Marlin_main.cpp 241 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef SWSPI
  49. #include "swspi.h"
  50. #endif //SWSPI
  51. #ifdef SWI2C
  52. #include "swi2c.h"
  53. #endif //SWI2C
  54. #ifdef PAT9125
  55. #include "pat9125.h"
  56. #endif //PAT9125
  57. #ifdef TMC2130
  58. #include "tmc2130.h"
  59. #endif //TMC2130
  60. #ifdef BLINKM
  61. #include "BlinkM.h"
  62. #include "Wire.h"
  63. #endif
  64. #ifdef ULTRALCD
  65. #include "ultralcd.h"
  66. #endif
  67. #if NUM_SERVOS > 0
  68. #include "Servo.h"
  69. #endif
  70. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  71. #include <SPI.h>
  72. #endif
  73. #define VERSION_STRING "1.0.2"
  74. #include "ultralcd.h"
  75. // Macros for bit masks
  76. #define BIT(b) (1<<(b))
  77. #define TEST(n,b) (((n)&BIT(b))!=0)
  78. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  79. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  80. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. //Implemented Codes
  82. //-------------------
  83. // PRUSA CODES
  84. // P F - Returns FW versions
  85. // P R - Returns revision of printer
  86. // G0 -> G1
  87. // G1 - Coordinated Movement X Y Z E
  88. // G2 - CW ARC
  89. // G3 - CCW ARC
  90. // G4 - Dwell S<seconds> or P<milliseconds>
  91. // G10 - retract filament according to settings of M207
  92. // G11 - retract recover filament according to settings of M208
  93. // G28 - Home all Axis
  94. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  95. // G30 - Single Z Probe, probes bed at current XY location.
  96. // G31 - Dock sled (Z_PROBE_SLED only)
  97. // G32 - Undock sled (Z_PROBE_SLED only)
  98. // G80 - Automatic mesh bed leveling
  99. // G81 - Print bed profile
  100. // G90 - Use Absolute Coordinates
  101. // G91 - Use Relative Coordinates
  102. // G92 - Set current position to coordinates given
  103. // M Codes
  104. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  105. // M1 - Same as M0
  106. // M17 - Enable/Power all stepper motors
  107. // M18 - Disable all stepper motors; same as M84
  108. // M20 - List SD card
  109. // M21 - Init SD card
  110. // M22 - Release SD card
  111. // M23 - Select SD file (M23 filename.g)
  112. // M24 - Start/resume SD print
  113. // M25 - Pause SD print
  114. // M26 - Set SD position in bytes (M26 S12345)
  115. // M27 - Report SD print status
  116. // M28 - Start SD write (M28 filename.g)
  117. // M29 - Stop SD write
  118. // M30 - Delete file from SD (M30 filename.g)
  119. // M31 - Output time since last M109 or SD card start to serial
  120. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  121. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  122. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  123. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  124. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  125. // M80 - Turn on Power Supply
  126. // M81 - Turn off Power Supply
  127. // M82 - Set E codes absolute (default)
  128. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. // M84 - Disable steppers until next move,
  130. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. // M92 - Set axis_steps_per_unit - same syntax as G92
  133. // M104 - Set extruder target temp
  134. // M105 - Read current temp
  135. // M106 - Fan on
  136. // M107 - Fan off
  137. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. // M112 - Emergency stop
  141. // M114 - Output current position to serial port
  142. // M115 - Capabilities string
  143. // M117 - display message
  144. // M119 - Output Endstop status to serial port
  145. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  146. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  147. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  148. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  149. // M140 - Set bed target temp
  150. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  151. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  152. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  153. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  154. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  155. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  156. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  157. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  158. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  159. // M206 - set additional homing offset
  160. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  161. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  162. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  163. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  164. // M220 S<factor in percent>- set speed factor override percentage
  165. // M221 S<factor in percent>- set extrude factor override percentage
  166. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  167. // M240 - Trigger a camera to take a photograph
  168. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  169. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  170. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  171. // M301 - Set PID parameters P I and D
  172. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  173. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  174. // M304 - Set bed PID parameters P I and D
  175. // M400 - Finish all moves
  176. // M401 - Lower z-probe if present
  177. // M402 - Raise z-probe if present
  178. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  179. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  180. // M406 - Turn off Filament Sensor extrusion control
  181. // M407 - Displays measured filament diameter
  182. // M500 - stores parameters in EEPROM
  183. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  184. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  185. // M503 - print the current settings (from memory not from EEPROM)
  186. // M509 - force language selection on next restart
  187. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  188. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  189. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  190. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  191. // M907 - Set digital trimpot motor current using axis codes.
  192. // M908 - Control digital trimpot directly.
  193. // M350 - Set microstepping mode.
  194. // M351 - Toggle MS1 MS2 pins directly.
  195. // M928 - Start SD logging (M928 filename.g) - ended by M29
  196. // M999 - Restart after being stopped by error
  197. //Stepper Movement Variables
  198. //===========================================================================
  199. //=============================imported variables============================
  200. //===========================================================================
  201. //===========================================================================
  202. //=============================public variables=============================
  203. //===========================================================================
  204. #ifdef SDSUPPORT
  205. CardReader card;
  206. #endif
  207. unsigned long TimeSent = millis();
  208. unsigned long TimeNow = millis();
  209. unsigned long PingTime = millis();
  210. union Data
  211. {
  212. byte b[2];
  213. int value;
  214. };
  215. float homing_feedrate[] = HOMING_FEEDRATE;
  216. // Currently only the extruder axis may be switched to a relative mode.
  217. // Other axes are always absolute or relative based on the common relative_mode flag.
  218. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  219. int feedmultiply=100; //100->1 200->2
  220. int saved_feedmultiply;
  221. int extrudemultiply=100; //100->1 200->2
  222. int extruder_multiply[EXTRUDERS] = {100
  223. #if EXTRUDERS > 1
  224. , 100
  225. #if EXTRUDERS > 2
  226. , 100
  227. #endif
  228. #endif
  229. };
  230. int bowden_length[4];
  231. bool is_usb_printing = false;
  232. bool homing_flag = false;
  233. bool temp_cal_active = false;
  234. unsigned long kicktime = millis()+100000;
  235. unsigned int usb_printing_counter;
  236. int lcd_change_fil_state = 0;
  237. int feedmultiplyBckp = 100;
  238. float HotendTempBckp = 0;
  239. int fanSpeedBckp = 0;
  240. float pause_lastpos[4];
  241. unsigned long pause_time = 0;
  242. unsigned long start_pause_print = millis();
  243. unsigned long load_filament_time;
  244. bool mesh_bed_leveling_flag = false;
  245. bool mesh_bed_run_from_menu = false;
  246. unsigned char lang_selected = 0;
  247. int8_t FarmMode = 0;
  248. bool prusa_sd_card_upload = false;
  249. unsigned int status_number = 0;
  250. unsigned long total_filament_used;
  251. unsigned int heating_status;
  252. unsigned int heating_status_counter;
  253. bool custom_message;
  254. bool loading_flag = false;
  255. unsigned int custom_message_type;
  256. unsigned int custom_message_state;
  257. char snmm_filaments_used = 0;
  258. float distance_from_min[3];
  259. float angleDiff;
  260. bool fan_state[2];
  261. int fan_edge_counter[2];
  262. int fan_speed[2];
  263. bool volumetric_enabled = false;
  264. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  265. #if EXTRUDERS > 1
  266. , DEFAULT_NOMINAL_FILAMENT_DIA
  267. #if EXTRUDERS > 2
  268. , DEFAULT_NOMINAL_FILAMENT_DIA
  269. #endif
  270. #endif
  271. };
  272. float volumetric_multiplier[EXTRUDERS] = {1.0
  273. #if EXTRUDERS > 1
  274. , 1.0
  275. #if EXTRUDERS > 2
  276. , 1.0
  277. #endif
  278. #endif
  279. };
  280. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  281. float add_homing[3]={0,0,0};
  282. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  283. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  284. bool axis_known_position[3] = {false, false, false};
  285. float zprobe_zoffset;
  286. // Extruder offset
  287. #if EXTRUDERS > 1
  288. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  289. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  290. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  291. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  292. #endif
  293. };
  294. #endif
  295. uint8_t active_extruder = 0;
  296. int fanSpeed=0;
  297. #ifdef FWRETRACT
  298. bool autoretract_enabled=false;
  299. bool retracted[EXTRUDERS]={false
  300. #if EXTRUDERS > 1
  301. , false
  302. #if EXTRUDERS > 2
  303. , false
  304. #endif
  305. #endif
  306. };
  307. bool retracted_swap[EXTRUDERS]={false
  308. #if EXTRUDERS > 1
  309. , false
  310. #if EXTRUDERS > 2
  311. , false
  312. #endif
  313. #endif
  314. };
  315. float retract_length = RETRACT_LENGTH;
  316. float retract_length_swap = RETRACT_LENGTH_SWAP;
  317. float retract_feedrate = RETRACT_FEEDRATE;
  318. float retract_zlift = RETRACT_ZLIFT;
  319. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  320. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  321. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  322. #endif
  323. #ifdef ULTIPANEL
  324. #ifdef PS_DEFAULT_OFF
  325. bool powersupply = false;
  326. #else
  327. bool powersupply = true;
  328. #endif
  329. #endif
  330. bool cancel_heatup = false ;
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1=0; //index into ring buffer
  338. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist=0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. const char errormagic[] PROGMEM = "Error:";
  343. const char echomagic[] PROGMEM = "echo:";
  344. //===========================================================================
  345. //=============================Private Variables=============================
  346. //===========================================================================
  347. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  348. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  349. static float delta[3] = {0.0, 0.0, 0.0};
  350. // For tracing an arc
  351. static float offset[3] = {0.0, 0.0, 0.0};
  352. static bool home_all_axis = true;
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  355. // Determines Absolute or Relative Coordinates.
  356. // Also there is bool axis_relative_modes[] per axis flag.
  357. static bool relative_mode = false;
  358. // String circular buffer. Commands may be pushed to the buffer from both sides:
  359. // Chained commands will be pushed to the front, interactive (from LCD menu)
  360. // and printing commands (from serial line or from SD card) are pushed to the tail.
  361. // First character of each entry indicates the type of the entry:
  362. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  363. // Command in cmdbuffer was sent over USB.
  364. #define CMDBUFFER_CURRENT_TYPE_USB 1
  365. // Command in cmdbuffer was read from SDCARD.
  366. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  367. // Command in cmdbuffer was generated by the UI.
  368. #define CMDBUFFER_CURRENT_TYPE_UI 3
  369. // Command in cmdbuffer was generated by another G-code.
  370. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  371. // How much space to reserve for the chained commands
  372. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  373. // which are pushed to the front of the queue?
  374. // Maximum 5 commands of max length 20 + null terminator.
  375. #define CMDBUFFER_RESERVE_FRONT (5*21)
  376. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  377. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  378. // Head of the circular buffer, where to read.
  379. static int bufindr = 0;
  380. // Tail of the buffer, where to write.
  381. static int bufindw = 0;
  382. // Number of lines in cmdbuffer.
  383. static int buflen = 0;
  384. // Flag for processing the current command inside the main Arduino loop().
  385. // If a new command was pushed to the front of a command buffer while
  386. // processing another command, this replaces the command on the top.
  387. // Therefore don't remove the command from the queue in the loop() function.
  388. static bool cmdbuffer_front_already_processed = false;
  389. // Type of a command, which is to be executed right now.
  390. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  391. // String of a command, which is to be executed right now.
  392. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  393. // Enable debugging of the command buffer.
  394. // Debugging information will be sent to serial line.
  395. //#define CMDBUFFER_DEBUG
  396. static int serial_count = 0; //index of character read from serial line
  397. static boolean comment_mode = false;
  398. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  399. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  400. //static float tt = 0;
  401. //static float bt = 0;
  402. //Inactivity shutdown variables
  403. static unsigned long previous_millis_cmd = 0;
  404. unsigned long max_inactive_time = 0;
  405. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  406. unsigned long starttime=0;
  407. unsigned long stoptime=0;
  408. unsigned long _usb_timer = 0;
  409. static uint8_t tmp_extruder;
  410. bool Stopped=false;
  411. #if NUM_SERVOS > 0
  412. Servo servos[NUM_SERVOS];
  413. #endif
  414. bool CooldownNoWait = true;
  415. bool target_direction;
  416. //Insert variables if CHDK is defined
  417. #ifdef CHDK
  418. unsigned long chdkHigh = 0;
  419. boolean chdkActive = false;
  420. #endif
  421. //===========================================================================
  422. //=============================Routines======================================
  423. //===========================================================================
  424. void get_arc_coordinates();
  425. bool setTargetedHotend(int code);
  426. void serial_echopair_P(const char *s_P, float v)
  427. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char *s_P, double v)
  429. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void serial_echopair_P(const char *s_P, unsigned long v)
  431. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  432. #ifdef SDSUPPORT
  433. #include "SdFatUtil.h"
  434. int freeMemory() { return SdFatUtil::FreeRam(); }
  435. #else
  436. extern "C" {
  437. extern unsigned int __bss_end;
  438. extern unsigned int __heap_start;
  439. extern void *__brkval;
  440. int freeMemory() {
  441. int free_memory;
  442. if ((int)__brkval == 0)
  443. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  444. else
  445. free_memory = ((int)&free_memory) - ((int)__brkval);
  446. return free_memory;
  447. }
  448. }
  449. #endif //!SDSUPPORT
  450. // Pop the currently processed command from the queue.
  451. // It is expected, that there is at least one command in the queue.
  452. bool cmdqueue_pop_front()
  453. {
  454. if (buflen > 0) {
  455. #ifdef CMDBUFFER_DEBUG
  456. SERIAL_ECHOPGM("Dequeing ");
  457. SERIAL_ECHO(cmdbuffer+bufindr+1);
  458. SERIAL_ECHOLNPGM("");
  459. SERIAL_ECHOPGM("Old indices: buflen ");
  460. SERIAL_ECHO(buflen);
  461. SERIAL_ECHOPGM(", bufindr ");
  462. SERIAL_ECHO(bufindr);
  463. SERIAL_ECHOPGM(", bufindw ");
  464. SERIAL_ECHO(bufindw);
  465. SERIAL_ECHOPGM(", serial_count ");
  466. SERIAL_ECHO(serial_count);
  467. SERIAL_ECHOPGM(", bufsize ");
  468. SERIAL_ECHO(sizeof(cmdbuffer));
  469. SERIAL_ECHOLNPGM("");
  470. #endif /* CMDBUFFER_DEBUG */
  471. if (-- buflen == 0) {
  472. // Empty buffer.
  473. if (serial_count == 0)
  474. // No serial communication is pending. Reset both pointers to zero.
  475. bufindw = 0;
  476. bufindr = bufindw;
  477. } else {
  478. // There is at least one ready line in the buffer.
  479. // First skip the current command ID and iterate up to the end of the string.
  480. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  481. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  482. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  483. // If the end of the buffer was empty,
  484. if (bufindr == sizeof(cmdbuffer)) {
  485. // skip to the start and find the nonzero command.
  486. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  487. }
  488. #ifdef CMDBUFFER_DEBUG
  489. SERIAL_ECHOPGM("New indices: buflen ");
  490. SERIAL_ECHO(buflen);
  491. SERIAL_ECHOPGM(", bufindr ");
  492. SERIAL_ECHO(bufindr);
  493. SERIAL_ECHOPGM(", bufindw ");
  494. SERIAL_ECHO(bufindw);
  495. SERIAL_ECHOPGM(", serial_count ");
  496. SERIAL_ECHO(serial_count);
  497. SERIAL_ECHOPGM(" new command on the top: ");
  498. SERIAL_ECHO(cmdbuffer+bufindr+1);
  499. SERIAL_ECHOLNPGM("");
  500. #endif /* CMDBUFFER_DEBUG */
  501. }
  502. return true;
  503. }
  504. return false;
  505. }
  506. void cmdqueue_reset()
  507. {
  508. while (cmdqueue_pop_front()) ;
  509. }
  510. // How long a string could be pushed to the front of the command queue?
  511. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  512. // len_asked does not contain the zero terminator size.
  513. bool cmdqueue_could_enqueue_front(int len_asked)
  514. {
  515. // MAX_CMD_SIZE has to accommodate the zero terminator.
  516. if (len_asked >= MAX_CMD_SIZE)
  517. return false;
  518. // Remove the currently processed command from the queue.
  519. if (! cmdbuffer_front_already_processed) {
  520. cmdqueue_pop_front();
  521. cmdbuffer_front_already_processed = true;
  522. }
  523. if (bufindr == bufindw && buflen > 0)
  524. // Full buffer.
  525. return false;
  526. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  527. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  528. if (bufindw < bufindr) {
  529. int bufindr_new = bufindr - len_asked - 2;
  530. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  531. if (endw <= bufindr_new) {
  532. bufindr = bufindr_new;
  533. return true;
  534. }
  535. } else {
  536. // Otherwise the free space is split between the start and end.
  537. if (len_asked + 2 <= bufindr) {
  538. // Could fit at the start.
  539. bufindr -= len_asked + 2;
  540. return true;
  541. }
  542. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  543. if (endw <= bufindr_new) {
  544. memset(cmdbuffer, 0, bufindr);
  545. bufindr = bufindr_new;
  546. return true;
  547. }
  548. }
  549. return false;
  550. }
  551. // Could one enqueue a command of lenthg len_asked into the buffer,
  552. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  553. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  554. // len_asked does not contain the zero terminator size.
  555. bool cmdqueue_could_enqueue_back(int len_asked)
  556. {
  557. // MAX_CMD_SIZE has to accommodate the zero terminator.
  558. if (len_asked >= MAX_CMD_SIZE)
  559. return false;
  560. if (bufindr == bufindw && buflen > 0)
  561. // Full buffer.
  562. return false;
  563. if (serial_count > 0) {
  564. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  565. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  566. // serial data.
  567. // How much memory to reserve for the commands pushed to the front?
  568. // End of the queue, when pushing to the end.
  569. int endw = bufindw + len_asked + 2;
  570. if (bufindw < bufindr)
  571. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  572. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  573. // Otherwise the free space is split between the start and end.
  574. if (// Could one fit to the end, including the reserve?
  575. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  576. // Could one fit to the end, and the reserve to the start?
  577. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  578. return true;
  579. // Could one fit both to the start?
  580. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  581. // Mark the rest of the buffer as used.
  582. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  583. // and point to the start.
  584. bufindw = 0;
  585. return true;
  586. }
  587. } else {
  588. // How much memory to reserve for the commands pushed to the front?
  589. // End of the queue, when pushing to the end.
  590. int endw = bufindw + len_asked + 2;
  591. if (bufindw < bufindr)
  592. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  593. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  594. // Otherwise the free space is split between the start and end.
  595. if (// Could one fit to the end, including the reserve?
  596. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  597. // Could one fit to the end, and the reserve to the start?
  598. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  599. return true;
  600. // Could one fit both to the start?
  601. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  602. // Mark the rest of the buffer as used.
  603. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  604. // and point to the start.
  605. bufindw = 0;
  606. return true;
  607. }
  608. }
  609. return false;
  610. }
  611. #ifdef CMDBUFFER_DEBUG
  612. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  613. {
  614. SERIAL_ECHOPGM("Entry nr: ");
  615. SERIAL_ECHO(nr);
  616. SERIAL_ECHOPGM(", type: ");
  617. SERIAL_ECHO(int(*p));
  618. SERIAL_ECHOPGM(", cmd: ");
  619. SERIAL_ECHO(p+1);
  620. SERIAL_ECHOLNPGM("");
  621. }
  622. static void cmdqueue_dump_to_serial()
  623. {
  624. if (buflen == 0) {
  625. SERIAL_ECHOLNPGM("The command buffer is empty.");
  626. } else {
  627. SERIAL_ECHOPGM("Content of the buffer: entries ");
  628. SERIAL_ECHO(buflen);
  629. SERIAL_ECHOPGM(", indr ");
  630. SERIAL_ECHO(bufindr);
  631. SERIAL_ECHOPGM(", indw ");
  632. SERIAL_ECHO(bufindw);
  633. SERIAL_ECHOLNPGM("");
  634. int nr = 0;
  635. if (bufindr < bufindw) {
  636. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  637. cmdqueue_dump_to_serial_single_line(nr, p);
  638. // Skip the command.
  639. for (++p; *p != 0; ++ p);
  640. // Skip the gaps.
  641. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  642. }
  643. } else {
  644. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  645. cmdqueue_dump_to_serial_single_line(nr, p);
  646. // Skip the command.
  647. for (++p; *p != 0; ++ p);
  648. // Skip the gaps.
  649. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  650. }
  651. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  652. cmdqueue_dump_to_serial_single_line(nr, p);
  653. // Skip the command.
  654. for (++p; *p != 0; ++ p);
  655. // Skip the gaps.
  656. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  657. }
  658. }
  659. SERIAL_ECHOLNPGM("End of the buffer.");
  660. }
  661. }
  662. #endif /* CMDBUFFER_DEBUG */
  663. //adds an command to the main command buffer
  664. //thats really done in a non-safe way.
  665. //needs overworking someday
  666. // Currently the maximum length of a command piped through this function is around 20 characters
  667. void enquecommand(const char *cmd, bool from_progmem)
  668. {
  669. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  670. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  671. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  672. if (cmdqueue_could_enqueue_back(len)) {
  673. // This is dangerous if a mixing of serial and this happens
  674. // This may easily be tested: If serial_count > 0, we have a problem.
  675. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  676. if (from_progmem)
  677. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  678. else
  679. strcpy(cmdbuffer + bufindw + 1, cmd);
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHORPGM(MSG_Enqueing);
  682. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  683. SERIAL_ECHOLNPGM("\"");
  684. bufindw += len + 2;
  685. if (bufindw == sizeof(cmdbuffer))
  686. bufindw = 0;
  687. ++ buflen;
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. } else {
  692. SERIAL_ERROR_START;
  693. SERIAL_ECHORPGM(MSG_Enqueing);
  694. if (from_progmem)
  695. SERIAL_PROTOCOLRPGM(cmd);
  696. else
  697. SERIAL_ECHO(cmd);
  698. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. }
  703. }
  704. void enquecommand_front(const char *cmd, bool from_progmem)
  705. {
  706. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  707. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  708. if (cmdqueue_could_enqueue_front(len)) {
  709. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  710. if (from_progmem)
  711. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  712. else
  713. strcpy(cmdbuffer + bufindr + 1, cmd);
  714. ++ buflen;
  715. SERIAL_ECHO_START;
  716. SERIAL_ECHOPGM("Enqueing to the front: \"");
  717. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  718. SERIAL_ECHOLNPGM("\"");
  719. #ifdef CMDBUFFER_DEBUG
  720. cmdqueue_dump_to_serial();
  721. #endif /* CMDBUFFER_DEBUG */
  722. } else {
  723. SERIAL_ERROR_START;
  724. SERIAL_ECHOPGM("Enqueing to the front: \"");
  725. if (from_progmem)
  726. SERIAL_PROTOCOLRPGM(cmd);
  727. else
  728. SERIAL_ECHO(cmd);
  729. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  730. #ifdef CMDBUFFER_DEBUG
  731. cmdqueue_dump_to_serial();
  732. #endif /* CMDBUFFER_DEBUG */
  733. }
  734. }
  735. // Mark the command at the top of the command queue as new.
  736. // Therefore it will not be removed from the queue.
