planner.cpp 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  84. volatile unsigned char block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_k = LIN_ADVANCE_K,
  97. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  98. position_float[NUM_AXIS] = { 0 };
  99. #endif
  100. // Returns the index of the next block in the ring buffer
  101. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  102. static inline int8_t next_block_index(int8_t block_index) {
  103. if (++ block_index == BLOCK_BUFFER_SIZE)
  104. block_index = 0;
  105. return block_index;
  106. }
  107. // Returns the index of the previous block in the ring buffer
  108. static inline int8_t prev_block_index(int8_t block_index) {
  109. if (block_index == 0)
  110. block_index = BLOCK_BUFFER_SIZE;
  111. -- block_index;
  112. return block_index;
  113. }
  114. //===========================================================================
  115. //=============================functions ============================
  116. //===========================================================================
  117. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  118. // given acceleration:
  119. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  120. {
  121. if (acceleration!=0) {
  122. return((target_rate*target_rate-initial_rate*initial_rate)/
  123. (2.0*acceleration));
  124. }
  125. else {
  126. return 0.0; // acceleration was 0, set acceleration distance to 0
  127. }
  128. }
  129. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  130. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  131. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  132. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  133. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  134. {
  135. if (acceleration!=0) {
  136. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  137. (4.0*acceleration) );
  138. }
  139. else {
  140. return 0.0; // acceleration was 0, set intersection distance to 0
  141. }
  142. }
  143. // Minimum stepper rate 120Hz.
  144. #define MINIMAL_STEP_RATE 120
  145. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  146. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  147. {
  148. // These two lines are the only floating point calculations performed in this routine.
  149. // initial_rate, final_rate in Hz.
  150. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  151. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  152. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  153. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  154. // Limit minimal step rate (Otherwise the timer will overflow.)
  155. if (initial_rate < MINIMAL_STEP_RATE)
  156. initial_rate = MINIMAL_STEP_RATE;
  157. if (initial_rate > block->nominal_rate)
  158. initial_rate = block->nominal_rate;
  159. if (final_rate < MINIMAL_STEP_RATE)
  160. final_rate = MINIMAL_STEP_RATE;
  161. if (final_rate > block->nominal_rate)
  162. final_rate = block->nominal_rate;
  163. uint32_t acceleration = block->acceleration_st;
  164. if (acceleration == 0)
  165. // Don't allow zero acceleration.
  166. acceleration = 1;
  167. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  168. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  169. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  170. //FIXME assert that this result fits a 64bit unsigned int.
  171. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  172. uint32_t final_rate_sqr = final_rate*final_rate;
  173. uint32_t acceleration_x2 = acceleration << 1;
  174. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  175. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  176. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  177. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  178. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  179. // Size of Plateau of Nominal Rate.
  180. uint32_t plateau_steps = 0;
  181. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  182. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  183. // in order to reach the final_rate exactly at the end of this block.
  184. if (accel_decel_steps < block->step_event_count.wide) {
  185. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  186. } else {
  187. uint32_t acceleration_x4 = acceleration << 2;
  188. // Avoid negative numbers
  189. if (final_rate_sqr >= initial_rate_sqr) {
  190. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  191. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  192. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  193. #if 0
  194. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  195. #else
  196. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  197. if (block->step_event_count.wide & 1)
  198. accelerate_steps += acceleration_x2;
  199. accelerate_steps /= acceleration_x4;
  200. accelerate_steps += (block->step_event_count.wide >> 1);
  201. #endif
  202. if (accelerate_steps > block->step_event_count.wide)
  203. accelerate_steps = block->step_event_count.wide;
  204. } else {
  205. #if 0
  206. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  207. #else
  208. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  209. if (block->step_event_count.wide & 1)
  210. decelerate_steps += acceleration_x2;
  211. decelerate_steps /= acceleration_x4;
  212. decelerate_steps += (block->step_event_count.wide >> 1);
  213. #endif
  214. if (decelerate_steps > block->step_event_count.wide)
  215. decelerate_steps = block->step_event_count.wide;
  216. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  217. }
  218. }
  219. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  220. // This block locks the interrupts globally for 4.38 us,
  221. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  222. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  223. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  224. if (! block->busy) { // Don't update variables if block is busy.
  225. block->accelerate_until = accelerate_steps;
  226. block->decelerate_after = accelerate_steps+plateau_steps;
  227. block->initial_rate = initial_rate;
  228. block->final_rate = final_rate;
  229. }
  230. CRITICAL_SECTION_END;
  231. }
  232. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  233. // decceleration within the allotted distance.
