temperature.cpp 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #ifdef IR_SENSOR_ANALOG
  59. uint16_t current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. struct
  125. {
  126. uint8_t isAltfan : 1;
  127. uint8_t altfanOverride : 1;
  128. } altfanStatus;
  129. #endif //EXTRUDER_ALTFAN_DETECT
  130. #endif
  131. #if EXTRUDERS > 3
  132. # error Unsupported number of extruders
  133. #elif EXTRUDERS > 2
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  135. #elif EXTRUDERS > 1
  136. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  137. #else
  138. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  139. #endif
  140. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  141. // Init min and max temp with extreme values to prevent false errors during startup
  142. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  143. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  144. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  145. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  146. #ifdef BED_MINTEMP
  147. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  148. #endif
  149. #ifdef BED_MAXTEMP
  150. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  151. #endif
  152. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  153. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  154. static float analog2temp(int raw, uint8_t e);
  155. static float analog2tempBed(int raw);
  156. static float analog2tempAmbient(int raw);
  157. static void updateTemperaturesFromRawValues();
  158. enum TempRunawayStates
  159. {
  160. TempRunaway_INACTIVE = 0,
  161. TempRunaway_PREHEAT = 1,
  162. TempRunaway_ACTIVE = 2,
  163. };
  164. #ifndef SOFT_PWM_SCALE
  165. #define SOFT_PWM_SCALE 0
  166. #endif
  167. //===========================================================================
  168. //============================= functions ============================
  169. //===========================================================================
  170. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  171. static float temp_runaway_status[4];
  172. static float temp_runaway_target[4];
  173. static float temp_runaway_timer[4];
  174. static int temp_runaway_error_counter[4];
  175. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  176. static void temp_runaway_stop(bool isPreheat, bool isBed);
  177. #endif
  178. #ifdef EXTRUDER_ALTFAN_DETECT
  179. ISR(INT6_vect) {
  180. fan_edge_counter[0]++;
  181. }
  182. bool extruder_altfan_detect()
  183. {
  184. setExtruderAutoFanState(3);
  185. SET_INPUT(TACH_0);
  186. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  187. if (overrideVal == EEPROM_EMPTY_VALUE)
  188. {
  189. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  190. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  191. }
  192. altfanStatus.altfanOverride = overrideVal;
  193. CRITICAL_SECTION_START;
  194. EICRB &= ~(1 << ISC61);
  195. EICRB |= (1 << ISC60);
  196. EIMSK |= (1 << INT6);
  197. fan_edge_counter[0] = 0;
  198. CRITICAL_SECTION_END;
  199. extruder_autofan_last_check = _millis();
  200. _delay(1000);
  201. EIMSK &= ~(1 << INT6);
  202. countFanSpeed();
  203. altfanStatus.isAltfan = fan_speed[0] > 100;
  204. setExtruderAutoFanState(1);
  205. return altfanStatus.isAltfan;
  206. }
  207. void altfanOverride_toggle()
  208. {
  209. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  210. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  211. }
  212. bool altfanOverride_get()
  213. {
  214. return altfanStatus.altfanOverride;
  215. }
  216. #endif //EXTRUDER_ALTFAN_DETECT
  217. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  218. bool checkAllHotends(void)
  219. {
  220. bool result=false;
  221. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  222. return(result);
  223. }
  224. void PID_autotune(float temp, int extruder, int ncycles)
  225. {
  226. pid_number_of_cycles = ncycles;
  227. pid_tuning_finished = false;
  228. float input = 0.0;
  229. pid_cycle=0;
  230. bool heating = true;
  231. unsigned long temp_millis = _millis();
  232. unsigned long t1=temp_millis;
  233. unsigned long t2=temp_millis;
  234. long t_high = 0;
  235. long t_low = 0;
  236. long bias, d;
  237. float Ku, Tu;
  238. float max = 0, min = 10000;
  239. uint8_t safety_check_cycles = 0;
  240. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  241. float temp_ambient;
  242. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  243. unsigned long extruder_autofan_last_check = _millis();
  244. #endif
  245. if ((extruder >= EXTRUDERS)
  246. #if (TEMP_BED_PIN <= -1)
  247. ||(extruder < 0)
  248. #endif
  249. ){
  250. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  251. pid_tuning_finished = true;
  252. pid_cycle = 0;
  253. return;
  254. }
  255. SERIAL_ECHOLN("PID Autotune start");
  256. disable_heater(); // switch off all heaters.
  257. if (extruder<0)
  258. {
  259. soft_pwm_bed = (MAX_BED_POWER)/2;
  260. timer02_set_pwm0(soft_pwm_bed << 1);
  261. bias = d = (MAX_BED_POWER)/2;
  262. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  263. }
  264. else
  265. {
  266. soft_pwm[extruder] = (PID_MAX)/2;
  267. bias = d = (PID_MAX)/2;
  268. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  269. }
  270. for(;;) {
  271. #ifdef WATCHDOG
  272. wdt_reset();
  273. #endif //WATCHDOG
  274. if(temp_meas_ready == true) { // temp sample ready
  275. updateTemperaturesFromRawValues();
  276. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  277. max=max(max,input);
  278. min=min(min,input);
  279. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  280. if(_millis() - extruder_autofan_last_check > 2500) {
  281. checkExtruderAutoFans();
  282. extruder_autofan_last_check = _millis();
  283. }
  284. #endif
  285. if(heating == true && input > temp) {
  286. if(_millis() - t2 > 5000) {
  287. heating=false;
  288. if (extruder<0)
  289. {
  290. soft_pwm_bed = (bias - d) >> 1;
  291. timer02_set_pwm0(soft_pwm_bed << 1);
  292. }
  293. else
  294. soft_pwm[extruder] = (bias - d) >> 1;
  295. t1=_millis();
  296. t_high=t1 - t2;
  297. max=temp;
  298. }
  299. }
  300. if(heating == false && input < temp) {
  301. if(_millis() - t1 > 5000) {
  302. heating=true;
  303. t2=_millis();
  304. t_low=t2 - t1;
  305. if(pid_cycle > 0) {
  306. bias += (d*(t_high - t_low))/(t_low + t_high);
  307. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  308. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  309. else d = bias;
  310. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  311. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  312. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  313. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  314. if(pid_cycle > 2) {
  315. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  316. Tu = ((float)(t_low + t_high)/1000.0);
  317. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  318. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  319. _Kp = 0.6*Ku;
  320. _Ki = 2*_Kp/Tu;
  321. _Kd = _Kp*Tu/8;
  322. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  323. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  324. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  325. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  326. /*
  327. _Kp = 0.33*Ku;
  328. _Ki = _Kp/Tu;
  329. _Kd = _Kp*Tu/3;
  330. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  331. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  332. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  333. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  334. _Kp = 0.2*Ku;
  335. _Ki = 2*_Kp/Tu;
  336. _Kd = _Kp*Tu/3;
  337. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  338. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  339. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  340. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  341. */
  342. }
  343. }
  344. if (extruder<0)
  345. {
  346. soft_pwm_bed = (bias + d) >> 1;
  347. timer02_set_pwm0(soft_pwm_bed << 1);
  348. }
  349. else
  350. soft_pwm[extruder] = (bias + d) >> 1;
  351. pid_cycle++;
  352. min=temp;
  353. }
  354. }
  355. }
  356. if(input > (temp + 20)) {
  357. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  358. pid_tuning_finished = true;
  359. pid_cycle = 0;
  360. return;
  361. }
  362. if(_millis() - temp_millis > 2000) {
  363. int p;
  364. if (extruder<0){
  365. p=soft_pwm_bed;
  366. SERIAL_PROTOCOLPGM("B:");
  367. }else{
  368. p=soft_pwm[extruder];
  369. SERIAL_PROTOCOLPGM("T:");
  370. }
  371. SERIAL_PROTOCOL(input);
  372. SERIAL_PROTOCOLPGM(" @:");
  373. SERIAL_PROTOCOLLN(p);
  374. if (safety_check_cycles == 0) { //save ambient temp
  375. temp_ambient = input;
  376. //SERIAL_ECHOPGM("Ambient T: ");
  377. //MYSERIAL.println(temp_ambient);
  378. safety_check_cycles++;
  379. }
  380. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  381. safety_check_cycles++;
  382. }
  383. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  384. safety_check_cycles++;
  385. //SERIAL_ECHOPGM("Time from beginning: ");
  386. //MYSERIAL.print(safety_check_cycles_count * 2);
  387. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  388. //MYSERIAL.println(input - temp_ambient);
  389. if (abs(input - temp_ambient) < 5.0) {
  390. temp_runaway_stop(false, (extruder<0));
  391. pid_tuning_finished = true;
  392. return;
  393. }
  394. }
  395. temp_millis = _millis();
  396. }
  397. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  398. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  399. pid_tuning_finished = true;
  400. pid_cycle = 0;
  401. return;
  402. }
  403. if(pid_cycle > ncycles) {
  404. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  405. pid_tuning_finished = true;
  406. pid_cycle = 0;
  407. return;
  408. }
  409. lcd_update(0);
  410. }
  411. }
  412. void updatePID()
  413. {
  414. #ifdef PIDTEMP
  415. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  416. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  417. }
  418. #endif
  419. #ifdef PIDTEMPBED
  420. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  421. #endif
  422. }
  423. int getHeaterPower(int heater) {
  424. if (heater<0)
  425. return soft_pwm_bed;
  426. return soft_pwm[heater];
  427. }
  428. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  429. #if defined(FAN_PIN) && FAN_PIN > -1
  430. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  431. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  432. #endif
  433. #endif
  434. void setExtruderAutoFanState(uint8_t state)
  435. {
  436. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  437. //the fan to either On or Off during certain tests/errors.
