Marlin_main.cpp 223 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. unsigned long PingTime = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. int bowden_length[4];
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. float HotendTempBckp = 0;
  225. int fanSpeedBckp = 0;
  226. float pause_lastpos[4];
  227. unsigned long pause_time = 0;
  228. unsigned long start_pause_print = millis();
  229. unsigned long load_filament_time;
  230. bool mesh_bed_leveling_flag = false;
  231. bool mesh_bed_run_from_menu = false;
  232. unsigned char lang_selected = 0;
  233. int8_t FarmMode = 0;
  234. bool prusa_sd_card_upload = false;
  235. unsigned int status_number = 0;
  236. unsigned long total_filament_used;
  237. unsigned int heating_status;
  238. unsigned int heating_status_counter;
  239. bool custom_message;
  240. bool loading_flag = false;
  241. unsigned int custom_message_type;
  242. unsigned int custom_message_state;
  243. char snmm_filaments_used = 0;
  244. float distance_from_min[3];
  245. bool sortAlpha = false;
  246. bool volumetric_enabled = false;
  247. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  248. #if EXTRUDERS > 1
  249. , DEFAULT_NOMINAL_FILAMENT_DIA
  250. #if EXTRUDERS > 2
  251. , DEFAULT_NOMINAL_FILAMENT_DIA
  252. #endif
  253. #endif
  254. };
  255. float volumetric_multiplier[EXTRUDERS] = {1.0
  256. #if EXTRUDERS > 1
  257. , 1.0
  258. #if EXTRUDERS > 2
  259. , 1.0
  260. #endif
  261. #endif
  262. };
  263. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  264. float add_homing[3]={0,0,0};
  265. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  266. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  267. bool axis_known_position[3] = {false, false, false};
  268. float zprobe_zoffset;
  269. // Extruder offset
  270. #if EXTRUDERS > 1
  271. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  272. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  273. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  274. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  275. #endif
  276. };
  277. #endif
  278. uint8_t active_extruder = 0;
  279. int fanSpeed=0;
  280. #ifdef FWRETRACT
  281. bool autoretract_enabled=false;
  282. bool retracted[EXTRUDERS]={false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #endif
  288. #endif
  289. };
  290. bool retracted_swap[EXTRUDERS]={false
  291. #if EXTRUDERS > 1
  292. , false
  293. #if EXTRUDERS > 2
  294. , false
  295. #endif
  296. #endif
  297. };
  298. float retract_length = RETRACT_LENGTH;
  299. float retract_length_swap = RETRACT_LENGTH_SWAP;
  300. float retract_feedrate = RETRACT_FEEDRATE;
  301. float retract_zlift = RETRACT_ZLIFT;
  302. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  303. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  304. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  305. #endif
  306. #ifdef ULTIPANEL
  307. #ifdef PS_DEFAULT_OFF
  308. bool powersupply = false;
  309. #else
  310. bool powersupply = true;
  311. #endif
  312. #endif
  313. bool cancel_heatup = false ;
  314. #ifdef FILAMENT_SENSOR
  315. //Variables for Filament Sensor input
  316. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  317. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  318. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  319. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  320. int delay_index1=0; //index into ring buffer
  321. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  322. float delay_dist=0; //delay distance counter
  323. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  324. #endif
  325. const char errormagic[] PROGMEM = "Error:";
  326. const char echomagic[] PROGMEM = "echo:";
  327. //===========================================================================
  328. //=============================Private Variables=============================
  329. //===========================================================================
  330. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  331. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  332. static float delta[3] = {0.0, 0.0, 0.0};
  333. // For tracing an arc
  334. static float offset[3] = {0.0, 0.0, 0.0};
  335. static bool home_all_axis = true;
  336. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  337. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  338. // Determines Absolute or Relative Coordinates.
  339. // Also there is bool axis_relative_modes[] per axis flag.
  340. static bool relative_mode = false;
  341. // String circular buffer. Commands may be pushed to the buffer from both sides:
  342. // Chained commands will be pushed to the front, interactive (from LCD menu)
  343. // and printing commands (from serial line or from SD card) are pushed to the tail.
  344. // First character of each entry indicates the type of the entry:
  345. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  346. // Command in cmdbuffer was sent over USB.
  347. #define CMDBUFFER_CURRENT_TYPE_USB 1
  348. // Command in cmdbuffer was read from SDCARD.
  349. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  350. // Command in cmdbuffer was generated by the UI.
  351. #define CMDBUFFER_CURRENT_TYPE_UI 3
  352. // Command in cmdbuffer was generated by another G-code.
  353. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  354. // How much space to reserve for the chained commands
  355. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  356. // which are pushed to the front of the queue?
  357. // Maximum 5 commands of max length 20 + null terminator.
  358. #define CMDBUFFER_RESERVE_FRONT (5*21)
  359. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  360. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  361. // Head of the circular buffer, where to read.
  362. static int bufindr = 0;
  363. // Tail of the buffer, where to write.
  364. static int bufindw = 0;
  365. // Number of lines in cmdbuffer.
  366. static int buflen = 0;
  367. // Flag for processing the current command inside the main Arduino loop().
  368. // If a new command was pushed to the front of a command buffer while
  369. // processing another command, this replaces the command on the top.
  370. // Therefore don't remove the command from the queue in the loop() function.
  371. static bool cmdbuffer_front_already_processed = false;
  372. // Type of a command, which is to be executed right now.
  373. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  374. // String of a command, which is to be executed right now.
  375. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  376. // Enable debugging of the command buffer.
  377. // Debugging information will be sent to serial line.
  378. // #define CMDBUFFER_DEBUG
  379. static int serial_count = 0; //index of character read from serial line
  380. static boolean comment_mode = false;
  381. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  382. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  383. //static float tt = 0;
  384. //static float bt = 0;
  385. //Inactivity shutdown variables
  386. static unsigned long previous_millis_cmd = 0;
  387. unsigned long max_inactive_time = 0;
  388. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  389. unsigned long starttime=0;
  390. unsigned long stoptime=0;
  391. unsigned long _usb_timer = 0;
  392. static uint8_t tmp_extruder;
  393. bool Stopped=false;
  394. #if NUM_SERVOS > 0
  395. Servo servos[NUM_SERVOS];
  396. #endif
  397. bool CooldownNoWait = true;
  398. bool target_direction;
  399. //Insert variables if CHDK is defined
  400. #ifdef CHDK
  401. unsigned long chdkHigh = 0;
  402. boolean chdkActive = false;
  403. #endif
  404. //===========================================================================
  405. //=============================Routines======================================
  406. //===========================================================================
  407. void get_arc_coordinates();
  408. bool setTargetedHotend(int code);
  409. void serial_echopair_P(const char *s_P, float v)
  410. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  411. void serial_echopair_P(const char *s_P, double v)
  412. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  413. void serial_echopair_P(const char *s_P, unsigned long v)
  414. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  415. #ifdef SDSUPPORT
  416. #include "SdFatUtil.h"
  417. int freeMemory() { return SdFatUtil::FreeRam(); }
  418. #else
  419. extern "C" {
  420. extern unsigned int __bss_end;
  421. extern unsigned int __heap_start;
  422. extern void *__brkval;
  423. int freeMemory() {
  424. int free_memory;
  425. if ((int)__brkval == 0)
  426. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  427. else
  428. free_memory = ((int)&free_memory) - ((int)__brkval);
  429. return free_memory;
  430. }
  431. }
  432. #endif //!SDSUPPORT
  433. // Pop the currently processed command from the queue.
  434. // It is expected, that there is at least one command in the queue.
  435. bool cmdqueue_pop_front()
  436. {
  437. if (buflen > 0) {
  438. #ifdef CMDBUFFER_DEBUG
  439. SERIAL_ECHOPGM("Dequeing ");
  440. SERIAL_ECHO(cmdbuffer+bufindr+1);
  441. SERIAL_ECHOLNPGM("");
  442. SERIAL_ECHOPGM("Old indices: buflen ");
  443. SERIAL_ECHO(buflen);
  444. SERIAL_ECHOPGM(", bufindr ");
  445. SERIAL_ECHO(bufindr);
  446. SERIAL_ECHOPGM(", bufindw ");
  447. SERIAL_ECHO(bufindw);
  448. SERIAL_ECHOPGM(", serial_count ");
  449. SERIAL_ECHO(serial_count);
  450. SERIAL_ECHOPGM(", bufsize ");
  451. SERIAL_ECHO(sizeof(cmdbuffer));
  452. SERIAL_ECHOLNPGM("");
  453. #endif /* CMDBUFFER_DEBUG */
  454. if (-- buflen == 0) {
  455. // Empty buffer.
  456. if (serial_count == 0)
  457. // No serial communication is pending. Reset both pointers to zero.
  458. bufindw = 0;
  459. bufindr = bufindw;
  460. } else {
  461. // There is at least one ready line in the buffer.
  462. // First skip the current command ID and iterate up to the end of the string.
  463. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  464. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  465. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  466. // If the end of the buffer was empty,
  467. if (bufindr == sizeof(cmdbuffer)) {
  468. // skip to the start and find the nonzero command.
  469. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  470. }
  471. #ifdef CMDBUFFER_DEBUG
  472. SERIAL_ECHOPGM("New indices: buflen ");
  473. SERIAL_ECHO(buflen);
  474. SERIAL_ECHOPGM(", bufindr ");
  475. SERIAL_ECHO(bufindr);
  476. SERIAL_ECHOPGM(", bufindw ");
  477. SERIAL_ECHO(bufindw);
  478. SERIAL_ECHOPGM(", serial_count ");
  479. SERIAL_ECHO(serial_count);
  480. SERIAL_ECHOPGM(" new command on the top: ");
  481. SERIAL_ECHO(cmdbuffer+bufindr+1);
  482. SERIAL_ECHOLNPGM("");
  483. #endif /* CMDBUFFER_DEBUG */
  484. }
  485. return true;
  486. }
  487. return false;
  488. }
  489. void cmdqueue_reset()
  490. {
  491. while (cmdqueue_pop_front()) ;
  492. }
  493. // How long a string could be pushed to the front of the command queue?
  494. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  495. // len_asked does not contain the zero terminator size.
  496. bool cmdqueue_could_enqueue_front(int len_asked)
  497. {
  498. // MAX_CMD_SIZE has to accommodate the zero terminator.
  499. if (len_asked >= MAX_CMD_SIZE)
  500. return false;
  501. // Remove the currently processed command from the queue.
  502. if (! cmdbuffer_front_already_processed) {
  503. cmdqueue_pop_front();
  504. cmdbuffer_front_already_processed = true;
  505. }
  506. if (bufindr == bufindw && buflen > 0)
  507. // Full buffer.
  508. return false;
  509. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  510. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  511. if (bufindw < bufindr) {
  512. int bufindr_new = bufindr - len_asked - 2;
  513. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  514. if (endw <= bufindr_new) {
  515. bufindr = bufindr_new;
  516. return true;
  517. }
  518. } else {
  519. // Otherwise the free space is split between the start and end.
  520. if (len_asked + 2 <= bufindr) {
  521. // Could fit at the start.
  522. bufindr -= len_asked + 2;
  523. return true;
  524. }
  525. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  526. if (endw <= bufindr_new) {
  527. memset(cmdbuffer, 0, bufindr);
  528. bufindr = bufindr_new;
  529. return true;
  530. }
  531. }
  532. return false;
  533. }
  534. // Could one enqueue a command of lenthg len_asked into the buffer,
  535. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  536. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  537. // len_asked does not contain the zero terminator size.
  538. bool cmdqueue_could_enqueue_back(int len_asked)
  539. {
  540. // MAX_CMD_SIZE has to accommodate the zero terminator.
  541. if (len_asked >= MAX_CMD_SIZE)
  542. return false;
  543. if (bufindr == bufindw && buflen > 0)
  544. // Full buffer.
  545. return false;
  546. if (serial_count > 0) {
  547. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  548. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  549. // serial data.
  550. // How much memory to reserve for the commands pushed to the front?
  551. // End of the queue, when pushing to the end.
  552. int endw = bufindw + len_asked + 2;
  553. if (bufindw < bufindr)
  554. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  555. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  556. // Otherwise the free space is split between the start and end.
  557. if (// Could one fit to the end, including the reserve?
  558. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  559. // Could one fit to the end, and the reserve to the start?
  560. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  561. return true;
  562. // Could one fit both to the start?
  563. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  564. // Mark the rest of the buffer as used.
  565. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  566. // and point to the start.
  567. bufindw = 0;
  568. return true;
  569. }
  570. } else {
  571. // How much memory to reserve for the commands pushed to the front?
  572. // End of the queue, when pushing to the end.
  573. int endw = bufindw + len_asked + 2;
  574. if (bufindw < bufindr)
  575. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  576. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  577. // Otherwise the free space is split between the start and end.
  578. if (// Could one fit to the end, including the reserve?
  579. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  580. // Could one fit to the end, and the reserve to the start?
  581. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  582. return true;
  583. // Could one fit both to the start?
  584. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  585. // Mark the rest of the buffer as used.
  586. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  587. // and point to the start.
  588. bufindw = 0;
  589. return true;
  590. }
  591. }
  592. return false;
  593. }
  594. #ifdef CMDBUFFER_DEBUG
  595. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  596. {
  597. SERIAL_ECHOPGM("Entry nr: ");
  598. SERIAL_ECHO(nr);
  599. SERIAL_ECHOPGM(", type: ");
  600. SERIAL_ECHO(int(*p));
  601. SERIAL_ECHOPGM(", cmd: ");
  602. SERIAL_ECHO(p+1);
  603. SERIAL_ECHOLNPGM("");
  604. }
  605. static void cmdqueue_dump_to_serial()
  606. {
  607. if (buflen == 0) {
  608. SERIAL_ECHOLNPGM("The command buffer is empty.");
  609. } else {
  610. SERIAL_ECHOPGM("Content of the buffer: entries ");
  611. SERIAL_ECHO(buflen);
  612. SERIAL_ECHOPGM(", indr ");
  613. SERIAL_ECHO(bufindr);
  614. SERIAL_ECHOPGM(", indw ");
  615. SERIAL_ECHO(bufindw);
  616. SERIAL_ECHOLNPGM("");
  617. int nr = 0;
  618. if (bufindr < bufindw) {
  619. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  620. cmdqueue_dump_to_serial_single_line(nr, p);
  621. // Skip the command.
  622. for (++p; *p != 0; ++ p);
  623. // Skip the gaps.
  624. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  625. }
  626. } else {
  627. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  628. cmdqueue_dump_to_serial_single_line(nr, p);
  629. // Skip the command.
  630. for (++p; *p != 0; ++ p);
  631. // Skip the gaps.
  632. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  633. }
  634. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  640. }
  641. }
  642. SERIAL_ECHOLNPGM("End of the buffer.");
  643. }
  644. }
  645. #endif /* CMDBUFFER_DEBUG */
  646. //adds an command to the main command buffer
  647. //thats really done in a non-safe way.
  648. //needs overworking someday
  649. // Currently the maximum length of a command piped through this function is around 20 characters
  650. void enquecommand(const char *cmd, bool from_progmem)
  651. {
  652. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  653. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  654. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  655. if (cmdqueue_could_enqueue_back(len)) {
  656. // This is dangerous if a mixing of serial and this happens
  657. // This may easily be tested: If serial_count > 0, we have a problem.
  658. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  659. if (from_progmem)
  660. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  661. else
  662. strcpy(cmdbuffer + bufindw + 1, cmd);
  663. SERIAL_ECHO_START;
  664. SERIAL_ECHORPGM(MSG_Enqueing);
  665. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  666. SERIAL_ECHOLNPGM("\"");
  667. bufindw += len + 2;
  668. if (bufindw == sizeof(cmdbuffer))
  669. bufindw = 0;
  670. ++ buflen;
  671. #ifdef CMDBUFFER_DEBUG
  672. cmdqueue_dump_to_serial();
  673. #endif /* CMDBUFFER_DEBUG */
  674. } else {
  675. SERIAL_ERROR_START;
  676. SERIAL_ECHORPGM(MSG_Enqueing);
  677. if (from_progmem)
  678. SERIAL_PROTOCOLRPGM(cmd);
  679. else
  680. SERIAL_ECHO(cmd);
  681. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  682. #ifdef CMDBUFFER_DEBUG
  683. cmdqueue_dump_to_serial();
  684. #endif /* CMDBUFFER_DEBUG */
  685. }
  686. }
  687. void enquecommand_front(const char *cmd, bool from_progmem)
  688. {
  689. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  690. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  691. if (cmdqueue_could_enqueue_front(len)) {
  692. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  693. if (from_progmem)
  694. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  695. else
  696. strcpy(cmdbuffer + bufindr + 1, cmd);
  697. ++ buflen;
  698. SERIAL_ECHO_START;
  699. SERIAL_ECHOPGM("Enqueing to the front: \"");
  700. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  701. SERIAL_ECHOLNPGM("\"");
  702. #ifdef CMDBUFFER_DEBUG
  703. cmdqueue_dump_to_serial();
  704. #endif /* CMDBUFFER_DEBUG */
  705. } else {
  706. SERIAL_ERROR_START;
  707. SERIAL_ECHOPGM("Enqueing to the front: \"");
  708. if (from_progmem)
  709. SERIAL_PROTOCOLRPGM(cmd);
  710. else
  711. SERIAL_ECHO(cmd);
  712. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  713. #ifdef CMDBUFFER_DEBUG
  714. cmdqueue_dump_to_serial();
  715. #endif /* CMDBUFFER_DEBUG */
  716. }
  717. }
  718. // Mark the command at the top of the command queue as new.
  719. // Therefore it will not be removed from the queue.
  720. void repeatcommand_front()
  721. {
  722. cmdbuffer_front_already_processed = true;
  723. }
  724. bool is_buffer_empty()
  725. {
  726. if (buflen == 0) return true;
  727. else return false;
  728. }
  729. void setup_killpin()
  730. {
  731. #if defined(KILL_PIN) && KILL_PIN > -1
  732. SET_INPUT(KILL_PIN);
  733. WRITE(KILL_PIN,HIGH);
  734. #endif
  735. }
  736. // Set home pin
  737. void setup_homepin(void)
  738. {
  739. #if defined(HOME_PIN) && HOME_PIN > -1
  740. SET_INPUT(HOME_PIN);
  741. WRITE(HOME_PIN,HIGH);
  742. #endif
  743. }
  744. void setup_photpin()
  745. {
  746. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  747. SET_OUTPUT(PHOTOGRAPH_PIN);
  748. WRITE(PHOTOGRAPH_PIN, LOW);
  749. #endif
  750. }
  751. void setup_powerhold()
  752. {
  753. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  754. SET_OUTPUT(SUICIDE_PIN);
  755. WRITE(SUICIDE_PIN, HIGH);
  756. #endif
  757. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  758. SET_OUTPUT(PS_ON_PIN);
  759. #if defined(PS_DEFAULT_OFF)
  760. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  761. #else
  762. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  763. #endif
  764. #endif
  765. }
  766. void suicide()
  767. {
  768. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  769. SET_OUTPUT(SUICIDE_PIN);
  770. WRITE(SUICIDE_PIN, LOW);
  771. #endif
  772. }
  773. void servo_init()
  774. {
  775. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  776. servos[0].attach(SERVO0_PIN);
  777. #endif
  778. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  779. servos[1].attach(SERVO1_PIN);
  780. #endif
  781. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  782. servos[2].attach(SERVO2_PIN);
  783. #endif
  784. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  785. servos[3].attach(SERVO3_PIN);
  786. #endif
  787. #if (NUM_SERVOS >= 5)
  788. #error "TODO: enter initalisation code for more servos"
  789. #endif
  790. }
  791. static void lcd_language_menu();
  792. #ifdef MESH_BED_LEVELING
  793. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  794. #endif
  795. // Factory reset function
  796. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  797. // Level input parameter sets depth of reset
  798. // Quiet parameter masks all waitings for user interact.
  799. int er_progress = 0;
  800. void factory_reset(char level, bool quiet)
  801. {
  802. lcd_implementation_clear();
  803. int cursor_pos = 0;
  804. switch (level) {
  805. // Level 0: Language reset
  806. case 0:
  807. WRITE(BEEPER, HIGH);
  808. _delay_ms(100);
  809. WRITE(BEEPER, LOW);
  810. lcd_force_language_selection();
  811. break;
  812. //Level 1: Reset statistics
  813. case 1:
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  818. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  819. lcd_menu_statistics();
  820. break;
  821. // Level 2: Prepare for shipping
  822. case 2:
  823. //lcd_printPGM(PSTR("Factory RESET"));
  824. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  825. // Force language selection at the next boot up.
  826. lcd_force_language_selection();
  827. // Force the "Follow calibration flow" message at the next boot up.
  828. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  829. farm_no = 0;
  830. farm_mode == false;
  831. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  832. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  833. WRITE(BEEPER, HIGH);
  834. _delay_ms(100);
  835. WRITE(BEEPER, LOW);
  836. //_delay_ms(2000);
  837. break;
  838. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  839. case 3:
  840. lcd_printPGM(PSTR("Factory RESET"));
  841. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  842. WRITE(BEEPER, HIGH);
  843. _delay_ms(100);
  844. WRITE(BEEPER, LOW);
  845. er_progress = 0;
  846. lcd_print_at_PGM(3, 3, PSTR(" "));
  847. lcd_implementation_print_at(3, 3, er_progress);
  848. // Erase EEPROM
  849. for (int i = 0; i < 4096; i++) {
  850. eeprom_write_byte((uint8_t*)i, 0xFF);
  851. if (i % 41 == 0) {
  852. er_progress++;
  853. lcd_print_at_PGM(3, 3, PSTR(" "));
  854. lcd_implementation_print_at(3, 3, er_progress);
  855. lcd_printPGM(PSTR("%"));
  856. }
  857. }
  858. break;
  859. case 4:
  860. bowden_menu();
  861. break;
  862. default:
  863. break;
  864. }
  865. }
  866. // "Setup" function is called by the Arduino framework on startup.
