. st_synchronize();
  4591. //
  4592. // Now get everything to the specified probe point So we can safely do a probe to
  4593. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4594. // use that as a starting point for each probe.
  4595. //
  4596. if (verbose_level > 2)
  4597. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4598. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4599. ext_position,
  4600. homing_feedrate[X_AXIS]/60,
  4601. active_extruder);
  4602. st_synchronize();
  4603. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4604. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4605. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4606. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4607. //
  4608. // OK, do the inital probe to get us close to the bed.
  4609. // Then retrace the right amount and use that in subsequent probes
  4610. //
  4611. setup_for_endstop_move();
  4612. run_z_probe();
  4613. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4614. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4615. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4616. ext_position,
  4617. homing_feedrate[X_AXIS]/60,
  4618. active_extruder);
  4619. st_synchronize();
  4620. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4621. for( n=0; n<n_samples; n++) {
  4622. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4623. if ( n_legs) {
  4624. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4625. int rotational_direction, l;
  4626. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4627. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4628. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4629. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4630. //SERIAL_ECHOPAIR(" theta: ",theta);
  4631. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4632. //SERIAL_PROTOCOLLNPGM("");
  4633. for( l=0; l<n_legs-1; l++) {
  4634. if (rotational_direction==1)
  4635. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4636. else
  4637. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4638. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4639. if ( radius<0.0 )
  4640. radius = -radius;
  4641. X_current = X_probe_location + cos(theta) * radius;
  4642. Y_current = Y_probe_location + sin(theta) * radius;
  4643. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4644. X_current = X_MIN_POS;
  4645. if ( X_current>X_MAX_POS)
  4646. X_current = X_MAX_POS;
  4647. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4648. Y_current = Y_MIN_POS;
  4649. if ( Y_current>Y_MAX_POS)
  4650. Y_current = Y_MAX_POS;
  4651. if (verbose_level>3 ) {
  4652. SERIAL_ECHOPAIR("x: ", X_current);
  4653. SERIAL_ECHOPAIR("y: ", Y_current);
  4654. SERIAL_PROTOCOLLNPGM("");
  4655. }
  4656. do_blocking_move_to( X_current, Y_current, Z_current );
  4657. }
  4658. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4659. }
  4660. setup_for_endstop_move();
  4661. run_z_probe();
  4662. sample_set[n] = current_position[Z_AXIS];
  4663. //
  4664. // Get the current mean for the data points we have so far
  4665. //
  4666. sum=0.0;
  4667. for( j=0; j<=n; j++) {
  4668. sum = sum + sample_set[j];
  4669. }
  4670. mean = sum / (double (n+1));
  4671. //
  4672. // Now, use that mean to calculate the standard deviation for the
  4673. // data points we have so far
  4674. //
  4675. sum=0.0;
  4676. for( j=0; j<=n; j++) {
  4677. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4678. }
  4679. sigma = sqrt( sum / (double (n+1)) );
  4680. if (verbose_level > 1) {
  4681. SERIAL_PROTOCOL(n+1);
  4682. SERIAL_PROTOCOL(" of ");
  4683. SERIAL_PROTOCOL(n_samples);
  4684. SERIAL_PROTOCOLPGM(" z: ");
  4685. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4686. }
  4687. if (verbose_level > 2) {
  4688. SERIAL_PROTOCOL(" mean: ");
  4689. SERIAL_PROTOCOL_F(mean,6);
  4690. SERIAL_PROTOCOL(" sigma: ");
  4691. SERIAL_PROTOCOL_F(sigma,6);
  4692. }
  4693. if (verbose_level > 0)
  4694. SERIAL_PROTOCOLPGM("\n");
  4695. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4696. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4697. st_synchronize();
  4698. }
  4699. delay(1000);
  4700. clean_up_after_endstop_move();
  4701. // enable_endstops(true);
  4702. if (verbose_level > 0) {
  4703. SERIAL_PROTOCOLPGM("Mean: ");
  4704. SERIAL_PROTOCOL_F(mean, 6);
  4705. SERIAL_PROTOCOLPGM("\n");
  4706. }
  4707. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4708. SERIAL_PROTOCOL_F(sigma, 6);
  4709. SERIAL_PROTOCOLPGM("\n\n");
  4710. Sigma_Exit:
  4711. break;
  4712. }
  4713. #endif // Z_PROBE_REPEATABILITY_TEST
  4714. #endif // ENABLE_AUTO_BED_LEVELING
  4715. case 73: //M73 show percent done and time remaining
  4716. if(code_seen('P')) print_percent_done_normal = code_value();
  4717. if(code_seen('R')) print_time_remaining_normal = code_value();
  4718. if(code_seen('Q')) print_percent_done_silent = code_value();
  4719. if(code_seen('S')) print_time_remaining_silent = code_value();
  4720. {
  4721. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4722. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4723. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4724. }
  4725. break;
  4726. case 104: // M104
  4727. if(setTargetedHotend(104)){
  4728. break;
  4729. }
  4730. if (code_seen('S'))
  4731. {
  4732. setTargetHotendSafe(code_value(), tmp_extruder);
  4733. }
  4734. setWatch();
  4735. break;
  4736. case 112: // M112 -Emergency Stop
  4737. kill(_n(""), 3);
  4738. break;
  4739. case 140: // M140 set bed temp
  4740. if (code_seen('S')) setTargetBed(code_value());
  4741. break;
  4742. case 105 : // M105
  4743. if(setTargetedHotend(105)){
  4744. break;
  4745. }
  4746. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4747. SERIAL_PROTOCOLPGM("ok T:");
  4748. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4749. SERIAL_PROTOCOLPGM(" /");
  4750. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4751. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4752. SERIAL_PROTOCOLPGM(" B:");
  4753. SERIAL_PROTOCOL_F(degBed(),1);
  4754. SERIAL_PROTOCOLPGM(" /");
  4755. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4756. #endif //TEMP_BED_PIN
  4757. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4758. SERIAL_PROTOCOLPGM(" T");
  4759. SERIAL_PROTOCOL(cur_extruder);
  4760. SERIAL_PROTOCOLPGM(":");
  4761. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4762. SERIAL_PROTOCOLPGM(" /");
  4763. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4764. }
  4765. #else
  4766. SERIAL_ERROR_START;
  4767. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4768. #endif
  4769. SERIAL_PROTOCOLPGM(" @:");
  4770. #ifdef EXTRUDER_WATTS
  4771. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4772. SERIAL_PROTOCOLPGM("W");
  4773. #else
  4774. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4775. #endif
  4776. SERIAL_PROTOCOLPGM(" B@:");
  4777. #ifdef BED_WATTS
  4778. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4779. SERIAL_PROTOCOLPGM("W");
  4780. #else
  4781. SERIAL_PROTOCOL(getHeaterPower(-1));
  4782. #endif
  4783. #ifdef PINDA_THERMISTOR
  4784. SERIAL_PROTOCOLPGM(" P:");
  4785. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4786. #endif //PINDA_THERMISTOR
  4787. #ifdef AMBIENT_THERMISTOR
  4788. SERIAL_PROTOCOLPGM(" A:");
  4789. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4790. #endif //AMBIENT_THERMISTOR
  4791. #ifdef SHOW_TEMP_ADC_VALUES
  4792. {float raw = 0.0;
  4793. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4794. SERIAL_PROTOCOLPGM(" ADC B:");
  4795. SERIAL_PROTOCOL_F(degBed(),1);
  4796. SERIAL_PROTOCOLPGM("C->");
  4797. raw = rawBedTemp();
  4798. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4799. SERIAL_PROTOCOLPGM(" Rb->");
  4800. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4801. SERIAL_PROTOCOLPGM(" Rxb->");
  4802. SERIAL_PROTOCOL_F(raw, 5);
  4803. #endif
  4804. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4805. SERIAL_PROTOCOLPGM(" T");
  4806. SERIAL_PROTOCOL(cur_extruder);
  4807. SERIAL_PROTOCOLPGM(":");
  4808. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4809. SERIAL_PROTOCOLPGM("C->");
  4810. raw = rawHotendTemp(cur_extruder);
  4811. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4812. SERIAL_PROTOCOLPGM(" Rt");
  4813. SERIAL_PROTOCOL(cur_extruder);
  4814. SERIAL_PROTOCOLPGM("->");
  4815. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4816. SERIAL_PROTOCOLPGM(" Rx");
  4817. SERIAL_PROTOCOL(cur_extruder);
  4818. SERIAL_PROTOCOLPGM("->");
  4819. SERIAL_PROTOCOL_F(raw, 5);
  4820. }}
  4821. #endif
  4822. SERIAL_PROTOCOLLN("");
  4823. KEEPALIVE_STATE(NOT_BUSY);
  4824. return;
  4825. break;
  4826. case 109:
  4827. {// M109 - Wait for extruder heater to reach target.
  4828. if(setTargetedHotend(109)){
  4829. break;
  4830. }
  4831. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4832. heating_status = 1;
  4833. if (farm_mode) { prusa_statistics(1); };
  4834. #ifdef AUTOTEMP
  4835. autotemp_enabled=false;
  4836. #endif
  4837. if (code_seen('S')) {
  4838. setTargetHotendSafe(code_value(), tmp_extruder);
  4839. CooldownNoWait = true;
  4840. } else if (code_seen('R')) {
  4841. setTargetHotendSafe(code_value(), tmp_extruder);
  4842. CooldownNoWait = false;
  4843. }
  4844. #ifdef AUTOTEMP
  4845. if (code_seen('S')) autotemp_min=code_value();
  4846. if (code_seen('B')) autotemp_max=code_value();
  4847. if (code_seen('F'))
  4848. {
  4849. autotemp_factor=code_value();
  4850. autotemp_enabled=true;
  4851. }
  4852. #endif
  4853. setWatch();
  4854. codenum = millis();
  4855. /* See if we are heating up or cooling down */
  4856. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4857. KEEPALIVE_STATE(NOT_BUSY);
  4858. cancel_heatup = false;
  4859. wait_for_heater(codenum); //loops until target temperature is reached
  4860. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4861. KEEPALIVE_STATE(IN_HANDLER);
  4862. heating_status = 2;
  4863. if (farm_mode) { prusa_statistics(2); };
  4864. //starttime=millis();
  4865. previous_millis_cmd = millis();
  4866. }
  4867. break;
  4868. case 190: // M190 - Wait for bed heater to reach target.
  4869. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4870. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4871. heating_status = 3;
  4872. if (farm_mode) { prusa_statistics(1); };
  4873. if (code_seen('S'))
  4874. {
  4875. setTargetBed(code_value());
  4876. CooldownNoWait = true;
  4877. }
  4878. else if (code_seen('R'))
  4879. {
  4880. setTargetBed(code_value());
  4881. CooldownNoWait = false;
  4882. }
  4883. codenum = millis();
  4884. cancel_heatup = false;
  4885. target_direction = isHeatingBed(); // true if heating, false if cooling
  4886. KEEPALIVE_STATE(NOT_BUSY);
  4887. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4888. {
  4889. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4890. {
  4891. if (!farm_mode) {
  4892. float tt = degHotend(active_extruder);
  4893. SERIAL_PROTOCOLPGM("T:");
  4894. SERIAL_PROTOCOL(tt);
  4895. SERIAL_PROTOCOLPGM(" E:");
  4896. SERIAL_PROTOCOL((int)active_extruder);
  4897. SERIAL_PROTOCOLPGM(" B:");
  4898. SERIAL_PROTOCOL_F(degBed(), 1);
  4899. SERIAL_PROTOCOLLN("");
  4900. }
  4901. codenum = millis();
  4902. }
  4903. manage_heater();
  4904. manage_inactivity();
  4905. lcd_update(0);
  4906. }
  4907. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4908. KEEPALIVE_STATE(IN_HANDLER);
  4909. heating_status = 4;
  4910. previous_millis_cmd = millis();
  4911. #endif
  4912. break;
  4913. #if defined(FAN_PIN) && FAN_PIN > -1
  4914. case 106: //M106 Fan On
  4915. if (code_seen('S')){
  4916. fanSpeed=constrain(code_value(),0,255);
  4917. }
  4918. else {
  4919. fanSpeed=255;
  4920. }
  4921. break;
  4922. case 107: //M107 Fan Off
  4923. fanSpeed = 0;
  4924. break;
  4925. #endif //FAN_PIN
  4926. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4927. case 80: // M80 - Turn on Power Supply
  4928. SET_OUTPUT(PS_ON_PIN); //GND
  4929. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4930. // If you have a switch on suicide pin, this is useful
  4931. // if you want to start another print with suicide feature after
  4932. // a print without suicide...