  438. fanState = state;
  439. uint8_t newFanSpeed = 0;
  440. if (fanState & 0x01)
  441. {
  442. #ifdef EXTRUDER_ALTFAN_DETECT
  443. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  444. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  445. #else //EXTRUDER_ALTFAN_DETECT
  446. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  447. #endif //EXTRUDER_ALTFAN_DETECT
  448. }
  449. timer4_set_fan0(newFanSpeed);
  450. }
  451. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  452. void countFanSpeed()
  453. {
  454. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  455. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  456. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  457. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  458. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  459. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  460. SERIAL_ECHOLNPGM(" ");*/
  461. fan_edge_counter[0] = 0;
  462. fan_edge_counter[1] = 0;
  463. }
  464. void checkFanSpeed()
  465. {
  466. uint8_t max_print_fan_errors = 0;
  467. uint8_t max_extruder_fan_errors = 0;
  468. #ifdef FAN_SOFT_PWM
  469. max_print_fan_errors = 3; //15 seconds
  470. max_extruder_fan_errors = 2; //10seconds
  471. #else //FAN_SOFT_PWM
  472. max_print_fan_errors = 15; //15 seconds
  473. max_extruder_fan_errors = 5; //5 seconds
  474. #endif //FAN_SOFT_PWM
  475. if(fans_check_enabled != false)
  476. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  477. static unsigned char fan_speed_errors[2] = { 0,0 };
  478. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  479. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  480. else{
  481. fan_speed_errors[0] = 0;
  482. host_keepalive();
  483. }
  484. #endif
  485. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  486. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  487. else fan_speed_errors[1] = 0;
  488. #endif
  489. // drop the fan_check_error flag when both fans are ok
  490. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  491. // we may even send some info to the LCD from here
  492. fan_check_error = EFCE_FIXED;
  493. }
  494. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  495. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  496. lcd_reset_alert_level(); //for another fan speed error
  497. }
  498. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  499. fan_speed_errors[0] = 0;
  500. fanSpeedError(0); //extruder fan
  501. }
  502. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  503. fan_speed_errors[1] = 0;
  504. fanSpeedError(1); //print fan
  505. }
  506. }
  507. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  508. //! Extracted from fanSpeedError to save some space.
  509. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  510. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  511. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  512. SERIAL_ECHOLNRPGM(serialMsg);
  513. if (get_message_level() == 0) {
  514. Sound_MakeCustom(200,0,true);
  515. LCD_ALERTMESSAGERPGM(lcdMsg);
  516. }
  517. }
  518. void fanSpeedError(unsigned char _fan) {
  519. if (get_message_level() != 0 && isPrintPaused) return;
  520. //to ensure that target temp. is not set to zero in case that we are resuming print
  521. if (card.sdprinting || is_usb_printing) {
  522. if (heating_status != 0) {
  523. lcd_print_stop();
  524. }
  525. else {
  526. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  527. }
  528. }
  529. else {
  530. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  531. setTargetHotend0(0);
  532. heating_status = 0;
  533. fan_check_error = EFCE_REPORTED;
  534. }
  535. switch (_fan) {
  536. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  537. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  538. break;
  539. case 1:
  540. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  541. break;
  542. }
  543. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  544. }
  545. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  546. void checkExtruderAutoFans()
  547. {
  548. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  549. if (!(fanState & 0x02))
  550. {
  551. fanState &= ~1;
  552. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  553. }
  554. setExtruderAutoFanState(fanState);
  555. #endif
  556. }
  557. #endif // any extruder auto fan pins set
  558. // ready for eventually parameters adjusting
  559. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  560. //void resetPID(uint8_t extruder)
  561. {
  562. }
  563. void manage_heater()
  564. {
  565. #ifdef WATCHDOG
  566. wdt_reset();
  567. #endif //WATCHDOG
  568. float pid_input;
  569. float pid_output;
  570. if(temp_meas_ready != true) //better readability
  571. return;
  572. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  573. updateTemperaturesFromRawValues();
  574. check_max_temp();
  575. check_min_temp();
  576. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  577. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  578. #endif
  579. for(int e = 0; e < EXTRUDERS; e++)
  580. {
  581. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  582. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  583. #endif
  584. #ifdef PIDTEMP
  585. pid_input = current_temperature[e];
  586. #ifndef PID_OPENLOOP
  587. if(target_temperature[e] == 0) {
  588. pid_output = 0;
  589. pid_reset[e] = true;
  590. } else {
  591. pid_error[e] = target_temperature[e] - pid_input;
  592. if(pid_reset[e]) {
  593. iState_sum[e] = 0.0;
  594. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  595. pid_reset[e] = false;
  596. }
  597. #ifndef PonM
  598. pTerm[e] = cs.Kp * pid_error[e];
  599. iState_sum[e] += pid_error[e];
  600. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  601. iTerm[e] = cs.Ki * iState_sum[e];
  602. // PID_K1 defined in Configuration.h in the PID settings
  603. #define K2 (1.0-PID_K1)
  604. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  605. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  606. if (pid_output > PID_MAX) {
  607. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  608. pid_output=PID_MAX;
  609. } else if (pid_output < 0) {
  610. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  611. pid_output=0;
  612. }
  613. #else // PonM ("Proportional on Measurement" method)
  614. iState_sum[e] += cs.Ki * pid_error[e];
  615. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  616. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  617. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  618. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  619. pid_output = constrain(pid_output, 0, PID_MAX);