  867. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  868. // are initialized by the main() routine provided by the Arduino framework.
  869. void setup()
  870. {
  871. setup_killpin();
  872. setup_powerhold();
  873. MYSERIAL.begin(BAUDRATE);
  874. SERIAL_PROTOCOLLNPGM("start");
  875. SERIAL_ECHO_START;
  876. #if 0
  877. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  878. for (int i = 0; i < 4096; ++i) {
  879. int b = eeprom_read_byte((unsigned char*)i);
  880. if (b != 255) {
  881. SERIAL_ECHO(i);
  882. SERIAL_ECHO(":");
  883. SERIAL_ECHO(b);
  884. SERIAL_ECHOLN("");
  885. }
  886. }
  887. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  888. #endif
  889. // Check startup - does nothing if bootloader sets MCUSR to 0
  890. byte mcu = MCUSR;
  891. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  892. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  893. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  894. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  895. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  896. MCUSR = 0;
  897. //SERIAL_ECHORPGM(MSG_MARLIN);
  898. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  899. #ifdef STRING_VERSION_CONFIG_H
  900. #ifdef STRING_CONFIG_H_AUTHOR
  901. SERIAL_ECHO_START;
  902. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  903. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  904. SERIAL_ECHORPGM(MSG_AUTHOR);
  905. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  906. SERIAL_ECHOPGM("Compiled: ");
  907. SERIAL_ECHOLNPGM(__DATE__);
  908. #endif
  909. #endif
  910. SERIAL_ECHO_START;
  911. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  912. SERIAL_ECHO(freeMemory());
  913. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  914. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  915. lcd_update_enable(false);
  916. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  917. bool previous_settings_retrieved = Config_RetrieveSettings();
  918. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  919. tp_init(); // Initialize temperature loop
  920. plan_init(); // Initialize planner;
  921. watchdog_init();
  922. st_init(); // Initialize stepper, this enables interrupts!
  923. setup_photpin();
  924. servo_init();
  925. // Reset the machine correction matrix.
  926. // It does not make sense to load the correction matrix until the machine is homed.
  927. world2machine_reset();
  928. lcd_init();
  929. if (!READ(BTN_ENC))
  930. {
  931. _delay_ms(1000);
  932. if (!READ(BTN_ENC))
  933. {
  934. lcd_implementation_clear();
  935. lcd_printPGM(PSTR("Factory RESET"));
  936. SET_OUTPUT(BEEPER);
  937. WRITE(BEEPER, HIGH);
  938. while (!READ(BTN_ENC));
  939. WRITE(BEEPER, LOW);
  940. _delay_ms(2000);
  941. char level = reset_menu();
  942. factory_reset(level, false);
  943. switch (level) {
  944. case 0: _delay_ms(0); break;
  945. case 1: _delay_ms(0); break;
  946. case 2: _delay_ms(0); break;
  947. case 3: _delay_ms(0); break;
  948. }
  949. // _delay_ms(100);
  950. /*
  951. #ifdef MESH_BED_LEVELING
  952. _delay_ms(2000);
  953. if (!READ(BTN_ENC))
  954. {
  955. WRITE(BEEPER, HIGH);
  956. _delay_ms(100);
  957. WRITE(BEEPER, LOW);
  958. _delay_ms(200);
  959. WRITE(BEEPER, HIGH);
  960. _delay_ms(100);
  961. WRITE(BEEPER, LOW);
  962. int _z = 0;
  963. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  964. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  965. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  966. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  967. }
  968. else
  969. {
  970. WRITE(BEEPER, HIGH);
  971. _delay_ms(100);
  972. WRITE(BEEPER, LOW);
  973. }
  974. #endif // mesh */
  975. }
  976. }
  977. else
  978. {
  979. _delay_ms(1000); // wait 1sec to display the splash screen
  980. }
  981. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  982. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  983. #endif
  984. #ifdef DIGIPOT_I2C
  985. digipot_i2c_init();
  986. #endif
  987. setup_homepin();
  988. #if defined(Z_AXIS_ALWAYS_ON)
  989. enable_z();
  990. #endif
  991. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  992. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  993. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  994. if (farm_no == 0xFFFF) farm_no = 0;
  995. if (farm_mode)
  996. {
  997. prusa_statistics(8);
  998. }
  999. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1000. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1001. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1002. // but this times out if a blocking dialog is shown in setup().
  1003. card.initsd();
  1004. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1005. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1006. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1007. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1008. // where all the EEPROM entries are set to 0x0ff.
  1009. // Once a firmware boots up, it forces at least a language selection, which changes
  1010. // EEPROM_LANG to number lower than 0x0ff.
  1011. // 1) Set a high power mode.
  1012. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1013. }
  1014. #ifdef SNMM
  1015. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1016. int _z = BOWDEN_LENGTH;
  1017. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1018. }
  1019. #endif
  1020. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1021. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1022. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1023. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1024. if (lang_selected >= LANG_NUM){
  1025. lcd_mylang();
  1026. }
  1027. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1028. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1029. temp_cal_active = false;
  1030. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1031. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1032. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1033. }
  1034. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1035. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1036. }
  1037. check_babystep(); //checking if Z babystep is in allowed range
  1038. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1039. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1040. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1041. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1042. // Show the message.
  1043. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1044. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1045. // Show the message.
  1046. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1047. lcd_update_enable(true);
  1048. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1049. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1050. lcd_update_enable(true);
  1051. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1052. // Show the message.
  1053. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1054. }
  1055. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1056. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1057. if (!previous_settings_retrieved) {
  1058. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1059. }
  1060. lcd_update_enable(true);
  1061. // Store the currently running firmware into an eeprom,
  1062. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1063. update_current_firmware_version_to_eeprom();
  1064. }
  1065. void trace();
  1066. #define CHUNK_SIZE 64 // bytes
  1067. #define SAFETY_MARGIN 1
  1068. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1069. int chunkHead = 0;
  1070. int serial_read_stream() {
  1071. setTargetHotend(0, 0);
  1072. setTargetBed(0);
  1073. lcd_implementation_clear();
  1074. lcd_printPGM(PSTR(" Upload in progress"));
  1075. // first wait for how many bytes we will receive
  1076. uint32_t bytesToReceive;
  1077. // receive the four bytes
  1078. char bytesToReceiveBuffer[4];
  1079. for (int i=0; i<4; i++) {
  1080. int data;
  1081. while ((data = MYSERIAL.read()) == -1) {};
  1082. bytesToReceiveBuffer[i] = data;
  1083. }
  1084. // make it a uint32
  1085. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1086. // we're ready, notify the sender
  1087. MYSERIAL.write('+');
  1088. // lock in the routine
  1089. uint32_t receivedBytes = 0;
  1090. while (prusa_sd_card_upload) {
  1091. int i;
  1092. for (i=0; i<CHUNK_SIZE; i++) {
  1093. int data;
  1094. // check if we're not done
  1095. if (receivedBytes == bytesToReceive) {
  1096. break;
  1097. }
  1098. // read the next byte
  1099. while ((data = MYSERIAL.read()) == -1) {};
  1100. receivedBytes++;
  1101. // save it to the chunk
  1102. chunk[i] = data;
  1103. }
  1104. // write the chunk to SD
  1105. card.write_command_no_newline(&chunk[0]);
  1106. // notify the sender we're ready for more data
  1107. MYSERIAL.write('+');
  1108. // for safety
  1109. manage_heater();
  1110. // check if we're done
  1111. if(receivedBytes == bytesToReceive) {
  1112. trace(); // beep
  1113. card.closefile();
  1114. prusa_sd_card_upload = false;
  1115. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1116. return 0;
  1117. }
  1118. }
  1119. }
  1120. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1121. // Before loop(), the setup() function is called by the main() routine.
  1122. void loop()
  1123. {
  1124. bool stack_integrity = true;
  1125. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1126. {
  1127. is_usb_printing = true;
  1128. usb_printing_counter--;
  1129. _usb_timer = millis();
  1130. }
  1131. if (usb_printing_counter == 0)
  1132. {
  1133. is_usb_printing = false;
  1134. }
  1135. if (prusa_sd_card_upload)
  1136. {
  1137. //we read byte-by byte
  1138. serial_read_stream();
  1139. } else
  1140. {
  1141. get_command();
  1142. #ifdef SDSUPPORT
  1143. card.checkautostart(false);
  1144. #endif
  1145. if(buflen)
  1146. {
  1147. #ifdef SDSUPPORT
  1148. if(card.saving)
  1149. {
  1150. // Saving a G-code file onto an SD-card is in progress.
  1151. // Saving starts with M28, saving until M29 is seen.
  1152. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1153. card.write_command(CMDBUFFER_CURRENT_STRING);
  1154. if(card.logging)
  1155. process_commands();
  1156. else
  1157. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1158. } else {
  1159. card.closefile();
  1160. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1161. }
  1162. } else {
  1163. process_commands();
  1164. }
  1165. #else
  1166. process_commands();
  1167. #endif //SDSUPPORT
  1168. if (! cmdbuffer_front_already_processed)
  1169. cmdqueue_pop_front();
  1170. cmdbuffer_front_already_processed = false;
  1171. }
  1172. }
  1173. //check heater every n milliseconds
  1174. manage_heater();
  1175. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1176. checkHitEndstops();
  1177. lcd_update();
  1178. }
  1179. void get_command()
  1180. {
  1181. // Test and reserve space for the new command string.
  1182. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1183. return;
  1184. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1185. while (MYSERIAL.available() > 0) {
  1186. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1187. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1188. rx_buffer_full = true; //sets flag that buffer was full
  1189. }
  1190. char serial_char = MYSERIAL.read();
  1191. TimeSent = millis();
  1192. TimeNow = millis();
  1193. if (serial_char < 0)
  1194. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1195. // and Marlin does not support such file names anyway.
  1196. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1197. // to a hang-up of the print process from an SD card.
  1198. continue;
  1199. if(serial_char == '\n' ||
  1200. serial_char == '\r' ||
  1201. (serial_char == ':' && comment_mode == false) ||
  1202. serial_count >= (MAX_CMD_SIZE - 1) )
  1203. {
  1204. if(!serial_count) { //if empty line
  1205. comment_mode = false; //for new command
  1206. return;
  1207. }
  1208. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1209. if(!comment_mode){
  1210. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1211. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1212. {
  1213. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1214. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1215. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1216. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1217. // M110 - set current line number.
  1218. // Line numbers not sent in succession.
  1219. SERIAL_ERROR_START;
  1220. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1221. SERIAL_ERRORLN(gcode_LastN);
  1222. //Serial.println(gcode_N);
  1223. FlushSerialRequestResend();
  1224. serial_count = 0;
  1225. return;
  1226. }
  1227. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1228. {
  1229. byte checksum = 0;
  1230. char *p = cmdbuffer+bufindw+1;
  1231. while (p != strchr_pointer)
  1232. checksum = checksum^(*p++);
  1233. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1234. SERIAL_ERROR_START;
  1235. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1236. SERIAL_ERRORLN(gcode_LastN);
  1237. FlushSerialRequestResend();
  1238. serial_count = 0;
  1239. return;
  1240. }
  1241. // If no errors, remove the checksum and continue parsing.
  1242. *strchr_pointer = 0;
  1243. }
  1244. else
  1245. {
  1246. SERIAL_ERROR_START;
  1247. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1248. SERIAL_ERRORLN(gcode_LastN);
  1249. FlushSerialRequestResend();
  1250. serial_count = 0;
  1251. return;
  1252. }
  1253. gcode_LastN = gcode_N;
  1254. //if no errors, continue parsing
  1255. } // end of 'N' command
  1256. }
  1257. else // if we don't receive 'N' but still see '*'
  1258. {
  1259. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1260. {
  1261. SERIAL_ERROR_START;
  1262. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1263. SERIAL_ERRORLN(gcode_LastN);
  1264. serial_count = 0;
  1265. return;
  1266. }
  1267. } // end of '*' command
  1268. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1269. if (! IS_SD_PRINTING) {
  1270. usb_printing_counter = 10;
  1271. is_usb_printing = true;
  1272. }
  1273. if (Stopped == true) {
  1274. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1275. if (gcode >= 0 && gcode <= 3) {
  1276. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1277. LCD_MESSAGERPGM(MSG_STOPPED);
  1278. }
  1279. }
  1280. } // end of 'G' command
  1281. //If command was e-stop process now
  1282. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1283. kill();
  1284. // Store the current line into buffer, move to the next line.
  1285. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1286. #ifdef CMDBUFFER_DEBUG
  1287. SERIAL_ECHO_START;
  1288. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1289. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1290. SERIAL_ECHOLNPGM("");
  1291. #endif /* CMDBUFFER_DEBUG */
  1292. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1293. if (bufindw == sizeof(cmdbuffer))
  1294. bufindw = 0;
  1295. ++ buflen;
  1296. #ifdef CMDBUFFER_DEBUG
  1297. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1298. SERIAL_ECHO(buflen);
  1299. SERIAL_ECHOLNPGM("");
  1300. #endif /* CMDBUFFER_DEBUG */
  1301. } // end of 'not comment mode'
  1302. serial_count = 0; //clear buffer
  1303. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1304. // in the queue, as this function will reserve the memory.
  1305. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1306. return;
  1307. } // end of "end of line" processing
  1308. else {
  1309. // Not an "end of line" symbol. Store the new character into a buffer.
  1310. if(serial_char == ';') comment_mode = true;
  1311. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1312. }
  1313. } // end of serial line processing loop
  1314. if(farm_mode){
  1315. TimeNow = millis();
  1316. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1317. cmdbuffer[bufindw+serial_count+1] = 0;
  1318. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1319. if (bufindw == sizeof(cmdbuffer))
  1320. bufindw = 0;
  1321. ++ buflen;
  1322. serial_count = 0;
  1323. SERIAL_ECHOPGM("TIMEOUT:");
  1324. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1325. return;
  1326. }
  1327. }
  1328. //add comment
  1329. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1330. rx_buffer_full = false;
  1331. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1332. serial_count = 0;
  1333. }
  1334. #ifdef SDSUPPORT
  1335. if(!card.sdprinting || serial_count!=0){
  1336. // If there is a half filled buffer from serial line, wait until return before
  1337. // continuing with the serial line.
  1338. return;
  1339. }
  1340. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1341. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1342. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1343. static bool stop_buffering=false;
  1344. if(buflen==0) stop_buffering=false;
  1345. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1346. while( !card.eof() && !stop_buffering) {
  1347. int16_t n=card.get();
  1348. char serial_char = (char)n;
  1349. if(serial_char == '\n' ||
  1350. serial_char == '\r' ||
  1351. (serial_char == '#' && comment_mode == false) ||
  1352. (serial_char == ':' && comment_mode == false) ||
  1353. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1354. {
  1355. if(card.eof()){
  1356. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1357. stoptime=millis();
  1358. char time[30];
  1359. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1360. pause_time = 0;
  1361. int hours, minutes;
  1362. minutes=(t/60)%60;
  1363. hours=t/60/60;
  1364. save_statistics(total_filament_used, t);
  1365. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1366. SERIAL_ECHO_START;
  1367. SERIAL_ECHOLN(time);
  1368. lcd_setstatus(time);
  1369. card.printingHasFinished();
  1370. card.checkautostart(true);
  1371. if (farm_mode)
  1372. {
  1373. prusa_statistics(6);
  1374. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1375. }
  1376. }
  1377. if(serial_char=='#')
  1378. stop_buffering=true;
  1379. if(!serial_count)
  1380. {
  1381. comment_mode = false; //for new command
  1382. return; //if empty line
  1383. }
  1384. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1385. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1386. ++ buflen;
  1387. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1388. if (bufindw == sizeof(cmdbuffer))
  1389. bufindw = 0;
  1390. comment_mode = false; //for new command
  1391. serial_count = 0; //clear buffer
  1392. // The following line will reserve buffer space if available.
  1393. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1394. return;
  1395. }
  1396. else
  1397. {
  1398. if(serial_char == ';') comment_mode = true;
  1399. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1400. }
  1401. }
  1402. #endif //SDSUPPORT
  1403. }
  1404. // Return True if a character was found
  1405. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1406. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1407. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1408. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1409. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1410. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1411. #define DEFINE_PGM_READ_ANY(type, reader) \
  1412. static inline type pgm_read_any(const type *p) \
  1413. { return pgm_read_##reader##_near(p); }
  1414. DEFINE_PGM_READ_ANY(float, float);
  1415. DEFINE_PGM_READ_ANY(signed char, byte);
  1416. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1417. static const PROGMEM type array##_P[3] = \
  1418. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1419. static inline type array(int axis) \
  1420. { return pgm_read_any(&array##_P[axis]); } \
  1421. type array##_ext(int axis) \
  1422. { return pgm_read_any(&array##_P[axis]); }
  1423. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1424. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1425. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1426. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1427. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1428. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1429. static void axis_is_at_home(int axis) {
  1430. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1431. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1432. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1433. }
  1434. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1435. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1436. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1437. saved_feedrate = feedrate;
  1438. saved_feedmultiply = feedmultiply;
  1439. feedmultiply = 100;
  1440. previous_millis_cmd = millis();
  1441. enable_endstops(enable_endstops_now);
  1442. }
  1443. static void clean_up_after_endstop_move() {
  1444. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1445. enable_endstops(false);
  1446. #endif
  1447. feedrate = saved_feedrate;
  1448. feedmultiply = saved_feedmultiply;
  1449. previous_millis_cmd = millis();
  1450. }
  1451. #ifdef ENABLE_AUTO_BED_LEVELING
  1452. #ifdef AUTO_BED_LEVELING_GRID
  1453. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1454. {
  1455. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1456. planeNormal.debug("planeNormal");
  1457. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1458. //bedLevel.debug("bedLevel");
  1459. //plan_bed_level_matrix.debug("bed level before");
  1460. //vector_3 uncorrected_position = plan_get_position_mm();
  1461. //uncorrected_position.debug("position before");
  1462. vector_3 corrected_position = plan_get_position();
  1463. // corrected_position.debug("position after");
  1464. current_position[X_AXIS] = corrected_position.x;
  1465. current_position[Y_AXIS] = corrected_position.y;
  1466. current_position[Z_AXIS] = corrected_position.z;
  1467. // put the bed at 0 so we don't go below it.
  1468. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1470. }
  1471. #else // not AUTO_BED_LEVELING_GRID
  1472. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1473. plan_bed_level_matrix.set_to_identity();
  1474. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1475. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1476. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1477. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1478. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1479. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1480. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1481. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1482. vector_3 corrected_position = plan_get_position();
  1483. current_position[X_AXIS] = corrected_position.x;
  1484. current_position[Y_AXIS] = corrected_position.y;
  1485. current_position[Z_AXIS] = corrected_position.z;
  1486. // put the bed at 0 so we don't go below it.
  1487. current_position[Z_AXIS] = zprobe_zoffset;
  1488. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1489. }
  1490. #endif // AUTO_BED_LEVELING_GRID
  1491. static void run_z_probe() {
  1492. plan_bed_level_matrix.set_to_identity();
  1493. feedrate = homing_feedrate[Z_AXIS];
  1494. // move down until you find the bed
  1495. float zPosition = -10;
  1496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1497. st_synchronize();
  1498. // we have to let the planner know where we are right now as it is not where we said to go.