  4933. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4934. SET_OUTPUT(SUICIDE_PIN);
  4935. WRITE(SUICIDE_PIN, HIGH);
  4936. #endif
  4937. powersupply = true;
  4938. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4939. lcd_update(0);
  4940. break;
  4941. #endif
  4942. case 81: // M81 - Turn off Power Supply
  4943. disable_heater();
  4944. st_synchronize();
  4945. disable_e0();
  4946. disable_e1();
  4947. disable_e2();
  4948. finishAndDisableSteppers();
  4949. fanSpeed = 0;
  4950. delay(1000); // Wait a little before to switch off
  4951. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4952. st_synchronize();
  4953. suicide();
  4954. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4955. SET_OUTPUT(PS_ON_PIN);
  4956. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4957. #endif
  4958. powersupply = false;
  4959. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4960. lcd_update(0);
  4961. break;
  4962. case 82:
  4963. axis_relative_modes[3] = false;
  4964. break;
  4965. case 83:
  4966. axis_relative_modes[3] = true;
  4967. break;
  4968. case 18: //compatibility
  4969. case 84: // M84
  4970. if(code_seen('S')){
  4971. stepper_inactive_time = code_value() * 1000;
  4972. }
  4973. else
  4974. {
  4975. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4976. if(all_axis)
  4977. {
  4978. st_synchronize();
  4979. disable_e0();
  4980. disable_e1();
  4981. disable_e2();
  4982. finishAndDisableSteppers();
  4983. }
  4984. else
  4985. {
  4986. st_synchronize();
  4987. if (code_seen('X')) disable_x();
  4988. if (code_seen('Y')) disable_y();
  4989. if (code_seen('Z')) disable_z();
  4990. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4991. if (code_seen('E')) {
  4992. disable_e0();
  4993. disable_e1();
  4994. disable_e2();
  4995. }
  4996. #endif
  4997. }
  4998. }
  4999. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5000. print_time_remaining_init();
  5001. snmm_filaments_used = 0;
  5002. break;
  5003. case 85: // M85
  5004. if(code_seen('S')) {
  5005. max_inactive_time = code_value() * 1000;
  5006. }
  5007. break;
  5008. #ifdef SAFETYTIMER
  5009. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5010. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5011. if (code_seen('S')) {
  5012. safetytimer_inactive_time = code_value() * 1000;
  5013. safetyTimer.start();
  5014. }
  5015. break;
  5016. #endif
  5017. case 92: // M92
  5018. for(int8_t i=0; i < NUM_AXIS; i++)
  5019. {
  5020. if(code_seen(axis_codes[i]))
  5021. {
  5022. if(i == 3) { // E
  5023. float value = code_value();
  5024. if(value < 20.0) {
  5025. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5026. max_jerk[E_AXIS] *= factor;
  5027. max_feedrate[i] *= factor;
  5028. axis_steps_per_sqr_second[i] *= factor;
  5029. }
  5030. axis_steps_per_unit[i] = value;
  5031. }
  5032. else {
  5033. axis_steps_per_unit[i] = code_value();
  5034. }
  5035. }
  5036. }
  5037. break;
  5038. case 110: // M110 - reset line pos
  5039. if (code_seen('N'))
  5040. gcode_LastN = code_value_long();
  5041. break;
  5042. #ifdef HOST_KEEPALIVE_FEATURE
  5043. case 113: // M113 - Get or set Host Keepalive interval
  5044. if (code_seen('S')) {
  5045. host_keepalive_interval = (uint8_t)code_value_short();
  5046. // NOMORE(host_keepalive_interval, 60);
  5047. }
  5048. else {
  5049. SERIAL_ECHO_START;
  5050. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5051. SERIAL_PROTOCOLLN("");
  5052. }
  5053. break;
  5054. #endif
  5055. case 115: // M115
  5056. if (code_seen('V')) {
  5057. // Report the Prusa version number.
  5058. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5059. } else if (code_seen('U')) {
  5060. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5061. // pause the print and ask the user to upgrade the firmware.
  5062. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5063. } else {
  5064. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5065. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5066. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5067. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5068. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5069. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5070. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5071. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5072. SERIAL_ECHOPGM(" UUID:");
  5073. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5074. }
  5075. break;
  5076. /* case 117: // M117 display message
  5077. starpos = (strchr(strchr_pointer + 5,'*'));
  5078. if(starpos!=NULL)
  5079. *(starpos)='\0';
  5080. lcd_setstatus(strchr_pointer + 5);
  5081. break;*/
  5082. case 114: // M114
  5083. gcode_M114();
  5084. break;
  5085. case 120: // M120
  5086. enable_endstops(false) ;
  5087. break;
  5088. case 121: // M121
  5089. enable_endstops(true) ;
  5090. break;
  5091. case 119: // M119
  5092. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5093. SERIAL_PROTOCOLLN("");
  5094. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5095. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5096. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5097. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5098. }else{
  5099. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5100. }
  5101. SERIAL_PROTOCOLLN("");
  5102. #endif
  5103. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5104. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5105. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5106. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5107. }else{
  5108. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5109. }
  5110. SERIAL_PROTOCOLLN("");
  5111. #endif
  5112. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5113. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5114. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5115. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5116. }else{
  5117. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5118. }
  5119. SERIAL_PROTOCOLLN("");
  5120. #endif
  5121. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5122. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5123. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5124. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5125. }else{
  5126. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5127. }
  5128. SERIAL_PROTOCOLLN("");
  5129. #endif
  5130. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5131. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5132. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5133. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5134. }else{
  5135. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5136. }
  5137. SERIAL_PROTOCOLLN("");
  5138. #endif
  5139. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5140. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5141. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5142. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5143. }else{
  5144. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5145. }
  5146. SERIAL_PROTOCOLLN("");
  5147. #endif
  5148. break;
  5149. //TODO: update for all axis, use for loop
  5150. #ifdef BLINKM
  5151. case 150: // M150
  5152. {
  5153. byte red;
  5154. byte grn;
  5155. byte blu;
  5156. if(code_seen('R')) red = code_value();
  5157. if(code_seen('U')) grn = code_value();
  5158. if(code_seen('B')) blu = code_value();
  5159. SendColors(red,grn,blu);
  5160. }
  5161. break;
  5162. #endif //BLINKM
  5163. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5164. {
  5165. tmp_extruder = active_extruder;
  5166. if(code_seen('T')) {
  5167. tmp_extruder = code_value();
  5168. if(tmp_extruder >= EXTRUDERS) {
  5169. SERIAL_ECHO_START;
  5170. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5171. break;
  5172. }
  5173. }
  5174. if(code_seen('D')) {
  5175. float diameter = (float)code_value();
  5176. if (diameter == 0.0) {
  5177. // setting any extruder filament size disables volumetric on the assumption that
  5178. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5179. // for all extruders
  5180. volumetric_enabled = false;
  5181. } else {
  5182. filament_size[tmp_extruder] = (float)code_value();
  5183. // make sure all extruders have some sane value for the filament size
  5184. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5185. #if EXTRUDERS > 1
  5186. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5187. #if EXTRUDERS > 2
  5188. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5189. #endif
  5190. #endif
  5191. volumetric_enabled = true;
  5192. }
  5193. } else {
  5194. //reserved for setting filament diameter via UFID or filament measuring device
  5195. break;
  5196. }
  5197. calculate_extruder_multipliers();
  5198. }
  5199. break;
  5200. case 201: // M201
  5201. for (int8_t i = 0; i < NUM_AXIS; i++)
  5202. {
  5203. if (code_seen(axis_codes[i]))
  5204. {
  5205. unsigned long val = code_value();
  5206. #ifdef TMC2130
  5207. unsigned long val_silent = val;
  5208. if ((i == X_AXIS) || (i == Y_AXIS))
  5209. {
  5210. if (val > NORMAL_MAX_ACCEL_XY)
  5211. val = NORMAL_MAX_ACCEL_XY;
  5212. if (val_silent > SILENT_MAX_ACCEL_XY)
  5213. val_silent = SILENT_MAX_ACCEL_XY;
  5214. }
  5215. max_acceleration_units_per_sq_second_normal[i] = val;
  5216. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5217. #else //TMC2130
  5218. max_acceleration_units_per_sq_second[i] = val;
  5219. #endif //TMC2130
  5220. }
  5221. }
  5222. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5223. reset_acceleration_rates();
  5224. break;
  5225. #if 0 // Not used for Sprinter/grbl gen6
  5226. case 202: // M202
  5227. for(int8_t i=0; i < NUM_AXIS; i++) {
  5228. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5229. }
  5230. break;
  5231. #endif
  5232. case 203: // M203 max feedrate mm/sec
  5233. for (int8_t i = 0; i < NUM_AXIS; i++)
  5234. {
  5235. if (code_seen(axis_codes[i]))
  5236. {
  5237. float val = code_value();
  5238. #ifdef TMC2130
  5239. float val_silent = val;
  5240. if ((i == X_AXIS) || (i == Y_AXIS))
  5241. {
  5242. if (val > NORMAL_MAX_FEEDRATE_XY)
  5243. val = NORMAL_MAX_FEEDRATE_XY;
  5244. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5245. val_silent = SILENT_MAX_FEEDRATE_XY;
  5246. }
  5247. max_feedrate_normal[i] = val;
  5248. max_feedrate_silent[i] = val_silent;
  5249. #else //TMC2130
  5250. max_feedrate[i] = val;
  5251. #endif //TMC2130
  5252. }
  5253. }
  5254. break;
  5255. case 204: // M204 acclereration S normal moves T filmanent only moves
  5256. {
  5257. if(code_seen('S')) acceleration = code_value() ;
  5258. if(code_seen('T')) retract_acceleration = code_value() ;
  5259. }
  5260. break;
  5261. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5262. {
  5263. if(code_seen('S')) minimumfeedrate = code_value();
  5264. if(code_seen('T')) mintravelfeedrate = code_value();
  5265. if(code_seen('B')) minsegmenttime = code_value() ;
  5266. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5267. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5268. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5269. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5270. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5271. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5272. }
  5273. break;
  5274. case 206: // M206 additional homing offset
  5275. for(int8_t i=0; i < 3; i++)
  5276. {
  5277. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5278. }
  5279. break;
  5280. #ifdef FWRETRACT
  5281. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5282. {
  5283. if(code_seen('S'))
  5284. {
  5285. retract_length = code_value() ;
  5286. }
  5287. if(code_seen('F'))
  5288. {
  5289. retract_feedrate = code_value()/60 ;
  5290. }
  5291. if(code_seen('Z'))
  5292. {
  5293. retract_zlift = code_value() ;
  5294. }
  5295. }break;
  5296. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5297. {
  5298. if(code_seen('S'))
  5299. {
  5300. retract_recover_length = code_value() ;
  5301. }
  5302. if(code_seen('F'))
  5303. {
  5304. retract_recover_feedrate = code_value()/60 ;
  5305. }
  5306. }break;
  5307. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5308. {
  5309. if(code_seen('S'))
  5310. {
  5311. int t= code_value() ;
  5312. switch(t)
  5313. {
  5314. case 0:
  5315. {
  5316. autoretract_enabled=false;
  5317. retracted[0]=false;
  5318. #if EXTRUDERS > 1
  5319. retracted[1]=false;
  5320. #endif
  5321. #if EXTRUDERS > 2
  5322. retracted[2]=false;
  5323. #endif
  5324. }break;
  5325. case 1:
  5326. {
  5327. autoretract_enabled=true;
  5328. retracted[0]=false;
  5329. #if EXTRUDERS > 1
  5330. retracted[1]=false;
  5331. #endif
  5332. #if EXTRUDERS > 2
  5333. retracted[2]=false;
  5334. #endif
  5335. }break;
  5336. default:
  5337. SERIAL_ECHO_START;
  5338. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5339. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5340. SERIAL_ECHOLNPGM("\"(1)");
  5341. }
  5342. }
  5343. }break;
  5344. #endif // FWRETRACT
  5345. #if EXTRUDERS > 1
  5346. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5347. {
  5348. if(setTargetedHotend(218)){
  5349. break;
  5350. }
  5351. if(code_seen('X'))
  5352. {
  5353. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5354. }
  5355. if(code_seen('Y'))
  5356. {
  5357. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5358. }
  5359. SERIAL_ECHO_START;
  5360. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5361. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5362. {
  5363. SERIAL_ECHO(" ");
  5364. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5365. SERIAL_ECHO(",");
  5366. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5367. }