  234. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  235. {
  236. // assert(decceleration < 0);
  237. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  238. }
  239. // Recalculates the motion plan according to the following algorithm:
  240. //
  241. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  242. // so that:
  243. // a. The junction jerk is within the set limit
  244. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  245. // acceleration.
  246. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  247. // a. The speed increase within one block would require faster accelleration than the one, true
  248. // constant acceleration.
  249. //
  250. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  251. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  252. // the set limit. Finally it will:
  253. //
  254. // 3. Recalculate trapezoids for all blocks.
  255. //
  256. //FIXME This routine is called 15x every time a new line is added to the planner,
  257. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  258. // if the CPU is found lacking computational power.
  259. //
  260. // Following sources may be used to optimize the 8-bit AVR code:
  261. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  262. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  263. //
  264. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  265. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  266. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  267. //
  268. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  269. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  270. // https://github.com/rekka/avrmultiplication
  271. //
  272. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  273. // https://courses.cit.cornell.edu/ee476/Math/
  274. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  275. //
  276. void planner_recalculate(const float &safe_final_speed)
  277. {
  278. // Reverse pass
  279. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  280. // by consuming the blocks, therefore shortening the queue.
  281. unsigned char tail = block_buffer_tail;
  282. uint8_t block_index;
  283. block_t *prev, *current, *next;
  284. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  285. // At least three blocks are in the queue?
  286. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  287. if (n_blocks >= 3) {
  288. // Initialize the last tripple of blocks.
  289. block_index = prev_block_index(block_buffer_head);
  290. next = block_buffer + block_index;
  291. current = block_buffer + (block_index = prev_block_index(block_index));
  292. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  293. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  294. // 1) it may already be running at the stepper interrupt,
  295. // 2) there is no way to limit it when going in the forward direction.
  296. while (block_index != tail) {
  297. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  298. // Don't modify the entry velocity of the starting block.
  299. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  300. // for the stepper interrupt routine to use them.
  301. tail = block_index;
  302. // Update the number of blocks to process.
  303. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  304. // SERIAL_ECHOLNPGM("START");
  305. break;
  306. }
  307. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  308. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  309. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  310. if (current->entry_speed != current->max_entry_speed) {
  311. // assert(current->entry_speed < current->max_entry_speed);
  312. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  313. // segment and the maximum acceleration allowed for this segment.
  314. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  315. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  316. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  317. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  318. // together with an assembly 32bit->16bit sqrt function.
  319. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  320. current->max_entry_speed :
  321. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  322. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  323. current->flag |= BLOCK_FLAG_RECALCULATE;
  324. }
  325. next = current;
  326. current = block_buffer + (block_index = prev_block_index(block_index));
  327. }
  328. }
  329. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  330. // Forward pass and recalculate the trapezoids.
  331. if (n_blocks >= 2) {
  332. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  333. block_index = tail;
  334. prev = block_buffer + block_index;
  335. current = block_buffer + (block_index = next_block_index(block_index));
  336. do {
  337. // If the previous block is an acceleration block, but it is not long enough to complete the
  338. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  339. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  340. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  341. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  342. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  343. // Check for junction speed change
  344. if (current->entry_speed != entry_speed) {
  345. current->entry_speed = entry_speed;
  346. current->flag |= BLOCK_FLAG_RECALCULATE;
  347. }
  348. }
  349. // Recalculate if current block entry or exit junction speed has changed.
  350. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  351. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  352. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  353. // Reset current only to ensure next trapezoid is computed.
