Marlin_main.cpp 352 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  243. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. //===========================================================================
  252. //=============================Private Variables=============================
  253. //===========================================================================
  254. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. // For tracing an arc
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. // Current feedrate
  260. float feedrate = 1500.0;
  261. // Feedrate for the next move
  262. static float next_feedrate;
  263. // Original feedrate saved during homing moves
  264. static float saved_feedrate;
  265. // Determines Absolute or Relative Coordinates.
  266. // Also there is bool axis_relative_modes[] per axis flag.
  267. static bool relative_mode = false;
  268. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  269. //static float tt = 0;
  270. //static float bt = 0;
  271. //Inactivity shutdown variables
  272. static unsigned long previous_millis_cmd = 0;
  273. unsigned long max_inactive_time = 0;
  274. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  275. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  276. unsigned long starttime=0;
  277. unsigned long stoptime=0;
  278. unsigned long _usb_timer = 0;
  279. bool extruder_under_pressure = true;
  280. bool Stopped=false;
  281. #if NUM_SERVOS > 0
  282. Servo servos[NUM_SERVOS];
  283. #endif
  284. bool target_direction;
  285. //Insert variables if CHDK is defined
  286. #ifdef CHDK
  287. unsigned long chdkHigh = 0;
  288. boolean chdkActive = false;
  289. #endif
  290. //! @name RAM save/restore printing
  291. //! @{
  292. bool saved_printing = false; //!< Print is paused and saved in RAM
  293. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  294. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  295. static float saved_pos[4] = { 0, 0, 0, 0 };
  296. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  297. static int saved_feedmultiply2 = 0;
  298. static uint8_t saved_active_extruder = 0;
  299. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  300. static bool saved_extruder_under_pressure = false;
  301. static bool saved_extruder_relative_mode = false;
  302. static int saved_fanSpeed = 0; //!< Print fan speed
  303. //! @}
  304. static int saved_feedmultiply_mm = 100;
  305. //===========================================================================
  306. //=============================Routines======================================
  307. //===========================================================================
  308. static void get_arc_coordinates();
  309. static bool setTargetedHotend(int code, uint8_t &extruder);
  310. static void print_time_remaining_init();
  311. static void wait_for_heater(long codenum, uint8_t extruder);
  312. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  313. static void temp_compensation_start();
  314. static void temp_compensation_apply();
  315. uint16_t gcode_in_progress = 0;
  316. uint16_t mcode_in_progress = 0;
  317. void serial_echopair_P(const char *s_P, float v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. void serial_echopair_P(const char *s_P, double v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. void serial_echopair_P(const char *s_P, unsigned long v)
  322. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  323. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  324. {
  325. #if 0
  326. char ch=pgm_read_byte(str);
  327. while(ch)
  328. {
  329. MYSERIAL.write(ch);
  330. ch=pgm_read_byte(++str);
  331. }
  332. #else
  333. // hmm, same size as the above version, the compiler did a good job optimizing the above
  334. while( uint8_t ch = pgm_read_byte(str) ){
  335. MYSERIAL.write((char)ch);
  336. ++str;
  337. }
  338. #endif
  339. }
  340. #ifdef SDSUPPORT
  341. #include "SdFatUtil.h"
  342. int freeMemory() { return SdFatUtil::FreeRam(); }
  343. #else
  344. extern "C" {
  345. extern unsigned int __bss_end;
  346. extern unsigned int __heap_start;
  347. extern void *__brkval;
  348. int freeMemory() {
  349. int free_memory;
  350. if ((int)__brkval == 0)
  351. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  352. else
  353. free_memory = ((int)&free_memory) - ((int)__brkval);
  354. return free_memory;
  355. }
  356. }
  357. #endif //!SDSUPPORT
  358. void setup_killpin()
  359. {
  360. #if defined(KILL_PIN) && KILL_PIN > -1
  361. SET_INPUT(KILL_PIN);
  362. WRITE(KILL_PIN,HIGH);
  363. #endif
  364. }
  365. // Set home pin
  366. void setup_homepin(void)
  367. {
  368. #if defined(HOME_PIN) && HOME_PIN > -1
  369. SET_INPUT(HOME_PIN);
  370. WRITE(HOME_PIN,HIGH);
  371. #endif
  372. }
  373. void setup_photpin()
  374. {
  375. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  376. SET_OUTPUT(PHOTOGRAPH_PIN);
  377. WRITE(PHOTOGRAPH_PIN, LOW);
  378. #endif
  379. }
  380. void setup_powerhold()
  381. {
  382. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  383. SET_OUTPUT(SUICIDE_PIN);
  384. WRITE(SUICIDE_PIN, HIGH);
  385. #endif
  386. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  387. SET_OUTPUT(PS_ON_PIN);
  388. #if defined(PS_DEFAULT_OFF)
  389. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  390. #else
  391. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  392. #endif
  393. #endif
  394. }
  395. void suicide()
  396. {
  397. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  398. SET_OUTPUT(SUICIDE_PIN);
  399. WRITE(SUICIDE_PIN, LOW);
  400. #endif
  401. }
  402. void servo_init()
  403. {
  404. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  405. servos[0].attach(SERVO0_PIN);
  406. #endif
  407. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  408. servos[1].attach(SERVO1_PIN);
  409. #endif
  410. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  411. servos[2].attach(SERVO2_PIN);
  412. #endif
  413. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  414. servos[3].attach(SERVO3_PIN);
  415. #endif
  416. #if (NUM_SERVOS >= 5)
  417. #error "TODO: enter initalisation code for more servos"
  418. #endif
  419. }
  420. bool fans_check_enabled = true;
  421. #ifdef TMC2130
  422. void crashdet_stop_and_save_print()
  423. {
  424. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  425. }
  426. void crashdet_restore_print_and_continue()
  427. {
  428. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  429. // babystep_apply();
  430. }
  431. void crashdet_stop_and_save_print2()
  432. {
  433. cli();
  434. planner_abort_hard(); //abort printing
  435. cmdqueue_reset(); //empty cmdqueue
  436. card.sdprinting = false;
  437. card.closefile();
  438. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  439. st_reset_timer();
  440. sei();
  441. }
  442. void crashdet_detected(uint8_t mask)
  443. {
  444. st_synchronize();
  445. static uint8_t crashDet_counter = 0;
  446. bool automatic_recovery_after_crash = true;
  447. if (crashDet_counter++ == 0) {
  448. crashDetTimer.start();
  449. }
  450. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  451. crashDetTimer.stop();
  452. crashDet_counter = 0;
  453. }
  454. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  455. automatic_recovery_after_crash = false;
  456. crashDetTimer.stop();
  457. crashDet_counter = 0;
  458. }
  459. else {
  460. crashDetTimer.start();
  461. }
  462. lcd_update_enable(true);
  463. lcd_clear();
  464. lcd_update(2);
  465. if (mask & X_AXIS_MASK)
  466. {
  467. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  468. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  469. }
  470. if (mask & Y_AXIS_MASK)
  471. {
  472. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  473. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  474. }
  475. lcd_update_enable(true);
  476. lcd_update(2);
  477. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  478. gcode_G28(true, true, false); //home X and Y
  479. st_synchronize();
  480. if (automatic_recovery_after_crash) {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }else{
  483. setTargetHotend(0, active_extruder);
  484. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  485. lcd_update_enable(true);
  486. if (yesno)
  487. {
  488. enquecommand_P(PSTR("CRASH_RECOVER"));
  489. }
  490. else
  491. {
  492. enquecommand_P(PSTR("CRASH_CANCEL"));
  493. }
  494. }
  495. }
  496. void crashdet_recover()
  497. {
  498. crashdet_restore_print_and_continue();
  499. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  500. }
  501. void crashdet_cancel()
  502. {
  503. saved_printing = false;
  504. tmc2130_sg_stop_on_crash = true;
  505. if (saved_printing_type == PRINTING_TYPE_SD) {
  506. lcd_print_stop();
  507. }else if(saved_printing_type == PRINTING_TYPE_USB){
  508. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  509. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  510. }
  511. }
  512. #endif //TMC2130
  513. void failstats_reset_print()
  514. {
  515. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  519. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  520. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  521. }
  522. #ifdef MESH_BED_LEVELING
  523. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  524. #endif
  525. // Factory reset function
  526. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  527. // Level input parameter sets depth of reset
  528. int er_progress = 0;
  529. static void factory_reset(char level)
  530. {
  531. lcd_clear();
  532. switch (level) {
  533. // Level 0: Language reset
  534. case 0:
  535. Sound_MakeCustom(100,0,false);
  536. lang_reset();
  537. break;
  538. //Level 1: Reset statistics
  539. case 1:
  540. Sound_MakeCustom(100,0,false);
  541. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  542. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  555. lcd_menu_statistics();
  556. break;
  557. // Level 2: Prepare for shipping
  558. case 2:
  559. //lcd_puts_P(PSTR("Factory RESET"));
  560. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  561. // Force language selection at the next boot up.
  562. lang_reset();
  563. // Force the "Follow calibration flow" message at the next boot up.
  564. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  565. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  566. farm_no = 0;
  567. farm_mode = false;
  568. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  569. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  570. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  571. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  577. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  580. #ifdef FILAMENT_SENSOR
  581. fsensor_enable();
  582. fsensor_autoload_set(true);
  583. #endif //FILAMENT_SENSOR
  584. Sound_MakeCustom(100,0,false);
  585. //_delay_ms(2000);
  586. break;
  587. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  588. case 3:
  589. lcd_puts_P(PSTR("Factory RESET"));
  590. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  591. Sound_MakeCustom(100,0,false);
  592. er_progress = 0;
  593. lcd_puts_at_P(3, 3, PSTR(" "));
  594. lcd_set_cursor(3, 3);
  595. lcd_print(er_progress);
  596. // Erase EEPROM
  597. for (int i = 0; i < 4096; i++) {
  598. eeprom_update_byte((uint8_t*)i, 0xFF);
  599. if (i % 41 == 0) {
  600. er_progress++;
  601. lcd_puts_at_P(3, 3, PSTR(" "));
  602. lcd_set_cursor(3, 3);
  603. lcd_print(er_progress);
  604. lcd_puts_P(PSTR("%"));
  605. }
  606. }
  607. break;
  608. case 4:
  609. bowden_menu();
  610. break;
  611. default:
  612. break;
  613. }
  614. }
  615. extern "C" {
  616. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  617. }
  618. int uart_putchar(char c, FILE *)
  619. {
  620. MYSERIAL.write(c);
  621. return 0;
  622. }
  623. void lcd_splash()
  624. {
  625. lcd_clear(); // clears display and homes screen
  626. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  627. }
  628. void factory_reset()
  629. {
  630. KEEPALIVE_STATE(PAUSED_FOR_USER);
  631. if (!READ(BTN_ENC))
  632. {
  633. _delay_ms(1000);
  634. if (!READ(BTN_ENC))
  635. {
  636. lcd_clear();
  637. lcd_puts_P(PSTR("Factory RESET"));
  638. SET_OUTPUT(BEEPER);
  639. if(eSoundMode!=e_SOUND_MODE_SILENT)
  640. WRITE(BEEPER, HIGH);
  641. while (!READ(BTN_ENC));
  642. WRITE(BEEPER, LOW);
  643. _delay_ms(2000);
  644. char level = reset_menu();
  645. factory_reset(level);
  646. switch (level) {
  647. case 0: _delay_ms(0); break;
  648. case 1: _delay_ms(0); break;
  649. case 2: _delay_ms(0); break;
  650. case 3: _delay_ms(0); break;
  651. }
  652. }
  653. }
  654. KEEPALIVE_STATE(IN_HANDLER);
  655. }
  656. void show_fw_version_warnings() {
  657. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  658. switch (FW_DEV_VERSION) {
  659. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  660. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  661. case(FW_VERSION_DEVEL):
  662. case(FW_VERSION_DEBUG):
  663. lcd_update_enable(false);
  664. lcd_clear();
  665. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  666. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  667. #else
  668. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  669. #endif
  670. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  671. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  672. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  673. lcd_wait_for_click();
  674. break;
  675. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  676. }
  677. lcd_update_enable(true);
  678. }
  679. //! @brief try to check if firmware is on right type of printer
  680. static void check_if_fw_is_on_right_printer(){
  681. #ifdef FILAMENT_SENSOR
  682. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  683. #ifdef IR_SENSOR
  684. swi2c_init();
  685. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  686. if (pat9125_detected){
  687. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  688. #endif //IR_SENSOR
  689. #ifdef PAT9125
  690. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  691. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  692. if (ir_detected){
  693. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  694. #endif //PAT9125
  695. }
  696. #endif //FILAMENT_SENSOR
  697. }
  698. uint8_t check_printer_version()
  699. {
  700. uint8_t version_changed = 0;
  701. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  702. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  703. if (printer_type != PRINTER_TYPE) {
  704. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  705. else version_changed |= 0b10;
  706. }
  707. if (motherboard != MOTHERBOARD) {
  708. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  709. else version_changed |= 0b01;
  710. }
  711. return version_changed;
  712. }
  713. #ifdef BOOTAPP
  714. #include "bootapp.h" //bootloader support
  715. #endif //BOOTAPP
  716. #if (LANG_MODE != 0) //secondary language support
  717. #ifdef W25X20CL
  718. // language update from external flash
  719. #define LANGBOOT_BLOCKSIZE 0x1000u
  720. #define LANGBOOT_RAMBUFFER 0x0800
  721. void update_sec_lang_from_external_flash()
  722. {
  723. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  724. {
  725. uint8_t lang = boot_reserved >> 4;
  726. uint8_t state = boot_reserved & 0xf;
  727. lang_table_header_t header;
  728. uint32_t src_addr;
  729. if (lang_get_header(lang, &header, &src_addr))
  730. {
  731. lcd_puts_at_P(1,3,PSTR("Language update."));
  732. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  733. _delay(100);
  734. boot_reserved = (state + 1) | (lang << 4);
  735. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  736. {
  737. cli();
  738. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  739. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  740. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  741. if (state == 0)
  742. {
  743. //TODO - check header integrity
  744. }
  745. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  746. }
  747. else
  748. {
  749. //TODO - check sec lang data integrity
  750. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  751. }
  752. }
  753. }
  754. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  755. }
  756. #ifdef DEBUG_W25X20CL
  757. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  758. {
  759. lang_table_header_t header;
  760. uint8_t count = 0;
  761. uint32_t addr = 0x00000;
  762. while (1)
  763. {
  764. printf_P(_n("LANGTABLE%d:"), count);
  765. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  766. if (header.magic != LANG_MAGIC)
  767. {
  768. printf_P(_n("NG!\n"));
  769. break;
  770. }
  771. printf_P(_n("OK\n"));
  772. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  773. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  774. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  775. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  776. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  777. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  778. addr += header.size;
  779. codes[count] = header.code;
  780. count ++;
  781. }
  782. return count;
  783. }
  784. void list_sec_lang_from_external_flash()
  785. {
  786. uint16_t codes[8];
  787. uint8_t count = lang_xflash_enum_codes(codes);
  788. printf_P(_n("XFlash lang count = %hhd\n"), count);
  789. }
  790. #endif //DEBUG_W25X20CL
  791. #endif //W25X20CL
  792. #endif //(LANG_MODE != 0)
  793. static void w25x20cl_err_msg()
  794. {
  795. lcd_clear();
  796. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  797. }
  798. // "Setup" function is called by the Arduino framework on startup.
  799. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  800. // are initialized by the main() routine provided by the Arduino framework.
  801. void setup()
  802. {
  803. mmu_init();
  804. ultralcd_init();
  805. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  806. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  807. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  808. spi_init();
  809. lcd_splash();
  810. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  811. #ifdef W25X20CL
  812. bool w25x20cl_success = w25x20cl_init();
  813. if (w25x20cl_success)
  814. {
  815. optiboot_w25x20cl_enter();
  816. #if (LANG_MODE != 0) //secondary language support
  817. update_sec_lang_from_external_flash();
  818. #endif //(LANG_MODE != 0)
  819. }
  820. else
  821. {
  822. w25x20cl_err_msg();
  823. }
  824. #else
  825. const bool w25x20cl_success = true;
  826. #endif //W25X20CL
  827. setup_killpin();
  828. setup_powerhold();
  829. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  830. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  831. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  832. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  833. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  834. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  835. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  836. if (farm_mode)
  837. {
  838. no_response = true; //we need confirmation by recieving PRUSA thx
  839. important_status = 8;
  840. prusa_statistics(8);
  841. selectedSerialPort = 1;
  842. #ifdef TMC2130
  843. //increased extruder current (PFW363)
  844. tmc2130_current_h[E_AXIS] = 36;
  845. tmc2130_current_r[E_AXIS] = 36;
  846. #endif //TMC2130
  847. #ifdef FILAMENT_SENSOR
  848. //disabled filament autoload (PFW360)
  849. fsensor_autoload_set(false);
  850. #endif //FILAMENT_SENSOR
  851. // ~ FanCheck -> on
  852. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  853. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  854. }
  855. MYSERIAL.begin(BAUDRATE);
  856. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  857. #ifndef W25X20CL
  858. SERIAL_PROTOCOLLNPGM("start");
  859. #endif //W25X20CL
  860. stdout = uartout;
  861. SERIAL_ECHO_START;
  862. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  863. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  864. #ifdef DEBUG_SEC_LANG
  865. lang_table_header_t header;
  866. uint32_t src_addr = 0x00000;
  867. if (lang_get_header(1, &header, &src_addr))
  868. {
  869. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  870. #define LT_PRINT_TEST 2
  871. // flash usage
  872. // total p.test
  873. //0 252718 t+c text code
  874. //1 253142 424 170 254
  875. //2 253040 322 164 158
  876. //3 253248 530 135 395
  877. #if (LT_PRINT_TEST==1) //not optimized printf
  878. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  879. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  880. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  881. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  882. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  883. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  884. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  885. #elif (LT_PRINT_TEST==2) //optimized printf
  886. printf_P(
  887. _n(
  888. " _src_addr = 0x%08lx\n"
  889. " _lt_magic = 0x%08lx %S\n"
  890. " _lt_size = 0x%04x (%d)\n"
  891. " _lt_count = 0x%04x (%d)\n"
  892. " _lt_chsum = 0x%04x\n"
  893. " _lt_code = 0x%04x (%c%c)\n"
  894. " _lt_resv1 = 0x%08lx\n"
  895. ),
  896. src_addr,
  897. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  898. header.size, header.size,
  899. header.count, header.count,
  900. header.checksum,
  901. header.code, header.code >> 8, header.code & 0xff,
  902. header.signature
  903. );
  904. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  905. MYSERIAL.print(" _src_addr = 0x");
  906. MYSERIAL.println(src_addr, 16);
  907. MYSERIAL.print(" _lt_magic = 0x");
  908. MYSERIAL.print(header.magic, 16);
  909. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  910. MYSERIAL.print(" _lt_size = 0x");
  911. MYSERIAL.print(header.size, 16);
  912. MYSERIAL.print(" (");
  913. MYSERIAL.print(header.size, 10);
  914. MYSERIAL.println(")");
  915. MYSERIAL.print(" _lt_count = 0x");
  916. MYSERIAL.print(header.count, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print(header.count, 10);
  919. MYSERIAL.println(")");
  920. MYSERIAL.print(" _lt_chsum = 0x");
  921. MYSERIAL.println(header.checksum, 16);
  922. MYSERIAL.print(" _lt_code = 0x");
  923. MYSERIAL.print(header.code, 16);
  924. MYSERIAL.print(" (");
  925. MYSERIAL.print((char)(header.code >> 8), 0);
  926. MYSERIAL.print((char)(header.code & 0xff), 0);
  927. MYSERIAL.println(")");
  928. MYSERIAL.print(" _lt_resv1 = 0x");
  929. MYSERIAL.println(header.signature, 16);
  930. #endif //(LT_PRINT_TEST==)
  931. #undef LT_PRINT_TEST
  932. #if 0
  933. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  934. for (uint16_t i = 0; i < 1024; i++)
  935. {
  936. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  937. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  938. if ((i % 16) == 15) putchar('\n');
  939. }
  940. #endif
  941. uint16_t sum = 0;
  942. for (uint16_t i = 0; i < header.size; i++)
  943. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  944. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  945. sum -= header.checksum; //subtract checksum
  946. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  947. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  948. if (sum == header.checksum)
  949. printf_P(_n("Checksum OK\n"), sum);
  950. else
  951. printf_P(_n("Checksum NG\n"), sum);
  952. }
  953. else
  954. printf_P(_n("lang_get_header failed!\n"));
  955. #if 0
  956. for (uint16_t i = 0; i < 1024*10; i++)
  957. {
  958. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  959. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  960. if ((i % 16) == 15) putchar('\n');
  961. }
  962. #endif
  963. #if 0
  964. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  965. for (int i = 0; i < 4096; ++i) {
  966. int b = eeprom_read_byte((unsigned char*)i);
  967. if (b != 255) {
  968. SERIAL_ECHO(i);
  969. SERIAL_ECHO(":");
  970. SERIAL_ECHO(b);
  971. SERIAL_ECHOLN("");
  972. }
  973. }
  974. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  975. #endif
  976. #endif //DEBUG_SEC_LANG
  977. // Check startup - does nothing if bootloader sets MCUSR to 0
  978. byte mcu = MCUSR;
  979. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  980. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  981. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  982. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  983. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  984. if (mcu & 1) puts_P(MSG_POWERUP);
  985. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  986. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  987. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  988. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  989. MCUSR = 0;
  990. //SERIAL_ECHORPGM(MSG_MARLIN);
  991. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  992. #ifdef STRING_VERSION_CONFIG_H
  993. #ifdef STRING_CONFIG_H_AUTHOR
  994. SERIAL_ECHO_START;
  995. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  996. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  997. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  998. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  999. SERIAL_ECHOPGM("Compiled: ");
  1000. SERIAL_ECHOLNPGM(__DATE__);
  1001. #endif
  1002. #endif
  1003. SERIAL_ECHO_START;
  1004. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1005. SERIAL_ECHO(freeMemory());
  1006. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1007. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1008. //lcd_update_enable(false); // why do we need this?? - andre
  1009. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1010. bool previous_settings_retrieved = false;
  1011. uint8_t hw_changed = check_printer_version();
  1012. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1013. previous_settings_retrieved = Config_RetrieveSettings();
  1014. }
  1015. else { //printer version was changed so use default settings
  1016. Config_ResetDefault();
  1017. }
  1018. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1019. tp_init(); // Initialize temperature loop
  1020. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1021. else
  1022. {
  1023. w25x20cl_err_msg();
  1024. printf_P(_n("W25X20CL not responding.\n"));
  1025. }
  1026. plan_init(); // Initialize planner;
  1027. factory_reset();
  1028. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1029. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1030. {
  1031. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1032. // where all the EEPROM entries are set to 0x0ff.
  1033. // Once a firmware boots up, it forces at least a language selection, which changes
  1034. // EEPROM_LANG to number lower than 0x0ff.
  1035. // 1) Set a high power mode.
  1036. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1037. #ifdef TMC2130
  1038. tmc2130_mode = TMC2130_MODE_NORMAL;
  1039. #endif //TMC2130
  1040. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1041. }
  1042. lcd_encoder_diff=0;
  1043. #ifdef TMC2130
  1044. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1045. if (silentMode == 0xff) silentMode = 0;
  1046. tmc2130_mode = TMC2130_MODE_NORMAL;
  1047. if (lcd_crash_detect_enabled() && !farm_mode)
  1048. {
  1049. lcd_crash_detect_enable();
  1050. puts_P(_N("CrashDetect ENABLED!"));
  1051. }
  1052. else
  1053. {
  1054. lcd_crash_detect_disable();
  1055. puts_P(_N("CrashDetect DISABLED"));
  1056. }
  1057. #ifdef TMC2130_LINEARITY_CORRECTION
  1058. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1059. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1060. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1061. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1062. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1063. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1064. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1065. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1066. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1067. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1068. #endif //TMC2130_LINEARITY_CORRECTION
  1069. #ifdef TMC2130_VARIABLE_RESOLUTION
  1070. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1071. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1072. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1073. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1074. #else //TMC2130_VARIABLE_RESOLUTION
  1075. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1076. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1077. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1078. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1079. #endif //TMC2130_VARIABLE_RESOLUTION
  1080. #endif //TMC2130
  1081. st_init(); // Initialize stepper, this enables interrupts!
  1082. #ifdef UVLO_SUPPORT
  1083. setup_uvlo_interrupt();
  1084. #endif //UVLO_SUPPORT
  1085. #ifdef TMC2130
  1086. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1087. update_mode_profile();
  1088. tmc2130_init();
  1089. #endif //TMC2130
  1090. #ifdef PSU_Delta
  1091. init_force_z(); // ! important for correct Z-axis initialization
  1092. #endif // PSU_Delta
  1093. setup_photpin();
  1094. servo_init();
  1095. // Reset the machine correction matrix.
  1096. // It does not make sense to load the correction matrix until the machine is homed.
  1097. world2machine_reset();
  1098. #ifdef FILAMENT_SENSOR
  1099. fsensor_init();
  1100. #endif //FILAMENT_SENSOR
  1101. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1102. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1103. #endif
  1104. setup_homepin();
  1105. #ifdef TMC2130
  1106. if (1) {
  1107. // try to run to zero phase before powering the Z motor.
  1108. // Move in negative direction
  1109. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1110. // Round the current micro-micro steps to micro steps.
  1111. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1112. // Until the phase counter is reset to zero.
  1113. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1114. _delay(2);
  1115. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1116. _delay(2);
  1117. }
  1118. }
  1119. #endif //TMC2130
  1120. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1121. enable_z();
  1122. #endif
  1123. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1124. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1125. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1126. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1127. if (farm_mode)
  1128. {
  1129. prusa_statistics(8);
  1130. }
  1131. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1132. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1133. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1134. // but this times out if a blocking dialog is shown in setup().
  1135. card.initsd();
  1136. #ifdef DEBUG_SD_SPEED_TEST
  1137. if (card.cardOK)
  1138. {
  1139. uint8_t* buff = (uint8_t*)block_buffer;
  1140. uint32_t block = 0;
  1141. uint32_t sumr = 0;
  1142. uint32_t sumw = 0;
  1143. for (int i = 0; i < 1024; i++)
  1144. {
  1145. uint32_t u = _micros();
  1146. bool res = card.card.readBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumr += u;
  1152. u = _micros();
  1153. res = card.card.writeBlock(i, buff);
  1154. u = _micros() - u;
  1155. if (res)
  1156. {
  1157. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1158. sumw += u;
  1159. }
  1160. else
  1161. {
  1162. printf_P(PSTR("writeBlock %4d error\n"), i);
  1163. break;
  1164. }
  1165. }
  1166. else
  1167. {
  1168. printf_P(PSTR("readBlock %4d error\n"), i);
  1169. break;
  1170. }
  1171. }
  1172. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1173. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1174. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1175. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1176. }
  1177. else
  1178. printf_P(PSTR("Card NG!\n"));
  1179. #endif //DEBUG_SD_SPEED_TEST
  1180. eeprom_init();
  1181. #ifdef SNMM
  1182. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1183. int _z = BOWDEN_LENGTH;
  1184. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1185. }
  1186. #endif
  1187. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1188. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1189. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1190. #if (LANG_MODE != 0) //secondary language support
  1191. #ifdef DEBUG_W25X20CL
  1192. W25X20CL_SPI_ENTER();
  1193. uint8_t uid[8]; // 64bit unique id
  1194. w25x20cl_rd_uid(uid);
  1195. puts_P(_n("W25X20CL UID="));
  1196. for (uint8_t i = 0; i < 8; i ++)
  1197. printf_P(PSTR("%02hhx"), uid[i]);
  1198. putchar('\n');
  1199. list_sec_lang_from_external_flash();
  1200. #endif //DEBUG_W25X20CL
  1201. // lang_reset();
  1202. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1203. lcd_language();
  1204. #ifdef DEBUG_SEC_LANG
  1205. uint16_t sec_lang_code = lang_get_code(1);
  1206. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1207. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1208. lang_print_sec_lang(uartout);
  1209. #endif //DEBUG_SEC_LANG
  1210. #endif //(LANG_MODE != 0)
  1211. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1212. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1213. temp_cal_active = false;
  1214. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1215. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1216. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1217. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1218. int16_t z_shift = 0;
  1219. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1220. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1221. temp_cal_active = false;
  1222. }
  1223. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1224. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1225. }
  1226. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1227. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1228. }
  1229. //mbl_mode_init();
  1230. mbl_settings_init();
  1231. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1232. if (SilentModeMenu_MMU == 255) {
  1233. SilentModeMenu_MMU = 1;
  1234. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1235. }
  1236. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1237. setup_fan_interrupt();
  1238. #endif //DEBUG_DISABLE_FANCHECK
  1239. #ifdef PAT9125
  1240. fsensor_setup_interrupt();
  1241. #endif //PAT9125
  1242. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1243. #ifndef DEBUG_DISABLE_STARTMSGS
  1244. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1245. if (!farm_mode) {
  1246. check_if_fw_is_on_right_printer();
  1247. show_fw_version_warnings();
  1248. }
  1249. switch (hw_changed) {
  1250. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1251. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1252. case(0b01):
  1253. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1254. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1255. break;
  1256. case(0b10):
  1257. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1258. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1259. break;
  1260. case(0b11):
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1262. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1263. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1264. break;
  1265. default: break; //no change, show no message
  1266. }
  1267. if (!previous_settings_retrieved) {
  1268. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1269. Config_StoreSettings();
  1270. }
  1271. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1272. lcd_wizard(WizState::Run);
  1273. }
  1274. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1275. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1276. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1277. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1278. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1279. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1280. // Show the message.
  1281. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1284. // Show the message.
  1285. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1286. lcd_update_enable(true);
  1287. }
  1288. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1289. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1290. lcd_update_enable(true);
  1291. }
  1292. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1295. }
  1296. }
  1297. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1298. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1299. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1300. update_current_firmware_version_to_eeprom();
  1301. lcd_selftest();
  1302. }
  1303. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1304. KEEPALIVE_STATE(IN_PROCESS);
  1305. #endif //DEBUG_DISABLE_STARTMSGS
  1306. lcd_update_enable(true);
  1307. lcd_clear();
  1308. lcd_update(2);
  1309. // Store the currently running firmware into an eeprom,
  1310. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1311. update_current_firmware_version_to_eeprom();
  1312. #ifdef TMC2130
  1313. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1314. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1315. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1316. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1317. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1318. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1319. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1320. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1321. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1322. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1323. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1324. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1325. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1326. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1327. #endif //TMC2130
  1328. #ifdef UVLO_SUPPORT
  1329. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1330. /*
  1331. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1332. else {
  1333. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1334. lcd_update_enable(true);
  1335. lcd_update(2);
  1336. lcd_setstatuspgm(_T(WELCOME_MSG));
  1337. }
  1338. */
  1339. manage_heater(); // Update temperatures
  1340. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1341. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1342. #endif
  1343. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1344. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1345. puts_P(_N("Automatic recovery!"));
  1346. #endif
  1347. recover_print(1);
  1348. }
  1349. else{
  1350. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1351. puts_P(_N("Normal recovery!"));
  1352. #endif
  1353. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1354. else {
  1355. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1356. lcd_update_enable(true);
  1357. lcd_update(2);
  1358. lcd_setstatuspgm(_T(WELCOME_MSG));
  1359. }
  1360. }
  1361. }
  1362. #endif //UVLO_SUPPORT
  1363. fCheckModeInit();
  1364. fSetMmuMode(mmu_enabled);
  1365. KEEPALIVE_STATE(NOT_BUSY);
  1366. #ifdef WATCHDOG
  1367. wdt_enable(WDTO_4S);
  1368. #endif //WATCHDOG
  1369. }
  1370. void trace();
  1371. #define CHUNK_SIZE 64 // bytes
  1372. #define SAFETY_MARGIN 1
  1373. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1374. int chunkHead = 0;
  1375. void serial_read_stream() {
  1376. setAllTargetHotends(0);
  1377. setTargetBed(0);
  1378. lcd_clear();
  1379. lcd_puts_P(PSTR(" Upload in progress"));
  1380. // first wait for how many bytes we will receive
  1381. uint32_t bytesToReceive;
  1382. // receive the four bytes
  1383. char bytesToReceiveBuffer[4];
  1384. for (int i=0; i<4; i++) {
  1385. int data;
  1386. while ((data = MYSERIAL.read()) == -1) {};
  1387. bytesToReceiveBuffer[i] = data;
  1388. }
  1389. // make it a uint32
  1390. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1391. // we're ready, notify the sender
  1392. MYSERIAL.write('+');
  1393. // lock in the routine
  1394. uint32_t receivedBytes = 0;
  1395. while (prusa_sd_card_upload) {
  1396. int i;
  1397. for (i=0; i<CHUNK_SIZE; i++) {
  1398. int data;
  1399. // check if we're not done
  1400. if (receivedBytes == bytesToReceive) {
  1401. break;
  1402. }
  1403. // read the next byte
  1404. while ((data = MYSERIAL.read()) == -1) {};
  1405. receivedBytes++;
  1406. // save it to the chunk
  1407. chunk[i] = data;
  1408. }
  1409. // write the chunk to SD
  1410. card.write_command_no_newline(&chunk[0]);
  1411. // notify the sender we're ready for more data
  1412. MYSERIAL.write('+');
  1413. // for safety
  1414. manage_heater();
  1415. // check if we're done
  1416. if(receivedBytes == bytesToReceive) {
  1417. trace(); // beep
  1418. card.closefile();
  1419. prusa_sd_card_upload = false;
  1420. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1421. }
  1422. }
  1423. }
  1424. /**
  1425. * Output a "busy" message at regular intervals
  1426. * while the machine is not accepting commands.
  1427. */
  1428. void host_keepalive() {
  1429. #ifndef HOST_KEEPALIVE_FEATURE
  1430. return;
  1431. #endif //HOST_KEEPALIVE_FEATURE
  1432. if (farm_mode) return;
  1433. long ms = _millis();
  1434. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1435. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1436. switch (busy_state) {
  1437. case IN_HANDLER:
  1438. case IN_PROCESS:
  1439. SERIAL_ECHO_START;
  1440. SERIAL_ECHOLNPGM("busy: processing");
  1441. break;
  1442. case PAUSED_FOR_USER:
  1443. SERIAL_ECHO_START;
  1444. SERIAL_ECHOLNPGM("busy: paused for user");
  1445. break;
  1446. case PAUSED_FOR_INPUT:
  1447. SERIAL_ECHO_START;
  1448. SERIAL_ECHOLNPGM("busy: paused for input");
  1449. break;
  1450. default:
  1451. break;
  1452. }
  1453. }
  1454. prev_busy_signal_ms = ms;
  1455. }
  1456. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1457. // Before loop(), the setup() function is called by the main() routine.