  620. #endif // PonM
  621. }
  622. dState_last[e] = pid_input;
  623. #else
  624. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  625. #endif //PID_OPENLOOP
  626. #ifdef PID_DEBUG
  627. SERIAL_ECHO_START;
  628. SERIAL_ECHO(" PID_DEBUG ");
  629. SERIAL_ECHO(e);
  630. SERIAL_ECHO(": Input ");
  631. SERIAL_ECHO(pid_input);
  632. SERIAL_ECHO(" Output ");
  633. SERIAL_ECHO(pid_output);
  634. SERIAL_ECHO(" pTerm ");
  635. SERIAL_ECHO(pTerm[e]);
  636. SERIAL_ECHO(" iTerm ");
  637. SERIAL_ECHO(iTerm[e]);
  638. SERIAL_ECHO(" dTerm ");
  639. SERIAL_ECHOLN(-dTerm[e]);
  640. #endif //PID_DEBUG
  641. #else /* PID off */
  642. pid_output = 0;
  643. if(current_temperature[e] < target_temperature[e]) {
  644. pid_output = PID_MAX;
  645. }
  646. #endif
  647. // Check if temperature is within the correct range
  648. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  649. {
  650. soft_pwm[e] = (int)pid_output >> 1;
  651. }
  652. else
  653. {
  654. soft_pwm[e] = 0;
  655. }
  656. } // End extruder for loop
  657. #define FAN_CHECK_PERIOD 5000 //5s
  658. #define FAN_CHECK_DURATION 100 //100ms
  659. #ifndef DEBUG_DISABLE_FANCHECK
  660. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  661. #ifdef FAN_SOFT_PWM
  662. #ifdef FANCHECK
  663. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  664. extruder_autofan_last_check = _millis();
  665. fanSpeedBckp = fanSpeedSoftPwm;
  666. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  667. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  668. fanSpeedSoftPwm = 255;
  669. }
  670. fan_measuring = true;
  671. }
  672. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  673. countFanSpeed();
  674. checkFanSpeed();
  675. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  676. fanSpeedSoftPwm = fanSpeedBckp;
  677. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  678. extruder_autofan_last_check = _millis();
  679. fan_measuring = false;
  680. }
  681. #endif //FANCHECK
  682. checkExtruderAutoFans();
  683. #else //FAN_SOFT_PWM
  684. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  685. {
  686. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  687. countFanSpeed();
  688. checkFanSpeed();
  689. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  690. checkExtruderAutoFans();
  691. extruder_autofan_last_check = _millis();
  692. }
  693. #endif //FAN_SOFT_PWM
  694. #endif
  695. #endif //DEBUG_DISABLE_FANCHECK
  696. #ifndef PIDTEMPBED
  697. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  698. return;
  699. previous_millis_bed_heater = _millis();
  700. #endif
  701. #if TEMP_SENSOR_BED != 0
  702. #ifdef PIDTEMPBED
  703. pid_input = current_temperature_bed;
  704. #ifndef PID_OPENLOOP
  705. pid_error_bed = target_temperature_bed - pid_input;
  706. pTerm_bed = cs.bedKp * pid_error_bed;
  707. temp_iState_bed += pid_error_bed;
  708. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  709. iTerm_bed = cs.bedKi * temp_iState_bed;
  710. //PID_K1 defined in Configuration.h in the PID settings
  711. #define K2 (1.0-PID_K1)
  712. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  713. temp_dState_bed = pid_input;
  714. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  715. if (pid_output > MAX_BED_POWER) {
  716. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  717. pid_output=MAX_BED_POWER;
  718. } else if (pid_output < 0){
  719. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  720. pid_output=0;
  721. }
  722. #else
  723. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  724. #endif //PID_OPENLOOP
  725. if(current_temperature_bed < BED_MAXTEMP)
  726. {
  727. soft_pwm_bed = (int)pid_output >> 1;
  728. timer02_set_pwm0(soft_pwm_bed << 1);
  729. }
  730. else {
  731. soft_pwm_bed = 0;
  732. timer02_set_pwm0(soft_pwm_bed << 1);
  733. }
  734. #elif !defined(BED_LIMIT_SWITCHING)
  735. // Check if temperature is within the correct range
  736. if(current_temperature_bed < BED_MAXTEMP)
  737. {
  738. if(current_temperature_bed >= target_temperature_bed)
  739. {
  740. soft_pwm_bed = 0;
  741. timer02_set_pwm0(soft_pwm_bed << 1);
  742. }
  743. else
  744. {
  745. soft_pwm_bed = MAX_BED_POWER>>1;
  746. timer02_set_pwm0(soft_pwm_bed << 1);
  747. }
  748. }
  749. else
  750. {
  751. soft_pwm_bed = 0;
  752. timer02_set_pwm0(soft_pwm_bed << 1);
  753. WRITE(HEATER_BED_PIN,LOW);
  754. }
  755. #else //#ifdef BED_LIMIT_SWITCHING
  756. // Check if temperature is within the correct band
  757. if(current_temperature_bed < BED_MAXTEMP)
  758. {
  759. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  760. {
  761. soft_pwm_bed = 0;
  762. timer02_set_pwm0(soft_pwm_bed << 1);
  763. }
  764. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  765. {
  766. soft_pwm_bed = MAX_BED_POWER>>1;
  767. timer02_set_pwm0(soft_pwm_bed << 1);
  768. }
  769. }
  770. else
  771. {
  772. soft_pwm_bed = 0;
  773. timer02_set_pwm0(soft_pwm_bed << 1);
  774. WRITE(HEATER_BED_PIN,LOW);
  775. }
  776. #endif
  777. if(target_temperature_bed==0)
  778. {
  779. soft_pwm_bed = 0;
  780. timer02_set_pwm0(soft_pwm_bed << 1);
  781. }
  782. #endif
  783. host_keepalive();
  784. }
  785. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  786. // Derived from RepRap FiveD extruder::getTemperature()
  787. // For hot end temperature measurement.
  788. static float analog2temp(int raw, uint8_t e) {
  789. if(e >= EXTRUDERS)
  790. {
  791. SERIAL_ERROR_START;
  792. SERIAL_ERROR((int)e);
  793. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  794. kill(NULL, 6);
  795. return 0.0;
  796. }
  797. #ifdef HEATER_0_USES_MAX6675
  798. if (e == 0)
  799. {
  800. return 0.25 * raw;
  801. }
  802. #endif
  803. if(heater_ttbl_map[e] != NULL)
  804. {
  805. float celsius = 0;
  806. uint8_t i;
  807. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  808. for (i=1; i<heater_ttbllen_map[e]; i++)
  809. {
  810. if (PGM_RD_W((*tt)[i][0]) > raw)
  811. {
  812. celsius = PGM_RD_W((*tt)[i-1][1]) +
  813. (raw - PGM_RD_W((*tt)[i-1][0])) *
  814. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  815. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  816. break;
  817. }
  818. }
  819. // Overflow: Set to last value in the table
  820. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  821. return celsius;
  822. }
  823. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  824. }
  825. // Derived from RepRap FiveD extruder::getTemperature()
  826. // For bed temperature measurement.