  1499. zPosition = st_get_position_mm(Z_AXIS);
  1500. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1501. // move up the retract distance
  1502. zPosition += home_retract_mm(Z_AXIS);
  1503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1504. st_synchronize();
  1505. // move back down slowly to find bed
  1506. feedrate = homing_feedrate[Z_AXIS]/4;
  1507. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1509. st_synchronize();
  1510. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1511. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1512. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1513. }
  1514. static void do_blocking_move_to(float x, float y, float z) {
  1515. float oldFeedRate = feedrate;
  1516. feedrate = homing_feedrate[Z_AXIS];
  1517. current_position[Z_AXIS] = z;
  1518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1519. st_synchronize();
  1520. feedrate = XY_TRAVEL_SPEED;
  1521. current_position[X_AXIS] = x;
  1522. current_position[Y_AXIS] = y;
  1523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1524. st_synchronize();
  1525. feedrate = oldFeedRate;
  1526. }
  1527. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1528. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1529. }
  1530. /// Probe bed height at position (x,y), returns the measured z value
  1531. static float probe_pt(float x, float y, float z_before) {
  1532. // move to right place
  1533. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1534. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1535. run_z_probe();
  1536. float measured_z = current_position[Z_AXIS];
  1537. SERIAL_PROTOCOLRPGM(MSG_BED);
  1538. SERIAL_PROTOCOLPGM(" x: ");
  1539. SERIAL_PROTOCOL(x);
  1540. SERIAL_PROTOCOLPGM(" y: ");
  1541. SERIAL_PROTOCOL(y);
  1542. SERIAL_PROTOCOLPGM(" z: ");
  1543. SERIAL_PROTOCOL(measured_z);
  1544. SERIAL_PROTOCOLPGM("\n");
  1545. return measured_z;
  1546. }
  1547. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1548. void homeaxis(int axis) {
  1549. #define HOMEAXIS_DO(LETTER) \
  1550. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1551. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1552. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1553. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1554. 0) {
  1555. int axis_home_dir = home_dir(axis);
  1556. current_position[axis] = 0;
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1559. feedrate = homing_feedrate[axis];
  1560. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1561. st_synchronize();
  1562. current_position[axis] = 0;
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1565. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1566. st_synchronize();
  1567. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1568. feedrate = homing_feedrate[axis]/2 ;
  1569. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1570. st_synchronize();
  1571. axis_is_at_home(axis);
  1572. destination[axis] = current_position[axis];
  1573. feedrate = 0.0;
  1574. endstops_hit_on_purpose();
  1575. axis_known_position[axis] = true;
  1576. }
  1577. }
  1578. void home_xy()
  1579. {
  1580. set_destination_to_current();
  1581. homeaxis(X_AXIS);
  1582. homeaxis(Y_AXIS);
  1583. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1584. endstops_hit_on_purpose();
  1585. }
  1586. void refresh_cmd_timeout(void)
  1587. {
  1588. previous_millis_cmd = millis();
  1589. }
  1590. #ifdef FWRETRACT
  1591. void retract(bool retracting, bool swapretract = false) {
  1592. if(retracting && !retracted[active_extruder]) {
  1593. destination[X_AXIS]=current_position[X_AXIS];
  1594. destination[Y_AXIS]=current_position[Y_AXIS];
  1595. destination[Z_AXIS]=current_position[Z_AXIS];
  1596. destination[E_AXIS]=current_position[E_AXIS];
  1597. if (swapretract) {
  1598. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1599. } else {
  1600. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1601. }
  1602. plan_set_e_position(current_position[E_AXIS]);
  1603. float oldFeedrate = feedrate;
  1604. feedrate=retract_feedrate*60;
  1605. retracted[active_extruder]=true;
  1606. prepare_move();
  1607. current_position[Z_AXIS]-=retract_zlift;
  1608. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1609. prepare_move();
  1610. feedrate = oldFeedrate;
  1611. } else if(!retracting && retracted[active_extruder]) {
  1612. destination[X_AXIS]=current_position[X_AXIS];
  1613. destination[Y_AXIS]=current_position[Y_AXIS];
  1614. destination[Z_AXIS]=current_position[Z_AXIS];
  1615. destination[E_AXIS]=current_position[E_AXIS];
  1616. current_position[Z_AXIS]+=retract_zlift;
  1617. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1618. //prepare_move();
  1619. if (swapretract) {
  1620. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1621. } else {
  1622. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1623. }
  1624. plan_set_e_position(current_position[E_AXIS]);
  1625. float oldFeedrate = feedrate;
  1626. feedrate=retract_recover_feedrate*60;
  1627. retracted[active_extruder]=false;
  1628. prepare_move();
  1629. feedrate = oldFeedrate;
  1630. }
  1631. } //retract
  1632. #endif //FWRETRACT
  1633. void trace() {
  1634. tone(BEEPER, 440);
  1635. delay(25);
  1636. noTone(BEEPER);
  1637. delay(20);
  1638. }
  1639. /*
  1640. void ramming() {
  1641. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1642. if (current_temperature[0] < 230) {
  1643. //PLA
  1644. max_feedrate[E_AXIS] = 50;
  1645. //current_position[E_AXIS] -= 8;
  1646. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1647. //current_position[E_AXIS] += 8;
  1648. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1649. current_position[E_AXIS] += 5.4;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1651. current_position[E_AXIS] += 3.2;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1653. current_position[E_AXIS] += 3;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1655. st_synchronize();
  1656. max_feedrate[E_AXIS] = 80;
  1657. current_position[E_AXIS] -= 82;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1659. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1660. current_position[E_AXIS] -= 20;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1662. current_position[E_AXIS] += 5;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1664. current_position[E_AXIS] += 5;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1666. current_position[E_AXIS] -= 10;
  1667. st_synchronize();
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1669. current_position[E_AXIS] += 10;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1671. current_position[E_AXIS] -= 10;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1673. current_position[E_AXIS] += 10;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1675. current_position[E_AXIS] -= 10;
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1677. st_synchronize();
  1678. }
  1679. else {
  1680. //ABS
  1681. max_feedrate[E_AXIS] = 50;
  1682. //current_position[E_AXIS] -= 8;
  1683. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1684. //current_position[E_AXIS] += 8;
  1685. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1686. current_position[E_AXIS] += 3.1;
  1687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1688. current_position[E_AXIS] += 3.1;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1690. current_position[E_AXIS] += 4;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1692. st_synchronize();
  1693. //current_position[X_AXIS] += 23; //delay
  1694. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1695. //current_position[X_AXIS] -= 23; //delay
  1696. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1697. delay(4700);
  1698. max_feedrate[E_AXIS] = 80;
  1699. current_position[E_AXIS] -= 92;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1701. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1702. current_position[E_AXIS] -= 5;
  1703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1704. current_position[E_AXIS] += 5;
  1705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1706. current_position[E_AXIS] -= 5;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1708. st_synchronize();
  1709. current_position[E_AXIS] += 5;
  1710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1711. current_position[E_AXIS] -= 5;
  1712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1713. current_position[E_AXIS] += 5;
  1714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1715. current_position[E_AXIS] -= 5;
  1716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1717. st_synchronize();
  1718. }
  1719. }
  1720. */
  1721. void process_commands()
  1722. {
  1723. #ifdef FILAMENT_RUNOUT_SUPPORT
  1724. SET_INPUT(FR_SENS);
  1725. #endif
  1726. #ifdef CMDBUFFER_DEBUG
  1727. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1728. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1729. SERIAL_ECHOLNPGM("");
  1730. SERIAL_ECHOPGM("In cmdqueue: ");
  1731. SERIAL_ECHO(buflen);
  1732. SERIAL_ECHOLNPGM("");
  1733. #endif /* CMDBUFFER_DEBUG */
  1734. unsigned long codenum; //throw away variable
  1735. char *starpos = NULL;
  1736. #ifdef ENABLE_AUTO_BED_LEVELING
  1737. float x_tmp, y_tmp, z_tmp, real_z;
  1738. #endif
  1739. // PRUSA GCODES
  1740. #ifdef SNMM
  1741. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1742. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1743. int8_t SilentMode;
  1744. #endif
  1745. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1746. starpos = (strchr(strchr_pointer + 5, '*'));
  1747. if (starpos != NULL)
  1748. *(starpos) = '\0';
  1749. lcd_setstatus(strchr_pointer + 5);
  1750. }
  1751. else if(code_seen("PRUSA")){
  1752. if (code_seen("Ping")) { //PRUSA Ping
  1753. if (farm_mode) {
  1754. PingTime = millis();
  1755. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1756. }
  1757. }
  1758. else if (code_seen("PRN")) {
  1759. MYSERIAL.println(status_number);
  1760. }else if (code_seen("fn")) {
  1761. if (farm_mode) {
  1762. MYSERIAL.println(farm_no);
  1763. }
  1764. else {
  1765. MYSERIAL.println("Not in farm mode.");
  1766. }
  1767. }else if (code_seen("fv")) {
  1768. // get file version
  1769. #ifdef SDSUPPORT
  1770. card.openFile(strchr_pointer + 3,true);
  1771. while (true) {
  1772. uint16_t readByte = card.get();
  1773. MYSERIAL.write(readByte);
  1774. if (readByte=='\n') {
  1775. break;
  1776. }
  1777. }
  1778. card.closefile();
  1779. #endif // SDSUPPORT
  1780. } else if (code_seen("M28")) {
  1781. trace();
  1782. prusa_sd_card_upload = true;
  1783. card.openFile(strchr_pointer+4,false);
  1784. } else if(code_seen("Fir")){
  1785. SERIAL_PROTOCOLLN(FW_version);
  1786. } else if(code_seen("Rev")){
  1787. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1788. } else if(code_seen("Lang")) {
  1789. lcd_force_language_selection();
  1790. } else if(code_seen("Lz")) {
  1791. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1792. } else if (code_seen("SERIAL LOW")) {
  1793. MYSERIAL.println("SERIAL LOW");
  1794. MYSERIAL.begin(BAUDRATE);
  1795. return;
  1796. } else if (code_seen("SERIAL HIGH")) {
  1797. MYSERIAL.println("SERIAL HIGH");
  1798. MYSERIAL.begin(1152000);
  1799. return;
  1800. } else if(code_seen("Beat")) {
  1801. // Kick farm link timer
  1802. kicktime = millis();
  1803. } else if(code_seen("FR")) {
  1804. // Factory full reset
  1805. factory_reset(0,true);
  1806. }
  1807. //else if (code_seen('Cal')) {
  1808. // lcd_calibration();
  1809. // }
  1810. }
  1811. else if (code_seen('^')) {
  1812. // nothing, this is a version line
  1813. } else if(code_seen('G'))
  1814. {
  1815. switch((int)code_value())
  1816. {
  1817. case 0: // G0 -> G1
  1818. case 1: // G1
  1819. if(Stopped == false) {
  1820. #ifdef FILAMENT_RUNOUT_SUPPORT
  1821. if(READ(FR_SENS)){
  1822. feedmultiplyBckp=feedmultiply;
  1823. float target[4];
  1824. float lastpos[4];
  1825. target[X_AXIS]=current_position[X_AXIS];
  1826. target[Y_AXIS]=current_position[Y_AXIS];
  1827. target[Z_AXIS]=current_position[Z_AXIS];
  1828. target[E_AXIS]=current_position[E_AXIS];
  1829. lastpos[X_AXIS]=current_position[X_AXIS];
  1830. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1831. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1832. lastpos[E_AXIS]=current_position[E_AXIS];
  1833. //retract by E
  1834. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1836. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1837. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1838. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1839. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1840. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1841. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1842. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1843. //finish moves
  1844. st_synchronize();
  1845. //disable extruder steppers so filament can be removed
  1846. disable_e0();
  1847. disable_e1();
  1848. disable_e2();
  1849. delay(100);
  1850. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1851. uint8_t cnt=0;
  1852. int counterBeep = 0;
  1853. lcd_wait_interact();
  1854. while(!lcd_clicked()){
  1855. cnt++;
  1856. manage_heater();
  1857. manage_inactivity(true);
  1858. //lcd_update();
  1859. if(cnt==0)
  1860. {
  1861. #if BEEPER > 0
  1862. if (counterBeep== 500){
  1863. counterBeep = 0;
  1864. }
  1865. SET_OUTPUT(BEEPER);
  1866. if (counterBeep== 0){
  1867. WRITE(BEEPER,HIGH);
  1868. }
  1869. if (counterBeep== 20){
  1870. WRITE(BEEPER,LOW);
  1871. }
  1872. counterBeep++;
  1873. #else
  1874. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1875. lcd_buzz(1000/6,100);
  1876. #else
  1877. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1878. #endif
  1879. #endif
  1880. }
  1881. }
  1882. WRITE(BEEPER,LOW);
  1883. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1884. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1885. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1887. lcd_change_fil_state = 0;
  1888. lcd_loading_filament();
  1889. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1890. lcd_change_fil_state = 0;
  1891. lcd_alright();
  1892. switch(lcd_change_fil_state){
  1893. case 2:
  1894. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1895. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1896. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1897. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1898. lcd_loading_filament();
  1899. break;
  1900. case 3:
  1901. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1902. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1903. lcd_loading_color();
  1904. break;
  1905. default:
  1906. lcd_change_success();
  1907. break;
  1908. }
  1909. }
  1910. target[E_AXIS]+= 5;
  1911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1912. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1913. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1914. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1915. //plan_set_e_position(current_position[E_AXIS]);
  1916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1917. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1918. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1919. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1920. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1921. plan_set_e_position(lastpos[E_AXIS]);
  1922. feedmultiply=feedmultiplyBckp;
  1923. char cmd[9];
  1924. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1925. enquecommand(cmd);
  1926. }
  1927. #endif
  1928. get_coordinates(); // For X Y Z E F
  1929. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1930. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1931. }
  1932. #ifdef FWRETRACT
  1933. if(autoretract_enabled)
  1934. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1935. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1936. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1937. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1938. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1939. retract(!retracted);
  1940. return;
  1941. }
  1942. }
  1943. #endif //FWRETRACT
  1944. prepare_move();
  1945. //ClearToSend();
  1946. }
  1947. break;
  1948. case 2: // G2 - CW ARC
  1949. if(Stopped == false) {
  1950. get_arc_coordinates();
  1951. prepare_arc_move(true);
  1952. }
  1953. break;
  1954. case 3: // G3 - CCW ARC
  1955. if(Stopped == false) {
  1956. get_arc_coordinates();
  1957. prepare_arc_move(false);
  1958. }
  1959. break;
  1960. case 4: // G4 dwell
  1961. codenum = 0;
  1962. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1963. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1964. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1965. st_synchronize();
  1966. codenum += millis(); // keep track of when we started waiting
  1967. previous_millis_cmd = millis();
  1968. while(millis() < codenum) {
  1969. manage_heater();
  1970. manage_inactivity();
  1971. lcd_update();
  1972. }
  1973. break;
  1974. #ifdef FWRETRACT
  1975. case 10: // G10 retract
  1976. #if EXTRUDERS > 1
  1977. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1978. retract(true,retracted_swap[active_extruder]);
  1979. #else
  1980. retract(true);
  1981. #endif
  1982. break;
  1983. case 11: // G11 retract_recover
  1984. #if EXTRUDERS > 1
  1985. retract(false,retracted_swap[active_extruder]);
  1986. #else
  1987. retract(false);
  1988. #endif
  1989. break;
  1990. #endif //FWRETRACT
  1991. case 28: //G28 Home all Axis one at a time
  1992. homing_flag = true;
  1993. #ifdef ENABLE_AUTO_BED_LEVELING
  1994. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1995. #endif //ENABLE_AUTO_BED_LEVELING
  1996. // For mesh bed leveling deactivate the matrix temporarily
  1997. #ifdef MESH_BED_LEVELING
  1998. mbl.active = 0;
  1999. #endif
  2000. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2001. // the planner will not perform any adjustments in the XY plane.
  2002. // Wait for the motors to stop and update the current position with the absolute values.
  2003. world2machine_revert_to_uncorrected();
  2004. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2005. // consumed during the first movements following this statement.
  2006. babystep_undo();
  2007. saved_feedrate = feedrate;
  2008. saved_feedmultiply = feedmultiply;
  2009. feedmultiply = 100;
  2010. previous_millis_cmd = millis();
  2011. enable_endstops(true);
  2012. for(int8_t i=0; i < NUM_AXIS; i++)
  2013. destination[i] = current_position[i];
  2014. feedrate = 0.0;
  2015. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2016. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2017. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2018. homeaxis(Z_AXIS);
  2019. }
  2020. #endif
  2021. #ifdef QUICK_HOME
  2022. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2023. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2024. {
  2025. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2026. int x_axis_home_dir = home_dir(X_AXIS);
  2027. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2028. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2029. feedrate = homing_feedrate[X_AXIS];
  2030. if(homing_feedrate[Y_AXIS]<feedrate)
  2031. feedrate = homing_feedrate[Y_AXIS];
  2032. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2033. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2034. } else {
  2035. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2036. }
  2037. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2038. st_synchronize();
  2039. axis_is_at_home(X_AXIS);
  2040. axis_is_at_home(Y_AXIS);
  2041. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2042. destination[X_AXIS] = current_position[X_AXIS];
  2043. destination[Y_AXIS] = current_position[Y_AXIS];
  2044. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2045. feedrate = 0.0;
  2046. st_synchronize();
  2047. endstops_hit_on_purpose();
  2048. current_position[X_AXIS] = destination[X_AXIS];
  2049. current_position[Y_AXIS] = destination[Y_AXIS];
  2050. current_position[Z_AXIS] = destination[Z_AXIS];
  2051. }
  2052. #endif /* QUICK_HOME */
  2053. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2054. homeaxis(X_AXIS);
  2055. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2056. homeaxis(Y_AXIS);
  2057. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2058. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2059. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2060. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2061. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2062. #ifndef Z_SAFE_HOMING
  2063. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2064. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2065. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2066. feedrate = max_feedrate[Z_AXIS];
  2067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2068. st_synchronize();
  2069. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2070. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2071. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2072. {
  2073. homeaxis(X_AXIS);
  2074. homeaxis(Y_AXIS);
  2075. }
  2076. // 1st mesh bed leveling measurement point, corrected.
  2077. world2machine_initialize();
  2078. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2079. world2machine_reset();
  2080. if (destination[Y_AXIS] < Y_MIN_POS)
  2081. destination[Y_AXIS] = Y_MIN_POS;
  2082. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2083. feedrate = homing_feedrate[Z_AXIS]/10;
  2084. current_position[Z_AXIS] = 0;
  2085. enable_endstops(false);
  2086. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2087. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2088. st_synchronize();
  2089. current_position[X_AXIS] = destination[X_AXIS];
  2090. current_position[Y_AXIS] = destination[Y_AXIS];
  2091. enable_endstops(true);
  2092. endstops_hit_on_purpose();
  2093. homeaxis(Z_AXIS);
  2094. #else // MESH_BED_LEVELING
  2095. homeaxis(Z_AXIS);
  2096. #endif // MESH_BED_LEVELING
  2097. }
  2098. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2099. if(home_all_axis) {
  2100. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2101. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2102. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2103. feedrate = XY_TRAVEL_SPEED/60;
  2104. current_position[Z_AXIS] = 0;
  2105. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2107. st_synchronize();
  2108. current_position[X_AXIS] = destination[X_AXIS];
  2109. current_position[Y_AXIS] = destination[Y_AXIS];
  2110. homeaxis(Z_AXIS);
  2111. }
  2112. // Let's see if X and Y are homed and probe is inside bed area.
  2113. if(code_seen(axis_codes[Z_AXIS])) {
  2114. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2115. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2116. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2117. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2118. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2119. current_position[Z_AXIS] = 0;
  2120. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2121. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2122. feedrate = max_feedrate[Z_AXIS];
  2123. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2124. st_synchronize();
  2125. homeaxis(Z_AXIS);
  2126. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2127. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2128. SERIAL_ECHO_START;
  2129. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2130. } else {
  2131. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2132. SERIAL_ECHO_START;
  2133. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2134. }
  2135. }
  2136. #endif // Z_SAFE_HOMING
  2137. #endif // Z_HOME_DIR < 0
  2138. if(code_seen(axis_codes[Z_AXIS])) {
  2139. if(code_value_long() != 0) {
  2140. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2141. }
  2142. }
  2143. #ifdef ENABLE_AUTO_BED_LEVELING
  2144. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2145. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2146. }
  2147. #endif
  2148. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2149. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2150. enable_endstops(false);
  2151. #endif
  2152. feedrate = saved_feedrate;
  2153. feedmultiply = saved_feedmultiply;
  2154. previous_millis_cmd = millis();
  2155. endstops_hit_on_purpose();
  2156. #ifndef MESH_BED_LEVELING
  2157. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2158. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2159. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2160. lcd_adjust_z();
  2161. #endif
  2162. // Load the machine correction matrix
  2163. world2machine_initialize();
  2164. // and correct the current_position to match the transformed coordinate system.
  2165. world2machine_update_current();
  2166. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2167. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2168. {
  2169. }
  2170. else
  2171. {
  2172. st_synchronize();
  2173. homing_flag = false;
  2174. // Push the commands to the front of the message queue in the reverse order!
  2175. // There shall be always enough space reserved for these commands.
  2176. // enquecommand_front_P((PSTR("G80")));
  2177. goto case_G80;
  2178. }
  2179. #endif
  2180. if (farm_mode) { prusa_statistics(20); };
  2181. homing_flag = false;
  2182. break;
  2183. #ifdef ENABLE_AUTO_BED_LEVELING
  2184. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2185. {
  2186. #if Z_MIN_PIN == -1
  2187. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2188. #endif
  2189. // Prevent user from running a G29 without first homing in X and Y
  2190. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2191. {
  2192. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2193. SERIAL_ECHO_START;
  2194. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2195. break; // abort G29, since we don't know where we are
  2196. }
  2197. st_synchronize();
  2198. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2199. //vector_3 corrected_position = plan_get_position_mm();
  2200. //corrected_position.debug("position before G29");
  2201. plan_bed_level_matrix.set_to_identity();
  2202. vector_3 uncorrected_position = plan_get_position();
  2203. //uncorrected_position.debug("position durring G29");
  2204. current_position[X_AXIS] = uncorrected_position.x;
  2205. current_position[Y_AXIS] = uncorrected_position.y;
  2206. current_position[Z_AXIS] = uncorrected_position.z;
  2207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2208. setup_for_endstop_move();
  2209. feedrate = homing_feedrate[Z_AXIS];
  2210. #ifdef AUTO_BED_LEVELING_GRID
  2211. // probe at the points of a lattice grid
  2212. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2213. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2214. // solve the plane equation ax + by + d = z
  2215. // A is the matrix with rows [x y 1] for all the probed points
  2216. // B is the vector of the Z positions
  2217. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2218. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2219. // "A" matrix of the linear system of equations
  2220. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2221. // "B" vector of Z points
  2222. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2223. int probePointCounter = 0;
  2224. bool zig = true;
  2225. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2226. {
  2227. int xProbe, xInc;
  2228. if (zig)
  2229. {
  2230. xProbe = LEFT_PROBE_BED_POSITION;
  2231. //xEnd = RIGHT_PROBE_BED_POSITION;
  2232. xInc = xGridSpacing;
  2233. zig = false;
  2234. } else // zag
  2235. {
  2236. xProbe = RIGHT_PROBE_BED_POSITION;
  2237. //xEnd = LEFT_PROBE_BED_POSITION;
  2238. xInc = -xGridSpacing;
  2239. zig = true;
  2240. }
  2241. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2242. {
  2243. float z_before;
  2244. if (probePointCounter == 0)
  2245. {
  2246. // raise before probing
  2247. z_before = Z_RAISE_BEFORE_PROBING;
  2248. } else
  2249. {
  2250. // raise extruder
  2251. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2252. }
  2253. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2254. eqnBVector[probePointCounter] = measured_z;
  2255. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2256. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2257. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2258. probePointCounter++;
  2259. xProbe += xInc;
  2260. }
  2261. }
  2262. clean_up_after_endstop_move();
  2263. // solve lsq problem
  2264. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2265. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2266. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2267. SERIAL_PROTOCOLPGM(" b: ");
  2268. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2269. SERIAL_PROTOCOLPGM(" d: ");
  2270. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2271. set_bed_level_equation_lsq(plane_equation_coefficients);
  2272. free(plane_equation_coefficients);
  2273. #else // AUTO_BED_LEVELING_GRID not defined
  2274. // Probe at 3 arbitrary points
  2275. // probe 1
  2276. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2277. // probe 2
  2278. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2279. // probe 3
  2280. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2281. clean_up_after_endstop_move();
  2282. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2283. #endif // AUTO_BED_LEVELING_GRID
  2284. st_synchronize();
  2285. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2286. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2287. // When the bed is uneven, this height must be corrected.