  1458. void loop()
  1459. {
  1460. KEEPALIVE_STATE(NOT_BUSY);
  1461. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1462. {
  1463. is_usb_printing = true;
  1464. usb_printing_counter--;
  1465. _usb_timer = _millis();
  1466. }
  1467. if (usb_printing_counter == 0)
  1468. {
  1469. is_usb_printing = false;
  1470. }
  1471. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1472. {
  1473. is_usb_printing = true;
  1474. }
  1475. #ifdef FANCHECK
  1476. if (fan_check_error && isPrintPaused)
  1477. {
  1478. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1479. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1480. }
  1481. #endif
  1482. if (prusa_sd_card_upload)
  1483. {
  1484. //we read byte-by byte
  1485. serial_read_stream();
  1486. }
  1487. else
  1488. {
  1489. get_command();
  1490. #ifdef SDSUPPORT
  1491. card.checkautostart(false);
  1492. #endif
  1493. if(buflen)
  1494. {
  1495. cmdbuffer_front_already_processed = false;
  1496. #ifdef SDSUPPORT
  1497. if(card.saving)
  1498. {
  1499. // Saving a G-code file onto an SD-card is in progress.
  1500. // Saving starts with M28, saving until M29 is seen.
  1501. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1502. card.write_command(CMDBUFFER_CURRENT_STRING);
  1503. if(card.logging)
  1504. process_commands();
  1505. else
  1506. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1507. } else {
  1508. card.closefile();
  1509. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1510. }
  1511. } else {
  1512. process_commands();
  1513. }
  1514. #else
  1515. process_commands();
  1516. #endif //SDSUPPORT
  1517. if (! cmdbuffer_front_already_processed && buflen)
  1518. {
  1519. // ptr points to the start of the block currently being processed.
  1520. // The first character in the block is the block type.
  1521. char *ptr = cmdbuffer + bufindr;
  1522. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1523. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1524. union {
  1525. struct {
  1526. char lo;
  1527. char hi;
  1528. } lohi;
  1529. uint16_t value;
  1530. } sdlen;
  1531. sdlen.value = 0;
  1532. {
  1533. // This block locks the interrupts globally for 3.25 us,
  1534. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1535. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1536. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1537. cli();
  1538. // Reset the command to something, which will be ignored by the power panic routine,
  1539. // so this buffer length will not be counted twice.
  1540. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1541. // Extract the current buffer length.
  1542. sdlen.lohi.lo = *ptr ++;
  1543. sdlen.lohi.hi = *ptr;
  1544. // and pass it to the planner queue.
  1545. planner_add_sd_length(sdlen.value);
  1546. sei();
  1547. }
  1548. }
  1549. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1550. cli();
  1551. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1552. // and one for each command to previous block in the planner queue.
  1553. planner_add_sd_length(1);
  1554. sei();
  1555. }
  1556. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1557. // this block's SD card length will not be counted twice as its command type has been replaced
  1558. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1559. cmdqueue_pop_front();
  1560. }
  1561. host_keepalive();
  1562. }
  1563. }
  1564. //check heater every n milliseconds
  1565. manage_heater();
  1566. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1567. checkHitEndstops();
  1568. lcd_update(0);
  1569. #ifdef TMC2130
  1570. tmc2130_check_overtemp();
  1571. if (tmc2130_sg_crash)
  1572. {
  1573. uint8_t crash = tmc2130_sg_crash;
  1574. tmc2130_sg_crash = 0;
  1575. // crashdet_stop_and_save_print();
  1576. switch (crash)
  1577. {
  1578. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1579. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1580. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1581. }
  1582. }
  1583. #endif //TMC2130
  1584. mmu_loop();
  1585. }
  1586. #define DEFINE_PGM_READ_ANY(type, reader) \
  1587. static inline type pgm_read_any(const type *p) \
  1588. { return pgm_read_##reader##_near(p); }
  1589. DEFINE_PGM_READ_ANY(float, float);
  1590. DEFINE_PGM_READ_ANY(signed char, byte);
  1591. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1592. static const PROGMEM type array##_P[3] = \
  1593. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1594. static inline type array(int axis) \
  1595. { return pgm_read_any(&array##_P[axis]); } \
  1596. type array##_ext(int axis) \
  1597. { return pgm_read_any(&array##_P[axis]); }
  1598. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1599. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1600. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1601. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1602. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1603. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1604. static void axis_is_at_home(int axis) {
  1605. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1606. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1607. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1608. }
  1609. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1610. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1611. //! @return original feedmultiply
  1612. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1613. saved_feedrate = feedrate;
  1614. int l_feedmultiply = feedmultiply;
  1615. feedmultiply = 100;
  1616. previous_millis_cmd = _millis();
  1617. enable_endstops(enable_endstops_now);
  1618. return l_feedmultiply;
  1619. }
  1620. //! @param original_feedmultiply feedmultiply to restore
  1621. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1622. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1623. enable_endstops(false);
  1624. #endif
  1625. feedrate = saved_feedrate;
  1626. feedmultiply = original_feedmultiply;
  1627. previous_millis_cmd = _millis();
  1628. }
  1629. #ifdef ENABLE_AUTO_BED_LEVELING
  1630. #ifdef AUTO_BED_LEVELING_GRID
  1631. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1632. {
  1633. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1634. planeNormal.debug("planeNormal");
  1635. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1636. //bedLevel.debug("bedLevel");
  1637. //plan_bed_level_matrix.debug("bed level before");
  1638. //vector_3 uncorrected_position = plan_get_position_mm();
  1639. //uncorrected_position.debug("position before");
  1640. vector_3 corrected_position = plan_get_position();
  1641. // corrected_position.debug("position after");
  1642. current_position[X_AXIS] = corrected_position.x;
  1643. current_position[Y_AXIS] = corrected_position.y;
  1644. current_position[Z_AXIS] = corrected_position.z;
  1645. // put the bed at 0 so we don't go below it.
  1646. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. }
  1649. #else // not AUTO_BED_LEVELING_GRID
  1650. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1651. plan_bed_level_matrix.set_to_identity();
  1652. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1653. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1654. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1655. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1656. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1657. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1658. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1659. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1660. vector_3 corrected_position = plan_get_position();
  1661. current_position[X_AXIS] = corrected_position.x;
  1662. current_position[Y_AXIS] = corrected_position.y;
  1663. current_position[Z_AXIS] = corrected_position.z;
  1664. // put the bed at 0 so we don't go below it.
  1665. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. }
  1668. #endif // AUTO_BED_LEVELING_GRID
  1669. static void run_z_probe() {
  1670. plan_bed_level_matrix.set_to_identity();
  1671. feedrate = homing_feedrate[Z_AXIS];
  1672. // move down until you find the bed
  1673. float zPosition = -10;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // we have to let the planner know where we are right now as it is not where we said to go.
  1677. zPosition = st_get_position_mm(Z_AXIS);
  1678. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1679. // move up the retract distance
  1680. zPosition += home_retract_mm(Z_AXIS);
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. // move back down slowly to find bed
  1684. feedrate = homing_feedrate[Z_AXIS]/4;
  1685. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1687. st_synchronize();
  1688. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1689. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1691. }
  1692. static void do_blocking_move_to(float x, float y, float z) {
  1693. float oldFeedRate = feedrate;
  1694. feedrate = homing_feedrate[Z_AXIS];
  1695. current_position[Z_AXIS] = z;
  1696. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = XY_TRAVEL_SPEED;
  1699. current_position[X_AXIS] = x;
  1700. current_position[Y_AXIS] = y;
  1701. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1702. st_synchronize();
  1703. feedrate = oldFeedRate;
  1704. }
  1705. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1706. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1707. }
  1708. /// Probe bed height at position (x,y), returns the measured z value
  1709. static float probe_pt(float x, float y, float z_before) {
  1710. // move to right place
  1711. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1712. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1713. run_z_probe();
  1714. float measured_z = current_position[Z_AXIS];
  1715. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1716. SERIAL_PROTOCOLPGM(" x: ");
  1717. SERIAL_PROTOCOL(x);
  1718. SERIAL_PROTOCOLPGM(" y: ");
  1719. SERIAL_PROTOCOL(y);
  1720. SERIAL_PROTOCOLPGM(" z: ");
  1721. SERIAL_PROTOCOL(measured_z);
  1722. SERIAL_PROTOCOLPGM("\n");
  1723. return measured_z;
  1724. }
  1725. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1726. #ifdef LIN_ADVANCE
  1727. /**
  1728. * M900: Set and/or Get advance K factor and WH/D ratio
  1729. *
  1730. * K<factor> Set advance K factor
  1731. * R<ratio> Set ratio directly (overrides WH/D)
  1732. * W<width> H<height> D<diam> Set ratio from WH/D
  1733. */
  1734. inline void gcode_M900() {
  1735. st_synchronize();
  1736. const float newK = code_seen('K') ? code_value_float() : -1;
  1737. if (newK >= 0) extruder_advance_k = newK;
  1738. float newR = code_seen('R') ? code_value_float() : -1;
  1739. if (newR < 0) {
  1740. const float newD = code_seen('D') ? code_value_float() : -1,
  1741. newW = code_seen('W') ? code_value_float() : -1,
  1742. newH = code_seen('H') ? code_value_float() : -1;
  1743. if (newD >= 0 && newW >= 0 && newH >= 0)
  1744. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1745. }
  1746. if (newR >= 0) advance_ed_ratio = newR;
  1747. SERIAL_ECHO_START;
  1748. SERIAL_ECHOPGM("Advance K=");
  1749. SERIAL_ECHOLN(extruder_advance_k);
  1750. SERIAL_ECHOPGM(" E/D=");
  1751. const float ratio = advance_ed_ratio;
  1752. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1753. }
  1754. #endif // LIN_ADVANCE
  1755. bool check_commands() {
  1756. bool end_command_found = false;
  1757. while (buflen)
  1758. {
  1759. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1760. if (!cmdbuffer_front_already_processed)
  1761. cmdqueue_pop_front();
  1762. cmdbuffer_front_already_processed = false;
  1763. }
  1764. return end_command_found;
  1765. }
  1766. // raise_z_above: slowly raise Z to the requested height
  1767. //
  1768. // contrarily to a simple move, this function will carefully plan a move
  1769. // when the current Z position is unknown. In such cases, stallguard is
  1770. // enabled and will prevent prolonged pushing against the Z tops
  1771. void raise_z_above(float target, bool plan)
  1772. {
  1773. if (current_position[Z_AXIS] >= target)
  1774. return;
  1775. // Z needs raising
  1776. current_position[Z_AXIS] = target;
  1777. if (axis_known_position[Z_AXIS])
  1778. {
  1779. // current position is known, it's safe to raise Z
  1780. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1781. return;
  1782. }
  1783. // ensure Z is powered in normal mode to overcome initial load
  1784. enable_z();
  1785. st_synchronize();
  1786. // rely on crashguard to limit damage
  1787. bool z_endstop_enabled = enable_z_endstop(true);
  1788. #ifdef TMC2130
  1789. tmc2130_home_enter(Z_AXIS_MASK);
  1790. #endif //TMC2130
  1791. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1792. st_synchronize();
  1793. #ifdef TMC2130
  1794. if (endstop_z_hit_on_purpose())
  1795. {
  1796. // not necessarily exact, but will avoid further vertical moves
  1797. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1799. current_position[Z_AXIS], current_position[E_AXIS]);
  1800. }
  1801. tmc2130_home_exit();
  1802. #endif //TMC2130
  1803. enable_z_endstop(z_endstop_enabled);
  1804. }
  1805. #ifdef TMC2130
  1806. bool calibrate_z_auto()
  1807. {
  1808. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1809. lcd_clear();
  1810. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1811. bool endstops_enabled = enable_endstops(true);
  1812. int axis_up_dir = -home_dir(Z_AXIS);
  1813. tmc2130_home_enter(Z_AXIS_MASK);
  1814. current_position[Z_AXIS] = 0;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. set_destination_to_current();
  1817. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1818. feedrate = homing_feedrate[Z_AXIS];
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1820. st_synchronize();
  1821. // current_position[axis] = 0;
  1822. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1823. tmc2130_home_exit();
  1824. enable_endstops(false);
  1825. current_position[Z_AXIS] = 0;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. set_destination_to_current();
  1828. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1829. feedrate = homing_feedrate[Z_AXIS] / 2;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1831. st_synchronize();
  1832. enable_endstops(endstops_enabled);
  1833. if (PRINTER_TYPE == PRINTER_MK3) {
  1834. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1835. }
  1836. else {
  1837. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1838. }
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. return true;
  1841. }
  1842. #endif //TMC2130
  1843. #ifdef TMC2130
  1844. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1845. #else
  1846. void homeaxis(int axis, uint8_t cnt)
  1847. #endif //TMC2130
  1848. {
  1849. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1850. #define HOMEAXIS_DO(LETTER) \
  1851. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1852. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1853. {
  1854. int axis_home_dir = home_dir(axis);
  1855. feedrate = homing_feedrate[axis];
  1856. #ifdef TMC2130
  1857. tmc2130_home_enter(X_AXIS_MASK << axis);
  1858. #endif //TMC2130
  1859. // Move away a bit, so that the print head does not touch the end position,
  1860. // and the following movement to endstop has a chance to achieve the required velocity
  1861. // for the stall guard to work.
  1862. current_position[axis] = 0;
  1863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1864. set_destination_to_current();
  1865. // destination[axis] = 11.f;
  1866. destination[axis] = -3.f * axis_home_dir;
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1870. endstops_hit_on_purpose();
  1871. enable_endstops(false);
  1872. current_position[axis] = 0;
  1873. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1874. destination[axis] = 1. * axis_home_dir;
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1876. st_synchronize();
  1877. // Now continue to move up to the left end stop with the collision detection enabled.
  1878. enable_endstops(true);
  1879. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1880. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1881. st_synchronize();
  1882. for (uint8_t i = 0; i < cnt; i++)
  1883. {
  1884. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1885. endstops_hit_on_purpose();
  1886. enable_endstops(false);
  1887. current_position[axis] = 0;
  1888. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1889. destination[axis] = -10.f * axis_home_dir;
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. endstops_hit_on_purpose();
  1893. // Now move left up to the collision, this time with a repeatable velocity.
  1894. enable_endstops(true);
  1895. destination[axis] = 11.f * axis_home_dir;
  1896. #ifdef TMC2130
  1897. feedrate = homing_feedrate[axis];
  1898. #else //TMC2130
  1899. feedrate = homing_feedrate[axis] / 2;
  1900. #endif //TMC2130
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. #ifdef TMC2130
  1904. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1905. if (pstep) pstep[i] = mscnt >> 4;
  1906. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1907. #endif //TMC2130
  1908. }
  1909. endstops_hit_on_purpose();
  1910. enable_endstops(false);
  1911. #ifdef TMC2130
  1912. uint8_t orig = tmc2130_home_origin[axis];
  1913. uint8_t back = tmc2130_home_bsteps[axis];
  1914. if (tmc2130_home_enabled && (orig <= 63))
  1915. {
  1916. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1917. if (back > 0)
  1918. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1919. }
  1920. else
  1921. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1922. tmc2130_home_exit();
  1923. #endif //TMC2130
  1924. axis_is_at_home(axis);
  1925. axis_known_position[axis] = true;
  1926. // Move from minimum
  1927. #ifdef TMC2130
  1928. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1929. #else //TMC2130
  1930. float dist = - axis_home_dir * 0.01f * 64;
  1931. #endif //TMC2130
  1932. current_position[axis] -= dist;
  1933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. current_position[axis] += dist;
  1935. destination[axis] = current_position[axis];
  1936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1937. st_synchronize();
  1938. feedrate = 0.0;
  1939. }
  1940. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1941. {
  1942. #ifdef TMC2130
  1943. FORCE_HIGH_POWER_START;
  1944. #endif
  1945. int axis_home_dir = home_dir(axis);
  1946. current_position[axis] = 0;
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1949. feedrate = homing_feedrate[axis];
  1950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1951. st_synchronize();
  1952. #ifdef TMC2130
  1953. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1954. FORCE_HIGH_POWER_END;
  1955. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1956. return;
  1957. }
  1958. #endif //TMC2130
  1959. current_position[axis] = 0;
  1960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1961. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1965. feedrate = homing_feedrate[axis]/2 ;
  1966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1967. st_synchronize();
  1968. #ifdef TMC2130
  1969. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1970. FORCE_HIGH_POWER_END;
  1971. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1972. return;
  1973. }
  1974. #endif //TMC2130
  1975. axis_is_at_home(axis);
  1976. destination[axis] = current_position[axis];
  1977. feedrate = 0.0;
  1978. endstops_hit_on_purpose();
  1979. axis_known_position[axis] = true;
  1980. #ifdef TMC2130
  1981. FORCE_HIGH_POWER_END;
  1982. #endif
  1983. }
  1984. enable_endstops(endstops_enabled);
  1985. }
  1986. /**/
  1987. void home_xy()
  1988. {
  1989. set_destination_to_current();
  1990. homeaxis(X_AXIS);
  1991. homeaxis(Y_AXIS);
  1992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1993. endstops_hit_on_purpose();
  1994. }
  1995. void refresh_cmd_timeout(void)
  1996. {
  1997. previous_millis_cmd = _millis();
  1998. }
  1999. #ifdef FWRETRACT
  2000. void retract(bool retracting, bool swapretract = false) {
  2001. if(retracting && !retracted[active_extruder]) {
  2002. destination[X_AXIS]=current_position[X_AXIS];
  2003. destination[Y_AXIS]=current_position[Y_AXIS];
  2004. destination[Z_AXIS]=current_position[Z_AXIS];
  2005. destination[E_AXIS]=current_position[E_AXIS];
  2006. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2007. plan_set_e_position(current_position[E_AXIS]);
  2008. float oldFeedrate = feedrate;
  2009. feedrate=cs.retract_feedrate*60;
  2010. retracted[active_extruder]=true;
  2011. prepare_move();
  2012. current_position[Z_AXIS]-=cs.retract_zlift;
  2013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2014. prepare_move();
  2015. feedrate = oldFeedrate;
  2016. } else if(!retracting && retracted[active_extruder]) {
  2017. destination[X_AXIS]=current_position[X_AXIS];
  2018. destination[Y_AXIS]=current_position[Y_AXIS];
  2019. destination[Z_AXIS]=current_position[Z_AXIS];
  2020. destination[E_AXIS]=current_position[E_AXIS];
  2021. current_position[Z_AXIS]+=cs.retract_zlift;
  2022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2023. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2024. plan_set_e_position(current_position[E_AXIS]);
  2025. float oldFeedrate = feedrate;
  2026. feedrate=cs.retract_recover_feedrate*60;
  2027. retracted[active_extruder]=false;
  2028. prepare_move();
  2029. feedrate = oldFeedrate;
  2030. }
  2031. } //retract
  2032. #endif //FWRETRACT
  2033. void trace() {
  2034. Sound_MakeCustom(25,440,true);
  2035. }
  2036. /*
  2037. void ramming() {
  2038. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2039. if (current_temperature[0] < 230) {
  2040. //PLA
  2041. max_feedrate[E_AXIS] = 50;
  2042. //current_position[E_AXIS] -= 8;
  2043. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2044. //current_position[E_AXIS] += 8;
  2045. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2046. current_position[E_AXIS] += 5.4;
  2047. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2048. current_position[E_AXIS] += 3.2;
  2049. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2050. current_position[E_AXIS] += 3;
  2051. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2052. st_synchronize();
  2053. max_feedrate[E_AXIS] = 80;
  2054. current_position[E_AXIS] -= 82;
  2055. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2056. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2057. current_position[E_AXIS] -= 20;
  2058. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2059. current_position[E_AXIS] += 5;
  2060. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2061. current_position[E_AXIS] += 5;
  2062. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2063. current_position[E_AXIS] -= 10;
  2064. st_synchronize();
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. current_position[E_AXIS] += 10;
  2067. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2068. current_position[E_AXIS] -= 10;
  2069. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2070. current_position[E_AXIS] += 10;
  2071. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2072. current_position[E_AXIS] -= 10;
  2073. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2074. st_synchronize();
  2075. }
  2076. else {
  2077. //ABS
  2078. max_feedrate[E_AXIS] = 50;
  2079. //current_position[E_AXIS] -= 8;
  2080. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2081. //current_position[E_AXIS] += 8;
  2082. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2083. current_position[E_AXIS] += 3.1;
  2084. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2085. current_position[E_AXIS] += 3.1;
  2086. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2087. current_position[E_AXIS] += 4;
  2088. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2089. st_synchronize();
  2090. //current_position[X_AXIS] += 23; //delay
  2091. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2092. //current_position[X_AXIS] -= 23; //delay
  2093. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2094. _delay(4700);
  2095. max_feedrate[E_AXIS] = 80;
  2096. current_position[E_AXIS] -= 92;
  2097. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2098. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2099. current_position[E_AXIS] -= 5;
  2100. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2101. current_position[E_AXIS] += 5;
  2102. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2103. current_position[E_AXIS] -= 5;
  2104. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2105. st_synchronize();
  2106. current_position[E_AXIS] += 5;
  2107. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2108. current_position[E_AXIS] -= 5;
  2109. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2110. current_position[E_AXIS] += 5;
  2111. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 5;
  2113. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2114. st_synchronize();
  2115. }
  2116. }
  2117. */
  2118. #ifdef TMC2130
  2119. void force_high_power_mode(bool start_high_power_section) {
  2120. #ifdef PSU_Delta
  2121. if (start_high_power_section == true) enable_force_z();
  2122. #endif //PSU_Delta
  2123. uint8_t silent;
  2124. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2125. if (silent == 1) {
  2126. //we are in silent mode, set to normal mode to enable crash detection
  2127. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2128. st_synchronize();
  2129. cli();
  2130. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2131. update_mode_profile();
  2132. tmc2130_init();
  2133. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2134. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2135. st_reset_timer();
  2136. sei();
  2137. }
  2138. }
  2139. #endif //TMC2130
  2140. #ifdef TMC2130
  2141. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2142. #else
  2143. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2144. #endif //TMC2130
  2145. {
  2146. st_synchronize();
  2147. #if 0
  2148. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2149. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2150. #endif
  2151. // Flag for the display update routine and to disable the print cancelation during homing.
  2152. homing_flag = true;
  2153. // Which axes should be homed?
  2154. bool home_x = home_x_axis;
  2155. bool home_y = home_y_axis;
  2156. bool home_z = home_z_axis;
  2157. // Either all X,Y,Z codes are present, or none of them.
  2158. bool home_all_axes = home_x == home_y && home_x == home_z;
  2159. if (home_all_axes)
  2160. // No X/Y/Z code provided means to home all axes.
  2161. home_x = home_y = home_z = true;
  2162. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2163. if (home_all_axes) {
  2164. raise_z_above(MESH_HOME_Z_SEARCH);
  2165. st_synchronize();
  2166. }
  2167. #ifdef ENABLE_AUTO_BED_LEVELING
  2168. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2169. #endif //ENABLE_AUTO_BED_LEVELING
  2170. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2171. // the planner will not perform any adjustments in the XY plane.
  2172. // Wait for the motors to stop and update the current position with the absolute values.
  2173. world2machine_revert_to_uncorrected();
  2174. // For mesh bed leveling deactivate the matrix temporarily.
  2175. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2176. // in a single axis only.
  2177. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2178. #ifdef MESH_BED_LEVELING
  2179. uint8_t mbl_was_active = mbl.active;
  2180. mbl.active = 0;
  2181. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2182. #endif
  2183. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2184. // consumed during the first movements following this statement.
  2185. if (home_z)
  2186. babystep_undo();
  2187. saved_feedrate = feedrate;
  2188. int l_feedmultiply = feedmultiply;
  2189. feedmultiply = 100;
  2190. previous_millis_cmd = _millis();
  2191. enable_endstops(true);
  2192. memcpy(destination, current_position, sizeof(destination));
  2193. feedrate = 0.0;
  2194. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2195. if(home_z)
  2196. homeaxis(Z_AXIS);
  2197. #endif
  2198. #ifdef QUICK_HOME
  2199. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2200. if(home_x && home_y) //first diagonal move
  2201. {
  2202. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2203. int x_axis_home_dir = home_dir(X_AXIS);
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2206. feedrate = homing_feedrate[X_AXIS];
  2207. if(homing_feedrate[Y_AXIS]<feedrate)
  2208. feedrate = homing_feedrate[Y_AXIS];
  2209. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2210. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2211. } else {
  2212. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2213. }
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2215. st_synchronize();
  2216. axis_is_at_home(X_AXIS);
  2217. axis_is_at_home(Y_AXIS);
  2218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2219. destination[X_AXIS] = current_position[X_AXIS];
  2220. destination[Y_AXIS] = current_position[Y_AXIS];
  2221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2222. feedrate = 0.0;
  2223. st_synchronize();
  2224. endstops_hit_on_purpose();
  2225. current_position[X_AXIS] = destination[X_AXIS];
  2226. current_position[Y_AXIS] = destination[Y_AXIS];
  2227. current_position[Z_AXIS] = destination[Z_AXIS];
  2228. }
  2229. #endif /* QUICK_HOME */
  2230. #ifdef TMC2130
  2231. if(home_x)
  2232. {
  2233. if (!calib)
  2234. homeaxis(X_AXIS);
  2235. else
  2236. tmc2130_home_calibrate(X_AXIS);
  2237. }
  2238. if(home_y)
  2239. {
  2240. if (!calib)
  2241. homeaxis(Y_AXIS);
  2242. else
  2243. tmc2130_home_calibrate(Y_AXIS);
  2244. }
  2245. #else //TMC2130
  2246. if(home_x) homeaxis(X_AXIS);
  2247. if(home_y) homeaxis(Y_AXIS);
  2248. #endif //TMC2130
  2249. if(home_x_axis && home_x_value != 0)
  2250. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2251. if(home_y_axis && home_y_value != 0)
  2252. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2253. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2254. #ifndef Z_SAFE_HOMING
  2255. if(home_z) {
  2256. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2257. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2258. st_synchronize();
  2259. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2260. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2261. raise_z_above(MESH_HOME_Z_SEARCH);
  2262. st_synchronize();
  2263. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2264. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2265. // 1st mesh bed leveling measurement point, corrected.
  2266. world2machine_initialize();
  2267. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2268. world2machine_reset();
  2269. if (destination[Y_AXIS] < Y_MIN_POS)
  2270. destination[Y_AXIS] = Y_MIN_POS;
  2271. feedrate = homing_feedrate[X_AXIS] / 20;
  2272. enable_endstops(false);
  2273. #ifdef DEBUG_BUILD
  2274. SERIAL_ECHOLNPGM("plan_set_position()");
  2275. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2276. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2277. #endif
  2278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2279. #ifdef DEBUG_BUILD
  2280. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2281. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2282. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2283. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2284. #endif
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2286. st_synchronize();
  2287. current_position[X_AXIS] = destination[X_AXIS];
  2288. current_position[Y_AXIS] = destination[Y_AXIS];
  2289. enable_endstops(true);
  2290. endstops_hit_on_purpose();
  2291. homeaxis(Z_AXIS);
  2292. #else // MESH_BED_LEVELING
  2293. homeaxis(Z_AXIS);
  2294. #endif // MESH_BED_LEVELING
  2295. }
  2296. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2297. if(home_all_axes) {
  2298. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2299. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2300. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2301. feedrate = XY_TRAVEL_SPEED/60;
  2302. current_position[Z_AXIS] = 0;
  2303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2305. st_synchronize();
  2306. current_position[X_AXIS] = destination[X_AXIS];
  2307. current_position[Y_AXIS] = destination[Y_AXIS];
  2308. homeaxis(Z_AXIS);
  2309. }
  2310. // Let's see if X and Y are homed and probe is inside bed area.
  2311. if(home_z) {
  2312. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2313. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2314. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2315. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2316. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2317. current_position[Z_AXIS] = 0;
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2320. feedrate = max_feedrate[Z_AXIS];
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2322. st_synchronize();
  2323. homeaxis(Z_AXIS);
  2324. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2325. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2326. SERIAL_ECHO_START;
  2327. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2328. } else {
  2329. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2330. SERIAL_ECHO_START;
  2331. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2332. }
  2333. }
  2334. #endif // Z_SAFE_HOMING
  2335. #endif // Z_HOME_DIR < 0
  2336. if(home_z_axis && home_z_value != 0)
  2337. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2338. #ifdef ENABLE_AUTO_BED_LEVELING
  2339. if(home_z)
  2340. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2341. #endif
  2342. // Set the planner and stepper routine positions.
  2343. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2344. // contains the machine coordinates.
  2345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2346. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2347. enable_endstops(false);
  2348. #endif
  2349. feedrate = saved_feedrate;
  2350. feedmultiply = l_feedmultiply;
  2351. previous_millis_cmd = _millis();
  2352. endstops_hit_on_purpose();
  2353. #ifndef MESH_BED_LEVELING
  2354. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2355. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2356. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2357. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2358. lcd_adjust_z();
  2359. #endif
  2360. // Load the machine correction matrix
  2361. world2machine_initialize();
  2362. // and correct the current_position XY axes to match the transformed coordinate system.
  2363. world2machine_update_current();
  2364. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2365. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2366. {
  2367. if (! home_z && mbl_was_active) {
  2368. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2369. mbl.active = true;
  2370. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2371. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2372. }
  2373. }
  2374. else
  2375. {
  2376. st_synchronize();
  2377. homing_flag = false;
  2378. }
  2379. #endif
  2380. if (farm_mode) { prusa_statistics(20); };
  2381. homing_flag = false;
  2382. #if 0
  2383. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2384. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2385. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2386. #endif
  2387. }
  2388. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2389. {
  2390. #ifdef TMC2130
  2391. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2392. #else
  2393. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2394. #endif //TMC2130
  2395. }
  2396. void adjust_bed_reset()
  2397. {
  2398. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2399. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2400. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2401. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2402. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2403. }
  2404. //! @brief Calibrate XYZ
  2405. //! @param onlyZ if true, calibrate only Z axis
  2406. //! @param verbosity_level
  2407. //! @retval true Succeeded
  2408. //! @retval false Failed
  2409. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2410. {
  2411. bool final_result = false;
  2412. #ifdef TMC2130
  2413. FORCE_HIGH_POWER_START;
  2414. #endif // TMC2130
  2415. // Only Z calibration?
  2416. if (!onlyZ)
  2417. {
  2418. setTargetBed(0);
  2419. setAllTargetHotends(0);
  2420. adjust_bed_reset(); //reset bed level correction
  2421. }
  2422. // Disable the default update procedure of the display. We will do a modal dialog.
  2423. lcd_update_enable(false);
  2424. // Let the planner use the uncorrected coordinates.
  2425. mbl.reset();
  2426. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2427. // the planner will not perform any adjustments in the XY plane.
  2428. // Wait for the motors to stop and update the current position with the absolute values.
  2429. world2machine_revert_to_uncorrected();
  2430. // Reset the baby step value applied without moving the axes.
  2431. babystep_reset();
  2432. // Mark all axes as in a need for homing.
  2433. memset(axis_known_position, 0, sizeof(axis_known_position));
  2434. // Home in the XY plane.
  2435. //set_destination_to_current();
  2436. int l_feedmultiply = setup_for_endstop_move();
  2437. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2438. home_xy();
  2439. enable_endstops(false);
  2440. current_position[X_AXIS] += 5;
  2441. current_position[Y_AXIS] += 5;
  2442. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2443. st_synchronize();
  2444. // Let the user move the Z axes up to the end stoppers.
  2445. #ifdef TMC2130
  2446. if (calibrate_z_auto())
  2447. {
  2448. #else //TMC2130
  2449. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2450. {
  2451. #endif //TMC2130
  2452. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2453. if(onlyZ){
  2454. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2455. lcd_set_cursor(0, 3);
  2456. lcd_print(1);
  2457. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2458. }else{
  2459. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2460. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2461. lcd_set_cursor(0, 2);
  2462. lcd_print(1);
  2463. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2464. }
  2465. refresh_cmd_timeout();
  2466. #ifndef STEEL_SHEET
  2467. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2468. {
  2469. lcd_wait_for_cool_down();
  2470. }
  2471. #endif //STEEL_SHEET
  2472. if(!onlyZ)
  2473. {
  2474. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2475. #ifdef STEEL_SHEET
  2476. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2477. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2478. #endif //STEEL_SHEET
  2479. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2480. KEEPALIVE_STATE(IN_HANDLER);
  2481. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2482. lcd_set_cursor(0, 2);
  2483. lcd_print(1);
  2484. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2485. }
  2486. bool endstops_enabled = enable_endstops(false);
  2487. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2488. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2489. st_synchronize();
  2490. // Move the print head close to the bed.
  2491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2492. enable_endstops(true);
  2493. #ifdef TMC2130
  2494. tmc2130_home_enter(Z_AXIS_MASK);
  2495. #endif //TMC2130
  2496. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2497. st_synchronize();
  2498. #ifdef TMC2130
  2499. tmc2130_home_exit();
  2500. #endif //TMC2130
  2501. enable_endstops(endstops_enabled);
  2502. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2503. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2504. {
  2505. if (onlyZ)
  2506. {
  2507. clean_up_after_endstop_move(l_feedmultiply);
  2508. // Z only calibration.
  2509. // Load the machine correction matrix
  2510. world2machine_initialize();
  2511. // and correct the current_position to match the transformed coordinate system.
  2512. world2machine_update_current();
  2513. //FIXME
  2514. bool result = sample_mesh_and_store_reference();
  2515. if (result)
  2516. {
  2517. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2518. // Shipped, the nozzle height has been set already. The user can start printing now.
  2519. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2520. final_result = true;
  2521. // babystep_apply();
  2522. }
  2523. }
  2524. else
  2525. {
  2526. // Reset the baby step value and the baby step applied flag.
  2527. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2528. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2529. // Complete XYZ calibration.
  2530. uint8_t point_too_far_mask = 0;
  2531. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2532. clean_up_after_endstop_move(l_feedmultiply);
  2533. // Print head up.
  2534. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2535. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2536. st_synchronize();
  2537. //#ifndef NEW_XYZCAL
  2538. if (result >= 0)
  2539. {
  2540. #ifdef HEATBED_V2
  2541. sample_z();
  2542. #else //HEATBED_V2
  2543. point_too_far_mask = 0;
  2544. // Second half: The fine adjustment.
  2545. // Let the planner use the uncorrected coordinates.
  2546. mbl.reset();
  2547. world2machine_reset();
  2548. // Home in the XY plane.
  2549. int l_feedmultiply = setup_for_endstop_move();
  2550. home_xy();
  2551. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2552. clean_up_after_endstop_move(l_feedmultiply);
  2553. // Print head up.
  2554. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2555. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2556. st_synchronize();
  2557. // if (result >= 0) babystep_apply();
  2558. #endif //HEATBED_V2
  2559. }
  2560. //#endif //NEW_XYZCAL
  2561. lcd_update_enable(true);
  2562. lcd_update(2);
  2563. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2564. if (result >= 0)
  2565. {
  2566. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2567. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2568. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2569. final_result = true;
  2570. }
  2571. }
  2572. #ifdef TMC2130
  2573. tmc2130_home_exit();
  2574. #endif
  2575. }
  2576. else
  2577. {
  2578. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2579. final_result = false;
  2580. }
  2581. }
  2582. else
  2583. {
  2584. // Timeouted.