  827. static float analog2tempBed(int raw) {
  828. #ifdef BED_USES_THERMISTOR
  829. float celsius = 0;
  830. byte i;
  831. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  832. {
  833. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  834. {
  835. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  836. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  837. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  838. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  839. break;
  840. }
  841. }
  842. // Overflow: Set to last value in the table
  843. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  844. // temperature offset adjustment
  845. #ifdef BED_OFFSET
  846. float _offset = BED_OFFSET;
  847. float _offset_center = BED_OFFSET_CENTER;
  848. float _offset_start = BED_OFFSET_START;
  849. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  850. float _second_koef = (_offset / 2) / (100 - _offset_center);
  851. if (celsius >= _offset_start && celsius <= _offset_center)
  852. {
  853. celsius = celsius + (_first_koef * (celsius - _offset_start));
  854. }
  855. else if (celsius > _offset_center && celsius <= 100)
  856. {
  857. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  858. }
  859. else if (celsius > 100)
  860. {
  861. celsius = celsius + _offset;
  862. }
  863. #endif
  864. return celsius;
  865. #elif defined BED_USES_AD595
  866. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  867. #else
  868. return 0;
  869. #endif
  870. }
  871. #ifdef AMBIENT_THERMISTOR
  872. static float analog2tempAmbient(int raw)
  873. {
  874. float celsius = 0;
  875. byte i;
  876. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  877. {
  878. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  879. {
  880. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  881. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  882. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  883. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  884. break;
  885. }
  886. }
  887. // Overflow: Set to last value in the table
  888. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  889. return celsius;
  890. }
  891. #endif //AMBIENT_THERMISTOR
  892. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  893. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  894. static void updateTemperaturesFromRawValues()
  895. {
  896. for(uint8_t e=0;e<EXTRUDERS;e++)
  897. {
  898. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  899. }
  900. #ifdef PINDA_THERMISTOR
  901. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  902. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  903. #endif
  904. #ifdef AMBIENT_THERMISTOR
  905. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  906. #endif
  907. #ifdef DEBUG_HEATER_BED_SIM
  908. current_temperature_bed = target_temperature_bed;
  909. #else //DEBUG_HEATER_BED_SIM
  910. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  911. #endif //DEBUG_HEATER_BED_SIM
  912. CRITICAL_SECTION_START;
  913. temp_meas_ready = false;
  914. CRITICAL_SECTION_END;
  915. }
  916. void tp_init()
  917. {
  918. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  919. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  920. MCUCR=(1<<JTD);
  921. MCUCR=(1<<JTD);
  922. #endif
  923. // Finish init of mult extruder arrays
  924. for(int e = 0; e < EXTRUDERS; e++) {
  925. // populate with the first value
  926. maxttemp[e] = maxttemp[0];
  927. #ifdef PIDTEMP
  928. iState_sum_min[e] = 0.0;
  929. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  930. #endif //PIDTEMP
  931. #ifdef PIDTEMPBED
  932. temp_iState_min_bed = 0.0;
  933. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  934. #endif //PIDTEMPBED
  935. }
  936. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  937. SET_OUTPUT(HEATER_0_PIN);
  938. #endif
  939. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  940. SET_OUTPUT(HEATER_1_PIN);
  941. #endif
  942. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  943. SET_OUTPUT(HEATER_2_PIN);
  944. #endif
  945. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  946. SET_OUTPUT(HEATER_BED_PIN);
  947. #endif
  948. #if defined(FAN_PIN) && (FAN_PIN > -1)
  949. SET_OUTPUT(FAN_PIN);
  950. #ifdef FAST_PWM_FAN
  951. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  952. #endif
  953. #ifdef FAN_SOFT_PWM
  954. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  955. #endif
  956. #endif
  957. #ifdef HEATER_0_USES_MAX6675
  958. #ifndef SDSUPPORT
  959. SET_OUTPUT(SCK_PIN);
  960. WRITE(SCK_PIN,0);
  961. SET_OUTPUT(MOSI_PIN);
  962. WRITE(MOSI_PIN,1);
  963. SET_INPUT(MISO_PIN);
  964. WRITE(MISO_PIN,1);
  965. #endif
  966. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  967. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  968. pinMode(SS_PIN, OUTPUT);
  969. digitalWrite(SS_PIN,0);
  970. pinMode(MAX6675_SS, OUTPUT);
  971. digitalWrite(MAX6675_SS,1);
  972. #endif
  973. adc_init();
  974. timer0_init();
  975. OCR2B = 128;
  976. TIMSK2 |= (1<<OCIE2B);
  977. timer4_init(); //for tone and Extruder fan PWM
  978. // Wait for temperature measurement to settle
  979. _delay(250);
  980. #ifdef HEATER_0_MINTEMP
  981. minttemp[0] = HEATER_0_MINTEMP;
  982. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  983. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  984. minttemp_raw[0] += OVERSAMPLENR;
  985. #else
  986. minttemp_raw[0] -= OVERSAMPLENR;
  987. #endif
  988. }
  989. #endif //MINTEMP
  990. #ifdef HEATER_0_MAXTEMP
  991. maxttemp[0] = HEATER_0_MAXTEMP;
  992. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  993. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  994. maxttemp_raw[0] -= OVERSAMPLENR;
  995. #else
  996. maxttemp_raw[0] += OVERSAMPLENR;
  997. #endif
  998. }
  999. #endif //MAXTEMP
  1000. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1001. minttemp[1] = HEATER_1_MINTEMP;
  1002. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1003. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1004. minttemp_raw[1] += OVERSAMPLENR;
  1005. #else
  1006. minttemp_raw[1] -= OVERSAMPLENR;
  1007. #endif
  1008. }
  1009. #endif // MINTEMP 1
  1010. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1011. maxttemp[1] = HEATER_1_MAXTEMP;
  1012. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1013. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1014. maxttemp_raw[1] -= OVERSAMPLENR;
  1015. #else
  1016. maxttemp_raw[1] += OVERSAMPLENR;
  1017. #endif
  1018. }
  1019. #endif //MAXTEMP 1
  1020. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1021. minttemp[2] = HEATER_2_MINTEMP;
  1022. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1023. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1024. minttemp_raw[2] += OVERSAMPLENR;
  1025. #else
  1026. minttemp_raw[2] -= OVERSAMPLENR;
  1027. #endif
  1028. }
  1029. #endif //MINTEMP 2
  1030. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1031. maxttemp[2] = HEATER_2_MAXTEMP;
  1032. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1033. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1034. maxttemp_raw[2] -= OVERSAMPLENR;
  1035. #else
  1036. maxttemp_raw[2] += OVERSAMPLENR;
  1037. #endif
  1038. }
  1039. #endif //MAXTEMP 2
  1040. #ifdef BED_MINTEMP
  1041. /* No bed MINTEMP error implemented?!? */
  1042. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1043. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1044. bed_minttemp_raw += OVERSAMPLENR;
  1045. #else
  1046. bed_minttemp_raw -= OVERSAMPLENR;
  1047. #endif
  1048. }
  1049. #endif //BED_MINTEMP
  1050. #ifdef BED_MAXTEMP
  1051. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1052. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1053. bed_maxttemp_raw -= OVERSAMPLENR;
  1054. #else
  1055. bed_maxttemp_raw += OVERSAMPLENR;
  1056. #endif
  1057. }
  1058. #endif //BED_MAXTEMP