  354. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  355. }
  356. prev = current;
  357. current = block_buffer + (block_index = next_block_index(block_index));
  358. } while (block_index != block_buffer_head);
  359. }
  360. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  361. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  362. current = block_buffer + prev_block_index(block_buffer_head);
  363. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  364. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  365. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  366. }
  367. void plan_init() {
  368. block_buffer_head = 0;
  369. block_buffer_tail = 0;
  370. memset(position, 0, sizeof(position)); // clear position
  371. #ifdef LIN_ADVANCE
  372. memset(position_float, 0, sizeof(position)); // clear position
  373. #endif
  374. previous_speed[0] = 0.0;
  375. previous_speed[1] = 0.0;
  376. previous_speed[2] = 0.0;
  377. previous_speed[3] = 0.0;
  378. previous_nominal_speed = 0.0;
  379. }
  380. #ifdef AUTOTEMP
  381. void getHighESpeed()
  382. {
  383. static float oldt=0;
  384. if(!autotemp_enabled){
  385. return;
  386. }
  387. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  388. return; //do nothing
  389. }
  390. float high=0.0;
  391. uint8_t block_index = block_buffer_tail;
  392. while(block_index != block_buffer_head) {
  393. if((block_buffer[block_index].steps_x.wide != 0) ||
  394. (block_buffer[block_index].steps_y.wide != 0) ||
  395. (block_buffer[block_index].steps_z.wide != 0)) {
  396. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  397. //se; mm/sec;
  398. if(se>high)
  399. {
  400. high=se;
  401. }
  402. }
  403. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  404. }
  405. float g=autotemp_min+high*autotemp_factor;
  406. float t=g;
  407. if(t<autotemp_min)
  408. t=autotemp_min;
  409. if(t>autotemp_max)
  410. t=autotemp_max;
  411. if(oldt>t)
  412. {
  413. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  414. }
  415. oldt=t;
  416. setTargetHotend0(t);
  417. }
  418. #endif
  419. bool e_active()
  420. {
  421. unsigned char e_active = 0;
  422. block_t *block;
  423. if(block_buffer_tail != block_buffer_head)
  424. {
  425. uint8_t block_index = block_buffer_tail;
  426. while(block_index != block_buffer_head)
  427. {
  428. block = &block_buffer[block_index];
  429. if(block->steps_e.wide != 0) e_active++;
  430. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  431. }
  432. }
  433. return (e_active > 0) ? true : false ;
  434. }
  435. void check_axes_activity()
  436. {
  437. unsigned char x_active = 0;
  438. unsigned char y_active = 0;
  439. unsigned char z_active = 0;
  440. unsigned char e_active = 0;
  441. unsigned char tail_fan_speed = fanSpeed;
  442. block_t *block;
  443. if(block_buffer_tail != block_buffer_head)
  444. {
  445. uint8_t block_index = block_buffer_tail;
  446. tail_fan_speed = block_buffer[block_index].fan_speed;
  447. while(block_index != block_buffer_head)
  448. {
  449. block = &block_buffer[block_index];
  450. if(block->steps_x.wide != 0) x_active++;
  451. if(block->steps_y.wide != 0) y_active++;
  452. if(block->steps_z.wide != 0) z_active++;
  453. if(block->steps_e.wide != 0) e_active++;
  454. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  455. }
  456. }
  457. if((DISABLE_X) && (x_active == 0)) disable_x();
  458. if((DISABLE_Y) && (y_active == 0)) disable_y();
  459. if((DISABLE_Z) && (z_active == 0)) disable_z();
  460. if((DISABLE_E) && (e_active == 0))
  461. {
  462. disable_e0();
  463. disable_e1();
  464. disable_e2();
  465. }
  466. #if defined(FAN_PIN) && FAN_PIN > -1
  467. #ifdef FAN_KICKSTART_TIME
  468. static unsigned long fan_kick_end;
  469. if (tail_fan_speed) {
  470. if (fan_kick_end == 0) {
  471. // Just starting up fan - run at full power.
  472. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  473. tail_fan_speed = 255;
  474. } else if (fan_kick_end > _millis())
  475. // Fan still spinning up.
  476. tail_fan_speed = 255;
  477. } else {
  478. fan_kick_end = 0;
  479. }
  480. #endif//FAN_KICKSTART_TIME
  481. #ifdef FAN_SOFT_PWM
  482. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  483. fanSpeedBckp = tail_fan_speed;
  484. }
  485. else {
  486. fanSpeedSoftPwm = tail_fan_speed;
  487. }
  488. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  489. #else
  490. analogWrite(FAN_PIN,tail_fan_speed);
  491. #endif//!FAN_SOFT_PWM
  492. #endif//FAN_PIN > -1
  493. #ifdef AUTOTEMP
  494. getHighESpeed();
  495. #endif
  496. }
  497. bool waiting_inside_plan_buffer_line_print_aborted = false;
  498. /*
  499. void planner_abort_soft()
  500. {
  501. // Empty the queue.
  502. while (blocks_queued()) plan_discard_current_block();
  503. // Relay to planner wait routine, that the current line shall be canceled.
  504. waiting_inside_plan_buffer_line_print_aborted = true;
  505. //current_position[i]
  506. }
  507. */
  508. #ifdef PLANNER_DIAGNOSTICS
  509. static inline void planner_update_queue_min_counter()
  510. {
  511. uint8_t new_counter = moves_planned();
  512. if (new_counter < g_cntr_planner_queue_min)
  513. g_cntr_planner_queue_min = new_counter;
  514. }
  515. #endif /* PLANNER_DIAGNOSTICS */
  516. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  517. void planner_abort_hard()
  518. {
  519. // Abort the stepper routine and flush the planner queue.