  2585. }
  2586. lcd_update_enable(true);
  2587. #ifdef TMC2130
  2588. FORCE_HIGH_POWER_END;
  2589. #endif // TMC2130
  2590. return final_result;
  2591. }
  2592. void gcode_M114()
  2593. {
  2594. SERIAL_PROTOCOLPGM("X:");
  2595. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2596. SERIAL_PROTOCOLPGM(" Y:");
  2597. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2598. SERIAL_PROTOCOLPGM(" Z:");
  2599. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2600. SERIAL_PROTOCOLPGM(" E:");
  2601. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2602. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2603. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2604. SERIAL_PROTOCOLPGM(" Y:");
  2605. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2606. SERIAL_PROTOCOLPGM(" Z:");
  2607. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2608. SERIAL_PROTOCOLPGM(" E:");
  2609. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2610. SERIAL_PROTOCOLLN("");
  2611. }
  2612. //! extracted code to compute z_shift for M600 in case of filament change operation
  2613. //! requested from fsensors.
  2614. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2615. //! unlike the previous implementation, which was adding 25mm even when the head was
  2616. //! printing at e.g. 24mm height.
  2617. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2618. //! the printout.
  2619. //! This function is templated to enable fast change of computation data type.
  2620. //! @return new z_shift value
  2621. template<typename T>
  2622. static T gcode_M600_filament_change_z_shift()
  2623. {
  2624. #ifdef FILAMENTCHANGE_ZADD
  2625. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2626. // avoid floating point arithmetics when not necessary - results in shorter code
  2627. T ztmp = T( current_position[Z_AXIS] );
  2628. T z_shift = 0;
  2629. if(ztmp < T(25)){
  2630. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2631. }
  2632. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2633. #else
  2634. return T(0);
  2635. #endif
  2636. }
  2637. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2638. {
  2639. st_synchronize();
  2640. float lastpos[4];
  2641. if (farm_mode)
  2642. {
  2643. prusa_statistics(22);
  2644. }
  2645. //First backup current position and settings
  2646. int feedmultiplyBckp = feedmultiply;
  2647. float HotendTempBckp = degTargetHotend(active_extruder);
  2648. int fanSpeedBckp = fanSpeed;
  2649. lastpos[X_AXIS] = current_position[X_AXIS];
  2650. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2651. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2652. lastpos[E_AXIS] = current_position[E_AXIS];
  2653. //Retract E
  2654. current_position[E_AXIS] += e_shift;
  2655. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2656. st_synchronize();
  2657. //Lift Z
  2658. current_position[Z_AXIS] += z_shift;
  2659. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2660. st_synchronize();
  2661. //Move XY to side
  2662. current_position[X_AXIS] = x_position;
  2663. current_position[Y_AXIS] = y_position;
  2664. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2665. st_synchronize();
  2666. //Beep, manage nozzle heater and wait for user to start unload filament
  2667. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2668. lcd_change_fil_state = 0;
  2669. // Unload filament
  2670. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2671. else unload_filament(); //unload filament for single material (used also in M702)
  2672. //finish moves
  2673. st_synchronize();
  2674. if (!mmu_enabled)
  2675. {
  2676. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2677. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2678. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2679. if (lcd_change_fil_state == 0)
  2680. {
  2681. lcd_clear();
  2682. lcd_set_cursor(0, 2);
  2683. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2684. current_position[X_AXIS] -= 100;
  2685. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2686. st_synchronize();
  2687. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2688. }
  2689. }
  2690. if (mmu_enabled)
  2691. {
  2692. if (!automatic) {
  2693. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2694. mmu_M600_wait_and_beep();
  2695. if (saved_printing) {
  2696. lcd_clear();
  2697. lcd_set_cursor(0, 2);
  2698. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2699. mmu_command(MmuCmd::R0);
  2700. manage_response(false, false);
  2701. }
  2702. }
  2703. mmu_M600_load_filament(automatic, HotendTempBckp);
  2704. }
  2705. else
  2706. M600_load_filament();
  2707. if (!automatic) M600_check_state(HotendTempBckp);
  2708. lcd_update_enable(true);
  2709. //Not let's go back to print
  2710. fanSpeed = fanSpeedBckp;
  2711. //Feed a little of filament to stabilize pressure
  2712. if (!automatic)
  2713. {
  2714. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2715. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2716. }
  2717. //Move XY back
  2718. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2719. FILAMENTCHANGE_XYFEED, active_extruder);
  2720. st_synchronize();
  2721. //Move Z back
  2722. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2723. FILAMENTCHANGE_ZFEED, active_extruder);
  2724. st_synchronize();
  2725. //Set E position to original
  2726. plan_set_e_position(lastpos[E_AXIS]);
  2727. memcpy(current_position, lastpos, sizeof(lastpos));
  2728. memcpy(destination, current_position, sizeof(current_position));
  2729. //Recover feed rate
  2730. feedmultiply = feedmultiplyBckp;
  2731. char cmd[9];
  2732. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2733. enquecommand(cmd);
  2734. #ifdef IR_SENSOR
  2735. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2736. fsensor_check_autoload();
  2737. #endif //IR_SENSOR
  2738. lcd_setstatuspgm(_T(WELCOME_MSG));
  2739. custom_message_type = CustomMsg::Status;
  2740. }
  2741. void gcode_M701()
  2742. {
  2743. printf_P(PSTR("gcode_M701 begin\n"));
  2744. if (farm_mode)
  2745. {
  2746. prusa_statistics(22);
  2747. }
  2748. if (mmu_enabled)
  2749. {
  2750. extr_adj(tmp_extruder);//loads current extruder
  2751. mmu_extruder = tmp_extruder;
  2752. }
  2753. else
  2754. {
  2755. enable_z();
  2756. custom_message_type = CustomMsg::FilamentLoading;
  2757. #ifdef FSENSOR_QUALITY
  2758. fsensor_oq_meassure_start(40);
  2759. #endif //FSENSOR_QUALITY
  2760. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2761. current_position[E_AXIS] += 40;
  2762. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2763. st_synchronize();
  2764. raise_z_above(MIN_Z_FOR_LOAD, false);
  2765. current_position[E_AXIS] += 30;
  2766. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2767. load_filament_final_feed(); //slow sequence
  2768. st_synchronize();
  2769. Sound_MakeCustom(50,500,false);
  2770. if (!farm_mode && loading_flag) {
  2771. lcd_load_filament_color_check();
  2772. }
  2773. lcd_update_enable(true);
  2774. lcd_update(2);
  2775. lcd_setstatuspgm(_T(WELCOME_MSG));
  2776. disable_z();
  2777. loading_flag = false;
  2778. custom_message_type = CustomMsg::Status;
  2779. #ifdef FSENSOR_QUALITY
  2780. fsensor_oq_meassure_stop();
  2781. if (!fsensor_oq_result())
  2782. {
  2783. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2784. lcd_update_enable(true);
  2785. lcd_update(2);
  2786. if (disable)
  2787. fsensor_disable();
  2788. }
  2789. #endif //FSENSOR_QUALITY
  2790. }
  2791. }
  2792. /**
  2793. * @brief Get serial number from 32U2 processor
  2794. *
  2795. * Typical format of S/N is:CZPX0917X003XC13518
  2796. *
  2797. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2798. *
  2799. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2800. * reply is transmitted to serial port 1 character by character.
  2801. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2802. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2803. * in any case.
  2804. */
  2805. static void gcode_PRUSA_SN()
  2806. {
  2807. if (farm_mode) {
  2808. selectedSerialPort = 0;
  2809. putchar(';');
  2810. putchar('S');
  2811. int numbersRead = 0;
  2812. ShortTimer timeout;
  2813. timeout.start();
  2814. while (numbersRead < 19) {
  2815. while (MSerial.available() > 0) {
  2816. uint8_t serial_char = MSerial.read();
  2817. selectedSerialPort = 1;
  2818. putchar(serial_char);
  2819. numbersRead++;
  2820. selectedSerialPort = 0;
  2821. }
  2822. if (timeout.expired(100u)) break;
  2823. }
  2824. selectedSerialPort = 1;
  2825. putchar('\n');
  2826. #if 0
  2827. for (int b = 0; b < 3; b++) {
  2828. _tone(BEEPER, 110);
  2829. _delay(50);
  2830. _noTone(BEEPER);
  2831. _delay(50);
  2832. }
  2833. #endif
  2834. } else {
  2835. puts_P(_N("Not in farm mode."));
  2836. }
  2837. }
  2838. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2839. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2840. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2841. //! it may even interfere with other functions of the printer! You have been warned!
  2842. //! The test idea is to measure the time necessary to charge the capacitor.
  2843. //! So the algorithm is as follows:
  2844. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2845. //! 2. Wait a few ms
  2846. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2847. //! Repeat 1.-3. several times
  2848. //! Good RAMBo's times are in the range of approx. 260-320 us
  2849. //! Bad RAMBo's times are approx. 260-1200 us
  2850. //! So basically we are interested in maximum time, the minima are mostly the same.
  2851. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2852. static void gcode_PRUSA_BadRAMBoFanTest(){
  2853. //printf_P(PSTR("Enter fan pin test\n"));
  2854. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2855. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2856. unsigned long tach1max = 0;
  2857. uint8_t tach1cntr = 0;
  2858. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2859. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2860. SET_OUTPUT(TACH_1);
  2861. WRITE(TACH_1, LOW);
  2862. _delay(20); // the delay may be lower
  2863. unsigned long tachMeasure = _micros();
  2864. cli();
  2865. SET_INPUT(TACH_1);
  2866. // just wait brutally in an endless cycle until we reach HIGH
  2867. // if this becomes a problem it may be improved to non-endless cycle
  2868. while( READ(TACH_1) == 0 ) ;
  2869. sei();
  2870. tachMeasure = _micros() - tachMeasure;
  2871. if( tach1max < tachMeasure )
  2872. tach1max = tachMeasure;
  2873. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2874. }
  2875. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2876. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2877. if( tach1max > 500 ){
  2878. // bad RAMBo
  2879. SERIAL_PROTOCOLLNPGM("BAD");
  2880. } else {
  2881. SERIAL_PROTOCOLLNPGM("OK");
  2882. }
  2883. // cleanup after the test function
  2884. SET_INPUT(TACH_1);
  2885. WRITE(TACH_1, HIGH);
  2886. #endif
  2887. }
  2888. #ifdef BACKLASH_X
  2889. extern uint8_t st_backlash_x;
  2890. #endif //BACKLASH_X
  2891. #ifdef BACKLASH_Y
  2892. extern uint8_t st_backlash_y;
  2893. #endif //BACKLASH_Y
  2894. //! \ingroup marlin_main
  2895. //! @brief Parse and process commands
  2896. //!
  2897. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2898. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2899. //!
  2900. //!
  2901. //! Implemented Codes
  2902. //! -------------------
  2903. //!
  2904. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2905. //!
  2906. //!@n PRUSA CODES
  2907. //!@n P F - Returns FW versions
  2908. //!@n P R - Returns revision of printer
  2909. //!
  2910. //!@n G0 -> G1
  2911. //!@n G1 - Coordinated Movement X Y Z E
  2912. //!@n G2 - CW ARC
  2913. //!@n G3 - CCW ARC
  2914. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2915. //!@n G10 - retract filament according to settings of M207
  2916. //!@n G11 - retract recover filament according to settings of M208
  2917. //!@n G28 - Home all Axis
  2918. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2919. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2920. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2921. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2922. //!@n G80 - Automatic mesh bed leveling
  2923. //!@n G81 - Print bed profile
  2924. //!@n G90 - Use Absolute Coordinates
  2925. //!@n G91 - Use Relative Coordinates
  2926. //!@n G92 - Set current position to coordinates given
  2927. //!
  2928. //!@n M Codes
  2929. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2930. //!@n M1 - Same as M0
  2931. //!@n M17 - Enable/Power all stepper motors
  2932. //!@n M18 - Disable all stepper motors; same as M84
  2933. //!@n M20 - List SD card
  2934. //!@n M21 - Init SD card
  2935. //!@n M22 - Release SD card
  2936. //!@n M23 - Select SD file (M23 filename.g)
  2937. //!@n M24 - Start/resume SD print
  2938. //!@n M25 - Pause SD print
  2939. //!@n M26 - Set SD position in bytes (M26 S12345)
  2940. //!@n M27 - Report SD print status
  2941. //!@n M28 - Start SD write (M28 filename.g)
  2942. //!@n M29 - Stop SD write
  2943. //!@n M30 - Delete file from SD (M30 filename.g)
  2944. //!@n M31 - Output time since last M109 or SD card start to serial
  2945. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2946. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2947. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2948. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2949. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2950. //!@n M73 - Show percent done and print time remaining
  2951. //!@n M80 - Turn on Power Supply
  2952. //!@n M81 - Turn off Power Supply
  2953. //!@n M82 - Set E codes absolute (default)
  2954. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2955. //!@n M84 - Disable steppers until next move,
  2956. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2957. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2958. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2959. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2960. //!@n M104 - Set extruder target temp
  2961. //!@n M105 - Read current temp
  2962. //!@n M106 - Fan on
  2963. //!@n M107 - Fan off
  2964. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2965. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2966. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2967. //!@n M112 - Emergency stop
  2968. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2969. //!@n M114 - Output current position to serial port
  2970. //!@n M115 - Capabilities string
  2971. //!@n M117 - display message
  2972. //!@n M119 - Output Endstop status to serial port
  2973. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2974. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2975. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2976. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2977. //!@n M140 - Set bed target temp
  2978. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2979. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2980. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2981. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2982. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2983. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2984. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2985. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2986. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2987. //!@n M206 - set additional homing offset
  2988. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2989. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2990. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2991. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2992. //!@n M220 S<factor in percent>- set speed factor override percentage
  2993. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2994. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2995. //!@n M240 - Trigger a camera to take a photograph
  2996. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2997. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2998. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2999. //!@n M301 - Set PID parameters P I and D
  3000. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3001. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3002. //!@n M304 - Set bed PID parameters P I and D
  3003. //!@n M400 - Finish all moves
  3004. //!@n M401 - Lower z-probe if present
  3005. //!@n M402 - Raise z-probe if present
  3006. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3007. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3008. //!@n M406 - Turn off Filament Sensor extrusion control
  3009. //!@n M407 - Displays measured filament diameter
  3010. //!@n M500 - stores parameters in EEPROM
  3011. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3012. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3013. //!@n M503 - print the current settings (from memory not from EEPROM)
  3014. //!@n M509 - force language selection on next restart
  3015. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3016. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3017. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3018. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3019. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3020. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3021. //!@n M907 - Set digital trimpot motor current using axis codes.
  3022. //!@n M908 - Control digital trimpot directly.
  3023. //!@n M350 - Set microstepping mode.
  3024. //!@n M351 - Toggle MS1 MS2 pins directly.
  3025. //!
  3026. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3027. //!@n M999 - Restart after being stopped by error
  3028. //! <br><br>
  3029. /** @defgroup marlin_main Marlin main */
  3030. /** \ingroup GCodes */
  3031. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  3032. void process_commands()
  3033. {
  3034. #ifdef FANCHECK
  3035. if(fan_check_error){
  3036. if(fan_check_error == EFCE_DETECTED){
  3037. fan_check_error = EFCE_REPORTED;
  3038. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3039. lcd_pause_print();
  3040. } // otherwise it has already been reported, so just ignore further processing
  3041. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3042. }
  3043. #endif
  3044. if (!buflen) return; //empty command
  3045. #ifdef FILAMENT_RUNOUT_SUPPORT
  3046. SET_INPUT(FR_SENS);
  3047. #endif
  3048. #ifdef CMDBUFFER_DEBUG
  3049. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3050. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3051. SERIAL_ECHOLNPGM("");
  3052. SERIAL_ECHOPGM("In cmdqueue: ");
  3053. SERIAL_ECHO(buflen);
  3054. SERIAL_ECHOLNPGM("");
  3055. #endif /* CMDBUFFER_DEBUG */
  3056. unsigned long codenum; //throw away variable
  3057. char *starpos = NULL;
  3058. #ifdef ENABLE_AUTO_BED_LEVELING
  3059. float x_tmp, y_tmp, z_tmp, real_z;
  3060. #endif
  3061. // PRUSA GCODES
  3062. KEEPALIVE_STATE(IN_HANDLER);
  3063. #ifdef SNMM
  3064. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3065. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3066. int8_t SilentMode;
  3067. #endif
  3068. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3069. starpos = (strchr(strchr_pointer + 5, '*'));
  3070. if (starpos != NULL)
  3071. *(starpos) = '\0';
  3072. lcd_setstatus(strchr_pointer + 5);
  3073. }
  3074. #ifdef TMC2130
  3075. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3076. {
  3077. //! ### CRASH_DETECTED - TMC2130
  3078. // ---------------------------------
  3079. if(code_seen("CRASH_DETECTED"))
  3080. {
  3081. uint8_t mask = 0;
  3082. if (code_seen('X')) mask |= X_AXIS_MASK;
  3083. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3084. crashdet_detected(mask);
  3085. }
  3086. //! ### CRASH_RECOVER - TMC2130
  3087. // ----------------------------------
  3088. else if(code_seen("CRASH_RECOVER"))
  3089. crashdet_recover();
  3090. //! ### CRASH_CANCEL - TMC2130
  3091. // ----------------------------------
  3092. else if(code_seen("CRASH_CANCEL"))
  3093. crashdet_cancel();
  3094. }
  3095. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3096. {
  3097. //! ### TMC_SET_WAVE_
  3098. // --------------------
  3099. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3100. {
  3101. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3102. axis = (axis == 'E')?3:(axis - 'X');
  3103. if (axis < 4)
  3104. {
  3105. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3106. tmc2130_set_wave(axis, 247, fac);
  3107. }
  3108. }
  3109. //! ### TMC_SET_STEP_
  3110. // ------------------
  3111. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3112. {
  3113. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3114. axis = (axis == 'E')?3:(axis - 'X');
  3115. if (axis < 4)
  3116. {
  3117. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3118. uint16_t res = tmc2130_get_res(axis);
  3119. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3120. }
  3121. }
  3122. //! ### TMC_SET_CHOP_
  3123. // -------------------
  3124. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3125. {
  3126. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3127. axis = (axis == 'E')?3:(axis - 'X');
  3128. if (axis < 4)
  3129. {
  3130. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3131. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3132. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3133. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3134. char* str_end = 0;
  3135. if (CMDBUFFER_CURRENT_STRING[14])
  3136. {
  3137. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3138. if (str_end && *str_end)
  3139. {
  3140. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3141. if (str_end && *str_end)
  3142. {
  3143. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3144. if (str_end && *str_end)
  3145. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3146. }
  3147. }
  3148. }
  3149. tmc2130_chopper_config[axis].toff = chop0;
  3150. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3151. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3152. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3153. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3154. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3155. }
  3156. }
  3157. }
  3158. #ifdef BACKLASH_X
  3159. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3160. {
  3161. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3162. st_backlash_x = bl;
  3163. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3164. }
  3165. #endif //BACKLASH_X
  3166. #ifdef BACKLASH_Y
  3167. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3168. {
  3169. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3170. st_backlash_y = bl;
  3171. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3172. }
  3173. #endif //BACKLASH_Y
  3174. #endif //TMC2130
  3175. else if(code_seen("PRUSA")){
  3176. /*!
  3177. *
  3178. ### PRUSA - Internal command set
  3179. Set of internal PRUSA commands
  3180. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3181. - `Ping`
  3182. - `PRN` - Prints revision of the printer
  3183. - `FAN` - Prints fan details
  3184. - `fn` - Prints farm no.
  3185. - `thx`
  3186. - `uvlo`
  3187. - `MMURES` - Reset MMU
  3188. - `RESET` - (Careful!)
  3189. - `fv` - ?
  3190. - `M28`
  3191. - `SN`
  3192. - `Fir` - Prints firmware version
  3193. - `Rev`- Prints filament size, elelectronics, nozzle type
  3194. - `Lang` - Reset the language
  3195. - `Lz`
  3196. - `Beat` - Kick farm link timer
  3197. - `FR` - Full factory reset
  3198. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3199. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3200. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3201. *
  3202. */
  3203. if (code_seen("Ping")) { // PRUSA Ping
  3204. if (farm_mode) {
  3205. PingTime = _millis();
  3206. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3207. }
  3208. }
  3209. else if (code_seen("PRN")) { // PRUSA PRN
  3210. printf_P(_N("%d"), status_number);
  3211. } else if( code_seen("FANPINTST") ){
  3212. gcode_PRUSA_BadRAMBoFanTest();
  3213. }else if (code_seen("FAN")) { //! PRUSA FAN
  3214. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3215. }else if (code_seen("fn")) { // PRUSA fn
  3216. if (farm_mode) {
  3217. printf_P(_N("%d"), farm_no);
  3218. }
  3219. else {
  3220. puts_P(_N("Not in farm mode."));
  3221. }
  3222. }
  3223. else if (code_seen("thx")) // PRUSA thx
  3224. {
  3225. no_response = false;
  3226. }
  3227. else if (code_seen("uvlo")) // PRUSA uvlo
  3228. {
  3229. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3230. enquecommand_P(PSTR("M24"));
  3231. }
  3232. else if (code_seen("MMURES")) // PRUSA MMURES
  3233. {
  3234. mmu_reset();
  3235. }
  3236. else if (code_seen("RESET")) { // PRUSA RESET
  3237. // careful!
  3238. if (farm_mode) {
  3239. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3240. boot_app_magic = BOOT_APP_MAGIC;
  3241. boot_app_flags = BOOT_APP_FLG_RUN;
  3242. wdt_enable(WDTO_15MS);
  3243. cli();
  3244. while(1);
  3245. #else //WATCHDOG
  3246. asm volatile("jmp 0x3E000");
  3247. #endif //WATCHDOG
  3248. }
  3249. else {
  3250. MYSERIAL.println("Not in farm mode.");
  3251. }
  3252. }else if (code_seen("fv")) { // PRUSA fv
  3253. // get file version
  3254. #ifdef SDSUPPORT
  3255. card.openFile(strchr_pointer + 3,true);
  3256. while (true) {
  3257. uint16_t readByte = card.get();
  3258. MYSERIAL.write(readByte);
  3259. if (readByte=='\n') {
  3260. break;
  3261. }
  3262. }
  3263. card.closefile();
  3264. #endif // SDSUPPORT
  3265. } else if (code_seen("M28")) { // PRUSA M28
  3266. trace();
  3267. prusa_sd_card_upload = true;
  3268. card.openFile(strchr_pointer+4,false);
  3269. } else if (code_seen("SN")) { // PRUSA SN
  3270. gcode_PRUSA_SN();
  3271. } else if(code_seen("Fir")){ // PRUSA Fir
  3272. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3273. } else if(code_seen("Rev")){ // PRUSA Rev
  3274. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3275. } else if(code_seen("Lang")) { // PRUSA Lang
  3276. lang_reset();
  3277. } else if(code_seen("Lz")) { // PRUSA Lz
  3278. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3279. } else if(code_seen("Beat")) { // PRUSA Beat
  3280. // Kick farm link timer
  3281. kicktime = _millis();
  3282. } else if(code_seen("FR")) { // PRUSA FR
  3283. // Factory full reset
  3284. factory_reset(0);
  3285. //-//
  3286. /*
  3287. } else if(code_seen("rrr")) {
  3288. MYSERIAL.println("=== checking ===");
  3289. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3290. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3291. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3292. MYSERIAL.println(farm_mode,DEC);
  3293. MYSERIAL.println(eCheckMode,DEC);
  3294. } else if(code_seen("www")) {
  3295. MYSERIAL.println("=== @ FF ===");
  3296. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3297. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3298. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3299. */
  3300. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3301. uint16_t nDiameter;
  3302. if(code_seen('D'))
  3303. {
  3304. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3305. nozzle_diameter_check(nDiameter);
  3306. }
  3307. else if(code_seen("set") && farm_mode)
  3308. {
  3309. strchr_pointer++; // skip 1st char (~ 's')
  3310. strchr_pointer++; // skip 2nd char (~ 'e')
  3311. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3312. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3313. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3314. }
  3315. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3316. //-// !!! SupportMenu
  3317. /*
  3318. // musi byt PRED "PRUSA model"
  3319. } else if (code_seen("smodel")) { //! PRUSA smodel
  3320. size_t nOffset;
  3321. // ! -> "l"
  3322. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3323. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3324. if(*(strchr_pointer+1+nOffset))
  3325. printer_smodel_check(strchr_pointer);
  3326. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3327. } else if (code_seen("model")) { //! PRUSA model
  3328. uint16_t nPrinterModel;
  3329. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3330. nPrinterModel=(uint16_t)code_value_long();
  3331. if(nPrinterModel!=0)
  3332. printer_model_check(nPrinterModel);
  3333. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3334. } else if (code_seen("version")) { //! PRUSA version
  3335. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3336. while(*strchr_pointer==' ') // skip leading spaces
  3337. strchr_pointer++;
  3338. if(*strchr_pointer!=0)
  3339. fw_version_check(strchr_pointer);
  3340. else SERIAL_PROTOCOLLN(FW_VERSION);
  3341. } else if (code_seen("gcode")) { //! PRUSA gcode
  3342. uint16_t nGcodeLevel;
  3343. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3344. nGcodeLevel=(uint16_t)code_value_long();
  3345. if(nGcodeLevel!=0)
  3346. gcode_level_check(nGcodeLevel);
  3347. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3348. */
  3349. }
  3350. //else if (code_seen('Cal')) {
  3351. // lcd_calibration();
  3352. // }
  3353. }
  3354. // This prevents reading files with "^" in their names.
  3355. // Since it is unclear, if there is some usage of this construct,
  3356. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3357. // else if (code_seen('^')) {
  3358. // // nothing, this is a version line
  3359. // }
  3360. else if(code_seen('G'))
  3361. {
  3362. gcode_in_progress = (int)code_value();
  3363. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3364. switch (gcode_in_progress)
  3365. {
  3366. //! ### G0, G1 - Coordinated movement X Y Z E
  3367. // --------------------------------------
  3368. case 0: // G0 -> G1
  3369. case 1: // G1
  3370. if(Stopped == false) {
  3371. #ifdef FILAMENT_RUNOUT_SUPPORT
  3372. if(READ(FR_SENS)){
  3373. int feedmultiplyBckp=feedmultiply;
  3374. float target[4];
  3375. float lastpos[4];
  3376. target[X_AXIS]=current_position[X_AXIS];
  3377. target[Y_AXIS]=current_position[Y_AXIS];
  3378. target[Z_AXIS]=current_position[Z_AXIS];
  3379. target[E_AXIS]=current_position[E_AXIS];
  3380. lastpos[X_AXIS]=current_position[X_AXIS];
  3381. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3382. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3383. lastpos[E_AXIS]=current_position[E_AXIS];
  3384. //retract by E
  3385. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3386. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3387. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3388. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3389. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3390. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3391. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3392. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3393. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3394. //finish moves
  3395. st_synchronize();
  3396. //disable extruder steppers so filament can be removed
  3397. disable_e0();
  3398. disable_e1();
  3399. disable_e2();
  3400. _delay(100);
  3401. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3402. uint8_t cnt=0;
  3403. int counterBeep = 0;
  3404. lcd_wait_interact();
  3405. while(!lcd_clicked()){
  3406. cnt++;
  3407. manage_heater();
  3408. manage_inactivity(true);
  3409. //lcd_update(0);
  3410. if(cnt==0)
  3411. {
  3412. #if BEEPER > 0
  3413. if (counterBeep== 500){
  3414. counterBeep = 0;
  3415. }
  3416. SET_OUTPUT(BEEPER);
  3417. if (counterBeep== 0){
  3418. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3419. WRITE(BEEPER,HIGH);
  3420. }
  3421. if (counterBeep== 20){
  3422. WRITE(BEEPER,LOW);
  3423. }
  3424. counterBeep++;
  3425. #else
  3426. #endif
  3427. }
  3428. }
  3429. WRITE(BEEPER,LOW);
  3430. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3432. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3434. lcd_change_fil_state = 0;
  3435. lcd_loading_filament();
  3436. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3437. lcd_change_fil_state = 0;
  3438. lcd_alright();
  3439. switch(lcd_change_fil_state){
  3440. case 2:
  3441. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3442. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3443. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3445. lcd_loading_filament();
  3446. break;
  3447. case 3:
  3448. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3449. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3450. lcd_loading_color();
  3451. break;
  3452. default:
  3453. lcd_change_success();
  3454. break;
  3455. }
  3456. }
  3457. target[E_AXIS]+= 5;
  3458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3459. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3461. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3462. //plan_set_e_position(current_position[E_AXIS]);
  3463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3464. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3465. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3466. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3467. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3468. plan_set_e_position(lastpos[E_AXIS]);
  3469. feedmultiply=feedmultiplyBckp;
  3470. char cmd[9];
  3471. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3472. enquecommand(cmd);
  3473. }
  3474. #endif
  3475. get_coordinates(); // For X Y Z E F
  3476. // When recovering from a previous print move, restore the originally
  3477. // calculated target position on the first USB/SD command. This accounts
  3478. // properly for relative moves
  3479. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3480. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3481. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3482. {
  3483. memcpy(destination, saved_target, sizeof(destination));
  3484. saved_target[0] = SAVED_TARGET_UNSET;
  3485. }
  3486. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3487. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3488. }
  3489. #ifdef FWRETRACT
  3490. if(cs.autoretract_enabled)
  3491. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3492. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3493. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3494. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3495. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3496. retract(!retracted[active_extruder]);
  3497. return;
  3498. }
  3499. }
  3500. #endif //FWRETRACT
  3501. prepare_move();
  3502. //ClearToSend();
  3503. }
  3504. break;
  3505. //! ### G2 - CW ARC
  3506. // ------------------------------
  3507. case 2:
  3508. if(Stopped == false) {
  3509. get_arc_coordinates();
  3510. prepare_arc_move(true);
  3511. }
  3512. break;
  3513. //! ### G3 - CCW ARC
  3514. // -------------------------------
  3515. case 3:
  3516. if(Stopped == false) {
  3517. get_arc_coordinates();
  3518. prepare_arc_move(false);
  3519. }
  3520. break;
  3521. //! ### G4 - Dwell
  3522. // -------------------------------
  3523. case 4:
  3524. codenum = 0;
  3525. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3526. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3527. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3528. st_synchronize();
  3529. codenum += _millis(); // keep track of when we started waiting
  3530. previous_millis_cmd = _millis();
  3531. while(_millis() < codenum) {
  3532. manage_heater();
  3533. manage_inactivity();
  3534. lcd_update(0);
  3535. }
  3536. break;
  3537. #ifdef FWRETRACT
  3538. //! ### G10 Retract
  3539. // ------------------------------
  3540. case 10:
  3541. #if EXTRUDERS > 1
  3542. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3543. retract(true,retracted_swap[active_extruder]);
  3544. #else
  3545. retract(true);
  3546. #endif
  3547. break;
  3548. //! ### G11 - Retract recover
  3549. // -----------------------------
  3550. case 11:
  3551. #if EXTRUDERS > 1
  3552. retract(false,retracted_swap[active_extruder]);
  3553. #else
  3554. retract(false);
  3555. #endif
  3556. break;
  3557. #endif //FWRETRACT
  3558. //! ### G28 - Home all Axis one at a time
  3559. // --------------------------------------------
  3560. case 28:
  3561. {
  3562. long home_x_value = 0;
  3563. long home_y_value = 0;
  3564. long home_z_value = 0;
  3565. // Which axes should be homed?
  3566. bool home_x = code_seen(axis_codes[X_AXIS]);
  3567. home_x_value = code_value_long();
  3568. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3569. home_y_value = code_value_long();
  3570. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3571. home_z_value = code_value_long();
  3572. bool without_mbl = code_seen('W');
  3573. // calibrate?
  3574. #ifdef TMC2130
  3575. bool calib = code_seen('C');
  3576. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3577. #else
  3578. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3579. #endif //TMC2130
  3580. if ((home_x || home_y || without_mbl || home_z) == false) {
  3581. // Push the commands to the front of the message queue in the reverse order!
  3582. // There shall be always enough space reserved for these commands.
  3583. goto case_G80;
  3584. }
  3585. break;
  3586. }
  3587. #ifdef ENABLE_AUTO_BED_LEVELING
  3588. //! ### G29 - Detailed Z-Probe
  3589. // --------------------------------
  3590. case 29:
  3591. {
  3592. #if Z_MIN_PIN == -1
  3593. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3594. #endif
  3595. // Prevent user from running a G29 without first homing in X and Y
  3596. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3597. {
  3598. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3599. SERIAL_ECHO_START;
  3600. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3601. break; // abort G29, since we don't know where we are
  3602. }
  3603. st_synchronize();
  3604. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3605. //vector_3 corrected_position = plan_get_position_mm();
  3606. //corrected_position.debug("position before G29");
  3607. plan_bed_level_matrix.set_to_identity();
  3608. vector_3 uncorrected_position = plan_get_position();
  3609. //uncorrected_position.debug("position durring G29");
  3610. current_position[X_AXIS] = uncorrected_position.x;
  3611. current_position[Y_AXIS] = uncorrected_position.y;
  3612. current_position[Z_AXIS] = uncorrected_position.z;
  3613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3614. int l_feedmultiply = setup_for_endstop_move();
  3615. feedrate = homing_feedrate[Z_AXIS];
  3616. #ifdef AUTO_BED_LEVELING_GRID
  3617. // probe at the points of a lattice grid
  3618. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3619. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3620. // solve the plane equation ax + by + d = z
  3621. // A is the matrix with rows [x y 1] for all the probed points
  3622. // B is the vector of the Z positions
  3623. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3624. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3625. // "A" matrix of the linear system of equations
  3626. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3627. // "B" vector of Z points
  3628. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3629. int probePointCounter = 0;
  3630. bool zig = true;
  3631. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3632. {
  3633. int xProbe, xInc;
  3634. if (zig)
  3635. {
  3636. xProbe = LEFT_PROBE_BED_POSITION;
  3637. //xEnd = RIGHT_PROBE_BED_POSITION;
  3638. xInc = xGridSpacing;
  3639. zig = false;
  3640. } else // zag
  3641. {
  3642. xProbe = RIGHT_PROBE_BED_POSITION;
  3643. //xEnd = LEFT_PROBE_BED_POSITION;
  3644. xInc = -xGridSpacing;
  3645. zig = true;
  3646. }
  3647. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3648. {
  3649. float z_before;
  3650. if (probePointCounter == 0)
  3651. {
  3652. // raise before probing
  3653. z_before = Z_RAISE_BEFORE_PROBING;
  3654. } else
  3655. {
  3656. // raise extruder
  3657. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3658. }
  3659. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3660. eqnBVector[probePointCounter] = measured_z;
  3661. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3662. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3663. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3664. probePointCounter++;
  3665. xProbe += xInc;
  3666. }
  3667. }
  3668. clean_up_after_endstop_move(l_feedmultiply);
  3669. // solve lsq problem
  3670. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3671. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3672. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3673. SERIAL_PROTOCOLPGM(" b: ");
  3674. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3675. SERIAL_PROTOCOLPGM(" d: ");
  3676. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3677. set_bed_level_equation_lsq(plane_equation_coefficients);
  3678. free(plane_equation_coefficients);
  3679. #else // AUTO_BED_LEVELING_GRID not defined
  3680. // Probe at 3 arbitrary points
  3681. // probe 1
  3682. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3683. // probe 2
  3684. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3685. // probe 3
  3686. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3687. clean_up_after_endstop_move(l_feedmultiply);
  3688. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3689. #endif // AUTO_BED_LEVELING_GRID
  3690. st_synchronize();
  3691. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3692. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3693. // When the bed is uneven, this height must be corrected.