  2288. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2289. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2290. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2291. z_tmp = current_position[Z_AXIS];
  2292. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2293. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2294. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2295. }
  2296. break;
  2297. #ifndef Z_PROBE_SLED
  2298. case 30: // G30 Single Z Probe
  2299. {
  2300. st_synchronize();
  2301. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2302. setup_for_endstop_move();
  2303. feedrate = homing_feedrate[Z_AXIS];
  2304. run_z_probe();
  2305. SERIAL_PROTOCOLPGM(MSG_BED);
  2306. SERIAL_PROTOCOLPGM(" X: ");
  2307. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2308. SERIAL_PROTOCOLPGM(" Y: ");
  2309. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2310. SERIAL_PROTOCOLPGM(" Z: ");
  2311. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2312. SERIAL_PROTOCOLPGM("\n");
  2313. clean_up_after_endstop_move();
  2314. }
  2315. break;
  2316. #else
  2317. case 31: // dock the sled
  2318. dock_sled(true);
  2319. break;
  2320. case 32: // undock the sled
  2321. dock_sled(false);
  2322. break;
  2323. #endif // Z_PROBE_SLED
  2324. #endif // ENABLE_AUTO_BED_LEVELING
  2325. #ifdef MESH_BED_LEVELING
  2326. case 30: // G30 Single Z Probe
  2327. {
  2328. st_synchronize();
  2329. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2330. setup_for_endstop_move();
  2331. feedrate = homing_feedrate[Z_AXIS];
  2332. find_bed_induction_sensor_point_z(-10.f, 3);
  2333. SERIAL_PROTOCOLRPGM(MSG_BED);
  2334. SERIAL_PROTOCOLPGM(" X: ");
  2335. MYSERIAL.print(current_position[X_AXIS], 5);
  2336. SERIAL_PROTOCOLPGM(" Y: ");
  2337. MYSERIAL.print(current_position[Y_AXIS], 5);
  2338. SERIAL_PROTOCOLPGM(" Z: ");
  2339. MYSERIAL.print(current_position[Z_AXIS], 5);
  2340. SERIAL_PROTOCOLPGM("\n");
  2341. clean_up_after_endstop_move();
  2342. }
  2343. break;
  2344. case 75:
  2345. {
  2346. for (int i = 40; i <= 110; i++) {
  2347. MYSERIAL.print(i);
  2348. MYSERIAL.print(" ");
  2349. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2350. }
  2351. }
  2352. break;
  2353. case 76: //PINDA probe temperature calibration
  2354. {
  2355. setTargetBed(PINDA_MIN_T);
  2356. float zero_z;
  2357. int z_shift = 0; //unit: steps
  2358. int t_c; // temperature
  2359. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2360. // We don't know where we are! HOME!
  2361. // Push the commands to the front of the message queue in the reverse order!
  2362. // There shall be always enough space reserved for these commands.
  2363. repeatcommand_front(); // repeat G76 with all its parameters
  2364. enquecommand_front_P((PSTR("G28 W0")));
  2365. break;
  2366. }
  2367. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2368. custom_message = true;
  2369. custom_message_type = 4;
  2370. custom_message_state = 1;
  2371. custom_message = MSG_TEMP_CALIBRATION;
  2372. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2373. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2374. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2376. st_synchronize();
  2377. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2378. delay_keep_alive(1000);
  2379. serialecho_temperatures();
  2380. }
  2381. //enquecommand_P(PSTR("M190 S50"));
  2382. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2383. delay_keep_alive(1000);
  2384. serialecho_temperatures();
  2385. }
  2386. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2387. current_position[Z_AXIS] = 5;
  2388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2389. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2390. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2392. st_synchronize();
  2393. find_bed_induction_sensor_point_z(-1.f);
  2394. zero_z = current_position[Z_AXIS];
  2395. //current_position[Z_AXIS]
  2396. SERIAL_ECHOLNPGM("");
  2397. SERIAL_ECHOPGM("ZERO: ");
  2398. MYSERIAL.print(current_position[Z_AXIS]);
  2399. SERIAL_ECHOLNPGM("");
  2400. for (int i = 0; i<5; i++) {
  2401. SERIAL_ECHOPGM("Step: ");
  2402. MYSERIAL.print(i+2);
  2403. SERIAL_ECHOLNPGM("/6");
  2404. custom_message_state = i + 2;
  2405. t_c = 60 + i * 10;
  2406. setTargetBed(t_c);
  2407. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2408. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2409. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2411. st_synchronize();
  2412. while (degBed() < t_c) {
  2413. delay_keep_alive(1000);
  2414. serialecho_temperatures();
  2415. }
  2416. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2417. delay_keep_alive(1000);
  2418. serialecho_temperatures();
  2419. }
  2420. current_position[Z_AXIS] = 5;
  2421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2422. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2423. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2425. st_synchronize();
  2426. find_bed_induction_sensor_point_z(-1.f);
  2427. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2428. SERIAL_ECHOLNPGM("");
  2429. SERIAL_ECHOPGM("Temperature: ");
  2430. MYSERIAL.print(t_c);
  2431. SERIAL_ECHOPGM(" Z shift (mm):");
  2432. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2433. SERIAL_ECHOLNPGM("");
  2434. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2435. }
  2436. custom_message_type = 0;
  2437. custom_message = false;
  2438. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2439. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2440. disable_x();
  2441. disable_y();
  2442. disable_z();
  2443. disable_e0();
  2444. disable_e1();
  2445. disable_e2();
  2446. setTargetBed(0); //set bed target temperature back to 0
  2447. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2448. lcd_update_enable(true);
  2449. lcd_update(2);
  2450. }
  2451. break;
  2452. #ifdef DIS
  2453. case 77:
  2454. {
  2455. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2456. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2457. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2458. float dimension_x = 40;
  2459. float dimension_y = 40;
  2460. int points_x = 40;
  2461. int points_y = 40;
  2462. float offset_x = 74;
  2463. float offset_y = 33;
  2464. if (code_seen('X')) dimension_x = code_value();
  2465. if (code_seen('Y')) dimension_y = code_value();
  2466. if (code_seen('XP')) points_x = code_value();
  2467. if (code_seen('YP')) points_y = code_value();
  2468. if (code_seen('XO')) offset_x = code_value();
  2469. if (code_seen('YO')) offset_y = code_value();
  2470. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2471. } break;
  2472. #endif
  2473. /**
  2474. * G80: Mesh-based Z probe, probes a grid and produces a
  2475. * mesh to compensate for variable bed height
  2476. *
  2477. * The S0 report the points as below
  2478. *
  2479. * +----> X-axis
  2480. * |
  2481. * |
  2482. * v Y-axis
  2483. *
  2484. */
  2485. case 80:
  2486. #ifdef MK1BP
  2487. break;
  2488. #endif //MK1BP
  2489. case_G80:
  2490. {
  2491. mesh_bed_leveling_flag = true;
  2492. int8_t verbosity_level = 0;
  2493. static bool run = false;
  2494. if (code_seen('V')) {
  2495. // Just 'V' without a number counts as V1.
  2496. char c = strchr_pointer[1];
  2497. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2498. }
  2499. // Firstly check if we know where we are
  2500. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2501. // We don't know where we are! HOME!
  2502. // Push the commands to the front of the message queue in the reverse order!
  2503. // There shall be always enough space reserved for these commands.
  2504. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2505. repeatcommand_front(); // repeat G80 with all its parameters
  2506. enquecommand_front_P((PSTR("G28 W0")));
  2507. }
  2508. else {
  2509. mesh_bed_leveling_flag = false;
  2510. }
  2511. break;
  2512. }
  2513. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2514. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2515. temp_compensation_start();
  2516. run = true;
  2517. repeatcommand_front(); // repeat G80 with all its parameters
  2518. enquecommand_front_P((PSTR("G28 W0")));
  2519. }
  2520. else {
  2521. mesh_bed_leveling_flag = false;
  2522. }
  2523. break;
  2524. }
  2525. run = false;
  2526. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2527. mesh_bed_leveling_flag = false;
  2528. break;
  2529. }
  2530. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2531. bool custom_message_old = custom_message;
  2532. unsigned int custom_message_type_old = custom_message_type;
  2533. unsigned int custom_message_state_old = custom_message_state;
  2534. custom_message = true;
  2535. custom_message_type = 1;
  2536. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2537. lcd_update(1);
  2538. mbl.reset(); //reset mesh bed leveling
  2539. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2540. // consumed during the first movements following this statement.
  2541. babystep_undo();
  2542. // Cycle through all points and probe them
  2543. // First move up. During this first movement, the babystepping will be reverted.
  2544. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2546. // The move to the first calibration point.
  2547. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2548. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2549. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2550. if (verbosity_level >= 1) {
  2551. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2552. }
  2553. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2555. // Wait until the move is finished.
  2556. st_synchronize();
  2557. int mesh_point = 0; //index number of calibration point
  2558. int ix = 0;
  2559. int iy = 0;
  2560. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2561. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2562. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2563. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2564. if (verbosity_level >= 1) {
  2565. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2566. }
  2567. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2568. const char *kill_message = NULL;
  2569. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2570. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2571. // Get coords of a measuring point.
  2572. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2573. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2574. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2575. float z0 = 0.f;
  2576. if (has_z && mesh_point > 0) {
  2577. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2578. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2579. //#if 0
  2580. if (verbosity_level >= 1) {
  2581. SERIAL_ECHOPGM("Bed leveling, point: ");
  2582. MYSERIAL.print(mesh_point);
  2583. SERIAL_ECHOPGM(", calibration z: ");
  2584. MYSERIAL.print(z0, 5);
  2585. SERIAL_ECHOLNPGM("");
  2586. }
  2587. //#endif
  2588. }
  2589. // Move Z up to MESH_HOME_Z_SEARCH.
  2590. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2592. st_synchronize();
  2593. // Move to XY position of the sensor point.
  2594. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2595. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2596. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2597. if (verbosity_level >= 1) {
  2598. SERIAL_PROTOCOL(mesh_point);
  2599. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2600. }
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2602. st_synchronize();
  2603. // Go down until endstop is hit
  2604. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2605. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2606. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2607. break;
  2608. }
  2609. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2610. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2611. break;
  2612. }
  2613. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2614. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2615. break;
  2616. }
  2617. if (verbosity_level >= 10) {
  2618. SERIAL_ECHOPGM("X: ");
  2619. MYSERIAL.print(current_position[X_AXIS], 5);
  2620. SERIAL_ECHOLNPGM("");
  2621. SERIAL_ECHOPGM("Y: ");
  2622. MYSERIAL.print(current_position[Y_AXIS], 5);
  2623. SERIAL_PROTOCOLPGM("\n");
  2624. }
  2625. if (verbosity_level >= 1) {
  2626. SERIAL_ECHOPGM("mesh bed leveling: ");
  2627. MYSERIAL.print(current_position[Z_AXIS], 5);
  2628. SERIAL_ECHOLNPGM("");
  2629. }
  2630. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2631. custom_message_state--;
  2632. mesh_point++;
  2633. lcd_update(1);
  2634. }
  2635. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2636. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2637. if (verbosity_level >= 20) {
  2638. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2639. MYSERIAL.print(current_position[Z_AXIS], 5);
  2640. }
  2641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2642. st_synchronize();
  2643. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2644. kill(kill_message);
  2645. SERIAL_ECHOLNPGM("killed");
  2646. }
  2647. clean_up_after_endstop_move();
  2648. SERIAL_ECHOLNPGM("clean up finished ");
  2649. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2650. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2651. SERIAL_ECHOLNPGM("babystep applied");
  2652. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2653. if (verbosity_level >= 1) {
  2654. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2655. }
  2656. for (uint8_t i = 0; i < 4; ++i) {
  2657. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2658. long correction = 0;
  2659. if (code_seen(codes[i]))
  2660. correction = code_value_long();
  2661. else if (eeprom_bed_correction_valid) {
  2662. unsigned char *addr = (i < 2) ?
  2663. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2664. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2665. correction = eeprom_read_int8(addr);
  2666. }
  2667. if (correction == 0)
  2668. continue;
  2669. float offset = float(correction) * 0.001f;
  2670. if (fabs(offset) > 0.101f) {
  2671. SERIAL_ERROR_START;
  2672. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2673. SERIAL_ECHO(offset);
  2674. SERIAL_ECHOLNPGM(" microns");
  2675. }
  2676. else {
  2677. switch (i) {
  2678. case 0:
  2679. for (uint8_t row = 0; row < 3; ++row) {
  2680. mbl.z_values[row][1] += 0.5f * offset;
  2681. mbl.z_values[row][0] += offset;
  2682. }
  2683. break;
  2684. case 1:
  2685. for (uint8_t row = 0; row < 3; ++row) {
  2686. mbl.z_values[row][1] += 0.5f * offset;
  2687. mbl.z_values[row][2] += offset;
  2688. }
  2689. break;
  2690. case 2:
  2691. for (uint8_t col = 0; col < 3; ++col) {
  2692. mbl.z_values[1][col] += 0.5f * offset;
  2693. mbl.z_values[0][col] += offset;
  2694. }
  2695. break;
  2696. case 3:
  2697. for (uint8_t col = 0; col < 3; ++col) {
  2698. mbl.z_values[1][col] += 0.5f * offset;
  2699. mbl.z_values[2][col] += offset;
  2700. }
  2701. break;
  2702. }
  2703. }
  2704. }
  2705. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2706. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2707. SERIAL_ECHOLNPGM("Upsample finished");
  2708. mbl.active = 1; //activate mesh bed leveling
  2709. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2710. go_home_with_z_lift();
  2711. SERIAL_ECHOLNPGM("Go home finished");
  2712. //unretract (after PINDA preheat retraction)
  2713. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2714. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2716. }
  2717. // Restore custom message state
  2718. custom_message = custom_message_old;
  2719. custom_message_type = custom_message_type_old;
  2720. custom_message_state = custom_message_state_old;
  2721. mesh_bed_leveling_flag = false;
  2722. mesh_bed_run_from_menu = false;
  2723. lcd_update(2);
  2724. }
  2725. break;
  2726. /**
  2727. * G81: Print mesh bed leveling status and bed profile if activated
  2728. */
  2729. case 81:
  2730. if (mbl.active) {
  2731. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2732. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2733. SERIAL_PROTOCOLPGM(",");
  2734. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2735. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2736. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2737. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2738. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2739. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2740. SERIAL_PROTOCOLPGM(" ");
  2741. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2742. }
  2743. SERIAL_PROTOCOLPGM("\n");
  2744. }
  2745. }
  2746. else
  2747. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2748. break;
  2749. #if 0
  2750. /**
  2751. * G82: Single Z probe at current location
  2752. *
  2753. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2754. *
  2755. */
  2756. case 82:
  2757. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2758. setup_for_endstop_move();
  2759. find_bed_induction_sensor_point_z();
  2760. clean_up_after_endstop_move();
  2761. SERIAL_PROTOCOLPGM("Bed found at: ");
  2762. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2763. SERIAL_PROTOCOLPGM("\n");
  2764. break;
  2765. /**
  2766. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2767. */
  2768. case 83:
  2769. {
  2770. int babystepz = code_seen('S') ? code_value() : 0;
  2771. int BabyPosition = code_seen('P') ? code_value() : 0;
  2772. if (babystepz != 0) {
  2773. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2774. // Is the axis indexed starting with zero or one?
  2775. if (BabyPosition > 4) {
  2776. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2777. }else{
  2778. // Save it to the eeprom
  2779. babystepLoadZ = babystepz;
  2780. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2781. // adjust the Z
  2782. babystepsTodoZadd(babystepLoadZ);
  2783. }
  2784. }
  2785. }
  2786. break;
  2787. /**
  2788. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2789. */
  2790. case 84:
  2791. babystepsTodoZsubtract(babystepLoadZ);
  2792. // babystepLoadZ = 0;
  2793. break;
  2794. /**
  2795. * G85: Prusa3D specific: Pick best babystep
  2796. */
  2797. case 85:
  2798. lcd_pick_babystep();
  2799. break;
  2800. #endif
  2801. /**
  2802. * G86: Prusa3D specific: Disable babystep correction after home.
  2803. * This G-code will be performed at the start of a calibration script.
  2804. */
  2805. case 86:
  2806. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2807. break;
  2808. /**
  2809. * G87: Prusa3D specific: Enable babystep correction after home
  2810. * This G-code will be performed at the end of a calibration script.
  2811. */
  2812. case 87:
  2813. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2814. break;
  2815. /**
  2816. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2817. */
  2818. case 88:
  2819. break;
  2820. #endif // ENABLE_MESH_BED_LEVELING
  2821. case 90: // G90
  2822. relative_mode = false;
  2823. break;
  2824. case 91: // G91
  2825. relative_mode = true;
  2826. break;
  2827. case 92: // G92
  2828. if(!code_seen(axis_codes[E_AXIS]))
  2829. st_synchronize();
  2830. for(int8_t i=0; i < NUM_AXIS; i++) {
  2831. if(code_seen(axis_codes[i])) {
  2832. if(i == E_AXIS) {
  2833. current_position[i] = code_value();
  2834. plan_set_e_position(current_position[E_AXIS]);
  2835. }
  2836. else {
  2837. current_position[i] = code_value()+add_homing[i];
  2838. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2839. }
  2840. }
  2841. }
  2842. break;
  2843. case 98: //activate farm mode
  2844. farm_mode = 1;
  2845. PingTime = millis();
  2846. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2847. break;
  2848. case 99: //deactivate farm mode
  2849. farm_mode = 0;
  2850. lcd_printer_connected();
  2851. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2852. lcd_update(2);
  2853. break;
  2854. }
  2855. } // end if(code_seen('G'))
  2856. else if(code_seen('M'))
  2857. {
  2858. int index;
  2859. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2860. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2861. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2862. SERIAL_ECHOLNPGM("Invalid M code");
  2863. } else
  2864. switch((int)code_value())
  2865. {
  2866. #ifdef ULTIPANEL
  2867. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2868. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2869. {
  2870. char *src = strchr_pointer + 2;
  2871. codenum = 0;
  2872. bool hasP = false, hasS = false;
  2873. if (code_seen('P')) {
  2874. codenum = code_value(); // milliseconds to wait
  2875. hasP = codenum > 0;
  2876. }
  2877. if (code_seen('S')) {
  2878. codenum = code_value() * 1000; // seconds to wait
  2879. hasS = codenum > 0;
  2880. }
  2881. starpos = strchr(src, '*');
  2882. if (starpos != NULL) *(starpos) = '\0';
  2883. while (*src == ' ') ++src;
  2884. if (!hasP && !hasS && *src != '\0') {
  2885. lcd_setstatus(src);
  2886. } else {
  2887. LCD_MESSAGERPGM(MSG_USERWAIT);
  2888. }
  2889. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2890. st_synchronize();
  2891. previous_millis_cmd = millis();
  2892. if (codenum > 0){
  2893. codenum += millis(); // keep track of when we started waiting
  2894. while(millis() < codenum && !lcd_clicked()){
  2895. manage_heater();
  2896. manage_inactivity(true);
  2897. lcd_update();
  2898. }
  2899. lcd_ignore_click(false);
  2900. }else{
  2901. if (!lcd_detected())
  2902. break;
  2903. while(!lcd_clicked()){
  2904. manage_heater();
  2905. manage_inactivity(true);
  2906. lcd_update();
  2907. }
  2908. }
  2909. if (IS_SD_PRINTING)
  2910. LCD_MESSAGERPGM(MSG_RESUMING);
  2911. else
  2912. LCD_MESSAGERPGM(WELCOME_MSG);
  2913. }
  2914. break;
  2915. #endif
  2916. case 17:
  2917. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2918. enable_x();
  2919. enable_y();
  2920. enable_z();
  2921. enable_e0();
  2922. enable_e1();
  2923. enable_e2();
  2924. break;
  2925. #ifdef SDSUPPORT
  2926. case 20: // M20 - list SD card
  2927. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2928. card.ls();
  2929. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2930. break;
  2931. case 21: // M21 - init SD card
  2932. card.initsd();
  2933. break;
  2934. case 22: //M22 - release SD card
  2935. card.release();
  2936. break;
  2937. case 23: //M23 - Select file
  2938. starpos = (strchr(strchr_pointer + 4,'*'));
  2939. if(starpos!=NULL)
  2940. *(starpos)='\0';
  2941. card.openFile(strchr_pointer + 4,true);
  2942. break;
  2943. case 24: //M24 - Start SD print
  2944. card.startFileprint();
  2945. starttime=millis();
  2946. break;
  2947. case 25: //M25 - Pause SD print
  2948. card.pauseSDPrint();
  2949. break;
  2950. case 26: //M26 - Set SD index
  2951. if(card.cardOK && code_seen('S')) {
  2952. card.setIndex(code_value_long());
  2953. }
  2954. break;
  2955. case 27: //M27 - Get SD status
  2956. card.getStatus();
  2957. break;
  2958. case 28: //M28 - Start SD write
  2959. starpos = (strchr(strchr_pointer + 4,'*'));
  2960. if(starpos != NULL){
  2961. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2962. strchr_pointer = strchr(npos,' ') + 1;
  2963. *(starpos) = '\0';
  2964. }
  2965. card.openFile(strchr_pointer+4,false);
  2966. break;
  2967. case 29: //M29 - Stop SD write
  2968. //processed in write to file routine above
  2969. //card,saving = false;
  2970. break;
  2971. case 30: //M30 <filename> Delete File
  2972. if (card.cardOK){
  2973. card.closefile();
  2974. starpos = (strchr(strchr_pointer + 4,'*'));
  2975. if(starpos != NULL){
  2976. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2977. strchr_pointer = strchr(npos,' ') + 1;
  2978. *(starpos) = '\0';
  2979. }
  2980. card.removeFile(strchr_pointer + 4);
  2981. }
  2982. break;
  2983. case 32: //M32 - Select file and start SD print
  2984. {
  2985. if(card.sdprinting) {
  2986. st_synchronize();
  2987. }
  2988. starpos = (strchr(strchr_pointer + 4,'*'));
  2989. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2990. if(namestartpos==NULL)
  2991. {
  2992. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2993. }
  2994. else
  2995. namestartpos++; //to skip the '!'