  520. DISABLE_STEPPER_DRIVER_INTERRUPT();
  521. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  522. // First update the planner's current position in the physical motor steps.
  523. position[X_AXIS] = st_get_position(X_AXIS);
  524. position[Y_AXIS] = st_get_position(Y_AXIS);
  525. position[Z_AXIS] = st_get_position(Z_AXIS);
  526. position[E_AXIS] = st_get_position(E_AXIS);
  527. // Second update the current position of the front end.
  528. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  529. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  530. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  531. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  532. // Apply the mesh bed leveling correction to the Z axis.
  533. #ifdef MESH_BED_LEVELING
  534. if (mbl.active) {
  535. #if 1
  536. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  537. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  538. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  539. #else
  540. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  541. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  542. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  543. else {
  544. float t = float(step_events_completed) / float(current_block->step_event_count);
  545. float vec[3] = {
  546. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  547. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  548. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  549. };
  550. float pos1[3], pos2[3];
  551. for (int8_t i = 0; i < 3; ++ i) {
  552. if (current_block->direction_bits & (1<<i))
  553. vec[i] = - vec[i];
  554. pos1[i] = current_position[i] - vec[i] * t;
  555. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  556. }
  557. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  558. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  559. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  560. }
  561. #endif
  562. }
  563. #endif
  564. // Clear the planner queue, reset and re-enable the stepper timer.
  565. quickStop();
  566. // Apply inverse world correction matrix.
  567. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  568. memcpy(destination, current_position, sizeof(destination));
  569. // Resets planner junction speeds. Assumes start from rest.
  570. previous_nominal_speed = 0.0;
  571. previous_speed[0] = 0.0;
  572. previous_speed[1] = 0.0;
  573. previous_speed[2] = 0.0;
  574. previous_speed[3] = 0.0;
  575. // Relay to planner wait routine, that the current line shall be canceled.
  576. waiting_inside_plan_buffer_line_print_aborted = true;
  577. }
  578. void plan_buffer_line_curposXYZE(float feed_rate, uint8_t extruder) {
  579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, extruder );
  580. }
  581. float junction_deviation = 0.1;
  582. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  583. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  584. // calculation the caller must also provide the physical length of the line in millimeters.
  585. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
  586. {
  587. // Calculate the buffer head after we push this byte
  588. int next_buffer_head = next_block_index(block_buffer_head);
  589. // If the buffer is full: good! That means we are well ahead of the robot.
  590. // Rest here until there is room in the buffer.
  591. waiting_inside_plan_buffer_line_print_aborted = false;
  592. if (block_buffer_tail == next_buffer_head) {
  593. do {
  594. manage_heater();
  595. // Vojtech: Don't disable motors inside the planner!
  596. manage_inactivity(false);
  597. lcd_update(0);
  598. } while (block_buffer_tail == next_buffer_head);
  599. if (waiting_inside_plan_buffer_line_print_aborted) {
  600. // Inside the lcd_update(0) routine the print has been aborted.
  601. // Cancel the print, do not plan the current line this routine is waiting on.
  602. #ifdef PLANNER_DIAGNOSTICS
  603. planner_update_queue_min_counter();
  604. #endif /* PLANNER_DIAGNOSTICS */
  605. return;
  606. }
  607. }
  608. #ifdef PLANNER_DIAGNOSTICS
  609. planner_update_queue_min_counter();
  610. #endif /* PLANNER_DIAGNOSTICS */
  611. // Prepare to set up new block
  612. block_t *block = &block_buffer[block_buffer_head];
  613. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  614. block->busy = false;
  615. // Set sdlen for calculating sd position
  616. block->sdlen = 0;
  617. // Save original destination of the move
  618. if (gcode_target)
  619. memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
  620. else
  621. {
  622. block->gcode_target[X_AXIS] = x;
  623. block->gcode_target[Y_AXIS] = y;
  624. block->gcode_target[Z_AXIS] = z;
  625. block->gcode_target[E_AXIS] = e;
  626. }
  627. // Save the global feedrate at scheduling time
  628. block->gcode_feedrate = feedrate;
  629. #ifdef ENABLE_AUTO_BED_LEVELING
  630. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  631. #endif // ENABLE_AUTO_BED_LEVELING
  632. // Apply the machine correction matrix.