  3694. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3695. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3696. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3697. z_tmp = current_position[Z_AXIS];
  3698. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3699. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3700. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3701. }
  3702. break;
  3703. #ifndef Z_PROBE_SLED
  3704. //! ### G30 - Single Z Probe
  3705. // ------------------------------------
  3706. case 30:
  3707. {
  3708. st_synchronize();
  3709. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3710. int l_feedmultiply = setup_for_endstop_move();
  3711. feedrate = homing_feedrate[Z_AXIS];
  3712. run_z_probe();
  3713. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3714. SERIAL_PROTOCOLPGM(" X: ");
  3715. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3716. SERIAL_PROTOCOLPGM(" Y: ");
  3717. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3718. SERIAL_PROTOCOLPGM(" Z: ");
  3719. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3720. SERIAL_PROTOCOLPGM("\n");
  3721. clean_up_after_endstop_move(l_feedmultiply);
  3722. }
  3723. break;
  3724. #else
  3725. //! ### G31 - Dock the sled
  3726. // ---------------------------
  3727. case 31:
  3728. dock_sled(true);
  3729. break;
  3730. //! ### G32 - Undock the sled
  3731. // ----------------------------
  3732. case 32:
  3733. dock_sled(false);
  3734. break;
  3735. #endif // Z_PROBE_SLED
  3736. #endif // ENABLE_AUTO_BED_LEVELING
  3737. #ifdef MESH_BED_LEVELING
  3738. //! ### G30 - Single Z Probe
  3739. // ----------------------------
  3740. case 30:
  3741. {
  3742. st_synchronize();
  3743. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3744. int l_feedmultiply = setup_for_endstop_move();
  3745. feedrate = homing_feedrate[Z_AXIS];
  3746. find_bed_induction_sensor_point_z(-10.f, 3);
  3747. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3748. clean_up_after_endstop_move(l_feedmultiply);
  3749. }
  3750. break;
  3751. //! ### G75 - Print temperature interpolation
  3752. // ---------------------------------------------
  3753. case 75:
  3754. {
  3755. for (int i = 40; i <= 110; i++)
  3756. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3757. }
  3758. break;
  3759. //! ### G76 - PINDA probe temperature calibration
  3760. // ------------------------------------------------
  3761. case 76:
  3762. {
  3763. #ifdef PINDA_THERMISTOR
  3764. if (true)
  3765. {
  3766. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3767. //we need to know accurate position of first calibration point
  3768. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3769. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3770. break;
  3771. }
  3772. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3773. {
  3774. // We don't know where we are! HOME!
  3775. // Push the commands to the front of the message queue in the reverse order!
  3776. // There shall be always enough space reserved for these commands.
  3777. repeatcommand_front(); // repeat G76 with all its parameters
  3778. enquecommand_front_P((PSTR("G28 W0")));
  3779. break;
  3780. }
  3781. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3782. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3783. if (result)
  3784. {
  3785. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3786. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3787. current_position[Z_AXIS] = 50;
  3788. current_position[Y_AXIS] = 180;
  3789. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3790. st_synchronize();
  3791. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3792. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3793. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3794. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3795. st_synchronize();
  3796. gcode_G28(false, false, true);
  3797. }
  3798. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3799. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3800. current_position[Z_AXIS] = 100;
  3801. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3802. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3803. lcd_temp_cal_show_result(false);
  3804. break;
  3805. }
  3806. }
  3807. lcd_update_enable(true);
  3808. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3809. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3810. float zero_z;
  3811. int z_shift = 0; //unit: steps
  3812. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3813. if (start_temp < 35) start_temp = 35;
  3814. if (start_temp < current_temperature_pinda) start_temp += 5;
  3815. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3816. // setTargetHotend(200, 0);
  3817. setTargetBed(70 + (start_temp - 30));
  3818. custom_message_type = CustomMsg::TempCal;
  3819. custom_message_state = 1;
  3820. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3821. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3822. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3823. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3824. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3825. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3826. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3827. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3828. st_synchronize();
  3829. while (current_temperature_pinda < start_temp)
  3830. {
  3831. delay_keep_alive(1000);
  3832. serialecho_temperatures();
  3833. }
  3834. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3835. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3836. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3837. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3838. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3839. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3840. st_synchronize();
  3841. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3842. if (find_z_result == false) {
  3843. lcd_temp_cal_show_result(find_z_result);
  3844. break;
  3845. }
  3846. zero_z = current_position[Z_AXIS];
  3847. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3848. int i = -1; for (; i < 5; i++)
  3849. {
  3850. float temp = (40 + i * 5);
  3851. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3852. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3853. if (start_temp <= temp) break;
  3854. }
  3855. for (i++; i < 5; i++)
  3856. {
  3857. float temp = (40 + i * 5);
  3858. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3859. custom_message_state = i + 2;
  3860. setTargetBed(50 + 10 * (temp - 30) / 5);
  3861. // setTargetHotend(255, 0);
  3862. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3863. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3864. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3865. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3866. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3867. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3868. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3869. st_synchronize();
  3870. while (current_temperature_pinda < temp)
  3871. {
  3872. delay_keep_alive(1000);
  3873. serialecho_temperatures();
  3874. }
  3875. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3876. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3877. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3878. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3879. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3880. st_synchronize();
  3881. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3882. if (find_z_result == false) {
  3883. lcd_temp_cal_show_result(find_z_result);
  3884. break;
  3885. }
  3886. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3887. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3888. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3889. }
  3890. lcd_temp_cal_show_result(true);
  3891. break;
  3892. }
  3893. #endif //PINDA_THERMISTOR
  3894. setTargetBed(PINDA_MIN_T);
  3895. float zero_z;
  3896. int z_shift = 0; //unit: steps
  3897. int t_c; // temperature
  3898. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3899. // We don't know where we are! HOME!
  3900. // Push the commands to the front of the message queue in the reverse order!
  3901. // There shall be always enough space reserved for these commands.
  3902. repeatcommand_front(); // repeat G76 with all its parameters
  3903. enquecommand_front_P((PSTR("G28 W0")));
  3904. break;
  3905. }
  3906. puts_P(_N("PINDA probe calibration start"));
  3907. custom_message_type = CustomMsg::TempCal;
  3908. custom_message_state = 1;
  3909. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3910. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3911. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3912. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3913. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3914. st_synchronize();
  3915. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3916. delay_keep_alive(1000);
  3917. serialecho_temperatures();
  3918. }
  3919. //enquecommand_P(PSTR("M190 S50"));
  3920. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3921. delay_keep_alive(1000);
  3922. serialecho_temperatures();
  3923. }
  3924. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3925. current_position[Z_AXIS] = 5;
  3926. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3927. current_position[X_AXIS] = BED_X0;
  3928. current_position[Y_AXIS] = BED_Y0;
  3929. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3930. st_synchronize();
  3931. find_bed_induction_sensor_point_z(-1.f);
  3932. zero_z = current_position[Z_AXIS];
  3933. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3934. for (int i = 0; i<5; i++) {
  3935. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3936. custom_message_state = i + 2;
  3937. t_c = 60 + i * 10;
  3938. setTargetBed(t_c);
  3939. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3940. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3941. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3942. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3943. st_synchronize();
  3944. while (degBed() < t_c) {
  3945. delay_keep_alive(1000);
  3946. serialecho_temperatures();
  3947. }
  3948. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3949. delay_keep_alive(1000);
  3950. serialecho_temperatures();
  3951. }
  3952. current_position[Z_AXIS] = 5;
  3953. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3954. current_position[X_AXIS] = BED_X0;
  3955. current_position[Y_AXIS] = BED_Y0;
  3956. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3957. st_synchronize();
  3958. find_bed_induction_sensor_point_z(-1.f);
  3959. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3960. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3961. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3962. }
  3963. custom_message_type = CustomMsg::Status;
  3964. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3965. puts_P(_N("Temperature calibration done."));
  3966. disable_x();
  3967. disable_y();
  3968. disable_z();
  3969. disable_e0();
  3970. disable_e1();
  3971. disable_e2();
  3972. setTargetBed(0); //set bed target temperature back to 0
  3973. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3974. temp_cal_active = true;
  3975. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3976. lcd_update_enable(true);
  3977. lcd_update(2);
  3978. }
  3979. break;
  3980. //! ### G80 - Mesh-based Z probe
  3981. // -----------------------------------
  3982. /*
  3983. * Probes a grid and produces a mesh to compensate for variable bed height
  3984. * The S0 report the points as below
  3985. * +----> X-axis
  3986. * |
  3987. * |
  3988. * v Y-axis
  3989. */
  3990. case 80:
  3991. #ifdef MK1BP
  3992. break;
  3993. #endif //MK1BP
  3994. case_G80:
  3995. {
  3996. mesh_bed_leveling_flag = true;
  3997. #ifndef PINDA_THERMISTOR
  3998. static bool run = false; // thermistor-less PINDA temperature compensation is running
  3999. #endif // ndef PINDA_THERMISTOR
  4000. #ifdef SUPPORT_VERBOSITY
  4001. int8_t verbosity_level = 0;
  4002. if (code_seen('V')) {
  4003. // Just 'V' without a number counts as V1.
  4004. char c = strchr_pointer[1];
  4005. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4006. }
  4007. #endif //SUPPORT_VERBOSITY
  4008. // Firstly check if we know where we are
  4009. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4010. // We don't know where we are! HOME!
  4011. // Push the commands to the front of the message queue in the reverse order!
  4012. // There shall be always enough space reserved for these commands.
  4013. if (lcd_commands_type != LcdCommands::StopPrint) {
  4014. repeatcommand_front(); // repeat G80 with all its parameters
  4015. enquecommand_front_P((PSTR("G28 W0")));
  4016. }
  4017. else {
  4018. mesh_bed_leveling_flag = false;
  4019. }
  4020. break;
  4021. }
  4022. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4023. if (code_seen('N')) {
  4024. nMeasPoints = code_value_uint8();
  4025. if (nMeasPoints != 7) {
  4026. nMeasPoints = 3;
  4027. }
  4028. }
  4029. else {
  4030. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4031. }
  4032. uint8_t nProbeRetry = 3;
  4033. if (code_seen('R')) {
  4034. nProbeRetry = code_value_uint8();
  4035. if (nProbeRetry > 10) {
  4036. nProbeRetry = 10;
  4037. }
  4038. }
  4039. else {
  4040. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4041. }
  4042. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4043. #ifndef PINDA_THERMISTOR
  4044. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4045. {
  4046. if (lcd_commands_type != LcdCommands::StopPrint) {
  4047. temp_compensation_start();
  4048. run = true;
  4049. repeatcommand_front(); // repeat G80 with all its parameters
  4050. enquecommand_front_P((PSTR("G28 W0")));
  4051. }
  4052. else {
  4053. mesh_bed_leveling_flag = false;
  4054. }
  4055. break;
  4056. }
  4057. run = false;
  4058. #endif //PINDA_THERMISTOR
  4059. if (lcd_commands_type == LcdCommands::StopPrint) {
  4060. mesh_bed_leveling_flag = false;
  4061. break;
  4062. }
  4063. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4064. CustomMsg custom_message_type_old = custom_message_type;
  4065. unsigned int custom_message_state_old = custom_message_state;
  4066. custom_message_type = CustomMsg::MeshBedLeveling;
  4067. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4068. lcd_update(1);
  4069. mbl.reset(); //reset mesh bed leveling
  4070. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4071. // consumed during the first movements following this statement.
  4072. babystep_undo();
  4073. // Cycle through all points and probe them
  4074. // First move up. During this first movement, the babystepping will be reverted.
  4075. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4076. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4077. // The move to the first calibration point.
  4078. current_position[X_AXIS] = BED_X0;
  4079. current_position[Y_AXIS] = BED_Y0;
  4080. #ifdef SUPPORT_VERBOSITY
  4081. if (verbosity_level >= 1)
  4082. {
  4083. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4084. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4085. }
  4086. #else //SUPPORT_VERBOSITY
  4087. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4088. #endif //SUPPORT_VERBOSITY
  4089. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4090. // Wait until the move is finished.
  4091. st_synchronize();
  4092. uint8_t mesh_point = 0; //index number of calibration point
  4093. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4094. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4095. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4096. #ifdef SUPPORT_VERBOSITY
  4097. if (verbosity_level >= 1) {
  4098. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4099. }
  4100. #endif // SUPPORT_VERBOSITY
  4101. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4102. const char *kill_message = NULL;
  4103. while (mesh_point != nMeasPoints * nMeasPoints) {
  4104. // Get coords of a measuring point.
  4105. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4106. uint8_t iy = mesh_point / nMeasPoints;
  4107. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4108. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4109. custom_message_state--;
  4110. mesh_point++;
  4111. continue; //skip
  4112. }*/
  4113. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4114. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4115. {
  4116. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4117. }
  4118. float z0 = 0.f;
  4119. if (has_z && (mesh_point > 0)) {
  4120. uint16_t z_offset_u = 0;
  4121. if (nMeasPoints == 7) {
  4122. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4123. }
  4124. else {
  4125. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4126. }
  4127. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4128. #ifdef SUPPORT_VERBOSITY
  4129. if (verbosity_level >= 1) {
  4130. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4131. }
  4132. #endif // SUPPORT_VERBOSITY
  4133. }
  4134. // Move Z up to MESH_HOME_Z_SEARCH.
  4135. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4136. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4137. float init_z_bckp = current_position[Z_AXIS];
  4138. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4139. st_synchronize();
  4140. // Move to XY position of the sensor point.
  4141. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4142. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4143. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4144. #ifdef SUPPORT_VERBOSITY
  4145. if (verbosity_level >= 1) {
  4146. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4147. SERIAL_PROTOCOL(mesh_point);
  4148. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4149. }
  4150. #else //SUPPORT_VERBOSITY
  4151. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4152. #endif // SUPPORT_VERBOSITY
  4153. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4154. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4155. st_synchronize();
  4156. // Go down until endstop is hit
  4157. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4158. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4159. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4160. break;
  4161. }
  4162. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4163. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4164. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4165. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4166. st_synchronize();
  4167. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4168. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4169. break;
  4170. }
  4171. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4172. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4173. break;
  4174. }
  4175. }
  4176. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4177. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4178. break;
  4179. }
  4180. #ifdef SUPPORT_VERBOSITY
  4181. if (verbosity_level >= 10) {
  4182. SERIAL_ECHOPGM("X: ");
  4183. MYSERIAL.print(current_position[X_AXIS], 5);
  4184. SERIAL_ECHOLNPGM("");
  4185. SERIAL_ECHOPGM("Y: ");
  4186. MYSERIAL.print(current_position[Y_AXIS], 5);
  4187. SERIAL_PROTOCOLPGM("\n");
  4188. }
  4189. #endif // SUPPORT_VERBOSITY
  4190. float offset_z = 0;
  4191. #ifdef PINDA_THERMISTOR
  4192. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4193. #endif //PINDA_THERMISTOR
  4194. // #ifdef SUPPORT_VERBOSITY
  4195. /* if (verbosity_level >= 1)
  4196. {
  4197. SERIAL_ECHOPGM("mesh bed leveling: ");
  4198. MYSERIAL.print(current_position[Z_AXIS], 5);
  4199. SERIAL_ECHOPGM(" offset: ");
  4200. MYSERIAL.print(offset_z, 5);
  4201. SERIAL_ECHOLNPGM("");
  4202. }*/
  4203. // #endif // SUPPORT_VERBOSITY
  4204. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4205. custom_message_state--;
  4206. mesh_point++;
  4207. lcd_update(1);
  4208. }
  4209. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4210. #ifdef SUPPORT_VERBOSITY
  4211. if (verbosity_level >= 20) {
  4212. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4213. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4214. MYSERIAL.print(current_position[Z_AXIS], 5);
  4215. }
  4216. #endif // SUPPORT_VERBOSITY
  4217. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4218. st_synchronize();
  4219. if (mesh_point != nMeasPoints * nMeasPoints) {
  4220. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4221. bool bState;
  4222. do { // repeat until Z-leveling o.k.
  4223. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4224. #ifdef TMC2130
  4225. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4226. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4227. #else // TMC2130
  4228. lcd_wait_for_click_delay(0); // ~ no timeout
  4229. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4230. #endif // TMC2130
  4231. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4232. bState=enable_z_endstop(false);
  4233. current_position[Z_AXIS] -= 1;
  4234. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4235. st_synchronize();
  4236. enable_z_endstop(true);
  4237. #ifdef TMC2130
  4238. tmc2130_home_enter(Z_AXIS_MASK);
  4239. #endif // TMC2130
  4240. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4241. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4242. st_synchronize();
  4243. #ifdef TMC2130
  4244. tmc2130_home_exit();
  4245. #endif // TMC2130
  4246. enable_z_endstop(bState);
  4247. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4248. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4249. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4250. lcd_update_enable(true); // display / status-line recovery
  4251. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4252. repeatcommand_front(); // re-run (i.e. of "G80")
  4253. break;
  4254. }
  4255. clean_up_after_endstop_move(l_feedmultiply);
  4256. // SERIAL_ECHOLNPGM("clean up finished ");
  4257. #ifndef PINDA_THERMISTOR
  4258. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4259. #endif
  4260. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4261. // SERIAL_ECHOLNPGM("babystep applied");
  4262. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4263. #ifdef SUPPORT_VERBOSITY
  4264. if (verbosity_level >= 1) {
  4265. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4266. }
  4267. #endif // SUPPORT_VERBOSITY
  4268. for (uint8_t i = 0; i < 4; ++i) {
  4269. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4270. long correction = 0;
  4271. if (code_seen(codes[i]))
  4272. correction = code_value_long();
  4273. else if (eeprom_bed_correction_valid) {
  4274. unsigned char *addr = (i < 2) ?
  4275. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4276. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4277. correction = eeprom_read_int8(addr);
  4278. }
  4279. if (correction == 0)
  4280. continue;
  4281. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4282. SERIAL_ERROR_START;
  4283. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4284. SERIAL_ECHO(correction);
  4285. SERIAL_ECHOLNPGM(" microns");
  4286. }
  4287. else {
  4288. float offset = float(correction) * 0.001f;
  4289. switch (i) {
  4290. case 0:
  4291. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4292. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4293. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4294. }
  4295. }
  4296. break;
  4297. case 1:
  4298. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4299. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4300. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4301. }
  4302. }
  4303. break;
  4304. case 2:
  4305. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4306. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4307. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4308. }
  4309. }
  4310. break;
  4311. case 3:
  4312. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4313. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4314. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4315. }
  4316. }
  4317. break;
  4318. }
  4319. }
  4320. }
  4321. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4322. if (nMeasPoints == 3) {
  4323. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4324. }
  4325. /*
  4326. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4327. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4328. SERIAL_PROTOCOLPGM(",");
  4329. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4330. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4331. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4332. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4333. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4334. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4335. SERIAL_PROTOCOLPGM(" ");
  4336. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4337. }
  4338. SERIAL_PROTOCOLPGM("\n");
  4339. }
  4340. */
  4341. if (nMeasPoints == 7 && magnet_elimination) {
  4342. mbl_interpolation(nMeasPoints);
  4343. }
  4344. /*
  4345. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4346. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4347. SERIAL_PROTOCOLPGM(",");
  4348. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4349. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4350. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4351. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4352. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4353. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4354. SERIAL_PROTOCOLPGM(" ");
  4355. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4356. }
  4357. SERIAL_PROTOCOLPGM("\n");
  4358. }
  4359. */
  4360. // SERIAL_ECHOLNPGM("Upsample finished");
  4361. mbl.active = 1; //activate mesh bed leveling
  4362. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4363. go_home_with_z_lift();
  4364. // SERIAL_ECHOLNPGM("Go home finished");
  4365. //unretract (after PINDA preheat retraction)
  4366. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4367. current_position[E_AXIS] += default_retraction;
  4368. plan_buffer_line_curposXYZE(400, active_extruder);
  4369. }
  4370. KEEPALIVE_STATE(NOT_BUSY);
  4371. // Restore custom message state
  4372. lcd_setstatuspgm(_T(WELCOME_MSG));
  4373. custom_message_type = custom_message_type_old;
  4374. custom_message_state = custom_message_state_old;
  4375. mesh_bed_leveling_flag = false;
  4376. mesh_bed_run_from_menu = false;
  4377. lcd_update(2);
  4378. }
  4379. break;
  4380. //! ### G81 - Mesh bed leveling status
  4381. // -----------------------------------------
  4382. /*
  4383. * Prints mesh bed leveling status and bed profile if activated
  4384. */
  4385. case 81:
  4386. if (mbl.active) {
  4387. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4388. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4389. SERIAL_PROTOCOLPGM(",");
  4390. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4391. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4392. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4393. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4394. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4395. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4396. SERIAL_PROTOCOLPGM(" ");
  4397. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4398. }
  4399. SERIAL_PROTOCOLPGM("\n");
  4400. }
  4401. }
  4402. else
  4403. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4404. break;
  4405. #if 0
  4406. /*
  4407. * G82: Single Z probe at current location
  4408. *
  4409. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4410. *
  4411. */
  4412. case 82:
  4413. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4414. int l_feedmultiply = setup_for_endstop_move();
  4415. find_bed_induction_sensor_point_z();
  4416. clean_up_after_endstop_move(l_feedmultiply);
  4417. SERIAL_PROTOCOLPGM("Bed found at: ");
  4418. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4419. SERIAL_PROTOCOLPGM("\n");
  4420. break;
  4421. /*
  4422. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4423. */
  4424. case 83:
  4425. {
  4426. int babystepz = code_seen('S') ? code_value() : 0;
  4427. int BabyPosition = code_seen('P') ? code_value() : 0;
  4428. if (babystepz != 0) {
  4429. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4430. // Is the axis indexed starting with zero or one?
  4431. if (BabyPosition > 4) {
  4432. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4433. }else{
  4434. // Save it to the eeprom
  4435. babystepLoadZ = babystepz;
  4436. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4437. // adjust the Z
  4438. babystepsTodoZadd(babystepLoadZ);
  4439. }
  4440. }
  4441. }
  4442. break;
  4443. /*
  4444. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4445. */
  4446. case 84:
  4447. babystepsTodoZsubtract(babystepLoadZ);
  4448. // babystepLoadZ = 0;
  4449. break;
  4450. /*
  4451. * G85: Prusa3D specific: Pick best babystep
  4452. */
  4453. case 85:
  4454. lcd_pick_babystep();
  4455. break;
  4456. #endif
  4457. /**
  4458. * ### G86 - Disable babystep correction after home
  4459. *
  4460. * This G-code will be performed at the start of a calibration script.
  4461. * (Prusa3D specific)
  4462. */
  4463. case 86:
  4464. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4465. break;
  4466. /**
  4467. * ### G87 - Enable babystep correction after home
  4468. *
  4469. *
  4470. * This G-code will be performed at the end of a calibration script.
  4471. * (Prusa3D specific)
  4472. */
  4473. case 87:
  4474. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4475. break;
  4476. /**
  4477. * ### G88 - Reserved
  4478. *
  4479. * Currently has no effect.
  4480. */
  4481. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4482. case 88:
  4483. break;
  4484. #endif // ENABLE_MESH_BED_LEVELING
  4485. //! ### G90 - Switch off relative mode
  4486. // -------------------------------
  4487. case 90:
  4488. relative_mode = false;
  4489. break;
  4490. //! ### G91 - Switch on relative mode
  4491. // -------------------------------
  4492. case 91:
  4493. relative_mode = true;
  4494. break;
  4495. //! ### G92 - Set position
  4496. // -----------------------------
  4497. case 92:
  4498. if(!code_seen(axis_codes[E_AXIS]))
  4499. st_synchronize();
  4500. for(int8_t i=0; i < NUM_AXIS; i++) {
  4501. if(code_seen(axis_codes[i])) {
  4502. if(i == E_AXIS) {
  4503. current_position[i] = code_value();
  4504. plan_set_e_position(current_position[E_AXIS]);
  4505. }
  4506. else {
  4507. current_position[i] = code_value()+cs.add_homing[i];
  4508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4509. }
  4510. }
  4511. }
  4512. break;
  4513. //! ### G98 - Activate farm mode
  4514. // -----------------------------------
  4515. case 98:
  4516. farm_mode = 1;
  4517. PingTime = _millis();
  4518. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4519. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4520. SilentModeMenu = SILENT_MODE_OFF;
  4521. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4522. fCheckModeInit(); // alternatively invoke printer reset
  4523. break;
  4524. //! ### G99 - Deactivate farm mode
  4525. // -------------------------------------
  4526. case 99:
  4527. farm_mode = 0;
  4528. lcd_printer_connected();
  4529. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4530. lcd_update(2);
  4531. fCheckModeInit(); // alternatively invoke printer reset
  4532. break;
  4533. default:
  4534. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4535. }
  4536. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4537. gcode_in_progress = 0;
  4538. } // end if(code_seen('G'))
  4539. //! ---------------------------------------------------------------------------------
  4540. else if(code_seen('M'))
  4541. {
  4542. int index;
  4543. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4544. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4545. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4546. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4547. } else
  4548. {
  4549. mcode_in_progress = (int)code_value();
  4550. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4551. switch(mcode_in_progress)
  4552. {
  4553. //! ### M0, M1 - Stop the printer
  4554. // ---------------------------------------------------------------
  4555. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4556. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4557. {
  4558. char *src = strchr_pointer + 2;
  4559. codenum = 0;
  4560. bool hasP = false, hasS = false;
  4561. if (code_seen('P')) {
  4562. codenum = code_value(); // milliseconds to wait
  4563. hasP = codenum > 0;
  4564. }
  4565. if (code_seen('S')) {
  4566. codenum = code_value() * 1000; // seconds to wait
  4567. hasS = codenum > 0;
  4568. }
  4569. starpos = strchr(src, '*');
  4570. if (starpos != NULL) *(starpos) = '\0';
  4571. while (*src == ' ') ++src;
  4572. if (!hasP && !hasS && *src != '\0') {
  4573. lcd_setstatus(src);
  4574. } else {
  4575. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4576. }
  4577. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4578. st_synchronize();
  4579. previous_millis_cmd = _millis();
  4580. if (codenum > 0){
  4581. codenum += _millis(); // keep track of when we started waiting
  4582. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4583. while(_millis() < codenum && !lcd_clicked()){
  4584. manage_heater();
  4585. manage_inactivity(true);
  4586. lcd_update(0);
  4587. }
  4588. KEEPALIVE_STATE(IN_HANDLER);
  4589. lcd_ignore_click(false);
  4590. }else{
  4591. marlin_wait_for_click();
  4592. }
  4593. if (IS_SD_PRINTING)
  4594. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4595. else
  4596. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4597. }
  4598. break;
  4599. //! ### M17 - Enable axes
  4600. // ---------------------------------
  4601. case 17:
  4602. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4603. enable_x();
  4604. enable_y();
  4605. enable_z();
  4606. enable_e0();
  4607. enable_e1();
  4608. enable_e2();
  4609. break;
  4610. #ifdef SDSUPPORT
  4611. //! ### M20 - SD Card file list
  4612. // -----------------------------------
  4613. case 20:
  4614. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4615. card.ls();
  4616. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4617. break;
  4618. //! ### M21 - Init SD card
  4619. // ------------------------------------
  4620. case 21:
  4621. card.initsd();
  4622. break;
  4623. //! ### M22 - Release SD card
  4624. // -----------------------------------
  4625. case 22:
  4626. card.release();
  4627. break;
  4628. //! ### M23 - Select file
  4629. // -----------------------------------
  4630. case 23:
  4631. starpos = (strchr(strchr_pointer + 4,'*'));
  4632. if(starpos!=NULL)
  4633. *(starpos)='\0';
  4634. card.openFile(strchr_pointer + 4,true);
  4635. break;
  4636. //! ### M24 - Start/resume SD print
  4637. // ----------------------------------
  4638. case 24:
  4639. if (isPrintPaused)
  4640. lcd_resume_print();
  4641. else
  4642. {
  4643. failstats_reset_print();
  4644. card.startFileprint();
  4645. starttime=_millis();
  4646. }
  4647. break;
  4648. //! ### M26 S\<index\> - Set SD index
  4649. //! Set position in SD card file to index in bytes.
  4650. //! This command is expected to be called after M23 and before M24.
  4651. //! Otherwise effect of this command is undefined.
  4652. // ----------------------------------
  4653. case 26:
  4654. if(card.cardOK && code_seen('S')) {
  4655. long index = code_value_long();
  4656. card.setIndex(index);
  4657. // We don't disable interrupt during update of sdpos_atomic
  4658. // as we expect, that SD card print is not active in this moment
  4659. sdpos_atomic = index;
  4660. }
  4661. break;
  4662. //! ### M27 - Get SD status
  4663. // ----------------------------------
  4664. case 27:
  4665. card.getStatus();
  4666. break;
  4667. //! ### M28 - Start SD write
  4668. // ---------------------------------
  4669. case 28:
  4670. starpos = (strchr(strchr_pointer + 4,'*'));
  4671. if(starpos != NULL){
  4672. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4673. strchr_pointer = strchr(npos,' ') + 1;
  4674. *(starpos) = '\0';
  4675. }
  4676. card.openFile(strchr_pointer+4,false);
  4677. break;
  4678. //! ### M29 - Stop SD write
  4679. // -------------------------------------
  4680. //! Currently has no effect.
  4681. case 29:
  4682. //processed in write to file routine above
  4683. //card,saving = false;
  4684. break;
  4685. //! ### M30 - Delete file <filename>
  4686. // ----------------------------------
  4687. case 30:
  4688. if (card.cardOK){
  4689. card.closefile();
  4690. starpos = (strchr(strchr_pointer + 4,'*'));
  4691. if(starpos != NULL){
  4692. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4693. strchr_pointer = strchr(npos,' ') + 1;
  4694. *(starpos) = '\0';
  4695. }
  4696. card.removeFile(strchr_pointer + 4);
  4697. }
  4698. break;
  4699. //! ### M32 - Select file and start SD print
  4700. // ------------------------------------
  4701. case 32:
  4702. {
  4703. if(card.sdprinting) {
  4704. st_synchronize();
  4705. }
  4706. starpos = (strchr(strchr_pointer + 4,'*'));
  4707. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4708. if(namestartpos==NULL)
  4709. {
  4710. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4711. }
  4712. else
  4713. namestartpos++; //to skip the '!'
  4714. if(starpos!=NULL)
  4715. *(starpos)='\0';
  4716. bool call_procedure=(code_seen('P'));
  4717. if(strchr_pointer>namestartpos)
  4718. call_procedure=false; //false alert, 'P' found within filename
  4719. if( card.cardOK )
  4720. {
  4721. card.openFile(namestartpos,true,!call_procedure);
  4722. if(code_seen('S'))
  4723. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4724. card.setIndex(code_value_long());
  4725. card.startFileprint();
  4726. if(!call_procedure)
  4727. starttime=_millis(); //procedure calls count as normal print time.
  4728. }
  4729. } break;
  4730. //! ### M982 - Start SD write
  4731. // ---------------------------------
  4732. case 928:
  4733. starpos = (strchr(strchr_pointer + 5,'*'));
  4734. if(starpos != NULL){
  4735. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4736. strchr_pointer = strchr(npos,' ') + 1;
  4737. *(starpos) = '\0';
  4738. }
  4739. card.openLogFile(strchr_pointer+5);
  4740. break;
  4741. #endif //SDSUPPORT
  4742. //! ### M31 - Report current print time
  4743. // --------------------------------------------------
  4744. case 31: //M31 take time since the start of the SD print or an M109 command
  4745. {
  4746. stoptime=_millis();
  4747. char time[30];
  4748. unsigned long t=(stoptime-starttime)/1000;
  4749. int sec,min;
  4750. min=t/60;
  4751. sec=t%60;
  4752. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4753. SERIAL_ECHO_START;
  4754. SERIAL_ECHOLN(time);
  4755. lcd_setstatus(time);
  4756. autotempShutdown();
  4757. }
  4758. break;
  4759. //! ### M42 - Set pin state
  4760. // -----------------------------
  4761. case 42:
  4762. if (code_seen('S'))
  4763. {
  4764. int pin_status = code_value();
  4765. int pin_number = LED_PIN;
  4766. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4767. pin_number = code_value();
  4768. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4769. {
  4770. if (sensitive_pins[i] == pin_number)
  4771. {
  4772. pin_number = -1;
  4773. break;
  4774. }
  4775. }
  4776. #if defined(FAN_PIN) && FAN_PIN > -1
  4777. if (pin_number == FAN_PIN)
  4778. fanSpeed = pin_status;
  4779. #endif
  4780. if (pin_number > -1)
  4781. {
  4782. pinMode(pin_number, OUTPUT);
  4783. digitalWrite(pin_number, pin_status);
  4784. analogWrite(pin_number, pin_status);
  4785. }
  4786. }
  4787. break;
  4788. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4789. // --------------------------------------------------------------------
  4790. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4791. // Reset the baby step value and the baby step applied flag.
  4792. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4793. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4794. // Reset the skew and offset in both RAM and EEPROM.
  4795. reset_bed_offset_and_skew();
  4796. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4797. // the planner will not perform any adjustments in the XY plane.
  4798. // Wait for the motors to stop and update the current position with the absolute values.
  4799. world2machine_revert_to_uncorrected();
  4800. break;
  4801. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4802. // ------------------------------------------------------
  4803. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4804. {
  4805. int8_t verbosity_level = 0;
  4806. bool only_Z = code_seen('Z');
  4807. #ifdef SUPPORT_VERBOSITY
  4808. if (code_seen('V'))
  4809. {
  4810. // Just 'V' without a number counts as V1.
  4811. char c = strchr_pointer[1];
  4812. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4813. }
  4814. #endif //SUPPORT_VERBOSITY
  4815. gcode_M45(only_Z, verbosity_level);
  4816. }
  4817. break;
  4818. /*
  4819. case 46:
  4820. {
  4821. // M46: Prusa3D: Show the assigned IP address.
  4822. uint8_t ip[4];
  4823. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4824. if (hasIP) {
  4825. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4826. SERIAL_ECHO(int(ip[0]));
  4827. SERIAL_ECHOPGM(".");
  4828. SERIAL_ECHO(int(ip[1]));
  4829. SERIAL_ECHOPGM(".");
  4830. SERIAL_ECHO(int(ip[2]));
  4831. SERIAL_ECHOPGM(".");
  4832. SERIAL_ECHO(int(ip[3]));
  4833. SERIAL_ECHOLNPGM("");
  4834. } else {
  4835. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4836. }
  4837. break;
  4838. }
  4839. */
  4840. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4841. // ----------------------------------------------------
  4842. case 47:
  4843. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4844. lcd_diag_show_end_stops();
  4845. KEEPALIVE_STATE(IN_HANDLER);
  4846. break;
  4847. #if 0
  4848. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4849. {
  4850. // Disable the default update procedure of the display. We will do a modal dialog.