  2996. if(starpos!=NULL)
  2997. *(starpos)='\0';
  2998. bool call_procedure=(code_seen('P'));
  2999. if(strchr_pointer>namestartpos)
  3000. call_procedure=false; //false alert, 'P' found within filename
  3001. if( card.cardOK )
  3002. {
  3003. card.openFile(namestartpos,true,!call_procedure);
  3004. if(code_seen('S'))
  3005. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3006. card.setIndex(code_value_long());
  3007. card.startFileprint();
  3008. if(!call_procedure)
  3009. starttime=millis(); //procedure calls count as normal print time.
  3010. }
  3011. } break;
  3012. case 928: //M928 - Start SD write
  3013. starpos = (strchr(strchr_pointer + 5,'*'));
  3014. if(starpos != NULL){
  3015. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3016. strchr_pointer = strchr(npos,' ') + 1;
  3017. *(starpos) = '\0';
  3018. }
  3019. card.openLogFile(strchr_pointer+5);
  3020. break;
  3021. #endif //SDSUPPORT
  3022. case 31: //M31 take time since the start of the SD print or an M109 command
  3023. {
  3024. stoptime=millis();
  3025. char time[30];
  3026. unsigned long t=(stoptime-starttime)/1000;
  3027. int sec,min;
  3028. min=t/60;
  3029. sec=t%60;
  3030. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3031. SERIAL_ECHO_START;
  3032. SERIAL_ECHOLN(time);
  3033. lcd_setstatus(time);
  3034. autotempShutdown();
  3035. }
  3036. break;
  3037. case 42: //M42 -Change pin status via gcode
  3038. if (code_seen('S'))
  3039. {
  3040. int pin_status = code_value();
  3041. int pin_number = LED_PIN;
  3042. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3043. pin_number = code_value();
  3044. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3045. {
  3046. if (sensitive_pins[i] == pin_number)
  3047. {
  3048. pin_number = -1;
  3049. break;
  3050. }
  3051. }
  3052. #if defined(FAN_PIN) && FAN_PIN > -1
  3053. if (pin_number == FAN_PIN)
  3054. fanSpeed = pin_status;
  3055. #endif
  3056. if (pin_number > -1)
  3057. {
  3058. pinMode(pin_number, OUTPUT);
  3059. digitalWrite(pin_number, pin_status);
  3060. analogWrite(pin_number, pin_status);
  3061. }
  3062. }
  3063. break;
  3064. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3065. // Reset the baby step value and the baby step applied flag.
  3066. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3067. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3068. // Reset the skew and offset in both RAM and EEPROM.
  3069. reset_bed_offset_and_skew();
  3070. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3071. // the planner will not perform any adjustments in the XY plane.
  3072. // Wait for the motors to stop and update the current position with the absolute values.
  3073. world2machine_revert_to_uncorrected();
  3074. break;
  3075. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3076. {
  3077. // Only Z calibration?
  3078. bool onlyZ = code_seen('Z');
  3079. if (!onlyZ) {
  3080. setTargetBed(0);
  3081. setTargetHotend(0, 0);
  3082. setTargetHotend(0, 1);
  3083. setTargetHotend(0, 2);
  3084. adjust_bed_reset(); //reset bed level correction
  3085. }
  3086. // Disable the default update procedure of the display. We will do a modal dialog.
  3087. lcd_update_enable(false);
  3088. // Let the planner use the uncorrected coordinates.
  3089. mbl.reset();
  3090. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3091. // the planner will not perform any adjustments in the XY plane.
  3092. // Wait for the motors to stop and update the current position with the absolute values.
  3093. world2machine_revert_to_uncorrected();
  3094. // Reset the baby step value applied without moving the axes.
  3095. babystep_reset();
  3096. // Mark all axes as in a need for homing.
  3097. memset(axis_known_position, 0, sizeof(axis_known_position));
  3098. // Let the user move the Z axes up to the end stoppers.
  3099. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3100. refresh_cmd_timeout();
  3101. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3102. lcd_wait_for_cool_down();
  3103. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3104. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3105. lcd_implementation_print_at(0, 2, 1);
  3106. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3107. }
  3108. // Move the print head close to the bed.
  3109. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3111. st_synchronize();
  3112. // Home in the XY plane.
  3113. set_destination_to_current();
  3114. setup_for_endstop_move();
  3115. home_xy();
  3116. int8_t verbosity_level = 0;
  3117. if (code_seen('V')) {
  3118. // Just 'V' without a number counts as V1.
  3119. char c = strchr_pointer[1];
  3120. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3121. }
  3122. if (onlyZ) {
  3123. clean_up_after_endstop_move();
  3124. // Z only calibration.
  3125. // Load the machine correction matrix
  3126. world2machine_initialize();
  3127. // and correct the current_position to match the transformed coordinate system.
  3128. world2machine_update_current();
  3129. //FIXME
  3130. bool result = sample_mesh_and_store_reference();
  3131. if (result) {
  3132. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3133. // Shipped, the nozzle height has been set already. The user can start printing now.
  3134. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3135. // babystep_apply();
  3136. }
  3137. } else {
  3138. // Reset the baby step value and the baby step applied flag.
  3139. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3140. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3141. // Complete XYZ calibration.
  3142. uint8_t point_too_far_mask = 0;
  3143. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3144. clean_up_after_endstop_move();
  3145. // Print head up.
  3146. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3148. st_synchronize();
  3149. if (result >= 0) {
  3150. point_too_far_mask = 0;
  3151. // Second half: The fine adjustment.
  3152. // Let the planner use the uncorrected coordinates.
  3153. mbl.reset();
  3154. world2machine_reset();
  3155. // Home in the XY plane.
  3156. setup_for_endstop_move();
  3157. home_xy();
  3158. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3159. clean_up_after_endstop_move();
  3160. // Print head up.
  3161. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3163. st_synchronize();
  3164. // if (result >= 0) babystep_apply();
  3165. }
  3166. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3167. if (result >= 0) {
  3168. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3169. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3170. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3171. }
  3172. }
  3173. } else {
  3174. // Timeouted.
  3175. }
  3176. lcd_update_enable(true);
  3177. break;
  3178. }
  3179. /*
  3180. case 46:
  3181. {
  3182. // M46: Prusa3D: Show the assigned IP address.
  3183. uint8_t ip[4];
  3184. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3185. if (hasIP) {
  3186. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3187. SERIAL_ECHO(int(ip[0]));
  3188. SERIAL_ECHOPGM(".");
  3189. SERIAL_ECHO(int(ip[1]));
  3190. SERIAL_ECHOPGM(".");
  3191. SERIAL_ECHO(int(ip[2]));
  3192. SERIAL_ECHOPGM(".");
  3193. SERIAL_ECHO(int(ip[3]));
  3194. SERIAL_ECHOLNPGM("");
  3195. } else {
  3196. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3197. }
  3198. break;
  3199. }
  3200. */
  3201. case 47:
  3202. // M47: Prusa3D: Show end stops dialog on the display.
  3203. lcd_diag_show_end_stops();
  3204. break;
  3205. #if 0
  3206. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3207. {
  3208. // Disable the default update procedure of the display. We will do a modal dialog.
  3209. lcd_update_enable(false);
  3210. // Let the planner use the uncorrected coordinates.
  3211. mbl.reset();
  3212. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3213. // the planner will not perform any adjustments in the XY plane.
  3214. // Wait for the motors to stop and update the current position with the absolute values.
  3215. world2machine_revert_to_uncorrected();
  3216. // Move the print head close to the bed.
  3217. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3219. st_synchronize();
  3220. // Home in the XY plane.
  3221. set_destination_to_current();
  3222. setup_for_endstop_move();
  3223. home_xy();
  3224. int8_t verbosity_level = 0;
  3225. if (code_seen('V')) {
  3226. // Just 'V' without a number counts as V1.
  3227. char c = strchr_pointer[1];
  3228. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3229. }
  3230. bool success = scan_bed_induction_points(verbosity_level);
  3231. clean_up_after_endstop_move();
  3232. // Print head up.
  3233. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3234. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3235. st_synchronize();
  3236. lcd_update_enable(true);
  3237. break;
  3238. }
  3239. #endif
  3240. // M48 Z-Probe repeatability measurement function.
  3241. //
  3242. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3243. //
  3244. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3245. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3246. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3247. // regenerated.
  3248. //
  3249. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3250. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3251. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3252. //
  3253. #ifdef ENABLE_AUTO_BED_LEVELING
  3254. #ifdef Z_PROBE_REPEATABILITY_TEST
  3255. case 48: // M48 Z-Probe repeatability
  3256. {
  3257. #if Z_MIN_PIN == -1
  3258. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3259. #endif
  3260. double sum=0.0;
  3261. double mean=0.0;
  3262. double sigma=0.0;
  3263. double sample_set[50];
  3264. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3265. double X_current, Y_current, Z_current;
  3266. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3267. if (code_seen('V') || code_seen('v')) {
  3268. verbose_level = code_value();
  3269. if (verbose_level<0 || verbose_level>4 ) {
  3270. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3271. goto Sigma_Exit;
  3272. }
  3273. }
  3274. if (verbose_level > 0) {
  3275. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3276. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3277. }
  3278. if (code_seen('n')) {
  3279. n_samples = code_value();
  3280. if (n_samples<4 || n_samples>50 ) {
  3281. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3282. goto Sigma_Exit;
  3283. }
  3284. }
  3285. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3286. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3287. Z_current = st_get_position_mm(Z_AXIS);
  3288. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3289. ext_position = st_get_position_mm(E_AXIS);
  3290. if (code_seen('X') || code_seen('x') ) {
  3291. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3292. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3293. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3294. goto Sigma_Exit;
  3295. }
  3296. }
  3297. if (code_seen('Y') || code_seen('y') ) {
  3298. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3299. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3300. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3301. goto Sigma_Exit;
  3302. }
  3303. }
  3304. if (code_seen('L') || code_seen('l') ) {
  3305. n_legs = code_value();
  3306. if ( n_legs==1 )
  3307. n_legs = 2;
  3308. if ( n_legs<0 || n_legs>15 ) {
  3309. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3310. goto Sigma_Exit;
  3311. }
  3312. }
  3313. //
  3314. // Do all the preliminary setup work. First raise the probe.
  3315. //
  3316. st_synchronize();
  3317. plan_bed_level_matrix.set_to_identity();
  3318. plan_buffer_line( X_current, Y_current, Z_start_location,
  3319. ext_position,
  3320. homing_feedrate[Z_AXIS]/60,
  3321. active_extruder);
  3322. st_synchronize();
  3323. //
  3324. // Now get everything to the specified probe point So we can safely do a probe to
  3325. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3326. // use that as a starting point for each probe.
  3327. //
  3328. if (verbose_level > 2)
  3329. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3330. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3331. ext_position,
  3332. homing_feedrate[X_AXIS]/60,
  3333. active_extruder);
  3334. st_synchronize();
  3335. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3336. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3337. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3338. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3339. //
  3340. // OK, do the inital probe to get us close to the bed.
  3341. // Then retrace the right amount and use that in subsequent probes
  3342. //
  3343. setup_for_endstop_move();
  3344. run_z_probe();
  3345. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3346. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3347. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3348. ext_position,
  3349. homing_feedrate[X_AXIS]/60,
  3350. active_extruder);
  3351. st_synchronize();
  3352. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3353. for( n=0; n<n_samples; n++) {
  3354. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3355. if ( n_legs) {
  3356. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3357. int rotational_direction, l;
  3358. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3359. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3360. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3361. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3362. //SERIAL_ECHOPAIR(" theta: ",theta);
  3363. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3364. //SERIAL_PROTOCOLLNPGM("");
  3365. for( l=0; l<n_legs-1; l++) {
  3366. if (rotational_direction==1)
  3367. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3368. else
  3369. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3370. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3371. if ( radius<0.0 )
  3372. radius = -radius;
  3373. X_current = X_probe_location + cos(theta) * radius;
  3374. Y_current = Y_probe_location + sin(theta) * radius;
  3375. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3376. X_current = X_MIN_POS;
  3377. if ( X_current>X_MAX_POS)
  3378. X_current = X_MAX_POS;
  3379. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3380. Y_current = Y_MIN_POS;
  3381. if ( Y_current>Y_MAX_POS)
  3382. Y_current = Y_MAX_POS;
  3383. if (verbose_level>3 ) {
  3384. SERIAL_ECHOPAIR("x: ", X_current);
  3385. SERIAL_ECHOPAIR("y: ", Y_current);
  3386. SERIAL_PROTOCOLLNPGM("");
  3387. }
  3388. do_blocking_move_to( X_current, Y_current, Z_current );
  3389. }
  3390. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3391. }
  3392. setup_for_endstop_move();
  3393. run_z_probe();
  3394. sample_set[n] = current_position[Z_AXIS];
  3395. //
  3396. // Get the current mean for the data points we have so far
  3397. //
  3398. sum=0.0;
  3399. for( j=0; j<=n; j++) {
  3400. sum = sum + sample_set[j];
  3401. }
  3402. mean = sum / (double (n+1));
  3403. //
  3404. // Now, use that mean to calculate the standard deviation for the
  3405. // data points we have so far
  3406. //
  3407. sum=0.0;
  3408. for( j=0; j<=n; j++) {
  3409. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3410. }
  3411. sigma = sqrt( sum / (double (n+1)) );
  3412. if (verbose_level > 1) {
  3413. SERIAL_PROTOCOL(n+1);
  3414. SERIAL_PROTOCOL(" of ");
  3415. SERIAL_PROTOCOL(n_samples);
  3416. SERIAL_PROTOCOLPGM(" z: ");
  3417. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3418. }
  3419. if (verbose_level > 2) {
  3420. SERIAL_PROTOCOL(" mean: ");
  3421. SERIAL_PROTOCOL_F(mean,6);
  3422. SERIAL_PROTOCOL(" sigma: ");
  3423. SERIAL_PROTOCOL_F(sigma,6);
  3424. }
  3425. if (verbose_level > 0)
  3426. SERIAL_PROTOCOLPGM("\n");
  3427. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3428. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3429. st_synchronize();
  3430. }
  3431. delay(1000);
  3432. clean_up_after_endstop_move();
  3433. // enable_endstops(true);
  3434. if (verbose_level > 0) {
  3435. SERIAL_PROTOCOLPGM("Mean: ");
  3436. SERIAL_PROTOCOL_F(mean, 6);
  3437. SERIAL_PROTOCOLPGM("\n");
  3438. }
  3439. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3440. SERIAL_PROTOCOL_F(sigma, 6);
  3441. SERIAL_PROTOCOLPGM("\n\n");
  3442. Sigma_Exit:
  3443. break;
  3444. }
  3445. #endif // Z_PROBE_REPEATABILITY_TEST
  3446. #endif // ENABLE_AUTO_BED_LEVELING
  3447. case 104: // M104
  3448. if(setTargetedHotend(104)){
  3449. break;
  3450. }
  3451. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3452. setWatch();
  3453. break;
  3454. case 112: // M112 -Emergency Stop
  3455. kill();
  3456. break;
  3457. case 140: // M140 set bed temp
  3458. if (code_seen('S')) setTargetBed(code_value());
  3459. break;
  3460. case 105 : // M105
  3461. if(setTargetedHotend(105)){
  3462. break;
  3463. }
  3464. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3465. SERIAL_PROTOCOLPGM("ok T:");
  3466. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3467. SERIAL_PROTOCOLPGM(" /");
  3468. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3469. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3470. SERIAL_PROTOCOLPGM(" B:");
  3471. SERIAL_PROTOCOL_F(degBed(),1);
  3472. SERIAL_PROTOCOLPGM(" /");
  3473. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3474. #endif //TEMP_BED_PIN
  3475. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3476. SERIAL_PROTOCOLPGM(" T");
  3477. SERIAL_PROTOCOL(cur_extruder);
  3478. SERIAL_PROTOCOLPGM(":");
  3479. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3480. SERIAL_PROTOCOLPGM(" /");
  3481. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3482. }
  3483. #else
  3484. SERIAL_ERROR_START;
  3485. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3486. #endif
  3487. SERIAL_PROTOCOLPGM(" @:");
  3488. #ifdef EXTRUDER_WATTS
  3489. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3490. SERIAL_PROTOCOLPGM("W");
  3491. #else
  3492. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3493. #endif
  3494. SERIAL_PROTOCOLPGM(" B@:");
  3495. #ifdef BED_WATTS
  3496. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3497. SERIAL_PROTOCOLPGM("W");
  3498. #else
  3499. SERIAL_PROTOCOL(getHeaterPower(-1));
  3500. #endif
  3501. #ifdef SHOW_TEMP_ADC_VALUES
  3502. {float raw = 0.0;
  3503. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3504. SERIAL_PROTOCOLPGM(" ADC B:");
  3505. SERIAL_PROTOCOL_F(degBed(),1);
  3506. SERIAL_PROTOCOLPGM("C->");
  3507. raw = rawBedTemp();
  3508. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3509. SERIAL_PROTOCOLPGM(" Rb->");
  3510. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3511. SERIAL_PROTOCOLPGM(" Rxb->");
  3512. SERIAL_PROTOCOL_F(raw, 5);
  3513. #endif
  3514. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3515. SERIAL_PROTOCOLPGM(" T");
  3516. SERIAL_PROTOCOL(cur_extruder);
  3517. SERIAL_PROTOCOLPGM(":");
  3518. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3519. SERIAL_PROTOCOLPGM("C->");
  3520. raw = rawHotendTemp(cur_extruder);
  3521. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3522. SERIAL_PROTOCOLPGM(" Rt");
  3523. SERIAL_PROTOCOL(cur_extruder);
  3524. SERIAL_PROTOCOLPGM("->");
  3525. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3526. SERIAL_PROTOCOLPGM(" Rx");
  3527. SERIAL_PROTOCOL(cur_extruder);
  3528. SERIAL_PROTOCOLPGM("->");
  3529. SERIAL_PROTOCOL_F(raw, 5);
  3530. }}
  3531. #endif
  3532. SERIAL_PROTOCOLLN("");
  3533. return;
  3534. break;
  3535. case 109:
  3536. {// M109 - Wait for extruder heater to reach target.
  3537. if(setTargetedHotend(109)){
  3538. break;
  3539. }
  3540. LCD_MESSAGERPGM(MSG_HEATING);
  3541. heating_status = 1;
  3542. if (farm_mode) { prusa_statistics(1); };
  3543. #ifdef AUTOTEMP
  3544. autotemp_enabled=false;
  3545. #endif
  3546. if (code_seen('S')) {
  3547. setTargetHotend(code_value(), tmp_extruder);
  3548. CooldownNoWait = true;
  3549. } else if (code_seen('R')) {
  3550. setTargetHotend(code_value(), tmp_extruder);
  3551. CooldownNoWait = false;
  3552. }
  3553. #ifdef AUTOTEMP
  3554. if (code_seen('S')) autotemp_min=code_value();
  3555. if (code_seen('B')) autotemp_max=code_value();
  3556. if (code_seen('F'))
  3557. {
  3558. autotemp_factor=code_value();
  3559. autotemp_enabled=true;
  3560. }
  3561. #endif
  3562. setWatch();
  3563. codenum = millis();
  3564. /* See if we are heating up or cooling down */
  3565. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3566. cancel_heatup = false;
  3567. wait_for_heater(codenum); //loops until target temperature is reached
  3568. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3569. heating_status = 2;
  3570. if (farm_mode) { prusa_statistics(2); };
  3571. //starttime=millis();
  3572. previous_millis_cmd = millis();
  3573. }
  3574. break;
  3575. case 190: // M190 - Wait for bed heater to reach target.