  5368. SERIAL_ECHOLN("");
  5369. }break;
  5370. #endif
  5371. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5372. {
  5373. if(code_seen('S'))
  5374. {
  5375. feedmultiply = code_value() ;
  5376. }
  5377. }
  5378. break;
  5379. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5380. {
  5381. if(code_seen('S'))
  5382. {
  5383. int tmp_code = code_value();
  5384. if (code_seen('T'))
  5385. {
  5386. if(setTargetedHotend(221)){
  5387. break;
  5388. }
  5389. extruder_multiply[tmp_extruder] = tmp_code;
  5390. }
  5391. else
  5392. {
  5393. extrudemultiply = tmp_code ;
  5394. }
  5395. }
  5396. calculate_extruder_multipliers();
  5397. }
  5398. break;
  5399. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5400. {
  5401. if(code_seen('P')){
  5402. int pin_number = code_value(); // pin number
  5403. int pin_state = -1; // required pin state - default is inverted
  5404. if(code_seen('S')) pin_state = code_value(); // required pin state
  5405. if(pin_state >= -1 && pin_state <= 1){
  5406. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5407. {
  5408. if (sensitive_pins[i] == pin_number)
  5409. {
  5410. pin_number = -1;
  5411. break;
  5412. }
  5413. }
  5414. if (pin_number > -1)
  5415. {
  5416. int target = LOW;
  5417. st_synchronize();
  5418. pinMode(pin_number, INPUT);
  5419. switch(pin_state){
  5420. case 1:
  5421. target = HIGH;
  5422. break;
  5423. case 0:
  5424. target = LOW;
  5425. break;
  5426. case -1:
  5427. target = !digitalRead(pin_number);
  5428. break;
  5429. }
  5430. while(digitalRead(pin_number) != target){
  5431. manage_heater();
  5432. manage_inactivity();
  5433. lcd_update(0);
  5434. }
  5435. }
  5436. }
  5437. }
  5438. }
  5439. break;
  5440. #if NUM_SERVOS > 0
  5441. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5442. {
  5443. int servo_index = -1;
  5444. int servo_position = 0;
  5445. if (code_seen('P'))
  5446. servo_index = code_value();
  5447. if (code_seen('S')) {
  5448. servo_position = code_value();
  5449. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5450. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5451. servos[servo_index].attach(0);
  5452. #endif
  5453. servos[servo_index].write(servo_position);
  5454. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5455. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5456. servos[servo_index].detach();
  5457. #endif
  5458. }
  5459. else {
  5460. SERIAL_ECHO_START;
  5461. SERIAL_ECHO("Servo ");
  5462. SERIAL_ECHO(servo_index);
  5463. SERIAL_ECHOLN(" out of range");
  5464. }
  5465. }
  5466. else if (servo_index >= 0) {
  5467. SERIAL_PROTOCOL(_T(MSG_OK));
  5468. SERIAL_PROTOCOL(" Servo ");
  5469. SERIAL_PROTOCOL(servo_index);
  5470. SERIAL_PROTOCOL(": ");
  5471. SERIAL_PROTOCOL(servos[servo_index].read());
  5472. SERIAL_PROTOCOLLN("");
  5473. }
  5474. }
  5475. break;
  5476. #endif // NUM_SERVOS > 0
  5477. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5478. case 300: // M300
  5479. {
  5480. int beepS = code_seen('S') ? code_value() : 110;
  5481. int beepP = code_seen('P') ? code_value() : 1000;
  5482. if (beepS > 0)
  5483. {
  5484. #if BEEPER > 0
  5485. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5486. tone(BEEPER, beepS);
  5487. delay(beepP);
  5488. noTone(BEEPER);
  5489. #endif
  5490. }
  5491. else
  5492. {
  5493. delay(beepP);
  5494. }
  5495. }
  5496. break;
  5497. #endif // M300
  5498. #ifdef PIDTEMP
  5499. case 301: // M301
  5500. {
  5501. if(code_seen('P')) Kp = code_value();
  5502. if(code_seen('I')) Ki = scalePID_i(code_value());
  5503. if(code_seen('D')) Kd = scalePID_d(code_value());
  5504. #ifdef PID_ADD_EXTRUSION_RATE
  5505. if(code_seen('C')) Kc = code_value();
  5506. #endif
  5507. updatePID();
  5508. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5509. SERIAL_PROTOCOL(" p:");
  5510. SERIAL_PROTOCOL(Kp);
  5511. SERIAL_PROTOCOL(" i:");
  5512. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5513. SERIAL_PROTOCOL(" d:");
  5514. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5515. #ifdef PID_ADD_EXTRUSION_RATE
  5516. SERIAL_PROTOCOL(" c:");
  5517. //Kc does not have scaling applied above, or in resetting defaults
  5518. SERIAL_PROTOCOL(Kc);
  5519. #endif
  5520. SERIAL_PROTOCOLLN("");
  5521. }
  5522. break;
  5523. #endif //PIDTEMP
  5524. #ifdef PIDTEMPBED
  5525. case 304: // M304
  5526. {
  5527. if(code_seen('P')) bedKp = code_value();
  5528. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5529. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5530. updatePID();
  5531. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5532. SERIAL_PROTOCOL(" p:");
  5533. SERIAL_PROTOCOL(bedKp);
  5534. SERIAL_PROTOCOL(" i:");
  5535. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5536. SERIAL_PROTOCOL(" d:");
  5537. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5538. SERIAL_PROTOCOLLN("");
  5539. }
  5540. break;
  5541. #endif //PIDTEMP
  5542. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5543. {
  5544. #ifdef CHDK
  5545. SET_OUTPUT(CHDK);
  5546. WRITE(CHDK, HIGH);
  5547. chdkHigh = millis();
  5548. chdkActive = true;
  5549. #else
  5550. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5551. const uint8_t NUM_PULSES=16;
  5552. const float PULSE_LENGTH=0.01524;
  5553. for(int i=0; i < NUM_PULSES; i++) {
  5554. WRITE(PHOTOGRAPH_PIN, HIGH);
  5555. _delay_ms(PULSE_LENGTH);
  5556. WRITE(PHOTOGRAPH_PIN, LOW);
  5557. _delay_ms(PULSE_LENGTH);
  5558. }
  5559. delay(7.33);
  5560. for(int i=0; i < NUM_PULSES; i++) {
  5561. WRITE(PHOTOGRAPH_PIN, HIGH);
  5562. _delay_ms(PULSE_LENGTH);
  5563. WRITE(PHOTOGRAPH_PIN, LOW);
  5564. _delay_ms(PULSE_LENGTH);
  5565. }
  5566. #endif
  5567. #endif //chdk end if
  5568. }
  5569. break;
  5570. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5571. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5572. {
  5573. float temp = .0;
  5574. if (code_seen('S')) temp=code_value();
  5575. set_extrude_min_temp(temp);
  5576. }
  5577. break;
  5578. #endif
  5579. case 303: // M303 PID autotune
  5580. {
  5581. float temp = 150.0;
  5582. int e=0;
  5583. int c=5;
  5584. if (code_seen('E')) e=code_value();
  5585. if (e<0)
  5586. temp=70;
  5587. if (code_seen('S')) temp=code_value();
  5588. if (code_seen('C')) c=code_value();
  5589. PID_autotune(temp, e, c);
  5590. }
  5591. break;
  5592. case 400: // M400 finish all moves
  5593. {
  5594. st_synchronize();
  5595. }
  5596. break;
  5597. case 500: // M500 Store settings in EEPROM
  5598. {
  5599. Config_StoreSettings(EEPROM_OFFSET);
  5600. }
  5601. break;
  5602. case 501: // M501 Read settings from EEPROM
  5603. {
  5604. Config_RetrieveSettings(EEPROM_OFFSET);
  5605. }
  5606. break;
  5607. case 502: // M502 Revert to default settings
  5608. {
  5609. Config_ResetDefault();
  5610. }
  5611. break;
  5612. case 503: // M503 print settings currently in memory
  5613. {
  5614. Config_PrintSettings();
  5615. }
  5616. break;
  5617. case 509: //M509 Force language selection
  5618. {
  5619. lang_reset();
  5620. SERIAL_ECHO_START;
  5621. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5622. }
  5623. break;
  5624. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5625. case 540:
  5626. {
  5627. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5628. }
  5629. break;
  5630. #endif
  5631. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5632. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5633. {
  5634. float value;
  5635. if (code_seen('Z'))
  5636. {
  5637. value = code_value();
  5638. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5639. {
  5640. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5641. SERIAL_ECHO_START;
  5642. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5643. SERIAL_PROTOCOLLN("");
  5644. }
  5645. else
  5646. {
  5647. SERIAL_ECHO_START;
  5648. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5649. SERIAL_ECHORPGM(MSG_Z_MIN);
  5650. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5651. SERIAL_ECHORPGM(MSG_Z_MAX);
  5652. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5653. SERIAL_PROTOCOLLN("");
  5654. }
  5655. }
  5656. else
  5657. {
  5658. SERIAL_ECHO_START;
  5659. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5660. SERIAL_ECHO(-zprobe_zoffset);
  5661. SERIAL_PROTOCOLLN("");
  5662. }
  5663. break;
  5664. }
  5665. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5666. #ifdef FILAMENTCHANGEENABLE
  5667. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5668. {
  5669. if (code_seen("AUTO") && defined(SNMM_V2)) {
  5670. gcode_M600(true);
  5671. }
  5672. else {
  5673. gcode_M600(false);
  5674. }
  5675. }
  5676. break;
  5677. #endif //FILAMENTCHANGEENABLE
  5678. case 601: {
  5679. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5680. }
  5681. break;
  5682. case 602: {
  5683. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5684. }
  5685. break;
  5686. #ifdef PINDA_THERMISTOR
  5687. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5688. {
  5689. int set_target_pinda = 0;
  5690. if (code_seen('S')) {
  5691. set_target_pinda = code_value();
  5692. }
  5693. else {
  5694. break;
  5695. }
  5696. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5697. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5698. SERIAL_PROTOCOL(set_target_pinda);
  5699. SERIAL_PROTOCOLLN("");
  5700. codenum = millis();
  5701. cancel_heatup = false;
  5702. bool is_pinda_cooling = false;
  5703. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5704. is_pinda_cooling = true;
  5705. }
  5706. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5707. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5708. {
  5709. SERIAL_PROTOCOLPGM("P:");
  5710. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5711. SERIAL_PROTOCOLPGM("/");
  5712. SERIAL_PROTOCOL(set_target_pinda);
  5713. SERIAL_PROTOCOLLN("");
  5714. codenum = millis();
  5715. }
  5716. manage_heater();
  5717. manage_inactivity();
  5718. lcd_update(0);
  5719. }
  5720. LCD_MESSAGERPGM(_T(MSG_OK));
  5721. break;
  5722. }
  5723. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5724. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5725. uint8_t cal_status = calibration_status_pinda();
  5726. int16_t usteps = 0;
  5727. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5728. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5729. for (uint8_t i = 0; i < 6; i++)
  5730. {
  5731. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5732. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5733. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5734. SERIAL_PROTOCOLPGM(", ");
  5735. SERIAL_PROTOCOL(35 + (i * 5));
  5736. SERIAL_PROTOCOLPGM(", ");
  5737. SERIAL_PROTOCOL(usteps);
  5738. SERIAL_PROTOCOLPGM(", ");
  5739. SERIAL_PROTOCOL(mm * 1000);
  5740. SERIAL_PROTOCOLLN("");
  5741. }
  5742. }
  5743. else if (code_seen('!')) { // ! - Set factory default values
  5744. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5745. int16_t z_shift = 8; //40C - 20um - 8usteps
  5746. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5747. z_shift = 24; //45C - 60um - 24usteps
  5748. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5749. z_shift = 48; //50C - 120um - 48usteps
  5750. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5751. z_shift = 80; //55C - 200um - 80usteps
  5752. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5753. z_shift = 120; //60C - 300um - 120usteps
  5754. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5755. SERIAL_PROTOCOLLN("factory restored");
  5756. }
  5757. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5758. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5759. int16_t z_shift = 0;
  5760. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5761. SERIAL_PROTOCOLLN("zerorized");
  5762. }
  5763. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5764. int16_t usteps = code_value();
  5765. if (code_seen('I')) {
  5766. byte index = code_value();
  5767. if ((index >= 0) && (index < 5)) {
  5768. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5769. SERIAL_PROTOCOLLN("OK");
  5770. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5771. for (uint8_t i = 0; i < 6; i++)
  5772. {
  5773. usteps = 0;
  5774. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5775. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5776. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5777. SERIAL_PROTOCOLPGM(", ");
  5778. SERIAL_PROTOCOL(35 + (i * 5));
  5779. SERIAL_PROTOCOLPGM(", ");
  5780. SERIAL_PROTOCOL(usteps);
  5781. SERIAL_PROTOCOLPGM(", ");
  5782. SERIAL_PROTOCOL(mm * 1000);
  5783. SERIAL_PROTOCOLLN("");
  5784. }
  5785. }
  5786. }
  5787. }
  5788. else {
  5789. SERIAL_PROTOCOLPGM("no valid command");
  5790. }
  5791. break;
  5792. #endif //PINDA_THERMISTOR
  5793. #ifdef LIN_ADVANCE
  5794. case 900: // M900: Set LIN_ADVANCE options.
  5795. gcode_M900();
  5796. break;
  5797. #endif
  5798. case 907: // M907 Set digital trimpot motor current using axis codes.
  5799. {
  5800. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5801. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5802. if(code_seen('B')) st_current_set(4,code_value());
  5803. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5804. #endif
  5805. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5806. if(code_seen('X')) st_current_set(0, code_value());
  5807. #endif
  5808. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5809. if(code_seen('Z')) st_current_set(1, code_value());
  5810. #endif
  5811. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5812. if(code_seen('E')) st_current_set(2, code_value());
  5813. #endif
  5814. }
  5815. break;
  5816. case 908: // M908 Control digital trimpot directly.