  633. {
  634. #if 0
  635. SERIAL_ECHOPGM("Planner, current position - servos: ");
  636. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  637. SERIAL_ECHOPGM(", ");
  638. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  639. SERIAL_ECHOPGM(", ");
  640. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  641. SERIAL_ECHOLNPGM("");
  642. SERIAL_ECHOPGM("Planner, target position, initial: ");
  643. MYSERIAL.print(x, 5);
  644. SERIAL_ECHOPGM(", ");
  645. MYSERIAL.print(y, 5);
  646. SERIAL_ECHOLNPGM("");
  647. SERIAL_ECHOPGM("Planner, world2machine: ");
  648. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  649. SERIAL_ECHOPGM(", ");
  650. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  651. SERIAL_ECHOPGM(", ");
  652. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  653. SERIAL_ECHOPGM(", ");
  654. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  655. SERIAL_ECHOLNPGM("");
  656. SERIAL_ECHOPGM("Planner, offset: ");
  657. MYSERIAL.print(world2machine_shift[0], 5);
  658. SERIAL_ECHOPGM(", ");
  659. MYSERIAL.print(world2machine_shift[1], 5);
  660. SERIAL_ECHOLNPGM("");
  661. #endif
  662. world2machine(x, y);
  663. #if 0
  664. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  665. MYSERIAL.print(x, 5);
  666. SERIAL_ECHOPGM(", ");
  667. MYSERIAL.print(y, 5);
  668. SERIAL_ECHOLNPGM("");
  669. #endif
  670. }
  671. // The target position of the tool in absolute steps
  672. // Calculate target position in absolute steps
  673. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  674. long target[4];
  675. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  676. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  677. #ifdef MESH_BED_LEVELING
  678. if (mbl.active){
  679. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  680. }else{
  681. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  682. }
  683. #else
  684. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  685. #endif // ENABLE_MESH_BED_LEVELING
  686. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  687. #ifdef LIN_ADVANCE
  688. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  689. float de_float = e - position_float[E_AXIS];
  690. #endif
  691. #ifdef PREVENT_DANGEROUS_EXTRUDE
  692. if(target[E_AXIS]!=position[E_AXIS])
  693. {
  694. if(degHotend(active_extruder)<extrude_min_temp)
  695. {
  696. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  697. #ifdef LIN_ADVANCE
  698. position_float[E_AXIS] = e;
  699. de_float = 0;
  700. #endif
  701. SERIAL_ECHO_START;
  702. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  703. }
  704. #ifdef PREVENT_LENGTHY_EXTRUDE
  705. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  706. {
  707. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  708. #ifdef LIN_ADVANCE
  709. position_float[E_AXIS] = e;
  710. de_float = 0;
  711. #endif
  712. SERIAL_ECHO_START;
  713. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  714. }
  715. #endif
  716. }
  717. #endif
  718. // Number of steps for each axis
  719. #ifndef COREXY
  720. // default non-h-bot planning
  721. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  722. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  723. #else
  724. // corexy planning
  725. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  726. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  727. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  728. #endif
  729. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  730. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  731. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  732. // Bail if this is a zero-length block
  733. if (block->step_event_count.wide <= dropsegments)
  734. {
  735. #ifdef PLANNER_DIAGNOSTICS
  736. planner_update_queue_min_counter();
  737. #endif /* PLANNER_DIAGNOSTICS */
  738. return;
  739. }
  740. block->fan_speed = fanSpeed;
  741. // Compute direction bits for this block
  742. block->direction_bits = 0;
  743. #ifndef COREXY
  744. if (target[X_AXIS] < position[X_AXIS])
  745. {
  746. block->direction_bits |= (1<<X_AXIS);
  747. }
  748. if (target[Y_AXIS] < position[Y_AXIS])
  749. {
  750. block->direction_bits |= (1<<Y_AXIS);
  751. }
  752. #else
  753. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  754. {
  755. block->direction_bits |= (1<<X_AXIS);
  756. }
  757. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  758. {
  759. block->direction_bits |= (1<<Y_AXIS);
  760. }
  761. #endif
  762. if (target[Z_AXIS] < position[Z_AXIS])
  763. {
  764. block->direction_bits |= (1<<Z_AXIS);
  765. }
  766. if (target[E_AXIS] < position[E_AXIS])
  767. {
  768. block->direction_bits |= (1<<E_AXIS);
  769. }
  770. block->active_extruder = extruder;
  771. //enable active axes
  772. #ifdef COREXY
  773. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  774. {
  775. enable_x();
  776. enable_y();
  777. }
  778. #else
  779. if(block->steps_x.wide != 0) enable_x();
  780. if(block->steps_y.wide != 0) enable_y();
  781. #endif
  782. if(block->steps_z.wide != 0) enable_z();
  783. // Enable extruder(s)
  784. if(block->steps_e.wide != 0)
  785. {
  786. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  787. {
  788. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  789. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  790. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  791. switch(extruder)
  792. {
  793. case 0:
  794. enable_e0();
  795. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  796. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  797. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  798. break;
  799. case 1:
  800. enable_e1();
  801. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  802. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  803. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  804. break;
  805. case 2:
  806. enable_e2();
  807. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  808. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  809. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  810. break;
  811. }
  812. }
  813. else //enable all
  814. {
  815. enable_e0();
  816. enable_e1();
  817. enable_e2();
  818. }
  819. }
  820. if (block->steps_e.wide == 0)
  821. {
  822. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  823. }
  824. else
  825. {
  826. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  827. }
  828. /* This part of the code calculates the total length of the movement.