  4851. lcd_update_enable(false);
  4852. // Let the planner use the uncorrected coordinates.
  4853. mbl.reset();
  4854. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4855. // the planner will not perform any adjustments in the XY plane.
  4856. // Wait for the motors to stop and update the current position with the absolute values.
  4857. world2machine_revert_to_uncorrected();
  4858. // Move the print head close to the bed.
  4859. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4861. st_synchronize();
  4862. // Home in the XY plane.
  4863. set_destination_to_current();
  4864. int l_feedmultiply = setup_for_endstop_move();
  4865. home_xy();
  4866. int8_t verbosity_level = 0;
  4867. if (code_seen('V')) {
  4868. // Just 'V' without a number counts as V1.
  4869. char c = strchr_pointer[1];
  4870. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4871. }
  4872. bool success = scan_bed_induction_points(verbosity_level);
  4873. clean_up_after_endstop_move(l_feedmultiply);
  4874. // Print head up.
  4875. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4877. st_synchronize();
  4878. lcd_update_enable(true);
  4879. break;
  4880. }
  4881. #endif
  4882. #ifdef ENABLE_AUTO_BED_LEVELING
  4883. #ifdef Z_PROBE_REPEATABILITY_TEST
  4884. //! ### M48 - Z-Probe repeatability measurement function.
  4885. // ------------------------------------------------------
  4886. //!
  4887. //! _Usage:_
  4888. //!
  4889. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4890. //!
  4891. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4892. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4893. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4894. //! regenerated.
  4895. //!
  4896. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4897. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4898. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4899. //!
  4900. case 48: // M48 Z-Probe repeatability
  4901. {
  4902. #if Z_MIN_PIN == -1
  4903. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4904. #endif
  4905. double sum=0.0;
  4906. double mean=0.0;
  4907. double sigma=0.0;
  4908. double sample_set[50];
  4909. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4910. double X_current, Y_current, Z_current;
  4911. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4912. if (code_seen('V') || code_seen('v')) {
  4913. verbose_level = code_value();
  4914. if (verbose_level<0 || verbose_level>4 ) {
  4915. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4916. goto Sigma_Exit;
  4917. }
  4918. }
  4919. if (verbose_level > 0) {
  4920. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4921. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4922. }
  4923. if (code_seen('n')) {
  4924. n_samples = code_value();
  4925. if (n_samples<4 || n_samples>50 ) {
  4926. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4927. goto Sigma_Exit;
  4928. }
  4929. }
  4930. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4931. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4932. Z_current = st_get_position_mm(Z_AXIS);
  4933. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4934. ext_position = st_get_position_mm(E_AXIS);
  4935. if (code_seen('X') || code_seen('x') ) {
  4936. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4937. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4938. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4939. goto Sigma_Exit;
  4940. }
  4941. }
  4942. if (code_seen('Y') || code_seen('y') ) {
  4943. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4944. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4945. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4946. goto Sigma_Exit;
  4947. }
  4948. }
  4949. if (code_seen('L') || code_seen('l') ) {
  4950. n_legs = code_value();
  4951. if ( n_legs==1 )
  4952. n_legs = 2;
  4953. if ( n_legs<0 || n_legs>15 ) {
  4954. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4955. goto Sigma_Exit;
  4956. }
  4957. }
  4958. //
  4959. // Do all the preliminary setup work. First raise the probe.
  4960. //
  4961. st_synchronize();
  4962. plan_bed_level_matrix.set_to_identity();
  4963. plan_buffer_line( X_current, Y_current, Z_start_location,
  4964. ext_position,
  4965. homing_feedrate[Z_AXIS]/60,
  4966. active_extruder);
  4967. st_synchronize();
  4968. //
  4969. // Now get everything to the specified probe point So we can safely do a probe to
  4970. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4971. // use that as a starting point for each probe.
  4972. //
  4973. if (verbose_level > 2)
  4974. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4975. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4976. ext_position,
  4977. homing_feedrate[X_AXIS]/60,
  4978. active_extruder);
  4979. st_synchronize();
  4980. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4981. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4982. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4983. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4984. //
  4985. // OK, do the inital probe to get us close to the bed.
  4986. // Then retrace the right amount and use that in subsequent probes
  4987. //
  4988. int l_feedmultiply = setup_for_endstop_move();
  4989. run_z_probe();
  4990. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4991. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4992. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4993. ext_position,
  4994. homing_feedrate[X_AXIS]/60,
  4995. active_extruder);
  4996. st_synchronize();
  4997. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4998. for( n=0; n<n_samples; n++) {
  4999. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5000. if ( n_legs) {
  5001. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5002. int rotational_direction, l;
  5003. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5004. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5005. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5006. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5007. //SERIAL_ECHOPAIR(" theta: ",theta);
  5008. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5009. //SERIAL_PROTOCOLLNPGM("");
  5010. for( l=0; l<n_legs-1; l++) {
  5011. if (rotational_direction==1)
  5012. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5013. else
  5014. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5015. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5016. if ( radius<0.0 )
  5017. radius = -radius;
  5018. X_current = X_probe_location + cos(theta) * radius;
  5019. Y_current = Y_probe_location + sin(theta) * radius;
  5020. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5021. X_current = X_MIN_POS;
  5022. if ( X_current>X_MAX_POS)
  5023. X_current = X_MAX_POS;
  5024. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5025. Y_current = Y_MIN_POS;
  5026. if ( Y_current>Y_MAX_POS)
  5027. Y_current = Y_MAX_POS;
  5028. if (verbose_level>3 ) {
  5029. SERIAL_ECHOPAIR("x: ", X_current);
  5030. SERIAL_ECHOPAIR("y: ", Y_current);
  5031. SERIAL_PROTOCOLLNPGM("");
  5032. }
  5033. do_blocking_move_to( X_current, Y_current, Z_current );
  5034. }
  5035. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5036. }
  5037. int l_feedmultiply = setup_for_endstop_move();
  5038. run_z_probe();
  5039. sample_set[n] = current_position[Z_AXIS];
  5040. //
  5041. // Get the current mean for the data points we have so far
  5042. //
  5043. sum=0.0;
  5044. for( j=0; j<=n; j++) {
  5045. sum = sum + sample_set[j];
  5046. }
  5047. mean = sum / (double (n+1));
  5048. //
  5049. // Now, use that mean to calculate the standard deviation for the
  5050. // data points we have so far
  5051. //
  5052. sum=0.0;
  5053. for( j=0; j<=n; j++) {
  5054. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5055. }
  5056. sigma = sqrt( sum / (double (n+1)) );
  5057. if (verbose_level > 1) {
  5058. SERIAL_PROTOCOL(n+1);
  5059. SERIAL_PROTOCOL(" of ");
  5060. SERIAL_PROTOCOL(n_samples);
  5061. SERIAL_PROTOCOLPGM(" z: ");
  5062. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5063. }
  5064. if (verbose_level > 2) {
  5065. SERIAL_PROTOCOL(" mean: ");
  5066. SERIAL_PROTOCOL_F(mean,6);
  5067. SERIAL_PROTOCOL(" sigma: ");
  5068. SERIAL_PROTOCOL_F(sigma,6);
  5069. }
  5070. if (verbose_level > 0)
  5071. SERIAL_PROTOCOLPGM("\n");
  5072. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5073. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5074. st_synchronize();
  5075. }
  5076. _delay(1000);
  5077. clean_up_after_endstop_move(l_feedmultiply);
  5078. // enable_endstops(true);
  5079. if (verbose_level > 0) {
  5080. SERIAL_PROTOCOLPGM("Mean: ");
  5081. SERIAL_PROTOCOL_F(mean, 6);
  5082. SERIAL_PROTOCOLPGM("\n");
  5083. }
  5084. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5085. SERIAL_PROTOCOL_F(sigma, 6);
  5086. SERIAL_PROTOCOLPGM("\n\n");
  5087. Sigma_Exit:
  5088. break;
  5089. }
  5090. #endif // Z_PROBE_REPEATABILITY_TEST
  5091. #endif // ENABLE_AUTO_BED_LEVELING
  5092. //! ### M73 - Set/get print progress
  5093. // -------------------------------------
  5094. //! _Usage:_
  5095. //!
  5096. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5097. //!
  5098. case 73: //M73 show percent done and time remaining
  5099. if(code_seen('P')) print_percent_done_normal = code_value();
  5100. if(code_seen('R')) print_time_remaining_normal = code_value();
  5101. if(code_seen('Q')) print_percent_done_silent = code_value();
  5102. if(code_seen('S')) print_time_remaining_silent = code_value();
  5103. {
  5104. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5105. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5106. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5107. }
  5108. break;
  5109. //! ### M104 - Set hotend temperature
  5110. // -----------------------------------------
  5111. case 104: // M104
  5112. {
  5113. uint8_t extruder;
  5114. if(setTargetedHotend(104,extruder)){
  5115. break;
  5116. }
  5117. if (code_seen('S'))
  5118. {
  5119. setTargetHotendSafe(code_value(), extruder);
  5120. }
  5121. break;
  5122. }
  5123. //! ### M112 - Emergency stop
  5124. // -----------------------------------------
  5125. case 112:
  5126. kill(MSG_M112_KILL, 3);
  5127. break;
  5128. //! ### M140 - Set bed temperature
  5129. // -----------------------------------------
  5130. case 140:
  5131. if (code_seen('S')) setTargetBed(code_value());
  5132. break;
  5133. //! ### M105 - Report temperatures
  5134. // -----------------------------------------
  5135. case 105:
  5136. {
  5137. uint8_t extruder;
  5138. if(setTargetedHotend(105, extruder)){
  5139. break;
  5140. }
  5141. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5142. SERIAL_PROTOCOLPGM("ok T:");
  5143. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5144. SERIAL_PROTOCOLPGM(" /");
  5145. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5146. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5147. SERIAL_PROTOCOLPGM(" B:");
  5148. SERIAL_PROTOCOL_F(degBed(),1);
  5149. SERIAL_PROTOCOLPGM(" /");
  5150. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5151. #endif //TEMP_BED_PIN
  5152. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5153. SERIAL_PROTOCOLPGM(" T");
  5154. SERIAL_PROTOCOL(cur_extruder);
  5155. SERIAL_PROTOCOLPGM(":");
  5156. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5157. SERIAL_PROTOCOLPGM(" /");
  5158. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5159. }
  5160. #else
  5161. SERIAL_ERROR_START;
  5162. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5163. #endif
  5164. SERIAL_PROTOCOLPGM(" @:");
  5165. #ifdef EXTRUDER_WATTS
  5166. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5167. SERIAL_PROTOCOLPGM("W");
  5168. #else
  5169. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5170. #endif
  5171. SERIAL_PROTOCOLPGM(" B@:");
  5172. #ifdef BED_WATTS
  5173. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5174. SERIAL_PROTOCOLPGM("W");
  5175. #else
  5176. SERIAL_PROTOCOL(getHeaterPower(-1));
  5177. #endif
  5178. #ifdef PINDA_THERMISTOR
  5179. SERIAL_PROTOCOLPGM(" P:");
  5180. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5181. #endif //PINDA_THERMISTOR
  5182. #ifdef AMBIENT_THERMISTOR
  5183. SERIAL_PROTOCOLPGM(" A:");
  5184. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5185. #endif //AMBIENT_THERMISTOR
  5186. #ifdef SHOW_TEMP_ADC_VALUES
  5187. {float raw = 0.0;
  5188. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5189. SERIAL_PROTOCOLPGM(" ADC B:");
  5190. SERIAL_PROTOCOL_F(degBed(),1);
  5191. SERIAL_PROTOCOLPGM("C->");
  5192. raw = rawBedTemp();
  5193. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5194. SERIAL_PROTOCOLPGM(" Rb->");
  5195. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5196. SERIAL_PROTOCOLPGM(" Rxb->");
  5197. SERIAL_PROTOCOL_F(raw, 5);
  5198. #endif
  5199. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5200. SERIAL_PROTOCOLPGM(" T");
  5201. SERIAL_PROTOCOL(cur_extruder);
  5202. SERIAL_PROTOCOLPGM(":");
  5203. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5204. SERIAL_PROTOCOLPGM("C->");
  5205. raw = rawHotendTemp(cur_extruder);
  5206. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5207. SERIAL_PROTOCOLPGM(" Rt");
  5208. SERIAL_PROTOCOL(cur_extruder);
  5209. SERIAL_PROTOCOLPGM("->");
  5210. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5211. SERIAL_PROTOCOLPGM(" Rx");
  5212. SERIAL_PROTOCOL(cur_extruder);
  5213. SERIAL_PROTOCOLPGM("->");
  5214. SERIAL_PROTOCOL_F(raw, 5);
  5215. }}
  5216. #endif
  5217. SERIAL_PROTOCOLLN("");
  5218. KEEPALIVE_STATE(NOT_BUSY);
  5219. return;
  5220. break;
  5221. }
  5222. //! ### M109 - Wait for extruder temperature
  5223. //! Parameters (not mandatory):
  5224. //! * S \<temp\> set extruder temperature
  5225. //! * R \<temp\> set extruder temperature
  5226. //!
  5227. //! Parameters S and R are treated identically.
  5228. //! Command always waits for both cool down and heat up.
  5229. //! If no parameters are supplied waits for previously
  5230. //! set extruder temperature.
  5231. // -------------------------------------------------
  5232. case 109:
  5233. {
  5234. uint8_t extruder;
  5235. if(setTargetedHotend(109, extruder)){
  5236. break;
  5237. }
  5238. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5239. heating_status = 1;
  5240. if (farm_mode) { prusa_statistics(1); };
  5241. #ifdef AUTOTEMP
  5242. autotemp_enabled=false;
  5243. #endif
  5244. if (code_seen('S')) {
  5245. setTargetHotendSafe(code_value(), extruder);
  5246. } else if (code_seen('R')) {
  5247. setTargetHotendSafe(code_value(), extruder);
  5248. }
  5249. #ifdef AUTOTEMP
  5250. if (code_seen('S')) autotemp_min=code_value();
  5251. if (code_seen('B')) autotemp_max=code_value();
  5252. if (code_seen('F'))
  5253. {
  5254. autotemp_factor=code_value();
  5255. autotemp_enabled=true;
  5256. }
  5257. #endif
  5258. codenum = _millis();
  5259. /* See if we are heating up or cooling down */
  5260. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5261. KEEPALIVE_STATE(NOT_BUSY);
  5262. cancel_heatup = false;
  5263. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5264. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5265. KEEPALIVE_STATE(IN_HANDLER);
  5266. heating_status = 2;
  5267. if (farm_mode) { prusa_statistics(2); };
  5268. //starttime=_millis();
  5269. previous_millis_cmd = _millis();
  5270. }
  5271. break;
  5272. //! ### M190 - Wait for bed temperature
  5273. //! Parameters (not mandatory):
  5274. //! * S \<temp\> set extruder temperature and wait for heating
  5275. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5276. //!
  5277. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5278. case 190:
  5279. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5280. {
  5281. bool CooldownNoWait = false;
  5282. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5283. heating_status = 3;
  5284. if (farm_mode) { prusa_statistics(1); };
  5285. if (code_seen('S'))
  5286. {
  5287. setTargetBed(code_value());
  5288. CooldownNoWait = true;
  5289. }
  5290. else if (code_seen('R'))
  5291. {
  5292. setTargetBed(code_value());
  5293. }
  5294. codenum = _millis();
  5295. cancel_heatup = false;
  5296. target_direction = isHeatingBed(); // true if heating, false if cooling
  5297. KEEPALIVE_STATE(NOT_BUSY);
  5298. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5299. {
  5300. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5301. {
  5302. if (!farm_mode) {
  5303. float tt = degHotend(active_extruder);
  5304. SERIAL_PROTOCOLPGM("T:");
  5305. SERIAL_PROTOCOL(tt);
  5306. SERIAL_PROTOCOLPGM(" E:");
  5307. SERIAL_PROTOCOL((int)active_extruder);
  5308. SERIAL_PROTOCOLPGM(" B:");
  5309. SERIAL_PROTOCOL_F(degBed(), 1);
  5310. SERIAL_PROTOCOLLN("");
  5311. }
  5312. codenum = _millis();
  5313. }
  5314. manage_heater();
  5315. manage_inactivity();
  5316. lcd_update(0);
  5317. }
  5318. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5319. KEEPALIVE_STATE(IN_HANDLER);
  5320. heating_status = 4;
  5321. previous_millis_cmd = _millis();
  5322. }
  5323. #endif
  5324. break;
  5325. #if defined(FAN_PIN) && FAN_PIN > -1
  5326. //! ### M106 - Set fan speed
  5327. // -------------------------------------------
  5328. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5329. if (code_seen('S')){
  5330. fanSpeed=constrain(code_value(),0,255);
  5331. }
  5332. else {
  5333. fanSpeed=255;
  5334. }
  5335. break;
  5336. //! ### M107 - Fan off
  5337. // -------------------------------
  5338. case 107:
  5339. fanSpeed = 0;
  5340. break;
  5341. #endif //FAN_PIN
  5342. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5343. //! ### M80 - Turn on the Power Supply
  5344. // -------------------------------
  5345. case 80:
  5346. SET_OUTPUT(PS_ON_PIN); //GND
  5347. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5348. // If you have a switch on suicide pin, this is useful
  5349. // if you want to start another print with suicide feature after
  5350. // a print without suicide...
  5351. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5352. SET_OUTPUT(SUICIDE_PIN);
  5353. WRITE(SUICIDE_PIN, HIGH);
  5354. #endif
  5355. powersupply = true;
  5356. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5357. lcd_update(0);
  5358. break;
  5359. #endif
  5360. //! ### M81 - Turn off Power Supply
  5361. // --------------------------------------
  5362. case 81:
  5363. disable_heater();
  5364. st_synchronize();
  5365. disable_e0();
  5366. disable_e1();
  5367. disable_e2();
  5368. finishAndDisableSteppers();
  5369. fanSpeed = 0;
  5370. _delay(1000); // Wait a little before to switch off
  5371. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5372. st_synchronize();
  5373. suicide();
  5374. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5375. SET_OUTPUT(PS_ON_PIN);
  5376. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5377. #endif
  5378. powersupply = false;
  5379. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5380. lcd_update(0);
  5381. break;
  5382. //! ### M82 - Set E axis to absolute mode
  5383. // ---------------------------------------
  5384. case 82:
  5385. axis_relative_modes[3] = false;
  5386. break;
  5387. //! ### M83 - Set E axis to relative mode
  5388. // ---------------------------------------
  5389. case 83:
  5390. axis_relative_modes[3] = true;
  5391. break;
  5392. //! ### M84, M18 - Disable steppers
  5393. //---------------------------------------
  5394. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5395. //!
  5396. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5397. //!
  5398. case 18: //compatibility
  5399. case 84: // M84
  5400. if(code_seen('S')){
  5401. stepper_inactive_time = code_value() * 1000;
  5402. }
  5403. else
  5404. {
  5405. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5406. if(all_axis)
  5407. {
  5408. st_synchronize();
  5409. disable_e0();
  5410. disable_e1();
  5411. disable_e2();
  5412. finishAndDisableSteppers();
  5413. }
  5414. else
  5415. {
  5416. st_synchronize();
  5417. if (code_seen('X')) disable_x();
  5418. if (code_seen('Y')) disable_y();
  5419. if (code_seen('Z')) disable_z();
  5420. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5421. if (code_seen('E')) {
  5422. disable_e0();
  5423. disable_e1();
  5424. disable_e2();
  5425. }
  5426. #endif
  5427. }
  5428. }
  5429. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5430. print_time_remaining_init();
  5431. snmm_filaments_used = 0;
  5432. break;
  5433. //! ### M85 - Set max inactive time
  5434. // ---------------------------------------
  5435. case 85: // M85
  5436. if(code_seen('S')) {
  5437. max_inactive_time = code_value() * 1000;
  5438. }
  5439. break;
  5440. #ifdef SAFETYTIMER
  5441. //! ### M86 - Set safety timer expiration time
  5442. //!
  5443. //! _Usage:_
  5444. //! M86 S<seconds>
  5445. //!
  5446. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5447. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5448. case 86:
  5449. if (code_seen('S')) {
  5450. safetytimer_inactive_time = code_value() * 1000;
  5451. safetyTimer.start();
  5452. }
  5453. break;
  5454. #endif
  5455. //! ### M92 Set Axis steps-per-unit
  5456. // ---------------------------------------
  5457. //! Same syntax as G92
  5458. case 92:
  5459. for(int8_t i=0; i < NUM_AXIS; i++)
  5460. {
  5461. if(code_seen(axis_codes[i]))
  5462. {
  5463. if(i == 3) { // E
  5464. float value = code_value();
  5465. if(value < 20.0) {
  5466. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5467. cs.max_jerk[E_AXIS] *= factor;
  5468. max_feedrate[i] *= factor;
  5469. axis_steps_per_sqr_second[i] *= factor;
  5470. }
  5471. cs.axis_steps_per_unit[i] = value;
  5472. }
  5473. else {
  5474. cs.axis_steps_per_unit[i] = code_value();
  5475. }
  5476. }
  5477. }
  5478. break;
  5479. //! ### M110 - Set Line number
  5480. // ---------------------------------------
  5481. case 110:
  5482. if (code_seen('N'))
  5483. gcode_LastN = code_value_long();
  5484. break;
  5485. //! ### M113 - Get or set host keep-alive interval
  5486. // ------------------------------------------
  5487. case 113:
  5488. if (code_seen('S')) {
  5489. host_keepalive_interval = (uint8_t)code_value_short();
  5490. // NOMORE(host_keepalive_interval, 60);
  5491. }
  5492. else {
  5493. SERIAL_ECHO_START;
  5494. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5495. SERIAL_PROTOCOLLN("");
  5496. }
  5497. break;
  5498. //! ### M115 - Firmware info
  5499. // --------------------------------------
  5500. //! Print the firmware info and capabilities
  5501. //!
  5502. //! M115 [V] [U<version>]
  5503. //!
  5504. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5505. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5506. //! pause the print for 30s and ask the user to upgrade the firmware.
  5507. case 115: // M115
  5508. if (code_seen('V')) {
  5509. // Report the Prusa version number.
  5510. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5511. } else if (code_seen('U')) {
  5512. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5513. // pause the print for 30s and ask the user to upgrade the firmware.
  5514. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5515. } else {
  5516. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5517. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5518. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5519. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5520. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5521. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5522. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5523. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5524. SERIAL_ECHOPGM(" UUID:");
  5525. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5526. }
  5527. break;
  5528. //! ### M114 - Get current position
  5529. // -------------------------------------
  5530. case 114:
  5531. gcode_M114();
  5532. break;
  5533. //! ### M117 - Set LCD Message
  5534. // --------------------------------------
  5535. /*
  5536. M117 moved up to get the high priority
  5537. case 117: // M117 display message
  5538. starpos = (strchr(strchr_pointer + 5,'*'));
  5539. if(starpos!=NULL)
  5540. *(starpos)='\0';
  5541. lcd_setstatus(strchr_pointer + 5);
  5542. break;*/
  5543. //! ### M120 - Disable endstops
  5544. // ----------------------------------------
  5545. case 120:
  5546. enable_endstops(false) ;
  5547. break;
  5548. //! ### M121 - Enable endstops
  5549. // ----------------------------------------
  5550. case 121:
  5551. enable_endstops(true) ;
  5552. break;
  5553. //! ### M119 - Get endstop states
  5554. // ----------------------------------------
  5555. case 119:
  5556. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5557. SERIAL_PROTOCOLLN("");
  5558. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5559. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5560. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5561. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5562. }else{
  5563. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5564. }
  5565. SERIAL_PROTOCOLLN("");
  5566. #endif
  5567. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5568. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5569. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5570. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5571. }else{
  5572. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5573. }
  5574. SERIAL_PROTOCOLLN("");
  5575. #endif
  5576. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5577. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5578. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5579. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5580. }else{
  5581. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5582. }
  5583. SERIAL_PROTOCOLLN("");
  5584. #endif
  5585. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5586. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5587. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5588. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5589. }else{
  5590. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5591. }
  5592. SERIAL_PROTOCOLLN("");
  5593. #endif
  5594. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5595. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5596. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5597. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5598. }else{
  5599. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5600. }
  5601. SERIAL_PROTOCOLLN("");
  5602. #endif
  5603. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5604. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5605. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5606. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5607. }else{
  5608. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5609. }
  5610. SERIAL_PROTOCOLLN("");
  5611. #endif
  5612. break;
  5613. //TODO: update for all axis, use for loop
  5614. #ifdef BLINKM
  5615. //! ### M150 - Set RGB(W) Color
  5616. // -------------------------------------------
  5617. case 150:
  5618. {
  5619. byte red;
  5620. byte grn;
  5621. byte blu;
  5622. if(code_seen('R')) red = code_value();
  5623. if(code_seen('U')) grn = code_value();
  5624. if(code_seen('B')) blu = code_value();
  5625. SendColors(red,grn,blu);
  5626. }
  5627. break;
  5628. #endif //BLINKM
  5629. //! ### M200 - Set filament diameter
  5630. // ----------------------------------------
  5631. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5632. {
  5633. uint8_t extruder = active_extruder;
  5634. if(code_seen('T')) {
  5635. extruder = code_value();
  5636. if(extruder >= EXTRUDERS) {
  5637. SERIAL_ECHO_START;
  5638. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5639. break;
  5640. }
  5641. }
  5642. if(code_seen('D')) {
  5643. float diameter = (float)code_value();
  5644. if (diameter == 0.0) {
  5645. // setting any extruder filament size disables volumetric on the assumption that
  5646. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5647. // for all extruders
  5648. cs.volumetric_enabled = false;
  5649. } else {
  5650. cs.filament_size[extruder] = (float)code_value();
  5651. // make sure all extruders have some sane value for the filament size
  5652. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5653. #if EXTRUDERS > 1
  5654. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5655. #if EXTRUDERS > 2
  5656. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5657. #endif
  5658. #endif
  5659. cs.volumetric_enabled = true;
  5660. }
  5661. } else {
  5662. //reserved for setting filament diameter via UFID or filament measuring device
  5663. break;
  5664. }
  5665. calculate_extruder_multipliers();
  5666. }
  5667. break;
  5668. //! ### M201 - Set Print Max Acceleration
  5669. // -------------------------------------------
  5670. case 201:
  5671. for (int8_t i = 0; i < NUM_AXIS; i++)
  5672. {
  5673. if (code_seen(axis_codes[i]))
  5674. {
  5675. unsigned long val = code_value();
  5676. #ifdef TMC2130
  5677. unsigned long val_silent = val;
  5678. if ((i == X_AXIS) || (i == Y_AXIS))
  5679. {
  5680. if (val > NORMAL_MAX_ACCEL_XY)
  5681. val = NORMAL_MAX_ACCEL_XY;
  5682. if (val_silent > SILENT_MAX_ACCEL_XY)
  5683. val_silent = SILENT_MAX_ACCEL_XY;
  5684. }
  5685. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5686. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5687. #else //TMC2130
  5688. max_acceleration_units_per_sq_second[i] = val;
  5689. #endif //TMC2130
  5690. }
  5691. }
  5692. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5693. reset_acceleration_rates();
  5694. break;
  5695. #if 0 // Not used for Sprinter/grbl gen6
  5696. case 202: // M202
  5697. for(int8_t i=0; i < NUM_AXIS; i++) {
  5698. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5699. }
  5700. break;
  5701. #endif
  5702. //! ### M203 - Set Max Feedrate
  5703. // ---------------------------------------
  5704. case 203: // M203 max feedrate mm/sec
  5705. for (int8_t i = 0; i < NUM_AXIS; i++)
  5706. {
  5707. if (code_seen(axis_codes[i]))
  5708. {
  5709. float val = code_value();
  5710. #ifdef TMC2130
  5711. float val_silent = val;
  5712. if ((i == X_AXIS) || (i == Y_AXIS))
  5713. {
  5714. if (val > NORMAL_MAX_FEEDRATE_XY)
  5715. val = NORMAL_MAX_FEEDRATE_XY;
  5716. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5717. val_silent = SILENT_MAX_FEEDRATE_XY;
  5718. }
  5719. cs.max_feedrate_normal[i] = val;
  5720. cs.max_feedrate_silent[i] = val_silent;
  5721. #else //TMC2130
  5722. max_feedrate[i] = val;
  5723. #endif //TMC2130
  5724. }
  5725. }
  5726. break;
  5727. //! ### M204 - Acceleration settings
  5728. // ------------------------------------------
  5729. //! Supporting old format:
  5730. //!
  5731. //! M204 S[normal moves] T[filmanent only moves]
  5732. //!
  5733. //! and new format:
  5734. //!
  5735. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5736. case 204:
  5737. {
  5738. if(code_seen('S')) {
  5739. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5740. // and it is also generated by Slic3r to control acceleration per extrusion type
  5741. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5742. cs.acceleration = code_value();
  5743. // Interpret the T value as retract acceleration in the old Marlin format.
  5744. if(code_seen('T'))
  5745. cs.retract_acceleration = code_value();
  5746. } else {
  5747. // New acceleration format, compatible with the upstream Marlin.
  5748. if(code_seen('P'))
  5749. cs.acceleration = code_value();
  5750. if(code_seen('R'))
  5751. cs.retract_acceleration = code_value();
  5752. if(code_seen('T')) {
  5753. // Interpret the T value as the travel acceleration in the new Marlin format.
  5754. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5755. // travel_acceleration = code_value();
  5756. }
  5757. }
  5758. }
  5759. break;
  5760. //! ### M205 - Set advanced settings
  5761. // ---------------------------------------------
  5762. //! Set some advanced settings related to movement.
  5763. //!
  5764. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5765. /*!