  5817. {
  5818. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5819. uint8_t channel,current;
  5820. if(code_seen('P')) channel=code_value();
  5821. if(code_seen('S')) current=code_value();
  5822. digitalPotWrite(channel, current);
  5823. #endif
  5824. }
  5825. break;
  5826. #ifdef TMC2130
  5827. case 910: // M910 TMC2130 init
  5828. {
  5829. tmc2130_init();
  5830. }
  5831. break;
  5832. case 911: // M911 Set TMC2130 holding currents
  5833. {
  5834. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5835. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5836. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5837. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5838. }
  5839. break;
  5840. case 912: // M912 Set TMC2130 running currents
  5841. {
  5842. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5843. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5844. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5845. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5846. }
  5847. break;
  5848. case 913: // M913 Print TMC2130 currents
  5849. {
  5850. tmc2130_print_currents();
  5851. }
  5852. break;
  5853. case 914: // M914 Set normal mode
  5854. {
  5855. tmc2130_mode = TMC2130_MODE_NORMAL;
  5856. update_mode_profile();
  5857. tmc2130_init();
  5858. }
  5859. break;
  5860. case 915: // M915 Set silent mode
  5861. {
  5862. tmc2130_mode = TMC2130_MODE_SILENT;
  5863. update_mode_profile();
  5864. tmc2130_init();
  5865. }
  5866. break;
  5867. case 916: // M916 Set sg_thrs
  5868. {
  5869. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5870. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5871. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5872. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5873. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5874. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5875. }
  5876. break;
  5877. case 917: // M917 Set TMC2130 pwm_ampl
  5878. {
  5879. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5880. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5881. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5882. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5883. }
  5884. break;
  5885. case 918: // M918 Set TMC2130 pwm_grad
  5886. {
  5887. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5888. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5889. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5890. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5891. }
  5892. break;
  5893. #endif //TMC2130
  5894. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5895. {
  5896. #ifdef TMC2130
  5897. if(code_seen('E'))
  5898. {
  5899. uint16_t res_new = code_value();
  5900. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5901. {
  5902. st_synchronize();
  5903. uint8_t axis = E_AXIS;
  5904. uint16_t res = tmc2130_get_res(axis);
  5905. tmc2130_set_res(axis, res_new);
  5906. if (res_new > res)
  5907. {
  5908. uint16_t fac = (res_new / res);
  5909. axis_steps_per_unit[axis] *= fac;
  5910. position[E_AXIS] *= fac;
  5911. }
  5912. else
  5913. {
  5914. uint16_t fac = (res / res_new);
  5915. axis_steps_per_unit[axis] /= fac;
  5916. position[E_AXIS] /= fac;
  5917. }
  5918. }
  5919. }
  5920. #else //TMC2130
  5921. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5922. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5923. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5924. if(code_seen('B')) microstep_mode(4,code_value());
  5925. microstep_readings();
  5926. #endif
  5927. #endif //TMC2130
  5928. }
  5929. break;
  5930. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5931. {
  5932. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5933. if(code_seen('S')) switch((int)code_value())
  5934. {
  5935. case 1:
  5936. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5937. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5938. break;
  5939. case 2:
  5940. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5941. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5942. break;
  5943. }
  5944. microstep_readings();
  5945. #endif
  5946. }
  5947. break;
  5948. case 701: //M701: load filament
  5949. {
  5950. #ifdef SNMM_V2
  5951. if (code_seen('E'))
  5952. {
  5953. snmm_extruder = code_value();
  5954. }
  5955. #endif
  5956. gcode_M701();
  5957. }
  5958. break;
  5959. case 702:
  5960. {
  5961. #if defined (SNMM) || defined (SNMM_V2)
  5962. if (code_seen('U')) {
  5963. extr_unload_used(); //unload all filaments which were used in current print
  5964. }
  5965. else if (code_seen('C')) {
  5966. extr_unload(); //unload just current filament
  5967. }
  5968. else {
  5969. extr_unload_all(); //unload all filaments
  5970. }
  5971. #else
  5972. custom_message = true;
  5973. custom_message_type = 2;
  5974. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5975. // extr_unload2();
  5976. current_position[E_AXIS] -= 45;
  5977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5978. st_synchronize();
  5979. current_position[E_AXIS] -= 15;
  5980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5981. st_synchronize();
  5982. current_position[E_AXIS] -= 20;
  5983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5984. st_synchronize();
  5985. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5986. //disable extruder steppers so filament can be removed
  5987. disable_e0();
  5988. disable_e1();
  5989. disable_e2();
  5990. delay(100);
  5991. Sound_MakeSound(e_SOUND_CLASS_Prompt,e_SOUND_TYPE_StandardPrompt);
  5992. uint8_t counterBeep = 0;
  5993. while (!lcd_clicked() && (counterBeep < 50)) {
  5994. delay_keep_alive(100);
  5995. counterBeep++;
  5996. }
  5997. st_synchronize();
  5998. while (lcd_clicked()) delay_keep_alive(100);
  5999. lcd_update_enable(true);
  6000. lcd_setstatuspgm(_T(WELCOME_MSG));
  6001. custom_message = false;
  6002. custom_message_type = 0;
  6003. #endif
  6004. }
  6005. break;
  6006. case 999: // M999: Restart after being stopped
  6007. Stopped = false;
  6008. lcd_reset_alert_level();
  6009. gcode_LastN = Stopped_gcode_LastN;
  6010. FlushSerialRequestResend();
  6011. break;
  6012. default:
  6013. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6014. }
  6015. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6016. mcode_in_progress = 0;
  6017. }
  6018. } // end if(code_seen('M')) (end of M codes)
  6019. else if(code_seen('T'))
  6020. {
  6021. int index;
  6022. st_synchronize();
  6023. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6024. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6025. SERIAL_ECHOLNPGM("Invalid T code.");
  6026. }
  6027. else {
  6028. if (*(strchr_pointer + index) == '?') {
  6029. tmp_extruder = choose_extruder_menu();
  6030. }
  6031. else {
  6032. tmp_extruder = code_value();
  6033. }
  6034. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6035. #if defined (SNMM_V2)
  6036. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6037. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  6038. bool response = mmu_get_reponse(false);
  6039. if (!response) mmu_not_responding();
  6040. snmm_extruder = tmp_extruder; //filament change is finished
  6041. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  6042. mmu_load_to_nozzle();
  6043. }
  6044. #elif defined(SNMM)
  6045. #ifdef LIN_ADVANCE
  6046. if (snmm_extruder != tmp_extruder)
  6047. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6048. #endif
  6049. snmm_extruder = tmp_extruder;
  6050. delay(100);
  6051. disable_e0();
  6052. disable_e1();
  6053. disable_e2();
  6054. pinMode(E_MUX0_PIN, OUTPUT);
  6055. pinMode(E_MUX1_PIN, OUTPUT);
  6056. delay(100);
  6057. SERIAL_ECHO_START;
  6058. SERIAL_ECHO("T:");
  6059. SERIAL_ECHOLN((int)tmp_extruder);
  6060. switch (tmp_extruder) {
  6061. case 1:
  6062. WRITE(E_MUX0_PIN, HIGH);
  6063. WRITE(E_MUX1_PIN, LOW);
  6064. break;
  6065. case 2:
  6066. WRITE(E_MUX0_PIN, LOW);
  6067. WRITE(E_MUX1_PIN, HIGH);
  6068. break;
  6069. case 3:
  6070. WRITE(E_MUX0_PIN, HIGH);
  6071. WRITE(E_MUX1_PIN, HIGH);
  6072. break;
  6073. default:
  6074. WRITE(E_MUX0_PIN, LOW);
  6075. WRITE(E_MUX1_PIN, LOW);
  6076. break;
  6077. }
  6078. delay(100);
  6079. #else //SNMM and SNMM_V2 undefined:
  6080. if (tmp_extruder >= EXTRUDERS) {
  6081. SERIAL_ECHO_START;
  6082. SERIAL_ECHOPGM("T");
  6083. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6084. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6085. }
  6086. else {
  6087. #if EXTRUDERS > 1
  6088. boolean make_move = false;
  6089. #endif
  6090. if (code_seen('F')) {
  6091. #if EXTRUDERS > 1
  6092. make_move = true;
  6093. #endif
  6094. next_feedrate = code_value();
  6095. if (next_feedrate > 0.0) {
  6096. feedrate = next_feedrate;
  6097. }
  6098. }
  6099. #if EXTRUDERS > 1
  6100. if (tmp_extruder != active_extruder) {
  6101. // Save current position to return to after applying extruder offset
  6102. memcpy(destination, current_position, sizeof(destination));
  6103. // Offset extruder (only by XY)
  6104. int i;
  6105. for (i = 0; i < 2; i++) {
  6106. current_position[i] = current_position[i] -
  6107. extruder_offset[i][active_extruder] +
  6108. extruder_offset[i][tmp_extruder];
  6109. }
  6110. // Set the new active extruder and position
  6111. active_extruder = tmp_extruder;
  6112. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6113. // Move to the old position if 'F' was in the parameters
  6114. if (make_move && Stopped == false) {
  6115. prepare_move();
  6116. }
  6117. }
  6118. #endif
  6119. SERIAL_ECHO_START;
  6120. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6121. SERIAL_PROTOCOLLN((int)active_extruder);
  6122. }
  6123. #endif
  6124. }
  6125. } // end if(code_seen('T')) (end of T codes)
  6126. else if (code_seen('D')) // D codes (debug)
  6127. {
  6128. switch((int)code_value())
  6129. {
  6130. #ifdef DEBUG_DCODES
  6131. case -1: // D-1 - Endless loop
  6132. dcode__1(); break;
  6133. case 0: // D0 - Reset
  6134. dcode_0(); break;
  6135. case 1: // D1 - Clear EEPROM
  6136. dcode_1(); break;
  6137. case 2: // D2 - Read/Write RAM
  6138. dcode_2(); break;
  6139. #endif //DEBUG_DCODES
  6140. #ifdef DEBUG_DCODE3
  6141. case 3: // D3 - Read/Write EEPROM
  6142. dcode_3(); break;
  6143. #endif //DEBUG_DCODE3
  6144. #ifdef DEBUG_DCODES
  6145. case 4: // D4 - Read/Write PIN
  6146. dcode_4(); break;
  6147. case 5: // D5 - Read/Write FLASH
  6148. // dcode_5(); break;
  6149. break;
  6150. case 6: // D6 - Read/Write external FLASH
  6151. dcode_6(); break;
  6152. case 7: // D7 - Read/Write Bootloader
  6153. dcode_7(); break;
  6154. case 8: // D8 - Read/Write PINDA
  6155. dcode_8(); break;
  6156. case 9: // D9 - Read/Write ADC
  6157. dcode_9(); break;
  6158. case 10: // D10 - XYZ calibration = OK
  6159. dcode_10(); break;
  6160. #ifdef TMC2130
  6161. case 2130: // D9125 - TMC2130
  6162. dcode_2130(); break;
  6163. #endif //TMC2130
  6164. #ifdef FILAMENT_SENSOR
  6165. case 9125: // D9125 - FILAMENT_SENSOR
  6166. dcode_9125(); break;
  6167. #endif //FILAMENT_SENSOR
  6168. #endif //DEBUG_DCODES
  6169. }
  6170. }
  6171. else
  6172. {
  6173. SERIAL_ECHO_START;
  6174. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6175. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6176. SERIAL_ECHOLNPGM("\"(2)");
  6177. }
  6178. KEEPALIVE_STATE(NOT_BUSY);
  6179. ClearToSend();
  6180. }
  6181. void FlushSerialRequestResend()
  6182. {
  6183. //char cmdbuffer[bufindr][100]="Resend:";
  6184. MYSERIAL.flush();
  6185. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6186. }
  6187. // Confirm the execution of a command, if sent from a serial line.
  6188. // Execution of a command from a SD card will not be confirmed.
  6189. void ClearToSend()
  6190. {
  6191. previous_millis_cmd = millis();
  6192. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6193. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6194. }
  6195. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6196. void update_currents() {
  6197. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6198. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6199. float tmp_motor[3];
  6200. //SERIAL_ECHOLNPGM("Currents updated: ");
  6201. if (destination[Z_AXIS] < Z_SILENT) {
  6202. //SERIAL_ECHOLNPGM("LOW");
  6203. for (uint8_t i = 0; i < 3; i++) {
  6204. st_current_set(i, current_low[i]);
  6205. /*MYSERIAL.print(int(i));
  6206. SERIAL_ECHOPGM(": ");
  6207. MYSERIAL.println(current_low[i]);*/
  6208. }
  6209. }
  6210. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6211. //SERIAL_ECHOLNPGM("HIGH");
  6212. for (uint8_t i = 0; i < 3; i++) {
  6213. st_current_set(i, current_high[i]);
  6214. /*MYSERIAL.print(int(i));
  6215. SERIAL_ECHOPGM(": ");
  6216. MYSERIAL.println(current_high[i]);*/
  6217. }
  6218. }
  6219. else {
  6220. for (uint8_t i = 0; i < 3; i++) {
  6221. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6222. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6223. st_current_set(i, tmp_motor[i]);
  6224. /*MYSERIAL.print(int(i));
  6225. SERIAL_ECHOPGM(": ");
  6226. MYSERIAL.println(tmp_motor[i]);*/
  6227. }
  6228. }
  6229. }
  6230. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6231. void get_coordinates()
  6232. {
  6233. bool seen[4]={false,false,false,false};
  6234. for(int8_t i=0; i < NUM_AXIS; i++) {
  6235. if(code_seen(axis_codes[i]))
  6236. {
  6237. bool relative = axis_relative_modes[i] || relative_mode;
  6238. destination[i] = (float)code_value();
  6239. if (i == E_AXIS) {
  6240. float emult = extruder_multiplier[active_extruder];
  6241. if (emult != 1.) {
  6242. if (! relative) {
  6243. destination[i] -= current_position[i];
  6244. relative = true;
  6245. }
  6246. destination[i] *= emult;
  6247. }
  6248. }
  6249. if (relative)
  6250. destination[i] += current_position[i];
  6251. seen[i]=true;
  6252. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6253. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6254. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6255. }
  6256. else destination[i] = current_position[i]; //Are these else lines really needed?
  6257. }
  6258. if(code_seen('F')) {
  6259. next_feedrate = code_value();
  6260. #ifdef MAX_SILENT_FEEDRATE
  6261. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6262. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6263. #endif //MAX_SILENT_FEEDRATE
  6264. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6265. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6266. {
  6267. // float e_max_speed =
  6268. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6269. }
  6270. }
  6271. }
  6272. void get_arc_coordinates()
  6273. {
  6274. #ifdef SF_ARC_FIX
  6275. bool relative_mode_backup = relative_mode;
  6276. relative_mode = true;
  6277. #endif
  6278. get_coordinates();
  6279. #ifdef SF_ARC_FIX
  6280. relative_mode=relative_mode_backup;
  6281. #endif
  6282. if(code_seen('I')) {
  6283. offset[0] = code_value();
  6284. }
  6285. else {
  6286. offset[0] = 0.0;
  6287. }
  6288. if(code_seen('J')) {
  6289. offset[1] = code_value();
  6290. }
  6291. else {
  6292. offset[1] = 0.0;
  6293. }
  6294. }
  6295. void clamp_to_software_endstops(float target[3])
  6296. {
  6297. #ifdef DEBUG_DISABLE_SWLIMITS
  6298. return;
  6299. #endif //DEBUG_DISABLE_SWLIMITS
  6300. world2machine_clamp(target[0], target[1]);
  6301. // Clamp the Z coordinate.