  3576. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3577. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3578. heating_status = 3;
  3579. if (farm_mode) { prusa_statistics(1); };
  3580. if (code_seen('S'))
  3581. {
  3582. setTargetBed(code_value());
  3583. CooldownNoWait = true;
  3584. }
  3585. else if (code_seen('R'))
  3586. {
  3587. setTargetBed(code_value());
  3588. CooldownNoWait = false;
  3589. }
  3590. codenum = millis();
  3591. cancel_heatup = false;
  3592. target_direction = isHeatingBed(); // true if heating, false if cooling
  3593. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3594. {
  3595. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3596. {
  3597. if (!farm_mode) {
  3598. float tt = degHotend(active_extruder);
  3599. SERIAL_PROTOCOLPGM("T:");
  3600. SERIAL_PROTOCOL(tt);
  3601. SERIAL_PROTOCOLPGM(" E:");
  3602. SERIAL_PROTOCOL((int)active_extruder);
  3603. SERIAL_PROTOCOLPGM(" B:");
  3604. SERIAL_PROTOCOL_F(degBed(), 1);
  3605. SERIAL_PROTOCOLLN("");
  3606. }
  3607. codenum = millis();
  3608. }
  3609. manage_heater();
  3610. manage_inactivity();
  3611. lcd_update();
  3612. }
  3613. LCD_MESSAGERPGM(MSG_BED_DONE);
  3614. heating_status = 4;
  3615. previous_millis_cmd = millis();
  3616. #endif
  3617. break;
  3618. #if defined(FAN_PIN) && FAN_PIN > -1
  3619. case 106: //M106 Fan On
  3620. if (code_seen('S')){
  3621. fanSpeed=constrain(code_value(),0,255);
  3622. }
  3623. else {
  3624. fanSpeed=255;
  3625. }
  3626. break;
  3627. case 107: //M107 Fan Off
  3628. fanSpeed = 0;
  3629. break;
  3630. #endif //FAN_PIN
  3631. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3632. case 80: // M80 - Turn on Power Supply
  3633. SET_OUTPUT(PS_ON_PIN); //GND
  3634. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3635. // If you have a switch on suicide pin, this is useful
  3636. // if you want to start another print with suicide feature after
  3637. // a print without suicide...
  3638. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3639. SET_OUTPUT(SUICIDE_PIN);
  3640. WRITE(SUICIDE_PIN, HIGH);
  3641. #endif
  3642. #ifdef ULTIPANEL
  3643. powersupply = true;
  3644. LCD_MESSAGERPGM(WELCOME_MSG);
  3645. lcd_update();
  3646. #endif
  3647. break;
  3648. #endif
  3649. case 81: // M81 - Turn off Power Supply
  3650. disable_heater();
  3651. st_synchronize();
  3652. disable_e0();
  3653. disable_e1();
  3654. disable_e2();
  3655. finishAndDisableSteppers();
  3656. fanSpeed = 0;
  3657. delay(1000); // Wait a little before to switch off
  3658. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3659. st_synchronize();
  3660. suicide();
  3661. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3662. SET_OUTPUT(PS_ON_PIN);
  3663. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3664. #endif
  3665. #ifdef ULTIPANEL
  3666. powersupply = false;
  3667. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3668. /*
  3669. MACHNAME = "Prusa i3"
  3670. MSGOFF = "Vypnuto"
  3671. "Prusai3"" ""vypnuto""."
  3672. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3673. */
  3674. lcd_update();
  3675. #endif
  3676. break;
  3677. case 82:
  3678. axis_relative_modes[3] = false;
  3679. break;
  3680. case 83:
  3681. axis_relative_modes[3] = true;
  3682. break;
  3683. case 18: //compatibility
  3684. case 84: // M84
  3685. if(code_seen('S')){
  3686. stepper_inactive_time = code_value() * 1000;
  3687. }
  3688. else
  3689. {
  3690. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3691. if(all_axis)
  3692. {
  3693. st_synchronize();
  3694. disable_e0();
  3695. disable_e1();
  3696. disable_e2();
  3697. finishAndDisableSteppers();
  3698. }
  3699. else
  3700. {
  3701. st_synchronize();
  3702. if (code_seen('X')) disable_x();
  3703. if (code_seen('Y')) disable_y();
  3704. if (code_seen('Z')) disable_z();
  3705. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3706. if (code_seen('E')) {
  3707. disable_e0();
  3708. disable_e1();
  3709. disable_e2();
  3710. }
  3711. #endif
  3712. }
  3713. }
  3714. snmm_filaments_used = 0;
  3715. break;
  3716. case 85: // M85
  3717. if(code_seen('S')) {
  3718. max_inactive_time = code_value() * 1000;
  3719. }
  3720. break;
  3721. case 92: // M92
  3722. for(int8_t i=0; i < NUM_AXIS; i++)
  3723. {
  3724. if(code_seen(axis_codes[i]))
  3725. {
  3726. if(i == 3) { // E
  3727. float value = code_value();
  3728. if(value < 20.0) {
  3729. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3730. max_jerk[E_AXIS] *= factor;
  3731. max_feedrate[i] *= factor;
  3732. axis_steps_per_sqr_second[i] *= factor;
  3733. }
  3734. axis_steps_per_unit[i] = value;
  3735. }
  3736. else {
  3737. axis_steps_per_unit[i] = code_value();
  3738. }
  3739. }
  3740. }
  3741. break;
  3742. case 110: // M110 - reset line pos
  3743. if (code_seen('N'))
  3744. gcode_LastN = code_value_long();
  3745. else
  3746. gcode_LastN = 0;
  3747. break;
  3748. case 115: // M115
  3749. if (code_seen('V')) {
  3750. // Report the Prusa version number.
  3751. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3752. } else if (code_seen('U')) {
  3753. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3754. // pause the print and ask the user to upgrade the firmware.
  3755. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3756. } else {
  3757. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3758. }
  3759. break;
  3760. /* case 117: // M117 display message
  3761. starpos = (strchr(strchr_pointer + 5,'*'));
  3762. if(starpos!=NULL)
  3763. *(starpos)='\0';
  3764. lcd_setstatus(strchr_pointer + 5);
  3765. break;*/
  3766. case 114: // M114
  3767. SERIAL_PROTOCOLPGM("X:");
  3768. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3769. SERIAL_PROTOCOLPGM(" Y:");
  3770. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3771. SERIAL_PROTOCOLPGM(" Z:");
  3772. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3773. SERIAL_PROTOCOLPGM(" E:");
  3774. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3775. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3776. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3777. SERIAL_PROTOCOLPGM(" Y:");
  3778. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3779. SERIAL_PROTOCOLPGM(" Z:");
  3780. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3781. SERIAL_PROTOCOLLN("");
  3782. break;
  3783. case 120: // M120
  3784. enable_endstops(false) ;
  3785. break;
  3786. case 121: // M121
  3787. enable_endstops(true) ;
  3788. break;
  3789. case 119: // M119
  3790. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3791. SERIAL_PROTOCOLLN("");
  3792. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3793. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3794. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3795. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3796. }else{
  3797. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3798. }
  3799. SERIAL_PROTOCOLLN("");
  3800. #endif
  3801. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3802. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3803. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3804. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3805. }else{
  3806. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3807. }
  3808. SERIAL_PROTOCOLLN("");
  3809. #endif
  3810. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3811. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3812. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3813. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3814. }else{
  3815. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3816. }
  3817. SERIAL_PROTOCOLLN("");
  3818. #endif
  3819. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3820. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3821. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3822. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3823. }else{
  3824. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3825. }
  3826. SERIAL_PROTOCOLLN("");
  3827. #endif
  3828. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3829. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3830. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3831. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3832. }else{
  3833. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3834. }
  3835. SERIAL_PROTOCOLLN("");
  3836. #endif
  3837. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3838. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3839. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3840. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3841. }else{
  3842. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3843. }
  3844. SERIAL_PROTOCOLLN("");
  3845. #endif
  3846. break;
  3847. //TODO: update for all axis, use for loop
  3848. #ifdef BLINKM
  3849. case 150: // M150
  3850. {
  3851. byte red;
  3852. byte grn;
  3853. byte blu;
  3854. if(code_seen('R')) red = code_value();
  3855. if(code_seen('U')) grn = code_value();
  3856. if(code_seen('B')) blu = code_value();
  3857. SendColors(red,grn,blu);
  3858. }
  3859. break;
  3860. #endif //BLINKM
  3861. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3862. {
  3863. tmp_extruder = active_extruder;
  3864. if(code_seen('T')) {
  3865. tmp_extruder = code_value();
  3866. if(tmp_extruder >= EXTRUDERS) {
  3867. SERIAL_ECHO_START;
  3868. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3869. break;
  3870. }
  3871. }
  3872. float area = .0;
  3873. if(code_seen('D')) {
  3874. float diameter = (float)code_value();
  3875. if (diameter == 0.0) {
  3876. // setting any extruder filament size disables volumetric on the assumption that
  3877. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3878. // for all extruders
  3879. volumetric_enabled = false;
  3880. } else {
  3881. filament_size[tmp_extruder] = (float)code_value();
  3882. // make sure all extruders have some sane value for the filament size
  3883. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3884. #if EXTRUDERS > 1
  3885. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3886. #if EXTRUDERS > 2
  3887. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3888. #endif
  3889. #endif
  3890. volumetric_enabled = true;
  3891. }
  3892. } else {
  3893. //reserved for setting filament diameter via UFID or filament measuring device
  3894. break;
  3895. }
  3896. calculate_volumetric_multipliers();
  3897. }
  3898. break;
  3899. case 201: // M201
  3900. for(int8_t i=0; i < NUM_AXIS; i++)
  3901. {
  3902. if(code_seen(axis_codes[i]))
  3903. {
  3904. max_acceleration_units_per_sq_second[i] = code_value();
  3905. }
  3906. }
  3907. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3908. reset_acceleration_rates();
  3909. break;
  3910. #if 0 // Not used for Sprinter/grbl gen6
  3911. case 202: // M202
  3912. for(int8_t i=0; i < NUM_AXIS; i++) {
  3913. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3914. }
  3915. break;
  3916. #endif
  3917. case 203: // M203 max feedrate mm/sec
  3918. for(int8_t i=0; i < NUM_AXIS; i++) {
  3919. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3920. }
  3921. break;
  3922. case 204: // M204 acclereration S normal moves T filmanent only moves
  3923. {
  3924. if(code_seen('S')) acceleration = code_value() ;
  3925. if(code_seen('T')) retract_acceleration = code_value() ;
  3926. }
  3927. break;
  3928. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3929. {
  3930. if(code_seen('S')) minimumfeedrate = code_value();
  3931. if(code_seen('T')) mintravelfeedrate = code_value();
  3932. if(code_seen('B')) minsegmenttime = code_value() ;
  3933. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3934. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3935. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3936. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3937. }
  3938. break;
  3939. case 206: // M206 additional homing offset
  3940. for(int8_t i=0; i < 3; i++)
  3941. {
  3942. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3943. }
  3944. break;
  3945. #ifdef FWRETRACT
  3946. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3947. {
  3948. if(code_seen('S'))
  3949. {
  3950. retract_length = code_value() ;
  3951. }
  3952. if(code_seen('F'))
  3953. {
  3954. retract_feedrate = code_value()/60 ;
  3955. }
  3956. if(code_seen('Z'))
  3957. {
  3958. retract_zlift = code_value() ;
  3959. }
  3960. }break;
  3961. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3962. {
  3963. if(code_seen('S'))
  3964. {
  3965. retract_recover_length = code_value() ;
  3966. }
  3967. if(code_seen('F'))
  3968. {
  3969. retract_recover_feedrate = code_value()/60 ;
  3970. }
  3971. }break;
  3972. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3973. {
  3974. if(code_seen('S'))
  3975. {
  3976. int t= code_value() ;
  3977. switch(t)
  3978. {
  3979. case 0:
  3980. {
  3981. autoretract_enabled=false;
  3982. retracted[0]=false;
  3983. #if EXTRUDERS > 1
  3984. retracted[1]=false;
  3985. #endif
  3986. #if EXTRUDERS > 2
  3987. retracted[2]=false;
  3988. #endif
  3989. }break;
  3990. case 1:
  3991. {
  3992. autoretract_enabled=true;
  3993. retracted[0]=false;
  3994. #if EXTRUDERS > 1
  3995. retracted[1]=false;
  3996. #endif
  3997. #if EXTRUDERS > 2
  3998. retracted[2]=false;
  3999. #endif
  4000. }break;
  4001. default:
  4002. SERIAL_ECHO_START;
  4003. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4004. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4005. SERIAL_ECHOLNPGM("\"");
  4006. }
  4007. }
  4008. }break;
  4009. #endif // FWRETRACT
  4010. #if EXTRUDERS > 1
  4011. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4012. {
  4013. if(setTargetedHotend(218)){
  4014. break;
  4015. }
  4016. if(code_seen('X'))
  4017. {
  4018. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4019. }
  4020. if(code_seen('Y'))
  4021. {
  4022. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4023. }
  4024. SERIAL_ECHO_START;
  4025. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4026. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4027. {
  4028. SERIAL_ECHO(" ");
  4029. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4030. SERIAL_ECHO(",");
  4031. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4032. }
  4033. SERIAL_ECHOLN("");
  4034. }break;
  4035. #endif
  4036. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4037. {
  4038. if(code_seen('S'))
  4039. {
  4040. feedmultiply = code_value() ;
  4041. }
  4042. }
  4043. break;
  4044. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4045. {
  4046. if(code_seen('S'))
  4047. {
  4048. int tmp_code = code_value();
  4049. if (code_seen('T'))
  4050. {
  4051. if(setTargetedHotend(221)){
  4052. break;
  4053. }
  4054. extruder_multiply[tmp_extruder] = tmp_code;
  4055. }
  4056. else
  4057. {
  4058. extrudemultiply = tmp_code ;
  4059. }
  4060. }
  4061. }
  4062. break;
  4063. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4064. {
  4065. if(code_seen('P')){
  4066. int pin_number = code_value(); // pin number
  4067. int pin_state = -1; // required pin state - default is inverted
  4068. if(code_seen('S')) pin_state = code_value(); // required pin state
  4069. if(pin_state >= -1 && pin_state <= 1){
  4070. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4071. {
  4072. if (sensitive_pins[i] == pin_number)
  4073. {
  4074. pin_number = -1;
  4075. break;
  4076. }
  4077. }
  4078. if (pin_number > -1)
  4079. {
  4080. int target = LOW;
  4081. st_synchronize();
  4082. pinMode(pin_number, INPUT);
  4083. switch(pin_state){
  4084. case 1:
  4085. target = HIGH;
  4086. break;
  4087. case 0:
  4088. target = LOW;
  4089. break;
  4090. case -1:
  4091. target = !digitalRead(pin_number);
  4092. break;
  4093. }
  4094. while(digitalRead(pin_number) != target){
  4095. manage_heater();
  4096. manage_inactivity();
  4097. lcd_update();
  4098. }
  4099. }
  4100. }
  4101. }
  4102. }
  4103. break;
  4104. #if NUM_SERVOS > 0
  4105. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4106. {
  4107. int servo_index = -1;
  4108. int servo_position = 0;
  4109. if (code_seen('P'))
  4110. servo_index = code_value();
  4111. if (code_seen('S')) {
  4112. servo_position = code_value();
  4113. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4114. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4115. servos[servo_index].attach(0);
  4116. #endif
  4117. servos[servo_index].write(servo_position);
  4118. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4119. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4120. servos[servo_index].detach();
  4121. #endif
  4122. }
  4123. else {
  4124. SERIAL_ECHO_START;
  4125. SERIAL_ECHO("Servo ");
  4126. SERIAL_ECHO(servo_index);
  4127. SERIAL_ECHOLN(" out of range");
  4128. }
  4129. }
  4130. else if (servo_index >= 0) {
  4131. SERIAL_PROTOCOL(MSG_OK);
  4132. SERIAL_PROTOCOL(" Servo ");
  4133. SERIAL_PROTOCOL(servo_index);
  4134. SERIAL_PROTOCOL(": ");
  4135. SERIAL_PROTOCOL(servos[servo_index].read());
  4136. SERIAL_PROTOCOLLN("");
  4137. }
  4138. }
  4139. break;
  4140. #endif // NUM_SERVOS > 0
  4141. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4142. case 300: // M300
  4143. {
  4144. int beepS = code_seen('S') ? code_value() : 110;
  4145. int beepP = code_seen('P') ? code_value() : 1000;
  4146. if (beepS > 0)
  4147. {
  4148. #if BEEPER > 0
  4149. tone(BEEPER, beepS);
  4150. delay(beepP);
  4151. noTone(BEEPER);
  4152. #elif defined(ULTRALCD)
  4153. lcd_buzz(beepS, beepP);
  4154. #elif defined(LCD_USE_I2C_BUZZER)
  4155. lcd_buzz(beepP, beepS);
  4156. #endif
  4157. }
  4158. else
  4159. {
  4160. delay(beepP);
  4161. }
  4162. }
  4163. break;
  4164. #endif // M300
  4165. #ifdef PIDTEMP
  4166. case 301: // M301
  4167. {
  4168. if(code_seen('P')) Kp = code_value();
  4169. if(code_seen('I')) Ki = scalePID_i(code_value());
  4170. if(code_seen('D')) Kd = scalePID_d(code_value());
  4171. #ifdef PID_ADD_EXTRUSION_RATE
  4172. if(code_seen('C')) Kc = code_value();
  4173. #endif
  4174. updatePID();
  4175. SERIAL_PROTOCOLRPGM(MSG_OK);
  4176. SERIAL_PROTOCOL(" p:");
  4177. SERIAL_PROTOCOL(Kp);
  4178. SERIAL_PROTOCOL(" i:");
  4179. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4180. SERIAL_PROTOCOL(" d:");
  4181. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4182. #ifdef PID_ADD_EXTRUSION_RATE
  4183. SERIAL_PROTOCOL(" c:");
  4184. //Kc does not have scaling applied above, or in resetting defaults
  4185. SERIAL_PROTOCOL(Kc);
  4186. #endif
  4187. SERIAL_PROTOCOLLN("");
  4188. }
  4189. break;
  4190. #endif //PIDTEMP
  4191. #ifdef PIDTEMPBED
  4192. case 304: // M304
  4193. {
  4194. if(code_seen('P')) bedKp = code_value();
  4195. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4196. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4197. updatePID();
  4198. SERIAL_PROTOCOLRPGM(MSG_OK);
  4199. SERIAL_PROTOCOL(" p:");
  4200. SERIAL_PROTOCOL(bedKp);
  4201. SERIAL_PROTOCOL(" i:");
  4202. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4203. SERIAL_PROTOCOL(" d:");
  4204. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4205. SERIAL_PROTOCOLLN("");
  4206. }
  4207. break;
  4208. #endif //PIDTEMP
  4209. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4210. {
  4211. #ifdef CHDK
  4212. SET_OUTPUT(CHDK);
  4213. WRITE(CHDK, HIGH);
  4214. chdkHigh = millis();
  4215. chdkActive = true;
  4216. #else
  4217. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4218. const uint8_t NUM_PULSES=16;
  4219. const float PULSE_LENGTH=0.01524;
  4220. for(int i=0; i < NUM_PULSES; i++) {
  4221. WRITE(PHOTOGRAPH_PIN, HIGH);
  4222. _delay_ms(PULSE_LENGTH);
  4223. WRITE(PHOTOGRAPH_PIN, LOW);
  4224. _delay_ms(PULSE_LENGTH);
  4225. }
  4226. delay(7.33);
  4227. for(int i=0; i < NUM_PULSES; i++) {
  4228. WRITE(PHOTOGRAPH_PIN, HIGH);
  4229. _delay_ms(PULSE_LENGTH);
  4230. WRITE(PHOTOGRAPH_PIN, LOW);
  4231. _delay_ms(PULSE_LENGTH);
  4232. }
  4233. #endif
  4234. #endif //chdk end if
  4235. }
  4236. break;
  4237. #ifdef DOGLCD
  4238. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4239. {
  4240. if (code_seen('C')) {
  4241. lcd_setcontrast( ((int)code_value())&63 );
  4242. }
  4243. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4244. SERIAL_PROTOCOL(lcd_contrast);
  4245. SERIAL_PROTOCOLLN("");
  4246. }
  4247. break;
  4248. #endif
  4249. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4250. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4251. {
  4252. float temp = .0;
  4253. if (code_seen('S')) temp=code_value();
  4254. set_extrude_min_temp(temp);
  4255. }
  4256. break;
  4257. #endif
  4258. case 303: // M303 PID autotune
  4259. {
  4260. float temp = 150.0;
  4261. int e=0;
  4262. int c=5;
  4263. if (code_seen('E')) e=code_value();
  4264. if (e<0)
  4265. temp=70;
  4266. if (code_seen('S')) temp=code_value();
  4267. if (code_seen('C')) c=code_value();
  4268. PID_autotune(temp, e, c);
  4269. }
  4270. break;
  4271. case 400: // M400 finish all moves
  4272. {
  4273. st_synchronize();
  4274. }
  4275. break;
  4276. #ifdef FILAMENT_SENSOR
  4277. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4278. {
  4279. #if (FILWIDTH_PIN > -1)
  4280. if(code_seen('N')) filament_width_nominal=code_value();
  4281. else{
  4282. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4283. SERIAL_PROTOCOLLN(filament_width_nominal);
  4284. }
  4285. #endif
  4286. }
  4287. break;
  4288. case 405: //M405 Turn on filament sensor for control
  4289. {
  4290. if(code_seen('D')) meas_delay_cm=code_value();
  4291. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4292. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4293. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4294. {
  4295. int temp_ratio = widthFil_to_size_ratio();
  4296. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4297. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4298. }
  4299. delay_index1=0;
  4300. delay_index2=0;
  4301. }
  4302. filament_sensor = true ;
  4303. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4304. //SERIAL_PROTOCOL(filament_width_meas);
  4305. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4306. //SERIAL_PROTOCOL(extrudemultiply);
  4307. }
  4308. break;
  4309. case 406: //M406 Turn off filament sensor for control
  4310. {
  4311. filament_sensor = false ;
  4312. }
  4313. break;