  737. void repeatcommand_front()
  738. {
  739. cmdbuffer_front_already_processed = true;
  740. }
  741. bool is_buffer_empty()
  742. {
  743. if (buflen == 0) return true;
  744. else return false;
  745. }
  746. void setup_killpin()
  747. {
  748. #if defined(KILL_PIN) && KILL_PIN > -1
  749. SET_INPUT(KILL_PIN);
  750. WRITE(KILL_PIN,HIGH);
  751. #endif
  752. }
  753. // Set home pin
  754. void setup_homepin(void)
  755. {
  756. #if defined(HOME_PIN) && HOME_PIN > -1
  757. SET_INPUT(HOME_PIN);
  758. WRITE(HOME_PIN,HIGH);
  759. #endif
  760. }
  761. void setup_photpin()
  762. {
  763. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  764. SET_OUTPUT(PHOTOGRAPH_PIN);
  765. WRITE(PHOTOGRAPH_PIN, LOW);
  766. #endif
  767. }
  768. void setup_powerhold()
  769. {
  770. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  771. SET_OUTPUT(SUICIDE_PIN);
  772. WRITE(SUICIDE_PIN, HIGH);
  773. #endif
  774. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  775. SET_OUTPUT(PS_ON_PIN);
  776. #if defined(PS_DEFAULT_OFF)
  777. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  778. #else
  779. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  780. #endif
  781. #endif
  782. }
  783. void suicide()
  784. {
  785. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  786. SET_OUTPUT(SUICIDE_PIN);
  787. WRITE(SUICIDE_PIN, LOW);
  788. #endif
  789. }
  790. void servo_init()
  791. {
  792. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  793. servos[0].attach(SERVO0_PIN);
  794. #endif
  795. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  796. servos[1].attach(SERVO1_PIN);
  797. #endif
  798. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  799. servos[2].attach(SERVO2_PIN);
  800. #endif
  801. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  802. servos[3].attach(SERVO3_PIN);
  803. #endif
  804. #if (NUM_SERVOS >= 5)
  805. #error "TODO: enter initalisation code for more servos"
  806. #endif
  807. }
  808. static void lcd_language_menu();
  809. #ifdef PAT9125
  810. bool fsensor_enabled = false;
  811. bool fsensor_ignore_error = true;
  812. bool fsensor_M600 = false;
  813. long prev_pos_e = 0;
  814. long err_cnt = 0;
  815. #define FSENS_ESTEPS 280 //extruder resolution [steps/mm]
  816. #define FSENS_MINDEL 560 //filament sensor min delta [steps] (3mm)
  817. #define FSENS_MINFAC 3 //filament sensor minimum factor [count/mm]
  818. #define FSENS_MAXFAC 50 //filament sensor maximum factor [count/mm]
  819. #define FSENS_MAXERR 2 //filament sensor max error count
  820. void fsensor_enable()
  821. {
  822. MYSERIAL.println("fsensor_enable");
  823. pat9125_y = 0;
  824. prev_pos_e = st_get_position(E_AXIS);
  825. err_cnt = 0;
  826. fsensor_enabled = true;
  827. fsensor_ignore_error = true;
  828. fsensor_M600 = false;
  829. }
  830. void fsensor_disable()
  831. {
  832. MYSERIAL.println("fsensor_disable");
  833. fsensor_enabled = false;
  834. }
  835. void fsensor_update()
  836. {
  837. if (!fsensor_enabled) return;
  838. long pos_e = st_get_position(E_AXIS); //current position
  839. pat9125_update();
  840. long del_e = pos_e - prev_pos_e; //delta
  841. if (abs(del_e) < FSENS_MINDEL) return;
  842. float de = ((float)del_e / FSENS_ESTEPS);
  843. int cmin = de * FSENS_MINFAC;
  844. int cmax = de * FSENS_MAXFAC;
  845. int cnt = pat9125_y;
  846. prev_pos_e = pos_e;
  847. pat9125_y = 0;
  848. bool err = false;
  849. if ((del_e > 0) && ((cnt < cmin) || (cnt > cmax))) err = true;
  850. if ((del_e < 0) && ((cnt > cmin) || (cnt < cmax))) err = true;
  851. if (err)
  852. err_cnt++;
  853. else
  854. err_cnt = 0;
  855. /*
  856. MYSERIAL.print("de=");
  857. MYSERIAL.print(de);
  858. MYSERIAL.print(" cmin=");
  859. MYSERIAL.print((int)cmin);
  860. MYSERIAL.print(" cmax=");
  861. MYSERIAL.print((int)cmax);
  862. MYSERIAL.print(" cnt=");
  863. MYSERIAL.print((int)cnt);
  864. MYSERIAL.print(" err=");
  865. MYSERIAL.println((int)err_cnt);*/
  866. if (err_cnt > FSENS_MAXERR)
  867. {
  868. MYSERIAL.println("fsensor_update (err_cnt > FSENS_MAXERR)");
  869. if (fsensor_ignore_error)
  870. {
  871. MYSERIAL.println("fsensor_update - error ignored)");
  872. fsensor_ignore_error = false;
  873. }
  874. else
  875. {
  876. MYSERIAL.println("fsensor_update - ERROR!!!");
  877. planner_abort_hard();
  878. // planner_pause_and_save();
  879. enquecommand_front_P((PSTR("M600")));
  880. fsensor_M600 = true;
  881. fsensor_enabled = false;
  882. }
  883. }
  884. }
  885. #endif //PAT9125
  886. #ifdef MESH_BED_LEVELING
  887. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  888. #endif
  889. // Factory reset function
  890. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  891. // Level input parameter sets depth of reset
  892. // Quiet parameter masks all waitings for user interact.
  893. int er_progress = 0;
  894. void factory_reset(char level, bool quiet)
  895. {
  896. lcd_implementation_clear();
  897. int cursor_pos = 0;
  898. switch (level) {
  899. // Level 0: Language reset
  900. case 0:
  901. WRITE(BEEPER, HIGH);
  902. _delay_ms(100);
  903. WRITE(BEEPER, LOW);
  904. lcd_force_language_selection();
  905. break;
  906. //Level 1: Reset statistics
  907. case 1:
  908. WRITE(BEEPER, HIGH);
  909. _delay_ms(100);
  910. WRITE(BEEPER, LOW);
  911. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  912. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  913. lcd_menu_statistics();
  914. break;
  915. // Level 2: Prepare for shipping
  916. case 2:
  917. //lcd_printPGM(PSTR("Factory RESET"));
  918. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  919. // Force language selection at the next boot up.
  920. lcd_force_language_selection();
  921. // Force the "Follow calibration flow" message at the next boot up.
  922. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  923. farm_no = 0;
  924. farm_mode == false;
  925. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  926. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  927. WRITE(BEEPER, HIGH);
  928. _delay_ms(100);
  929. WRITE(BEEPER, LOW);
  930. //_delay_ms(2000);
  931. break;
  932. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  933. case 3:
  934. lcd_printPGM(PSTR("Factory RESET"));
  935. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  936. WRITE(BEEPER, HIGH);
  937. _delay_ms(100);
  938. WRITE(BEEPER, LOW);
  939. er_progress = 0;
  940. lcd_print_at_PGM(3, 3, PSTR(" "));
  941. lcd_implementation_print_at(3, 3, er_progress);
  942. // Erase EEPROM
  943. for (int i = 0; i < 4096; i++) {
  944. eeprom_write_byte((uint8_t*)i, 0xFF);
  945. if (i % 41 == 0) {
  946. er_progress++;
  947. lcd_print_at_PGM(3, 3, PSTR(" "));
  948. lcd_implementation_print_at(3, 3, er_progress);
  949. lcd_printPGM(PSTR("%"));
  950. }
  951. }
  952. break;
  953. case 4:
  954. bowden_menu();
  955. break;
  956. default:
  957. break;
  958. }
  959. }
  960. // "Setup" function is called by the Arduino framework on startup.
  961. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  962. // are initialized by the main() routine provided by the Arduino framework.
  963. void setup()
  964. {
  965. lcd_init();
  966. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  967. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  968. setup_killpin();
  969. setup_powerhold();
  970. MYSERIAL.begin(BAUDRATE);
  971. SERIAL_PROTOCOLLNPGM("start");
  972. SERIAL_ECHO_START;
  973. #if 0
  974. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  975. for (int i = 0; i < 4096; ++i) {
  976. int b = eeprom_read_byte((unsigned char*)i);
  977. if (b != 255) {
  978. SERIAL_ECHO(i);
  979. SERIAL_ECHO(":");
  980. SERIAL_ECHO(b);
  981. SERIAL_ECHOLN("");
  982. }
  983. }
  984. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  985. #endif
  986. // Check startup - does nothing if bootloader sets MCUSR to 0
  987. byte mcu = MCUSR;
  988. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  989. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  990. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  991. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  992. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  993. MCUSR = 0;
  994. //SERIAL_ECHORPGM(MSG_MARLIN);
  995. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  996. #ifdef STRING_VERSION_CONFIG_H
  997. #ifdef STRING_CONFIG_H_AUTHOR
  998. SERIAL_ECHO_START;
  999. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  1000. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1001. SERIAL_ECHORPGM(MSG_AUTHOR);
  1002. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1003. SERIAL_ECHOPGM("Compiled: ");
  1004. SERIAL_ECHOLNPGM(__DATE__);
  1005. #endif
  1006. #endif
  1007. SERIAL_ECHO_START;
  1008. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  1009. SERIAL_ECHO(freeMemory());
  1010. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  1011. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1012. //lcd_update_enable(false); // why do we need this?? - andre
  1013. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1014. Config_RetrieveSettings();
  1015. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1016. tp_init(); // Initialize temperature loop
  1017. plan_init(); // Initialize planner;
  1018. watchdog_init();
  1019. #ifdef TMC2130
  1020. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1021. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1022. #endif //TMC2130
  1023. #ifdef PAT9125
  1024. MYSERIAL.print("PAT9125_init:");
  1025. MYSERIAL.println(pat9125_init(200, 200));
  1026. #endif //PAT9125
  1027. st_init(); // Initialize stepper, this enables interrupts!
  1028. setup_photpin();
  1029. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  1030. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  1031. servo_init();
  1032. // Reset the machine correction matrix.
  1033. // It does not make sense to load the correction matrix until the machine is homed.
  1034. world2machine_reset();
  1035. if (!READ(BTN_ENC))
  1036. {
  1037. _delay_ms(1000);
  1038. if (!READ(BTN_ENC))
  1039. {
  1040. lcd_implementation_clear();
  1041. lcd_printPGM(PSTR("Factory RESET"));
  1042. SET_OUTPUT(BEEPER);
  1043. WRITE(BEEPER, HIGH);
  1044. while (!READ(BTN_ENC));
  1045. WRITE(BEEPER, LOW);
  1046. _delay_ms(2000);
  1047. char level = reset_menu();
  1048. factory_reset(level, false);
  1049. switch (level) {
  1050. case 0: _delay_ms(0); break;
  1051. case 1: _delay_ms(0); break;
  1052. case 2: _delay_ms(0); break;
  1053. case 3: _delay_ms(0); break;
  1054. }
  1055. // _delay_ms(100);
  1056. /*
  1057. #ifdef MESH_BED_LEVELING
  1058. _delay_ms(2000);
  1059. if (!READ(BTN_ENC))
  1060. {
  1061. WRITE(BEEPER, HIGH);
  1062. _delay_ms(100);
  1063. WRITE(BEEPER, LOW);
  1064. _delay_ms(200);
  1065. WRITE(BEEPER, HIGH);
  1066. _delay_ms(100);
  1067. WRITE(BEEPER, LOW);
  1068. int _z = 0;
  1069. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1070. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1071. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1072. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1073. }
  1074. else
  1075. {
  1076. WRITE(BEEPER, HIGH);
  1077. _delay_ms(100);
  1078. WRITE(BEEPER, LOW);
  1079. }
  1080. #endif // mesh */
  1081. }
  1082. }
  1083. else
  1084. {
  1085. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1086. }
  1087. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1088. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1089. #endif
  1090. #ifdef DIGIPOT_I2C
  1091. digipot_i2c_init();
  1092. #endif
  1093. setup_homepin();
  1094. #if defined(Z_AXIS_ALWAYS_ON)
  1095. enable_z();
  1096. #endif
  1097. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1098. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1099. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1100. if (farm_no == 0xFFFF) farm_no = 0;
  1101. if (farm_mode)
  1102. {
  1103. prusa_statistics(8);
  1104. }
  1105. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1106. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1107. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1108. // but this times out if a blocking dialog is shown in setup().
  1109. card.initsd();
  1110. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1111. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1112. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1113. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1114. // where all the EEPROM entries are set to 0x0ff.
  1115. // Once a firmware boots up, it forces at least a language selection, which changes
  1116. // EEPROM_LANG to number lower than 0x0ff.
  1117. // 1) Set a high power mode.
  1118. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1119. }
  1120. #ifdef SNMM
  1121. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1122. int _z = BOWDEN_LENGTH;
  1123. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1124. }
  1125. #endif
  1126. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1127. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1128. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1129. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1130. if (lang_selected >= LANG_NUM){
  1131. lcd_mylang();
  1132. }
  1133. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1134. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1135. temp_cal_active = false;
  1136. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1137. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1138. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1139. }
  1140. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1141. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1142. }
  1143. #ifndef DEBUG_DISABLE_STARTMSGS
  1144. check_babystep(); //checking if Z babystep is in allowed range
  1145. setup_uvlo_interrupt();
  1146. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1147. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1148. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1149. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1150. // Show the message.
  1151. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1152. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1153. // Show the message.
  1154. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1155. lcd_update_enable(true);
  1156. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1157. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1158. lcd_update_enable(true);
  1159. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1160. // Show the message.
  1161. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1162. }
  1163. #endif //DEBUG_DISABLE_STARTMSGS
  1164. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1165. lcd_update_enable(true);
  1166. // Store the currently running firmware into an eeprom,
  1167. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1168. update_current_firmware_version_to_eeprom();
  1169. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1170. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1171. else {
  1172. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1173. lcd_update_enable(true);
  1174. lcd_update(2);
  1175. lcd_setstatuspgm(WELCOME_MSG);
  1176. }
  1177. }
  1178. }
  1179. void trace();
  1180. #define CHUNK_SIZE 64 // bytes
  1181. #define SAFETY_MARGIN 1
  1182. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1183. int chunkHead = 0;
  1184. int serial_read_stream() {
  1185. setTargetHotend(0, 0);
  1186. setTargetBed(0);
  1187. lcd_implementation_clear();
  1188. lcd_printPGM(PSTR(" Upload in progress"));
  1189. // first wait for how many bytes we will receive
  1190. uint32_t bytesToReceive;
  1191. // receive the four bytes
  1192. char bytesToReceiveBuffer[4];
  1193. for (int i=0; i<4; i++) {
  1194. int data;
  1195. while ((data = MYSERIAL.read()) == -1) {};
  1196. bytesToReceiveBuffer[i] = data;
  1197. }
  1198. // make it a uint32
  1199. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1200. // we're ready, notify the sender
  1201. MYSERIAL.write('+');
  1202. // lock in the routine
  1203. uint32_t receivedBytes = 0;
  1204. while (prusa_sd_card_upload) {
  1205. int i;
  1206. for (i=0; i<CHUNK_SIZE; i++) {
  1207. int data;
  1208. // check if we're not done
  1209. if (receivedBytes == bytesToReceive) {
  1210. break;
  1211. }
  1212. // read the next byte
  1213. while ((data = MYSERIAL.read()) == -1) {};
  1214. receivedBytes++;
  1215. // save it to the chunk
  1216. chunk[i] = data;
  1217. }
  1218. // write the chunk to SD
  1219. card.write_command_no_newline(&chunk[0]);
  1220. // notify the sender we're ready for more data
  1221. MYSERIAL.write('+');
  1222. // for safety
  1223. manage_heater();
  1224. // check if we're done
  1225. if(receivedBytes == bytesToReceive) {
  1226. trace(); // beep
  1227. card.closefile();
  1228. prusa_sd_card_upload = false;
  1229. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1230. return 0;
  1231. }
  1232. }
  1233. }
  1234. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1235. // Before loop(), the setup() function is called by the main() routine.
  1236. void loop()
  1237. {
  1238. bool stack_integrity = true;
  1239. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1240. {
  1241. is_usb_printing = true;
  1242. usb_printing_counter--;
  1243. _usb_timer = millis();
  1244. }
  1245. if (usb_printing_counter == 0)
  1246. {
  1247. is_usb_printing = false;
  1248. }
  1249. if (prusa_sd_card_upload)
  1250. {
  1251. //we read byte-by byte
  1252. serial_read_stream();
  1253. } else
  1254. {
  1255. get_command();
  1256. #ifdef SDSUPPORT
  1257. card.checkautostart(false);
  1258. #endif
  1259. if(buflen)
  1260. {
  1261. #ifdef SDSUPPORT
  1262. if(card.saving)
  1263. {
  1264. // Saving a G-code file onto an SD-card is in progress.
  1265. // Saving starts with M28, saving until M29 is seen.
  1266. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1267. card.write_command(CMDBUFFER_CURRENT_STRING);
  1268. if(card.logging)
  1269. process_commands();
  1270. else
  1271. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1272. } else {
  1273. card.closefile();
  1274. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1275. }
  1276. } else {
  1277. process_commands();
  1278. }
  1279. #else
  1280. process_commands();
  1281. #endif //SDSUPPORT
  1282. if (! cmdbuffer_front_already_processed)
  1283. cmdqueue_pop_front();
  1284. cmdbuffer_front_already_processed = false;
  1285. }
  1286. }
  1287. //check heater every n milliseconds
  1288. manage_heater();
  1289. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1290. checkHitEndstops();
  1291. lcd_update();
  1292. #ifdef PAT9125
  1293. fsensor_update();
  1294. #endif //PAT9125
  1295. #ifdef TMC2130
  1296. tmc2130_check_overtemp();
  1297. #endif //TMC2130
  1298. }
  1299. void get_command()
  1300. {
  1301. // Test and reserve space for the new command string.
  1302. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1303. return;
  1304. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1305. while (MYSERIAL.available() > 0) {
  1306. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1307. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1308. rx_buffer_full = true; //sets flag that buffer was full
  1309. }
  1310. char serial_char = MYSERIAL.read();
  1311. TimeSent = millis();
  1312. TimeNow = millis();
  1313. if (serial_char < 0)
  1314. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1315. // and Marlin does not support such file names anyway.
  1316. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1317. // to a hang-up of the print process from an SD card.
  1318. continue;
  1319. if(serial_char == '\n' ||
  1320. serial_char == '\r' ||
  1321. (serial_char == ':' && comment_mode == false) ||
  1322. serial_count >= (MAX_CMD_SIZE - 1) )
  1323. {
  1324. if(!serial_count) { //if empty line
  1325. comment_mode = false; //for new command
  1326. return;
  1327. }
  1328. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1329. if(!comment_mode){
  1330. comment_mode = false; //for new command
  1331. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1332. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1333. {
  1334. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1335. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1336. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1337. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1338. // M110 - set current line number.
  1339. // Line numbers not sent in succession.
  1340. SERIAL_ERROR_START;
  1341. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1342. SERIAL_ERRORLN(gcode_LastN);
  1343. //Serial.println(gcode_N);
  1344. FlushSerialRequestResend();
  1345. serial_count = 0;
  1346. return;
  1347. }
  1348. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1349. {
  1350. byte checksum = 0;
  1351. char *p = cmdbuffer+bufindw+1;
  1352. while (p != strchr_pointer)
  1353. checksum = checksum^(*p++);
  1354. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1355. SERIAL_ERROR_START;
  1356. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1357. SERIAL_ERRORLN(gcode_LastN);
  1358. FlushSerialRequestResend();
  1359. serial_count = 0;
  1360. return;
  1361. }
  1362. // If no errors, remove the checksum and continue parsing.
  1363. *strchr_pointer = 0;
  1364. }
  1365. else
  1366. {
  1367. SERIAL_ERROR_START;
  1368. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1369. SERIAL_ERRORLN(gcode_LastN);
  1370. FlushSerialRequestResend();
  1371. serial_count = 0;
  1372. return;
  1373. }
  1374. gcode_LastN = gcode_N;
  1375. //if no errors, continue parsing
  1376. } // end of 'N' command
  1377. }
  1378. else // if we don't receive 'N' but still see '*'
  1379. {
  1380. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1381. {
  1382. SERIAL_ERROR_START;
  1383. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1384. SERIAL_ERRORLN(gcode_LastN);
  1385. serial_count = 0;
  1386. return;
  1387. }
  1388. } // end of '*' command
  1389. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1390. if (! IS_SD_PRINTING) {
  1391. usb_printing_counter = 10;
  1392. is_usb_printing = true;
  1393. }
  1394. if (Stopped == true) {
  1395. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1396. if (gcode >= 0 && gcode <= 3) {
  1397. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1398. LCD_MESSAGERPGM(MSG_STOPPED);
  1399. }
  1400. }
  1401. } // end of 'G' command
  1402. //If command was e-stop process now
  1403. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1404. kill("", 2);
  1405. // Store the current line into buffer, move to the next line.
  1406. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1407. #ifdef CMDBUFFER_DEBUG
  1408. SERIAL_ECHO_START;
  1409. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1410. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1411. SERIAL_ECHOLNPGM("");
  1412. #endif /* CMDBUFFER_DEBUG */
  1413. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1414. if (bufindw == sizeof(cmdbuffer))
  1415. bufindw = 0;
  1416. ++ buflen;
  1417. #ifdef CMDBUFFER_DEBUG
  1418. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1419. SERIAL_ECHO(buflen);
  1420. SERIAL_ECHOLNPGM("");
  1421. #endif /* CMDBUFFER_DEBUG */
  1422. } // end of 'not comment mode'
  1423. serial_count = 0; //clear buffer
  1424. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1425. // in the queue, as this function will reserve the memory.
  1426. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1427. return;
  1428. } // end of "end of line" processing
  1429. else {
  1430. // Not an "end of line" symbol. Store the new character into a buffer.
  1431. if(serial_char == ';') comment_mode = true;
  1432. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1433. }
  1434. } // end of serial line processing loop
  1435. if(farm_mode){
  1436. TimeNow = millis();
  1437. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1438. cmdbuffer[bufindw+serial_count+1] = 0;
  1439. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1440. if (bufindw == sizeof(cmdbuffer))
  1441. bufindw = 0;
  1442. ++ buflen;
  1443. serial_count = 0;
  1444. SERIAL_ECHOPGM("TIMEOUT:");
  1445. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1446. return;
  1447. }
  1448. }
  1449. //add comment
  1450. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1451. rx_buffer_full = false;
  1452. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1453. serial_count = 0;
  1454. }
  1455. #ifdef SDSUPPORT
  1456. if(!card.sdprinting || serial_count!=0){
  1457. // If there is a half filled buffer from serial line, wait until return before
  1458. // continuing with the serial line.
  1459. return;
  1460. }
  1461. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1462. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1463. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1464. static bool stop_buffering=false;
  1465. if(buflen==0) stop_buffering=false;
  1466. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1467. while( !card.eof() && !stop_buffering) {
  1468. int16_t n=card.get();
  1469. char serial_char = (char)n;
  1470. if(serial_char == '\n' ||
  1471. serial_char == '\r' ||
  1472. (serial_char == '#' && comment_mode == false) ||
  1473. (serial_char == ':' && comment_mode == false) ||
  1474. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1475. {
  1476. if(card.eof()){
  1477. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1478. stoptime=millis();
  1479. char time[30];
  1480. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1481. pause_time = 0;
  1482. int hours, minutes;
  1483. minutes=(t/60)%60;
  1484. hours=t/60/60;
  1485. save_statistics(total_filament_used, t);
  1486. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1487. SERIAL_ECHO_START;
  1488. SERIAL_ECHOLN(time);
  1489. lcd_setstatus(time);
  1490. card.printingHasFinished();
  1491. card.checkautostart(true);
  1492. if (farm_mode)
  1493. {
  1494. prusa_statistics(6);
  1495. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1496. }
  1497. }
  1498. if(serial_char=='#')
  1499. stop_buffering=true;
  1500. if(!serial_count)
  1501. {
  1502. comment_mode = false; //for new command
  1503. return; //if empty line
  1504. }
  1505. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1506. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1507. SERIAL_ECHOPGM("cmdbuffer:");
  1508. MYSERIAL.print(cmdbuffer);
  1509. ++ buflen;
  1510. SERIAL_ECHOPGM("buflen:");
  1511. MYSERIAL.print(buflen);
  1512. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1513. if (bufindw == sizeof(cmdbuffer))
  1514. bufindw = 0;
  1515. comment_mode = false; //for new command
  1516. serial_count = 0; //clear buffer
  1517. // The following line will reserve buffer space if available.
  1518. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1519. return;
  1520. }
  1521. else
  1522. {
  1523. if(serial_char == ';') comment_mode = true;
  1524. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1525. }
  1526. }
  1527. #endif //SDSUPPORT
  1528. }
  1529. // Return True if a character was found
  1530. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1531. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1532. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1533. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1534. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1535. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1536. static inline float code_value_float() {
  1537. char* e = strchr(strchr_pointer, 'E');
  1538. if (!e) return strtod(strchr_pointer + 1, NULL);
  1539. *e = 0;
  1540. float ret = strtod(strchr_pointer + 1, NULL);
  1541. *e = 'E';
  1542. return ret;
  1543. }
  1544. #define DEFINE_PGM_READ_ANY(type, reader) \
  1545. static inline type pgm_read_any(const type *p) \
  1546. { return pgm_read_##reader##_near(p); }
  1547. DEFINE_PGM_READ_ANY(float, float);
  1548. DEFINE_PGM_READ_ANY(signed char, byte);
  1549. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1550. static const PROGMEM type array##_P[3] = \
  1551. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1552. static inline type array(int axis) \
  1553. { return pgm_read_any(&array##_P[axis]); } \
  1554. type array##_ext(int axis) \
  1555. { return pgm_read_any(&array##_P[axis]); }
  1556. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1557. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1558. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1559. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1560. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1561. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1562. static void axis_is_at_home(int axis) {
  1563. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1564. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1565. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1566. }
  1567. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1568. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1569. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1570. saved_feedrate = feedrate;
  1571. saved_feedmultiply = feedmultiply;
  1572. feedmultiply = 100;
  1573. previous_millis_cmd = millis();
  1574. enable_endstops(enable_endstops_now);
  1575. }
  1576. static void clean_up_after_endstop_move() {
  1577. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1578. enable_endstops(false);
  1579. #endif
  1580. feedrate = saved_feedrate;
  1581. feedmultiply = saved_feedmultiply;
  1582. previous_millis_cmd = millis();
  1583. }
  1584. #ifdef ENABLE_AUTO_BED_LEVELING
  1585. #ifdef AUTO_BED_LEVELING_GRID
  1586. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1587. {
  1588. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1589. planeNormal.debug("planeNormal");
  1590. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1591. //bedLevel.debug("bedLevel");
  1592. //plan_bed_level_matrix.debug("bed level before");
  1593. //vector_3 uncorrected_position = plan_get_position_mm();
  1594. //uncorrected_position.debug("position before");
  1595. vector_3 corrected_position = plan_get_position();
  1596. // corrected_position.debug("position after");
  1597. current_position[X_AXIS] = corrected_position.x;
  1598. current_position[Y_AXIS] = corrected_position.y;
  1599. current_position[Z_AXIS] = corrected_position.z;
  1600. // put the bed at 0 so we don't go below it.