  6302. if (min_software_endstops) {
  6303. float negative_z_offset = 0;
  6304. #ifdef ENABLE_AUTO_BED_LEVELING
  6305. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6306. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6307. #endif
  6308. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6309. }
  6310. if (max_software_endstops) {
  6311. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6312. }
  6313. }
  6314. #ifdef MESH_BED_LEVELING
  6315. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6316. float dx = x - current_position[X_AXIS];
  6317. float dy = y - current_position[Y_AXIS];
  6318. float dz = z - current_position[Z_AXIS];
  6319. int n_segments = 0;
  6320. if (mbl.active) {
  6321. float len = abs(dx) + abs(dy);
  6322. if (len > 0)
  6323. // Split to 3cm segments or shorter.
  6324. n_segments = int(ceil(len / 30.f));
  6325. }
  6326. if (n_segments > 1) {
  6327. float de = e - current_position[E_AXIS];
  6328. for (int i = 1; i < n_segments; ++ i) {
  6329. float t = float(i) / float(n_segments);
  6330. if (saved_printing || (mbl.active == false)) return;
  6331. plan_buffer_line(
  6332. current_position[X_AXIS] + t * dx,
  6333. current_position[Y_AXIS] + t * dy,
  6334. current_position[Z_AXIS] + t * dz,
  6335. current_position[E_AXIS] + t * de,
  6336. feed_rate, extruder);
  6337. }
  6338. }
  6339. // The rest of the path.
  6340. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6341. current_position[X_AXIS] = x;
  6342. current_position[Y_AXIS] = y;
  6343. current_position[Z_AXIS] = z;
  6344. current_position[E_AXIS] = e;
  6345. }
  6346. #endif // MESH_BED_LEVELING
  6347. void prepare_move()
  6348. {
  6349. clamp_to_software_endstops(destination);
  6350. previous_millis_cmd = millis();
  6351. // Do not use feedmultiply for E or Z only moves
  6352. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6353. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6354. }
  6355. else {
  6356. #ifdef MESH_BED_LEVELING
  6357. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6358. #else
  6359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6360. #endif
  6361. }
  6362. for(int8_t i=0; i < NUM_AXIS; i++) {
  6363. current_position[i] = destination[i];
  6364. }
  6365. }
  6366. void prepare_arc_move(char isclockwise) {
  6367. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6368. // Trace the arc
  6369. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6370. // As far as the parser is concerned, the position is now == target. In reality the
  6371. // motion control system might still be processing the action and the real tool position
  6372. // in any intermediate location.
  6373. for(int8_t i=0; i < NUM_AXIS; i++) {
  6374. current_position[i] = destination[i];
  6375. }
  6376. previous_millis_cmd = millis();
  6377. }
  6378. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6379. #if defined(FAN_PIN)
  6380. #if CONTROLLERFAN_PIN == FAN_PIN
  6381. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6382. #endif
  6383. #endif
  6384. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6385. unsigned long lastMotorCheck = 0;
  6386. void controllerFan()
  6387. {
  6388. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6389. {
  6390. lastMotorCheck = millis();
  6391. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6392. #if EXTRUDERS > 2
  6393. || !READ(E2_ENABLE_PIN)
  6394. #endif
  6395. #if EXTRUDER > 1
  6396. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6397. || !READ(X2_ENABLE_PIN)
  6398. #endif
  6399. || !READ(E1_ENABLE_PIN)
  6400. #endif
  6401. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6402. {
  6403. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6404. }
  6405. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6406. {
  6407. digitalWrite(CONTROLLERFAN_PIN, 0);
  6408. analogWrite(CONTROLLERFAN_PIN, 0);
  6409. }
  6410. else
  6411. {
  6412. // allows digital or PWM fan output to be used (see M42 handling)
  6413. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6414. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6415. }
  6416. }
  6417. }
  6418. #endif
  6419. #ifdef TEMP_STAT_LEDS
  6420. static bool blue_led = false;
  6421. static bool red_led = false;
  6422. static uint32_t stat_update = 0;
  6423. void handle_status_leds(void) {
  6424. float max_temp = 0.0;
  6425. if(millis() > stat_update) {
  6426. stat_update += 500; // Update every 0.5s
  6427. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6428. max_temp = max(max_temp, degHotend(cur_extruder));
  6429. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6430. }
  6431. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6432. max_temp = max(max_temp, degTargetBed());
  6433. max_temp = max(max_temp, degBed());
  6434. #endif
  6435. if((max_temp > 55.0) && (red_led == false)) {
  6436. digitalWrite(STAT_LED_RED, 1);
  6437. digitalWrite(STAT_LED_BLUE, 0);
  6438. red_led = true;
  6439. blue_led = false;
  6440. }
  6441. if((max_temp < 54.0) && (blue_led == false)) {
  6442. digitalWrite(STAT_LED_RED, 0);
  6443. digitalWrite(STAT_LED_BLUE, 1);
  6444. red_led = false;
  6445. blue_led = true;
  6446. }
  6447. }
  6448. }
  6449. #endif
  6450. #ifdef SAFETYTIMER
  6451. /**
  6452. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6453. *
  6454. * Full screen blocking notification message is shown after heater turning off.
  6455. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6456. * damage print.
  6457. *
  6458. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6459. */
  6460. static void handleSafetyTimer()
  6461. {
  6462. #if (EXTRUDERS > 1)
  6463. #error Implemented only for one extruder.
  6464. #endif //(EXTRUDERS > 1)
  6465. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6466. {
  6467. safetyTimer.stop();
  6468. }
  6469. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6470. {
  6471. safetyTimer.start();
  6472. }
  6473. else if (safetyTimer.expired(safetytimer_inactive_time))
  6474. {
  6475. setTargetBed(0);
  6476. setAllTargetHotends(0);
  6477. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6478. }
  6479. }
  6480. #endif //SAFETYTIMER
  6481. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6482. {
  6483. #ifdef FILAMENT_SENSOR
  6484. if (mcode_in_progress != 600) //M600 not in progress
  6485. {
  6486. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6487. {
  6488. if (fsensor_check_autoload())
  6489. {
  6490. fsensor_autoload_check_stop();
  6491. if (degHotend0() > EXTRUDE_MINTEMP)
  6492. {
  6493. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  6494. tone(BEEPER, 1000);
  6495. delay_keep_alive(50);
  6496. noTone(BEEPER);
  6497. loading_flag = true;
  6498. enquecommand_front_P((PSTR("M701")));
  6499. }
  6500. else
  6501. {
  6502. lcd_update_enable(false);
  6503. lcd_clear();
  6504. lcd_set_cursor(0, 0);
  6505. lcd_puts_P(_T(MSG_ERROR));
  6506. lcd_set_cursor(0, 2);
  6507. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6508. delay(2000);
  6509. lcd_clear();
  6510. lcd_update_enable(true);
  6511. }
  6512. }
  6513. }
  6514. else
  6515. fsensor_autoload_check_stop();
  6516. }
  6517. #endif //FILAMENT_SENSOR
  6518. #ifdef SAFETYTIMER
  6519. handleSafetyTimer();
  6520. #endif //SAFETYTIMER
  6521. #if defined(KILL_PIN) && KILL_PIN > -1
  6522. static int killCount = 0; // make the inactivity button a bit less responsive
  6523. const int KILL_DELAY = 10000;
  6524. #endif
  6525. if(buflen < (BUFSIZE-1)){
  6526. get_command();
  6527. }
  6528. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6529. if(max_inactive_time)
  6530. kill(_n(""), 4);
  6531. if(stepper_inactive_time) {
  6532. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6533. {
  6534. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6535. disable_x();
  6536. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6537. disable_y();
  6538. disable_z();
  6539. disable_e0();
  6540. disable_e1();
  6541. disable_e2();
  6542. }
  6543. }
  6544. }
  6545. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6546. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6547. {
  6548. chdkActive = false;
  6549. WRITE(CHDK, LOW);
  6550. }
  6551. #endif
  6552. #if defined(KILL_PIN) && KILL_PIN > -1
  6553. // Check if the kill button was pressed and wait just in case it was an accidental
  6554. // key kill key press
  6555. // -------------------------------------------------------------------------------
  6556. if( 0 == READ(KILL_PIN) )
  6557. {
  6558. killCount++;
  6559. }
  6560. else if (killCount > 0)
  6561. {
  6562. killCount--;
  6563. }
  6564. // Exceeded threshold and we can confirm that it was not accidental
  6565. // KILL the machine
  6566. // ----------------------------------------------------------------
  6567. if ( killCount >= KILL_DELAY)
  6568. {
  6569. kill("", 5);
  6570. }
  6571. #endif
  6572. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6573. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6574. #endif
  6575. #ifdef EXTRUDER_RUNOUT_PREVENT
  6576. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6577. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6578. {
  6579. bool oldstatus=READ(E0_ENABLE_PIN);
  6580. enable_e0();
  6581. float oldepos=current_position[E_AXIS];
  6582. float oldedes=destination[E_AXIS];
  6583. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6584. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6585. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6586. current_position[E_AXIS]=oldepos;
  6587. destination[E_AXIS]=oldedes;
  6588. plan_set_e_position(oldepos);
  6589. previous_millis_cmd=millis();
  6590. st_synchronize();
  6591. WRITE(E0_ENABLE_PIN,oldstatus);
  6592. }
  6593. #endif
  6594. #ifdef TEMP_STAT_LEDS
  6595. handle_status_leds();
  6596. #endif
  6597. check_axes_activity();
  6598. }
  6599. void kill(const char *full_screen_message, unsigned char id)
  6600. {
  6601. printf_P(_N("KILL: %d\n"), id);
  6602. //return;
  6603. cli(); // Stop interrupts
  6604. disable_heater();
  6605. disable_x();
  6606. // SERIAL_ECHOLNPGM("kill - disable Y");
  6607. disable_y();
  6608. disable_z();
  6609. disable_e0();
  6610. disable_e1();
  6611. disable_e2();
  6612. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6613. pinMode(PS_ON_PIN,INPUT);
  6614. #endif
  6615. SERIAL_ERROR_START;
  6616. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6617. if (full_screen_message != NULL) {
  6618. SERIAL_ERRORLNRPGM(full_screen_message);
  6619. lcd_display_message_fullscreen_P(full_screen_message);
  6620. } else {
  6621. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6622. }
  6623. // FMC small patch to update the LCD before ending
  6624. sei(); // enable interrupts
  6625. for ( int i=5; i--; lcd_update(0))
  6626. {
  6627. delay(200);
  6628. }
  6629. cli(); // disable interrupts
  6630. suicide();
  6631. while(1)
  6632. {
  6633. #ifdef WATCHDOG
  6634. wdt_reset();
  6635. #endif //WATCHDOG
  6636. /* Intentionally left empty */
  6637. } // Wait for reset
  6638. }
  6639. void Stop()
  6640. {
  6641. disable_heater();
  6642. if(Stopped == false) {
  6643. Stopped = true;
  6644. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6645. SERIAL_ERROR_START;
  6646. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6647. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6648. }
  6649. }
  6650. bool IsStopped() { return Stopped; };
  6651. #ifdef FAST_PWM_FAN
  6652. void setPwmFrequency(uint8_t pin, int val)
  6653. {
  6654. val &= 0x07;
  6655. switch(digitalPinToTimer(pin))
  6656. {
  6657. #if defined(TCCR0A)
  6658. case TIMER0A:
  6659. case TIMER0B:
  6660. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6661. // TCCR0B |= val;
  6662. break;
  6663. #endif
  6664. #if defined(TCCR1A)
  6665. case TIMER1A:
  6666. case TIMER1B:
  6667. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6668. // TCCR1B |= val;
  6669. break;
  6670. #endif
  6671. #if defined(TCCR2)
  6672. case TIMER2:
  6673. case TIMER2:
  6674. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6675. TCCR2 |= val;
  6676. break;
  6677. #endif
  6678. #if defined(TCCR2A)
  6679. case TIMER2A:
  6680. case TIMER2B:
  6681. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6682. TCCR2B |= val;
  6683. break;
  6684. #endif
  6685. #if defined(TCCR3A)
  6686. case TIMER3A:
  6687. case TIMER3B:
  6688. case TIMER3C:
  6689. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6690. TCCR3B |= val;
  6691. break;
  6692. #endif
  6693. #if defined(TCCR4A)
  6694. case TIMER4A:
  6695. case TIMER4B:
  6696. case TIMER4C:
  6697. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6698. TCCR4B |= val;
  6699. break;
  6700. #endif
  6701. #if defined(TCCR5A)
  6702. case TIMER5A:
  6703. case TIMER5B:
  6704. case TIMER5C:
  6705. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6706. TCCR5B |= val;
  6707. break;
  6708. #endif
  6709. }
  6710. }
  6711. #endif //FAST_PWM_FAN
  6712. bool setTargetedHotend(int code){
  6713. tmp_extruder = active_extruder;
  6714. if(code_seen('T')) {
  6715. tmp_extruder = code_value();
  6716. if(tmp_extruder >= EXTRUDERS) {
  6717. SERIAL_ECHO_START;
  6718. switch(code){
  6719. case 104:
  6720. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6721. break;
  6722. case 105:
  6723. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6724. break;
  6725. case 109:
  6726. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6727. break;
  6728. case 218:
  6729. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6730. break;
  6731. case 221:
  6732. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6733. break;
  6734. }
  6735. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6736. return true;
  6737. }
  6738. }
  6739. return false;
  6740. }
  6741. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6742. {
  6743. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6744. {
  6745. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6746. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6747. }
  6748. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6749. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6750. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6751. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6752. total_filament_used = 0;
  6753. }
  6754. float calculate_extruder_multiplier(float diameter) {
  6755. float out = 1.f;
  6756. if (volumetric_enabled && diameter > 0.f) {
  6757. float area = M_PI * diameter * diameter * 0.25;
  6758. out = 1.f / area;
  6759. }
  6760. if (extrudemultiply != 100)
  6761. out *= float(extrudemultiply) * 0.01f;
  6762. return out;
  6763. }
  6764. void calculate_extruder_multipliers() {
  6765. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6766. #if EXTRUDERS > 1
  6767. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6768. #if EXTRUDERS > 2
  6769. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6770. #endif
  6771. #endif
  6772. }
  6773. void delay_keep_alive(unsigned int ms)
  6774. {
  6775. for (;;) {
  6776. manage_heater();
  6777. // Manage inactivity, but don't disable steppers on timeout.