  4314. case 407: //M407 Display measured filament diameter
  4315. {
  4316. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4317. SERIAL_PROTOCOLLN(filament_width_meas);
  4318. }
  4319. break;
  4320. #endif
  4321. case 500: // M500 Store settings in EEPROM
  4322. {
  4323. Config_StoreSettings();
  4324. }
  4325. break;
  4326. case 501: // M501 Read settings from EEPROM
  4327. {
  4328. Config_RetrieveSettings();
  4329. }
  4330. break;
  4331. case 502: // M502 Revert to default settings
  4332. {
  4333. Config_ResetDefault();
  4334. }
  4335. break;
  4336. case 503: // M503 print settings currently in memory
  4337. {
  4338. Config_PrintSettings();
  4339. }
  4340. break;
  4341. case 509: //M509 Force language selection
  4342. {
  4343. lcd_force_language_selection();
  4344. SERIAL_ECHO_START;
  4345. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4346. }
  4347. break;
  4348. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4349. case 540:
  4350. {
  4351. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4352. }
  4353. break;
  4354. #endif
  4355. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4356. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4357. {
  4358. float value;
  4359. if (code_seen('Z'))
  4360. {
  4361. value = code_value();
  4362. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4363. {
  4364. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4365. SERIAL_ECHO_START;
  4366. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4367. SERIAL_PROTOCOLLN("");
  4368. }
  4369. else
  4370. {
  4371. SERIAL_ECHO_START;
  4372. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4373. SERIAL_ECHORPGM(MSG_Z_MIN);
  4374. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4375. SERIAL_ECHORPGM(MSG_Z_MAX);
  4376. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4377. SERIAL_PROTOCOLLN("");
  4378. }
  4379. }
  4380. else
  4381. {
  4382. SERIAL_ECHO_START;
  4383. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4384. SERIAL_ECHO(-zprobe_zoffset);
  4385. SERIAL_PROTOCOLLN("");
  4386. }
  4387. break;
  4388. }
  4389. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4390. #ifdef FILAMENTCHANGEENABLE
  4391. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4392. {
  4393. st_synchronize();
  4394. float target[4];
  4395. float lastpos[4];
  4396. if (farm_mode)
  4397. {
  4398. prusa_statistics(22);
  4399. }
  4400. feedmultiplyBckp=feedmultiply;
  4401. int8_t TooLowZ = 0;
  4402. target[X_AXIS]=current_position[X_AXIS];
  4403. target[Y_AXIS]=current_position[Y_AXIS];
  4404. target[Z_AXIS]=current_position[Z_AXIS];
  4405. target[E_AXIS]=current_position[E_AXIS];
  4406. lastpos[X_AXIS]=current_position[X_AXIS];
  4407. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4408. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4409. lastpos[E_AXIS]=current_position[E_AXIS];
  4410. //Retract extruder
  4411. if(code_seen('E'))
  4412. {
  4413. target[E_AXIS]+= code_value();
  4414. }
  4415. else
  4416. {
  4417. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4418. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4419. #endif
  4420. }
  4421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4422. //Lift Z
  4423. if(code_seen('Z'))
  4424. {
  4425. target[Z_AXIS]+= code_value();
  4426. }
  4427. else
  4428. {
  4429. #ifdef FILAMENTCHANGE_ZADD
  4430. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4431. if(target[Z_AXIS] < 10){
  4432. target[Z_AXIS]+= 10 ;
  4433. TooLowZ = 1;
  4434. }else{
  4435. TooLowZ = 0;
  4436. }
  4437. #endif
  4438. }
  4439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4440. //Move XY to side
  4441. if(code_seen('X'))
  4442. {
  4443. target[X_AXIS]+= code_value();
  4444. }
  4445. else
  4446. {
  4447. #ifdef FILAMENTCHANGE_XPOS
  4448. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4449. #endif
  4450. }
  4451. if(code_seen('Y'))
  4452. {
  4453. target[Y_AXIS]= code_value();
  4454. }
  4455. else
  4456. {
  4457. #ifdef FILAMENTCHANGE_YPOS
  4458. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4459. #endif
  4460. }
  4461. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4462. st_synchronize();
  4463. custom_message = true;
  4464. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4465. // Unload filament
  4466. if(code_seen('L'))
  4467. {
  4468. target[E_AXIS]+= code_value();
  4469. }
  4470. else
  4471. {
  4472. #ifdef SNMM
  4473. #else
  4474. #ifdef FILAMENTCHANGE_FINALRETRACT
  4475. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4476. #endif
  4477. #endif // SNMM
  4478. }
  4479. #ifdef SNMM
  4480. target[E_AXIS] += 12;
  4481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4482. target[E_AXIS] += 6;
  4483. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4484. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4486. st_synchronize();
  4487. target[E_AXIS] += (FIL_COOLING);
  4488. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4489. target[E_AXIS] += (FIL_COOLING*-1);
  4490. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4491. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4493. st_synchronize();
  4494. #else
  4495. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4496. #endif // SNMM
  4497. //finish moves
  4498. st_synchronize();
  4499. //disable extruder steppers so filament can be removed
  4500. disable_e0();
  4501. disable_e1();
  4502. disable_e2();
  4503. delay(100);
  4504. //Wait for user to insert filament
  4505. uint8_t cnt=0;
  4506. int counterBeep = 0;
  4507. lcd_wait_interact();
  4508. load_filament_time = millis();
  4509. while(!lcd_clicked()){
  4510. cnt++;
  4511. manage_heater();
  4512. manage_inactivity(true);
  4513. /*#ifdef SNMM
  4514. target[E_AXIS] += 0.002;
  4515. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4516. #endif // SNMM*/
  4517. if(cnt==0)
  4518. {
  4519. #if BEEPER > 0
  4520. if (counterBeep== 500){
  4521. counterBeep = 0;
  4522. }
  4523. SET_OUTPUT(BEEPER);
  4524. if (counterBeep== 0){
  4525. WRITE(BEEPER,HIGH);
  4526. }
  4527. if (counterBeep== 20){
  4528. WRITE(BEEPER,LOW);
  4529. }
  4530. counterBeep++;
  4531. #else
  4532. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4533. lcd_buzz(1000/6,100);
  4534. #else
  4535. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4536. #endif
  4537. #endif
  4538. }
  4539. }
  4540. WRITE(BEEPER, LOW);
  4541. #ifdef SNMM
  4542. display_loading();
  4543. do {
  4544. target[E_AXIS] += 0.002;
  4545. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4546. delay_keep_alive(2);
  4547. } while (!lcd_clicked());
  4548. /*if (millis() - load_filament_time > 2) {
  4549. load_filament_time = millis();
  4550. target[E_AXIS] += 0.001;
  4551. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4552. }*/
  4553. #endif
  4554. //Filament inserted
  4555. //Feed the filament to the end of nozzle quickly
  4556. #ifdef SNMM
  4557. st_synchronize();
  4558. target[E_AXIS] += bowden_length[snmm_extruder];
  4559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4560. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4561. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4562. target[E_AXIS] += 40;
  4563. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4564. target[E_AXIS] += 10;
  4565. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4566. #else
  4567. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4568. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4569. #endif // SNMM
  4570. //Extrude some filament
  4571. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4572. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4573. //Wait for user to check the state
  4574. lcd_change_fil_state = 0;
  4575. lcd_loading_filament();
  4576. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4577. lcd_change_fil_state = 0;
  4578. lcd_alright();
  4579. switch(lcd_change_fil_state){
  4580. // Filament failed to load so load it again
  4581. case 2:
  4582. #ifdef SNMM
  4583. display_loading();
  4584. do {
  4585. target[E_AXIS] += 0.002;
  4586. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4587. delay_keep_alive(2);
  4588. } while (!lcd_clicked());
  4589. st_synchronize();
  4590. target[E_AXIS] += bowden_length[snmm_extruder];
  4591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4592. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4593. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4594. target[E_AXIS] += 40;
  4595. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4596. target[E_AXIS] += 10;
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4598. #else
  4599. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4600. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4601. #endif
  4602. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4603. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4604. lcd_loading_filament();
  4605. break;
  4606. // Filament loaded properly but color is not clear
  4607. case 3:
  4608. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4609. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4610. lcd_loading_color();
  4611. break;
  4612. // Everything good
  4613. default:
  4614. lcd_change_success();
  4615. lcd_update_enable(true);
  4616. break;
  4617. }
  4618. }
  4619. //Not let's go back to print
  4620. //Feed a little of filament to stabilize pressure
  4621. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4623. //Retract
  4624. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4625. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4626. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4627. //Move XY back
  4628. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4629. //Move Z back
  4630. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4631. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4632. //Unretract
  4633. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4634. //Set E position to original
  4635. plan_set_e_position(lastpos[E_AXIS]);
  4636. //Recover feed rate
  4637. feedmultiply=feedmultiplyBckp;
  4638. char cmd[9];
  4639. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4640. enquecommand(cmd);
  4641. lcd_setstatuspgm(WELCOME_MSG);
  4642. custom_message = false;
  4643. custom_message_type = 0;
  4644. }
  4645. break;
  4646. #endif //FILAMENTCHANGEENABLE
  4647. case 601: {
  4648. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4649. }
  4650. break;
  4651. case 602: {
  4652. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4653. }
  4654. break;
  4655. case 907: // M907 Set digital trimpot motor current using axis codes.
  4656. {
  4657. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4658. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4659. if(code_seen('B')) digipot_current(4,code_value());
  4660. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4661. #endif
  4662. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4663. if(code_seen('X')) digipot_current(0, code_value());
  4664. #endif
  4665. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4666. if(code_seen('Z')) digipot_current(1, code_value());
  4667. #endif
  4668. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4669. if(code_seen('E')) digipot_current(2, code_value());
  4670. #endif
  4671. #ifdef DIGIPOT_I2C
  4672. // this one uses actual amps in floating point
  4673. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4674. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4675. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4676. #endif
  4677. }
  4678. break;
  4679. case 908: // M908 Control digital trimpot directly.
  4680. {
  4681. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4682. uint8_t channel,current;
  4683. if(code_seen('P')) channel=code_value();
  4684. if(code_seen('S')) current=code_value();
  4685. digitalPotWrite(channel, current);
  4686. #endif
  4687. }
  4688. break;
  4689. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4690. {
  4691. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4692. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4693. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4694. if(code_seen('B')) microstep_mode(4,code_value());
  4695. microstep_readings();
  4696. #endif
  4697. }
  4698. break;
  4699. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4700. {
  4701. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4702. if(code_seen('S')) switch((int)code_value())
  4703. {
  4704. case 1:
  4705. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4706. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4707. break;
  4708. case 2:
  4709. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4710. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4711. break;
  4712. }
  4713. microstep_readings();
  4714. #endif
  4715. }
  4716. break;
  4717. case 701: //M701: load filament
  4718. {
  4719. enable_z();
  4720. custom_message = true;
  4721. custom_message_type = 2;
  4722. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4723. current_position[E_AXIS] += 70;
  4724. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4725. current_position[E_AXIS] += 25;
  4726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4727. st_synchronize();
  4728. if (!farm_mode && loading_flag) {
  4729. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4730. while (!clean) {
  4731. lcd_update_enable(true);
  4732. lcd_update(2);
  4733. current_position[E_AXIS] += 25;
  4734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4735. st_synchronize();
  4736. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4737. }
  4738. }
  4739. lcd_update_enable(true);
  4740. lcd_update(2);
  4741. lcd_setstatuspgm(WELCOME_MSG);
  4742. disable_z();
  4743. loading_flag = false;
  4744. custom_message = false;
  4745. custom_message_type = 0;
  4746. }
  4747. break;
  4748. case 702:
  4749. {
  4750. #ifdef SNMM
  4751. if (code_seen('U')) {
  4752. extr_unload_used(); //unload all filaments which were used in current print
  4753. }
  4754. else if (code_seen('C')) {
  4755. extr_unload(); //unload just current filament
  4756. }
  4757. else {
  4758. extr_unload_all(); //unload all filaments
  4759. }
  4760. #else
  4761. custom_message = true;
  4762. custom_message_type = 2;
  4763. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4764. current_position[E_AXIS] -= 80;
  4765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4766. st_synchronize();
  4767. lcd_setstatuspgm(WELCOME_MSG);
  4768. custom_message = false;
  4769. custom_message_type = 0;
  4770. #endif
  4771. }
  4772. break;
  4773. case 999: // M999: Restart after being stopped
  4774. Stopped = false;
  4775. lcd_reset_alert_level();
  4776. gcode_LastN = Stopped_gcode_LastN;
  4777. FlushSerialRequestResend();
  4778. break;
  4779. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4780. }
  4781. } // end if(code_seen('M')) (end of M codes)
  4782. else if(code_seen('T'))
  4783. {
  4784. int index;
  4785. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4786. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4787. SERIAL_ECHOLNPGM("Invalid T code.");
  4788. }
  4789. else {
  4790. if (*(strchr_pointer + index) == '?') {
  4791. tmp_extruder = choose_extruder_menu();
  4792. }
  4793. else {
  4794. tmp_extruder = code_value();
  4795. }
  4796. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4797. #ifdef SNMM
  4798. snmm_extruder = tmp_extruder;
  4799. st_synchronize();
  4800. delay(100);
  4801. disable_e0();
  4802. disable_e1();
  4803. disable_e2();
  4804. pinMode(E_MUX0_PIN, OUTPUT);
  4805. pinMode(E_MUX1_PIN, OUTPUT);
  4806. pinMode(E_MUX2_PIN, OUTPUT);
  4807. delay(100);
  4808. SERIAL_ECHO_START;
  4809. SERIAL_ECHO("T:");
  4810. SERIAL_ECHOLN((int)tmp_extruder);
  4811. switch (tmp_extruder) {
  4812. case 1:
  4813. WRITE(E_MUX0_PIN, HIGH);
  4814. WRITE(E_MUX1_PIN, LOW);
  4815. WRITE(E_MUX2_PIN, LOW);
  4816. break;
  4817. case 2:
  4818. WRITE(E_MUX0_PIN, LOW);
  4819. WRITE(E_MUX1_PIN, HIGH);
  4820. WRITE(E_MUX2_PIN, LOW);
  4821. break;
  4822. case 3:
  4823. WRITE(E_MUX0_PIN, HIGH);
  4824. WRITE(E_MUX1_PIN, HIGH);
  4825. WRITE(E_MUX2_PIN, LOW);
  4826. break;
  4827. default:
  4828. WRITE(E_MUX0_PIN, LOW);
  4829. WRITE(E_MUX1_PIN, LOW);
  4830. WRITE(E_MUX2_PIN, LOW);
  4831. break;
  4832. }
  4833. delay(100);
  4834. #else
  4835. if (tmp_extruder >= EXTRUDERS) {
  4836. SERIAL_ECHO_START;
  4837. SERIAL_ECHOPGM("T");
  4838. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4839. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4840. }
  4841. else {
  4842. boolean make_move = false;
  4843. if (code_seen('F')) {
  4844. make_move = true;
  4845. next_feedrate = code_value();
  4846. if (next_feedrate > 0.0) {
  4847. feedrate = next_feedrate;
  4848. }
  4849. }
  4850. #if EXTRUDERS > 1
  4851. if (tmp_extruder != active_extruder) {
  4852. // Save current position to return to after applying extruder offset
  4853. memcpy(destination, current_position, sizeof(destination));
  4854. // Offset extruder (only by XY)
  4855. int i;
  4856. for (i = 0; i < 2; i++) {
  4857. current_position[i] = current_position[i] -
  4858. extruder_offset[i][active_extruder] +
  4859. extruder_offset[i][tmp_extruder];
  4860. }
  4861. // Set the new active extruder and position
  4862. active_extruder = tmp_extruder;
  4863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4864. // Move to the old position if 'F' was in the parameters
  4865. if (make_move && Stopped == false) {
  4866. prepare_move();
  4867. }
  4868. }
  4869. #endif
  4870. SERIAL_ECHO_START;
  4871. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4872. SERIAL_PROTOCOLLN((int)active_extruder);
  4873. }
  4874. #endif
  4875. }
  4876. } // end if(code_seen('T')) (end of T codes)
  4877. else
  4878. {
  4879. SERIAL_ECHO_START;
  4880. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4881. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4882. SERIAL_ECHOLNPGM("\"");
  4883. }
  4884. ClearToSend();
  4885. }
  4886. void FlushSerialRequestResend()
  4887. {
  4888. //char cmdbuffer[bufindr][100]="Resend:";
  4889. MYSERIAL.flush();
  4890. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4891. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4892. ClearToSend();
  4893. }
  4894. // Confirm the execution of a command, if sent from a serial line.
  4895. // Execution of a command from a SD card will not be confirmed.
  4896. void ClearToSend()
  4897. {
  4898. previous_millis_cmd = millis();
  4899. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4900. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4901. }
  4902. void get_coordinates()
  4903. {
  4904. bool seen[4]={false,false,false,false};
  4905. for(int8_t i=0; i < NUM_AXIS; i++) {
  4906. if(code_seen(axis_codes[i]))
  4907. {
  4908. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4909. seen[i]=true;
  4910. }
  4911. else destination[i] = current_position[i]; //Are these else lines really needed?
  4912. }
  4913. if(code_seen('F')) {
  4914. next_feedrate = code_value();
  4915. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4916. }
  4917. }
  4918. void get_arc_coordinates()
  4919. {
  4920. #ifdef SF_ARC_FIX
  4921. bool relative_mode_backup = relative_mode;
  4922. relative_mode = true;
  4923. #endif
  4924. get_coordinates();
  4925. #ifdef SF_ARC_FIX
  4926. relative_mode=relative_mode_backup;
  4927. #endif
  4928. if(code_seen('I')) {
  4929. offset[0] = code_value();
  4930. }
  4931. else {
  4932. offset[0] = 0.0;
  4933. }
  4934. if(code_seen('J')) {
  4935. offset[1] = code_value();
  4936. }
  4937. else {
  4938. offset[1] = 0.0;
  4939. }
  4940. }
  4941. void clamp_to_software_endstops(float target[3])
  4942. {
  4943. world2machine_clamp(target[0], target[1]);
  4944. // Clamp the Z coordinate.
  4945. if (min_software_endstops) {
  4946. float negative_z_offset = 0;
  4947. #ifdef ENABLE_AUTO_BED_LEVELING
  4948. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4949. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4950. #endif
  4951. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4952. }
  4953. if (max_software_endstops) {
  4954. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4955. }
  4956. }
  4957. #ifdef MESH_BED_LEVELING
  4958. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4959. float dx = x - current_position[X_AXIS];
  4960. float dy = y - current_position[Y_AXIS];
  4961. float dz = z - current_position[Z_AXIS];
  4962. int n_segments = 0;
  4963. if (mbl.active) {
  4964. float len = abs(dx) + abs(dy);
  4965. if (len > 0)
  4966. // Split to 3cm segments or shorter.
  4967. n_segments = int(ceil(len / 30.f));
  4968. }
  4969. if (n_segments > 1) {
  4970. float de = e - current_position[E_AXIS];
  4971. for (int i = 1; i < n_segments; ++ i) {
  4972. float t = float(i) / float(n_segments);
  4973. plan_buffer_line(
  4974. current_position[X_AXIS] + t * dx,
  4975. current_position[Y_AXIS] + t * dy,
  4976. current_position[Z_AXIS] + t * dz,
  4977. current_position[E_AXIS] + t * de,
  4978. feed_rate, extruder);
  4979. }
  4980. }
  4981. // The rest of the path.
  4982. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4983. current_position[X_AXIS] = x;
  4984. current_position[Y_AXIS] = y;
  4985. current_position[Z_AXIS] = z;
  4986. current_position[E_AXIS] = e;
  4987. }
  4988. #endif // MESH_BED_LEVELING
  4989. void prepare_move()
  4990. {
  4991. clamp_to_software_endstops(destination);
  4992. previous_millis_cmd = millis();
  4993. // Do not use feedmultiply for E or Z only moves
  4994. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4995. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4996. }
  4997. else {
  4998. #ifdef MESH_BED_LEVELING
  4999. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5000. #else
  5001. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5002. #endif
  5003. }
  5004. for(int8_t i=0; i < NUM_AXIS; i++) {
  5005. current_position[i] = destination[i];
  5006. }
  5007. }
  5008. void prepare_arc_move(char isclockwise) {
  5009. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5010. // Trace the arc
  5011. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5012. // As far as the parser is concerned, the position is now == target. In reality the
  5013. // motion control system might still be processing the action and the real tool position
  5014. // in any intermediate location.