  1601. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1602. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1603. }
  1604. #else // not AUTO_BED_LEVELING_GRID
  1605. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1606. plan_bed_level_matrix.set_to_identity();
  1607. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1608. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1609. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1610. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1611. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1612. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1613. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1614. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1615. vector_3 corrected_position = plan_get_position();
  1616. current_position[X_AXIS] = corrected_position.x;
  1617. current_position[Y_AXIS] = corrected_position.y;
  1618. current_position[Z_AXIS] = corrected_position.z;
  1619. // put the bed at 0 so we don't go below it.
  1620. current_position[Z_AXIS] = zprobe_zoffset;
  1621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1622. }
  1623. #endif // AUTO_BED_LEVELING_GRID
  1624. static void run_z_probe() {
  1625. plan_bed_level_matrix.set_to_identity();
  1626. feedrate = homing_feedrate[Z_AXIS];
  1627. // move down until you find the bed
  1628. float zPosition = -10;
  1629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1630. st_synchronize();
  1631. // we have to let the planner know where we are right now as it is not where we said to go.
  1632. zPosition = st_get_position_mm(Z_AXIS);
  1633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1634. // move up the retract distance
  1635. zPosition += home_retract_mm(Z_AXIS);
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1637. st_synchronize();
  1638. // move back down slowly to find bed
  1639. feedrate = homing_feedrate[Z_AXIS]/4;
  1640. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1642. st_synchronize();
  1643. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1644. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1646. }
  1647. static void do_blocking_move_to(float x, float y, float z) {
  1648. float oldFeedRate = feedrate;
  1649. feedrate = homing_feedrate[Z_AXIS];
  1650. current_position[Z_AXIS] = z;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1652. st_synchronize();
  1653. feedrate = XY_TRAVEL_SPEED;
  1654. current_position[X_AXIS] = x;
  1655. current_position[Y_AXIS] = y;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1657. st_synchronize();
  1658. feedrate = oldFeedRate;
  1659. }
  1660. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1661. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1662. }
  1663. /// Probe bed height at position (x,y), returns the measured z value
  1664. static float probe_pt(float x, float y, float z_before) {
  1665. // move to right place
  1666. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1667. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1668. run_z_probe();
  1669. float measured_z = current_position[Z_AXIS];
  1670. SERIAL_PROTOCOLRPGM(MSG_BED);
  1671. SERIAL_PROTOCOLPGM(" x: ");
  1672. SERIAL_PROTOCOL(x);
  1673. SERIAL_PROTOCOLPGM(" y: ");
  1674. SERIAL_PROTOCOL(y);
  1675. SERIAL_PROTOCOLPGM(" z: ");
  1676. SERIAL_PROTOCOL(measured_z);
  1677. SERIAL_PROTOCOLPGM("\n");
  1678. return measured_z;
  1679. }
  1680. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1681. #ifdef LIN_ADVANCE
  1682. /**
  1683. * M900: Set and/or Get advance K factor and WH/D ratio
  1684. *
  1685. * K<factor> Set advance K factor
  1686. * R<ratio> Set ratio directly (overrides WH/D)
  1687. * W<width> H<height> D<diam> Set ratio from WH/D
  1688. */
  1689. inline void gcode_M900() {
  1690. st_synchronize();
  1691. const float newK = code_seen('K') ? code_value_float() : -1;
  1692. if (newK >= 0) extruder_advance_k = newK;
  1693. float newR = code_seen('R') ? code_value_float() : -1;
  1694. if (newR < 0) {
  1695. const float newD = code_seen('D') ? code_value_float() : -1,
  1696. newW = code_seen('W') ? code_value_float() : -1,
  1697. newH = code_seen('H') ? code_value_float() : -1;
  1698. if (newD >= 0 && newW >= 0 && newH >= 0)
  1699. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1700. }
  1701. if (newR >= 0) advance_ed_ratio = newR;
  1702. SERIAL_ECHO_START;
  1703. SERIAL_ECHOPGM("Advance K=");
  1704. SERIAL_ECHOLN(extruder_advance_k);
  1705. SERIAL_ECHOPGM(" E/D=");
  1706. const float ratio = advance_ed_ratio;
  1707. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1708. }
  1709. #endif // LIN_ADVANCE
  1710. void homeaxis(int axis)
  1711. {
  1712. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1713. #define HOMEAXIS_DO(LETTER) \
  1714. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1715. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1716. {
  1717. int axis_home_dir = home_dir(axis);
  1718. #ifdef TMC2130
  1719. tmc2130_home_enter(X_AXIS_MASK << axis);
  1720. #endif
  1721. current_position[axis] = 0;
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1724. feedrate = homing_feedrate[axis];
  1725. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1726. #ifdef TMC2130
  1727. tmc2130_home_restart(axis);
  1728. #endif
  1729. st_synchronize();
  1730. current_position[axis] = 0;
  1731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1732. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1733. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1734. #ifdef TMC2130
  1735. tmc2130_home_restart(axis);
  1736. #endif
  1737. st_synchronize();
  1738. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1739. #ifdef TMC2130
  1740. feedrate = homing_feedrate[axis];
  1741. #else
  1742. feedrate = homing_feedrate[axis] / 2;
  1743. #endif
  1744. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1745. #ifdef TMC2130
  1746. tmc2130_home_restart(axis);
  1747. #endif
  1748. st_synchronize();
  1749. axis_is_at_home(axis);
  1750. destination[axis] = current_position[axis];
  1751. feedrate = 0.0;
  1752. endstops_hit_on_purpose();
  1753. axis_known_position[axis] = true;
  1754. #ifdef TMC2130
  1755. tmc2130_home_exit();
  1756. #endif
  1757. }
  1758. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1759. {
  1760. int axis_home_dir = home_dir(axis);
  1761. current_position[axis] = 0;
  1762. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1763. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1764. feedrate = homing_feedrate[axis];
  1765. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1766. st_synchronize();
  1767. current_position[axis] = 0;
  1768. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1769. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1770. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1771. st_synchronize();
  1772. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1773. feedrate = homing_feedrate[axis]/2 ;
  1774. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1775. st_synchronize();
  1776. axis_is_at_home(axis);
  1777. destination[axis] = current_position[axis];
  1778. feedrate = 0.0;
  1779. endstops_hit_on_purpose();
  1780. axis_known_position[axis] = true;
  1781. }
  1782. enable_endstops(endstops_enabled);
  1783. }
  1784. /**/
  1785. void home_xy()
  1786. {
  1787. set_destination_to_current();
  1788. homeaxis(X_AXIS);
  1789. homeaxis(Y_AXIS);
  1790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1791. endstops_hit_on_purpose();
  1792. }
  1793. void refresh_cmd_timeout(void)
  1794. {
  1795. previous_millis_cmd = millis();
  1796. }
  1797. #ifdef FWRETRACT
  1798. void retract(bool retracting, bool swapretract = false) {
  1799. if(retracting && !retracted[active_extruder]) {
  1800. destination[X_AXIS]=current_position[X_AXIS];
  1801. destination[Y_AXIS]=current_position[Y_AXIS];
  1802. destination[Z_AXIS]=current_position[Z_AXIS];
  1803. destination[E_AXIS]=current_position[E_AXIS];
  1804. if (swapretract) {
  1805. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1806. } else {
  1807. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1808. }
  1809. plan_set_e_position(current_position[E_AXIS]);
  1810. float oldFeedrate = feedrate;
  1811. feedrate=retract_feedrate*60;
  1812. retracted[active_extruder]=true;
  1813. prepare_move();
  1814. current_position[Z_AXIS]-=retract_zlift;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. prepare_move();
  1817. feedrate = oldFeedrate;
  1818. } else if(!retracting && retracted[active_extruder]) {
  1819. destination[X_AXIS]=current_position[X_AXIS];
  1820. destination[Y_AXIS]=current_position[Y_AXIS];
  1821. destination[Z_AXIS]=current_position[Z_AXIS];
  1822. destination[E_AXIS]=current_position[E_AXIS];
  1823. current_position[Z_AXIS]+=retract_zlift;
  1824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1825. //prepare_move();
  1826. if (swapretract) {
  1827. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1828. } else {
  1829. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1830. }
  1831. plan_set_e_position(current_position[E_AXIS]);
  1832. float oldFeedrate = feedrate;
  1833. feedrate=retract_recover_feedrate*60;
  1834. retracted[active_extruder]=false;
  1835. prepare_move();
  1836. feedrate = oldFeedrate;
  1837. }
  1838. } //retract
  1839. #endif //FWRETRACT
  1840. void trace() {
  1841. tone(BEEPER, 440);
  1842. delay(25);
  1843. noTone(BEEPER);
  1844. delay(20);
  1845. }
  1846. /*
  1847. void ramming() {
  1848. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1849. if (current_temperature[0] < 230) {
  1850. //PLA
  1851. max_feedrate[E_AXIS] = 50;
  1852. //current_position[E_AXIS] -= 8;
  1853. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1854. //current_position[E_AXIS] += 8;
  1855. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1856. current_position[E_AXIS] += 5.4;
  1857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1858. current_position[E_AXIS] += 3.2;
  1859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1860. current_position[E_AXIS] += 3;
  1861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1862. st_synchronize();
  1863. max_feedrate[E_AXIS] = 80;
  1864. current_position[E_AXIS] -= 82;
  1865. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1866. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1867. current_position[E_AXIS] -= 20;
  1868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1869. current_position[E_AXIS] += 5;
  1870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1871. current_position[E_AXIS] += 5;
  1872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1873. current_position[E_AXIS] -= 10;
  1874. st_synchronize();
  1875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1876. current_position[E_AXIS] += 10;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1878. current_position[E_AXIS] -= 10;
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1880. current_position[E_AXIS] += 10;
  1881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1882. current_position[E_AXIS] -= 10;
  1883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1884. st_synchronize();
  1885. }
  1886. else {
  1887. //ABS
  1888. max_feedrate[E_AXIS] = 50;
  1889. //current_position[E_AXIS] -= 8;
  1890. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1891. //current_position[E_AXIS] += 8;
  1892. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1893. current_position[E_AXIS] += 3.1;
  1894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1895. current_position[E_AXIS] += 3.1;
  1896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1897. current_position[E_AXIS] += 4;
  1898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1899. st_synchronize();
  1900. //current_position[X_AXIS] += 23; //delay
  1901. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1902. //current_position[X_AXIS] -= 23; //delay
  1903. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1904. delay(4700);
  1905. max_feedrate[E_AXIS] = 80;
  1906. current_position[E_AXIS] -= 92;
  1907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1908. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1909. current_position[E_AXIS] -= 5;
  1910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1911. current_position[E_AXIS] += 5;
  1912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1913. current_position[E_AXIS] -= 5;
  1914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1915. st_synchronize();
  1916. current_position[E_AXIS] += 5;
  1917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1918. current_position[E_AXIS] -= 5;
  1919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1920. current_position[E_AXIS] += 5;
  1921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1922. current_position[E_AXIS] -= 5;
  1923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1924. st_synchronize();
  1925. }
  1926. }
  1927. */
  1928. void process_commands()
  1929. {
  1930. #ifdef FILAMENT_RUNOUT_SUPPORT
  1931. SET_INPUT(FR_SENS);
  1932. #endif
  1933. #ifdef CMDBUFFER_DEBUG
  1934. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1935. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1936. SERIAL_ECHOLNPGM("");
  1937. SERIAL_ECHOPGM("In cmdqueue: ");
  1938. SERIAL_ECHO(buflen);
  1939. SERIAL_ECHOLNPGM("");
  1940. #endif /* CMDBUFFER_DEBUG */
  1941. unsigned long codenum; //throw away variable
  1942. char *starpos = NULL;
  1943. #ifdef ENABLE_AUTO_BED_LEVELING
  1944. float x_tmp, y_tmp, z_tmp, real_z;
  1945. #endif
  1946. // PRUSA GCODES
  1947. #ifdef SNMM
  1948. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1949. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1950. int8_t SilentMode;
  1951. #endif
  1952. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1953. starpos = (strchr(strchr_pointer + 5, '*'));
  1954. if (starpos != NULL)
  1955. *(starpos) = '\0';
  1956. lcd_setstatus(strchr_pointer + 5);
  1957. }
  1958. else if(code_seen("PRUSA")){
  1959. if (code_seen("Ping")) { //PRUSA Ping
  1960. if (farm_mode) {
  1961. PingTime = millis();
  1962. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1963. }
  1964. }
  1965. else if (code_seen("PRN")) {
  1966. MYSERIAL.println(status_number);
  1967. }else if (code_seen("fn")) {
  1968. if (farm_mode) {
  1969. MYSERIAL.println(farm_no);
  1970. }
  1971. else {
  1972. MYSERIAL.println("Not in farm mode.");
  1973. }
  1974. }else if (code_seen("fv")) {
  1975. // get file version
  1976. #ifdef SDSUPPORT
  1977. card.openFile(strchr_pointer + 3,true);
  1978. while (true) {
  1979. uint16_t readByte = card.get();
  1980. MYSERIAL.write(readByte);
  1981. if (readByte=='\n') {
  1982. break;
  1983. }
  1984. }
  1985. card.closefile();
  1986. #endif // SDSUPPORT
  1987. } else if (code_seen("M28")) {
  1988. trace();
  1989. prusa_sd_card_upload = true;
  1990. card.openFile(strchr_pointer+4,false);
  1991. } else if(code_seen("Fir")){
  1992. SERIAL_PROTOCOLLN(FW_version);
  1993. } else if(code_seen("Rev")){
  1994. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1995. } else if(code_seen("Lang")) {
  1996. lcd_force_language_selection();
  1997. } else if(code_seen("Lz")) {
  1998. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1999. } else if (code_seen("SERIAL LOW")) {
  2000. MYSERIAL.println("SERIAL LOW");
  2001. MYSERIAL.begin(BAUDRATE);
  2002. return;
  2003. } else if (code_seen("SERIAL HIGH")) {
  2004. MYSERIAL.println("SERIAL HIGH");
  2005. MYSERIAL.begin(1152000);
  2006. return;
  2007. } else if(code_seen("Beat")) {
  2008. // Kick farm link timer
  2009. kicktime = millis();
  2010. } else if(code_seen("FR")) {
  2011. // Factory full reset
  2012. factory_reset(0,true);
  2013. }
  2014. //else if (code_seen('Cal')) {
  2015. // lcd_calibration();
  2016. // }
  2017. }
  2018. else if (code_seen('^')) {
  2019. // nothing, this is a version line
  2020. } else if(code_seen('G'))
  2021. {
  2022. switch((int)code_value())
  2023. {
  2024. case 0: // G0 -> G1
  2025. case 1: // G1
  2026. if(Stopped == false) {
  2027. #ifdef FILAMENT_RUNOUT_SUPPORT
  2028. if(READ(FR_SENS)){
  2029. feedmultiplyBckp=feedmultiply;
  2030. float target[4];
  2031. float lastpos[4];
  2032. target[X_AXIS]=current_position[X_AXIS];
  2033. target[Y_AXIS]=current_position[Y_AXIS];
  2034. target[Z_AXIS]=current_position[Z_AXIS];
  2035. target[E_AXIS]=current_position[E_AXIS];
  2036. lastpos[X_AXIS]=current_position[X_AXIS];
  2037. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2038. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2039. lastpos[E_AXIS]=current_position[E_AXIS];
  2040. //retract by E
  2041. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2042. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2043. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2044. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2045. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2046. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2048. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2049. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2050. //finish moves
  2051. st_synchronize();
  2052. //disable extruder steppers so filament can be removed
  2053. disable_e0();
  2054. disable_e1();
  2055. disable_e2();
  2056. delay(100);
  2057. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2058. uint8_t cnt=0;
  2059. int counterBeep = 0;
  2060. lcd_wait_interact();
  2061. while(!lcd_clicked()){
  2062. cnt++;
  2063. manage_heater();
  2064. manage_inactivity(true);
  2065. //lcd_update();
  2066. if(cnt==0)
  2067. {
  2068. #if BEEPER > 0
  2069. if (counterBeep== 500){
  2070. counterBeep = 0;
  2071. }
  2072. SET_OUTPUT(BEEPER);
  2073. if (counterBeep== 0){
  2074. WRITE(BEEPER,HIGH);
  2075. }
  2076. if (counterBeep== 20){
  2077. WRITE(BEEPER,LOW);
  2078. }
  2079. counterBeep++;
  2080. #else
  2081. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2082. lcd_buzz(1000/6,100);
  2083. #else
  2084. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2085. #endif
  2086. #endif
  2087. }
  2088. }
  2089. WRITE(BEEPER,LOW);
  2090. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2091. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2092. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2093. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2094. lcd_change_fil_state = 0;
  2095. lcd_loading_filament();
  2096. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2097. lcd_change_fil_state = 0;
  2098. lcd_alright();
  2099. switch(lcd_change_fil_state){
  2100. case 2:
  2101. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2102. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2103. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2104. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2105. lcd_loading_filament();
  2106. break;
  2107. case 3:
  2108. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2110. lcd_loading_color();
  2111. break;
  2112. default:
  2113. lcd_change_success();
  2114. break;
  2115. }
  2116. }
  2117. target[E_AXIS]+= 5;
  2118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2119. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2120. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2121. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2122. //plan_set_e_position(current_position[E_AXIS]);
  2123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2124. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2125. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2126. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2127. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2128. plan_set_e_position(lastpos[E_AXIS]);
  2129. feedmultiply=feedmultiplyBckp;
  2130. char cmd[9];
  2131. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2132. enquecommand(cmd);
  2133. }
  2134. #endif
  2135. get_coordinates(); // For X Y Z E F
  2136. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2137. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2138. }
  2139. #ifdef FWRETRACT
  2140. if(autoretract_enabled)
  2141. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2142. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2143. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2144. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2145. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2146. retract(!retracted);
  2147. return;
  2148. }
  2149. }
  2150. #endif //FWRETRACT
  2151. prepare_move();
  2152. //ClearToSend();
  2153. }
  2154. break;
  2155. case 2: // G2 - CW ARC
  2156. if(Stopped == false) {
  2157. get_arc_coordinates();
  2158. prepare_arc_move(true);
  2159. }
  2160. break;
  2161. case 3: // G3 - CCW ARC
  2162. if(Stopped == false) {
  2163. get_arc_coordinates();
  2164. prepare_arc_move(false);
  2165. }
  2166. break;
  2167. case 4: // G4 dwell
  2168. codenum = 0;
  2169. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2170. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2171. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2172. st_synchronize();
  2173. codenum += millis(); // keep track of when we started waiting
  2174. previous_millis_cmd = millis();
  2175. while(millis() < codenum) {
  2176. manage_heater();
  2177. manage_inactivity();
  2178. lcd_update();
  2179. }
  2180. break;
  2181. #ifdef FWRETRACT
  2182. case 10: // G10 retract
  2183. #if EXTRUDERS > 1
  2184. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2185. retract(true,retracted_swap[active_extruder]);
  2186. #else
  2187. retract(true);
  2188. #endif
  2189. break;
  2190. case 11: // G11 retract_recover
  2191. #if EXTRUDERS > 1
  2192. retract(false,retracted_swap[active_extruder]);
  2193. #else
  2194. retract(false);
  2195. #endif
  2196. break;
  2197. #endif //FWRETRACT
  2198. case 28: //G28 Home all Axis one at a time
  2199. homing_flag = true;
  2200. #ifdef ENABLE_AUTO_BED_LEVELING
  2201. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2202. #endif //ENABLE_AUTO_BED_LEVELING
  2203. // For mesh bed leveling deactivate the matrix temporarily
  2204. #ifdef MESH_BED_LEVELING
  2205. mbl.active = 0;
  2206. #endif
  2207. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2208. // the planner will not perform any adjustments in the XY plane.
  2209. // Wait for the motors to stop and update the current position with the absolute values.
  2210. world2machine_revert_to_uncorrected();
  2211. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2212. // consumed during the first movements following this statement.
  2213. babystep_undo();
  2214. saved_feedrate = feedrate;
  2215. saved_feedmultiply = feedmultiply;
  2216. feedmultiply = 100;
  2217. previous_millis_cmd = millis();
  2218. enable_endstops(true);
  2219. for(int8_t i=0; i < NUM_AXIS; i++)
  2220. destination[i] = current_position[i];
  2221. feedrate = 0.0;
  2222. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2223. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2224. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2225. homeaxis(Z_AXIS);
  2226. }
  2227. #endif
  2228. #ifdef QUICK_HOME
  2229. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2230. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2231. {
  2232. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2233. int x_axis_home_dir = home_dir(X_AXIS);
  2234. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2235. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2236. feedrate = homing_feedrate[X_AXIS];
  2237. if(homing_feedrate[Y_AXIS]<feedrate)
  2238. feedrate = homing_feedrate[Y_AXIS];
  2239. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2240. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2241. } else {
  2242. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2243. }
  2244. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2245. st_synchronize();
  2246. axis_is_at_home(X_AXIS);
  2247. axis_is_at_home(Y_AXIS);
  2248. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2249. destination[X_AXIS] = current_position[X_AXIS];
  2250. destination[Y_AXIS] = current_position[Y_AXIS];
  2251. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2252. feedrate = 0.0;
  2253. st_synchronize();
  2254. endstops_hit_on_purpose();
  2255. current_position[X_AXIS] = destination[X_AXIS];
  2256. current_position[Y_AXIS] = destination[Y_AXIS];
  2257. current_position[Z_AXIS] = destination[Z_AXIS];
  2258. }
  2259. #endif /* QUICK_HOME */
  2260. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2261. homeaxis(X_AXIS);
  2262. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2263. homeaxis(Y_AXIS);
  2264. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2265. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2266. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2267. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2268. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2269. #ifndef Z_SAFE_HOMING
  2270. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2271. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2272. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2273. feedrate = max_feedrate[Z_AXIS];
  2274. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2275. st_synchronize();
  2276. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2277. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2278. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2279. {
  2280. homeaxis(X_AXIS);
  2281. homeaxis(Y_AXIS);
  2282. }
  2283. // 1st mesh bed leveling measurement point, corrected.
  2284. world2machine_initialize();
  2285. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2286. world2machine_reset();
  2287. if (destination[Y_AXIS] < Y_MIN_POS)
  2288. destination[Y_AXIS] = Y_MIN_POS;
  2289. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2290. feedrate = homing_feedrate[Z_AXIS]/10;
  2291. current_position[Z_AXIS] = 0;
  2292. enable_endstops(false);
  2293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2295. st_synchronize();
  2296. current_position[X_AXIS] = destination[X_AXIS];
  2297. current_position[Y_AXIS] = destination[Y_AXIS];
  2298. enable_endstops(true);
  2299. endstops_hit_on_purpose();
  2300. homeaxis(Z_AXIS);
  2301. #else // MESH_BED_LEVELING
  2302. homeaxis(Z_AXIS);
  2303. #endif // MESH_BED_LEVELING
  2304. }
  2305. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2306. if(home_all_axis) {
  2307. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2308. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2309. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2310. feedrate = XY_TRAVEL_SPEED/60;
  2311. current_position[Z_AXIS] = 0;
  2312. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2313. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2314. st_synchronize();
  2315. current_position[X_AXIS] = destination[X_AXIS];
  2316. current_position[Y_AXIS] = destination[Y_AXIS];
  2317. homeaxis(Z_AXIS);
  2318. }
  2319. // Let's see if X and Y are homed and probe is inside bed area.