  5766. - `S` - Minimum feedrate for print moves (unit/s)
  5767. - `T` - Minimum feedrate for travel moves (units/s)
  5768. - `B` - Minimum segment time (us)
  5769. - `X` - Maximum X jerk (units/s), similarly for other axes
  5770. */
  5771. case 205:
  5772. {
  5773. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5774. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5775. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5776. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5777. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5778. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5779. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5780. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5781. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5782. }
  5783. break;
  5784. //! ### M206 - Set additional homing offsets
  5785. // ----------------------------------------------
  5786. case 206:
  5787. for(int8_t i=0; i < 3; i++)
  5788. {
  5789. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5790. }
  5791. break;
  5792. #ifdef FWRETRACT
  5793. //! ### M207 - Set firmware retraction
  5794. // --------------------------------------------------
  5795. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5796. {
  5797. if(code_seen('S'))
  5798. {
  5799. cs.retract_length = code_value() ;
  5800. }
  5801. if(code_seen('F'))
  5802. {
  5803. cs.retract_feedrate = code_value()/60 ;
  5804. }
  5805. if(code_seen('Z'))
  5806. {
  5807. cs.retract_zlift = code_value() ;
  5808. }
  5809. }break;
  5810. //! ### M208 - Set retract recover length
  5811. // --------------------------------------------
  5812. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5813. {
  5814. if(code_seen('S'))
  5815. {
  5816. cs.retract_recover_length = code_value() ;
  5817. }
  5818. if(code_seen('F'))
  5819. {
  5820. cs.retract_recover_feedrate = code_value()/60 ;
  5821. }
  5822. }break;
  5823. //! ### M209 - Enable/disable automatict retract
  5824. // ---------------------------------------------
  5825. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5826. {
  5827. if(code_seen('S'))
  5828. {
  5829. int t= code_value() ;
  5830. switch(t)
  5831. {
  5832. case 0:
  5833. {
  5834. cs.autoretract_enabled=false;
  5835. retracted[0]=false;
  5836. #if EXTRUDERS > 1
  5837. retracted[1]=false;
  5838. #endif
  5839. #if EXTRUDERS > 2
  5840. retracted[2]=false;
  5841. #endif
  5842. }break;
  5843. case 1:
  5844. {
  5845. cs.autoretract_enabled=true;
  5846. retracted[0]=false;
  5847. #if EXTRUDERS > 1
  5848. retracted[1]=false;
  5849. #endif
  5850. #if EXTRUDERS > 2
  5851. retracted[2]=false;
  5852. #endif
  5853. }break;
  5854. default:
  5855. SERIAL_ECHO_START;
  5856. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5857. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5858. SERIAL_ECHOLNPGM("\"(1)");
  5859. }
  5860. }
  5861. }break;
  5862. #endif // FWRETRACT
  5863. #if EXTRUDERS > 1
  5864. // ### M218 - Set hotend offset
  5865. // ----------------------------------------
  5866. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5867. {
  5868. uint8_t extruder;
  5869. if(setTargetedHotend(218, extruder)){
  5870. break;
  5871. }
  5872. if(code_seen('X'))
  5873. {
  5874. extruder_offset[X_AXIS][extruder] = code_value();
  5875. }
  5876. if(code_seen('Y'))
  5877. {
  5878. extruder_offset[Y_AXIS][extruder] = code_value();
  5879. }
  5880. SERIAL_ECHO_START;
  5881. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5882. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5883. {
  5884. SERIAL_ECHO(" ");
  5885. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5886. SERIAL_ECHO(",");
  5887. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5888. }
  5889. SERIAL_ECHOLN("");
  5890. }break;
  5891. #endif
  5892. //! ### M220 Set feedrate percentage
  5893. // -----------------------------------------------
  5894. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5895. {
  5896. if (code_seen('B')) //backup current speed factor
  5897. {
  5898. saved_feedmultiply_mm = feedmultiply;
  5899. }
  5900. if(code_seen('S'))
  5901. {
  5902. feedmultiply = code_value() ;
  5903. }
  5904. if (code_seen('R')) { //restore previous feedmultiply
  5905. feedmultiply = saved_feedmultiply_mm;
  5906. }
  5907. }
  5908. break;
  5909. //! ### M221 - Set extrude factor override percentage
  5910. // ----------------------------------------------------
  5911. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5912. {
  5913. if(code_seen('S'))
  5914. {
  5915. int tmp_code = code_value();
  5916. if (code_seen('T'))
  5917. {
  5918. uint8_t extruder;
  5919. if(setTargetedHotend(221, extruder)){
  5920. break;
  5921. }
  5922. extruder_multiply[extruder] = tmp_code;
  5923. }
  5924. else
  5925. {
  5926. extrudemultiply = tmp_code ;
  5927. }
  5928. }
  5929. calculate_extruder_multipliers();
  5930. }
  5931. break;
  5932. //! ### M226 - Wait for Pin state
  5933. // ------------------------------------------
  5934. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5935. {
  5936. if(code_seen('P')){
  5937. int pin_number = code_value(); // pin number
  5938. int pin_state = -1; // required pin state - default is inverted
  5939. if(code_seen('S')) pin_state = code_value(); // required pin state
  5940. if(pin_state >= -1 && pin_state <= 1){
  5941. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5942. {
  5943. if (sensitive_pins[i] == pin_number)
  5944. {
  5945. pin_number = -1;
  5946. break;
  5947. }
  5948. }
  5949. if (pin_number > -1)
  5950. {
  5951. int target = LOW;
  5952. st_synchronize();
  5953. pinMode(pin_number, INPUT);
  5954. switch(pin_state){
  5955. case 1:
  5956. target = HIGH;
  5957. break;
  5958. case 0:
  5959. target = LOW;
  5960. break;
  5961. case -1:
  5962. target = !digitalRead(pin_number);
  5963. break;
  5964. }
  5965. while(digitalRead(pin_number) != target){
  5966. manage_heater();
  5967. manage_inactivity();
  5968. lcd_update(0);
  5969. }
  5970. }
  5971. }
  5972. }
  5973. }
  5974. break;
  5975. #if NUM_SERVOS > 0
  5976. //! ### M280 - Set/Get servo position
  5977. // --------------------------------------------
  5978. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5979. {
  5980. int servo_index = -1;
  5981. int servo_position = 0;
  5982. if (code_seen('P'))
  5983. servo_index = code_value();
  5984. if (code_seen('S')) {
  5985. servo_position = code_value();
  5986. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5987. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5988. servos[servo_index].attach(0);
  5989. #endif
  5990. servos[servo_index].write(servo_position);
  5991. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5992. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5993. servos[servo_index].detach();
  5994. #endif
  5995. }
  5996. else {
  5997. SERIAL_ECHO_START;
  5998. SERIAL_ECHO("Servo ");
  5999. SERIAL_ECHO(servo_index);
  6000. SERIAL_ECHOLN(" out of range");
  6001. }
  6002. }
  6003. else if (servo_index >= 0) {
  6004. SERIAL_PROTOCOL(MSG_OK);
  6005. SERIAL_PROTOCOL(" Servo ");
  6006. SERIAL_PROTOCOL(servo_index);
  6007. SERIAL_PROTOCOL(": ");
  6008. SERIAL_PROTOCOL(servos[servo_index].read());
  6009. SERIAL_PROTOCOLLN("");
  6010. }
  6011. }
  6012. break;
  6013. #endif // NUM_SERVOS > 0
  6014. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6015. //! ### M300 - Play tone
  6016. // -----------------------
  6017. case 300: // M300
  6018. {
  6019. int beepS = code_seen('S') ? code_value() : 110;
  6020. int beepP = code_seen('P') ? code_value() : 1000;
  6021. if (beepS > 0)
  6022. {
  6023. #if BEEPER > 0
  6024. Sound_MakeCustom(beepP,beepS,false);
  6025. #endif
  6026. }
  6027. else
  6028. {
  6029. _delay(beepP);
  6030. }
  6031. }
  6032. break;
  6033. #endif // M300
  6034. #ifdef PIDTEMP
  6035. //! ### M301 - Set hotend PID
  6036. // ---------------------------------------
  6037. case 301:
  6038. {
  6039. if(code_seen('P')) cs.Kp = code_value();
  6040. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6041. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6042. #ifdef PID_ADD_EXTRUSION_RATE
  6043. if(code_seen('C')) Kc = code_value();
  6044. #endif
  6045. updatePID();
  6046. SERIAL_PROTOCOLRPGM(MSG_OK);
  6047. SERIAL_PROTOCOL(" p:");
  6048. SERIAL_PROTOCOL(cs.Kp);
  6049. SERIAL_PROTOCOL(" i:");
  6050. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6051. SERIAL_PROTOCOL(" d:");
  6052. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6053. #ifdef PID_ADD_EXTRUSION_RATE
  6054. SERIAL_PROTOCOL(" c:");
  6055. //Kc does not have scaling applied above, or in resetting defaults
  6056. SERIAL_PROTOCOL(Kc);
  6057. #endif
  6058. SERIAL_PROTOCOLLN("");
  6059. }
  6060. break;
  6061. #endif //PIDTEMP
  6062. #ifdef PIDTEMPBED
  6063. //! ### M304 - Set bed PID
  6064. // --------------------------------------
  6065. case 304:
  6066. {
  6067. if(code_seen('P')) cs.bedKp = code_value();
  6068. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6069. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6070. updatePID();
  6071. SERIAL_PROTOCOLRPGM(MSG_OK);
  6072. SERIAL_PROTOCOL(" p:");
  6073. SERIAL_PROTOCOL(cs.bedKp);
  6074. SERIAL_PROTOCOL(" i:");
  6075. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6076. SERIAL_PROTOCOL(" d:");
  6077. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6078. SERIAL_PROTOCOLLN("");
  6079. }
  6080. break;
  6081. #endif //PIDTEMP
  6082. //! ### M240 - Trigger camera
  6083. // --------------------------------------------
  6084. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6085. {
  6086. #ifdef CHDK
  6087. SET_OUTPUT(CHDK);
  6088. WRITE(CHDK, HIGH);
  6089. chdkHigh = _millis();
  6090. chdkActive = true;
  6091. #else
  6092. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6093. const uint8_t NUM_PULSES=16;
  6094. const float PULSE_LENGTH=0.01524;
  6095. for(int i=0; i < NUM_PULSES; i++) {
  6096. WRITE(PHOTOGRAPH_PIN, HIGH);
  6097. _delay_ms(PULSE_LENGTH);
  6098. WRITE(PHOTOGRAPH_PIN, LOW);
  6099. _delay_ms(PULSE_LENGTH);
  6100. }
  6101. _delay(7.33);
  6102. for(int i=0; i < NUM_PULSES; i++) {
  6103. WRITE(PHOTOGRAPH_PIN, HIGH);
  6104. _delay_ms(PULSE_LENGTH);
  6105. WRITE(PHOTOGRAPH_PIN, LOW);
  6106. _delay_ms(PULSE_LENGTH);
  6107. }
  6108. #endif
  6109. #endif //chdk end if
  6110. }
  6111. break;
  6112. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6113. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6114. // -------------------------------------------------------------------
  6115. case 302:
  6116. {
  6117. float temp = .0;
  6118. if (code_seen('S')) temp=code_value();
  6119. set_extrude_min_temp(temp);
  6120. }
  6121. break;
  6122. #endif
  6123. //! ### M303 - PID autotune
  6124. // -------------------------------------
  6125. case 303:
  6126. {
  6127. float temp = 150.0;
  6128. int e=0;
  6129. int c=5;
  6130. if (code_seen('E')) e=code_value();
  6131. if (e<0)
  6132. temp=70;
  6133. if (code_seen('S')) temp=code_value();
  6134. if (code_seen('C')) c=code_value();
  6135. PID_autotune(temp, e, c);
  6136. }
  6137. break;
  6138. //! ### M400 - Wait for all moves to finish
  6139. // -----------------------------------------
  6140. case 400:
  6141. {
  6142. st_synchronize();
  6143. }
  6144. break;
  6145. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6146. // ----------------------------------------------
  6147. case 403:
  6148. {
  6149. // currently three different materials are needed (default, flex and PVA)
  6150. // add storing this information for different load/unload profiles etc. in the future
  6151. // firmware does not wait for "ok" from mmu
  6152. if (mmu_enabled)
  6153. {
  6154. uint8_t extruder = 255;
  6155. uint8_t filament = FILAMENT_UNDEFINED;
  6156. if(code_seen('E')) extruder = code_value();
  6157. if(code_seen('F')) filament = code_value();
  6158. mmu_set_filament_type(extruder, filament);
  6159. }
  6160. }
  6161. break;
  6162. //! ### M500 - Store settings in EEPROM
  6163. // -----------------------------------------
  6164. case 500:
  6165. {
  6166. Config_StoreSettings();
  6167. }
  6168. break;
  6169. //! ### M501 - Read settings from EEPROM
  6170. // ----------------------------------------
  6171. case 501:
  6172. {
  6173. Config_RetrieveSettings();
  6174. }
  6175. break;
  6176. //! ### M502 - Revert all settings to factory default
  6177. // -------------------------------------------------
  6178. case 502:
  6179. {
  6180. Config_ResetDefault();
  6181. }
  6182. break;
  6183. //! ### M503 - Repport all settings currently in memory
  6184. // -------------------------------------------------
  6185. case 503:
  6186. {
  6187. Config_PrintSettings();
  6188. }
  6189. break;
  6190. //! ### M509 - Force language selection
  6191. // ------------------------------------------------
  6192. case 509:
  6193. {
  6194. lang_reset();
  6195. SERIAL_ECHO_START;
  6196. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6197. }
  6198. break;
  6199. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6200. //! ### M540 - Abort print on endstop hit (enable/disable)
  6201. // -----------------------------------------------------
  6202. case 540:
  6203. {
  6204. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6205. }
  6206. break;
  6207. #endif
  6208. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6209. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6210. {
  6211. float value;
  6212. if (code_seen('Z'))
  6213. {
  6214. value = code_value();
  6215. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6216. {
  6217. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6218. SERIAL_ECHO_START;
  6219. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6220. SERIAL_PROTOCOLLN("");
  6221. }
  6222. else
  6223. {
  6224. SERIAL_ECHO_START;
  6225. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6226. SERIAL_ECHORPGM(MSG_Z_MIN);
  6227. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6228. SERIAL_ECHORPGM(MSG_Z_MAX);
  6229. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6230. SERIAL_PROTOCOLLN("");
  6231. }
  6232. }
  6233. else
  6234. {
  6235. SERIAL_ECHO_START;
  6236. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6237. SERIAL_ECHO(-cs.zprobe_zoffset);
  6238. SERIAL_PROTOCOLLN("");
  6239. }
  6240. break;
  6241. }
  6242. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6243. #ifdef FILAMENTCHANGEENABLE
  6244. //! ### M600 - Initiate Filament change procedure
  6245. // --------------------------------------
  6246. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6247. {
  6248. st_synchronize();
  6249. float x_position = current_position[X_AXIS];
  6250. float y_position = current_position[Y_AXIS];
  6251. float z_shift = 0; // is it necessary to be a float?
  6252. float e_shift_init = 0;
  6253. float e_shift_late = 0;
  6254. bool automatic = false;
  6255. //Retract extruder
  6256. if(code_seen('E'))
  6257. {
  6258. e_shift_init = code_value();
  6259. }
  6260. else
  6261. {
  6262. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6263. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6264. #endif
  6265. }
  6266. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6267. if (code_seen('L'))
  6268. {
  6269. e_shift_late = code_value();
  6270. }
  6271. else
  6272. {
  6273. #ifdef FILAMENTCHANGE_FINALRETRACT
  6274. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6275. #endif
  6276. }
  6277. //Lift Z
  6278. if(code_seen('Z'))
  6279. {
  6280. z_shift = code_value();
  6281. }
  6282. else
  6283. {
  6284. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6285. }
  6286. //Move XY to side
  6287. if(code_seen('X'))
  6288. {
  6289. x_position = code_value();
  6290. }
  6291. else
  6292. {
  6293. #ifdef FILAMENTCHANGE_XPOS
  6294. x_position = FILAMENTCHANGE_XPOS;
  6295. #endif
  6296. }
  6297. if(code_seen('Y'))
  6298. {
  6299. y_position = code_value();
  6300. }
  6301. else
  6302. {
  6303. #ifdef FILAMENTCHANGE_YPOS
  6304. y_position = FILAMENTCHANGE_YPOS ;
  6305. #endif
  6306. }
  6307. if (mmu_enabled && code_seen("AUTO"))
  6308. automatic = true;
  6309. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6310. }
  6311. break;
  6312. #endif //FILAMENTCHANGEENABLE
  6313. //! ### M25 - Pause SD print
  6314. //! ### M601 - Pause print
  6315. //! ### M125 - Pause print (TODO: not implemented)
  6316. // -------------------------------
  6317. case 25:
  6318. case 601:
  6319. {
  6320. if (!isPrintPaused)
  6321. {
  6322. st_synchronize();
  6323. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6324. lcd_pause_print();
  6325. }
  6326. }
  6327. break;
  6328. //! ### M602 - Resume print
  6329. // -------------------------------
  6330. case 602: {
  6331. if (isPrintPaused)
  6332. lcd_resume_print();
  6333. }
  6334. break;
  6335. //! ### M603 - Stop print
  6336. // -------------------------------
  6337. case 603: {
  6338. lcd_print_stop();
  6339. }
  6340. break;
  6341. #ifdef PINDA_THERMISTOR
  6342. //! ### M860 - Wait for extruder temperature (PINDA)
  6343. // --------------------------------------------------------------
  6344. /*!
  6345. Wait for PINDA thermistor to reach target temperature
  6346. M860 [S<target_temperature>]
  6347. */
  6348. case 860:
  6349. {
  6350. int set_target_pinda = 0;
  6351. if (code_seen('S')) {
  6352. set_target_pinda = code_value();
  6353. }
  6354. else {
  6355. break;
  6356. }
  6357. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6358. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6359. SERIAL_PROTOCOL(set_target_pinda);
  6360. SERIAL_PROTOCOLLN("");
  6361. codenum = _millis();
  6362. cancel_heatup = false;
  6363. bool is_pinda_cooling = false;
  6364. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6365. is_pinda_cooling = true;
  6366. }
  6367. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6368. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6369. {
  6370. SERIAL_PROTOCOLPGM("P:");
  6371. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6372. SERIAL_PROTOCOLPGM("/");
  6373. SERIAL_PROTOCOL(set_target_pinda);
  6374. SERIAL_PROTOCOLLN("");
  6375. codenum = _millis();
  6376. }
  6377. manage_heater();
  6378. manage_inactivity();
  6379. lcd_update(0);
  6380. }
  6381. LCD_MESSAGERPGM(MSG_OK);
  6382. break;
  6383. }
  6384. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6385. // -----------------------------------------------------------
  6386. /*!
  6387. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6388. - `?` - Print current EEPROM offset values
  6389. - `!` - Set factory default values
  6390. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6391. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6392. */
  6393. case 861:
  6394. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6395. uint8_t cal_status = calibration_status_pinda();
  6396. int16_t usteps = 0;
  6397. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6398. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6399. for (uint8_t i = 0; i < 6; i++)
  6400. {
  6401. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6402. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6403. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6404. SERIAL_PROTOCOLPGM(", ");
  6405. SERIAL_PROTOCOL(35 + (i * 5));
  6406. SERIAL_PROTOCOLPGM(", ");
  6407. SERIAL_PROTOCOL(usteps);
  6408. SERIAL_PROTOCOLPGM(", ");
  6409. SERIAL_PROTOCOL(mm * 1000);
  6410. SERIAL_PROTOCOLLN("");
  6411. }
  6412. }
  6413. else if (code_seen('!')) { // ! - Set factory default values
  6414. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6415. int16_t z_shift = 8; //40C - 20um - 8usteps
  6416. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6417. z_shift = 24; //45C - 60um - 24usteps
  6418. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6419. z_shift = 48; //50C - 120um - 48usteps
  6420. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6421. z_shift = 80; //55C - 200um - 80usteps
  6422. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6423. z_shift = 120; //60C - 300um - 120usteps
  6424. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6425. SERIAL_PROTOCOLLN("factory restored");
  6426. }
  6427. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6428. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6429. int16_t z_shift = 0;
  6430. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6431. SERIAL_PROTOCOLLN("zerorized");
  6432. }
  6433. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6434. int16_t usteps = code_value();
  6435. if (code_seen('I')) {
  6436. uint8_t index = code_value();
  6437. if (index < 5) {
  6438. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6439. SERIAL_PROTOCOLLN("OK");
  6440. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6441. for (uint8_t i = 0; i < 6; i++)
  6442. {
  6443. usteps = 0;
  6444. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6445. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6446. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6447. SERIAL_PROTOCOLPGM(", ");
  6448. SERIAL_PROTOCOL(35 + (i * 5));
  6449. SERIAL_PROTOCOLPGM(", ");
  6450. SERIAL_PROTOCOL(usteps);
  6451. SERIAL_PROTOCOLPGM(", ");
  6452. SERIAL_PROTOCOL(mm * 1000);
  6453. SERIAL_PROTOCOLLN("");
  6454. }
  6455. }
  6456. }
  6457. }
  6458. else {
  6459. SERIAL_PROTOCOLPGM("no valid command");
  6460. }
  6461. break;
  6462. #endif //PINDA_THERMISTOR
  6463. //! ### M862 - Print checking
  6464. // ----------------------------------------------
  6465. /*!
  6466. Checks the parameters of the printer and gcode and performs compatibility check
  6467. - M862.1 { P<nozzle_diameter> | Q }
  6468. - M862.2 { P<model_code> | Q }
  6469. - M862.3 { P"<model_name>" | Q }
  6470. - M862.4 { P<fw_version> | Q }
  6471. - M862.5 { P<gcode_level> | Q }
  6472. When run with P<> argument, the check is performed against the input value.
  6473. When run with Q argument, the current value is shown.
  6474. M862.3 accepts text identifiers of printer types too.
  6475. The syntax of M862.3 is (note the quotes around the type):
  6476. M862.3 P "MK3S"
  6477. Accepted printer type identifiers and their numeric counterparts:
  6478. - MK1 (100)
  6479. - MK2 (200)
  6480. - MK2MM (201)
  6481. - MK2S (202)
  6482. - MK2SMM (203)
  6483. - MK2.5 (250)
  6484. - MK2.5MMU2 (20250)
  6485. - MK2.5S (252)
  6486. - MK2.5SMMU2S (20252)
  6487. - MK3 (300)
  6488. - MK3MMU2 (20300)
  6489. - MK3S (302)
  6490. - MK3SMMU2S (20302)
  6491. */
  6492. case 862: // M862: print checking
  6493. float nDummy;
  6494. uint8_t nCommand;
  6495. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6496. switch((ClPrintChecking)nCommand)
  6497. {
  6498. case ClPrintChecking::_Nozzle: // ~ .1
  6499. uint16_t nDiameter;
  6500. if(code_seen('P'))
  6501. {
  6502. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6503. nozzle_diameter_check(nDiameter);
  6504. }
  6505. /*
  6506. else if(code_seen('S')&&farm_mode)
  6507. {
  6508. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6509. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6510. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6511. }
  6512. */
  6513. else if(code_seen('Q'))
  6514. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6515. break;
  6516. case ClPrintChecking::_Model: // ~ .2
  6517. if(code_seen('P'))
  6518. {
  6519. uint16_t nPrinterModel;
  6520. nPrinterModel=(uint16_t)code_value_long();
  6521. printer_model_check(nPrinterModel);
  6522. }
  6523. else if(code_seen('Q'))
  6524. SERIAL_PROTOCOLLN(nPrinterType);
  6525. break;
  6526. case ClPrintChecking::_Smodel: // ~ .3
  6527. if(code_seen('P'))
  6528. printer_smodel_check(strchr_pointer);
  6529. else if(code_seen('Q'))
  6530. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6531. break;
  6532. case ClPrintChecking::_Version: // ~ .4
  6533. if(code_seen('P'))
  6534. fw_version_check(++strchr_pointer);
  6535. else if(code_seen('Q'))
  6536. SERIAL_PROTOCOLLN(FW_VERSION);
  6537. break;
  6538. case ClPrintChecking::_Gcode: // ~ .5
  6539. if(code_seen('P'))
  6540. {
  6541. uint16_t nGcodeLevel;
  6542. nGcodeLevel=(uint16_t)code_value_long();
  6543. gcode_level_check(nGcodeLevel);
  6544. }
  6545. else if(code_seen('Q'))
  6546. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6547. break;
  6548. }
  6549. break;
  6550. #ifdef LIN_ADVANCE
  6551. //! ### M900 - Set Linear advance options
  6552. // ----------------------------------------------
  6553. case 900:
  6554. gcode_M900();
  6555. break;
  6556. #endif
  6557. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6558. // ---------------------------------------------------------------
  6559. case 907:
  6560. {
  6561. #ifdef TMC2130
  6562. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6563. for (int i = 0; i < NUM_AXIS; i++)
  6564. if(code_seen(axis_codes[i]))
  6565. {
  6566. long cur_mA = code_value_long();
  6567. uint8_t val = tmc2130_cur2val(cur_mA);
  6568. tmc2130_set_current_h(i, val);
  6569. tmc2130_set_current_r(i, val);
  6570. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6571. }
  6572. #else //TMC2130
  6573. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6574. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6575. if(code_seen('B')) st_current_set(4,code_value());
  6576. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6577. #endif
  6578. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6579. if(code_seen('X')) st_current_set(0, code_value());
  6580. #endif
  6581. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6582. if(code_seen('Z')) st_current_set(1, code_value());
  6583. #endif
  6584. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6585. if(code_seen('E')) st_current_set(2, code_value());
  6586. #endif
  6587. #endif //TMC2130
  6588. }
  6589. break;
  6590. //! ### M908 - Control digital trimpot directly
  6591. // ---------------------------------------------------------
  6592. case 908:
  6593. {
  6594. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6595. uint8_t channel,current;
  6596. if(code_seen('P')) channel=code_value();
  6597. if(code_seen('S')) current=code_value();
  6598. digitalPotWrite(channel, current);
  6599. #endif
  6600. }
  6601. break;
  6602. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6603. //! ### M910 - TMC2130 init
  6604. // -----------------------------------------------
  6605. case 910:
  6606. {
  6607. tmc2130_init();
  6608. }
  6609. break;
  6610. //! ### M911 - Set TMC2130 holding currents
  6611. // -------------------------------------------------
  6612. case 911:
  6613. {
  6614. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6615. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6616. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6617. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6618. }
  6619. break;
  6620. //! ### M912 - Set TMC2130 running currents
  6621. // -----------------------------------------------
  6622. case 912:
  6623. {
  6624. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6625. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6626. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6627. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6628. }
  6629. break;
  6630. //! ### M913 - Print TMC2130 currents
  6631. // -----------------------------
  6632. case 913:
  6633. {
  6634. tmc2130_print_currents();
  6635. }
  6636. break;
  6637. //! ### M914 - Set TMC2130 normal mode
  6638. // ------------------------------
  6639. case 914:
  6640. {
  6641. tmc2130_mode = TMC2130_MODE_NORMAL;
  6642. update_mode_profile();
  6643. tmc2130_init();
  6644. }
  6645. break;
  6646. //! ### M95 - Set TMC2130 silent mode
  6647. // ------------------------------
  6648. case 915:
  6649. {
  6650. tmc2130_mode = TMC2130_MODE_SILENT;
  6651. update_mode_profile();
  6652. tmc2130_init();
  6653. }
  6654. break;
  6655. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6656. // -------------------------------------------------------
  6657. case 916:
  6658. {
  6659. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6660. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6661. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6662. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6663. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6664. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6665. }
  6666. break;
  6667. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6668. // --------------------------------------------------------------
  6669. case 917:
  6670. {
  6671. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6672. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6673. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6674. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6675. }
  6676. break;
  6677. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6678. // -------------------------------------------------------------
  6679. case 918:
  6680. {
  6681. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6682. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6683. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6684. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6685. }
  6686. break;
  6687. #endif //TMC2130_SERVICE_CODES_M910_M918
  6688. //! ### M350 - Set microstepping mode
  6689. // ---------------------------------------------------
  6690. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6691. case 350:
  6692. {
  6693. #ifdef TMC2130
  6694. for (int i=0; i<NUM_AXIS; i++)
  6695. {
  6696. if(code_seen(axis_codes[i]))
  6697. {
  6698. uint16_t res_new = code_value();
  6699. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  6700. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  6701. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  6702. if (res_valid)
  6703. {
  6704. st_synchronize();
  6705. uint16_t res = tmc2130_get_res(i);
  6706. tmc2130_set_res(i, res_new);
  6707. cs.axis_ustep_resolution[i] = res_new;
  6708. if (res_new > res)
  6709. {
  6710. uint16_t fac = (res_new / res);
  6711. cs.axis_steps_per_unit[i] *= fac;
  6712. position[i] *= fac;
  6713. }
  6714. else
  6715. {
  6716. uint16_t fac = (res / res_new);
  6717. cs.axis_steps_per_unit[i] /= fac;
  6718. position[i] /= fac;
  6719. }
  6720. }
  6721. }
  6722. }
  6723. #else //TMC2130
  6724. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6725. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6726. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6727. if(code_seen('B')) microstep_mode(4,code_value());
  6728. microstep_readings();
  6729. #endif
  6730. #endif //TMC2130
  6731. }
  6732. break;
  6733. //! ### M351 - Toggle Microstep Pins
  6734. // -----------------------------------
  6735. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6736. //!
  6737. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6738. case 351:
  6739. {
  6740. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6741. if(code_seen('S')) switch((int)code_value())
  6742. {
  6743. case 1:
  6744. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6745. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6746. break;
  6747. case 2:
  6748. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6749. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6750. break;
  6751. }
  6752. microstep_readings();
  6753. #endif
  6754. }
  6755. break;
  6756. //! ### M701 - Load filament
  6757. // -------------------------
  6758. case 701:
  6759. {
  6760. if (mmu_enabled && code_seen('E'))
  6761. tmp_extruder = code_value();
  6762. gcode_M701();
  6763. }
  6764. break;
  6765. //! ### M702 - Unload filament
  6766. // ------------------------
  6767. /*!
  6768. M702 [U C]
  6769. - `U` Unload all filaments used in current print
  6770. - `C` Unload just current filament
  6771. - without any parameters unload all filaments
  6772. */
  6773. case 702:
  6774. {
  6775. #ifdef SNMM
  6776. if (code_seen('U'))
  6777. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6778. else if (code_seen('C'))
  6779. extr_unload(); //! if "C" unload just current filament
  6780. else
  6781. extr_unload_all(); //! otherwise unload all filaments
  6782. #else
  6783. if (code_seen('C')) {
  6784. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6785. }
  6786. else {
  6787. if(mmu_enabled) extr_unload(); //! unload current filament
  6788. else unload_filament();
  6789. }
  6790. #endif //SNMM
  6791. }
  6792. break;
  6793. //! ### M999 - Restart after being stopped
  6794. // ------------------------------------
  6795. case 999:
  6796. Stopped = false;
  6797. lcd_reset_alert_level();
  6798. gcode_LastN = Stopped_gcode_LastN;
  6799. FlushSerialRequestResend();
  6800. break;
  6801. default:
  6802. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6803. }
  6804. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6805. mcode_in_progress = 0;
  6806. }
  6807. }
  6808. // end if(code_seen('M')) (end of M codes)
  6809. //! -----------------------------------------------------------------------------------------
  6810. //! T Codes
  6811. //!
  6812. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6813. //! select filament in case of MMU_V2
  6814. //! if extruder is "?", open menu to let the user select extruder/filament
  6815. //!
  6816. //! For MMU_V2:
  6817. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6818. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6819. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6820. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6821. else if(code_seen('T'))
  6822. {
  6823. int index;
  6824. bool load_to_nozzle = false;
  6825. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6826. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6827. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6828. SERIAL_ECHOLNPGM("Invalid T code.");
  6829. }
  6830. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6831. if (mmu_enabled)
  6832. {
  6833. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6834. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6835. {
  6836. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6837. }
  6838. else
  6839. {
  6840. st_synchronize();
  6841. mmu_command(MmuCmd::T0 + tmp_extruder);
  6842. manage_response(true, true, MMU_TCODE_MOVE);
  6843. }
  6844. }
  6845. }
  6846. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6847. if (mmu_enabled)
  6848. {
  6849. st_synchronize();
  6850. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6851. mmu_extruder = tmp_extruder; //filament change is finished
  6852. mmu_load_to_nozzle();
  6853. }
  6854. }
  6855. else {
  6856. if (*(strchr_pointer + index) == '?')
  6857. {
  6858. if(mmu_enabled)
  6859. {
  6860. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6861. load_to_nozzle = true;
  6862. } else
  6863. {
  6864. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6865. }
  6866. }
  6867. else {
  6868. tmp_extruder = code_value();
  6869. if (mmu_enabled && lcd_autoDepleteEnabled())
  6870. {
  6871. tmp_extruder = ad_getAlternative(tmp_extruder);
  6872. }
  6873. }
  6874. st_synchronize();
  6875. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6876. if (mmu_enabled)
  6877. {
  6878. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6879. {
  6880. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6881. }
  6882. else
  6883. {
  6884. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6885. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6886. {
  6887. mmu_command(MmuCmd::K0 + tmp_extruder);
  6888. manage_response(true, true, MMU_UNLOAD_MOVE);
  6889. }
  6890. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6891. mmu_command(MmuCmd::T0 + tmp_extruder);
  6892. manage_response(true, true, MMU_TCODE_MOVE);
  6893. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6894. mmu_extruder = tmp_extruder; //filament change is finished
  6895. if (load_to_nozzle)// for single material usage with mmu
  6896. {
  6897. mmu_load_to_nozzle();
  6898. }
  6899. }
  6900. }
  6901. else
  6902. {
  6903. #ifdef SNMM
  6904. #ifdef LIN_ADVANCE
  6905. if (mmu_extruder != tmp_extruder)
  6906. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6907. #endif
  6908. mmu_extruder = tmp_extruder;
  6909. _delay(100);
  6910. disable_e0();
  6911. disable_e1();
  6912. disable_e2();
  6913. pinMode(E_MUX0_PIN, OUTPUT);
  6914. pinMode(E_MUX1_PIN, OUTPUT);
  6915. _delay(100);
  6916. SERIAL_ECHO_START;
  6917. SERIAL_ECHO("T:");
  6918. SERIAL_ECHOLN((int)tmp_extruder);
  6919. switch (tmp_extruder) {
  6920. case 1:
  6921. WRITE(E_MUX0_PIN, HIGH);
  6922. WRITE(E_MUX1_PIN, LOW);
  6923. break;
  6924. case 2:
  6925. WRITE(E_MUX0_PIN, LOW);
  6926. WRITE(E_MUX1_PIN, HIGH);
  6927. break;
  6928. case 3:
  6929. WRITE(E_MUX0_PIN, HIGH);
  6930. WRITE(E_MUX1_PIN, HIGH);
  6931. break;
  6932. default:
  6933. WRITE(E_MUX0_PIN, LOW);
  6934. WRITE(E_MUX1_PIN, LOW);
  6935. break;
  6936. }
  6937. _delay(100);
  6938. #else //SNMM
  6939. if (tmp_extruder >= EXTRUDERS) {
  6940. SERIAL_ECHO_START;
  6941. SERIAL_ECHOPGM("T");
  6942. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6943. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6944. }
  6945. else {
  6946. #if EXTRUDERS > 1
  6947. boolean make_move = false;
  6948. #endif
  6949. if (code_seen('F')) {
  6950. #if EXTRUDERS > 1
  6951. make_move = true;
  6952. #endif
  6953. next_feedrate = code_value();
  6954. if (next_feedrate > 0.0) {
  6955. feedrate = next_feedrate;
  6956. }
  6957. }
  6958. #if EXTRUDERS > 1
  6959. if (tmp_extruder != active_extruder) {
  6960. // Save current position to return to after applying extruder offset
  6961. memcpy(destination, current_position, sizeof(destination));
  6962. // Offset extruder (only by XY)
  6963. int i;
  6964. for (i = 0; i < 2; i++) {
  6965. current_position[i] = current_position[i] -
  6966. extruder_offset[i][active_extruder] +
  6967. extruder_offset[i][tmp_extruder];
  6968. }
  6969. // Set the new active extruder and position
  6970. active_extruder = tmp_extruder;
  6971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6972. // Move to the old position if 'F' was in the parameters
  6973. if (make_move && Stopped == false) {
  6974. prepare_move();
  6975. }
  6976. }
  6977. #endif
  6978. SERIAL_ECHO_START;
  6979. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6980. SERIAL_PROTOCOLLN((int)active_extruder);
  6981. }
  6982. #endif //SNMM
  6983. }
  6984. }
  6985. } // end if(code_seen('T')) (end of T codes)
  6986. //! ----------------------------------------------------------------------------------------------
  6987. else if (code_seen('D')) // D codes (debug)
  6988. {
  6989. switch((int)code_value())
  6990. {
  6991. //! ### D-1 - Endless loop
  6992. // -------------------
  6993. case -1:
  6994. dcode__1(); break;
  6995. #ifdef DEBUG_DCODES
  6996. //! ### D0 - Reset
  6997. // --------------
  6998. case 0:
  6999. dcode_0(); break;
  7000. //! ### D1 - Clear EEPROM
  7001. // ------------------
  7002. case 1:
  7003. dcode_1(); break;
  7004. //! ### D2 - Read/Write RAM
  7005. // --------------------
  7006. case 2:
  7007. dcode_2(); break;
  7008. #endif //DEBUG_DCODES
  7009. #ifdef DEBUG_DCODE3
  7010. //! ### D3 - Read/Write EEPROM
  7011. // -----------------------
  7012. case 3:
  7013. dcode_3(); break;
  7014. #endif //DEBUG_DCODE3
  7015. #ifdef DEBUG_DCODES
  7016. //! ### D4 - Read/Write PIN
  7017. // ---------------------
  7018. case 4:
  7019. dcode_4(); break;
  7020. #endif //DEBUG_DCODES
  7021. #ifdef DEBUG_DCODE5
  7022. //! ### D5 - Read/Write FLASH
  7023. // ------------------------
  7024. case 5:
  7025. dcode_5(); break;
  7026. break;
  7027. #endif //DEBUG_DCODE5
  7028. #ifdef DEBUG_DCODES
  7029. //! ### D6 - Read/Write external FLASH
  7030. // ---------------------------------------
  7031. case 6:
  7032. dcode_6(); break;
  7033. //! ### D7 - Read/Write Bootloader
  7034. // -------------------------------
  7035. case 7:
  7036. dcode_7(); break;
  7037. //! ### D8 - Read/Write PINDA
  7038. // ---------------------------
  7039. case 8:
  7040. dcode_8(); break;
  7041. // ### D9 - Read/Write ADC
  7042. // ------------------------
  7043. case 9:
  7044. dcode_9(); break;
  7045. //! ### D10 - XYZ calibration = OK
  7046. // ------------------------------
  7047. case 10:
  7048. dcode_10(); break;
  7049. #endif //DEBUG_DCODES
  7050. #ifdef HEATBED_ANALYSIS
  7051. //! ### D80 - Bed check
  7052. // ---------------------
  7053. /*!
  7054. - `E` - dimension x
  7055. - `F` - dimention y
  7056. - `G` - points_x
  7057. - `H` - points_y
  7058. - `I` - offset_x
  7059. - `J` - offset_y
  7060. */
  7061. case 80:
  7062. {
  7063. float dimension_x = 40;
  7064. float dimension_y = 40;
  7065. int points_x = 40;
  7066. int points_y = 40;
  7067. float offset_x = 74;
  7068. float offset_y = 33;
  7069. if (code_seen('E')) dimension_x = code_value();
  7070. if (code_seen('F')) dimension_y = code_value();
  7071. if (code_seen('G')) {points_x = code_value(); }
  7072. if (code_seen('H')) {points_y = code_value(); }
  7073. if (code_seen('I')) {offset_x = code_value(); }
  7074. if (code_seen('J')) {offset_y = code_value(); }
  7075. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7076. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7077. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7078. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7079. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7080. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7081. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7082. }break;
  7083. //! ### D81 - Bed analysis
  7084. // -----------------------------
  7085. /*!