  829. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  830. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  831. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  832. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  833. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  834. */
  835. #ifndef COREXY
  836. float delta_mm[4];
  837. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  838. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  839. #else
  840. float delta_mm[6];
  841. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  842. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  843. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  844. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  845. #endif
  846. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  847. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  848. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  849. {
  850. block->millimeters = fabs(delta_mm[E_AXIS]);
  851. }
  852. else
  853. {
  854. #ifndef COREXY
  855. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  856. #else
  857. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  858. #endif
  859. }
  860. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  861. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  862. float inverse_second = feed_rate * inverse_millimeters;
  863. int moves_queued = moves_planned();
  864. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  865. #ifdef SLOWDOWN
  866. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  867. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  868. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  869. // segment time in micro seconds
  870. unsigned long segment_time = lround(1000000.0/inverse_second);
  871. if (segment_time < cs.minsegmenttime)
  872. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  873. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  874. }
  875. #endif // SLOWDOWN
  876. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  877. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  878. // Calculate and limit speed in mm/sec for each axis
  879. float current_speed[4];
  880. float speed_factor = 1.0; //factor <=1 do decrease speed
  881. // maxlimit_status &= ~0xf;
  882. for(int i=0; i < 4; i++)
  883. {
  884. current_speed[i] = delta_mm[i] * inverse_second;
  885. if(fabs(current_speed[i]) > max_feedrate[i])
  886. {
  887. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  888. maxlimit_status |= (1 << i);
  889. }
  890. }
  891. // Correct the speed
  892. if( speed_factor < 1.0)
  893. {
  894. for(unsigned char i=0; i < 4; i++)
  895. {
  896. current_speed[i] *= speed_factor;
  897. }
  898. block->nominal_speed *= speed_factor;
  899. block->nominal_rate *= speed_factor;
  900. }
  901. // Compute and limit the acceleration rate for the trapezoid generator.
  902. // block->step_event_count ... event count of the fastest axis
  903. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  904. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  905. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  906. {
  907. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  908. }
  909. else
  910. {
  911. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  912. // Limit acceleration per axis
  913. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  914. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  915. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  916. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  917. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  918. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  919. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  920. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  921. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  922. }
  923. // Acceleration of the segment, in mm/sec^2
  924. block->acceleration = block->acceleration_st / steps_per_mm;
  925. #if 0
  926. // Oversample diagonal movements by a power of 2 up to 8x
  927. // to achieve more accurate diagonal movements.
  928. uint8_t bresenham_oversample = 1;
  929. for (uint8_t i = 0; i < 3; ++ i) {
  930. if (block->nominal_rate >= 5000) // 5kHz
  931. break;
  932. block->nominal_rate << 1;
  933. bresenham_oversample << 1;
  934. block->step_event_count << 1;
  935. }
  936. if (bresenham_oversample > 1)
  937. // Lower the acceleration steps/sec^2 to account for the oversampling.
  938. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  939. #endif
  940. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  941. // Start with a safe speed.
  942. // Safe speed is the speed, from which the machine may halt to stop immediately.
  943. float safe_speed = block->nominal_speed;
  944. bool limited = false;
  945. for (uint8_t axis = 0; axis < 4; ++ axis) {
  946. float jerk = fabs(current_speed[axis]);
  947. if (jerk > cs.max_jerk[axis]) {
  948. // The actual jerk is lower, if it has been limited by the XY jerk.
  949. if (limited) {
  950. // Spare one division by a following gymnastics:
  951. // Instead of jerk *= safe_speed / block->nominal_speed,
  952. // multiply max_jerk[axis] by the divisor.
  953. jerk *= safe_speed;
  954. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  955. if (jerk > mjerk) {
  956. safe_speed *= mjerk / jerk;
  957. limited = true;
  958. }
  959. } else {
  960. safe_speed = cs.max_jerk[axis];
  961. limited = true;
  962. }
  963. }
  964. }
  965. // Reset the block flag.