  2320. if(code_seen(axis_codes[Z_AXIS])) {
  2321. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2322. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2323. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2324. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2325. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2326. current_position[Z_AXIS] = 0;
  2327. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2328. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2329. feedrate = max_feedrate[Z_AXIS];
  2330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2331. st_synchronize();
  2332. homeaxis(Z_AXIS);
  2333. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2334. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2335. SERIAL_ECHO_START;
  2336. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2337. } else {
  2338. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2339. SERIAL_ECHO_START;
  2340. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2341. }
  2342. }
  2343. #endif // Z_SAFE_HOMING
  2344. #endif // Z_HOME_DIR < 0
  2345. if(code_seen(axis_codes[Z_AXIS])) {
  2346. if(code_value_long() != 0) {
  2347. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2348. }
  2349. }
  2350. #ifdef ENABLE_AUTO_BED_LEVELING
  2351. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2352. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2353. }
  2354. #endif
  2355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2356. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2357. enable_endstops(false);
  2358. #endif
  2359. feedrate = saved_feedrate;
  2360. feedmultiply = saved_feedmultiply;
  2361. previous_millis_cmd = millis();
  2362. endstops_hit_on_purpose();
  2363. #ifndef MESH_BED_LEVELING
  2364. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2365. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2366. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2367. lcd_adjust_z();
  2368. #endif
  2369. // Load the machine correction matrix
  2370. world2machine_initialize();
  2371. // and correct the current_position to match the transformed coordinate system.
  2372. world2machine_update_current();
  2373. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2374. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2375. {
  2376. }
  2377. else
  2378. {
  2379. st_synchronize();
  2380. homing_flag = false;
  2381. // Push the commands to the front of the message queue in the reverse order!
  2382. // There shall be always enough space reserved for these commands.
  2383. // enquecommand_front_P((PSTR("G80")));
  2384. goto case_G80;
  2385. }
  2386. #endif
  2387. if (farm_mode) { prusa_statistics(20); };
  2388. homing_flag = false;
  2389. SERIAL_ECHOLNPGM("Homing happened");
  2390. SERIAL_ECHOPGM("Current position X AXIS:");
  2391. MYSERIAL.println(current_position[X_AXIS]);
  2392. SERIAL_ECHOPGM("Current position Y_AXIS:");
  2393. MYSERIAL.println(current_position[Y_AXIS]);
  2394. break;
  2395. #ifdef ENABLE_AUTO_BED_LEVELING
  2396. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2397. {
  2398. #if Z_MIN_PIN == -1
  2399. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2400. #endif
  2401. // Prevent user from running a G29 without first homing in X and Y
  2402. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2403. {
  2404. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2405. SERIAL_ECHO_START;
  2406. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2407. break; // abort G29, since we don't know where we are
  2408. }
  2409. st_synchronize();
  2410. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2411. //vector_3 corrected_position = plan_get_position_mm();
  2412. //corrected_position.debug("position before G29");
  2413. plan_bed_level_matrix.set_to_identity();
  2414. vector_3 uncorrected_position = plan_get_position();
  2415. //uncorrected_position.debug("position durring G29");
  2416. current_position[X_AXIS] = uncorrected_position.x;
  2417. current_position[Y_AXIS] = uncorrected_position.y;
  2418. current_position[Z_AXIS] = uncorrected_position.z;
  2419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2420. setup_for_endstop_move();
  2421. feedrate = homing_feedrate[Z_AXIS];
  2422. #ifdef AUTO_BED_LEVELING_GRID
  2423. // probe at the points of a lattice grid
  2424. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2425. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2426. // solve the plane equation ax + by + d = z
  2427. // A is the matrix with rows [x y 1] for all the probed points
  2428. // B is the vector of the Z positions
  2429. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2430. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2431. // "A" matrix of the linear system of equations
  2432. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2433. // "B" vector of Z points
  2434. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2435. int probePointCounter = 0;
  2436. bool zig = true;
  2437. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2438. {
  2439. int xProbe, xInc;
  2440. if (zig)
  2441. {
  2442. xProbe = LEFT_PROBE_BED_POSITION;
  2443. //xEnd = RIGHT_PROBE_BED_POSITION;
  2444. xInc = xGridSpacing;
  2445. zig = false;
  2446. } else // zag
  2447. {
  2448. xProbe = RIGHT_PROBE_BED_POSITION;
  2449. //xEnd = LEFT_PROBE_BED_POSITION;
  2450. xInc = -xGridSpacing;
  2451. zig = true;
  2452. }
  2453. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2454. {
  2455. float z_before;
  2456. if (probePointCounter == 0)
  2457. {
  2458. // raise before probing
  2459. z_before = Z_RAISE_BEFORE_PROBING;
  2460. } else
  2461. {
  2462. // raise extruder
  2463. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2464. }
  2465. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2466. eqnBVector[probePointCounter] = measured_z;
  2467. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2468. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2469. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2470. probePointCounter++;
  2471. xProbe += xInc;
  2472. }
  2473. }
  2474. clean_up_after_endstop_move();
  2475. // solve lsq problem
  2476. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2477. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2478. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2479. SERIAL_PROTOCOLPGM(" b: ");
  2480. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2481. SERIAL_PROTOCOLPGM(" d: ");
  2482. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2483. set_bed_level_equation_lsq(plane_equation_coefficients);
  2484. free(plane_equation_coefficients);
  2485. #else // AUTO_BED_LEVELING_GRID not defined
  2486. // Probe at 3 arbitrary points
  2487. // probe 1
  2488. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2489. // probe 2
  2490. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2491. // probe 3
  2492. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2493. clean_up_after_endstop_move();
  2494. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2495. #endif // AUTO_BED_LEVELING_GRID
  2496. st_synchronize();
  2497. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2498. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2499. // When the bed is uneven, this height must be corrected.
  2500. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2501. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2502. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2503. z_tmp = current_position[Z_AXIS];
  2504. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2505. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2506. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2507. }
  2508. break;
  2509. #ifndef Z_PROBE_SLED
  2510. case 30: // G30 Single Z Probe
  2511. {
  2512. st_synchronize();
  2513. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2514. setup_for_endstop_move();
  2515. feedrate = homing_feedrate[Z_AXIS];
  2516. run_z_probe();
  2517. SERIAL_PROTOCOLPGM(MSG_BED);
  2518. SERIAL_PROTOCOLPGM(" X: ");
  2519. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2520. SERIAL_PROTOCOLPGM(" Y: ");
  2521. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2522. SERIAL_PROTOCOLPGM(" Z: ");
  2523. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2524. SERIAL_PROTOCOLPGM("\n");
  2525. clean_up_after_endstop_move();
  2526. }
  2527. break;
  2528. #else
  2529. case 31: // dock the sled
  2530. dock_sled(true);
  2531. break;
  2532. case 32: // undock the sled
  2533. dock_sled(false);
  2534. break;
  2535. #endif // Z_PROBE_SLED
  2536. #endif // ENABLE_AUTO_BED_LEVELING
  2537. #ifdef MESH_BED_LEVELING
  2538. case 30: // G30 Single Z Probe
  2539. {
  2540. st_synchronize();
  2541. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2542. setup_for_endstop_move();
  2543. feedrate = homing_feedrate[Z_AXIS];
  2544. find_bed_induction_sensor_point_z(-10.f, 3);
  2545. SERIAL_PROTOCOLRPGM(MSG_BED);
  2546. SERIAL_PROTOCOLPGM(" X: ");
  2547. MYSERIAL.print(current_position[X_AXIS], 5);
  2548. SERIAL_PROTOCOLPGM(" Y: ");
  2549. MYSERIAL.print(current_position[Y_AXIS], 5);
  2550. SERIAL_PROTOCOLPGM(" Z: ");
  2551. MYSERIAL.print(current_position[Z_AXIS], 5);
  2552. SERIAL_PROTOCOLPGM("\n");
  2553. clean_up_after_endstop_move();
  2554. }
  2555. break;
  2556. case 75:
  2557. {
  2558. for (int i = 40; i <= 110; i++) {
  2559. MYSERIAL.print(i);
  2560. MYSERIAL.print(" ");
  2561. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2562. }
  2563. }
  2564. break;
  2565. case 76: //PINDA probe temperature calibration
  2566. {
  2567. setTargetBed(PINDA_MIN_T);
  2568. float zero_z;
  2569. int z_shift = 0; //unit: steps
  2570. int t_c; // temperature
  2571. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2572. // We don't know where we are! HOME!
  2573. // Push the commands to the front of the message queue in the reverse order!
  2574. // There shall be always enough space reserved for these commands.
  2575. repeatcommand_front(); // repeat G76 with all its parameters
  2576. enquecommand_front_P((PSTR("G28 W0")));
  2577. break;
  2578. }
  2579. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2580. custom_message = true;
  2581. custom_message_type = 4;
  2582. custom_message_state = 1;
  2583. custom_message = MSG_TEMP_CALIBRATION;
  2584. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2585. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2586. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2588. st_synchronize();
  2589. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2590. delay_keep_alive(1000);
  2591. serialecho_temperatures();
  2592. }
  2593. //enquecommand_P(PSTR("M190 S50"));
  2594. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2595. delay_keep_alive(1000);
  2596. serialecho_temperatures();
  2597. }
  2598. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2599. current_position[Z_AXIS] = 5;
  2600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2601. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2602. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2604. st_synchronize();
  2605. find_bed_induction_sensor_point_z(-1.f);
  2606. zero_z = current_position[Z_AXIS];
  2607. //current_position[Z_AXIS]
  2608. SERIAL_ECHOLNPGM("");
  2609. SERIAL_ECHOPGM("ZERO: ");
  2610. MYSERIAL.print(current_position[Z_AXIS]);
  2611. SERIAL_ECHOLNPGM("");
  2612. for (int i = 0; i<5; i++) {
  2613. SERIAL_ECHOPGM("Step: ");
  2614. MYSERIAL.print(i+2);
  2615. SERIAL_ECHOLNPGM("/6");
  2616. custom_message_state = i + 2;
  2617. t_c = 60 + i * 10;
  2618. setTargetBed(t_c);
  2619. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2620. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2621. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2623. st_synchronize();
  2624. while (degBed() < t_c) {
  2625. delay_keep_alive(1000);
  2626. serialecho_temperatures();
  2627. }
  2628. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2629. delay_keep_alive(1000);
  2630. serialecho_temperatures();
  2631. }
  2632. current_position[Z_AXIS] = 5;
  2633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2634. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2635. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2637. st_synchronize();
  2638. find_bed_induction_sensor_point_z(-1.f);
  2639. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2640. SERIAL_ECHOLNPGM("");
  2641. SERIAL_ECHOPGM("Temperature: ");
  2642. MYSERIAL.print(t_c);
  2643. SERIAL_ECHOPGM(" Z shift (mm):");
  2644. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2645. SERIAL_ECHOLNPGM("");
  2646. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2647. }
  2648. custom_message_type = 0;
  2649. custom_message = false;
  2650. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2651. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2652. disable_x();
  2653. disable_y();
  2654. disable_z();
  2655. disable_e0();
  2656. disable_e1();
  2657. disable_e2();
  2658. setTargetBed(0); //set bed target temperature back to 0
  2659. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2660. lcd_update_enable(true);
  2661. lcd_update(2);
  2662. }
  2663. break;
  2664. #ifdef DIS
  2665. case 77:
  2666. {
  2667. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2668. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2669. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2670. float dimension_x = 40;
  2671. float dimension_y = 40;
  2672. int points_x = 40;
  2673. int points_y = 40;
  2674. float offset_x = 74;
  2675. float offset_y = 33;
  2676. if (code_seen('X')) dimension_x = code_value();
  2677. if (code_seen('Y')) dimension_y = code_value();
  2678. if (code_seen('XP')) points_x = code_value();
  2679. if (code_seen('YP')) points_y = code_value();
  2680. if (code_seen('XO')) offset_x = code_value();
  2681. if (code_seen('YO')) offset_y = code_value();
  2682. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2683. } break;
  2684. #endif
  2685. /**
  2686. * G80: Mesh-based Z probe, probes a grid and produces a
  2687. * mesh to compensate for variable bed height
  2688. *
  2689. * The S0 report the points as below
  2690. *
  2691. * +----> X-axis
  2692. * |
  2693. * |
  2694. * v Y-axis
  2695. *
  2696. */
  2697. case 80:
  2698. #ifdef MK1BP
  2699. break;
  2700. #endif //MK1BP
  2701. case_G80:
  2702. {
  2703. mesh_bed_leveling_flag = true;
  2704. int8_t verbosity_level = 0;
  2705. static bool run = false;
  2706. if (code_seen('V')) {
  2707. // Just 'V' without a number counts as V1.
  2708. char c = strchr_pointer[1];
  2709. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2710. }
  2711. // Firstly check if we know where we are
  2712. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2713. // We don't know where we are! HOME!
  2714. // Push the commands to the front of the message queue in the reverse order!
  2715. // There shall be always enough space reserved for these commands.
  2716. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2717. repeatcommand_front(); // repeat G80 with all its parameters
  2718. enquecommand_front_P((PSTR("G28 W0")));
  2719. }
  2720. else {
  2721. mesh_bed_leveling_flag = false;
  2722. }
  2723. break;
  2724. }
  2725. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2726. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2727. temp_compensation_start();
  2728. run = true;
  2729. repeatcommand_front(); // repeat G80 with all its parameters
  2730. enquecommand_front_P((PSTR("G28 W0")));
  2731. }
  2732. else {
  2733. mesh_bed_leveling_flag = false;
  2734. }
  2735. break;
  2736. }
  2737. run = false;
  2738. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2739. mesh_bed_leveling_flag = false;
  2740. break;
  2741. }
  2742. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2743. bool custom_message_old = custom_message;
  2744. unsigned int custom_message_type_old = custom_message_type;
  2745. unsigned int custom_message_state_old = custom_message_state;
  2746. custom_message = true;
  2747. custom_message_type = 1;
  2748. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2749. lcd_update(1);
  2750. mbl.reset(); //reset mesh bed leveling
  2751. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2752. // consumed during the first movements following this statement.
  2753. babystep_undo();
  2754. // Cycle through all points and probe them
  2755. // First move up. During this first movement, the babystepping will be reverted.
  2756. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2758. // The move to the first calibration point.
  2759. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2760. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2761. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2762. if (verbosity_level >= 1) {
  2763. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2764. }
  2765. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2767. // Wait until the move is finished.
  2768. st_synchronize();
  2769. int mesh_point = 0; //index number of calibration point
  2770. int ix = 0;
  2771. int iy = 0;
  2772. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2773. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2774. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2775. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2776. if (verbosity_level >= 1) {
  2777. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2778. }
  2779. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2780. const char *kill_message = NULL;
  2781. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2782. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2783. // Get coords of a measuring point.
  2784. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2785. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2786. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2787. float z0 = 0.f;
  2788. if (has_z && mesh_point > 0) {
  2789. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2790. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2791. //#if 0
  2792. if (verbosity_level >= 1) {
  2793. SERIAL_ECHOPGM("Bed leveling, point: ");
  2794. MYSERIAL.print(mesh_point);
  2795. SERIAL_ECHOPGM(", calibration z: ");
  2796. MYSERIAL.print(z0, 5);
  2797. SERIAL_ECHOLNPGM("");
  2798. }
  2799. //#endif
  2800. }
  2801. // Move Z up to MESH_HOME_Z_SEARCH.
  2802. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2804. st_synchronize();
  2805. // Move to XY position of the sensor point.
  2806. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2807. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2808. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2809. if (verbosity_level >= 1) {
  2810. SERIAL_PROTOCOL(mesh_point);
  2811. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2812. }
  2813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2814. st_synchronize();
  2815. // Go down until endstop is hit
  2816. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2817. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2818. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2819. break;
  2820. }
  2821. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2822. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2823. break;
  2824. }
  2825. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2826. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2827. break;
  2828. }
  2829. if (verbosity_level >= 10) {
  2830. SERIAL_ECHOPGM("X: ");
  2831. MYSERIAL.print(current_position[X_AXIS], 5);
  2832. SERIAL_ECHOLNPGM("");
  2833. SERIAL_ECHOPGM("Y: ");
  2834. MYSERIAL.print(current_position[Y_AXIS], 5);
  2835. SERIAL_PROTOCOLPGM("\n");
  2836. }
  2837. if (verbosity_level >= 1) {
  2838. SERIAL_ECHOPGM("mesh bed leveling: ");
  2839. MYSERIAL.print(current_position[Z_AXIS], 5);
  2840. SERIAL_ECHOLNPGM("");
  2841. }
  2842. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2843. custom_message_state--;
  2844. mesh_point++;
  2845. lcd_update(1);
  2846. }
  2847. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2848. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2849. if (verbosity_level >= 20) {
  2850. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2851. MYSERIAL.print(current_position[Z_AXIS], 5);
  2852. }
  2853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2854. st_synchronize();
  2855. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2856. kill(kill_message);
  2857. SERIAL_ECHOLNPGM("killed");
  2858. }
  2859. clean_up_after_endstop_move();
  2860. SERIAL_ECHOLNPGM("clean up finished ");
  2861. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2862. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2863. SERIAL_ECHOLNPGM("babystep applied");
  2864. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2865. if (verbosity_level >= 1) {
  2866. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2867. }
  2868. for (uint8_t i = 0; i < 4; ++i) {
  2869. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2870. long correction = 0;
  2871. if (code_seen(codes[i]))
  2872. correction = code_value_long();
  2873. else if (eeprom_bed_correction_valid) {
  2874. unsigned char *addr = (i < 2) ?
  2875. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2876. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2877. correction = eeprom_read_int8(addr);
  2878. }
  2879. if (correction == 0)
  2880. continue;
  2881. float offset = float(correction) * 0.001f;
  2882. if (fabs(offset) > 0.101f) {
  2883. SERIAL_ERROR_START;
  2884. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2885. SERIAL_ECHO(offset);
  2886. SERIAL_ECHOLNPGM(" microns");
  2887. }
  2888. else {
  2889. switch (i) {
  2890. case 0:
  2891. for (uint8_t row = 0; row < 3; ++row) {
  2892. mbl.z_values[row][1] += 0.5f * offset;
  2893. mbl.z_values[row][0] += offset;
  2894. }
  2895. break;
  2896. case 1:
  2897. for (uint8_t row = 0; row < 3; ++row) {
  2898. mbl.z_values[row][1] += 0.5f * offset;
  2899. mbl.z_values[row][2] += offset;
  2900. }
  2901. break;
  2902. case 2:
  2903. for (uint8_t col = 0; col < 3; ++col) {
  2904. mbl.z_values[1][col] += 0.5f * offset;
  2905. mbl.z_values[0][col] += offset;
  2906. }
  2907. break;
  2908. case 3:
  2909. for (uint8_t col = 0; col < 3; ++col) {
  2910. mbl.z_values[1][col] += 0.5f * offset;
  2911. mbl.z_values[2][col] += offset;
  2912. }
  2913. break;
  2914. }
  2915. }
  2916. }
  2917. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2918. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2919. SERIAL_ECHOLNPGM("Upsample finished");
  2920. mbl.active = 1; //activate mesh bed leveling
  2921. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2922. go_home_with_z_lift();
  2923. SERIAL_ECHOLNPGM("Go home finished");
  2924. //unretract (after PINDA preheat retraction)
  2925. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2926. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2928. }
  2929. // Restore custom message state
  2930. custom_message = custom_message_old;
  2931. custom_message_type = custom_message_type_old;
  2932. custom_message_state = custom_message_state_old;
  2933. mesh_bed_leveling_flag = false;
  2934. mesh_bed_run_from_menu = false;
  2935. lcd_update(2);
  2936. }
  2937. break;
  2938. /**
  2939. * G81: Print mesh bed leveling status and bed profile if activated
  2940. */
  2941. case 81:
  2942. if (mbl.active) {
  2943. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2944. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2945. SERIAL_PROTOCOLPGM(",");
  2946. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2947. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2948. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2949. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2950. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2951. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2952. SERIAL_PROTOCOLPGM(" ");
  2953. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2954. }
  2955. SERIAL_PROTOCOLPGM("\n");
  2956. }
  2957. }
  2958. else
  2959. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2960. break;
  2961. #if 0
  2962. /**
  2963. * G82: Single Z probe at current location
  2964. *
  2965. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2966. *
  2967. */
  2968. case 82:
  2969. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2970. setup_for_endstop_move();
  2971. find_bed_induction_sensor_point_z();
  2972. clean_up_after_endstop_move();
  2973. SERIAL_PROTOCOLPGM("Bed found at: ");
  2974. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2975. SERIAL_PROTOCOLPGM("\n");
  2976. break;
  2977. /**
  2978. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2979. */
  2980. case 83:
  2981. {
  2982. int babystepz = code_seen('S') ? code_value() : 0;
  2983. int BabyPosition = code_seen('P') ? code_value() : 0;
  2984. if (babystepz != 0) {
  2985. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2986. // Is the axis indexed starting with zero or one?
  2987. if (BabyPosition > 4) {
  2988. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2989. }else{
  2990. // Save it to the eeprom
  2991. babystepLoadZ = babystepz;
  2992. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2993. // adjust the Z
  2994. babystepsTodoZadd(babystepLoadZ);
  2995. }
  2996. }
  2997. }
  2998. break;
  2999. /**
  3000. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3001. */
  3002. case 84:
  3003. babystepsTodoZsubtract(babystepLoadZ);
  3004. // babystepLoadZ = 0;
  3005. break;
  3006. /**
  3007. * G85: Prusa3D specific: Pick best babystep
  3008. */
  3009. case 85:
  3010. lcd_pick_babystep();
  3011. break;
  3012. #endif
  3013. /**
  3014. * G86: Prusa3D specific: Disable babystep correction after home.
  3015. * This G-code will be performed at the start of a calibration script.
  3016. */
  3017. case 86:
  3018. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3019. break;
  3020. /**
  3021. * G87: Prusa3D specific: Enable babystep correction after home
  3022. * This G-code will be performed at the end of a calibration script.
  3023. */
  3024. case 87:
  3025. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3026. break;
  3027. /**
  3028. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3029. */
  3030. case 88:
  3031. break;
  3032. #endif // ENABLE_MESH_BED_LEVELING
  3033. case 90: // G90
  3034. relative_mode = false;
  3035. break;
  3036. case 91: // G91
  3037. relative_mode = true;
  3038. break;
  3039. case 92: // G92
  3040. if(!code_seen(axis_codes[E_AXIS]))
  3041. st_synchronize();
  3042. for(int8_t i=0; i < NUM_AXIS; i++) {
  3043. if(code_seen(axis_codes[i])) {
  3044. if(i == E_AXIS) {
  3045. current_position[i] = code_value();
  3046. plan_set_e_position(current_position[E_AXIS]);
  3047. }
  3048. else {
  3049. current_position[i] = code_value()+add_homing[i];
  3050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3051. }
  3052. }
  3053. }
  3054. break;
  3055. case 98: //activate farm mode
  3056. farm_mode = 1;
  3057. PingTime = millis();
  3058. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3059. break;
  3060. case 99: //deactivate farm mode
  3061. farm_mode = 0;
  3062. lcd_printer_connected();
  3063. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3064. lcd_update(2);
  3065. break;
  3066. }
  3067. } // end if(code_seen('G'))
  3068. else if(code_seen('M'))
  3069. {
  3070. int index;
  3071. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3072. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3073. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3074. SERIAL_ECHOLNPGM("Invalid M code");
  3075. } else
  3076. switch((int)code_value())
  3077. {
  3078. #ifdef ULTIPANEL
  3079. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3080. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3081. {
  3082. char *src = strchr_pointer + 2;
  3083. codenum = 0;
  3084. bool hasP = false, hasS = false;
  3085. if (code_seen('P')) {
  3086. codenum = code_value(); // milliseconds to wait
  3087. hasP = codenum > 0;
  3088. }
  3089. if (code_seen('S')) {
  3090. codenum = code_value() * 1000; // seconds to wait
  3091. hasS = codenum > 0;
  3092. }
  3093. starpos = strchr(src, '*');
  3094. if (starpos != NULL) *(starpos) = '\0';
  3095. while (*src == ' ') ++src;
  3096. if (!hasP && !hasS && *src != '\0') {
  3097. lcd_setstatus(src);
  3098. } else {
  3099. LCD_MESSAGERPGM(MSG_USERWAIT);
  3100. }
  3101. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3102. st_synchronize();
  3103. previous_millis_cmd = millis();
  3104. if (codenum > 0){
  3105. codenum += millis(); // keep track of when we started waiting
  3106. while(millis() < codenum && !lcd_clicked()){
  3107. manage_heater();
  3108. manage_inactivity(true);
  3109. lcd_update();
  3110. }
  3111. lcd_ignore_click(false);
  3112. }else{
  3113. if (!lcd_detected())
  3114. break;
  3115. while(!lcd_clicked()){
  3116. manage_heater();
  3117. manage_inactivity(true);
  3118. lcd_update();
  3119. }
  3120. }
  3121. if (IS_SD_PRINTING)
  3122. LCD_MESSAGERPGM(MSG_RESUMING);
  3123. else
  3124. LCD_MESSAGERPGM(WELCOME_MSG);
  3125. }
  3126. break;
  3127. #endif
  3128. case 17:
  3129. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3130. enable_x();
  3131. enable_y();
  3132. enable_z();
  3133. enable_e0();
  3134. enable_e1();
  3135. enable_e2();
  3136. break;
  3137. #ifdef SDSUPPORT
  3138. case 20: // M20 - list SD card
  3139. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3140. card.ls();
  3141. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3142. break;
  3143. case 21: // M21 - init SD card
  3144. card.initsd();
  3145. break;
  3146. case 22: //M22 - release SD card
  3147. card.release();
  3148. break;
  3149. case 23: //M23 - Select file
  3150. starpos = (strchr(strchr_pointer + 4,'*'));
  3151. if(starpos!=NULL)
  3152. *(starpos)='\0';
  3153. card.openFile(strchr_pointer + 4,true);
  3154. break;
  3155. case 24: //M24 - Start SD print
  3156. card.startFileprint();
  3157. starttime=millis();
  3158. break;
  3159. case 25: //M25 - Pause SD print
  3160. card.pauseSDPrint();
  3161. break;
  3162. case 26: //M26 - Set SD index
  3163. if(card.cardOK && code_seen('S')) {
  3164. card.setIndex(code_value_long());
  3165. }
  3166. break;
  3167. case 27: //M27 - Get SD status
  3168. card.getStatus();
  3169. break;
  3170. case 28: //M28 - Start SD write
  3171. starpos = (strchr(strchr_pointer + 4,'*'));
  3172. if(starpos != NULL){
  3173. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3174. strchr_pointer = strchr(npos,' ') + 1;
  3175. *(starpos) = '\0';
  3176. }
  3177. card.openFile(strchr_pointer+4,false);
  3178. break;
  3179. case 29: //M29 - Stop SD write
  3180. //processed in write to file routine above
  3181. //card,saving = false;
  3182. break;
  3183. case 30: //M30 <filename> Delete File
  3184. if (card.cardOK){
  3185. card.closefile();
  3186. starpos = (strchr(strchr_pointer + 4,'*'));
  3187. if(starpos != NULL){
  3188. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3189. strchr_pointer = strchr(npos,' ') + 1;
  3190. *(starpos) = '\0';
  3191. }
  3192. card.removeFile(strchr_pointer + 4);
  3193. }
  3194. break;
  3195. case 32: //M32 - Select file and start SD print
  3196. {
  3197. if(card.sdprinting) {
  3198. st_synchronize();
  3199. }
  3200. starpos = (strchr(strchr_pointer + 4,'*'));
  3201. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3202. if(namestartpos==NULL)
  3203. {
  3204. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3205. }
  3206. else
  3207. namestartpos++; //to skip the '!'