  5015. for(int8_t i=0; i < NUM_AXIS; i++) {
  5016. current_position[i] = destination[i];
  5017. }
  5018. previous_millis_cmd = millis();
  5019. }
  5020. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5021. #if defined(FAN_PIN)
  5022. #if CONTROLLERFAN_PIN == FAN_PIN
  5023. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5024. #endif
  5025. #endif
  5026. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5027. unsigned long lastMotorCheck = 0;
  5028. void controllerFan()
  5029. {
  5030. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5031. {
  5032. lastMotorCheck = millis();
  5033. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5034. #if EXTRUDERS > 2
  5035. || !READ(E2_ENABLE_PIN)
  5036. #endif
  5037. #if EXTRUDER > 1
  5038. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5039. || !READ(X2_ENABLE_PIN)
  5040. #endif
  5041. || !READ(E1_ENABLE_PIN)
  5042. #endif
  5043. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5044. {
  5045. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5046. }
  5047. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5048. {
  5049. digitalWrite(CONTROLLERFAN_PIN, 0);
  5050. analogWrite(CONTROLLERFAN_PIN, 0);
  5051. }
  5052. else
  5053. {
  5054. // allows digital or PWM fan output to be used (see M42 handling)
  5055. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5056. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5057. }
  5058. }
  5059. }
  5060. #endif
  5061. #ifdef TEMP_STAT_LEDS
  5062. static bool blue_led = false;
  5063. static bool red_led = false;
  5064. static uint32_t stat_update = 0;
  5065. void handle_status_leds(void) {
  5066. float max_temp = 0.0;
  5067. if(millis() > stat_update) {
  5068. stat_update += 500; // Update every 0.5s
  5069. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5070. max_temp = max(max_temp, degHotend(cur_extruder));
  5071. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5072. }
  5073. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5074. max_temp = max(max_temp, degTargetBed());
  5075. max_temp = max(max_temp, degBed());
  5076. #endif
  5077. if((max_temp > 55.0) && (red_led == false)) {
  5078. digitalWrite(STAT_LED_RED, 1);
  5079. digitalWrite(STAT_LED_BLUE, 0);
  5080. red_led = true;
  5081. blue_led = false;
  5082. }
  5083. if((max_temp < 54.0) && (blue_led == false)) {
  5084. digitalWrite(STAT_LED_RED, 0);
  5085. digitalWrite(STAT_LED_BLUE, 1);
  5086. red_led = false;
  5087. blue_led = true;
  5088. }
  5089. }
  5090. }
  5091. #endif
  5092. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5093. {
  5094. #if defined(KILL_PIN) && KILL_PIN > -1
  5095. static int killCount = 0; // make the inactivity button a bit less responsive
  5096. const int KILL_DELAY = 10000;
  5097. #endif
  5098. if(buflen < (BUFSIZE-1)){
  5099. get_command();
  5100. }
  5101. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5102. if(max_inactive_time)
  5103. kill();
  5104. if(stepper_inactive_time) {
  5105. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5106. {
  5107. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5108. disable_x();
  5109. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5110. disable_y();
  5111. disable_z();
  5112. disable_e0();
  5113. disable_e1();
  5114. disable_e2();
  5115. }
  5116. }
  5117. }
  5118. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5119. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5120. {
  5121. chdkActive = false;
  5122. WRITE(CHDK, LOW);
  5123. }
  5124. #endif
  5125. #if defined(KILL_PIN) && KILL_PIN > -1
  5126. // Check if the kill button was pressed and wait just in case it was an accidental
  5127. // key kill key press
  5128. // -------------------------------------------------------------------------------
  5129. if( 0 == READ(KILL_PIN) )
  5130. {
  5131. killCount++;
  5132. }
  5133. else if (killCount > 0)
  5134. {
  5135. killCount--;
  5136. }
  5137. // Exceeded threshold and we can confirm that it was not accidental
  5138. // KILL the machine
  5139. // ----------------------------------------------------------------
  5140. if ( killCount >= KILL_DELAY)
  5141. {
  5142. kill();
  5143. }
  5144. #endif
  5145. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5146. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5147. #endif
  5148. #ifdef EXTRUDER_RUNOUT_PREVENT
  5149. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5150. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5151. {
  5152. bool oldstatus=READ(E0_ENABLE_PIN);
  5153. enable_e0();
  5154. float oldepos=current_position[E_AXIS];
  5155. float oldedes=destination[E_AXIS];
  5156. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5157. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5158. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5159. current_position[E_AXIS]=oldepos;
  5160. destination[E_AXIS]=oldedes;
  5161. plan_set_e_position(oldepos);
  5162. previous_millis_cmd=millis();
  5163. st_synchronize();
  5164. WRITE(E0_ENABLE_PIN,oldstatus);
  5165. }
  5166. #endif
  5167. #ifdef TEMP_STAT_LEDS
  5168. handle_status_leds();
  5169. #endif
  5170. check_axes_activity();
  5171. }
  5172. void kill(const char *full_screen_message)
  5173. {
  5174. cli(); // Stop interrupts
  5175. disable_heater();
  5176. disable_x();
  5177. // SERIAL_ECHOLNPGM("kill - disable Y");
  5178. disable_y();
  5179. disable_z();
  5180. disable_e0();
  5181. disable_e1();
  5182. disable_e2();
  5183. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5184. pinMode(PS_ON_PIN,INPUT);
  5185. #endif
  5186. SERIAL_ERROR_START;
  5187. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5188. if (full_screen_message != NULL) {
  5189. SERIAL_ERRORLNRPGM(full_screen_message);
  5190. lcd_display_message_fullscreen_P(full_screen_message);
  5191. } else {
  5192. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5193. }
  5194. // FMC small patch to update the LCD before ending
  5195. sei(); // enable interrupts
  5196. for ( int i=5; i--; lcd_update())
  5197. {
  5198. delay(200);
  5199. }
  5200. cli(); // disable interrupts
  5201. suicide();
  5202. while(1) { /* Intentionally left empty */ } // Wait for reset
  5203. }
  5204. void Stop()
  5205. {
  5206. disable_heater();
  5207. if(Stopped == false) {
  5208. Stopped = true;
  5209. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5210. SERIAL_ERROR_START;
  5211. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5212. LCD_MESSAGERPGM(MSG_STOPPED);
  5213. }
  5214. }
  5215. bool IsStopped() { return Stopped; };
  5216. #ifdef FAST_PWM_FAN
  5217. void setPwmFrequency(uint8_t pin, int val)
  5218. {
  5219. val &= 0x07;
  5220. switch(digitalPinToTimer(pin))
  5221. {
  5222. #if defined(TCCR0A)
  5223. case TIMER0A:
  5224. case TIMER0B:
  5225. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5226. // TCCR0B |= val;
  5227. break;
  5228. #endif
  5229. #if defined(TCCR1A)
  5230. case TIMER1A:
  5231. case TIMER1B:
  5232. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5233. // TCCR1B |= val;
  5234. break;
  5235. #endif
  5236. #if defined(TCCR2)
  5237. case TIMER2:
  5238. case TIMER2:
  5239. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5240. TCCR2 |= val;
  5241. break;
  5242. #endif
  5243. #if defined(TCCR2A)
  5244. case TIMER2A:
  5245. case TIMER2B:
  5246. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5247. TCCR2B |= val;
  5248. break;
  5249. #endif
  5250. #if defined(TCCR3A)
  5251. case TIMER3A:
  5252. case TIMER3B:
  5253. case TIMER3C:
  5254. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5255. TCCR3B |= val;
  5256. break;
  5257. #endif
  5258. #if defined(TCCR4A)
  5259. case TIMER4A:
  5260. case TIMER4B:
  5261. case TIMER4C:
  5262. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5263. TCCR4B |= val;
  5264. break;
  5265. #endif
  5266. #if defined(TCCR5A)
  5267. case TIMER5A:
  5268. case TIMER5B:
  5269. case TIMER5C:
  5270. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5271. TCCR5B |= val;
  5272. break;
  5273. #endif
  5274. }
  5275. }
  5276. #endif //FAST_PWM_FAN
  5277. bool setTargetedHotend(int code){
  5278. tmp_extruder = active_extruder;
  5279. if(code_seen('T')) {
  5280. tmp_extruder = code_value();
  5281. if(tmp_extruder >= EXTRUDERS) {
  5282. SERIAL_ECHO_START;
  5283. switch(code){
  5284. case 104:
  5285. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5286. break;
  5287. case 105:
  5288. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5289. break;
  5290. case 109:
  5291. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5292. break;
  5293. case 218:
  5294. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5295. break;
  5296. case 221:
  5297. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5298. break;
  5299. }
  5300. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5301. return true;
  5302. }
  5303. }
  5304. return false;
  5305. }
  5306. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5307. {
  5308. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5309. {
  5310. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5311. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5312. }
  5313. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5314. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5315. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5316. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5317. total_filament_used = 0;
  5318. }
  5319. float calculate_volumetric_multiplier(float diameter) {
  5320. float area = .0;
  5321. float radius = .0;
  5322. radius = diameter * .5;
  5323. if (! volumetric_enabled || radius == 0) {
  5324. area = 1;
  5325. }
  5326. else {
  5327. area = M_PI * pow(radius, 2);
  5328. }
  5329. return 1.0 / area;
  5330. }
  5331. void calculate_volumetric_multipliers() {
  5332. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5333. #if EXTRUDERS > 1
  5334. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5335. #if EXTRUDERS > 2
  5336. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5337. #endif
  5338. #endif
  5339. }
  5340. void delay_keep_alive(unsigned int ms)
  5341. {
  5342. for (;;) {
  5343. manage_heater();
  5344. // Manage inactivity, but don't disable steppers on timeout.
  5345. manage_inactivity(true);
  5346. lcd_update();
  5347. if (ms == 0)
  5348. break;
  5349. else if (ms >= 50) {
  5350. delay(50);
  5351. ms -= 50;
  5352. } else {
  5353. delay(ms);
  5354. ms = 0;
  5355. }
  5356. }
  5357. }
  5358. void wait_for_heater(long codenum) {
  5359. #ifdef TEMP_RESIDENCY_TIME
  5360. long residencyStart;
  5361. residencyStart = -1;
  5362. /* continue to loop until we have reached the target temp
  5363. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5364. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5365. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5366. #else
  5367. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5368. #endif //TEMP_RESIDENCY_TIME
  5369. if ((millis() - codenum) > 1000UL)
  5370. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5371. if (!farm_mode) {
  5372. SERIAL_PROTOCOLPGM("T:");
  5373. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5374. SERIAL_PROTOCOLPGM(" E:");
  5375. SERIAL_PROTOCOL((int)tmp_extruder);
  5376. #ifdef TEMP_RESIDENCY_TIME
  5377. SERIAL_PROTOCOLPGM(" W:");
  5378. if (residencyStart > -1)
  5379. {
  5380. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5381. SERIAL_PROTOCOLLN(codenum);
  5382. }
  5383. else
  5384. {
  5385. SERIAL_PROTOCOLLN("?");
  5386. }
  5387. }
  5388. #else
  5389. SERIAL_PROTOCOLLN("");
  5390. #endif
  5391. codenum = millis();
  5392. }
  5393. manage_heater();
  5394. manage_inactivity();
  5395. lcd_update();
  5396. #ifdef TEMP_RESIDENCY_TIME
  5397. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5398. or when current temp falls outside the hysteresis after target temp was reached */
  5399. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5400. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5401. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5402. {
  5403. residencyStart = millis();
  5404. }
  5405. #endif //TEMP_RESIDENCY_TIME
  5406. }
  5407. }
  5408. void check_babystep() {
  5409. int babystep_z;
  5410. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5411. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5412. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5413. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5414. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5415. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5416. lcd_update_enable(true);
  5417. }
  5418. }
  5419. #ifdef DIS
  5420. void d_setup()
  5421. {
  5422. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5423. pinMode(D_DATA, INPUT_PULLUP);
  5424. pinMode(D_REQUIRE, OUTPUT);
  5425. digitalWrite(D_REQUIRE, HIGH);
  5426. }
  5427. float d_ReadData()
  5428. {
  5429. int digit[13];
  5430. String mergeOutput;
  5431. float output;
  5432. digitalWrite(D_REQUIRE, HIGH);
  5433. for (int i = 0; i<13; i++)
  5434. {
  5435. for (int j = 0; j < 4; j++)
  5436. {
  5437. while (digitalRead(D_DATACLOCK) == LOW) {}
  5438. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5439. bitWrite(digit[i], j, digitalRead(D_DATA));
  5440. }
  5441. }
  5442. digitalWrite(D_REQUIRE, LOW);
  5443. mergeOutput = "";
  5444. output = 0;
  5445. for (int r = 5; r <= 10; r++) //Merge digits
  5446. {
  5447. mergeOutput += digit[r];
  5448. }
  5449. output = mergeOutput.toFloat();
  5450. if (digit[4] == 8) //Handle sign
  5451. {
  5452. output *= -1;
  5453. }
  5454. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5455. {
  5456. output /= 10;
  5457. }
  5458. return output;
  5459. }
  5460. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5461. int t1 = 0;
  5462. int t_delay = 0;
  5463. int digit[13];
  5464. int m;
  5465. char str[3];
  5466. //String mergeOutput;
  5467. char mergeOutput[15];
  5468. float output;
  5469. int mesh_point = 0; //index number of calibration point
  5470. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5471. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5472. float mesh_home_z_search = 4;
  5473. float row[x_points_num];
  5474. int ix = 0;
  5475. int iy = 0;
  5476. char* filename_wldsd = "wldsd.txt";
  5477. char data_wldsd[70];
  5478. char numb_wldsd[10];
  5479. d_setup();
  5480. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5481. // We don't know where we are! HOME!
  5482. // Push the commands to the front of the message queue in the reverse order!
  5483. // There shall be always enough space reserved for these commands.
  5484. repeatcommand_front(); // repeat G80 with all its parameters
  5485. enquecommand_front_P((PSTR("G28 W0")));
  5486. enquecommand_front_P((PSTR("G1 Z5")));
  5487. return;
  5488. }
  5489. bool custom_message_old = custom_message;
  5490. unsigned int custom_message_type_old = custom_message_type;
  5491. unsigned int custom_message_state_old = custom_message_state;
  5492. custom_message = true;
  5493. custom_message_type = 1;
  5494. custom_message_state = (x_points_num * y_points_num) + 10;
  5495. lcd_update(1);
  5496. mbl.reset();
  5497. babystep_undo();
  5498. card.openFile(filename_wldsd, false);
  5499. current_position[Z_AXIS] = mesh_home_z_search;
  5500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5501. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5502. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5503. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5504. setup_for_endstop_move(false);
  5505. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5506. SERIAL_PROTOCOL(x_points_num);
  5507. SERIAL_PROTOCOLPGM(",");
  5508. SERIAL_PROTOCOL(y_points_num);
  5509. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5510. SERIAL_PROTOCOL(mesh_home_z_search);
  5511. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5512. SERIAL_PROTOCOL(x_dimension);
  5513. SERIAL_PROTOCOLPGM(",");
  5514. SERIAL_PROTOCOL(y_dimension);
  5515. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5516. while (mesh_point != x_points_num * y_points_num) {
  5517. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5518. iy = mesh_point / x_points_num;
  5519. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5520. float z0 = 0.f;
  5521. current_position[Z_AXIS] = mesh_home_z_search;
  5522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5523. st_synchronize();
  5524. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5525. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5527. st_synchronize();
  5528. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5529. break;
  5530. card.closefile();
  5531. }
  5532. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5533. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5534. //strcat(data_wldsd, numb_wldsd);
  5535. //MYSERIAL.println(data_wldsd);
  5536. //delay(1000);
  5537. //delay(3000);
  5538. //t1 = millis();
  5539. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5540. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5541. memset(digit, 0, sizeof(digit));
  5542. //cli();
  5543. digitalWrite(D_REQUIRE, LOW);
  5544. for (int i = 0; i<13; i++)
  5545. {
  5546. //t1 = millis();
  5547. for (int j = 0; j < 4; j++)
  5548. {
  5549. while (digitalRead(D_DATACLOCK) == LOW) {}
  5550. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5551. bitWrite(digit[i], j, digitalRead(D_DATA));
  5552. }
  5553. //t_delay = (millis() - t1);
  5554. //SERIAL_PROTOCOLPGM(" ");
  5555. //SERIAL_PROTOCOL_F(t_delay, 5);
  5556. //SERIAL_PROTOCOLPGM(" ");
  5557. }
  5558. //sei();
  5559. digitalWrite(D_REQUIRE, HIGH);
  5560. mergeOutput[0] = '\0';
  5561. output = 0;
  5562. for (int r = 5; r <= 10; r++) //Merge digits
  5563. {
  5564. sprintf(str, "%d", digit[r]);
  5565. strcat(mergeOutput, str);
  5566. }
  5567. output = atof(mergeOutput);
  5568. if (digit[4] == 8) //Handle sign
  5569. {
  5570. output *= -1;
  5571. }
  5572. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5573. {
  5574. output *= 0.1;
  5575. }
  5576. //output = d_ReadData();
  5577. //row[ix] = current_position[Z_AXIS];
  5578. memset(data_wldsd, 0, sizeof(data_wldsd));
  5579. for (int i = 0; i <3; i++) {
  5580. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5581. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5582. strcat(data_wldsd, numb_wldsd);
  5583. strcat(data_wldsd, ";");
  5584. }
  5585. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5586. dtostrf(output, 8, 5, numb_wldsd);
  5587. strcat(data_wldsd, numb_wldsd);
  5588. //strcat(data_wldsd, ";");
  5589. card.write_command(data_wldsd);
  5590. //row[ix] = d_ReadData();
  5591. row[ix] = output; // current_position[Z_AXIS];
  5592. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5593. for (int i = 0; i < x_points_num; i++) {
  5594. SERIAL_PROTOCOLPGM(" ");
  5595. SERIAL_PROTOCOL_F(row[i], 5);
  5596. }
  5597. SERIAL_PROTOCOLPGM("\n");
  5598. }
  5599. custom_message_state--;
  5600. mesh_point++;
  5601. lcd_update(1);
  5602. }
  5603. card.closefile();
  5604. }
  5605. #endif
  5606. void temp_compensation_start() {
  5607. custom_message = true;
  5608. custom_message_type = 5;
  5609. custom_message_state = PINDA_HEAT_T + 1;
  5610. lcd_update(2);
  5611. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5612. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5613. }
  5614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5615. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5616. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5617. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5619. st_synchronize();
  5620. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5621. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5622. delay_keep_alive(1000);
  5623. custom_message_state = PINDA_HEAT_T - i;
  5624. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5625. else lcd_update(1);
  5626. }
  5627. custom_message_type = 0;
  5628. custom_message_state = 0;
  5629. custom_message = false;
  5630. }
  5631. void temp_compensation_apply() {
  5632. int i_add;
  5633. int compensation_value;
  5634. int z_shift = 0;
  5635. float z_shift_mm;
  5636. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5637. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5638. i_add = (target_temperature_bed - 60) / 10;
  5639. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5640. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5641. }else {
  5642. //interpolation
  5643. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5644. }
  5645. SERIAL_PROTOCOLPGM("\n");
  5646. SERIAL_PROTOCOLPGM("Z shift applied:");
  5647. MYSERIAL.print(z_shift_mm);
  5648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5649. st_synchronize();
  5650. plan_set_z_position(current_position[Z_AXIS]);
  5651. }
  5652. else {
  5653. //we have no temp compensation data
  5654. }
  5655. }
  5656. float temp_comp_interpolation(float inp_temperature) {
  5657. //cubic spline interpolation
  5658. int n, i, j, k;
  5659. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5660. int shift[10];
  5661. int temp_C[10];
  5662. n = 6; //number of measured points
  5663. shift[0] = 0;
  5664. for (i = 0; i < n; i++) {
  5665. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5666. temp_C[i] = 50 + i * 10; //temperature in C
  5667. x[i] = (float)temp_C[i];
  5668. f[i] = (float)shift[i];
  5669. }
  5670. if (inp_temperature < x[0]) return 0;
  5671. for (i = n - 1; i>0; i--) {
  5672. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5673. h[i - 1] = x[i] - x[i - 1];
  5674. }
  5675. //*********** formation of h, s , f matrix **************
  5676. for (i = 1; i<n - 1; i++) {
  5677. m[i][i] = 2 * (h[i - 1] + h[i]);
  5678. if (i != 1) {
  5679. m[i][i - 1] = h[i - 1];
  5680. m[i - 1][i] = h[i - 1];
  5681. }
  5682. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5683. }
  5684. //*********** forward elimination **************
  5685. for (i = 1; i<n - 2; i++) {
  5686. temp = (m[i + 1][i] / m[i][i]);
  5687. for (j = 1; j <= n - 1; j++)
  5688. m[i + 1][j] -= temp*m[i][j];
  5689. }
  5690. //*********** backward substitution *********
  5691. for (i = n - 2; i>0; i--) {
  5692. sum = 0;
  5693. for (j = i; j <= n - 2; j++)
  5694. sum += m[i][j] * s[j];
  5695. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5696. }
  5697. for (i = 0; i<n - 1; i++)
  5698. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5699. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5700. b = s[i] / 2;
  5701. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5702. d = f[i];
  5703. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5704. }
  5705. return sum;
  5706. }
  5707. void long_pause() //long pause print
  5708. {
  5709. st_synchronize();
  5710. //save currently set parameters to global variables
  5711. saved_feedmultiply = feedmultiply;
  5712. HotendTempBckp = degTargetHotend(active_extruder);
  5713. fanSpeedBckp = fanSpeed;
  5714. start_pause_print = millis();
  5715. //save position
  5716. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5717. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5718. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5719. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5720. //retract
  5721. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5723. //lift z
  5724. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5725. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5727. //set nozzle target temperature to 0
  5728. setTargetHotend(0, 0);
  5729. setTargetHotend(0, 1);
  5730. setTargetHotend(0, 2);
  5731. //Move XY to side
  5732. current_position[X_AXIS] = X_PAUSE_POS;
  5733. current_position[Y_AXIS] = Y_PAUSE_POS;
  5734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5735. // Turn off the print fan
  5736. fanSpeed = 0;
  5737. st_synchronize();
  5738. }
  5739. void serialecho_temperatures() {
  5740. float tt = degHotend(active_extruder);
  5741. SERIAL_PROTOCOLPGM("T:");
  5742. SERIAL_PROTOCOL(tt);
  5743. SERIAL_PROTOCOLPGM(" E:");
  5744. SERIAL_PROTOCOL((int)active_extruder);
  5745. SERIAL_PROTOCOLPGM(" B:");
  5746. SERIAL_PROTOCOL_F(degBed(), 1);
  5747. SERIAL_PROTOCOLLN("");
  5748. }