  966. block->flag = 0;
  967. // Initial limit on the segment entry velocity.
  968. float vmax_junction;
  969. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  970. // Is it because we don't want to tinker with the first buffer line, which
  971. // is likely to be executed by the stepper interrupt routine soon?
  972. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  973. // Estimate a maximum velocity allowed at a joint of two successive segments.
  974. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  975. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  976. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  977. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  978. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  979. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  980. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  981. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  982. float v_factor = 1.f;
  983. limited = false;
  984. // Now limit the jerk in all axes.
  985. for (uint8_t axis = 0; axis < 4; ++ axis) {
  986. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  987. float v_exit = previous_speed[axis];
  988. float v_entry = current_speed [axis];
  989. if (prev_speed_larger)
  990. v_exit *= smaller_speed_factor;
  991. if (limited) {
  992. v_exit *= v_factor;
  993. v_entry *= v_factor;
  994. }
  995. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  996. float jerk =
  997. (v_exit > v_entry) ?
  998. ((v_entry > 0.f || v_exit < 0.f) ?
  999. // coasting
  1000. (v_exit - v_entry) :
  1001. // axis reversal
  1002. max(v_exit, - v_entry)) :
  1003. // v_exit <= v_entry
  1004. ((v_entry < 0.f || v_exit > 0.f) ?
  1005. // coasting
  1006. (v_entry - v_exit) :
  1007. // axis reversal
  1008. max(- v_exit, v_entry));
  1009. if (jerk > cs.max_jerk[axis]) {
  1010. v_factor *= cs.max_jerk[axis] / jerk;
  1011. limited = true;
  1012. }
  1013. }
  1014. if (limited)
  1015. vmax_junction *= v_factor;
  1016. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1017. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1018. float vmax_junction_threshold = vmax_junction * 0.99f;
  1019. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1020. // Not coasting. The machine will stop and start the movements anyway,
  1021. // better to start the segment from start.
  1022. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1023. vmax_junction = safe_speed;
  1024. }
  1025. } else {
  1026. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1027. vmax_junction = safe_speed;
  1028. }
  1029. // Max entry speed of this block equals the max exit speed of the previous block.
  1030. block->max_entry_speed = vmax_junction;
  1031. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1032. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1033. block->entry_speed = min(vmax_junction, v_allowable);
  1034. // Initialize planner efficiency flags
  1035. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1036. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1037. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1038. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1039. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1040. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1041. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1042. // Always calculate trapezoid for new block
  1043. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1044. // Update previous path unit_vector and nominal speed
  1045. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1046. previous_nominal_speed = block->nominal_speed;
  1047. previous_safe_speed = safe_speed;
  1048. #ifdef LIN_ADVANCE
  1049. //
  1050. // Use LIN_ADVANCE for blocks if all these are true:
  1051. //
  1052. // esteps : We have E steps todo (a printing move)
  1053. //
  1054. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1055. //
  1056. // extruder_advance_k : There is an advance factor set.
  1057. //
  1058. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1059. // In that case, the retract and move will be executed together.
  1060. // This leads to too many advance steps due to a huge e_acceleration.
  1061. // The math is good, but we must avoid retract moves with advance!
  1062. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1063. //
  1064. block->use_advance_lead = block->steps_e.wide
  1065. && (block->steps_x.wide || block->steps_y.wide)
  1066. && extruder_advance_k
  1067. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1068. && de_float > 0.0;
  1069. if (block->use_advance_lead)
  1070. block->abs_adv_steps_multiplier8 = lround(
  1071. extruder_advance_k
  1072. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1073. * (block->nominal_speed / (float)block->nominal_rate)
  1074. * cs.axis_steps_per_unit[E_AXIS] * 256.0
  1075. );
  1076. #endif
  1077. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1078. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1079. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1080. if (block->step_event_count.wide <= 32767)
  1081. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1082. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1083. block_buffer_head = next_buffer_head;
  1084. // Update position
  1085. memcpy(position, target, sizeof(target)); // position[] = target[]
  1086. #ifdef LIN_ADVANCE
  1087. position_float[X_AXIS] = x;
  1088. position_float[Y_AXIS] = y;
  1089. position_float[Z_AXIS] = z;
  1090. position_float[E_AXIS] = e;
  1091. #endif
  1092. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1093. // the machine limits (maximum acceleration and maximum jerk).
  1094. // This runs asynchronously with the stepper interrupt controller, which may
  1095. // interfere with the process.