  3208. if(starpos!=NULL)
  3209. *(starpos)='\0';
  3210. bool call_procedure=(code_seen('P'));
  3211. if(strchr_pointer>namestartpos)
  3212. call_procedure=false; //false alert, 'P' found within filename
  3213. if( card.cardOK )
  3214. {
  3215. card.openFile(namestartpos,true,!call_procedure);
  3216. if(code_seen('S'))
  3217. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3218. card.setIndex(code_value_long());
  3219. card.startFileprint();
  3220. if(!call_procedure)
  3221. starttime=millis(); //procedure calls count as normal print time.
  3222. }
  3223. } break;
  3224. case 928: //M928 - Start SD write
  3225. starpos = (strchr(strchr_pointer + 5,'*'));
  3226. if(starpos != NULL){
  3227. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3228. strchr_pointer = strchr(npos,' ') + 1;
  3229. *(starpos) = '\0';
  3230. }
  3231. card.openLogFile(strchr_pointer+5);
  3232. break;
  3233. #endif //SDSUPPORT
  3234. case 31: //M31 take time since the start of the SD print or an M109 command
  3235. {
  3236. stoptime=millis();
  3237. char time[30];
  3238. unsigned long t=(stoptime-starttime)/1000;
  3239. int sec,min;
  3240. min=t/60;
  3241. sec=t%60;
  3242. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3243. SERIAL_ECHO_START;
  3244. SERIAL_ECHOLN(time);
  3245. lcd_setstatus(time);
  3246. autotempShutdown();
  3247. }
  3248. break;
  3249. case 42: //M42 -Change pin status via gcode
  3250. if (code_seen('S'))
  3251. {
  3252. int pin_status = code_value();
  3253. int pin_number = LED_PIN;
  3254. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3255. pin_number = code_value();
  3256. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3257. {
  3258. if (sensitive_pins[i] == pin_number)
  3259. {
  3260. pin_number = -1;
  3261. break;
  3262. }
  3263. }
  3264. #if defined(FAN_PIN) && FAN_PIN > -1
  3265. if (pin_number == FAN_PIN)
  3266. fanSpeed = pin_status;
  3267. #endif
  3268. if (pin_number > -1)
  3269. {
  3270. pinMode(pin_number, OUTPUT);
  3271. digitalWrite(pin_number, pin_status);
  3272. analogWrite(pin_number, pin_status);
  3273. }
  3274. }
  3275. break;
  3276. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3277. // Reset the baby step value and the baby step applied flag.
  3278. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3279. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3280. // Reset the skew and offset in both RAM and EEPROM.
  3281. reset_bed_offset_and_skew();
  3282. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3283. // the planner will not perform any adjustments in the XY plane.
  3284. // Wait for the motors to stop and update the current position with the absolute values.
  3285. world2machine_revert_to_uncorrected();
  3286. break;
  3287. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3288. {
  3289. // Only Z calibration?
  3290. bool onlyZ = code_seen('Z');
  3291. if (!onlyZ) {
  3292. setTargetBed(0);
  3293. setTargetHotend(0, 0);
  3294. setTargetHotend(0, 1);
  3295. setTargetHotend(0, 2);
  3296. adjust_bed_reset(); //reset bed level correction
  3297. }
  3298. // Disable the default update procedure of the display. We will do a modal dialog.
  3299. lcd_update_enable(false);
  3300. // Let the planner use the uncorrected coordinates.
  3301. mbl.reset();
  3302. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3303. // the planner will not perform any adjustments in the XY plane.
  3304. // Wait for the motors to stop and update the current position with the absolute values.
  3305. world2machine_revert_to_uncorrected();
  3306. // Reset the baby step value applied without moving the axes.
  3307. babystep_reset();
  3308. // Mark all axes as in a need for homing.
  3309. memset(axis_known_position, 0, sizeof(axis_known_position));
  3310. // Home in the XY plane.
  3311. //set_destination_to_current();
  3312. setup_for_endstop_move();
  3313. home_xy();
  3314. // Let the user move the Z axes up to the end stoppers.
  3315. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3316. refresh_cmd_timeout();
  3317. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3318. lcd_wait_for_cool_down();
  3319. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3320. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3321. lcd_implementation_print_at(0, 2, 1);
  3322. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3323. }
  3324. // Move the print head close to the bed.
  3325. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3327. st_synchronize();
  3328. //#ifdef TMC2130
  3329. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3330. //#endif
  3331. int8_t verbosity_level = 0;
  3332. if (code_seen('V')) {
  3333. // Just 'V' without a number counts as V1.
  3334. char c = strchr_pointer[1];
  3335. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3336. }
  3337. if (onlyZ) {
  3338. clean_up_after_endstop_move();
  3339. // Z only calibration.
  3340. // Load the machine correction matrix
  3341. world2machine_initialize();
  3342. // and correct the current_position to match the transformed coordinate system.
  3343. world2machine_update_current();
  3344. //FIXME
  3345. bool result = sample_mesh_and_store_reference();
  3346. if (result) {
  3347. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3348. // Shipped, the nozzle height has been set already. The user can start printing now.
  3349. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3350. // babystep_apply();
  3351. }
  3352. } else {
  3353. // Reset the baby step value and the baby step applied flag.
  3354. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3355. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3356. // Complete XYZ calibration.
  3357. uint8_t point_too_far_mask = 0;
  3358. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3359. clean_up_after_endstop_move();
  3360. // Print head up.
  3361. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3363. st_synchronize();
  3364. if (result >= 0) {
  3365. point_too_far_mask = 0;
  3366. // Second half: The fine adjustment.
  3367. // Let the planner use the uncorrected coordinates.
  3368. mbl.reset();
  3369. world2machine_reset();
  3370. // Home in the XY plane.
  3371. setup_for_endstop_move();
  3372. home_xy();
  3373. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3374. clean_up_after_endstop_move();
  3375. // Print head up.
  3376. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3377. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3378. st_synchronize();
  3379. // if (result >= 0) babystep_apply();
  3380. }
  3381. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3382. if (result >= 0) {
  3383. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3384. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3385. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3386. }
  3387. }
  3388. #ifdef TMC2130
  3389. tmc2130_home_exit();
  3390. #endif
  3391. } else {
  3392. // Timeouted.
  3393. }
  3394. lcd_update_enable(true);
  3395. break;
  3396. }
  3397. /*
  3398. case 46:
  3399. {
  3400. // M46: Prusa3D: Show the assigned IP address.
  3401. uint8_t ip[4];
  3402. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3403. if (hasIP) {
  3404. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3405. SERIAL_ECHO(int(ip[0]));
  3406. SERIAL_ECHOPGM(".");
  3407. SERIAL_ECHO(int(ip[1]));
  3408. SERIAL_ECHOPGM(".");
  3409. SERIAL_ECHO(int(ip[2]));
  3410. SERIAL_ECHOPGM(".");
  3411. SERIAL_ECHO(int(ip[3]));
  3412. SERIAL_ECHOLNPGM("");
  3413. } else {
  3414. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3415. }
  3416. break;
  3417. }
  3418. */
  3419. case 47:
  3420. // M47: Prusa3D: Show end stops dialog on the display.
  3421. lcd_diag_show_end_stops();
  3422. break;
  3423. #if 0
  3424. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3425. {
  3426. // Disable the default update procedure of the display. We will do a modal dialog.
  3427. lcd_update_enable(false);
  3428. // Let the planner use the uncorrected coordinates.
  3429. mbl.reset();
  3430. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3431. // the planner will not perform any adjustments in the XY plane.
  3432. // Wait for the motors to stop and update the current position with the absolute values.
  3433. world2machine_revert_to_uncorrected();
  3434. // Move the print head close to the bed.
  3435. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3437. st_synchronize();
  3438. // Home in the XY plane.
  3439. set_destination_to_current();
  3440. setup_for_endstop_move();
  3441. home_xy();
  3442. int8_t verbosity_level = 0;
  3443. if (code_seen('V')) {
  3444. // Just 'V' without a number counts as V1.
  3445. char c = strchr_pointer[1];
  3446. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3447. }
  3448. bool success = scan_bed_induction_points(verbosity_level);
  3449. clean_up_after_endstop_move();
  3450. // Print head up.
  3451. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3453. st_synchronize();
  3454. lcd_update_enable(true);
  3455. break;
  3456. }
  3457. #endif
  3458. // M48 Z-Probe repeatability measurement function.
  3459. //
  3460. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3461. //
  3462. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3463. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3464. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3465. // regenerated.
  3466. //
  3467. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3468. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3469. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3470. //
  3471. #ifdef ENABLE_AUTO_BED_LEVELING
  3472. #ifdef Z_PROBE_REPEATABILITY_TEST
  3473. case 48: // M48 Z-Probe repeatability
  3474. {
  3475. #if Z_MIN_PIN == -1
  3476. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3477. #endif
  3478. double sum=0.0;
  3479. double mean=0.0;
  3480. double sigma=0.0;
  3481. double sample_set[50];
  3482. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3483. double X_current, Y_current, Z_current;
  3484. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3485. if (code_seen('V') || code_seen('v')) {
  3486. verbose_level = code_value();
  3487. if (verbose_level<0 || verbose_level>4 ) {
  3488. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3489. goto Sigma_Exit;
  3490. }
  3491. }
  3492. if (verbose_level > 0) {
  3493. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3494. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3495. }
  3496. if (code_seen('n')) {
  3497. n_samples = code_value();
  3498. if (n_samples<4 || n_samples>50 ) {
  3499. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3500. goto Sigma_Exit;
  3501. }
  3502. }
  3503. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3504. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3505. Z_current = st_get_position_mm(Z_AXIS);
  3506. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3507. ext_position = st_get_position_mm(E_AXIS);
  3508. if (code_seen('X') || code_seen('x') ) {
  3509. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3510. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3511. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3512. goto Sigma_Exit;
  3513. }
  3514. }
  3515. if (code_seen('Y') || code_seen('y') ) {
  3516. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3517. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3518. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3519. goto Sigma_Exit;
  3520. }
  3521. }
  3522. if (code_seen('L') || code_seen('l') ) {
  3523. n_legs = code_value();
  3524. if ( n_legs==1 )
  3525. n_legs = 2;
  3526. if ( n_legs<0 || n_legs>15 ) {
  3527. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3528. goto Sigma_Exit;
  3529. }
  3530. }
  3531. //
  3532. // Do all the preliminary setup work. First raise the probe.
  3533. //
  3534. st_synchronize();
  3535. plan_bed_level_matrix.set_to_identity();
  3536. plan_buffer_line( X_current, Y_current, Z_start_location,
  3537. ext_position,
  3538. homing_feedrate[Z_AXIS]/60,
  3539. active_extruder);
  3540. st_synchronize();
  3541. //
  3542. // Now get everything to the specified probe point So we can safely do a probe to
  3543. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3544. // use that as a starting point for each probe.
  3545. //
  3546. if (verbose_level > 2)
  3547. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3548. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3549. ext_position,
  3550. homing_feedrate[X_AXIS]/60,
  3551. active_extruder);
  3552. st_synchronize();
  3553. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3554. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3555. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3556. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3557. //
  3558. // OK, do the inital probe to get us close to the bed.
  3559. // Then retrace the right amount and use that in subsequent probes
  3560. //
  3561. setup_for_endstop_move();
  3562. run_z_probe();
  3563. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3564. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3565. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3566. ext_position,
  3567. homing_feedrate[X_AXIS]/60,
  3568. active_extruder);
  3569. st_synchronize();
  3570. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3571. for( n=0; n<n_samples; n++) {
  3572. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3573. if ( n_legs) {
  3574. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3575. int rotational_direction, l;
  3576. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3577. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3578. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3579. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3580. //SERIAL_ECHOPAIR(" theta: ",theta);
  3581. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3582. //SERIAL_PROTOCOLLNPGM("");
  3583. for( l=0; l<n_legs-1; l++) {
  3584. if (rotational_direction==1)
  3585. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3586. else
  3587. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3588. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3589. if ( radius<0.0 )
  3590. radius = -radius;
  3591. X_current = X_probe_location + cos(theta) * radius;
  3592. Y_current = Y_probe_location + sin(theta) * radius;
  3593. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3594. X_current = X_MIN_POS;
  3595. if ( X_current>X_MAX_POS)
  3596. X_current = X_MAX_POS;
  3597. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3598. Y_current = Y_MIN_POS;
  3599. if ( Y_current>Y_MAX_POS)
  3600. Y_current = Y_MAX_POS;
  3601. if (verbose_level>3 ) {
  3602. SERIAL_ECHOPAIR("x: ", X_current);
  3603. SERIAL_ECHOPAIR("y: ", Y_current);
  3604. SERIAL_PROTOCOLLNPGM("");
  3605. }
  3606. do_blocking_move_to( X_current, Y_current, Z_current );
  3607. }
  3608. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3609. }
  3610. setup_for_endstop_move();
  3611. run_z_probe();
  3612. sample_set[n] = current_position[Z_AXIS];
  3613. //
  3614. // Get the current mean for the data points we have so far
  3615. //
  3616. sum=0.0;
  3617. for( j=0; j<=n; j++) {
  3618. sum = sum + sample_set[j];
  3619. }
  3620. mean = sum / (double (n+1));
  3621. //
  3622. // Now, use that mean to calculate the standard deviation for the
  3623. // data points we have so far
  3624. //
  3625. sum=0.0;
  3626. for( j=0; j<=n; j++) {
  3627. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3628. }
  3629. sigma = sqrt( sum / (double (n+1)) );
  3630. if (verbose_level > 1) {
  3631. SERIAL_PROTOCOL(n+1);
  3632. SERIAL_PROTOCOL(" of ");
  3633. SERIAL_PROTOCOL(n_samples);
  3634. SERIAL_PROTOCOLPGM(" z: ");
  3635. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3636. }
  3637. if (verbose_level > 2) {
  3638. SERIAL_PROTOCOL(" mean: ");
  3639. SERIAL_PROTOCOL_F(mean,6);
  3640. SERIAL_PROTOCOL(" sigma: ");
  3641. SERIAL_PROTOCOL_F(sigma,6);
  3642. }
  3643. if (verbose_level > 0)
  3644. SERIAL_PROTOCOLPGM("\n");
  3645. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3646. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3647. st_synchronize();
  3648. }
  3649. delay(1000);
  3650. clean_up_after_endstop_move();
  3651. // enable_endstops(true);
  3652. if (verbose_level > 0) {
  3653. SERIAL_PROTOCOLPGM("Mean: ");
  3654. SERIAL_PROTOCOL_F(mean, 6);
  3655. SERIAL_PROTOCOLPGM("\n");
  3656. }
  3657. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3658. SERIAL_PROTOCOL_F(sigma, 6);
  3659. SERIAL_PROTOCOLPGM("\n\n");
  3660. Sigma_Exit:
  3661. break;
  3662. }
  3663. #endif // Z_PROBE_REPEATABILITY_TEST
  3664. #endif // ENABLE_AUTO_BED_LEVELING
  3665. case 104: // M104
  3666. if(setTargetedHotend(104)){
  3667. break;
  3668. }
  3669. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3670. setWatch();
  3671. break;
  3672. case 112: // M112 -Emergency Stop
  3673. kill("", 3);
  3674. break;
  3675. case 140: // M140 set bed temp
  3676. if (code_seen('S')) setTargetBed(code_value());
  3677. break;
  3678. case 105 : // M105
  3679. if(setTargetedHotend(105)){
  3680. break;
  3681. }
  3682. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3683. SERIAL_PROTOCOLPGM("ok T:");
  3684. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3685. SERIAL_PROTOCOLPGM(" /");
  3686. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3687. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3688. SERIAL_PROTOCOLPGM(" B:");
  3689. SERIAL_PROTOCOL_F(degBed(),1);
  3690. SERIAL_PROTOCOLPGM(" /");
  3691. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3692. #endif //TEMP_BED_PIN
  3693. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3694. SERIAL_PROTOCOLPGM(" T");
  3695. SERIAL_PROTOCOL(cur_extruder);
  3696. SERIAL_PROTOCOLPGM(":");
  3697. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3698. SERIAL_PROTOCOLPGM(" /");
  3699. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3700. }
  3701. #else
  3702. SERIAL_ERROR_START;
  3703. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3704. #endif
  3705. SERIAL_PROTOCOLPGM(" @:");
  3706. #ifdef EXTRUDER_WATTS
  3707. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3708. SERIAL_PROTOCOLPGM("W");
  3709. #else
  3710. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3711. #endif
  3712. SERIAL_PROTOCOLPGM(" B@:");
  3713. #ifdef BED_WATTS
  3714. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3715. SERIAL_PROTOCOLPGM("W");
  3716. #else
  3717. SERIAL_PROTOCOL(getHeaterPower(-1));
  3718. #endif
  3719. #ifdef SHOW_TEMP_ADC_VALUES
  3720. {float raw = 0.0;
  3721. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3722. SERIAL_PROTOCOLPGM(" ADC B:");
  3723. SERIAL_PROTOCOL_F(degBed(),1);
  3724. SERIAL_PROTOCOLPGM("C->");
  3725. raw = rawBedTemp();
  3726. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3727. SERIAL_PROTOCOLPGM(" Rb->");
  3728. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3729. SERIAL_PROTOCOLPGM(" Rxb->");
  3730. SERIAL_PROTOCOL_F(raw, 5);
  3731. #endif
  3732. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3733. SERIAL_PROTOCOLPGM(" T");
  3734. SERIAL_PROTOCOL(cur_extruder);
  3735. SERIAL_PROTOCOLPGM(":");
  3736. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3737. SERIAL_PROTOCOLPGM("C->");
  3738. raw = rawHotendTemp(cur_extruder);
  3739. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3740. SERIAL_PROTOCOLPGM(" Rt");
  3741. SERIAL_PROTOCOL(cur_extruder);
  3742. SERIAL_PROTOCOLPGM("->");
  3743. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3744. SERIAL_PROTOCOLPGM(" Rx");
  3745. SERIAL_PROTOCOL(cur_extruder);
  3746. SERIAL_PROTOCOLPGM("->");
  3747. SERIAL_PROTOCOL_F(raw, 5);
  3748. }}
  3749. #endif
  3750. SERIAL_PROTOCOLLN("");
  3751. return;
  3752. break;
  3753. case 109:
  3754. {// M109 - Wait for extruder heater to reach target.
  3755. if(setTargetedHotend(109)){
  3756. break;
  3757. }
  3758. LCD_MESSAGERPGM(MSG_HEATING);
  3759. heating_status = 1;
  3760. if (farm_mode) { prusa_statistics(1); };
  3761. #ifdef AUTOTEMP
  3762. autotemp_enabled=false;
  3763. #endif
  3764. if (code_seen('S')) {
  3765. setTargetHotend(code_value(), tmp_extruder);
  3766. CooldownNoWait = true;
  3767. } else if (code_seen('R')) {
  3768. setTargetHotend(code_value(), tmp_extruder);
  3769. CooldownNoWait = false;
  3770. }
  3771. #ifdef AUTOTEMP
  3772. if (code_seen('S')) autotemp_min=code_value();
  3773. if (code_seen('B')) autotemp_max=code_value();
  3774. if (code_seen('F'))
  3775. {
  3776. autotemp_factor=code_value();
  3777. autotemp_enabled=true;
  3778. }
  3779. #endif
  3780. setWatch();
  3781. codenum = millis();
  3782. /* See if we are heating up or cooling down */
  3783. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3784. cancel_heatup = false;
  3785. wait_for_heater(codenum); //loops until target temperature is reached
  3786. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3787. heating_status = 2;
  3788. if (farm_mode) { prusa_statistics(2); };
  3789. //starttime=millis();
  3790. previous_millis_cmd = millis();
  3791. }
  3792. break;
  3793. case 190: // M190 - Wait for bed heater to reach target.
  3794. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3795. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3796. heating_status = 3;
  3797. if (farm_mode) { prusa_statistics(1); };
  3798. if (code_seen('S'))
  3799. {
  3800. setTargetBed(code_value());
  3801. CooldownNoWait = true;
  3802. }
  3803. else if (code_seen('R'))
  3804. {
  3805. setTargetBed(code_value());
  3806. CooldownNoWait = false;
  3807. }
  3808. codenum = millis();
  3809. cancel_heatup = false;
  3810. target_direction = isHeatingBed(); // true if heating, false if cooling
  3811. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3812. {
  3813. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3814. {
  3815. if (!farm_mode) {
  3816. float tt = degHotend(active_extruder);
  3817. SERIAL_PROTOCOLPGM("T:");
  3818. SERIAL_PROTOCOL(tt);
  3819. SERIAL_PROTOCOLPGM(" E:");
  3820. SERIAL_PROTOCOL((int)active_extruder);
  3821. SERIAL_PROTOCOLPGM(" B:");
  3822. SERIAL_PROTOCOL_F(degBed(), 1);
  3823. SERIAL_PROTOCOLLN("");
  3824. }
  3825. codenum = millis();
  3826. }
  3827. manage_heater();
  3828. manage_inactivity();
  3829. lcd_update();
  3830. }
  3831. LCD_MESSAGERPGM(MSG_BED_DONE);
  3832. heating_status = 4;
  3833. previous_millis_cmd = millis();
  3834. #endif
  3835. break;
  3836. #if defined(FAN_PIN) && FAN_PIN > -1
  3837. case 106: //M106 Fan On
  3838. if (code_seen('S')){
  3839. fanSpeed=constrain(code_value(),0,255);
  3840. }
  3841. else {
  3842. fanSpeed=255;
  3843. }
  3844. break;
  3845. case 107: //M107 Fan Off
  3846. fanSpeed = 0;
  3847. break;
  3848. #endif //FAN_PIN
  3849. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3850. case 80: // M80 - Turn on Power Supply
  3851. SET_OUTPUT(PS_ON_PIN); //GND
  3852. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3853. // If you have a switch on suicide pin, this is useful
  3854. // if you want to start another print with suicide feature after
  3855. // a print without suicide...
  3856. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3857. SET_OUTPUT(SUICIDE_PIN);
  3858. WRITE(SUICIDE_PIN, HIGH);
  3859. #endif
  3860. #ifdef ULTIPANEL
  3861. powersupply = true;
  3862. LCD_MESSAGERPGM(WELCOME_MSG);
  3863. lcd_update();
  3864. #endif
  3865. break;
  3866. #endif
  3867. case 81: // M81 - Turn off Power Supply
  3868. disable_heater();
  3869. st_synchronize();
  3870. disable_e0();
  3871. disable_e1();
  3872. disable_e2();
  3873. finishAndDisableSteppers();
  3874. fanSpeed = 0;
  3875. delay(1000); // Wait a little before to switch off
  3876. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3877. st_synchronize();
  3878. suicide();
  3879. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3880. SET_OUTPUT(PS_ON_PIN);
  3881. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3882. #endif
  3883. #ifdef ULTIPANEL
  3884. powersupply = false;
  3885. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3886. /*
  3887. MACHNAME = "Prusa i3"
  3888. MSGOFF = "Vypnuto"
  3889. "Prusai3"" ""vypnuto""."