  1059. }
  1060. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1061. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1062. {
  1063. float __delta;
  1064. float __hysteresis = 0;
  1065. int __timeout = 0;
  1066. bool temp_runaway_check_active = false;
  1067. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1068. static int __preheat_counter[2] = { 0,0};
  1069. static int __preheat_errors[2] = { 0,0};
  1070. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1071. {
  1072. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1073. if (_isbed)
  1074. {
  1075. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1076. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1077. }
  1078. #endif
  1079. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1080. if (!_isbed)
  1081. {
  1082. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1083. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1084. }
  1085. #endif
  1086. temp_runaway_timer[_heater_id] = _millis();
  1087. if (_output == 0)
  1088. {
  1089. temp_runaway_check_active = false;
  1090. temp_runaway_error_counter[_heater_id] = 0;
  1091. }
  1092. if (temp_runaway_target[_heater_id] != _target_temperature)
  1093. {
  1094. if (_target_temperature > 0)
  1095. {
  1096. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1097. temp_runaway_target[_heater_id] = _target_temperature;
  1098. __preheat_start[_heater_id] = _current_temperature;
  1099. __preheat_counter[_heater_id] = 0;
  1100. }
  1101. else
  1102. {
  1103. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1104. temp_runaway_target[_heater_id] = _target_temperature;
  1105. }
  1106. }
  1107. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1108. {
  1109. __preheat_counter[_heater_id]++;
  1110. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1111. {
  1112. /*SERIAL_ECHOPGM("Heater:");
  1113. MYSERIAL.print(_heater_id);
  1114. SERIAL_ECHOPGM(" T:");
  1115. MYSERIAL.print(_current_temperature);
  1116. SERIAL_ECHOPGM(" Tstart:");
  1117. MYSERIAL.print(__preheat_start[_heater_id]);
  1118. SERIAL_ECHOPGM(" delta:");
  1119. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1120. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1121. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1122. __delta=2.0;
  1123. if(_isbed)
  1124. {
  1125. __delta=3.0;
  1126. if(_current_temperature>90.0) __delta=2.0;
  1127. if(_current_temperature>105.0) __delta=0.6;
  1128. }
  1129. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1130. __preheat_errors[_heater_id]++;
  1131. /*SERIAL_ECHOPGM(" Preheat errors:");
  1132. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1133. }
  1134. else {
  1135. //SERIAL_ECHOLNPGM("");
  1136. __preheat_errors[_heater_id] = 0;
  1137. }
  1138. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1139. {
  1140. if (farm_mode) { prusa_statistics(0); }
  1141. temp_runaway_stop(true, _isbed);
  1142. if (farm_mode) { prusa_statistics(91); }
  1143. }
  1144. __preheat_start[_heater_id] = _current_temperature;
  1145. __preheat_counter[_heater_id] = 0;
  1146. }
  1147. }
  1148. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1149. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1150. {
  1151. /*SERIAL_ECHOPGM("Heater:");
  1152. MYSERIAL.print(_heater_id);
  1153. MYSERIAL.println(" ->tempRunaway");*/
  1154. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1155. temp_runaway_check_active = false;
  1156. temp_runaway_error_counter[_heater_id] = 0;
  1157. }
  1158. if (_output > 0)
  1159. {
  1160. temp_runaway_check_active = true;
  1161. }
  1162. if (temp_runaway_check_active)
  1163. {
  1164. // we are in range
  1165. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1166. {
  1167. temp_runaway_check_active = false;
  1168. temp_runaway_error_counter[_heater_id] = 0;
  1169. }
  1170. else
  1171. {
  1172. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1173. {
  1174. temp_runaway_error_counter[_heater_id]++;
  1175. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1176. {
  1177. if (farm_mode) { prusa_statistics(0); }
  1178. temp_runaway_stop(false, _isbed);
  1179. if (farm_mode) { prusa_statistics(90); }
  1180. }
  1181. }
  1182. }
  1183. }
  1184. }
  1185. }
  1186. void temp_runaway_stop(bool isPreheat, bool isBed)
  1187. {
  1188. cancel_heatup = true;
  1189. quickStop();
  1190. if (card.sdprinting)
  1191. {
  1192. card.sdprinting = false;
  1193. card.closefile();
  1194. }
  1195. // Clean the input command queue
  1196. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1197. cmdqueue_reset();
  1198. disable_heater();
  1199. disable_x();
  1200. disable_y();
  1201. disable_e0();
  1202. disable_e1();
  1203. disable_e2();
  1204. manage_heater();
  1205. lcd_update(0);
  1206. Sound_MakeCustom(200,0,true);
  1207. if (isPreheat)
  1208. {
  1209. Stop();
  1210. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1211. SERIAL_ERROR_START;
  1212. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1213. #ifdef EXTRUDER_ALTFAN_DETECT
  1214. altfanStatus.altfanOverride = 1; //full speed
  1215. #endif //EXTRUDER_ALTFAN_DETECT
  1216. setExtruderAutoFanState(3);
  1217. SET_OUTPUT(FAN_PIN);
  1218. #ifdef FAN_SOFT_PWM
  1219. fanSpeedSoftPwm = 255;
  1220. #else //FAN_SOFT_PWM
  1221. analogWrite(FAN_PIN, 255);
  1222. #endif //FAN_SOFT_PWM
  1223. fanSpeed = 255;
  1224. delayMicroseconds(2000);
  1225. }
  1226. else
  1227. {
  1228. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1229. SERIAL_ERROR_START;
  1230. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1231. }
  1232. }
  1233. #endif
  1234. void disable_heater()
  1235. {
  1236. setAllTargetHotends(0);
  1237. setTargetBed(0);
  1238. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1239. target_temperature[0]=0;
  1240. soft_pwm[0]=0;
  1241. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1242. WRITE(HEATER_0_PIN,LOW);
  1243. #endif
  1244. #endif
  1245. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1246. target_temperature[1]=0;
  1247. soft_pwm[1]=0;
  1248. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1249. WRITE(HEATER_1_PIN,LOW);
  1250. #endif
  1251. #endif
  1252. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1253. target_temperature[2]=0;
  1254. soft_pwm[2]=0;
  1255. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1256. WRITE(HEATER_2_PIN,LOW);
  1257. #endif
  1258. #endif
  1259. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1260. target_temperature_bed=0;
  1261. soft_pwm_bed=0;
  1262. timer02_set_pwm0(soft_pwm_bed << 1);
  1263. bedPWMDisabled = 0;
  1264. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1265. //WRITE(HEATER_BED_PIN,LOW);
  1266. #endif
  1267. #endif
  1268. }
  1269. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1270. //! than raw const char * of the messages themselves.
  1271. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1272. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1273. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1274. //! remember the last alert message sent to the LCD
  1275. //! to prevent flicker and improve speed
  1276. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1277. void max_temp_error(uint8_t e) {
  1278. disable_heater();
  1279. if(IsStopped() == false) {
  1280. SERIAL_ERROR_START;
  1281. SERIAL_ERRORLN((int)e);
  1282. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1283. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1284. }
  1285. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1286. Stop();
  1287. #endif
  1288. SET_OUTPUT(FAN_PIN);
  1289. SET_OUTPUT(BEEPER);
  1290. WRITE(FAN_PIN, 1);
  1291. WRITE(BEEPER, 1);
  1292. #ifdef EXTRUDER_ALTFAN_DETECT
  1293. altfanStatus.altfanOverride = 1; //full speed
  1294. #endif //EXTRUDER_ALTFAN_DETECT
  1295. setExtruderAutoFanState(3);
  1296. // fanSpeed will consumed by the check_axes_activity() routine.