  7086. - `E` - dimension x
  7087. - `F` - dimention y
  7088. - `G` - points_x
  7089. - `H` - points_y
  7090. - `I` - offset_x
  7091. - `J` - offset_y
  7092. */
  7093. case 81:
  7094. {
  7095. float dimension_x = 40;
  7096. float dimension_y = 40;
  7097. int points_x = 40;
  7098. int points_y = 40;
  7099. float offset_x = 74;
  7100. float offset_y = 33;
  7101. if (code_seen('E')) dimension_x = code_value();
  7102. if (code_seen('F')) dimension_y = code_value();
  7103. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7104. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7105. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7106. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7107. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7108. } break;
  7109. #endif //HEATBED_ANALYSIS
  7110. #ifdef DEBUG_DCODES
  7111. //! ### D106 print measured fan speed for different pwm values
  7112. // --------------------------------------------------------------
  7113. case 106:
  7114. {
  7115. for (int i = 255; i > 0; i = i - 5) {
  7116. fanSpeed = i;
  7117. //delay_keep_alive(2000);
  7118. for (int j = 0; j < 100; j++) {
  7119. delay_keep_alive(100);
  7120. }
  7121. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7122. }
  7123. }break;
  7124. #ifdef TMC2130
  7125. //! ### D2130 - TMC2130 Trinamic stepper controller
  7126. // ---------------------------
  7127. /*!
  7128. D2130<axis><command>[subcommand][value]
  7129. - <command>:
  7130. - '0' current off
  7131. - '1' current on
  7132. - '+' single step
  7133. - * value sereval steps
  7134. - '-' dtto oposite direction
  7135. - '?' read register
  7136. - * "mres"
  7137. - * "step"
  7138. - * "mscnt"
  7139. - * "mscuract"
  7140. - * "wave"
  7141. - '!' set register
  7142. - * "mres"
  7143. - * "step"
  7144. - * "wave"
  7145. - '@' home calibrate axis
  7146. Example:
  7147. D2130E?wave ... print extruder microstep linearity compensation curve
  7148. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7149. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7150. */
  7151. case 2130:
  7152. dcode_2130(); break;
  7153. #endif //TMC2130
  7154. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7155. //! ### D9125 - FILAMENT_SENSOR
  7156. // ---------------------------------
  7157. case 9125:
  7158. dcode_9125(); break;
  7159. #endif //FILAMENT_SENSOR
  7160. #endif //DEBUG_DCODES
  7161. }
  7162. }
  7163. else
  7164. {
  7165. SERIAL_ECHO_START;
  7166. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7167. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7168. SERIAL_ECHOLNPGM("\"(2)");
  7169. }
  7170. KEEPALIVE_STATE(NOT_BUSY);
  7171. ClearToSend();
  7172. }
  7173. /** @defgroup GCodes G-Code List
  7174. */
  7175. // ---------------------------------------------------
  7176. void FlushSerialRequestResend()
  7177. {
  7178. //char cmdbuffer[bufindr][100]="Resend:";
  7179. MYSERIAL.flush();
  7180. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7181. }
  7182. // Confirm the execution of a command, if sent from a serial line.
  7183. // Execution of a command from a SD card will not be confirmed.
  7184. void ClearToSend()
  7185. {
  7186. previous_millis_cmd = _millis();
  7187. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7188. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7189. }
  7190. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7191. void update_currents() {
  7192. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7193. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7194. float tmp_motor[3];
  7195. //SERIAL_ECHOLNPGM("Currents updated: ");
  7196. if (destination[Z_AXIS] < Z_SILENT) {
  7197. //SERIAL_ECHOLNPGM("LOW");
  7198. for (uint8_t i = 0; i < 3; i++) {
  7199. st_current_set(i, current_low[i]);
  7200. /*MYSERIAL.print(int(i));
  7201. SERIAL_ECHOPGM(": ");
  7202. MYSERIAL.println(current_low[i]);*/
  7203. }
  7204. }
  7205. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7206. //SERIAL_ECHOLNPGM("HIGH");
  7207. for (uint8_t i = 0; i < 3; i++) {
  7208. st_current_set(i, current_high[i]);
  7209. /*MYSERIAL.print(int(i));
  7210. SERIAL_ECHOPGM(": ");
  7211. MYSERIAL.println(current_high[i]);*/
  7212. }
  7213. }
  7214. else {
  7215. for (uint8_t i = 0; i < 3; i++) {
  7216. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7217. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7218. st_current_set(i, tmp_motor[i]);
  7219. /*MYSERIAL.print(int(i));
  7220. SERIAL_ECHOPGM(": ");
  7221. MYSERIAL.println(tmp_motor[i]);*/
  7222. }
  7223. }
  7224. }
  7225. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7226. void get_coordinates()
  7227. {
  7228. bool seen[4]={false,false,false,false};
  7229. for(int8_t i=0; i < NUM_AXIS; i++) {
  7230. if(code_seen(axis_codes[i]))
  7231. {
  7232. bool relative = axis_relative_modes[i] || relative_mode;
  7233. destination[i] = (float)code_value();
  7234. if (i == E_AXIS) {
  7235. float emult = extruder_multiplier[active_extruder];
  7236. if (emult != 1.) {
  7237. if (! relative) {
  7238. destination[i] -= current_position[i];
  7239. relative = true;
  7240. }
  7241. destination[i] *= emult;
  7242. }
  7243. }
  7244. if (relative)
  7245. destination[i] += current_position[i];
  7246. seen[i]=true;
  7247. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7248. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7249. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7250. }
  7251. else destination[i] = current_position[i]; //Are these else lines really needed?
  7252. }
  7253. if(code_seen('F')) {
  7254. next_feedrate = code_value();
  7255. #ifdef MAX_SILENT_FEEDRATE
  7256. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7257. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7258. #endif //MAX_SILENT_FEEDRATE
  7259. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7260. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7261. {
  7262. // float e_max_speed =
  7263. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7264. }
  7265. }
  7266. }
  7267. void get_arc_coordinates()
  7268. {
  7269. #ifdef SF_ARC_FIX
  7270. bool relative_mode_backup = relative_mode;
  7271. relative_mode = true;
  7272. #endif
  7273. get_coordinates();
  7274. #ifdef SF_ARC_FIX
  7275. relative_mode=relative_mode_backup;
  7276. #endif
  7277. if(code_seen('I')) {
  7278. offset[0] = code_value();
  7279. }
  7280. else {
  7281. offset[0] = 0.0;
  7282. }
  7283. if(code_seen('J')) {
  7284. offset[1] = code_value();
  7285. }
  7286. else {
  7287. offset[1] = 0.0;
  7288. }
  7289. }
  7290. void clamp_to_software_endstops(float target[3])
  7291. {
  7292. #ifdef DEBUG_DISABLE_SWLIMITS
  7293. return;
  7294. #endif //DEBUG_DISABLE_SWLIMITS
  7295. world2machine_clamp(target[0], target[1]);
  7296. // Clamp the Z coordinate.
  7297. if (min_software_endstops) {
  7298. float negative_z_offset = 0;
  7299. #ifdef ENABLE_AUTO_BED_LEVELING
  7300. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7301. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7302. #endif
  7303. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7304. }
  7305. if (max_software_endstops) {
  7306. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7307. }
  7308. }
  7309. #ifdef MESH_BED_LEVELING
  7310. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7311. float dx = x - current_position[X_AXIS];
  7312. float dy = y - current_position[Y_AXIS];
  7313. int n_segments = 0;
  7314. if (mbl.active) {
  7315. float len = abs(dx) + abs(dy);
  7316. if (len > 0)
  7317. // Split to 3cm segments or shorter.
  7318. n_segments = int(ceil(len / 30.f));
  7319. }
  7320. if (n_segments > 1) {
  7321. // In a multi-segment move explicitly set the final target in the plan
  7322. // as the move will be recalculated in it's entirety
  7323. float gcode_target[NUM_AXIS];
  7324. gcode_target[X_AXIS] = x;
  7325. gcode_target[Y_AXIS] = y;
  7326. gcode_target[Z_AXIS] = z;
  7327. gcode_target[E_AXIS] = e;
  7328. float dz = z - current_position[Z_AXIS];
  7329. float de = e - current_position[E_AXIS];
  7330. for (int i = 1; i < n_segments; ++ i) {
  7331. float t = float(i) / float(n_segments);
  7332. plan_buffer_line(current_position[X_AXIS] + t * dx,
  7333. current_position[Y_AXIS] + t * dy,
  7334. current_position[Z_AXIS] + t * dz,
  7335. current_position[E_AXIS] + t * de,
  7336. feed_rate, extruder, gcode_target);
  7337. if (waiting_inside_plan_buffer_line_print_aborted)
  7338. return;
  7339. }
  7340. }
  7341. // The rest of the path.
  7342. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7343. }
  7344. #endif // MESH_BED_LEVELING
  7345. void prepare_move()
  7346. {
  7347. clamp_to_software_endstops(destination);
  7348. previous_millis_cmd = _millis();
  7349. // Do not use feedmultiply for E or Z only moves
  7350. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7351. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7352. }
  7353. else {
  7354. #ifdef MESH_BED_LEVELING
  7355. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7356. #else
  7357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7358. #endif
  7359. }
  7360. set_current_to_destination();
  7361. }
  7362. void prepare_arc_move(char isclockwise) {
  7363. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7364. // Trace the arc
  7365. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7366. // As far as the parser is concerned, the position is now == target. In reality the
  7367. // motion control system might still be processing the action and the real tool position
  7368. // in any intermediate location.
  7369. for(int8_t i=0; i < NUM_AXIS; i++) {
  7370. current_position[i] = destination[i];
  7371. }
  7372. previous_millis_cmd = _millis();
  7373. }
  7374. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7375. #if defined(FAN_PIN)
  7376. #if CONTROLLERFAN_PIN == FAN_PIN
  7377. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7378. #endif
  7379. #endif
  7380. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7381. unsigned long lastMotorCheck = 0;
  7382. void controllerFan()
  7383. {
  7384. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7385. {
  7386. lastMotorCheck = _millis();
  7387. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7388. #if EXTRUDERS > 2
  7389. || !READ(E2_ENABLE_PIN)
  7390. #endif
  7391. #if EXTRUDER > 1
  7392. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7393. || !READ(X2_ENABLE_PIN)
  7394. #endif
  7395. || !READ(E1_ENABLE_PIN)
  7396. #endif
  7397. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7398. {
  7399. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7400. }
  7401. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7402. {
  7403. digitalWrite(CONTROLLERFAN_PIN, 0);
  7404. analogWrite(CONTROLLERFAN_PIN, 0);
  7405. }
  7406. else
  7407. {
  7408. // allows digital or PWM fan output to be used (see M42 handling)
  7409. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7410. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7411. }
  7412. }
  7413. }
  7414. #endif
  7415. #ifdef TEMP_STAT_LEDS
  7416. static bool blue_led = false;
  7417. static bool red_led = false;
  7418. static uint32_t stat_update = 0;
  7419. void handle_status_leds(void) {
  7420. float max_temp = 0.0;
  7421. if(_millis() > stat_update) {
  7422. stat_update += 500; // Update every 0.5s
  7423. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7424. max_temp = max(max_temp, degHotend(cur_extruder));
  7425. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7426. }
  7427. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7428. max_temp = max(max_temp, degTargetBed());
  7429. max_temp = max(max_temp, degBed());
  7430. #endif
  7431. if((max_temp > 55.0) && (red_led == false)) {
  7432. digitalWrite(STAT_LED_RED, 1);
  7433. digitalWrite(STAT_LED_BLUE, 0);
  7434. red_led = true;
  7435. blue_led = false;
  7436. }
  7437. if((max_temp < 54.0) && (blue_led == false)) {
  7438. digitalWrite(STAT_LED_RED, 0);
  7439. digitalWrite(STAT_LED_BLUE, 1);
  7440. red_led = false;
  7441. blue_led = true;
  7442. }
  7443. }
  7444. }
  7445. #endif
  7446. #ifdef SAFETYTIMER
  7447. /**
  7448. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7449. *
  7450. * Full screen blocking notification message is shown after heater turning off.
  7451. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7452. * damage print.
  7453. *
  7454. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7455. */
  7456. static void handleSafetyTimer()
  7457. {
  7458. #if (EXTRUDERS > 1)
  7459. #error Implemented only for one extruder.
  7460. #endif //(EXTRUDERS > 1)
  7461. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7462. {
  7463. safetyTimer.stop();
  7464. }
  7465. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7466. {
  7467. safetyTimer.start();
  7468. }
  7469. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7470. {
  7471. setTargetBed(0);
  7472. setAllTargetHotends(0);
  7473. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7474. }
  7475. }
  7476. #endif //SAFETYTIMER
  7477. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7478. {
  7479. bool bInhibitFlag;
  7480. #ifdef FILAMENT_SENSOR
  7481. if (mmu_enabled == false)
  7482. {
  7483. //-// if (mcode_in_progress != 600) //M600 not in progress
  7484. #ifdef PAT9125
  7485. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7486. #endif // PAT9125
  7487. #ifdef IR_SENSOR
  7488. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7489. #endif // IR_SENSOR
  7490. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7491. {
  7492. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7493. {
  7494. if (fsensor_check_autoload())
  7495. {
  7496. #ifdef PAT9125
  7497. fsensor_autoload_check_stop();
  7498. #endif //PAT9125
  7499. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7500. if(0)
  7501. {
  7502. Sound_MakeCustom(50,1000,false);
  7503. loading_flag = true;
  7504. enquecommand_front_P((PSTR("M701")));
  7505. }
  7506. else
  7507. {
  7508. /*
  7509. lcd_update_enable(false);
  7510. show_preheat_nozzle_warning();
  7511. lcd_update_enable(true);
  7512. */
  7513. eFilamentAction=FilamentAction::AutoLoad;
  7514. bFilamentFirstRun=false;
  7515. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7516. {
  7517. bFilamentPreheatState=true;
  7518. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7519. menu_submenu(mFilamentItemForce);
  7520. }
  7521. else
  7522. {
  7523. menu_submenu(lcd_generic_preheat_menu);
  7524. lcd_timeoutToStatus.start();
  7525. }
  7526. }
  7527. }
  7528. }
  7529. else
  7530. {
  7531. #ifdef PAT9125
  7532. fsensor_autoload_check_stop();
  7533. #endif //PAT9125
  7534. fsensor_update();
  7535. }
  7536. }
  7537. }
  7538. #endif //FILAMENT_SENSOR
  7539. #ifdef SAFETYTIMER
  7540. handleSafetyTimer();
  7541. #endif //SAFETYTIMER
  7542. #if defined(KILL_PIN) && KILL_PIN > -1
  7543. static int killCount = 0; // make the inactivity button a bit less responsive
  7544. const int KILL_DELAY = 10000;
  7545. #endif
  7546. if(buflen < (BUFSIZE-1)){
  7547. get_command();
  7548. }
  7549. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7550. if(max_inactive_time)
  7551. kill(_n("Inactivity Shutdown"), 4);
  7552. if(stepper_inactive_time) {
  7553. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7554. {
  7555. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7556. disable_x();
  7557. disable_y();
  7558. disable_z();
  7559. disable_e0();
  7560. disable_e1();
  7561. disable_e2();
  7562. }
  7563. }
  7564. }
  7565. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7566. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7567. {
  7568. chdkActive = false;
  7569. WRITE(CHDK, LOW);
  7570. }
  7571. #endif
  7572. #if defined(KILL_PIN) && KILL_PIN > -1
  7573. // Check if the kill button was pressed and wait just in case it was an accidental
  7574. // key kill key press
  7575. // -------------------------------------------------------------------------------
  7576. if( 0 == READ(KILL_PIN) )
  7577. {
  7578. killCount++;
  7579. }
  7580. else if (killCount > 0)
  7581. {
  7582. killCount--;
  7583. }
  7584. // Exceeded threshold and we can confirm that it was not accidental
  7585. // KILL the machine
  7586. // ----------------------------------------------------------------
  7587. if ( killCount >= KILL_DELAY)
  7588. {
  7589. kill(NULL, 5);
  7590. }
  7591. #endif
  7592. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7593. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7594. #endif
  7595. #ifdef EXTRUDER_RUNOUT_PREVENT
  7596. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7597. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7598. {
  7599. bool oldstatus=READ(E0_ENABLE_PIN);
  7600. enable_e0();
  7601. float oldepos=current_position[E_AXIS];
  7602. float oldedes=destination[E_AXIS];
  7603. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7604. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7605. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7606. current_position[E_AXIS]=oldepos;
  7607. destination[E_AXIS]=oldedes;
  7608. plan_set_e_position(oldepos);
  7609. previous_millis_cmd=_millis();
  7610. st_synchronize();
  7611. WRITE(E0_ENABLE_PIN,oldstatus);
  7612. }
  7613. #endif
  7614. #ifdef TEMP_STAT_LEDS
  7615. handle_status_leds();
  7616. #endif
  7617. check_axes_activity();
  7618. mmu_loop();
  7619. }
  7620. void kill(const char *full_screen_message, unsigned char id)
  7621. {
  7622. printf_P(_N("KILL: %d\n"), id);
  7623. //return;
  7624. cli(); // Stop interrupts
  7625. disable_heater();
  7626. disable_x();
  7627. // SERIAL_ECHOLNPGM("kill - disable Y");
  7628. disable_y();
  7629. disable_z();
  7630. disable_e0();
  7631. disable_e1();
  7632. disable_e2();
  7633. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7634. pinMode(PS_ON_PIN,INPUT);
  7635. #endif
  7636. SERIAL_ERROR_START;
  7637. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7638. if (full_screen_message != NULL) {
  7639. SERIAL_ERRORLNRPGM(full_screen_message);
  7640. lcd_display_message_fullscreen_P(full_screen_message);
  7641. } else {
  7642. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7643. }
  7644. // FMC small patch to update the LCD before ending
  7645. sei(); // enable interrupts
  7646. for ( int i=5; i--; lcd_update(0))
  7647. {
  7648. _delay(200);
  7649. }
  7650. cli(); // disable interrupts
  7651. suicide();
  7652. while(1)
  7653. {
  7654. #ifdef WATCHDOG
  7655. wdt_reset();
  7656. #endif //WATCHDOG
  7657. /* Intentionally left empty */
  7658. } // Wait for reset
  7659. }
  7660. // Stop: Emergency stop used by overtemp functions which allows recovery
  7661. //
  7662. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  7663. // processed via USB (using "Stopped") until the print is resumed via M999 or
  7664. // manually started from scratch with the LCD.
  7665. //
  7666. // Note that the current instruction is completely discarded, so resuming from Stop()
  7667. // will introduce either over/under extrusion on the current segment, and will not
  7668. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  7669. // the addition of disabling the headers) could allow true recovery in the future.
  7670. void Stop()
  7671. {
  7672. disable_heater();
  7673. if(Stopped == false) {
  7674. Stopped = true;
  7675. lcd_print_stop();
  7676. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7677. SERIAL_ERROR_START;
  7678. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7679. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7680. }
  7681. }
  7682. bool IsStopped() { return Stopped; };
  7683. #ifdef FAST_PWM_FAN
  7684. void setPwmFrequency(uint8_t pin, int val)
  7685. {
  7686. val &= 0x07;
  7687. switch(digitalPinToTimer(pin))
  7688. {
  7689. #if defined(TCCR0A)
  7690. case TIMER0A:
  7691. case TIMER0B:
  7692. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7693. // TCCR0B |= val;
  7694. break;
  7695. #endif
  7696. #if defined(TCCR1A)
  7697. case TIMER1A:
  7698. case TIMER1B:
  7699. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7700. // TCCR1B |= val;
  7701. break;
  7702. #endif
  7703. #if defined(TCCR2)
  7704. case TIMER2:
  7705. case TIMER2:
  7706. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7707. TCCR2 |= val;
  7708. break;
  7709. #endif
  7710. #if defined(TCCR2A)
  7711. case TIMER2A:
  7712. case TIMER2B:
  7713. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7714. TCCR2B |= val;
  7715. break;
  7716. #endif
  7717. #if defined(TCCR3A)
  7718. case TIMER3A:
  7719. case TIMER3B:
  7720. case TIMER3C:
  7721. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7722. TCCR3B |= val;
  7723. break;
  7724. #endif
  7725. #if defined(TCCR4A)
  7726. case TIMER4A:
  7727. case TIMER4B:
  7728. case TIMER4C:
  7729. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7730. TCCR4B |= val;
  7731. break;
  7732. #endif
  7733. #if defined(TCCR5A)
  7734. case TIMER5A:
  7735. case TIMER5B:
  7736. case TIMER5C:
  7737. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7738. TCCR5B |= val;
  7739. break;
  7740. #endif
  7741. }
  7742. }
  7743. #endif //FAST_PWM_FAN
  7744. //! @brief Get and validate extruder number
  7745. //!
  7746. //! If it is not specified, active_extruder is returned in parameter extruder.
  7747. //! @param [in] code M code number
  7748. //! @param [out] extruder
  7749. //! @return error
  7750. //! @retval true Invalid extruder specified in T code
  7751. //! @retval false Valid extruder specified in T code, or not specifiead
  7752. bool setTargetedHotend(int code, uint8_t &extruder)
  7753. {
  7754. extruder = active_extruder;
  7755. if(code_seen('T')) {
  7756. extruder = code_value();
  7757. if(extruder >= EXTRUDERS) {
  7758. SERIAL_ECHO_START;
  7759. switch(code){
  7760. case 104:
  7761. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7762. break;
  7763. case 105:
  7764. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7765. break;
  7766. case 109:
  7767. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7768. break;
  7769. case 218:
  7770. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7771. break;
  7772. case 221:
  7773. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7774. break;
  7775. }
  7776. SERIAL_PROTOCOLLN((int)extruder);
  7777. return true;
  7778. }
  7779. }
  7780. return false;
  7781. }
  7782. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7783. {
  7784. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7785. {
  7786. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7787. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7788. }
  7789. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7790. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7791. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7792. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7793. total_filament_used = 0;
  7794. }
  7795. float calculate_extruder_multiplier(float diameter) {
  7796. float out = 1.f;
  7797. if (cs.volumetric_enabled && diameter > 0.f) {
  7798. float area = M_PI * diameter * diameter * 0.25;
  7799. out = 1.f / area;
  7800. }
  7801. if (extrudemultiply != 100)
  7802. out *= float(extrudemultiply) * 0.01f;
  7803. return out;
  7804. }
  7805. void calculate_extruder_multipliers() {
  7806. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7807. #if EXTRUDERS > 1
  7808. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7809. #if EXTRUDERS > 2
  7810. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7811. #endif
  7812. #endif
  7813. }
  7814. void delay_keep_alive(unsigned int ms)
  7815. {
  7816. for (;;) {
  7817. manage_heater();
  7818. // Manage inactivity, but don't disable steppers on timeout.
  7819. manage_inactivity(true);
  7820. lcd_update(0);
  7821. if (ms == 0)
  7822. break;
  7823. else if (ms >= 50) {
  7824. _delay(50);
  7825. ms -= 50;
  7826. } else {
  7827. _delay(ms);
  7828. ms = 0;
  7829. }
  7830. }
  7831. }
  7832. static void wait_for_heater(long codenum, uint8_t extruder) {
  7833. if (!degTargetHotend(extruder))
  7834. return;
  7835. #ifdef TEMP_RESIDENCY_TIME
  7836. long residencyStart;
  7837. residencyStart = -1;
  7838. /* continue to loop until we have reached the target temp
  7839. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7840. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7841. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7842. #else
  7843. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7844. #endif //TEMP_RESIDENCY_TIME
  7845. if ((_millis() - codenum) > 1000UL)
  7846. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7847. if (!farm_mode) {
  7848. SERIAL_PROTOCOLPGM("T:");
  7849. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7850. SERIAL_PROTOCOLPGM(" E:");
  7851. SERIAL_PROTOCOL((int)extruder);
  7852. #ifdef TEMP_RESIDENCY_TIME
  7853. SERIAL_PROTOCOLPGM(" W:");
  7854. if (residencyStart > -1)
  7855. {
  7856. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7857. SERIAL_PROTOCOLLN(codenum);
  7858. }
  7859. else
  7860. {
  7861. SERIAL_PROTOCOLLN("?");
  7862. }
  7863. }
  7864. #else
  7865. SERIAL_PROTOCOLLN("");
  7866. #endif
  7867. codenum = _millis();
  7868. }
  7869. manage_heater();
  7870. manage_inactivity(true); //do not disable steppers
  7871. lcd_update(0);
  7872. #ifdef TEMP_RESIDENCY_TIME
  7873. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7874. or when current temp falls outside the hysteresis after target temp was reached */
  7875. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7876. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7877. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7878. {
  7879. residencyStart = _millis();
  7880. }
  7881. #endif //TEMP_RESIDENCY_TIME
  7882. }
  7883. }
  7884. void check_babystep()
  7885. {
  7886. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7887. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7888. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7889. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7890. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7891. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7892. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7893. babystep_z);
  7894. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7895. lcd_update_enable(true);
  7896. }
  7897. }
  7898. #ifdef HEATBED_ANALYSIS
  7899. void d_setup()
  7900. {
  7901. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7902. pinMode(D_DATA, INPUT_PULLUP);
  7903. pinMode(D_REQUIRE, OUTPUT);
  7904. digitalWrite(D_REQUIRE, HIGH);
  7905. }
  7906. float d_ReadData()
  7907. {
  7908. int digit[13];
  7909. String mergeOutput;
  7910. float output;
  7911. digitalWrite(D_REQUIRE, HIGH);
  7912. for (int i = 0; i<13; i++)
  7913. {
  7914. for (int j = 0; j < 4; j++)
  7915. {
  7916. while (digitalRead(D_DATACLOCK) == LOW) {}
  7917. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7918. bitWrite(digit[i], j, digitalRead(D_DATA));
  7919. }
  7920. }
  7921. digitalWrite(D_REQUIRE, LOW);
  7922. mergeOutput = "";
  7923. output = 0;
  7924. for (int r = 5; r <= 10; r++) //Merge digits
  7925. {
  7926. mergeOutput += digit[r];
  7927. }
  7928. output = mergeOutput.toFloat();
  7929. if (digit[4] == 8) //Handle sign
  7930. {
  7931. output *= -1;
  7932. }
  7933. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7934. {
  7935. output /= 10;
  7936. }
  7937. return output;
  7938. }
  7939. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7940. int t1 = 0;
  7941. int t_delay = 0;
  7942. int digit[13];
  7943. int m;
  7944. char str[3];
  7945. //String mergeOutput;
  7946. char mergeOutput[15];
  7947. float output;
  7948. int mesh_point = 0; //index number of calibration point
  7949. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7950. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7951. float mesh_home_z_search = 4;
  7952. float measure_z_height = 0.2f;
  7953. float row[x_points_num];
  7954. int ix = 0;
  7955. int iy = 0;
  7956. const char* filename_wldsd = "mesh.txt";
  7957. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7958. char numb_wldsd[8]; // (" -A.BCD" + null)
  7959. #ifdef MICROMETER_LOGGING
  7960. d_setup();
  7961. #endif //MICROMETER_LOGGING
  7962. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7963. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7964. unsigned int custom_message_type_old = custom_message_type;
  7965. unsigned int custom_message_state_old = custom_message_state;
  7966. custom_message_type = CustomMsg::MeshBedLeveling;
  7967. custom_message_state = (x_points_num * y_points_num) + 10;
  7968. lcd_update(1);
  7969. //mbl.reset();
  7970. babystep_undo();
  7971. card.openFile(filename_wldsd, false);
  7972. /*destination[Z_AXIS] = mesh_home_z_search;
  7973. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7974. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7975. for(int8_t i=0; i < NUM_AXIS; i++) {
  7976. current_position[i] = destination[i];
  7977. }
  7978. st_synchronize();
  7979. */
  7980. destination[Z_AXIS] = measure_z_height;
  7981. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7982. for(int8_t i=0; i < NUM_AXIS; i++) {
  7983. current_position[i] = destination[i];
  7984. }
  7985. st_synchronize();
  7986. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7987. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7988. SERIAL_PROTOCOL(x_points_num);
  7989. SERIAL_PROTOCOLPGM(",");
  7990. SERIAL_PROTOCOL(y_points_num);
  7991. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7992. SERIAL_PROTOCOL(mesh_home_z_search);
  7993. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7994. SERIAL_PROTOCOL(x_dimension);
  7995. SERIAL_PROTOCOLPGM(",");
  7996. SERIAL_PROTOCOL(y_dimension);
  7997. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7998. while (mesh_point != x_points_num * y_points_num) {
  7999. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8000. iy = mesh_point / x_points_num;
  8001. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8002. float z0 = 0.f;
  8003. /*destination[Z_AXIS] = mesh_home_z_search;
  8004. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8005. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8006. for(int8_t i=0; i < NUM_AXIS; i++) {
  8007. current_position[i] = destination[i];
  8008. }
  8009. st_synchronize();*/
  8010. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8011. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8012. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8013. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8014. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  8015. set_current_to_destination();
  8016. st_synchronize();
  8017. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8018. delay_keep_alive(1000);
  8019. #ifdef MICROMETER_LOGGING
  8020. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8021. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8022. //strcat(data_wldsd, numb_wldsd);
  8023. //MYSERIAL.println(data_wldsd);
  8024. //delay(1000);
  8025. //delay(3000);
  8026. //t1 = millis();
  8027. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8028. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8029. memset(digit, 0, sizeof(digit));
  8030. //cli();
  8031. digitalWrite(D_REQUIRE, LOW);
  8032. for (int i = 0; i<13; i++)
  8033. {
  8034. //t1 = millis();
  8035. for (int j = 0; j < 4; j++)
  8036. {
  8037. while (digitalRead(D_DATACLOCK) == LOW) {}
  8038. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8039. //printf_P(PSTR("Done %d\n"), j);
  8040. bitWrite(digit[i], j, digitalRead(D_DATA));
  8041. }
  8042. //t_delay = (millis() - t1);
  8043. //SERIAL_PROTOCOLPGM(" ");
  8044. //SERIAL_PROTOCOL_F(t_delay, 5);
  8045. //SERIAL_PROTOCOLPGM(" ");
  8046. }
  8047. //sei();
  8048. digitalWrite(D_REQUIRE, HIGH);
  8049. mergeOutput[0] = '\0';
  8050. output = 0;
  8051. for (int r = 5; r <= 10; r++) //Merge digits
  8052. {
  8053. sprintf(str, "%d", digit[r]);
  8054. strcat(mergeOutput, str);
  8055. }
  8056. output = atof(mergeOutput);
  8057. if (digit[4] == 8) //Handle sign
  8058. {
  8059. output *= -1;
  8060. }
  8061. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8062. {
  8063. output *= 0.1;
  8064. }
  8065. //output = d_ReadData();
  8066. //row[ix] = current_position[Z_AXIS];
  8067. //row[ix] = d_ReadData();
  8068. row[ix] = output;
  8069. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8070. memset(data_wldsd, 0, sizeof(data_wldsd));
  8071. for (int i = 0; i < x_points_num; i++) {
  8072. SERIAL_PROTOCOLPGM(" ");
  8073. SERIAL_PROTOCOL_F(row[i], 5);
  8074. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8075. dtostrf(row[i], 7, 3, numb_wldsd);
  8076. strcat(data_wldsd, numb_wldsd);
  8077. }
  8078. card.write_command(data_wldsd);
  8079. SERIAL_PROTOCOLPGM("\n");
  8080. }
  8081. custom_message_state--;
  8082. mesh_point++;
  8083. lcd_update(1);
  8084. }
  8085. #endif //MICROMETER_LOGGING
  8086. card.closefile();
  8087. //clean_up_after_endstop_move(l_feedmultiply);
  8088. }
  8089. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8090. int t1 = 0;
  8091. int t_delay = 0;
  8092. int digit[13];
  8093. int m;
  8094. char str[3];
  8095. //String mergeOutput;
  8096. char mergeOutput[15];
  8097. float output;
  8098. int mesh_point = 0; //index number of calibration point
  8099. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8100. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8101. float mesh_home_z_search = 4;
  8102. float row[x_points_num];
  8103. int ix = 0;
  8104. int iy = 0;
  8105. const char* filename_wldsd = "wldsd.txt";
  8106. char data_wldsd[70];
  8107. char numb_wldsd[10];
  8108. d_setup();
  8109. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8110. // We don't know where we are! HOME!
  8111. // Push the commands to the front of the message queue in the reverse order!
  8112. // There shall be always enough space reserved for these commands.