  3890. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3891. */
  3892. lcd_update();
  3893. #endif
  3894. break;
  3895. case 82:
  3896. axis_relative_modes[3] = false;
  3897. break;
  3898. case 83:
  3899. axis_relative_modes[3] = true;
  3900. break;
  3901. case 18: //compatibility
  3902. case 84: // M84
  3903. if(code_seen('S')){
  3904. stepper_inactive_time = code_value() * 1000;
  3905. }
  3906. else
  3907. {
  3908. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3909. if(all_axis)
  3910. {
  3911. st_synchronize();
  3912. disable_e0();
  3913. disable_e1();
  3914. disable_e2();
  3915. finishAndDisableSteppers();
  3916. }
  3917. else
  3918. {
  3919. st_synchronize();
  3920. if (code_seen('X')) disable_x();
  3921. if (code_seen('Y')) disable_y();
  3922. if (code_seen('Z')) disable_z();
  3923. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3924. if (code_seen('E')) {
  3925. disable_e0();
  3926. disable_e1();
  3927. disable_e2();
  3928. }
  3929. #endif
  3930. }
  3931. }
  3932. snmm_filaments_used = 0;
  3933. break;
  3934. case 85: // M85
  3935. if(code_seen('S')) {
  3936. max_inactive_time = code_value() * 1000;
  3937. }
  3938. break;
  3939. case 92: // M92
  3940. for(int8_t i=0; i < NUM_AXIS; i++)
  3941. {
  3942. if(code_seen(axis_codes[i]))
  3943. {
  3944. if(i == 3) { // E
  3945. float value = code_value();
  3946. if(value < 20.0) {
  3947. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3948. max_jerk[E_AXIS] *= factor;
  3949. max_feedrate[i] *= factor;
  3950. axis_steps_per_sqr_second[i] *= factor;
  3951. }
  3952. axis_steps_per_unit[i] = value;
  3953. }
  3954. else {
  3955. axis_steps_per_unit[i] = code_value();
  3956. }
  3957. }
  3958. }
  3959. break;
  3960. case 115: // M115
  3961. if (code_seen('V')) {
  3962. // Report the Prusa version number.
  3963. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3964. } else if (code_seen('U')) {
  3965. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3966. // pause the print and ask the user to upgrade the firmware.
  3967. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3968. } else {
  3969. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3970. }
  3971. break;
  3972. /* case 117: // M117 display message
  3973. starpos = (strchr(strchr_pointer + 5,'*'));
  3974. if(starpos!=NULL)
  3975. *(starpos)='\0';
  3976. lcd_setstatus(strchr_pointer + 5);
  3977. break;*/
  3978. case 114: // M114
  3979. SERIAL_PROTOCOLPGM("X:");
  3980. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3981. SERIAL_PROTOCOLPGM(" Y:");
  3982. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3983. SERIAL_PROTOCOLPGM(" Z:");
  3984. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3985. SERIAL_PROTOCOLPGM(" E:");
  3986. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3987. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3988. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3989. SERIAL_PROTOCOLPGM(" Y:");
  3990. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3991. SERIAL_PROTOCOLPGM(" Z:");
  3992. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3993. SERIAL_PROTOCOLLN("");
  3994. break;
  3995. case 120: // M120
  3996. enable_endstops(false) ;
  3997. break;
  3998. case 121: // M121
  3999. enable_endstops(true) ;
  4000. break;
  4001. case 119: // M119
  4002. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4003. SERIAL_PROTOCOLLN("");
  4004. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4005. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4006. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4007. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4008. }else{
  4009. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4010. }
  4011. SERIAL_PROTOCOLLN("");
  4012. #endif
  4013. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4014. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4015. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4016. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4017. }else{
  4018. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4019. }
  4020. SERIAL_PROTOCOLLN("");
  4021. #endif
  4022. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4023. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4024. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4025. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4026. }else{
  4027. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4028. }
  4029. SERIAL_PROTOCOLLN("");
  4030. #endif
  4031. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4032. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4033. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4034. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4035. }else{
  4036. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4037. }
  4038. SERIAL_PROTOCOLLN("");
  4039. #endif
  4040. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4041. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4042. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4043. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4044. }else{
  4045. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4046. }
  4047. SERIAL_PROTOCOLLN("");
  4048. #endif
  4049. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4050. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4051. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4052. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4053. }else{
  4054. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4055. }
  4056. SERIAL_PROTOCOLLN("");
  4057. #endif
  4058. break;
  4059. //TODO: update for all axis, use for loop
  4060. #ifdef BLINKM
  4061. case 150: // M150
  4062. {
  4063. byte red;
  4064. byte grn;
  4065. byte blu;
  4066. if(code_seen('R')) red = code_value();
  4067. if(code_seen('U')) grn = code_value();
  4068. if(code_seen('B')) blu = code_value();
  4069. SendColors(red,grn,blu);
  4070. }
  4071. break;
  4072. #endif //BLINKM
  4073. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4074. {
  4075. tmp_extruder = active_extruder;
  4076. if(code_seen('T')) {
  4077. tmp_extruder = code_value();
  4078. if(tmp_extruder >= EXTRUDERS) {
  4079. SERIAL_ECHO_START;
  4080. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4081. break;
  4082. }
  4083. }
  4084. float area = .0;
  4085. if(code_seen('D')) {
  4086. float diameter = (float)code_value();
  4087. if (diameter == 0.0) {
  4088. // setting any extruder filament size disables volumetric on the assumption that
  4089. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4090. // for all extruders
  4091. volumetric_enabled = false;
  4092. } else {
  4093. filament_size[tmp_extruder] = (float)code_value();
  4094. // make sure all extruders have some sane value for the filament size
  4095. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4096. #if EXTRUDERS > 1
  4097. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4098. #if EXTRUDERS > 2
  4099. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4100. #endif
  4101. #endif
  4102. volumetric_enabled = true;
  4103. }
  4104. } else {
  4105. //reserved for setting filament diameter via UFID or filament measuring device
  4106. break;
  4107. }
  4108. calculate_volumetric_multipliers();
  4109. }
  4110. break;
  4111. case 201: // M201
  4112. for(int8_t i=0; i < NUM_AXIS; i++)
  4113. {
  4114. if(code_seen(axis_codes[i]))
  4115. {
  4116. max_acceleration_units_per_sq_second[i] = code_value();
  4117. }
  4118. }
  4119. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4120. reset_acceleration_rates();
  4121. break;
  4122. #if 0 // Not used for Sprinter/grbl gen6
  4123. case 202: // M202
  4124. for(int8_t i=0; i < NUM_AXIS; i++) {
  4125. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4126. }
  4127. break;
  4128. #endif
  4129. case 203: // M203 max feedrate mm/sec
  4130. for(int8_t i=0; i < NUM_AXIS; i++) {
  4131. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4132. }
  4133. break;
  4134. case 204: // M204 acclereration S normal moves T filmanent only moves
  4135. {
  4136. if(code_seen('S')) acceleration = code_value() ;
  4137. if(code_seen('T')) retract_acceleration = code_value() ;
  4138. }
  4139. break;
  4140. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4141. {
  4142. if(code_seen('S')) minimumfeedrate = code_value();
  4143. if(code_seen('T')) mintravelfeedrate = code_value();
  4144. if(code_seen('B')) minsegmenttime = code_value() ;
  4145. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4146. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4147. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4148. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4149. }
  4150. break;
  4151. case 206: // M206 additional homing offset
  4152. for(int8_t i=0; i < 3; i++)
  4153. {
  4154. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4155. }
  4156. break;
  4157. #ifdef FWRETRACT
  4158. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4159. {
  4160. if(code_seen('S'))
  4161. {
  4162. retract_length = code_value() ;
  4163. }
  4164. if(code_seen('F'))
  4165. {
  4166. retract_feedrate = code_value()/60 ;
  4167. }
  4168. if(code_seen('Z'))
  4169. {
  4170. retract_zlift = code_value() ;
  4171. }
  4172. }break;
  4173. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4174. {
  4175. if(code_seen('S'))
  4176. {
  4177. retract_recover_length = code_value() ;
  4178. }
  4179. if(code_seen('F'))
  4180. {
  4181. retract_recover_feedrate = code_value()/60 ;
  4182. }
  4183. }break;
  4184. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4185. {
  4186. if(code_seen('S'))
  4187. {
  4188. int t= code_value() ;
  4189. switch(t)
  4190. {
  4191. case 0:
  4192. {
  4193. autoretract_enabled=false;
  4194. retracted[0]=false;
  4195. #if EXTRUDERS > 1
  4196. retracted[1]=false;
  4197. #endif
  4198. #if EXTRUDERS > 2
  4199. retracted[2]=false;
  4200. #endif
  4201. }break;
  4202. case 1:
  4203. {
  4204. autoretract_enabled=true;
  4205. retracted[0]=false;
  4206. #if EXTRUDERS > 1
  4207. retracted[1]=false;
  4208. #endif
  4209. #if EXTRUDERS > 2
  4210. retracted[2]=false;
  4211. #endif
  4212. }break;
  4213. default:
  4214. SERIAL_ECHO_START;
  4215. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4216. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4217. SERIAL_ECHOLNPGM("\"");
  4218. }
  4219. }
  4220. }break;
  4221. #endif // FWRETRACT
  4222. #if EXTRUDERS > 1
  4223. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4224. {
  4225. if(setTargetedHotend(218)){
  4226. break;
  4227. }
  4228. if(code_seen('X'))
  4229. {
  4230. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4231. }
  4232. if(code_seen('Y'))
  4233. {
  4234. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4235. }
  4236. SERIAL_ECHO_START;
  4237. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4238. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4239. {
  4240. SERIAL_ECHO(" ");
  4241. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4242. SERIAL_ECHO(",");
  4243. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4244. }
  4245. SERIAL_ECHOLN("");
  4246. }break;
  4247. #endif
  4248. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4249. {
  4250. if(code_seen('S'))
  4251. {
  4252. feedmultiply = code_value() ;
  4253. }
  4254. }
  4255. break;
  4256. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4257. {
  4258. if(code_seen('S'))
  4259. {
  4260. int tmp_code = code_value();
  4261. if (code_seen('T'))
  4262. {
  4263. if(setTargetedHotend(221)){
  4264. break;
  4265. }
  4266. extruder_multiply[tmp_extruder] = tmp_code;
  4267. }
  4268. else
  4269. {
  4270. extrudemultiply = tmp_code ;
  4271. }
  4272. }
  4273. }
  4274. break;
  4275. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4276. {
  4277. if(code_seen('P')){
  4278. int pin_number = code_value(); // pin number
  4279. int pin_state = -1; // required pin state - default is inverted
  4280. if(code_seen('S')) pin_state = code_value(); // required pin state
  4281. if(pin_state >= -1 && pin_state <= 1){
  4282. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4283. {
  4284. if (sensitive_pins[i] == pin_number)
  4285. {
  4286. pin_number = -1;
  4287. break;
  4288. }
  4289. }
  4290. if (pin_number > -1)
  4291. {
  4292. int target = LOW;
  4293. st_synchronize();
  4294. pinMode(pin_number, INPUT);
  4295. switch(pin_state){
  4296. case 1:
  4297. target = HIGH;
  4298. break;
  4299. case 0:
  4300. target = LOW;
  4301. break;
  4302. case -1:
  4303. target = !digitalRead(pin_number);
  4304. break;
  4305. }
  4306. while(digitalRead(pin_number) != target){
  4307. manage_heater();
  4308. manage_inactivity();
  4309. lcd_update();
  4310. }
  4311. }
  4312. }
  4313. }
  4314. }
  4315. break;
  4316. #if NUM_SERVOS > 0
  4317. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4318. {
  4319. int servo_index = -1;
  4320. int servo_position = 0;
  4321. if (code_seen('P'))
  4322. servo_index = code_value();
  4323. if (code_seen('S')) {
  4324. servo_position = code_value();
  4325. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4326. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4327. servos[servo_index].attach(0);
  4328. #endif
  4329. servos[servo_index].write(servo_position);
  4330. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4331. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4332. servos[servo_index].detach();
  4333. #endif
  4334. }
  4335. else {
  4336. SERIAL_ECHO_START;
  4337. SERIAL_ECHO("Servo ");
  4338. SERIAL_ECHO(servo_index);
  4339. SERIAL_ECHOLN(" out of range");
  4340. }
  4341. }
  4342. else if (servo_index >= 0) {
  4343. SERIAL_PROTOCOL(MSG_OK);
  4344. SERIAL_PROTOCOL(" Servo ");
  4345. SERIAL_PROTOCOL(servo_index);
  4346. SERIAL_PROTOCOL(": ");
  4347. SERIAL_PROTOCOL(servos[servo_index].read());
  4348. SERIAL_PROTOCOLLN("");
  4349. }
  4350. }
  4351. break;
  4352. #endif // NUM_SERVOS > 0
  4353. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4354. case 300: // M300
  4355. {
  4356. int beepS = code_seen('S') ? code_value() : 110;
  4357. int beepP = code_seen('P') ? code_value() : 1000;
  4358. if (beepS > 0)
  4359. {
  4360. #if BEEPER > 0
  4361. tone(BEEPER, beepS);
  4362. delay(beepP);
  4363. noTone(BEEPER);
  4364. #elif defined(ULTRALCD)
  4365. lcd_buzz(beepS, beepP);
  4366. #elif defined(LCD_USE_I2C_BUZZER)
  4367. lcd_buzz(beepP, beepS);
  4368. #endif
  4369. }
  4370. else
  4371. {
  4372. delay(beepP);
  4373. }
  4374. }
  4375. break;
  4376. #endif // M300
  4377. #ifdef PIDTEMP
  4378. case 301: // M301
  4379. {
  4380. if(code_seen('P')) Kp = code_value();
  4381. if(code_seen('I')) Ki = scalePID_i(code_value());
  4382. if(code_seen('D')) Kd = scalePID_d(code_value());
  4383. #ifdef PID_ADD_EXTRUSION_RATE
  4384. if(code_seen('C')) Kc = code_value();
  4385. #endif
  4386. updatePID();
  4387. SERIAL_PROTOCOLRPGM(MSG_OK);
  4388. SERIAL_PROTOCOL(" p:");
  4389. SERIAL_PROTOCOL(Kp);
  4390. SERIAL_PROTOCOL(" i:");
  4391. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4392. SERIAL_PROTOCOL(" d:");
  4393. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4394. #ifdef PID_ADD_EXTRUSION_RATE
  4395. SERIAL_PROTOCOL(" c:");
  4396. //Kc does not have scaling applied above, or in resetting defaults
  4397. SERIAL_PROTOCOL(Kc);
  4398. #endif
  4399. SERIAL_PROTOCOLLN("");
  4400. }
  4401. break;
  4402. #endif //PIDTEMP
  4403. #ifdef PIDTEMPBED
  4404. case 304: // M304
  4405. {
  4406. if(code_seen('P')) bedKp = code_value();
  4407. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4408. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4409. updatePID();
  4410. SERIAL_PROTOCOLRPGM(MSG_OK);
  4411. SERIAL_PROTOCOL(" p:");
  4412. SERIAL_PROTOCOL(bedKp);
  4413. SERIAL_PROTOCOL(" i:");
  4414. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4415. SERIAL_PROTOCOL(" d:");
  4416. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4417. SERIAL_PROTOCOLLN("");
  4418. }
  4419. break;
  4420. #endif //PIDTEMP
  4421. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4422. {
  4423. #ifdef CHDK
  4424. SET_OUTPUT(CHDK);
  4425. WRITE(CHDK, HIGH);
  4426. chdkHigh = millis();
  4427. chdkActive = true;
  4428. #else
  4429. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4430. const uint8_t NUM_PULSES=16;
  4431. const float PULSE_LENGTH=0.01524;
  4432. for(int i=0; i < NUM_PULSES; i++) {
  4433. WRITE(PHOTOGRAPH_PIN, HIGH);
  4434. _delay_ms(PULSE_LENGTH);
  4435. WRITE(PHOTOGRAPH_PIN, LOW);
  4436. _delay_ms(PULSE_LENGTH);
  4437. }
  4438. delay(7.33);
  4439. for(int i=0; i < NUM_PULSES; i++) {
  4440. WRITE(PHOTOGRAPH_PIN, HIGH);
  4441. _delay_ms(PULSE_LENGTH);
  4442. WRITE(PHOTOGRAPH_PIN, LOW);
  4443. _delay_ms(PULSE_LENGTH);
  4444. }
  4445. #endif
  4446. #endif //chdk end if
  4447. }
  4448. break;
  4449. #ifdef DOGLCD
  4450. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4451. {
  4452. if (code_seen('C')) {
  4453. lcd_setcontrast( ((int)code_value())&63 );
  4454. }
  4455. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4456. SERIAL_PROTOCOL(lcd_contrast);
  4457. SERIAL_PROTOCOLLN("");
  4458. }
  4459. break;
  4460. #endif
  4461. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4462. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4463. {
  4464. float temp = .0;
  4465. if (code_seen('S')) temp=code_value();
  4466. set_extrude_min_temp(temp);
  4467. }
  4468. break;
  4469. #endif
  4470. case 303: // M303 PID autotune
  4471. {
  4472. float temp = 150.0;
  4473. int e=0;
  4474. int c=5;
  4475. if (code_seen('E')) e=code_value();
  4476. if (e<0)
  4477. temp=70;
  4478. if (code_seen('S')) temp=code_value();
  4479. if (code_seen('C')) c=code_value();
  4480. PID_autotune(temp, e, c);
  4481. }
  4482. break;
  4483. case 400: // M400 finish all moves
  4484. {
  4485. st_synchronize();
  4486. }
  4487. break;
  4488. #ifdef FILAMENT_SENSOR
  4489. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4490. {
  4491. #if (FILWIDTH_PIN > -1)
  4492. if(code_seen('N')) filament_width_nominal=code_value();
  4493. else{
  4494. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4495. SERIAL_PROTOCOLLN(filament_width_nominal);
  4496. }
  4497. #endif
  4498. }
  4499. break;
  4500. case 405: //M405 Turn on filament sensor for control
  4501. {
  4502. if(code_seen('D')) meas_delay_cm=code_value();
  4503. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4504. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4505. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4506. {
  4507. int temp_ratio = widthFil_to_size_ratio();
  4508. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4509. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4510. }
  4511. delay_index1=0;
  4512. delay_index2=0;
  4513. }
  4514. filament_sensor = true ;
  4515. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4516. //SERIAL_PROTOCOL(filament_width_meas);
  4517. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4518. //SERIAL_PROTOCOL(extrudemultiply);
  4519. }
  4520. break;
  4521. case 406: //M406 Turn off filament sensor for control
  4522. {
  4523. filament_sensor = false ;
  4524. }
  4525. break;
  4526. case 407: //M407 Display measured filament diameter
  4527. {
  4528. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4529. SERIAL_PROTOCOLLN(filament_width_meas);
  4530. }
  4531. break;
  4532. #endif
  4533. case 500: // M500 Store settings in EEPROM
  4534. {
  4535. Config_StoreSettings();
  4536. }
  4537. break;
  4538. case 501: // M501 Read settings from EEPROM
  4539. {
  4540. Config_RetrieveSettings();
  4541. }
  4542. break;
  4543. case 502: // M502 Revert to default settings
  4544. {
  4545. Config_ResetDefault();
  4546. }
  4547. break;
  4548. case 503: // M503 print settings currently in memory
  4549. {
  4550. Config_PrintSettings();
  4551. }
  4552. break;
  4553. case 509: //M509 Force language selection
  4554. {
  4555. lcd_force_language_selection();
  4556. SERIAL_ECHO_START;
  4557. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4558. }
  4559. break;
  4560. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4561. case 540:
  4562. {
  4563. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4564. }
  4565. break;
  4566. #endif
  4567. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4568. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4569. {
  4570. float value;
  4571. if (code_seen('Z'))
  4572. {
  4573. value = code_value();
  4574. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4575. {
  4576. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4577. SERIAL_ECHO_START;
  4578. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4579. SERIAL_PROTOCOLLN("");
  4580. }
  4581. else
  4582. {
  4583. SERIAL_ECHO_START;
  4584. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4585. SERIAL_ECHORPGM(MSG_Z_MIN);
  4586. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4587. SERIAL_ECHORPGM(MSG_Z_MAX);
  4588. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4589. SERIAL_PROTOCOLLN("");
  4590. }
  4591. }
  4592. else
  4593. {
  4594. SERIAL_ECHO_START;
  4595. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4596. SERIAL_ECHO(-zprobe_zoffset);
  4597. SERIAL_PROTOCOLLN("");
  4598. }
  4599. break;
  4600. }
  4601. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4602. #ifdef FILAMENTCHANGEENABLE
  4603. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4604. {
  4605. MYSERIAL.println("!!!!M600!!!!");
  4606. st_synchronize();
  4607. float target[4];
  4608. float lastpos[4];
  4609. if (farm_mode)
  4610. {
  4611. prusa_statistics(22);
  4612. }
  4613. feedmultiplyBckp=feedmultiply;
  4614. int8_t TooLowZ = 0;
  4615. target[X_AXIS]=current_position[X_AXIS];
  4616. target[Y_AXIS]=current_position[Y_AXIS];
  4617. target[Z_AXIS]=current_position[Z_AXIS];
  4618. target[E_AXIS]=current_position[E_AXIS];
  4619. lastpos[X_AXIS]=current_position[X_AXIS];
  4620. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4621. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4622. lastpos[E_AXIS]=current_position[E_AXIS];
  4623. //Restract extruder
  4624. if(code_seen('E'))
  4625. {
  4626. target[E_AXIS]+= code_value();
  4627. }
  4628. else
  4629. {
  4630. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4631. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4632. #endif
  4633. }
  4634. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4635. //Lift Z
  4636. if(code_seen('Z'))
  4637. {
  4638. target[Z_AXIS]+= code_value();
  4639. }
  4640. else
  4641. {
  4642. #ifdef FILAMENTCHANGE_ZADD
  4643. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4644. if(target[Z_AXIS] < 10){
  4645. target[Z_AXIS]+= 10 ;
  4646. TooLowZ = 1;
  4647. }else{
  4648. TooLowZ = 0;
  4649. }
  4650. #endif
  4651. }
  4652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4653. //Move XY to side
  4654. if(code_seen('X'))
  4655. {
  4656. target[X_AXIS]+= code_value();
  4657. }
  4658. else
  4659. {
  4660. #ifdef FILAMENTCHANGE_XPOS
  4661. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4662. #endif
  4663. }
  4664. if(code_seen('Y'))
  4665. {
  4666. target[Y_AXIS]= code_value();
  4667. }
  4668. else
  4669. {
  4670. #ifdef FILAMENTCHANGE_YPOS
  4671. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4672. #endif
  4673. }
  4674. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4675. st_synchronize();
  4676. custom_message = true;
  4677. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4678. // Unload filament
  4679. if(code_seen('L'))
  4680. {
  4681. target[E_AXIS]+= code_value();
  4682. }
  4683. else
  4684. {
  4685. #ifdef SNMM
  4686. #else
  4687. #ifdef FILAMENTCHANGE_FINALRETRACT
  4688. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4689. #endif
  4690. #endif // SNMM
  4691. }
  4692. #ifdef SNMM
  4693. target[E_AXIS] += 12;
  4694. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4695. target[E_AXIS] += 6;
  4696. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4697. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4698. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4699. st_synchronize();
  4700. target[E_AXIS] += (FIL_COOLING);
  4701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4702. target[E_AXIS] += (FIL_COOLING*-1);
  4703. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4704. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4705. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4706. st_synchronize();
  4707. #else
  4708. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4709. #endif // SNMM
  4710. //finish moves
  4711. st_synchronize();
  4712. //disable extruder steppers so filament can be removed
  4713. disable_e0();
  4714. disable_e1();
  4715. disable_e2();
  4716. delay(100);
  4717. //Wait for user to insert filament
  4718. uint8_t cnt=0;
  4719. int counterBeep = 0;
  4720. lcd_wait_interact();
  4721. load_filament_time = millis();
  4722. while(!lcd_clicked()){
  4723. cnt++;
  4724. manage_heater();
  4725. manage_inactivity(true);
  4726. /*#ifdef SNMM
  4727. target[E_AXIS] += 0.002;
  4728. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4729. #endif // SNMM*/
  4730. if(cnt==0)
  4731. {
  4732. #if BEEPER > 0
  4733. if (counterBeep== 500){
  4734. counterBeep = 0;
  4735. }
  4736. SET_OUTPUT(BEEPER);
  4737. if (counterBeep== 0){
  4738. WRITE(BEEPER,HIGH);
  4739. }
  4740. if (counterBeep== 20){
  4741. WRITE(BEEPER,LOW);
  4742. }
  4743. counterBeep++;
  4744. #else
  4745. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4746. lcd_buzz(1000/6,100);
  4747. #else
  4748. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4749. #endif
  4750. #endif
  4751. }
  4752. }
  4753. #ifdef SNMM
  4754. display_loading();
  4755. do {
  4756. target[E_AXIS] += 0.002;
  4757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4758. delay_keep_alive(2);
  4759. } while (!lcd_clicked());
  4760. /*if (millis() - load_filament_time > 2) {
  4761. load_filament_time = millis();
  4762. target[E_AXIS] += 0.001;
  4763. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4764. }*/
  4765. #endif
  4766. //Filament inserted
  4767. WRITE(BEEPER,LOW);
  4768. //Feed the filament to the end of nozzle quickly
  4769. #ifdef SNMM
  4770. st_synchronize();
  4771. target[E_AXIS] += bowden_length[snmm_extruder];
  4772. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4773. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4774. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4775. target[E_AXIS] += 40;
  4776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4777. target[E_AXIS] += 10;
  4778. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4779. #else
  4780. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4781. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4782. #endif // SNMM
  4783. //Extrude some filament
  4784. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4785. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4786. //Wait for user to check the state
  4787. lcd_change_fil_state = 0;
  4788. lcd_loading_filament();
  4789. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4790. lcd_change_fil_state = 0;
  4791. lcd_alright();
  4792. switch(lcd_change_fil_state){
  4793. // Filament failed to load so load it again
  4794. case 2:
  4795. #ifdef SNMM
  4796. display_loading();
  4797. do {
  4798. target[E_AXIS] += 0.002;
  4799. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4800. delay_keep_alive(2);
  4801. } while (!lcd_clicked());
  4802. st_synchronize();
  4803. target[E_AXIS] += bowden_length[snmm_extruder];
  4804. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4805. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4806. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4807. target[E_AXIS] += 40;
  4808. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4809. target[E_AXIS] += 10;
  4810. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4811. #else
  4812. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4813. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4814. #endif
  4815. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4817. lcd_loading_filament();
  4818. break;
  4819. // Filament loaded properly but color is not clear
  4820. case 3:
  4821. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4822. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4823. lcd_loading_color();
  4824. break;
  4825. // Everything good
  4826. default:
  4827. lcd_change_success();
  4828. lcd_update_enable(true);
  4829. break;
  4830. }
  4831. }
  4832. //Not let's go back to print
  4833. //Feed a little of filament to stabilize pressure
  4834. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4836. //Retract
  4837. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4839. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4840. //Move XY back
  4841. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4842. //Move Z back
  4843. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4844. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4845. //Unretract
  4846. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4847. //Set E position to original
  4848. plan_set_e_position(lastpos[E_AXIS]);
  4849. //Recover feed rate
  4850. feedmultiply=feedmultiplyBckp;
  4851. char cmd[9];
  4852. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4853. enquecommand(cmd);
  4854. lcd_setstatuspgm(WELCOME_MSG);
  4855. custom_message = false;
  4856. custom_message_type = 0;
  4857. #ifdef PAT9125
  4858. if (fsensor_M600)
  4859. {
  4860. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4861. fsensor_enable();
  4862. }
  4863. #endif //PAT9125
  4864. }
  4865. break;
  4866. #endif //FILAMENTCHANGEENABLE
  4867. case 601: {
  4868. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4869. }
  4870. break;
  4871. case 602: {
  4872. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4873. }
  4874. break;
  4875. #ifdef LIN_ADVANCE
  4876. case 900: // M900: Set LIN_ADVANCE options.