  1297. fanSpeed=255;
  1298. if (farm_mode) { prusa_statistics(93); }
  1299. }
  1300. void min_temp_error(uint8_t e) {
  1301. #ifdef DEBUG_DISABLE_MINTEMP
  1302. return;
  1303. #endif
  1304. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1305. disable_heater();
  1306. static const char err[] PROGMEM = "Err: MINTEMP";
  1307. if(IsStopped() == false) {
  1308. SERIAL_ERROR_START;
  1309. SERIAL_ERRORLN((int)e);
  1310. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1311. lcd_setalertstatuspgm(err);
  1312. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1313. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1314. // we are already stopped due to some error, only update the status message without flickering
  1315. lcd_updatestatuspgm(err);
  1316. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1317. }
  1318. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1319. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1320. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1321. // lcd_print_stop();
  1322. // }
  1323. Stop();
  1324. #endif
  1325. if (farm_mode) { prusa_statistics(92); }
  1326. }
  1327. void bed_max_temp_error(void) {
  1328. #if HEATER_BED_PIN > -1
  1329. //WRITE(HEATER_BED_PIN, 0);
  1330. #endif
  1331. if(IsStopped() == false) {
  1332. SERIAL_ERROR_START;
  1333. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1334. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1335. }
  1336. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1337. Stop();
  1338. #endif
  1339. }
  1340. void bed_min_temp_error(void) {
  1341. #ifdef DEBUG_DISABLE_MINTEMP
  1342. return;
  1343. #endif
  1344. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1345. #if HEATER_BED_PIN > -1
  1346. //WRITE(HEATER_BED_PIN, 0);
  1347. #endif
  1348. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1349. if(IsStopped() == false) {
  1350. SERIAL_ERROR_START;
  1351. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1352. lcd_setalertstatuspgm(err);
  1353. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1354. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1355. // we are already stopped due to some error, only update the status message without flickering
  1356. lcd_updatestatuspgm(err);
  1357. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1358. }
  1359. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1360. Stop();
  1361. #endif
  1362. }
  1363. #ifdef HEATER_0_USES_MAX6675
  1364. #define MAX6675_HEAT_INTERVAL 250
  1365. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1366. int max6675_temp = 2000;
  1367. int read_max6675()
  1368. {
  1369. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1370. return max6675_temp;
  1371. max6675_previous_millis = _millis();
  1372. max6675_temp = 0;
  1373. #ifdef PRR
  1374. PRR &= ~(1<<PRSPI);
  1375. #elif defined PRR0
  1376. PRR0 &= ~(1<<PRSPI);
  1377. #endif
  1378. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1379. // enable TT_MAX6675
  1380. WRITE(MAX6675_SS, 0);
  1381. // ensure 100ns delay - a bit extra is fine
  1382. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1383. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1384. // read MSB
  1385. SPDR = 0;
  1386. for (;(SPSR & (1<<SPIF)) == 0;);
  1387. max6675_temp = SPDR;
  1388. max6675_temp <<= 8;
  1389. // read LSB
  1390. SPDR = 0;
  1391. for (;(SPSR & (1<<SPIF)) == 0;);
  1392. max6675_temp |= SPDR;
  1393. // disable TT_MAX6675
  1394. WRITE(MAX6675_SS, 1);
  1395. if (max6675_temp & 4)
  1396. {
  1397. // thermocouple open
  1398. max6675_temp = 2000;
  1399. }
  1400. else
  1401. {
  1402. max6675_temp = max6675_temp >> 3;
  1403. }
  1404. return max6675_temp;
  1405. }
  1406. #endif
  1407. extern "C" {
  1408. void adc_ready(void) //callback from adc when sampling finished
  1409. {
  1410. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1411. #ifdef PINDA_THERMISTOR
  1412. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1413. #endif //PINDA_THERMISTOR
  1414. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1415. #ifdef VOLT_PWR_PIN
  1416. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1417. #endif
  1418. #ifdef AMBIENT_THERMISTOR
  1419. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1420. #endif //AMBIENT_THERMISTOR
  1421. #ifdef VOLT_BED_PIN
  1422. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1423. #endif
  1424. #ifdef IR_SENSOR_ANALOG
  1425. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1426. #endif //IR_SENSOR_ANALOG
  1427. temp_meas_ready = true;
  1428. }
  1429. } // extern "C"
  1430. // Timer2 (originaly timer0) is shared with millies
  1431. #ifdef SYSTEM_TIMER_2
  1432. ISR(TIMER2_COMPB_vect)
  1433. #else //SYSTEM_TIMER_2
  1434. ISR(TIMER0_COMPB_vect)
  1435. #endif //SYSTEM_TIMER_2
  1436. {
  1437. static bool _lock = false;
  1438. if (_lock) return;
  1439. _lock = true;
  1440. asm("sei");
  1441. if (!temp_meas_ready) adc_cycle();
  1442. lcd_buttons_update();
  1443. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1444. static uint8_t soft_pwm_0;
  1445. #ifdef SLOW_PWM_HEATERS
  1446. static unsigned char slow_pwm_count = 0;
  1447. static unsigned char state_heater_0 = 0;
  1448. static unsigned char state_timer_heater_0 = 0;
  1449. #endif
  1450. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1451. static unsigned char soft_pwm_1;
  1452. #ifdef SLOW_PWM_HEATERS
  1453. static unsigned char state_heater_1 = 0;
  1454. static unsigned char state_timer_heater_1 = 0;
  1455. #endif
  1456. #endif
  1457. #if EXTRUDERS > 2
  1458. static unsigned char soft_pwm_2;
  1459. #ifdef SLOW_PWM_HEATERS
  1460. static unsigned char state_heater_2 = 0;
  1461. static unsigned char state_timer_heater_2 = 0;
  1462. #endif
  1463. #endif
  1464. #if HEATER_BED_PIN > -1
  1465. // @@DR static unsigned char soft_pwm_b;
  1466. #ifdef SLOW_PWM_HEATERS
  1467. static unsigned char state_heater_b = 0;
  1468. static unsigned char state_timer_heater_b = 0;
  1469. #endif
  1470. #endif
  1471. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1472. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1473. #endif
  1474. #ifndef SLOW_PWM_HEATERS
  1475. /*
  1476. * standard PWM modulation
  1477. */
  1478. if (pwm_count == 0)
  1479. {
  1480. soft_pwm_0 = soft_pwm[0];
  1481. if(soft_pwm_0 > 0)
  1482. {
  1483. WRITE(HEATER_0_PIN,1);
  1484. #ifdef HEATERS_PARALLEL
  1485. WRITE(HEATER_1_PIN,1);
  1486. #endif
  1487. } else WRITE(HEATER_0_PIN,0);
  1488. #if EXTRUDERS > 1
  1489. soft_pwm_1 = soft_pwm[1];
  1490. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1491. #endif
  1492. #if EXTRUDERS > 2
  1493. soft_pwm_2 = soft_pwm[2];
  1494. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1495. #endif
  1496. }
  1497. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1498. #if 0 // @@DR vypnuto pro hw pwm bedu
  1499. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1500. // teoreticky by se tato cast uz vubec nemusela poustet
  1501. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1502. {
  1503. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1504. # ifndef SYSTEM_TIMER_2
  1505. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1506. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1507. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1508. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1509. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1510. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1511. # endif //SYSTEM_TIMER_2
  1512. }
  1513. #endif
  1514. #endif
  1515. #ifdef FAN_SOFT_PWM