  1096. planner_recalculate(safe_speed);
  1097. // SERIAL_ECHOPGM("Q");
  1098. // SERIAL_ECHO(int(moves_planned()));
  1099. // SERIAL_ECHOLNPGM("");
  1100. #ifdef PLANNER_DIAGNOSTICS
  1101. planner_update_queue_min_counter();
  1102. #endif /* PLANNER_DIAGNOSTIC */
  1103. // The stepper timer interrupt will run continuously from now on.
  1104. // If there are no planner blocks to be executed by the stepper routine,
  1105. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1106. // from the planner queue if available.
  1107. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1108. }
  1109. #ifdef ENABLE_AUTO_BED_LEVELING
  1110. vector_3 plan_get_position() {
  1111. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1112. //position.debug("in plan_get position");
  1113. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1114. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1115. //inverse.debug("in plan_get inverse");
  1116. position.apply_rotation(inverse);
  1117. //position.debug("after rotation");
  1118. return position;
  1119. }
  1120. #endif // ENABLE_AUTO_BED_LEVELING
  1121. void plan_set_position(float x, float y, float z, const float &e)
  1122. {
  1123. #ifdef ENABLE_AUTO_BED_LEVELING
  1124. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1125. #endif // ENABLE_AUTO_BED_LEVELING
  1126. // Apply the machine correction matrix.
  1127. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1128. {
  1129. float tmpx = x;
  1130. float tmpy = y;
  1131. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1132. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1133. }
  1134. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1135. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1136. #ifdef MESH_BED_LEVELING
  1137. position[Z_AXIS] = mbl.active ?
  1138. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1139. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1140. #else
  1141. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1142. #endif // ENABLE_MESH_BED_LEVELING
  1143. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1144. #ifdef LIN_ADVANCE
  1145. position_float[X_AXIS] = x;
  1146. position_float[Y_AXIS] = y;
  1147. position_float[Z_AXIS] = z;
  1148. position_float[E_AXIS] = e;
  1149. #endif
  1150. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1151. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1152. previous_speed[0] = 0.0;
  1153. previous_speed[1] = 0.0;
  1154. previous_speed[2] = 0.0;
  1155. previous_speed[3] = 0.0;
  1156. }
  1157. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1158. void plan_set_z_position(const float &z)
  1159. {
  1160. #ifdef LIN_ADVANCE
  1161. position_float[Z_AXIS] = z;
  1162. #endif
  1163. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1164. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1165. }
  1166. void plan_set_e_position(const float &e)
  1167. {
  1168. #ifdef LIN_ADVANCE
  1169. position_float[E_AXIS] = e;
  1170. #endif
  1171. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1172. st_set_e_position(position[E_AXIS]);
  1173. }
  1174. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1175. void set_extrude_min_temp(float temp)
  1176. {
  1177. extrude_min_temp=temp;
  1178. }
  1179. #endif
  1180. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1181. void reset_acceleration_rates()
  1182. {
  1183. for(int8_t i=0; i < NUM_AXIS; i++)
  1184. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1185. }
  1186. #ifdef TMC2130
  1187. void update_mode_profile()
  1188. {
  1189. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1190. {
  1191. max_feedrate = cs.max_feedrate_normal;
  1192. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1193. }
  1194. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1195. {
  1196. max_feedrate = cs.max_feedrate_silent;
  1197. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1198. }
  1199. reset_acceleration_rates();
  1200. }
  1201. #endif //TMC2130
  1202. unsigned char number_of_blocks()
  1203. {
  1204. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1205. }
  1206. #ifdef PLANNER_DIAGNOSTICS
  1207. uint8_t planner_queue_min()
  1208. {
  1209. return g_cntr_planner_queue_min;
  1210. }
  1211. void planner_queue_min_reset()
  1212. {
  1213. g_cntr_planner_queue_min = moves_planned();
  1214. }
  1215. #endif /* PLANNER_DIAGNOSTICS */
  1216. void planner_add_sd_length(uint16_t sdlen)
  1217. {
  1218. if (block_buffer_head != block_buffer_tail) {
  1219. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1220. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1221. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1222. } else {
  1223. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1224. // at a power panic, so the length of this command may be forgotten.
  1225. }
  1226. }
  1227. uint16_t planner_calc_sd_length()
  1228. {
  1229. unsigned char _block_buffer_head = block_buffer_head;
  1230. unsigned char _block_buffer_tail = block_buffer_tail;
  1231. uint16_t sdlen = 0;
  1232. while (_block_buffer_head != _block_buffer_tail)
  1233. {
  1234. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1235. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1236. }
  1237. return sdlen;
  1238. }