  4877. gcode_M900();
  4878. break;
  4879. #endif
  4880. case 907: // M907 Set digital trimpot motor current using axis codes.
  4881. {
  4882. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4883. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4884. if(code_seen('B')) digipot_current(4,code_value());
  4885. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4886. #endif
  4887. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4888. if(code_seen('X')) digipot_current(0, code_value());
  4889. #endif
  4890. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4891. if(code_seen('Z')) digipot_current(1, code_value());
  4892. #endif
  4893. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4894. if(code_seen('E')) digipot_current(2, code_value());
  4895. #endif
  4896. #ifdef DIGIPOT_I2C
  4897. // this one uses actual amps in floating point
  4898. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4899. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4900. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4901. #endif
  4902. }
  4903. break;
  4904. case 908: // M908 Control digital trimpot directly.
  4905. {
  4906. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4907. uint8_t channel,current;
  4908. if(code_seen('P')) channel=code_value();
  4909. if(code_seen('S')) current=code_value();
  4910. digitalPotWrite(channel, current);
  4911. #endif
  4912. }
  4913. break;
  4914. case 910: // M910 TMC2130 init
  4915. {
  4916. tmc2130_init();
  4917. }
  4918. break;
  4919. case 911: // M911 Set TMC2130 holding currents
  4920. {
  4921. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4922. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4923. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4924. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4925. }
  4926. break;
  4927. case 912: // M912 Set TMC2130 running currents
  4928. {
  4929. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4930. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4931. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4932. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4933. }
  4934. break;
  4935. case 913: // M913 Print TMC2130 currents
  4936. {
  4937. tmc2130_print_currents();
  4938. }
  4939. break;
  4940. case 914: // M914 Set normal mode
  4941. {
  4942. tmc2130_mode = TMC2130_MODE_NORMAL;
  4943. tmc2130_init();
  4944. }
  4945. break;
  4946. case 915: // M915 Set silent mode
  4947. {
  4948. tmc2130_mode = TMC2130_MODE_SILENT;
  4949. tmc2130_init();
  4950. }
  4951. break;
  4952. case 916: // M916 Set sg_thrs
  4953. {
  4954. if (code_seen('X')) sg_thrs_x = code_value();
  4955. if (code_seen('Y')) sg_thrs_y = code_value();
  4956. MYSERIAL.print("sg_thrs_x=");
  4957. MYSERIAL.print(sg_thrs_x, DEC);
  4958. MYSERIAL.print(" sg_thrs_y=");
  4959. MYSERIAL.println(sg_thrs_y, DEC);
  4960. }
  4961. break;
  4962. case 917: // M917 Set TMC2130 pwm_ampl
  4963. {
  4964. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4965. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4966. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4967. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4968. }
  4969. break;
  4970. case 918: // M918 Set TMC2130 pwm_grad
  4971. {
  4972. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4973. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4974. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4975. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4976. }
  4977. break;
  4978. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4979. {
  4980. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4981. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4982. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4983. if(code_seen('B')) microstep_mode(4,code_value());
  4984. microstep_readings();
  4985. #endif
  4986. }
  4987. break;
  4988. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4989. {
  4990. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4991. if(code_seen('S')) switch((int)code_value())
  4992. {
  4993. case 1:
  4994. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4995. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4996. break;
  4997. case 2:
  4998. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4999. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5000. break;
  5001. }
  5002. microstep_readings();
  5003. #endif
  5004. }
  5005. break;
  5006. case 701: //M701: load filament
  5007. {
  5008. enable_z();
  5009. custom_message = true;
  5010. custom_message_type = 2;
  5011. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  5012. current_position[E_AXIS] += 70;
  5013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  5014. current_position[E_AXIS] += 25;
  5015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  5016. st_synchronize();
  5017. if (!farm_mode && loading_flag) {
  5018. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  5019. while (!clean) {
  5020. lcd_update_enable(true);
  5021. lcd_update(2);
  5022. current_position[E_AXIS] += 25;
  5023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  5024. st_synchronize();
  5025. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  5026. }
  5027. }
  5028. lcd_update_enable(true);
  5029. lcd_update(2);
  5030. lcd_setstatuspgm(WELCOME_MSG);
  5031. disable_z();
  5032. loading_flag = false;
  5033. custom_message = false;
  5034. custom_message_type = 0;
  5035. }
  5036. break;
  5037. case 702:
  5038. {
  5039. #ifdef SNMM
  5040. if (code_seen('U')) {
  5041. extr_unload_used(); //unload all filaments which were used in current print
  5042. }
  5043. else if (code_seen('C')) {
  5044. extr_unload(); //unload just current filament
  5045. }
  5046. else {
  5047. extr_unload_all(); //unload all filaments
  5048. }
  5049. #else
  5050. custom_message = true;
  5051. custom_message_type = 2;
  5052. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5053. current_position[E_AXIS] -= 80;
  5054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5055. st_synchronize();
  5056. lcd_setstatuspgm(WELCOME_MSG);
  5057. custom_message = false;
  5058. custom_message_type = 0;
  5059. #endif
  5060. }
  5061. break;
  5062. case 999: // M999: Restart after being stopped
  5063. Stopped = false;
  5064. lcd_reset_alert_level();
  5065. gcode_LastN = Stopped_gcode_LastN;
  5066. FlushSerialRequestResend();
  5067. break;
  5068. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5069. }
  5070. } // end if(code_seen('M')) (end of M codes)
  5071. else if(code_seen('T'))
  5072. {
  5073. int index;
  5074. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5075. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5076. SERIAL_ECHOLNPGM("Invalid T code.");
  5077. }
  5078. else {
  5079. if (*(strchr_pointer + index) == '?') {
  5080. tmp_extruder = choose_extruder_menu();
  5081. }
  5082. else {
  5083. tmp_extruder = code_value();
  5084. }
  5085. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5086. #ifdef SNMM
  5087. #ifdef LIN_ADVANCE
  5088. if (snmm_extruder != tmp_extruder)
  5089. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5090. #endif
  5091. snmm_extruder = tmp_extruder;
  5092. st_synchronize();
  5093. delay(100);
  5094. disable_e0();
  5095. disable_e1();
  5096. disable_e2();
  5097. pinMode(E_MUX0_PIN, OUTPUT);
  5098. pinMode(E_MUX1_PIN, OUTPUT);
  5099. pinMode(E_MUX2_PIN, OUTPUT);
  5100. delay(100);
  5101. SERIAL_ECHO_START;
  5102. SERIAL_ECHO("T:");
  5103. SERIAL_ECHOLN((int)tmp_extruder);
  5104. switch (tmp_extruder) {
  5105. case 1:
  5106. WRITE(E_MUX0_PIN, HIGH);
  5107. WRITE(E_MUX1_PIN, LOW);
  5108. WRITE(E_MUX2_PIN, LOW);
  5109. break;
  5110. case 2:
  5111. WRITE(E_MUX0_PIN, LOW);
  5112. WRITE(E_MUX1_PIN, HIGH);
  5113. WRITE(E_MUX2_PIN, LOW);
  5114. break;
  5115. case 3:
  5116. WRITE(E_MUX0_PIN, HIGH);
  5117. WRITE(E_MUX1_PIN, HIGH);
  5118. WRITE(E_MUX2_PIN, LOW);
  5119. break;
  5120. default:
  5121. WRITE(E_MUX0_PIN, LOW);
  5122. WRITE(E_MUX1_PIN, LOW);
  5123. WRITE(E_MUX2_PIN, LOW);
  5124. break;
  5125. }
  5126. delay(100);
  5127. #else
  5128. if (tmp_extruder >= EXTRUDERS) {
  5129. SERIAL_ECHO_START;
  5130. SERIAL_ECHOPGM("T");
  5131. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5132. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5133. }
  5134. else {
  5135. boolean make_move = false;
  5136. if (code_seen('F')) {
  5137. make_move = true;
  5138. next_feedrate = code_value();
  5139. if (next_feedrate > 0.0) {
  5140. feedrate = next_feedrate;
  5141. }
  5142. }
  5143. #if EXTRUDERS > 1
  5144. if (tmp_extruder != active_extruder) {
  5145. // Save current position to return to after applying extruder offset
  5146. memcpy(destination, current_position, sizeof(destination));
  5147. // Offset extruder (only by XY)
  5148. int i;
  5149. for (i = 0; i < 2; i++) {
  5150. current_position[i] = current_position[i] -
  5151. extruder_offset[i][active_extruder] +
  5152. extruder_offset[i][tmp_extruder];
  5153. }
  5154. // Set the new active extruder and position
  5155. active_extruder = tmp_extruder;
  5156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5157. // Move to the old position if 'F' was in the parameters
  5158. if (make_move && Stopped == false) {
  5159. prepare_move();
  5160. }
  5161. }
  5162. #endif
  5163. SERIAL_ECHO_START;
  5164. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5165. SERIAL_PROTOCOLLN((int)active_extruder);
  5166. }
  5167. #endif
  5168. }
  5169. } // end if(code_seen('T')) (end of T codes)
  5170. #ifdef DEBUG_DCODES
  5171. else if (code_seen('D')) // D codes (debug)
  5172. {
  5173. switch((int)code_value())
  5174. {
  5175. case 0: // D0 - Reset
  5176. if (*(strchr_pointer + 1) == 0) break;
  5177. MYSERIAL.println("D0 - Reset");
  5178. asm volatile("jmp 0x00000");
  5179. break;
  5180. /* MYSERIAL.println("D0 - Reset");
  5181. cli(); //disable interrupts
  5182. wdt_reset(); //reset watchdog
  5183. WDTCSR = (1<<WDCE) | (1<<WDE); //enable watchdog
  5184. WDTCSR = (1<<WDE) | (1<<WDP0); //30ms prescaler
  5185. while(1); //wait for reset*/
  5186. case 1: // D1 - Clear EEPROM
  5187. {
  5188. MYSERIAL.println("D1 - Clear EEPROM");
  5189. cli();
  5190. for (int i = 0; i < 4096; i++)
  5191. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5192. sei();
  5193. }
  5194. break;
  5195. case 2: // D2 - Read/Write PIN
  5196. {
  5197. if (code_seen('P')) // Pin (0-255)
  5198. {
  5199. int pin = (int)code_value();
  5200. if ((pin >= 0) && (pin <= 255))
  5201. {
  5202. if (code_seen('F')) // Function in/out (0/1)
  5203. {
  5204. int fnc = (int)code_value();
  5205. if (fnc == 0) pinMode(pin, INPUT);
  5206. else if (fnc == 1) pinMode(pin, OUTPUT);
  5207. }
  5208. if (code_seen('V')) // Value (0/1)
  5209. {
  5210. int val = (int)code_value();
  5211. if (val == 0) digitalWrite(pin, LOW);
  5212. else if (val == 1) digitalWrite(pin, HIGH);
  5213. }
  5214. else
  5215. {
  5216. int val = (digitalRead(pin) != LOW)?1:0;
  5217. MYSERIAL.print("PIN");
  5218. MYSERIAL.print(pin);
  5219. MYSERIAL.print("=");
  5220. MYSERIAL.println(val);
  5221. }
  5222. }
  5223. }
  5224. }
  5225. break;
  5226. case 3:
  5227. MYSERIAL.print("fsensor_enable()");
  5228. #ifdef PAT9125
  5229. fsensor_enable();
  5230. #endif
  5231. break;
  5232. case 4:
  5233. MYSERIAL.print("fsensor_disable()");
  5234. #ifdef PAT9125
  5235. fsensor_disable();
  5236. #endif
  5237. break;
  5238. case 5:
  5239. {
  5240. /* MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5241. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5242. MYSERIAL.println(val);*/
  5243. homeaxis(0);
  5244. }
  5245. break;
  5246. case 6:
  5247. {
  5248. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5249. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5250. MYSERIAL.println(val);*/
  5251. homeaxis(1);
  5252. }
  5253. break;
  5254. case 7:
  5255. {
  5256. MYSERIAL.print("pat9125_init=");
  5257. MYSERIAL.println(pat9125_init(200, 200));
  5258. }
  5259. break;
  5260. case 8:
  5261. {
  5262. MYSERIAL.print("swi2c_check=");
  5263. MYSERIAL.println(swi2c_check(0x75));
  5264. }
  5265. break;
  5266. }
  5267. }
  5268. #endif //DEBUG_DCODES
  5269. else
  5270. {
  5271. SERIAL_ECHO_START;
  5272. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5273. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5274. SERIAL_ECHOLNPGM("\"");
  5275. }
  5276. ClearToSend();
  5277. }
  5278. void FlushSerialRequestResend()
  5279. {
  5280. //char cmdbuffer[bufindr][100]="Resend:";
  5281. MYSERIAL.flush();
  5282. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5283. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5284. ClearToSend();
  5285. }
  5286. // Confirm the execution of a command, if sent from a serial line.
  5287. // Execution of a command from a SD card will not be confirmed.
  5288. void ClearToSend()
  5289. {
  5290. previous_millis_cmd = millis();
  5291. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5292. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5293. }
  5294. void get_coordinates()
  5295. {
  5296. bool seen[4]={false,false,false,false};
  5297. for(int8_t i=0; i < NUM_AXIS; i++) {
  5298. if(code_seen(axis_codes[i]))
  5299. {
  5300. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5301. seen[i]=true;
  5302. }
  5303. else destination[i] = current_position[i]; //Are these else lines really needed?
  5304. }
  5305. if(code_seen('F')) {
  5306. next_feedrate = code_value();
  5307. #ifdef MAX_SILENT_FEEDRATE
  5308. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5309. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5310. #endif //MAX_SILENT_FEEDRATE
  5311. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5312. }
  5313. }
  5314. void get_arc_coordinates()
  5315. {
  5316. #ifdef SF_ARC_FIX
  5317. bool relative_mode_backup = relative_mode;
  5318. relative_mode = true;
  5319. #endif
  5320. get_coordinates();
  5321. #ifdef SF_ARC_FIX
  5322. relative_mode=relative_mode_backup;
  5323. #endif
  5324. if(code_seen('I')) {
  5325. offset[0] = code_value();
  5326. }
  5327. else {
  5328. offset[0] = 0.0;
  5329. }
  5330. if(code_seen('J')) {
  5331. offset[1] = code_value();
  5332. }
  5333. else {
  5334. offset[1] = 0.0;
  5335. }
  5336. }
  5337. void clamp_to_software_endstops(float target[3])
  5338. {
  5339. #ifdef DEBUG_DISABLE_SWLIMITS
  5340. return;
  5341. #endif //DEBUG_DISABLE_SWLIMITS
  5342. world2machine_clamp(target[0], target[1]);
  5343. // Clamp the Z coordinate.
  5344. if (min_software_endstops) {
  5345. float negative_z_offset = 0;
  5346. #ifdef ENABLE_AUTO_BED_LEVELING
  5347. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5348. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5349. #endif
  5350. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5351. }
  5352. if (max_software_endstops) {
  5353. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5354. }
  5355. }
  5356. #ifdef MESH_BED_LEVELING
  5357. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5358. float dx = x - current_position[X_AXIS];
  5359. float dy = y - current_position[Y_AXIS];
  5360. float dz = z - current_position[Z_AXIS];
  5361. int n_segments = 0;
  5362. if (mbl.active) {
  5363. float len = abs(dx) + abs(dy);
  5364. if (len > 0)
  5365. // Split to 3cm segments or shorter.
  5366. n_segments = int(ceil(len / 30.f));
  5367. }
  5368. if (n_segments > 1) {
  5369. float de = e - current_position[E_AXIS];
  5370. for (int i = 1; i < n_segments; ++ i) {
  5371. float t = float(i) / float(n_segments);
  5372. plan_buffer_line(
  5373. current_position[X_AXIS] + t * dx,
  5374. current_position[Y_AXIS] + t * dy,
  5375. current_position[Z_AXIS] + t * dz,
  5376. current_position[E_AXIS] + t * de,
  5377. feed_rate, extruder);
  5378. }
  5379. }
  5380. // The rest of the path.
  5381. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5382. current_position[X_AXIS] = x;
  5383. current_position[Y_AXIS] = y;
  5384. current_position[Z_AXIS] = z;
  5385. current_position[E_AXIS] = e;
  5386. }
  5387. #endif // MESH_BED_LEVELING
  5388. void prepare_move()
  5389. {
  5390. clamp_to_software_endstops(destination);
  5391. previous_millis_cmd = millis();
  5392. // Do not use feedmultiply for E or Z only moves
  5393. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5395. }
  5396. else {
  5397. #ifdef MESH_BED_LEVELING
  5398. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5399. #else
  5400. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5401. #endif
  5402. }
  5403. for(int8_t i=0; i < NUM_AXIS; i++) {
  5404. current_position[i] = destination[i];
  5405. }
  5406. }
  5407. void prepare_arc_move(char isclockwise) {
  5408. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5409. // Trace the arc
  5410. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5411. // As far as the parser is concerned, the position is now == target. In reality the
  5412. // motion control system might still be processing the action and the real tool position
  5413. // in any intermediate location.