  1516. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1517. {
  1518. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1519. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1520. }
  1521. #endif
  1522. if(soft_pwm_0 < pwm_count)
  1523. {
  1524. WRITE(HEATER_0_PIN,0);
  1525. #ifdef HEATERS_PARALLEL
  1526. WRITE(HEATER_1_PIN,0);
  1527. #endif
  1528. }
  1529. #if EXTRUDERS > 1
  1530. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1531. #endif
  1532. #if EXTRUDERS > 2
  1533. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1534. #endif
  1535. #if 0 // @@DR
  1536. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1537. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1538. //WRITE(HEATER_BED_PIN,0);
  1539. }
  1540. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1541. #endif
  1542. #endif
  1543. #ifdef FAN_SOFT_PWM
  1544. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1545. #endif
  1546. pwm_count += (1 << SOFT_PWM_SCALE);
  1547. pwm_count &= 0x7f;
  1548. #else //ifndef SLOW_PWM_HEATERS
  1549. /*
  1550. * SLOW PWM HEATERS
  1551. *
  1552. * for heaters drived by relay
  1553. */
  1554. #ifndef MIN_STATE_TIME
  1555. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1556. #endif
  1557. if (slow_pwm_count == 0) {
  1558. // EXTRUDER 0
  1559. soft_pwm_0 = soft_pwm[0];
  1560. if (soft_pwm_0 > 0) {
  1561. // turn ON heather only if the minimum time is up
  1562. if (state_timer_heater_0 == 0) {
  1563. // if change state set timer
  1564. if (state_heater_0 == 0) {
  1565. state_timer_heater_0 = MIN_STATE_TIME;
  1566. }
  1567. state_heater_0 = 1;
  1568. WRITE(HEATER_0_PIN, 1);
  1569. #ifdef HEATERS_PARALLEL
  1570. WRITE(HEATER_1_PIN, 1);
  1571. #endif
  1572. }
  1573. } else {
  1574. // turn OFF heather only if the minimum time is up
  1575. if (state_timer_heater_0 == 0) {
  1576. // if change state set timer
  1577. if (state_heater_0 == 1) {
  1578. state_timer_heater_0 = MIN_STATE_TIME;
  1579. }
  1580. state_heater_0 = 0;
  1581. WRITE(HEATER_0_PIN, 0);
  1582. #ifdef HEATERS_PARALLEL
  1583. WRITE(HEATER_1_PIN, 0);
  1584. #endif
  1585. }
  1586. }
  1587. #if EXTRUDERS > 1
  1588. // EXTRUDER 1
  1589. soft_pwm_1 = soft_pwm[1];
  1590. if (soft_pwm_1 > 0) {
  1591. // turn ON heather only if the minimum time is up
  1592. if (state_timer_heater_1 == 0) {
  1593. // if change state set timer
  1594. if (state_heater_1 == 0) {
  1595. state_timer_heater_1 = MIN_STATE_TIME;
  1596. }
  1597. state_heater_1 = 1;
  1598. WRITE(HEATER_1_PIN, 1);
  1599. }
  1600. } else {
  1601. // turn OFF heather only if the minimum time is up
  1602. if (state_timer_heater_1 == 0) {
  1603. // if change state set timer
  1604. if (state_heater_1 == 1) {
  1605. state_timer_heater_1 = MIN_STATE_TIME;
  1606. }
  1607. state_heater_1 = 0;
  1608. WRITE(HEATER_1_PIN, 0);
  1609. }
  1610. }
  1611. #endif
  1612. #if EXTRUDERS > 2
  1613. // EXTRUDER 2
  1614. soft_pwm_2 = soft_pwm[2];
  1615. if (soft_pwm_2 > 0) {
  1616. // turn ON heather only if the minimum time is up
  1617. if (state_timer_heater_2 == 0) {
  1618. // if change state set timer
  1619. if (state_heater_2 == 0) {
  1620. state_timer_heater_2 = MIN_STATE_TIME;
  1621. }
  1622. state_heater_2 = 1;
  1623. WRITE(HEATER_2_PIN, 1);
  1624. }
  1625. } else {
  1626. // turn OFF heather only if the minimum time is up
  1627. if (state_timer_heater_2 == 0) {
  1628. // if change state set timer
  1629. if (state_heater_2 == 1) {
  1630. state_timer_heater_2 = MIN_STATE_TIME;
  1631. }
  1632. state_heater_2 = 0;
  1633. WRITE(HEATER_2_PIN, 0);
  1634. }
  1635. }
  1636. #endif
  1637. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1638. // BED
  1639. soft_pwm_b = soft_pwm_bed;
  1640. if (soft_pwm_b > 0) {
  1641. // turn ON heather only if the minimum time is up
  1642. if (state_timer_heater_b == 0) {
  1643. // if change state set timer
  1644. if (state_heater_b == 0) {
  1645. state_timer_heater_b = MIN_STATE_TIME;
  1646. }
  1647. state_heater_b = 1;
  1648. //WRITE(HEATER_BED_PIN, 1);
  1649. }
  1650. } else {
  1651. // turn OFF heather only if the minimum time is up
  1652. if (state_timer_heater_b == 0) {
  1653. // if change state set timer
  1654. if (state_heater_b == 1) {
  1655. state_timer_heater_b = MIN_STATE_TIME;
  1656. }
  1657. state_heater_b = 0;
  1658. WRITE(HEATER_BED_PIN, 0);
  1659. }
  1660. }
  1661. #endif
  1662. } // if (slow_pwm_count == 0)
  1663. // EXTRUDER 0
  1664. if (soft_pwm_0 < slow_pwm_count) {
  1665. // turn OFF heather only if the minimum time is up
  1666. if (state_timer_heater_0 == 0) {
  1667. // if change state set timer
  1668. if (state_heater_0 == 1) {
  1669. state_timer_heater_0 = MIN_STATE_TIME;
  1670. }
  1671. state_heater_0 = 0;
  1672. WRITE(HEATER_0_PIN, 0);
  1673. #ifdef HEATERS_PARALLEL
  1674. WRITE(HEATER_1_PIN, 0);
  1675. #endif
  1676. }
  1677. }
  1678. #if EXTRUDERS > 1
  1679. // EXTRUDER 1
  1680. if (soft_pwm_1 < slow_pwm_count) {
  1681. // turn OFF heather only if the minimum time is up
  1682. if (state_timer_heater_1 == 0) {
  1683. // if change state set timer
  1684. if (state_heater_1 == 1) {
  1685. state_timer_heater_1 = MIN_STATE_TIME;
  1686. }
  1687. state_heater_1 = 0;
  1688. WRITE(HEATER_1_PIN, 0);
  1689. }
  1690. }
  1691. #endif
  1692. #if EXTRUDERS > 2
  1693. // EXTRUDER 2
  1694. if (soft_pwm_2 < slow_pwm_count) {
  1695. // turn OFF heather only if the minimum time is up
  1696. if (state_timer_heater_2 == 0) {
  1697. // if change state set timer
  1698. if (state_heater_2 == 1) {
  1699. state_timer_heater_2 = MIN_STATE_TIME;
  1700. }
  1701. state_heater_2 = 0;
  1702. WRITE(HEATER_2_PIN, 0);
  1703. }
  1704. }
  1705. #endif
  1706. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1707. // BED
  1708. if (soft_pwm_b < slow_pwm_count) {
  1709. // turn OFF heather only if the minimum time is up
  1710. if (state_timer_heater_b == 0) {
  1711. // if change state set timer
  1712. if (state_heater_b == 1) {
  1713. state_timer_heater_b = MIN_STATE_TIME;
  1714. }
  1715. state_heater_b = 0;
  1716. WRITE(HEATER_BED_PIN, 0);
  1717. }
  1718. }
  1719. #endif
  1720. #ifdef FAN_SOFT_PWM
  1721. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1722. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1723. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1724. }
  1725. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1726. #endif
  1727. pwm_count += (1 << SOFT_PWM_SCALE);
  1728. pwm_count &= 0x7f;
  1729. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1730. if ((pwm_count % 64) == 0) {
  1731. slow_pwm_count++;
  1732. slow_pwm_count &= 0x7f;
  1733. // Extruder 0
  1734. if (state_timer_heater_0 > 0) {
  1735. state_timer_heater_0--;
  1736. }
  1737. #if EXTRUDERS > 1
  1738. // Extruder 1
  1739. if (state_timer_heater_1 > 0)
  1740. state_timer_heater_1--;
  1741. #endif
  1742. #if EXTRUDERS > 2
  1743. // Extruder 2
  1744. if (state_timer_heater_2 > 0)
  1745. state_timer_heater_2--;
  1746. #endif
  1747. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1748. // Bed
  1749. if (state_timer_heater_b > 0)
  1750. state_timer_heater_b--;
  1751. #endif
  1752. } //if ((pwm_count % 64) == 0) {
  1753. #endif //ifndef SLOW_PWM_HEATERS
  1754. #ifdef BABYSTEPPING
  1755. for(uint8_t axis=0;axis<3;axis++)
  1756. {
  1757. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1758. if(curTodo>0)
  1759. {
  1760. asm("cli");
  1761. babystep(axis,/*fwd*/true);
  1762. babystepsTodo[axis]--; //less to do next time
  1763. asm("sei");
  1764. }
  1765. else
  1766. if(curTodo<0)