  8113. repeatcommand_front(); // repeat G80 with all its parameters
  8114. enquecommand_front_P((PSTR("G28 W0")));
  8115. enquecommand_front_P((PSTR("G1 Z5")));
  8116. return;
  8117. }
  8118. unsigned int custom_message_type_old = custom_message_type;
  8119. unsigned int custom_message_state_old = custom_message_state;
  8120. custom_message_type = CustomMsg::MeshBedLeveling;
  8121. custom_message_state = (x_points_num * y_points_num) + 10;
  8122. lcd_update(1);
  8123. mbl.reset();
  8124. babystep_undo();
  8125. card.openFile(filename_wldsd, false);
  8126. current_position[Z_AXIS] = mesh_home_z_search;
  8127. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8128. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8129. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8130. int l_feedmultiply = setup_for_endstop_move(false);
  8131. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8132. SERIAL_PROTOCOL(x_points_num);
  8133. SERIAL_PROTOCOLPGM(",");
  8134. SERIAL_PROTOCOL(y_points_num);
  8135. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8136. SERIAL_PROTOCOL(mesh_home_z_search);
  8137. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8138. SERIAL_PROTOCOL(x_dimension);
  8139. SERIAL_PROTOCOLPGM(",");
  8140. SERIAL_PROTOCOL(y_dimension);
  8141. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8142. while (mesh_point != x_points_num * y_points_num) {
  8143. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8144. iy = mesh_point / x_points_num;
  8145. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8146. float z0 = 0.f;
  8147. current_position[Z_AXIS] = mesh_home_z_search;
  8148. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8149. st_synchronize();
  8150. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8151. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8152. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8153. st_synchronize();
  8154. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8155. break;
  8156. card.closefile();
  8157. }
  8158. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8159. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8160. //strcat(data_wldsd, numb_wldsd);
  8161. //MYSERIAL.println(data_wldsd);
  8162. //_delay(1000);
  8163. //_delay(3000);
  8164. //t1 = _millis();
  8165. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8166. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8167. memset(digit, 0, sizeof(digit));
  8168. //cli();
  8169. digitalWrite(D_REQUIRE, LOW);
  8170. for (int i = 0; i<13; i++)
  8171. {
  8172. //t1 = _millis();
  8173. for (int j = 0; j < 4; j++)
  8174. {
  8175. while (digitalRead(D_DATACLOCK) == LOW) {}
  8176. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8177. bitWrite(digit[i], j, digitalRead(D_DATA));
  8178. }
  8179. //t_delay = (_millis() - t1);
  8180. //SERIAL_PROTOCOLPGM(" ");
  8181. //SERIAL_PROTOCOL_F(t_delay, 5);
  8182. //SERIAL_PROTOCOLPGM(" ");
  8183. }
  8184. //sei();
  8185. digitalWrite(D_REQUIRE, HIGH);
  8186. mergeOutput[0] = '\0';
  8187. output = 0;
  8188. for (int r = 5; r <= 10; r++) //Merge digits
  8189. {
  8190. sprintf(str, "%d", digit[r]);
  8191. strcat(mergeOutput, str);
  8192. }
  8193. output = atof(mergeOutput);
  8194. if (digit[4] == 8) //Handle sign
  8195. {
  8196. output *= -1;
  8197. }
  8198. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8199. {
  8200. output *= 0.1;
  8201. }
  8202. //output = d_ReadData();
  8203. //row[ix] = current_position[Z_AXIS];
  8204. memset(data_wldsd, 0, sizeof(data_wldsd));
  8205. for (int i = 0; i <3; i++) {
  8206. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8207. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8208. strcat(data_wldsd, numb_wldsd);
  8209. strcat(data_wldsd, ";");
  8210. }
  8211. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8212. dtostrf(output, 8, 5, numb_wldsd);
  8213. strcat(data_wldsd, numb_wldsd);
  8214. //strcat(data_wldsd, ";");
  8215. card.write_command(data_wldsd);
  8216. //row[ix] = d_ReadData();
  8217. row[ix] = output; // current_position[Z_AXIS];
  8218. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8219. for (int i = 0; i < x_points_num; i++) {
  8220. SERIAL_PROTOCOLPGM(" ");
  8221. SERIAL_PROTOCOL_F(row[i], 5);
  8222. }
  8223. SERIAL_PROTOCOLPGM("\n");
  8224. }
  8225. custom_message_state--;
  8226. mesh_point++;
  8227. lcd_update(1);
  8228. }
  8229. card.closefile();
  8230. clean_up_after_endstop_move(l_feedmultiply);
  8231. }
  8232. #endif //HEATBED_ANALYSIS
  8233. #ifndef PINDA_THERMISTOR
  8234. static void temp_compensation_start() {
  8235. custom_message_type = CustomMsg::TempCompPreheat;
  8236. custom_message_state = PINDA_HEAT_T + 1;
  8237. lcd_update(2);
  8238. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8239. current_position[E_AXIS] -= default_retraction;
  8240. }
  8241. plan_buffer_line_curposXYZE(400, active_extruder);
  8242. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8243. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8244. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8245. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8246. st_synchronize();
  8247. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8248. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8249. delay_keep_alive(1000);
  8250. custom_message_state = PINDA_HEAT_T - i;
  8251. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8252. else lcd_update(1);
  8253. }
  8254. custom_message_type = CustomMsg::Status;
  8255. custom_message_state = 0;
  8256. }
  8257. static void temp_compensation_apply() {
  8258. int i_add;
  8259. int z_shift = 0;
  8260. float z_shift_mm;
  8261. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8262. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8263. i_add = (target_temperature_bed - 60) / 10;
  8264. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8265. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8266. }else {
  8267. //interpolation
  8268. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8269. }
  8270. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8272. st_synchronize();
  8273. plan_set_z_position(current_position[Z_AXIS]);
  8274. }
  8275. else {
  8276. //we have no temp compensation data
  8277. }
  8278. }
  8279. #endif //ndef PINDA_THERMISTOR
  8280. float temp_comp_interpolation(float inp_temperature) {
  8281. //cubic spline interpolation
  8282. int n, i, j;
  8283. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8284. int shift[10];
  8285. int temp_C[10];
  8286. n = 6; //number of measured points
  8287. shift[0] = 0;
  8288. for (i = 0; i < n; i++) {
  8289. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8290. temp_C[i] = 50 + i * 10; //temperature in C
  8291. #ifdef PINDA_THERMISTOR
  8292. temp_C[i] = 35 + i * 5; //temperature in C
  8293. #else
  8294. temp_C[i] = 50 + i * 10; //temperature in C
  8295. #endif
  8296. x[i] = (float)temp_C[i];
  8297. f[i] = (float)shift[i];
  8298. }
  8299. if (inp_temperature < x[0]) return 0;
  8300. for (i = n - 1; i>0; i--) {
  8301. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8302. h[i - 1] = x[i] - x[i - 1];
  8303. }
  8304. //*********** formation of h, s , f matrix **************
  8305. for (i = 1; i<n - 1; i++) {
  8306. m[i][i] = 2 * (h[i - 1] + h[i]);
  8307. if (i != 1) {
  8308. m[i][i - 1] = h[i - 1];
  8309. m[i - 1][i] = h[i - 1];
  8310. }
  8311. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8312. }
  8313. //*********** forward elimination **************
  8314. for (i = 1; i<n - 2; i++) {
  8315. temp = (m[i + 1][i] / m[i][i]);
  8316. for (j = 1; j <= n - 1; j++)
  8317. m[i + 1][j] -= temp*m[i][j];
  8318. }
  8319. //*********** backward substitution *********
  8320. for (i = n - 2; i>0; i--) {
  8321. sum = 0;
  8322. for (j = i; j <= n - 2; j++)
  8323. sum += m[i][j] * s[j];
  8324. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8325. }
  8326. for (i = 0; i<n - 1; i++)
  8327. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8328. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8329. b = s[i] / 2;
  8330. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8331. d = f[i];
  8332. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8333. }
  8334. return sum;
  8335. }
  8336. #ifdef PINDA_THERMISTOR
  8337. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8338. {
  8339. if (!temp_cal_active) return 0;
  8340. if (!calibration_status_pinda()) return 0;
  8341. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8342. }
  8343. #endif //PINDA_THERMISTOR
  8344. void long_pause() //long pause print
  8345. {
  8346. st_synchronize();
  8347. start_pause_print = _millis();
  8348. // Stop heaters
  8349. setAllTargetHotends(0);
  8350. //retract
  8351. current_position[E_AXIS] -= default_retraction;
  8352. plan_buffer_line_curposXYZE(400, active_extruder);
  8353. //lift z
  8354. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8355. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8356. plan_buffer_line_curposXYZE(15, active_extruder);
  8357. //Move XY to side
  8358. current_position[X_AXIS] = X_PAUSE_POS;
  8359. current_position[Y_AXIS] = Y_PAUSE_POS;
  8360. plan_buffer_line_curposXYZE(50, active_extruder);
  8361. // Turn off the print fan
  8362. fanSpeed = 0;
  8363. }
  8364. void serialecho_temperatures() {
  8365. float tt = degHotend(active_extruder);
  8366. SERIAL_PROTOCOLPGM("T:");
  8367. SERIAL_PROTOCOL(tt);
  8368. SERIAL_PROTOCOLPGM(" E:");
  8369. SERIAL_PROTOCOL((int)active_extruder);
  8370. SERIAL_PROTOCOLPGM(" B:");
  8371. SERIAL_PROTOCOL_F(degBed(), 1);
  8372. SERIAL_PROTOCOLLN("");
  8373. }
  8374. #ifdef UVLO_SUPPORT
  8375. void uvlo_()
  8376. {
  8377. unsigned long time_start = _millis();
  8378. bool sd_print = card.sdprinting;
  8379. // Conserve power as soon as possible.
  8380. disable_x();
  8381. disable_y();
  8382. #ifdef TMC2130
  8383. tmc2130_set_current_h(Z_AXIS, 20);
  8384. tmc2130_set_current_r(Z_AXIS, 20);
  8385. tmc2130_set_current_h(E_AXIS, 20);
  8386. tmc2130_set_current_r(E_AXIS, 20);
  8387. #endif //TMC2130
  8388. // Indicate that the interrupt has been triggered.
  8389. // SERIAL_ECHOLNPGM("UVLO");
  8390. // Read out the current Z motor microstep counter. This will be later used
  8391. // for reaching the zero full step before powering off.
  8392. uint16_t z_microsteps = 0;
  8393. #ifdef TMC2130
  8394. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8395. #endif //TMC2130
  8396. // Calculate the file position, from which to resume this print.
  8397. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8398. {
  8399. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8400. sd_position -= sdlen_planner;
  8401. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8402. sd_position -= sdlen_cmdqueue;
  8403. if (sd_position < 0) sd_position = 0;
  8404. }
  8405. // save the global state at planning time
  8406. uint16_t feedrate_bckp;
  8407. if (blocks_queued())
  8408. {
  8409. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8410. feedrate_bckp = current_block->gcode_feedrate;
  8411. }
  8412. else
  8413. {
  8414. saved_target[0] = SAVED_TARGET_UNSET;
  8415. feedrate_bckp = feedrate;
  8416. }
  8417. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8418. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8419. // are in action.
  8420. planner_abort_hard();
  8421. // Store the current extruder position.
  8422. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8423. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8424. // Clean the input command queue.
  8425. cmdqueue_reset();
  8426. card.sdprinting = false;
  8427. // card.closefile();
  8428. // Enable stepper driver interrupt to move Z axis.
  8429. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8430. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8431. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8432. sei();
  8433. plan_buffer_line(
  8434. current_position[X_AXIS],
  8435. current_position[Y_AXIS],
  8436. current_position[Z_AXIS],
  8437. current_position[E_AXIS] - default_retraction,
  8438. 95, active_extruder);
  8439. st_synchronize();
  8440. disable_e0();
  8441. plan_buffer_line(
  8442. current_position[X_AXIS],
  8443. current_position[Y_AXIS],
  8444. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8445. current_position[E_AXIS] - default_retraction,
  8446. 40, active_extruder);
  8447. st_synchronize();
  8448. disable_e0();
  8449. plan_buffer_line(
  8450. current_position[X_AXIS],
  8451. current_position[Y_AXIS],
  8452. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8453. current_position[E_AXIS] - default_retraction,
  8454. 40, active_extruder);
  8455. st_synchronize();
  8456. disable_e0();
  8457. // Move Z up to the next 0th full step.
  8458. // Write the file position.
  8459. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8460. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8461. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8462. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8463. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8464. // Scale the z value to 1u resolution.
  8465. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8466. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8467. }
  8468. // Read out the current Z motor microstep counter. This will be later used
  8469. // for reaching the zero full step before powering off.
  8470. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8471. // Store the current position.
  8472. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8473. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8474. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8475. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8476. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  8477. EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
  8478. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8479. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8480. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8481. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8482. #if EXTRUDERS > 1
  8483. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8484. #if EXTRUDERS > 2
  8485. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8486. #endif
  8487. #endif
  8488. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8489. // Store the saved target
  8490. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  8491. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  8492. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  8493. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  8494. // Finaly store the "power outage" flag.
  8495. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8496. st_synchronize();
  8497. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8498. // Increment power failure counter
  8499. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8500. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8501. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8502. #if 0
  8503. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8504. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8505. plan_buffer_line_curposXYZE(500, active_extruder);
  8506. st_synchronize();
  8507. #endif
  8508. wdt_enable(WDTO_500MS);
  8509. WRITE(BEEPER,HIGH);
  8510. while(1)
  8511. ;
  8512. }
  8513. void uvlo_tiny()
  8514. {
  8515. uint16_t z_microsteps=0;
  8516. // Conserve power as soon as possible.
  8517. disable_x();
  8518. disable_y();
  8519. disable_e0();
  8520. #ifdef TMC2130
  8521. tmc2130_set_current_h(Z_AXIS, 20);
  8522. tmc2130_set_current_r(Z_AXIS, 20);
  8523. #endif //TMC2130
  8524. // Read out the current Z motor microstep counter
  8525. #ifdef TMC2130
  8526. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8527. #endif //TMC2130
  8528. planner_abort_hard();
  8529. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8530. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8531. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8532. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8533. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8534. }
  8535. //after multiple power panics current Z axis is unknow
  8536. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8537. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8538. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8539. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8540. }
  8541. // Finaly store the "power outage" flag.
  8542. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8543. // Increment power failure counter
  8544. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8545. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8546. wdt_enable(WDTO_500MS);
  8547. WRITE(BEEPER,HIGH);
  8548. while(1)
  8549. ;
  8550. }
  8551. #endif //UVLO_SUPPORT
  8552. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8553. void setup_fan_interrupt() {
  8554. //INT7
  8555. DDRE &= ~(1 << 7); //input pin
  8556. PORTE &= ~(1 << 7); //no internal pull-up
  8557. //start with sensing rising edge
  8558. EICRB &= ~(1 << 6);
  8559. EICRB |= (1 << 7);
  8560. //enable INT7 interrupt
  8561. EIMSK |= (1 << 7);
  8562. }
  8563. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8564. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8565. ISR(INT7_vect) {
  8566. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8567. #ifdef FAN_SOFT_PWM
  8568. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8569. #else //FAN_SOFT_PWM
  8570. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8571. #endif //FAN_SOFT_PWM
  8572. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8573. t_fan_rising_edge = millis_nc();
  8574. }
  8575. else { //interrupt was triggered by falling edge
  8576. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8577. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8578. }
  8579. }
  8580. EICRB ^= (1 << 6); //change edge
  8581. }
  8582. #endif
  8583. #ifdef UVLO_SUPPORT
  8584. void setup_uvlo_interrupt() {
  8585. DDRE &= ~(1 << 4); //input pin
  8586. PORTE &= ~(1 << 4); //no internal pull-up
  8587. //sensing falling edge
  8588. EICRB |= (1 << 0);
  8589. EICRB &= ~(1 << 1);
  8590. //enable INT4 interrupt
  8591. EIMSK |= (1 << 4);
  8592. }
  8593. ISR(INT4_vect) {
  8594. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8595. SERIAL_ECHOLNPGM("INT4");
  8596. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8597. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8598. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8599. }
  8600. void recover_print(uint8_t automatic) {
  8601. char cmd[30];
  8602. lcd_update_enable(true);
  8603. lcd_update(2);
  8604. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8605. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8606. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8607. // Lift the print head, so one may remove the excess priming material.
  8608. if(!bTiny&&(current_position[Z_AXIS]<25))
  8609. enquecommand_P(PSTR("G1 Z25 F800"));
  8610. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8611. enquecommand_P(PSTR("G28 X Y"));
  8612. // Set the target bed and nozzle temperatures and wait.
  8613. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8614. enquecommand(cmd);
  8615. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8616. enquecommand(cmd);
  8617. enquecommand_P(PSTR("M83")); //E axis relative mode
  8618. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8619. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8620. if(automatic == 0){
  8621. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8622. }
  8623. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8624. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8625. // Restart the print.
  8626. restore_print_from_eeprom();
  8627. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8628. }
  8629. void recover_machine_state_after_power_panic(bool bTiny)
  8630. {
  8631. char cmd[30];
  8632. // 1) Recover the logical cordinates at the time of the power panic.
  8633. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8634. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8635. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8636. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8637. mbl.active = false;
  8638. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8639. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8640. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8641. // Scale the z value to 10u resolution.
  8642. int16_t v;
  8643. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8644. if (v != 0)
  8645. mbl.active = true;
  8646. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8647. }
  8648. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8649. // The current position after power panic is moved to the next closest 0th full step.
  8650. if(bTiny){
  8651. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8652. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8653. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8654. //after multiple power panics the print is slightly in the air so get it little bit down.
  8655. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8656. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8657. }
  8658. else{
  8659. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8660. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8661. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8662. }
  8663. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8664. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8665. sprintf_P(cmd, PSTR("G92 E"));
  8666. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8667. enquecommand(cmd);
  8668. }
  8669. memcpy(destination, current_position, sizeof(destination));
  8670. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8671. print_world_coordinates();
  8672. // 3) Initialize the logical to physical coordinate system transformation.
  8673. world2machine_initialize();
  8674. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8675. // print_mesh_bed_leveling_table();
  8676. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8677. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8678. babystep_load();
  8679. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8680. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8681. // 6) Power up the motors, mark their positions as known.
  8682. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8683. axis_known_position[X_AXIS] = true; enable_x();
  8684. axis_known_position[Y_AXIS] = true; enable_y();
  8685. axis_known_position[Z_AXIS] = true; enable_z();
  8686. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8687. print_physical_coordinates();
  8688. // 7) Recover the target temperatures.
  8689. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8690. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8691. // 8) Recover extruder multipilers
  8692. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8693. #if EXTRUDERS > 1
  8694. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8695. #if EXTRUDERS > 2
  8696. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8697. #endif
  8698. #endif
  8699. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8700. // 9) Recover the saved target
  8701. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  8702. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  8703. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  8704. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  8705. }
  8706. void restore_print_from_eeprom() {
  8707. int feedrate_rec;
  8708. int feedmultiply_rec;
  8709. uint8_t fan_speed_rec;
  8710. char cmd[30];
  8711. char filename[13];
  8712. uint8_t depth = 0;
  8713. char dir_name[9];
  8714. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8715. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  8716. EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
  8717. SERIAL_ECHOPGM("Feedrate:");
  8718. MYSERIAL.print(feedrate_rec);
  8719. SERIAL_ECHOPGM(", feedmultiply:");
  8720. MYSERIAL.println(feedmultiply_rec);
  8721. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8722. MYSERIAL.println(int(depth));
  8723. for (int i = 0; i < depth; i++) {
  8724. for (int j = 0; j < 8; j++) {
  8725. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8726. }
  8727. dir_name[8] = '\0';
  8728. MYSERIAL.println(dir_name);
  8729. strcpy(dir_names[i], dir_name);
  8730. card.chdir(dir_name);
  8731. }
  8732. for (int i = 0; i < 8; i++) {
  8733. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8734. }
  8735. filename[8] = '\0';
  8736. MYSERIAL.print(filename);
  8737. strcat_P(filename, PSTR(".gco"));
  8738. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8739. enquecommand(cmd);
  8740. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8741. SERIAL_ECHOPGM("Position read from eeprom:");
  8742. MYSERIAL.println(position);
  8743. // E axis relative mode.
  8744. enquecommand_P(PSTR("M83"));
  8745. // Move to the XY print position in logical coordinates, where the print has been killed.
  8746. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8747. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8748. strcat_P(cmd, PSTR(" F2000"));
  8749. enquecommand(cmd);
  8750. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8751. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8752. // Move the Z axis down to the print, in logical coordinates.
  8753. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8754. enquecommand(cmd);
  8755. // Unretract.
  8756. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8757. // Set the feedrates saved at the power panic.
  8758. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8759. enquecommand(cmd);
  8760. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  8761. enquecommand(cmd);
  8762. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8763. {
  8764. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8765. }
  8766. // Set the fan speed saved at the power panic.
  8767. strcpy_P(cmd, PSTR("M106 S"));
  8768. strcat(cmd, itostr3(int(fan_speed_rec)));
  8769. enquecommand(cmd);
  8770. // Set a position in the file.
  8771. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8772. enquecommand(cmd);
  8773. enquecommand_P(PSTR("G4 S0"));
  8774. enquecommand_P(PSTR("PRUSA uvlo"));
  8775. }
  8776. #endif //UVLO_SUPPORT
  8777. //! @brief Immediately stop print moves
  8778. //!
  8779. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8780. //! If printing from sd card, position in file is saved.
  8781. //! If printing from USB, line number is saved.
  8782. //!
  8783. //! @param z_move
  8784. //! @param e_move
  8785. void stop_and_save_print_to_ram(float z_move, float e_move)
  8786. {
  8787. if (saved_printing) return;
  8788. #if 0
  8789. unsigned char nplanner_blocks;
  8790. #endif
  8791. unsigned char nlines;
  8792. uint16_t sdlen_planner;
  8793. uint16_t sdlen_cmdqueue;
  8794. cli();
  8795. if (card.sdprinting) {
  8796. #if 0
  8797. nplanner_blocks = number_of_blocks();
  8798. #endif
  8799. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8800. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8801. saved_sdpos -= sdlen_planner;
  8802. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8803. saved_sdpos -= sdlen_cmdqueue;
  8804. saved_printing_type = PRINTING_TYPE_SD;
  8805. }
  8806. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8807. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8808. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8809. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8810. saved_sdpos -= nlines;
  8811. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8812. saved_printing_type = PRINTING_TYPE_USB;
  8813. }
  8814. else {
  8815. saved_printing_type = PRINTING_TYPE_NONE;
  8816. //not sd printing nor usb printing
  8817. }
  8818. #if 0
  8819. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8820. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8821. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8822. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8823. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8824. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8825. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8826. {
  8827. card.setIndex(saved_sdpos);
  8828. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8829. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8830. MYSERIAL.print(char(card.get()));
  8831. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8832. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8833. MYSERIAL.print(char(card.get()));
  8834. SERIAL_ECHOLNPGM("End of command buffer");
  8835. }
  8836. {
  8837. // Print the content of the planner buffer, line by line:
  8838. card.setIndex(saved_sdpos);
  8839. int8_t iline = 0;
  8840. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8841. SERIAL_ECHOPGM("Planner line (from file): ");
  8842. MYSERIAL.print(int(iline), DEC);
  8843. SERIAL_ECHOPGM(", length: ");
  8844. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8845. SERIAL_ECHOPGM(", steps: (");
  8846. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8847. SERIAL_ECHOPGM(",");
  8848. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8849. SERIAL_ECHOPGM(",");
  8850. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8851. SERIAL_ECHOPGM(",");
  8852. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8853. SERIAL_ECHOPGM("), events: ");
  8854. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8855. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8856. MYSERIAL.print(char(card.get()));
  8857. }
  8858. }
  8859. {
  8860. // Print the content of the command buffer, line by line:
  8861. int8_t iline = 0;
  8862. union {
  8863. struct {
  8864. char lo;
  8865. char hi;
  8866. } lohi;
  8867. uint16_t value;
  8868. } sdlen_single;
  8869. int _bufindr = bufindr;
  8870. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8871. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8872. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8873. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8874. }
  8875. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8876. MYSERIAL.print(int(iline), DEC);
  8877. SERIAL_ECHOPGM(", type: ");
  8878. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8879. SERIAL_ECHOPGM(", len: ");
  8880. MYSERIAL.println(sdlen_single.value, DEC);
  8881. // Print the content of the buffer line.
  8882. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8883. SERIAL_ECHOPGM("Buffer line (from file): ");
  8884. MYSERIAL.println(int(iline), DEC);
  8885. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8886. MYSERIAL.print(char(card.get()));
  8887. if (-- _buflen == 0)
  8888. break;
  8889. // First skip the current command ID and iterate up to the end of the string.
  8890. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8891. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8892. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8893. // If the end of the buffer was empty,
  8894. if (_bufindr == sizeof(cmdbuffer)) {
  8895. // skip to the start and find the nonzero command.
  8896. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8897. }
  8898. }
  8899. }
  8900. #endif
  8901. // save the global state at planning time
  8902. if (blocks_queued())
  8903. {
  8904. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8905. saved_feedrate2 = current_block->gcode_feedrate;
  8906. }
  8907. else
  8908. {
  8909. saved_target[0] = SAVED_TARGET_UNSET;
  8910. saved_feedrate2 = feedrate;
  8911. }
  8912. planner_abort_hard(); //abort printing
  8913. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8914. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  8915. saved_active_extruder = active_extruder; //save active_extruder
  8916. saved_extruder_temperature = degTargetHotend(active_extruder);
  8917. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8918. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8919. saved_fanSpeed = fanSpeed;
  8920. cmdqueue_reset(); //empty cmdqueue
  8921. card.sdprinting = false;
  8922. // card.closefile();
  8923. saved_printing = true;
  8924. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8925. st_reset_timer();
  8926. sei();
  8927. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8928. #if 1
  8929. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  8930. // the caller can continue processing. This is used during powerpanic to save the state as we
  8931. // move away from the print.
  8932. char buf[48];
  8933. // First unretract (relative extrusion)
  8934. if(!saved_extruder_relative_mode){
  8935. enquecommand(PSTR("M83"), true);
  8936. }
  8937. //retract 45mm/s
  8938. // A single sprintf may not be faster, but is definitely 20B shorter
  8939. // than a sequence of commands building the string piece by piece
  8940. // A snprintf would have been a safer call, but since it is not used
  8941. // in the whole program, its implementation would bring more bytes to the total size
  8942. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8943. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8944. enquecommand(buf, false);
  8945. // Then lift Z axis
  8946. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8947. // At this point the command queue is empty.
  8948. enquecommand(buf, false);
  8949. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8950. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8951. repeatcommand_front();
  8952. #else
  8953. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8954. st_synchronize(); //wait moving
  8955. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8956. memcpy(destination, current_position, sizeof(destination));
  8957. #endif
  8958. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  8959. }
  8960. }
  8961. //! @brief Restore print from ram
  8962. //!
  8963. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8964. //! print fan speed, waits for extruder temperature restore, then restores
  8965. //! position and continues print moves.
  8966. //!
  8967. //! Internally lcd_update() is called by wait_for_heater().
  8968. //!
  8969. //! @param e_move
  8970. void restore_print_from_ram_and_continue(float e_move)
  8971. {
  8972. if (!saved_printing) return;
  8973. #ifdef FANCHECK
  8974. // Do not allow resume printing if fans are still not ok
  8975. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8976. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8977. #endif
  8978. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8979. // current_position[axis] = st_get_position_mm(axis);
  8980. active_extruder = saved_active_extruder; //restore active_extruder
  8981. fanSpeed = saved_fanSpeed;
  8982. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8983. {
  8984. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8985. heating_status = 1;
  8986. wait_for_heater(_millis(), saved_active_extruder);
  8987. heating_status = 2;
  8988. }
  8989. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8990. float e = saved_pos[E_AXIS] - e_move;
  8991. plan_set_e_position(e);
  8992. #ifdef FANCHECK
  8993. fans_check_enabled = false;
  8994. #endif
  8995. //first move print head in XY to the saved position:
  8996. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8997. st_synchronize();
  8998. //then move Z
  8999. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9000. st_synchronize();
  9001. //and finaly unretract (35mm/s)
  9002. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  9003. st_synchronize();
  9004. #ifdef FANCHECK
  9005. fans_check_enabled = true;
  9006. #endif
  9007. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9008. feedrate = saved_feedrate2;
  9009. feedmultiply = saved_feedmultiply2;
  9010. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9011. memcpy(destination, current_position, sizeof(destination));
  9012. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9013. card.setIndex(saved_sdpos);
  9014. sdpos_atomic = saved_sdpos;
  9015. card.sdprinting = true;
  9016. }
  9017. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9018. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9019. serial_count = 0;
  9020. FlushSerialRequestResend();
  9021. }
  9022. else {
  9023. //not sd printing nor usb printing
  9024. }
  9025. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9026. lcd_setstatuspgm(_T(WELCOME_MSG));
  9027. saved_printing_type = PRINTING_TYPE_NONE;
  9028. saved_printing = false;
  9029. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9030. }
  9031. void print_world_coordinates()
  9032. {
  9033. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9034. }
  9035. void print_physical_coordinates()
  9036. {
  9037. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9038. }
  9039. void print_mesh_bed_leveling_table()
  9040. {
  9041. SERIAL_ECHOPGM("mesh bed leveling: ");
  9042. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9043. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9044. MYSERIAL.print(mbl.z_values[y][x], 3);
  9045. SERIAL_ECHOPGM(" ");
  9046. }
  9047. SERIAL_ECHOLNPGM("");
  9048. }
  9049. uint16_t print_time_remaining() {
  9050. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9051. #ifdef TMC2130
  9052. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9053. else print_t = print_time_remaining_silent;
  9054. #else
  9055. print_t = print_time_remaining_normal;
  9056. #endif //TMC2130
  9057. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9058. return print_t;
  9059. }
  9060. uint8_t calc_percent_done()
  9061. {
  9062. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9063. uint8_t percent_done = 0;
  9064. #ifdef TMC2130
  9065. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9066. percent_done = print_percent_done_normal;
  9067. }
  9068. else if (print_percent_done_silent <= 100) {
  9069. percent_done = print_percent_done_silent;
  9070. }
  9071. #else
  9072. if (print_percent_done_normal <= 100) {
  9073. percent_done = print_percent_done_normal;
  9074. }
  9075. #endif //TMC2130
  9076. else {
  9077. percent_done = card.percentDone();
  9078. }
  9079. return percent_done;
  9080. }
  9081. static void print_time_remaining_init()
  9082. {
  9083. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9084. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9085. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9086. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9087. }
  9088. void load_filament_final_feed()
  9089. {
  9090. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9091. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9092. }
  9093. //! @brief Wait for user to check the state
  9094. //! @par nozzle_temp nozzle temperature to load filament
  9095. void M600_check_state(float nozzle_temp)
  9096. {
  9097. lcd_change_fil_state = 0;
  9098. while (lcd_change_fil_state != 1)
  9099. {
  9100. lcd_change_fil_state = 0;
  9101. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9102. lcd_alright();
  9103. KEEPALIVE_STATE(IN_HANDLER);
  9104. switch(lcd_change_fil_state)
  9105. {
  9106. // Filament failed to load so load it again
  9107. case 2:
  9108. if (mmu_enabled)
  9109. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9110. else
  9111. M600_load_filament_movements();
  9112. break;
  9113. // Filament loaded properly but color is not clear
  9114. case 3:
  9115. st_synchronize();
  9116. load_filament_final_feed();
  9117. lcd_loading_color();
  9118. st_synchronize();
  9119. break;
  9120. // Everything good
  9121. default:
  9122. lcd_change_success();
  9123. break;
  9124. }
  9125. }
  9126. }
  9127. //! @brief Wait for user action
  9128. //!
  9129. //! Beep, manage nozzle heater and wait for user to start unload filament
  9130. //! If times out, active extruder temperature is set to 0.
  9131. //!
  9132. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9133. void M600_wait_for_user(float HotendTempBckp) {
  9134. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9135. int counterBeep = 0;
  9136. unsigned long waiting_start_time = _millis();
  9137. uint8_t wait_for_user_state = 0;
  9138. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9139. bool bFirst=true;
  9140. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9141. manage_heater();
  9142. manage_inactivity(true);
  9143. #if BEEPER > 0
  9144. if (counterBeep == 500) {
  9145. counterBeep = 0;
  9146. }
  9147. SET_OUTPUT(BEEPER);
  9148. if (counterBeep == 0) {
  9149. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9150. {
  9151. bFirst=false;
  9152. WRITE(BEEPER, HIGH);
  9153. }
  9154. }
  9155. if (counterBeep == 20) {
  9156. WRITE(BEEPER, LOW);
  9157. }
  9158. counterBeep++;
  9159. #endif //BEEPER > 0
  9160. switch (wait_for_user_state) {
  9161. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9162. delay_keep_alive(4);
  9163. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9164. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9165. wait_for_user_state = 1;
  9166. setAllTargetHotends(0);
  9167. st_synchronize();
  9168. disable_e0();
  9169. disable_e1();
  9170. disable_e2();
  9171. }
  9172. break;
  9173. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9174. delay_keep_alive(4);
  9175. if (lcd_clicked()) {
  9176. setTargetHotend(HotendTempBckp, active_extruder);
  9177. lcd_wait_for_heater();
  9178. wait_for_user_state = 2;
  9179. }
  9180. break;
  9181. case 2: //waiting for nozzle to reach target temperature
  9182. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9183. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9184. waiting_start_time = _millis();
  9185. wait_for_user_state = 0;
  9186. }
  9187. else {
  9188. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9189. lcd_set_cursor(1, 4);
  9190. lcd_print(ftostr3(degHotend(active_extruder)));
  9191. }
  9192. break;
  9193. }
  9194. }
  9195. WRITE(BEEPER, LOW);
  9196. }
  9197. void M600_load_filament_movements()
  9198. {
  9199. #ifdef SNMM
  9200. display_loading();
  9201. do
  9202. {
  9203. current_position[E_AXIS] += 0.002;
  9204. plan_buffer_line_curposXYZE(500, active_extruder);
  9205. delay_keep_alive(2);
  9206. }
  9207. while (!lcd_clicked());
  9208. st_synchronize();
  9209. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9210. plan_buffer_line_curposXYZE(3000, active_extruder);
  9211. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9212. plan_buffer_line_curposXYZE(1400, active_extruder);
  9213. current_position[E_AXIS] += 40;
  9214. plan_buffer_line_curposXYZE(400, active_extruder);
  9215. current_position[E_AXIS] += 10;
  9216. plan_buffer_line_curposXYZE(50, active_extruder);
  9217. #else
  9218. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9219. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9220. #endif
  9221. load_filament_final_feed();
  9222. lcd_loading_filament();
  9223. st_synchronize();
  9224. }
  9225. void M600_load_filament() {
  9226. //load filament for single material and SNMM
  9227. lcd_wait_interact();
  9228. //load_filament_time = _millis();
  9229. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9230. #ifdef PAT9125
  9231. fsensor_autoload_check_start();
  9232. #endif //PAT9125
  9233. while(!lcd_clicked())
  9234. {
  9235. manage_heater();
  9236. manage_inactivity(true);
  9237. #ifdef FILAMENT_SENSOR
  9238. if (fsensor_check_autoload())
  9239. {
  9240. Sound_MakeCustom(50,1000,false);
  9241. break;
  9242. }
  9243. #endif //FILAMENT_SENSOR
  9244. }
  9245. #ifdef PAT9125
  9246. fsensor_autoload_check_stop();
  9247. #endif //PAT9125
  9248. KEEPALIVE_STATE(IN_HANDLER);
  9249. #ifdef FSENSOR_QUALITY
  9250. fsensor_oq_meassure_start(70);
  9251. #endif //FSENSOR_QUALITY
  9252. M600_load_filament_movements();
  9253. Sound_MakeCustom(50,1000,false);
  9254. #ifdef FSENSOR_QUALITY
  9255. fsensor_oq_meassure_stop();
  9256. if (!fsensor_oq_result())
  9257. {
  9258. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9259. lcd_update_enable(true);
  9260. lcd_update(2);
  9261. if (disable)
  9262. fsensor_disable();
  9263. }
  9264. #endif //FSENSOR_QUALITY
  9265. lcd_update_enable(false);
  9266. }
  9267. //! @brief Wait for click
  9268. //!
  9269. //! Set
  9270. void marlin_wait_for_click()
  9271. {
  9272. int8_t busy_state_backup = busy_state;
  9273. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9274. lcd_consume_click();
  9275. while(!lcd_clicked())
  9276. {
  9277. manage_heater();
  9278. manage_inactivity(true);
  9279. lcd_update(0);
  9280. }
  9281. KEEPALIVE_STATE(busy_state_backup);
  9282. }
  9283. #define FIL_LOAD_LENGTH 60
  9284. #ifdef PSU_Delta
  9285. bool bEnableForce_z;
  9286. void init_force_z()
  9287. {
  9288. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9289. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9290. disable_force_z();
  9291. }
  9292. void check_force_z()
  9293. {
  9294. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9295. init_force_z(); // causes enforced switching into disable-state
  9296. }
  9297. void disable_force_z()
  9298. {
  9299. uint16_t z_microsteps=0;
  9300. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9301. bEnableForce_z=false;
  9302. // switching to silent mode
  9303. #ifdef TMC2130
  9304. tmc2130_mode=TMC2130_MODE_SILENT;
  9305. update_mode_profile();
  9306. tmc2130_init(true);
  9307. #endif // TMC2130
  9308. axis_known_position[Z_AXIS]=false;
  9309. }
  9310. void enable_force_z()
  9311. {
  9312. if(bEnableForce_z)
  9313. return; // motor already enabled (may be ;-p )
  9314. bEnableForce_z=true;
  9315. // mode recovering
  9316. #ifdef TMC2130
  9317. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9318. update_mode_profile();
  9319. tmc2130_init(true);
  9320. #endif // TMC2130
  9321. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9322. }
  9323. #endif // PSU_Delta