  6778. manage_inactivity(true);
  6779. lcd_update(0);
  6780. if (ms == 0)
  6781. break;
  6782. else if (ms >= 50) {
  6783. delay(50);
  6784. ms -= 50;
  6785. } else {
  6786. delay(ms);
  6787. ms = 0;
  6788. }
  6789. }
  6790. }
  6791. void wait_for_heater(long codenum) {
  6792. #ifdef TEMP_RESIDENCY_TIME
  6793. long residencyStart;
  6794. residencyStart = -1;
  6795. /* continue to loop until we have reached the target temp
  6796. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6797. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6798. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6799. #else
  6800. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6801. #endif //TEMP_RESIDENCY_TIME
  6802. if ((millis() - codenum) > 1000UL)
  6803. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6804. if (!farm_mode) {
  6805. SERIAL_PROTOCOLPGM("T:");
  6806. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6807. SERIAL_PROTOCOLPGM(" E:");
  6808. SERIAL_PROTOCOL((int)tmp_extruder);
  6809. #ifdef TEMP_RESIDENCY_TIME
  6810. SERIAL_PROTOCOLPGM(" W:");
  6811. if (residencyStart > -1)
  6812. {
  6813. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6814. SERIAL_PROTOCOLLN(codenum);
  6815. }
  6816. else
  6817. {
  6818. SERIAL_PROTOCOLLN("?");
  6819. }
  6820. }
  6821. #else
  6822. SERIAL_PROTOCOLLN("");
  6823. #endif
  6824. codenum = millis();
  6825. }
  6826. manage_heater();
  6827. manage_inactivity();
  6828. lcd_update(0);
  6829. #ifdef TEMP_RESIDENCY_TIME
  6830. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6831. or when current temp falls outside the hysteresis after target temp was reached */
  6832. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6833. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6834. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6835. {
  6836. residencyStart = millis();
  6837. }
  6838. #endif //TEMP_RESIDENCY_TIME
  6839. }
  6840. }
  6841. void check_babystep() {
  6842. int babystep_z;
  6843. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6844. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6845. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6846. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6847. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6848. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6849. lcd_update_enable(true);
  6850. }
  6851. }
  6852. #ifdef DIS
  6853. void d_setup()
  6854. {
  6855. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6856. pinMode(D_DATA, INPUT_PULLUP);
  6857. pinMode(D_REQUIRE, OUTPUT);
  6858. digitalWrite(D_REQUIRE, HIGH);
  6859. }
  6860. float d_ReadData()
  6861. {
  6862. int digit[13];
  6863. String mergeOutput;
  6864. float output;
  6865. digitalWrite(D_REQUIRE, HIGH);
  6866. for (int i = 0; i<13; i++)
  6867. {
  6868. for (int j = 0; j < 4; j++)
  6869. {
  6870. while (digitalRead(D_DATACLOCK) == LOW) {}
  6871. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6872. bitWrite(digit[i], j, digitalRead(D_DATA));
  6873. }
  6874. }
  6875. digitalWrite(D_REQUIRE, LOW);
  6876. mergeOutput = "";
  6877. output = 0;
  6878. for (int r = 5; r <= 10; r++) //Merge digits
  6879. {
  6880. mergeOutput += digit[r];
  6881. }
  6882. output = mergeOutput.toFloat();
  6883. if (digit[4] == 8) //Handle sign
  6884. {
  6885. output *= -1;
  6886. }
  6887. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6888. {
  6889. output /= 10;
  6890. }
  6891. return output;
  6892. }
  6893. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6894. int t1 = 0;
  6895. int t_delay = 0;
  6896. int digit[13];
  6897. int m;
  6898. char str[3];
  6899. //String mergeOutput;
  6900. char mergeOutput[15];
  6901. float output;
  6902. int mesh_point = 0; //index number of calibration point
  6903. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6904. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6905. float mesh_home_z_search = 4;
  6906. float row[x_points_num];
  6907. int ix = 0;
  6908. int iy = 0;
  6909. char* filename_wldsd = "wldsd.txt";
  6910. char data_wldsd[70];
  6911. char numb_wldsd[10];
  6912. d_setup();
  6913. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6914. // We don't know where we are! HOME!
  6915. // Push the commands to the front of the message queue in the reverse order!
  6916. // There shall be always enough space reserved for these commands.
  6917. repeatcommand_front(); // repeat G80 with all its parameters
  6918. enquecommand_front_P((PSTR("G28 W0")));
  6919. enquecommand_front_P((PSTR("G1 Z5")));
  6920. return;
  6921. }
  6922. bool custom_message_old = custom_message;
  6923. unsigned int custom_message_type_old = custom_message_type;
  6924. unsigned int custom_message_state_old = custom_message_state;
  6925. custom_message = true;
  6926. custom_message_type = 1;
  6927. custom_message_state = (x_points_num * y_points_num) + 10;
  6928. lcd_update(1);
  6929. mbl.reset();
  6930. babystep_undo();
  6931. card.openFile(filename_wldsd, false);
  6932. current_position[Z_AXIS] = mesh_home_z_search;
  6933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6934. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6935. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6936. setup_for_endstop_move(false);
  6937. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6938. SERIAL_PROTOCOL(x_points_num);
  6939. SERIAL_PROTOCOLPGM(",");
  6940. SERIAL_PROTOCOL(y_points_num);
  6941. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6942. SERIAL_PROTOCOL(mesh_home_z_search);
  6943. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6944. SERIAL_PROTOCOL(x_dimension);
  6945. SERIAL_PROTOCOLPGM(",");
  6946. SERIAL_PROTOCOL(y_dimension);
  6947. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6948. while (mesh_point != x_points_num * y_points_num) {
  6949. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6950. iy = mesh_point / x_points_num;
  6951. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6952. float z0 = 0.f;
  6953. current_position[Z_AXIS] = mesh_home_z_search;
  6954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6955. st_synchronize();
  6956. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6957. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6959. st_synchronize();
  6960. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6961. break;
  6962. card.closefile();
  6963. }
  6964. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6965. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6966. //strcat(data_wldsd, numb_wldsd);
  6967. //MYSERIAL.println(data_wldsd);
  6968. //delay(1000);
  6969. //delay(3000);
  6970. //t1 = millis();
  6971. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6972. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6973. memset(digit, 0, sizeof(digit));
  6974. //cli();
  6975. digitalWrite(D_REQUIRE, LOW);
  6976. for (int i = 0; i<13; i++)
  6977. {
  6978. //t1 = millis();
  6979. for (int j = 0; j < 4; j++)
  6980. {
  6981. while (digitalRead(D_DATACLOCK) == LOW) {}
  6982. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6983. bitWrite(digit[i], j, digitalRead(D_DATA));
  6984. }
  6985. //t_delay = (millis() - t1);
  6986. //SERIAL_PROTOCOLPGM(" ");
  6987. //SERIAL_PROTOCOL_F(t_delay, 5);
  6988. //SERIAL_PROTOCOLPGM(" ");
  6989. }
  6990. //sei();
  6991. digitalWrite(D_REQUIRE, HIGH);
  6992. mergeOutput[0] = '\0';
  6993. output = 0;
  6994. for (int r = 5; r <= 10; r++) //Merge digits
  6995. {
  6996. sprintf(str, "%d", digit[r]);
  6997. strcat(mergeOutput, str);
  6998. }
  6999. output = atof(mergeOutput);
  7000. if (digit[4] == 8) //Handle sign
  7001. {
  7002. output *= -1;
  7003. }
  7004. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7005. {
  7006. output *= 0.1;
  7007. }
  7008. //output = d_ReadData();
  7009. //row[ix] = current_position[Z_AXIS];
  7010. memset(data_wldsd, 0, sizeof(data_wldsd));
  7011. for (int i = 0; i <3; i++) {
  7012. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7013. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7014. strcat(data_wldsd, numb_wldsd);
  7015. strcat(data_wldsd, ";");
  7016. }
  7017. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7018. dtostrf(output, 8, 5, numb_wldsd);
  7019. strcat(data_wldsd, numb_wldsd);
  7020. //strcat(data_wldsd, ";");
  7021. card.write_command(data_wldsd);
  7022. //row[ix] = d_ReadData();
  7023. row[ix] = output; // current_position[Z_AXIS];
  7024. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7025. for (int i = 0; i < x_points_num; i++) {
  7026. SERIAL_PROTOCOLPGM(" ");
  7027. SERIAL_PROTOCOL_F(row[i], 5);
  7028. }
  7029. SERIAL_PROTOCOLPGM("\n");
  7030. }
  7031. custom_message_state--;
  7032. mesh_point++;
  7033. lcd_update(1);
  7034. }
  7035. card.closefile();
  7036. }
  7037. #endif
  7038. void temp_compensation_start() {
  7039. custom_message = true;
  7040. custom_message_type = 5;
  7041. custom_message_state = PINDA_HEAT_T + 1;
  7042. lcd_update(2);
  7043. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7044. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7045. }
  7046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7047. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7048. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7049. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7051. st_synchronize();
  7052. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7053. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7054. delay_keep_alive(1000);
  7055. custom_message_state = PINDA_HEAT_T - i;
  7056. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7057. else lcd_update(1);
  7058. }
  7059. custom_message_type = 0;
  7060. custom_message_state = 0;
  7061. custom_message = false;
  7062. }
  7063. void temp_compensation_apply() {
  7064. int i_add;
  7065. int z_shift = 0;
  7066. float z_shift_mm;
  7067. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7068. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7069. i_add = (target_temperature_bed - 60) / 10;
  7070. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7071. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7072. }else {
  7073. //interpolation
  7074. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7075. }
  7076. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7078. st_synchronize();
  7079. plan_set_z_position(current_position[Z_AXIS]);
  7080. }
  7081. else {
  7082. //we have no temp compensation data
  7083. }
  7084. }
  7085. float temp_comp_interpolation(float inp_temperature) {
  7086. //cubic spline interpolation
  7087. int n, i, j;
  7088. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7089. int shift[10];
  7090. int temp_C[10];
  7091. n = 6; //number of measured points
  7092. shift[0] = 0;
  7093. for (i = 0; i < n; i++) {
  7094. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7095. temp_C[i] = 50 + i * 10; //temperature in C
  7096. #ifdef PINDA_THERMISTOR
  7097. temp_C[i] = 35 + i * 5; //temperature in C
  7098. #else
  7099. temp_C[i] = 50 + i * 10; //temperature in C
  7100. #endif
  7101. x[i] = (float)temp_C[i];
  7102. f[i] = (float)shift[i];
  7103. }
  7104. if (inp_temperature < x[0]) return 0;
  7105. for (i = n - 1; i>0; i--) {
  7106. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7107. h[i - 1] = x[i] - x[i - 1];
  7108. }
  7109. //*********** formation of h, s , f matrix **************
  7110. for (i = 1; i<n - 1; i++) {
  7111. m[i][i] = 2 * (h[i - 1] + h[i]);
  7112. if (i != 1) {
  7113. m[i][i - 1] = h[i - 1];
  7114. m[i - 1][i] = h[i - 1];
  7115. }
  7116. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7117. }
  7118. //*********** forward elimination **************
  7119. for (i = 1; i<n - 2; i++) {
  7120. temp = (m[i + 1][i] / m[i][i]);
  7121. for (j = 1; j <= n - 1; j++)
  7122. m[i + 1][j] -= temp*m[i][j];
  7123. }
  7124. //*********** backward substitution *********
  7125. for (i = n - 2; i>0; i--) {
  7126. sum = 0;
  7127. for (j = i; j <= n - 2; j++)
  7128. sum += m[i][j] * s[j];
  7129. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7130. }
  7131. for (i = 0; i<n - 1; i++)
  7132. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7133. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7134. b = s[i] / 2;
  7135. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7136. d = f[i];
  7137. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7138. }
  7139. return sum;
  7140. }
  7141. #ifdef PINDA_THERMISTOR
  7142. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7143. {
  7144. if (!temp_cal_active) return 0;
  7145. if (!calibration_status_pinda()) return 0;
  7146. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7147. }
  7148. #endif //PINDA_THERMISTOR
  7149. void long_pause() //long pause print
  7150. {
  7151. st_synchronize();
  7152. //save currently set parameters to global variables
  7153. saved_feedmultiply = feedmultiply;
  7154. HotendTempBckp = degTargetHotend(active_extruder);
  7155. fanSpeedBckp = fanSpeed;
  7156. start_pause_print = millis();
  7157. //save position
  7158. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7159. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7160. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7161. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7162. //retract
  7163. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7165. //lift z
  7166. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7167. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7169. //set nozzle target temperature to 0
  7170. setAllTargetHotends(0);
  7171. //Move XY to side
  7172. current_position[X_AXIS] = X_PAUSE_POS;
  7173. current_position[Y_AXIS] = Y_PAUSE_POS;
  7174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7175. // Turn off the print fan
  7176. fanSpeed = 0;
  7177. st_synchronize();
  7178. }
  7179. void serialecho_temperatures() {
  7180. float tt = degHotend(active_extruder);
  7181. SERIAL_PROTOCOLPGM("T:");
  7182. SERIAL_PROTOCOL(tt);
  7183. SERIAL_PROTOCOLPGM(" E:");
  7184. SERIAL_PROTOCOL((int)active_extruder);
  7185. SERIAL_PROTOCOLPGM(" B:");
  7186. SERIAL_PROTOCOL_F(degBed(), 1);
  7187. SERIAL_PROTOCOLLN("");
  7188. }
  7189. extern uint32_t sdpos_atomic;
  7190. #ifdef UVLO_SUPPORT
  7191. void uvlo_()
  7192. {
  7193. unsigned long time_start = millis();
  7194. bool sd_print = card.sdprinting;
  7195. // Conserve power as soon as possible.