  5414. for(int8_t i=0; i < NUM_AXIS; i++) {
  5415. current_position[i] = destination[i];
  5416. }
  5417. previous_millis_cmd = millis();
  5418. }
  5419. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5420. #if defined(FAN_PIN)
  5421. #if CONTROLLERFAN_PIN == FAN_PIN
  5422. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5423. #endif
  5424. #endif
  5425. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5426. unsigned long lastMotorCheck = 0;
  5427. void controllerFan()
  5428. {
  5429. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5430. {
  5431. lastMotorCheck = millis();
  5432. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5433. #if EXTRUDERS > 2
  5434. || !READ(E2_ENABLE_PIN)
  5435. #endif
  5436. #if EXTRUDER > 1
  5437. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5438. || !READ(X2_ENABLE_PIN)
  5439. #endif
  5440. || !READ(E1_ENABLE_PIN)
  5441. #endif
  5442. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5443. {
  5444. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5445. }
  5446. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5447. {
  5448. digitalWrite(CONTROLLERFAN_PIN, 0);
  5449. analogWrite(CONTROLLERFAN_PIN, 0);
  5450. }
  5451. else
  5452. {
  5453. // allows digital or PWM fan output to be used (see M42 handling)
  5454. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5455. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5456. }
  5457. }
  5458. }
  5459. #endif
  5460. #ifdef TEMP_STAT_LEDS
  5461. static bool blue_led = false;
  5462. static bool red_led = false;
  5463. static uint32_t stat_update = 0;
  5464. void handle_status_leds(void) {
  5465. float max_temp = 0.0;
  5466. if(millis() > stat_update) {
  5467. stat_update += 500; // Update every 0.5s
  5468. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5469. max_temp = max(max_temp, degHotend(cur_extruder));
  5470. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5471. }
  5472. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5473. max_temp = max(max_temp, degTargetBed());
  5474. max_temp = max(max_temp, degBed());
  5475. #endif
  5476. if((max_temp > 55.0) && (red_led == false)) {
  5477. digitalWrite(STAT_LED_RED, 1);
  5478. digitalWrite(STAT_LED_BLUE, 0);
  5479. red_led = true;
  5480. blue_led = false;
  5481. }
  5482. if((max_temp < 54.0) && (blue_led == false)) {
  5483. digitalWrite(STAT_LED_RED, 0);
  5484. digitalWrite(STAT_LED_BLUE, 1);
  5485. red_led = false;
  5486. blue_led = true;
  5487. }
  5488. }
  5489. }
  5490. #endif
  5491. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5492. {
  5493. #if defined(KILL_PIN) && KILL_PIN > -1
  5494. static int killCount = 0; // make the inactivity button a bit less responsive
  5495. const int KILL_DELAY = 10000;
  5496. #endif
  5497. if(buflen < (BUFSIZE-1)){
  5498. get_command();
  5499. }
  5500. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5501. if(max_inactive_time)
  5502. kill("", 4);
  5503. if(stepper_inactive_time) {
  5504. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5505. {
  5506. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5507. disable_x();
  5508. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5509. disable_y();
  5510. disable_z();
  5511. disable_e0();
  5512. disable_e1();
  5513. disable_e2();
  5514. }
  5515. }
  5516. }
  5517. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5518. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5519. {
  5520. chdkActive = false;
  5521. WRITE(CHDK, LOW);
  5522. }
  5523. #endif
  5524. #if defined(KILL_PIN) && KILL_PIN > -1
  5525. // Check if the kill button was pressed and wait just in case it was an accidental
  5526. // key kill key press
  5527. // -------------------------------------------------------------------------------
  5528. if( 0 == READ(KILL_PIN) )
  5529. {
  5530. killCount++;
  5531. }
  5532. else if (killCount > 0)
  5533. {
  5534. killCount--;
  5535. }
  5536. // Exceeded threshold and we can confirm that it was not accidental
  5537. // KILL the machine
  5538. // ----------------------------------------------------------------
  5539. if ( killCount >= KILL_DELAY)
  5540. {
  5541. kill("", 5);
  5542. }
  5543. #endif
  5544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5545. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5546. #endif
  5547. #ifdef EXTRUDER_RUNOUT_PREVENT
  5548. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5549. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5550. {
  5551. bool oldstatus=READ(E0_ENABLE_PIN);
  5552. enable_e0();
  5553. float oldepos=current_position[E_AXIS];
  5554. float oldedes=destination[E_AXIS];
  5555. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5556. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5557. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5558. current_position[E_AXIS]=oldepos;
  5559. destination[E_AXIS]=oldedes;
  5560. plan_set_e_position(oldepos);
  5561. previous_millis_cmd=millis();
  5562. st_synchronize();
  5563. WRITE(E0_ENABLE_PIN,oldstatus);
  5564. }
  5565. #endif
  5566. #ifdef TEMP_STAT_LEDS
  5567. handle_status_leds();
  5568. #endif
  5569. check_axes_activity();
  5570. }
  5571. void kill(const char *full_screen_message, unsigned char id)
  5572. {
  5573. SERIAL_ECHOPGM("KILL: ");
  5574. MYSERIAL.println(int(id));
  5575. //return;
  5576. cli(); // Stop interrupts
  5577. disable_heater();
  5578. disable_x();
  5579. // SERIAL_ECHOLNPGM("kill - disable Y");
  5580. disable_y();
  5581. disable_z();
  5582. disable_e0();
  5583. disable_e1();
  5584. disable_e2();
  5585. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5586. pinMode(PS_ON_PIN,INPUT);
  5587. #endif
  5588. SERIAL_ERROR_START;
  5589. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5590. if (full_screen_message != NULL) {
  5591. SERIAL_ERRORLNRPGM(full_screen_message);
  5592. lcd_display_message_fullscreen_P(full_screen_message);
  5593. } else {
  5594. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5595. }
  5596. // FMC small patch to update the LCD before ending
  5597. sei(); // enable interrupts
  5598. for ( int i=5; i--; lcd_update())
  5599. {
  5600. delay(200);
  5601. }
  5602. cli(); // disable interrupts
  5603. suicide();
  5604. while(1) { /* Intentionally left empty */ } // Wait for reset
  5605. }
  5606. void Stop()
  5607. {
  5608. disable_heater();
  5609. if(Stopped == false) {
  5610. Stopped = true;
  5611. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5612. SERIAL_ERROR_START;
  5613. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5614. LCD_MESSAGERPGM(MSG_STOPPED);
  5615. }
  5616. }
  5617. bool IsStopped() { return Stopped; };
  5618. #ifdef FAST_PWM_FAN
  5619. void setPwmFrequency(uint8_t pin, int val)
  5620. {
  5621. val &= 0x07;
  5622. switch(digitalPinToTimer(pin))
  5623. {
  5624. #if defined(TCCR0A)
  5625. case TIMER0A:
  5626. case TIMER0B:
  5627. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5628. // TCCR0B |= val;
  5629. break;
  5630. #endif
  5631. #if defined(TCCR1A)
  5632. case TIMER1A:
  5633. case TIMER1B:
  5634. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5635. // TCCR1B |= val;
  5636. break;
  5637. #endif
  5638. #if defined(TCCR2)
  5639. case TIMER2:
  5640. case TIMER2:
  5641. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5642. TCCR2 |= val;
  5643. break;
  5644. #endif
  5645. #if defined(TCCR2A)
  5646. case TIMER2A:
  5647. case TIMER2B:
  5648. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5649. TCCR2B |= val;
  5650. break;
  5651. #endif
  5652. #if defined(TCCR3A)
  5653. case TIMER3A:
  5654. case TIMER3B:
  5655. case TIMER3C:
  5656. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5657. TCCR3B |= val;
  5658. break;
  5659. #endif
  5660. #if defined(TCCR4A)
  5661. case TIMER4A:
  5662. case TIMER4B:
  5663. case TIMER4C:
  5664. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5665. TCCR4B |= val;
  5666. break;
  5667. #endif
  5668. #if defined(TCCR5A)
  5669. case TIMER5A:
  5670. case TIMER5B:
  5671. case TIMER5C:
  5672. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5673. TCCR5B |= val;
  5674. break;
  5675. #endif
  5676. }
  5677. }
  5678. #endif //FAST_PWM_FAN
  5679. bool setTargetedHotend(int code){
  5680. tmp_extruder = active_extruder;
  5681. if(code_seen('T')) {
  5682. tmp_extruder = code_value();
  5683. if(tmp_extruder >= EXTRUDERS) {
  5684. SERIAL_ECHO_START;
  5685. switch(code){
  5686. case 104:
  5687. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5688. break;
  5689. case 105:
  5690. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5691. break;
  5692. case 109:
  5693. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5694. break;
  5695. case 218:
  5696. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5697. break;
  5698. case 221:
  5699. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5700. break;
  5701. }
  5702. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5703. return true;
  5704. }
  5705. }
  5706. return false;
  5707. }
  5708. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5709. {
  5710. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5711. {
  5712. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5713. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5714. }
  5715. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5716. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5717. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5718. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5719. total_filament_used = 0;
  5720. }
  5721. float calculate_volumetric_multiplier(float diameter) {
  5722. float area = .0;
  5723. float radius = .0;
  5724. radius = diameter * .5;
  5725. if (! volumetric_enabled || radius == 0) {
  5726. area = 1;
  5727. }
  5728. else {
  5729. area = M_PI * pow(radius, 2);
  5730. }
  5731. return 1.0 / area;
  5732. }
  5733. void calculate_volumetric_multipliers() {
  5734. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5735. #if EXTRUDERS > 1
  5736. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5737. #if EXTRUDERS > 2
  5738. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5739. #endif
  5740. #endif
  5741. }
  5742. void delay_keep_alive(unsigned int ms)
  5743. {
  5744. for (;;) {
  5745. manage_heater();
  5746. // Manage inactivity, but don't disable steppers on timeout.
  5747. manage_inactivity(true);
  5748. lcd_update();
  5749. if (ms == 0)
  5750. break;
  5751. else if (ms >= 50) {
  5752. delay(50);
  5753. ms -= 50;
  5754. } else {
  5755. delay(ms);
  5756. ms = 0;
  5757. }
  5758. }
  5759. }
  5760. void wait_for_heater(long codenum) {
  5761. #ifdef TEMP_RESIDENCY_TIME
  5762. long residencyStart;
  5763. residencyStart = -1;
  5764. /* continue to loop until we have reached the target temp
  5765. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5766. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5767. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5768. #else
  5769. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5770. #endif //TEMP_RESIDENCY_TIME
  5771. if ((millis() - codenum) > 1000UL)
  5772. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5773. if (!farm_mode) {
  5774. SERIAL_PROTOCOLPGM("T:");
  5775. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5776. SERIAL_PROTOCOLPGM(" E:");
  5777. SERIAL_PROTOCOL((int)tmp_extruder);
  5778. #ifdef TEMP_RESIDENCY_TIME
  5779. SERIAL_PROTOCOLPGM(" W:");
  5780. if (residencyStart > -1)
  5781. {
  5782. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5783. SERIAL_PROTOCOLLN(codenum);
  5784. }
  5785. else
  5786. {
  5787. SERIAL_PROTOCOLLN("?");
  5788. }
  5789. }
  5790. #else
  5791. SERIAL_PROTOCOLLN("");
  5792. #endif
  5793. codenum = millis();
  5794. }
  5795. manage_heater();
  5796. manage_inactivity();
  5797. lcd_update();
  5798. #ifdef TEMP_RESIDENCY_TIME
  5799. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5800. or when current temp falls outside the hysteresis after target temp was reached */
  5801. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5802. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5803. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5804. {
  5805. residencyStart = millis();
  5806. }
  5807. #endif //TEMP_RESIDENCY_TIME
  5808. }
  5809. }
  5810. void check_babystep() {
  5811. int babystep_z;
  5812. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5813. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5814. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5815. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5816. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5817. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5818. lcd_update_enable(true);
  5819. }
  5820. }
  5821. #ifdef DIS
  5822. void d_setup()
  5823. {
  5824. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5825. pinMode(D_DATA, INPUT_PULLUP);
  5826. pinMode(D_REQUIRE, OUTPUT);
  5827. digitalWrite(D_REQUIRE, HIGH);
  5828. }
  5829. float d_ReadData()
  5830. {
  5831. int digit[13];
  5832. String mergeOutput;
  5833. float output;
  5834. digitalWrite(D_REQUIRE, HIGH);
  5835. for (int i = 0; i<13; i++)
  5836. {
  5837. for (int j = 0; j < 4; j++)
  5838. {
  5839. while (digitalRead(D_DATACLOCK) == LOW) {}
  5840. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5841. bitWrite(digit[i], j, digitalRead(D_DATA));
  5842. }
  5843. }
  5844. digitalWrite(D_REQUIRE, LOW);
  5845. mergeOutput = "";
  5846. output = 0;
  5847. for (int r = 5; r <= 10; r++) //Merge digits
  5848. {
  5849. mergeOutput += digit[r];
  5850. }
  5851. output = mergeOutput.toFloat();
  5852. if (digit[4] == 8) //Handle sign
  5853. {
  5854. output *= -1;
  5855. }
  5856. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5857. {
  5858. output /= 10;
  5859. }
  5860. return output;
  5861. }
  5862. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5863. int t1 = 0;
  5864. int t_delay = 0;
  5865. int digit[13];
  5866. int m;
  5867. char str[3];
  5868. //String mergeOutput;
  5869. char mergeOutput[15];
  5870. float output;
  5871. int mesh_point = 0; //index number of calibration point
  5872. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5873. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5874. float mesh_home_z_search = 4;
  5875. float row[x_points_num];
  5876. int ix = 0;
  5877. int iy = 0;
  5878. char* filename_wldsd = "wldsd.txt";
  5879. char data_wldsd[70];
  5880. char numb_wldsd[10];
  5881. d_setup();
  5882. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5883. // We don't know where we are! HOME!
  5884. // Push the commands to the front of the message queue in the reverse order!
  5885. // There shall be always enough space reserved for these commands.
  5886. repeatcommand_front(); // repeat G80 with all its parameters
  5887. enquecommand_front_P((PSTR("G28 W0")));
  5888. enquecommand_front_P((PSTR("G1 Z5")));
  5889. return;
  5890. }
  5891. bool custom_message_old = custom_message;
  5892. unsigned int custom_message_type_old = custom_message_type;
  5893. unsigned int custom_message_state_old = custom_message_state;
  5894. custom_message = true;
  5895. custom_message_type = 1;
  5896. custom_message_state = (x_points_num * y_points_num) + 10;
  5897. lcd_update(1);
  5898. mbl.reset();
  5899. babystep_undo();
  5900. card.openFile(filename_wldsd, false);
  5901. current_position[Z_AXIS] = mesh_home_z_search;
  5902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5903. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5904. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5905. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5906. setup_for_endstop_move(false);
  5907. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5908. SERIAL_PROTOCOL(x_points_num);
  5909. SERIAL_PROTOCOLPGM(",");
  5910. SERIAL_PROTOCOL(y_points_num);
  5911. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5912. SERIAL_PROTOCOL(mesh_home_z_search);
  5913. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5914. SERIAL_PROTOCOL(x_dimension);
  5915. SERIAL_PROTOCOLPGM(",");
  5916. SERIAL_PROTOCOL(y_dimension);
  5917. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5918. while (mesh_point != x_points_num * y_points_num) {
  5919. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5920. iy = mesh_point / x_points_num;
  5921. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5922. float z0 = 0.f;
  5923. current_position[Z_AXIS] = mesh_home_z_search;
  5924. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5925. st_synchronize();
  5926. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5927. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5929. st_synchronize();
  5930. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5931. break;
  5932. card.closefile();
  5933. }
  5934. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5935. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5936. //strcat(data_wldsd, numb_wldsd);
  5937. //MYSERIAL.println(data_wldsd);
  5938. //delay(1000);
  5939. //delay(3000);
  5940. //t1 = millis();
  5941. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5942. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5943. memset(digit, 0, sizeof(digit));
  5944. //cli();
  5945. digitalWrite(D_REQUIRE, LOW);
  5946. for (int i = 0; i<13; i++)
  5947. {
  5948. //t1 = millis();
  5949. for (int j = 0; j < 4; j++)
  5950. {
  5951. while (digitalRead(D_DATACLOCK) == LOW) {}
  5952. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5953. bitWrite(digit[i], j, digitalRead(D_DATA));
  5954. }
  5955. //t_delay = (millis() - t1);
  5956. //SERIAL_PROTOCOLPGM(" ");
  5957. //SERIAL_PROTOCOL_F(t_delay, 5);
  5958. //SERIAL_PROTOCOLPGM(" ");
  5959. }
  5960. //sei();
  5961. digitalWrite(D_REQUIRE, HIGH);
  5962. mergeOutput[0] = '\0';
  5963. output = 0;
  5964. for (int r = 5; r <= 10; r++) //Merge digits
  5965. {
  5966. sprintf(str, "%d", digit[r]);
  5967. strcat(mergeOutput, str);
  5968. }
  5969. output = atof(mergeOutput);
  5970. if (digit[4] == 8) //Handle sign
  5971. {
  5972. output *= -1;
  5973. }
  5974. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5975. {
  5976. output *= 0.1;
  5977. }
  5978. //output = d_ReadData();
  5979. //row[ix] = current_position[Z_AXIS];
  5980. memset(data_wldsd, 0, sizeof(data_wldsd));
  5981. for (int i = 0; i <3; i++) {
  5982. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5983. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5984. strcat(data_wldsd, numb_wldsd);
  5985. strcat(data_wldsd, ";");
  5986. }
  5987. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5988. dtostrf(output, 8, 5, numb_wldsd);
  5989. strcat(data_wldsd, numb_wldsd);
  5990. //strcat(data_wldsd, ";");
  5991. card.write_command(data_wldsd);
  5992. //row[ix] = d_ReadData();
  5993. row[ix] = output; // current_position[Z_AXIS];
  5994. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5995. for (int i = 0; i < x_points_num; i++) {
  5996. SERIAL_PROTOCOLPGM(" ");
  5997. SERIAL_PROTOCOL_F(row[i], 5);
  5998. }
  5999. SERIAL_PROTOCOLPGM("\n");
  6000. }
  6001. custom_message_state--;
  6002. mesh_point++;
  6003. lcd_update(1);
  6004. }
  6005. card.closefile();
  6006. }
  6007. #endif
  6008. void temp_compensation_start() {
  6009. custom_message = true;
  6010. custom_message_type = 5;
  6011. custom_message_state = PINDA_HEAT_T + 1;
  6012. lcd_update(2);
  6013. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6014. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6015. }
  6016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6017. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6018. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6019. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6021. st_synchronize();
  6022. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6023. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6024. delay_keep_alive(1000);
  6025. custom_message_state = PINDA_HEAT_T - i;
  6026. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6027. else lcd_update(1);
  6028. }
  6029. custom_message_type = 0;
  6030. custom_message_state = 0;
  6031. custom_message = false;
  6032. }
  6033. void temp_compensation_apply() {
  6034. int i_add;
  6035. int compensation_value;
  6036. int z_shift = 0;
  6037. float z_shift_mm;
  6038. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6039. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6040. i_add = (target_temperature_bed - 60) / 10;
  6041. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6042. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6043. }else {
  6044. //interpolation
  6045. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6046. }
  6047. SERIAL_PROTOCOLPGM("\n");
  6048. SERIAL_PROTOCOLPGM("Z shift applied:");
  6049. MYSERIAL.print(z_shift_mm);
  6050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6051. st_synchronize();
  6052. plan_set_z_position(current_position[Z_AXIS]);
  6053. }
  6054. else {
  6055. //we have no temp compensation data
  6056. }
  6057. }
  6058. float temp_comp_interpolation(float inp_temperature) {
  6059. //cubic spline interpolation
  6060. int n, i, j, k;
  6061. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6062. int shift[10];
  6063. int temp_C[10];
  6064. n = 6; //number of measured points
  6065. shift[0] = 0;
  6066. for (i = 0; i < n; i++) {
  6067. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6068. temp_C[i] = 50 + i * 10; //temperature in C
  6069. x[i] = (float)temp_C[i];
  6070. f[i] = (float)shift[i];
  6071. }
  6072. if (inp_temperature < x[0]) return 0;
  6073. for (i = n - 1; i>0; i--) {
  6074. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6075. h[i - 1] = x[i] - x[i - 1];
  6076. }
  6077. //*********** formation of h, s , f matrix **************
  6078. for (i = 1; i<n - 1; i++) {
  6079. m[i][i] = 2 * (h[i - 1] + h[i]);
  6080. if (i != 1) {
  6081. m[i][i - 1] = h[i - 1];
  6082. m[i - 1][i] = h[i - 1];
  6083. }
  6084. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6085. }
  6086. //*********** forward elimination **************
  6087. for (i = 1; i<n - 2; i++) {
  6088. temp = (m[i + 1][i] / m[i][i]);
  6089. for (j = 1; j <= n - 1; j++)
  6090. m[i + 1][j] -= temp*m[i][j];
  6091. }
  6092. //*********** backward substitution *********
  6093. for (i = n - 2; i>0; i--) {
  6094. sum = 0;
  6095. for (j = i; j <= n - 2; j++)
  6096. sum += m[i][j] * s[j];
  6097. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6098. }
  6099. for (i = 0; i<n - 1; i++)
  6100. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6101. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6102. b = s[i] / 2;
  6103. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6104. d = f[i];
  6105. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6106. }
  6107. return sum;
  6108. }
  6109. void long_pause() //long pause print
  6110. {
  6111. st_synchronize();
  6112. //save currently set parameters to global variables
  6113. saved_feedmultiply = feedmultiply;
  6114. HotendTempBckp = degTargetHotend(active_extruder);
  6115. fanSpeedBckp = fanSpeed;
  6116. start_pause_print = millis();
  6117. //save position
  6118. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6119. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6120. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6121. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6122. //retract
  6123. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6125. //lift z
  6126. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6127. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6129. //set nozzle target temperature to 0
  6130. setTargetHotend(0, 0);
  6131. setTargetHotend(0, 1);
  6132. setTargetHotend(0, 2);
  6133. //Move XY to side
  6134. current_position[X_AXIS] = X_PAUSE_POS;
  6135. current_position[Y_AXIS] = Y_PAUSE_POS;
  6136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6137. // Turn off the print fan
  6138. fanSpeed = 0;
  6139. st_synchronize();
  6140. }
  6141. void serialecho_temperatures() {
  6142. float tt = degHotend(active_extruder);
  6143. SERIAL_PROTOCOLPGM("T:");
  6144. SERIAL_PROTOCOL(tt);
  6145. SERIAL_PROTOCOLPGM(" E:");
  6146. SERIAL_PROTOCOL((int)active_extruder);
  6147. SERIAL_PROTOCOLPGM(" B:");
  6148. SERIAL_PROTOCOL_F(degBed(), 1);
  6149. SERIAL_PROTOCOLLN("");
  6150. }
  6151. void uvlo_() {
  6152. //SERIAL_ECHOLNPGM("UVLO");
  6153. save_print_to_eeprom();
  6154. float current_position_bckp[2];
  6155. int feedrate_bckp = feedrate;
  6156. current_position_bckp[X_AXIS] = st_get_position_mm(X_AXIS);
  6157. current_position_bckp[Y_AXIS] = st_get_position_mm(Y_AXIS);
  6158. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position_bckp[X_AXIS]);
  6159. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position_bckp[Y_AXIS]);
  6160. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6161. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6162. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6163. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6164. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6165. disable_x();
  6166. disable_y();
  6167. planner_abort_hard();
  6168. // Because the planner_abort_hard() initialized current_position[Z] from the stepper,
  6169. // Z baystep is no more applied. Reset it.
  6170. babystep_reset();
  6171. // Clean the input command queue.
  6172. cmdqueue_reset();
  6173. card.sdprinting = false;
  6174. card.closefile();
  6175. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6176. sei(); //enable stepper driver interrupt to move Z axis
  6177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6178. st_synchronize();
  6179. current_position[Z_AXIS] += UVLO_Z_AXIS_SHIFT;
  6180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 40, active_extruder);
  6181. st_synchronize();
  6182. disable_z();
  6183. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6184. delay(10);
  6185. }
  6186. void setup_uvlo_interrupt() {
  6187. DDRE &= ~(1 << 4); //input pin
  6188. PORTE &= ~(1 << 4); //no internal pull-up
  6189. //sensing falling edge
  6190. EICRB |= (1 << 0);
  6191. EICRB &= ~(1 << 1);
  6192. //enable INT4 interrupt
  6193. EIMSK |= (1 << 4);
  6194. }
  6195. ISR(INT4_vect) {
  6196. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6197. SERIAL_ECHOLNPGM("INT4");
  6198. if (IS_SD_PRINTING) uvlo_();
  6199. }
  6200. void save_print_to_eeprom() {
  6201. //eeprom_update_word((uint16_t*)(EPROM_UVLO_CMD_QUEUE), bufindw - bufindr );
  6202. //BLOCK_BUFFER_SIZE: max. 16 linear moves in planner buffer
  6203. #define TYP_GCODE_LENGTH 30 //G1 X117.489 Y22.814 E1.46695 + cr lf
  6204. //card.get_sdpos() -> byte currently read from SD card
  6205. //bufindw -> position in circular buffer where to write
  6206. //bufindr -> position in circular buffer where to read
  6207. //bufflen -> number of lines in buffer -> for each line one special character??
  6208. //number_of_blocks() returns number of linear movements buffered in planner
  6209. long sd_position = card.get_sdpos() - ((bufindw > bufindr) ? (bufindw - bufindr) : sizeof(cmdbuffer) - bufindr + bufindw) - TYP_GCODE_LENGTH* number_of_blocks();
  6210. if (sd_position < 0) sd_position = 0;
  6211. /*SERIAL_ECHOPGM("sd position before correction:");
  6212. MYSERIAL.println(card.get_sdpos());
  6213. SERIAL_ECHOPGM("bufindw:");
  6214. MYSERIAL.println(bufindw);
  6215. SERIAL_ECHOPGM("bufindr:");
  6216. MYSERIAL.println(bufindr);
  6217. SERIAL_ECHOPGM("sizeof(cmd_buffer):");
  6218. MYSERIAL.println(sizeof(cmdbuffer));
  6219. SERIAL_ECHOPGM("sd position after correction:");
  6220. MYSERIAL.println(sd_position);*/
  6221. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6222. }
  6223. void recover_print() {
  6224. char cmd[30];
  6225. lcd_update_enable(true);
  6226. lcd_update(2);
  6227. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6228. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6229. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6230. float z_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z));
  6231. z_pos = z_pos + UVLO_Z_AXIS_SHIFT;
  6232. current_position[Z_AXIS] = z_pos;
  6233. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6234. enquecommand_P(PSTR("G28 X"));
  6235. enquecommand_P(PSTR("G28 Y"));
  6236. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6237. enquecommand(cmd);
  6238. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6239. enquecommand(cmd);
  6240. enquecommand_P(PSTR("M83")); //E axis relative mode
  6241. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6242. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6243. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6244. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6245. delay_keep_alive(1000);
  6246. }*/
  6247. SERIAL_ECHOPGM("After waiting for temp:");
  6248. SERIAL_ECHOPGM("Current position X_AXIS:");
  6249. MYSERIAL.println(current_position[X_AXIS]);
  6250. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6251. MYSERIAL.println(current_position[Y_AXIS]);
  6252. restore_print_from_eeprom();
  6253. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6254. MYSERIAL.print(current_position[Z_AXIS]);
  6255. }
  6256. void restore_print_from_eeprom() {
  6257. float x_rec, y_rec, z_pos;
  6258. int feedrate_rec;
  6259. uint8_t fan_speed_rec;
  6260. char cmd[30];
  6261. char* c;
  6262. char filename[13];
  6263. char str[5] = ".gco";
  6264. x_rec = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6265. y_rec = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6266. z_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z));
  6267. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6268. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6269. SERIAL_ECHOPGM("Feedrate:");
  6270. MYSERIAL.println(feedrate_rec);
  6271. for (int i = 0; i < 8; i++) {
  6272. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6273. }
  6274. filename[8] = '\0';
  6275. MYSERIAL.print(filename);
  6276. strcat(filename, str);
  6277. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6278. for (c = &cmd[4]; *c; c++)
  6279. *c = tolower(*c);
  6280. enquecommand(cmd);
  6281. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6282. SERIAL_ECHOPGM("Position read from eeprom:");
  6283. MYSERIAL.println(position);
  6284. enquecommand_P(PSTR("M24")); //M24 - Start SD print
  6285. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6286. enquecommand(cmd);
  6287. enquecommand_P(PSTR("M83")); //E axis relative mode
  6288. strcpy(cmd, "G1 X");
  6289. strcat(cmd, ftostr32(x_rec));
  6290. strcat(cmd, " Y");
  6291. strcat(cmd, ftostr32(y_rec));
  6292. strcat(cmd, " F2000");
  6293. enquecommand(cmd);
  6294. strcpy(cmd, "G1 Z");
  6295. strcat(cmd, ftostr32(z_pos));
  6296. enquecommand(cmd);
  6297. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6298. //enquecommand_P(PSTR("G1 E0.5"));
  6299. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6300. enquecommand(cmd);
  6301. strcpy(cmd, "M106 S");
  6302. strcat(cmd, itostr3(int(fan_speed_rec)));
  6303. enquecommand(cmd);
  6304. }