  7196. disable_x();
  7197. disable_y();
  7198. #ifdef TMC2130
  7199. tmc2130_set_current_h(Z_AXIS, 20);
  7200. tmc2130_set_current_r(Z_AXIS, 20);
  7201. tmc2130_set_current_h(E_AXIS, 20);
  7202. tmc2130_set_current_r(E_AXIS, 20);
  7203. #endif //TMC2130
  7204. // Indicate that the interrupt has been triggered.
  7205. // SERIAL_ECHOLNPGM("UVLO");
  7206. // Read out the current Z motor microstep counter. This will be later used
  7207. // for reaching the zero full step before powering off.
  7208. uint16_t z_microsteps = 0;
  7209. #ifdef TMC2130
  7210. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7211. #endif //TMC2130
  7212. // Calculate the file position, from which to resume this print.
  7213. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7214. {
  7215. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7216. sd_position -= sdlen_planner;
  7217. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7218. sd_position -= sdlen_cmdqueue;
  7219. if (sd_position < 0) sd_position = 0;
  7220. }
  7221. // Backup the feedrate in mm/min.
  7222. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7223. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7224. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7225. // are in action.
  7226. planner_abort_hard();
  7227. // Store the current extruder position.
  7228. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7229. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7230. // Clean the input command queue.
  7231. cmdqueue_reset();
  7232. card.sdprinting = false;
  7233. // card.closefile();
  7234. // Enable stepper driver interrupt to move Z axis.
  7235. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7236. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7237. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7238. sei();
  7239. plan_buffer_line(
  7240. current_position[X_AXIS],
  7241. current_position[Y_AXIS],
  7242. current_position[Z_AXIS],
  7243. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7244. 95, active_extruder);
  7245. st_synchronize();
  7246. disable_e0();
  7247. plan_buffer_line(
  7248. current_position[X_AXIS],
  7249. current_position[Y_AXIS],
  7250. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7251. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7252. 40, active_extruder);
  7253. st_synchronize();
  7254. disable_e0();
  7255. plan_buffer_line(
  7256. current_position[X_AXIS],
  7257. current_position[Y_AXIS],
  7258. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7259. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7260. 40, active_extruder);
  7261. st_synchronize();
  7262. disable_e0();
  7263. disable_z();
  7264. // Move Z up to the next 0th full step.
  7265. // Write the file position.
  7266. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7267. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7268. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7269. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7270. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7271. // Scale the z value to 1u resolution.
  7272. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7273. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7274. }
  7275. // Read out the current Z motor microstep counter. This will be later used
  7276. // for reaching the zero full step before powering off.
  7277. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7278. // Store the current position.
  7279. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7280. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7281. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7282. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7283. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7284. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7285. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7286. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7287. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7288. #if EXTRUDERS > 1
  7289. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7290. #if EXTRUDERS > 2
  7291. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7292. #endif
  7293. #endif
  7294. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7295. // Finaly store the "power outage" flag.
  7296. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7297. st_synchronize();
  7298. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7299. disable_z();
  7300. // Increment power failure counter
  7301. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7302. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7303. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7304. #if 0
  7305. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7306. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7308. st_synchronize();
  7309. #endif
  7310. wdt_enable(WDTO_500MS);
  7311. WRITE(BEEPER,HIGH);
  7312. while(1)
  7313. ;
  7314. }
  7315. void uvlo_tiny()
  7316. {
  7317. uint16_t z_microsteps=0;
  7318. // Conserve power as soon as possible.
  7319. disable_x();
  7320. disable_y();
  7321. disable_e0();
  7322. #ifdef TMC2130
  7323. tmc2130_set_current_h(Z_AXIS, 20);
  7324. tmc2130_set_current_r(Z_AXIS, 20);
  7325. #endif //TMC2130
  7326. // Read out the current Z motor microstep counter
  7327. #ifdef TMC2130
  7328. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7329. #endif //TMC2130
  7330. planner_abort_hard();
  7331. sei();
  7332. plan_buffer_line(
  7333. current_position[X_AXIS],
  7334. current_position[Y_AXIS],
  7335. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7336. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7337. current_position[E_AXIS],
  7338. 40, active_extruder);
  7339. st_synchronize();
  7340. disable_z();
  7341. // Finaly store the "power outage" flag.
  7342. //if(sd_print)
  7343. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7344. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7345. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7346. // Increment power failure counter
  7347. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7348. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7349. wdt_enable(WDTO_500MS);
  7350. WRITE(BEEPER,HIGH);
  7351. while(1)
  7352. ;
  7353. }
  7354. #endif //UVLO_SUPPORT
  7355. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7356. void setup_fan_interrupt() {
  7357. //INT7
  7358. DDRE &= ~(1 << 7); //input pin
  7359. PORTE &= ~(1 << 7); //no internal pull-up
  7360. //start with sensing rising edge
  7361. EICRB &= ~(1 << 6);
  7362. EICRB |= (1 << 7);
  7363. //enable INT7 interrupt
  7364. EIMSK |= (1 << 7);
  7365. }
  7366. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7367. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7368. ISR(INT7_vect) {
  7369. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7370. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7371. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7372. t_fan_rising_edge = millis_nc();
  7373. }
  7374. else { //interrupt was triggered by falling edge
  7375. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7376. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7377. }
  7378. }
  7379. EICRB ^= (1 << 6); //change edge
  7380. }
  7381. #endif
  7382. #ifdef UVLO_SUPPORT
  7383. void setup_uvlo_interrupt() {
  7384. DDRE &= ~(1 << 4); //input pin
  7385. PORTE &= ~(1 << 4); //no internal pull-up
  7386. //sensing falling edge
  7387. EICRB |= (1 << 0);
  7388. EICRB &= ~(1 << 1);
  7389. //enable INT4 interrupt
  7390. EIMSK |= (1 << 4);
  7391. }
  7392. ISR(INT4_vect) {
  7393. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7394. SERIAL_ECHOLNPGM("INT4");
  7395. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7396. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7397. }
  7398. void recover_print(uint8_t automatic) {
  7399. char cmd[30];
  7400. lcd_update_enable(true);
  7401. lcd_update(2);
  7402. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7403. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7404. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7405. // Lift the print head, so one may remove the excess priming material.
  7406. if(!bTiny&&(current_position[Z_AXIS]<25))
  7407. enquecommand_P(PSTR("G1 Z25 F800"));
  7408. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7409. enquecommand_P(PSTR("G28 X Y"));
  7410. // Set the target bed and nozzle temperatures and wait.
  7411. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7412. enquecommand(cmd);
  7413. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7414. enquecommand(cmd);
  7415. enquecommand_P(PSTR("M83")); //E axis relative mode
  7416. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7417. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7418. if(automatic == 0){
  7419. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7420. }
  7421. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7422. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7423. // Restart the print.
  7424. restore_print_from_eeprom();
  7425. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7426. }
  7427. void recover_machine_state_after_power_panic(bool bTiny)
  7428. {
  7429. char cmd[30];
  7430. // 1) Recover the logical cordinates at the time of the power panic.
  7431. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7432. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7433. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7434. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7435. // The current position after power panic is moved to the next closest 0th full step.
  7436. if(bTiny)
  7437. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7438. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7439. else
  7440. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7441. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7442. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7443. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7444. sprintf_P(cmd, PSTR("G92 E"));
  7445. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7446. enquecommand(cmd);
  7447. }
  7448. memcpy(destination, current_position, sizeof(destination));
  7449. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7450. print_world_coordinates();
  7451. // 2) Initialize the logical to physical coordinate system transformation.
  7452. world2machine_initialize();
  7453. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7454. mbl.active = false;
  7455. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7456. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7457. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7458. // Scale the z value to 10u resolution.
  7459. int16_t v;
  7460. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7461. if (v != 0)
  7462. mbl.active = true;
  7463. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7464. }
  7465. if (mbl.active)
  7466. mbl.upsample_3x3();
  7467. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7468. // print_mesh_bed_leveling_table();
  7469. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7470. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7471. babystep_load();
  7472. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7473. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7474. // 6) Power up the motors, mark their positions as known.
  7475. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7476. axis_known_position[X_AXIS] = true; enable_x();
  7477. axis_known_position[Y_AXIS] = true; enable_y();
  7478. axis_known_position[Z_AXIS] = true; enable_z();
  7479. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7480. print_physical_coordinates();
  7481. // 7) Recover the target temperatures.
  7482. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7483. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7484. // 8) Recover extruder multipilers
  7485. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7486. #if EXTRUDERS > 1
  7487. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7488. #if EXTRUDERS > 2
  7489. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7490. #endif
  7491. #endif
  7492. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7493. }
  7494. void restore_print_from_eeprom() {
  7495. int feedrate_rec;
  7496. uint8_t fan_speed_rec;
  7497. char cmd[30];
  7498. char filename[13];
  7499. uint8_t depth = 0;
  7500. char dir_name[9];
  7501. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7502. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7503. SERIAL_ECHOPGM("Feedrate:");
  7504. MYSERIAL.println(feedrate_rec);
  7505. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7506. MYSERIAL.println(int(depth));
  7507. for (int i = 0; i < depth; i++) {
  7508. for (int j = 0; j < 8; j++) {
  7509. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7510. }
  7511. dir_name[8] = '\0';
  7512. MYSERIAL.println(dir_name);
  7513. strcpy(dir_names[i], dir_name);
  7514. card.chdir(dir_name);
  7515. }
  7516. for (int i = 0; i < 8; i++) {
  7517. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7518. }
  7519. filename[8] = '\0';
  7520. MYSERIAL.print(filename);
  7521. strcat_P(filename, PSTR(".gco"));
  7522. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7523. enquecommand(cmd);
  7524. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7525. SERIAL_ECHOPGM("Position read from eeprom:");
  7526. MYSERIAL.println(position);
  7527. // E axis relative mode.
  7528. enquecommand_P(PSTR("M83"));
  7529. // Move to the XY print position in logical coordinates, where the print has been killed.
  7530. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7531. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7532. strcat_P(cmd, PSTR(" F2000"));
  7533. enquecommand(cmd);
  7534. // Move the Z axis down to the print, in logical coordinates.
  7535. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7536. enquecommand(cmd);
  7537. // Unretract.
  7538. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7539. // Set the feedrate saved at the power panic.
  7540. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7541. enquecommand(cmd);
  7542. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7543. {
  7544. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7545. }
  7546. // Set the fan speed saved at the power panic.
  7547. strcpy_P(cmd, PSTR("M106 S"));
  7548. strcat(cmd, itostr3(int(fan_speed_rec)));
  7549. enquecommand(cmd);
  7550. // Set a position in the file.
  7551. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7552. enquecommand(cmd);
  7553. enquecommand_P(PSTR("G4 S0"));
  7554. enquecommand_P(PSTR("PRUSA uvlo"));
  7555. }
  7556. #endif //UVLO_SUPPORT
  7557. ////////////////////////////////////////////////////////////////////////////////
  7558. // save/restore printing
  7559. void stop_and_save_print_to_ram(float z_move, float e_move)
  7560. {
  7561. if (saved_printing) return;
  7562. #if 0
  7563. unsigned char nplanner_blocks;
  7564. #endif
  7565. unsigned char nlines;
  7566. uint16_t sdlen_planner;
  7567. uint16_t sdlen_cmdqueue;
  7568. cli();
  7569. if (card.sdprinting) {
  7570. #if 0
  7571. nplanner_blocks = number_of_blocks();
  7572. #endif
  7573. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7574. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7575. saved_sdpos -= sdlen_planner;
  7576. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7577. saved_sdpos -= sdlen_cmdqueue;
  7578. saved_printing_type = PRINTING_TYPE_SD;
  7579. }
  7580. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7581. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7582. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7583. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7584. saved_sdpos -= nlines;
  7585. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7586. saved_printing_type = PRINTING_TYPE_USB;
  7587. }
  7588. else {
  7589. //not sd printing nor usb printing
  7590. }
  7591. #if 0
  7592. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7593. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7594. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7595. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7596. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7597. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7598. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7599. {
  7600. card.setIndex(saved_sdpos);
  7601. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7602. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7603. MYSERIAL.print(char(card.get()));
  7604. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7605. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7606. MYSERIAL.print(char(card.get()));
  7607. SERIAL_ECHOLNPGM("End of command buffer");
  7608. }
  7609. {
  7610. // Print the content of the planner buffer, line by line:
  7611. card.setIndex(saved_sdpos);
  7612. int8_t iline = 0;
  7613. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7614. SERIAL_ECHOPGM("Planner line (from file): ");
  7615. MYSERIAL.print(int(iline), DEC);
  7616. SERIAL_ECHOPGM(", length: ");
  7617. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7618. SERIAL_ECHOPGM(", steps: (");
  7619. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7620. SERIAL_ECHOPGM(",");
  7621. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7622. SERIAL_ECHOPGM(",");
  7623. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7624. SERIAL_ECHOPGM(",");
  7625. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7626. SERIAL_ECHOPGM("), events: ");
  7627. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7628. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7629. MYSERIAL.print(char(card.get()));
  7630. }
  7631. }
  7632. {
  7633. // Print the content of the command buffer, line by line:
  7634. int8_t iline = 0;
  7635. union {
  7636. struct {
  7637. char lo;
  7638. char hi;
  7639. } lohi;
  7640. uint16_t value;
  7641. } sdlen_single;
  7642. int _bufindr = bufindr;
  7643. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7644. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7645. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7646. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7647. }
  7648. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7649. MYSERIAL.print(int(iline), DEC);
  7650. SERIAL_ECHOPGM(", type: ");
  7651. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7652. SERIAL_ECHOPGM(", len: ");
  7653. MYSERIAL.println(sdlen_single.value, DEC);
  7654. // Print the content of the buffer line.
  7655. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7656. SERIAL_ECHOPGM("Buffer line (from file): ");
  7657. MYSERIAL.println(int(iline), DEC);
  7658. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7659. MYSERIAL.print(char(card.get()));
  7660. if (-- _buflen == 0)
  7661. break;
  7662. // First skip the current command ID and iterate up to the end of the string.
  7663. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7664. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7665. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7666. // If the end of the buffer was empty,
  7667. if (_bufindr == sizeof(cmdbuffer)) {
  7668. // skip to the start and find the nonzero command.
  7669. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7670. }
  7671. }
  7672. }
  7673. #endif
  7674. #if 0
  7675. saved_feedrate2 = feedrate; //save feedrate
  7676. #else
  7677. // Try to deduce the feedrate from the first block of the planner.
  7678. // Speed is in mm/min.
  7679. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7680. #endif
  7681. planner_abort_hard(); //abort printing
  7682. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7683. saved_active_extruder = active_extruder; //save active_extruder
  7684. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7685. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7686. cmdqueue_reset(); //empty cmdqueue
  7687. card.sdprinting = false;
  7688. // card.closefile();
  7689. saved_printing = true;
  7690. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7691. st_reset_timer();
  7692. sei();
  7693. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7694. #if 1
  7695. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7696. char buf[48];
  7697. // First unretract (relative extrusion)
  7698. if(!saved_extruder_relative_mode){
  7699. strcpy_P(buf, PSTR("M83"));
  7700. enquecommand(buf, false);
  7701. }
  7702. //retract 45mm/s
  7703. strcpy_P(buf, PSTR("G1 E"));
  7704. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7705. strcat_P(buf, PSTR(" F"));
  7706. dtostrf(2700, 8, 3, buf + strlen(buf));
  7707. enquecommand(buf, false);
  7708. // Then lift Z axis
  7709. strcpy_P(buf, PSTR("G1 Z"));
  7710. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7711. strcat_P(buf, PSTR(" F"));
  7712. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7713. // At this point the command queue is empty.
  7714. enquecommand(buf, false);
  7715. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7716. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7717. repeatcommand_front();
  7718. #else
  7719. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7720. st_synchronize(); //wait moving
  7721. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7722. memcpy(destination, current_position, sizeof(destination));
  7723. #endif
  7724. }
  7725. }
  7726. void restore_print_from_ram_and_continue(float e_move)
  7727. {
  7728. if (!saved_printing) return;
  7729. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7730. // current_position[axis] = st_get_position_mm(axis);
  7731. active_extruder = saved_active_extruder; //restore active_extruder
  7732. feedrate = saved_feedrate2; //restore feedrate
  7733. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7734. float e = saved_pos[E_AXIS] - e_move;
  7735. plan_set_e_position(e);
  7736. //first move print head in XY to the saved position:
  7737. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7738. st_synchronize();
  7739. //then move Z
  7740. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7741. st_synchronize();
  7742. //and finaly unretract (35mm/s)
  7743. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7744. st_synchronize();
  7745. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7746. memcpy(destination, current_position, sizeof(destination));
  7747. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7748. card.setIndex(saved_sdpos);
  7749. sdpos_atomic = saved_sdpos;
  7750. card.sdprinting = true;
  7751. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7752. }
  7753. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7754. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7755. serial_count = 0;
  7756. FlushSerialRequestResend();
  7757. }
  7758. else {
  7759. //not sd printing nor usb printing
  7760. }
  7761. lcd_setstatuspgm(_T(WELCOME_MSG));
  7762. saved_printing = false;
  7763. }
  7764. void print_world_coordinates()
  7765. {
  7766. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7767. }
  7768. void print_physical_coordinates()
  7769. {
  7770. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7771. }
  7772. void print_mesh_bed_leveling_table()
  7773. {
  7774. SERIAL_ECHOPGM("mesh bed leveling: ");
  7775. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7776. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7777. MYSERIAL.print(mbl.z_values[y][x], 3);
  7778. SERIAL_ECHOPGM(" ");
  7779. }
  7780. SERIAL_ECHOLNPGM("");
  7781. }
  7782. uint16_t print_time_remaining() {
  7783. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7784. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7785. else print_t = print_time_remaining_silent;
  7786. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7787. return print_t;
  7788. }
  7789. uint8_t print_percent_done() {
  7790. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7791. uint8_t percent_done = 0;
  7792. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7793. percent_done = print_percent_done_normal;
  7794. }
  7795. else if (print_percent_done_silent <= 100) {
  7796. percent_done = print_percent_done_silent;
  7797. }
  7798. else {
  7799. percent_done = card.percentDone();
  7800. }
  7801. return percent_done;
  7802. }
  7803. static void print_time_remaining_init() {
  7804. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7805. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7806. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7807. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7808. }
  7809. bool mmu_get_reponse(bool timeout) {
  7810. bool response = true;
  7811. LongTimer mmu_get_reponse_timeout;
  7812. uart2_rx_clr();
  7813. mmu_get_reponse_timeout.start();
  7814. while (!uart2_rx_ok())
  7815. {
  7816. delay_keep_alive(100);
  7817. if (timeout && mmu_get_reponse_timeout.expired(180 * 1000ul)) { //3 minutes timeout
  7818. response = false;
  7819. break;
  7820. }
  7821. }
  7822. return response;
  7823. }
  7824. void mmu_not_responding() {
  7825. printf_P(PSTR("MMU not responding"));
  7826. }
  7827. void mmu_load_to_nozzle() {
  7828. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7829. if (!saved_e_relative_mode) {
  7830. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7831. }
  7832. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7833. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7834. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7835. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7836. if (!saved_e_relative_mode) {
  7837. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7838. }*/
  7839. st_synchronize();
  7840. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7841. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7842. current_position[E_AXIS] += 7.2f;
  7843. float feedrate = 562;
  7844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7845. st_synchronize();
  7846. current_position[E_AXIS] += 14.4f;
  7847. feedrate = 871;
  7848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7849. st_synchronize();
  7850. current_position[E_AXIS] += 36.0f;
  7851. feedrate = 1393;
  7852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7853. st_synchronize();
  7854. current_position[E_AXIS] += 14.4f;
  7855. feedrate = 871;
  7856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7857. st_synchronize();
  7858. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7859. }
  7860. void mmu_switch_extruder(uint8_t extruder) {
  7861. }
  7862. void M600_check_state() {
  7863. //Wait for user to check the state
  7864. lcd_change_fil_state = 0;
  7865. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  7866. lcd_change_fil_state = 0;
  7867. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7868. lcd_alright();
  7869. KEEPALIVE_STATE(IN_HANDLER);
  7870. switch(lcd_change_fil_state){
  7871. // Filament failed to load so load it again
  7872. case 2:
  7873. #ifdef SNMM_V2
  7874. mmu_M600_load_filament(); //change to "wrong filament loaded" option?
  7875. #else
  7876. M600_load_filament_movements();
  7877. #endif
  7878. break;
  7879. // Filament loaded properly but color is not clear
  7880. case 3:
  7881. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7883. lcd_loading_color();
  7884. break;
  7885. // Everything good
  7886. default:
  7887. lcd_change_success();
  7888. lcd_update_enable(true);
  7889. break;
  7890. }
  7891. }
  7892. }
  7893. void M600_wait_for_user() {
  7894. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7895. int counterBeep = 0;
  7896. unsigned long waiting_start_time = millis();
  7897. uint8_t wait_for_user_state = 0;
  7898. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7899. //-//
  7900. bool bFirst=true;
  7901. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7902. manage_heater();
  7903. manage_inactivity(true);
  7904. #if BEEPER > 0
  7905. if (counterBeep == 500) {
  7906. counterBeep = 0;
  7907. }
  7908. SET_OUTPUT(BEEPER);
  7909. if (counterBeep == 0) {
  7910. //-//
  7911. //if(eSoundMode==e_SOUND_MODE_LOUD)
  7912. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7913. {
  7914. bFirst=false;
  7915. WRITE(BEEPER, HIGH);
  7916. }
  7917. }
  7918. if (counterBeep == 20) {
  7919. WRITE(BEEPER, LOW);
  7920. }
  7921. counterBeep++;
  7922. #endif
  7923. switch (wait_for_user_state) {
  7924. case 0:
  7925. delay_keep_alive(4);
  7926. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7927. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7928. wait_for_user_state = 1;
  7929. setTargetHotend(0, 0);
  7930. setTargetHotend(0, 1);
  7931. setTargetHotend(0, 2);
  7932. st_synchronize();
  7933. disable_e0();
  7934. disable_e1();
  7935. disable_e2();
  7936. }
  7937. break;
  7938. case 1:
  7939. delay_keep_alive(4);
  7940. if (lcd_clicked()) {
  7941. setTargetHotend(HotendTempBckp, active_extruder);
  7942. lcd_wait_for_heater();
  7943. wait_for_user_state = 2;
  7944. }
  7945. break;
  7946. case 2:
  7947. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7948. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7949. waiting_start_time = millis();
  7950. wait_for_user_state = 0;
  7951. }
  7952. else {
  7953. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7954. lcd_set_cursor(1, 4);
  7955. lcd_print(ftostr3(degHotend(active_extruder)));
  7956. }
  7957. break;
  7958. }
  7959. }
  7960. WRITE(BEEPER, LOW);
  7961. }
  7962. void mmu_M600_load_filament(bool automatic) {
  7963. #ifdef SNMM_V2
  7964. bool response = false;
  7965. tmp_extruder = choose_extruder_menu();
  7966. lcd_update_enable(false);
  7967. lcd_clear();
  7968. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  7969. lcd_print(" ");
  7970. lcd_print(snmm_extruder + 1);
  7971. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7972. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  7973. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  7974. response = mmu_get_reponse(false);
  7975. if (!response) mmu_not_responding();
  7976. snmm_extruder = tmp_extruder; //filament change is finished
  7977. mmu_load_to_nozzle();
  7978. #endif
  7979. }
  7980. void M600_load_filament_movements() {
  7981. #ifdef SNMM
  7982. display_loading();
  7983. do {
  7984. current_position[E_AXIS] += 0.002;
  7985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7986. delay_keep_alive(2);
  7987. } while (!lcd_clicked());
  7988. st_synchronize();
  7989. current_position[E_AXIS] += bowden_length[snmm_extruder];
  7990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7991. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7993. current_position[E_AXIS] += 40;
  7994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7995. current_position[E_AXIS] += 10;
  7996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7997. #else
  7998. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  8000. #endif
  8001. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  8002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  8003. lcd_loading_filament();
  8004. }
  8005. void M600_load_filament()
  8006. {
  8007. lcd_wait_interact();
  8008. //load_filament_time = millis();
  8009. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8010. #ifdef FILAMENT_SENSOR
  8011. fsensor_autoload_check_start();
  8012. #endif //FILAMENT_SENSOR
  8013. while(!lcd_clicked())
  8014. {
  8015. manage_heater();
  8016. manage_inactivity(true);
  8017. #ifdef FILAMENT_SENSOR
  8018. if (fsensor_check_autoload())
  8019. {
  8020. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8021. tone(BEEPER, 1000);
  8022. delay_keep_alive(50);
  8023. noTone(BEEPER);
  8024. break;
  8025. }
  8026. #endif //FILAMENT_SENSOR
  8027. }
  8028. #ifdef FILAMENT_SENSOR
  8029. fsensor_autoload_check_stop();
  8030. #endif //FILAMENT_SENSOR
  8031. KEEPALIVE_STATE(IN_HANDLER);
  8032. #ifdef FILAMENT_SENSOR
  8033. fsensor_oq_meassure_start(70);
  8034. #endif //FILAMENT_SENSOR
  8035. M600_load_filament_movements();
  8036. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8037. tone(BEEPER, 500);
  8038. delay_keep_alive(50);
  8039. noTone(BEEPER);
  8040. #ifdef FILAMENT_SENSOR
  8041. fsensor_oq_meassure_stop();
  8042. if (!fsensor_oq_result())
  8043. {
  8044. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8045. lcd_update_enable(true);
  8046. lcd_update(2);
  8047. if (disable)
  8048. fsensor_disable();
  8049. }
  8050. #endif //FILAMENT_SENSOR
  8051. }
  8052. #define FIL_LOAD_LENGTH 60