  1767. {
  1768. asm("cli");
  1769. babystep(axis,/*fwd*/false);
  1770. babystepsTodo[axis]++; //less to do next time
  1771. asm("sei");
  1772. }
  1773. }
  1774. #endif //BABYSTEPPING
  1775. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1776. check_fans();
  1777. #endif //(defined(TACH_0))
  1778. _lock = false;
  1779. }
  1780. void check_max_temp()
  1781. {
  1782. //heater
  1783. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1784. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1785. #else
  1786. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1787. #endif
  1788. max_temp_error(0);
  1789. }
  1790. //bed
  1791. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1792. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1793. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1794. #else
  1795. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1796. #endif
  1797. target_temperature_bed = 0;
  1798. bed_max_temp_error();
  1799. }
  1800. #endif
  1801. }
  1802. //! number of repeating the same state with consecutive step() calls
  1803. //! used to slow down text switching
  1804. struct alert_automaton_mintemp {
  1805. const char *m2;
  1806. alert_automaton_mintemp(const char *m2):m2(m2){}
  1807. private:
  1808. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1809. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1810. States state = States::Init;
  1811. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1812. void substep(States next_state){
  1813. if( repeat == 0 ){
  1814. state = next_state; // advance to the next state
  1815. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1816. } else {
  1817. --repeat;
  1818. }
  1819. }
  1820. public:
  1821. //! brief state automaton step routine
  1822. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1823. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1824. void step(float current_temp, float mintemp){
  1825. static const char m1[] PROGMEM = "Please restart";
  1826. switch(state){
  1827. case States::Init: // initial state - check hysteresis
  1828. if( current_temp > mintemp ){
  1829. state = States::TempAboveMintemp;
  1830. }
  1831. // otherwise keep the Err MINTEMP alert message on the display,
  1832. // i.e. do not transfer to state 1
  1833. break;
  1834. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1835. lcd_setalertstatuspgm(m2);
  1836. substep(States::ShowMintemp);
  1837. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1838. break;
  1839. case States::ShowPleaseRestart: // displaying "Please restart"
  1840. lcd_updatestatuspgm(m1);
  1841. substep(States::ShowMintemp);
  1842. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1843. break;
  1844. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1845. lcd_updatestatuspgm(m2);
  1846. substep(States::ShowPleaseRestart);
  1847. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1848. break;
  1849. }
  1850. }
  1851. };
  1852. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1853. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1854. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1855. void check_min_temp_heater0()
  1856. {
  1857. //heater
  1858. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1859. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1860. #else
  1861. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1862. #endif
  1863. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1864. min_temp_error(0);
  1865. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1866. // no recovery, just force the user to restart the printer
  1867. // which is a safer variant than just continuing printing
  1868. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1869. // we shall signalize, that MINTEMP has been fixed
  1870. // Code notice: normally the alert_automaton instance would have been placed here
  1871. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1872. // due to stupid compiler that takes 16 more bytes.
  1873. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1874. }
  1875. }
  1876. void check_min_temp_bed()
  1877. {
  1878. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1879. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1880. #else
  1881. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1882. #endif
  1883. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1884. bed_min_temp_error();
  1885. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1886. // no recovery, just force the user to restart the printer
  1887. // which is a safer variant than just continuing printing
  1888. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1889. }
  1890. }
  1891. void check_min_temp()
  1892. {
  1893. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1894. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1895. #ifdef AMBIENT_THERMISTOR
  1896. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1897. { // ambient temperature is low
  1898. #endif //AMBIENT_THERMISTOR
  1899. // *** 'common' part of code for MK2.5 & MK3
  1900. // * nozzle checking
  1901. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1902. { // ~ nozzle heating is on
  1903. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1904. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1905. {
  1906. bCheckingOnHeater=true; // not necessary
  1907. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1908. }
  1909. }
  1910. else { // ~ nozzle heating is off
  1911. oTimer4minTempHeater.start();
  1912. bCheckingOnHeater=false;
  1913. }
  1914. // * bed checking
  1915. if(target_temperature_bed>BED_MINTEMP)
  1916. { // ~ bed heating is on
  1917. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1918. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1919. {
  1920. bCheckingOnBed=true; // not necessary
  1921. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1922. }
  1923. }
  1924. else { // ~ bed heating is off
  1925. oTimer4minTempBed.start();
  1926. bCheckingOnBed=false;
  1927. }
  1928. // *** end of 'common' part
  1929. #ifdef AMBIENT_THERMISTOR
  1930. }
  1931. else { // ambient temperature is standard
  1932. check_min_temp_heater0();
  1933. check_min_temp_bed();
  1934. }
  1935. #endif //AMBIENT_THERMISTOR
  1936. }
  1937. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1938. void check_fans() {
  1939. #ifdef FAN_SOFT_PWM
  1940. if (READ(TACH_0) != fan_state[0]) {
  1941. if(fan_measuring) fan_edge_counter[0] ++;
  1942. fan_state[0] = !fan_state[0];
  1943. }
  1944. #else //FAN_SOFT_PWM
  1945. if (READ(TACH_0) != fan_state[0]) {
  1946. fan_edge_counter[0] ++;
  1947. fan_state[0] = !fan_state[0];
  1948. }
  1949. #endif
  1950. //if (READ(TACH_1) != fan_state[1]) {
  1951. // fan_edge_counter[1] ++;
  1952. // fan_state[1] = !fan_state[1];
  1953. //}
  1954. }
  1955. #endif //TACH_0
  1956. #ifdef PIDTEMP
  1957. // Apply the scale factors to the PID values
  1958. float scalePID_i(float i)
  1959. {
  1960. return i*PID_dT;
  1961. }
  1962. float unscalePID_i(float i)
  1963. {
  1964. return i/PID_dT;
  1965. }
  1966. float scalePID_d(float d)
  1967. {
  1968. return d/PID_dT;
  1969. }
  1970. float unscalePID_d(float d)
  1971. {
  1972. return d*PID_dT;
  1973. }
  1974. #endif //PIDTEMP
  1975. #ifdef PINDA_THERMISTOR
  1976. //! @brief PINDA thermistor detected
  1977. //!
  1978. //! @retval true firmware should do temperature compensation and allow calibration
  1979. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  1980. //!
  1981. bool has_temperature_compensation()
  1982. {
  1983. #ifdef DETECT_SUPERPINDA
  1984. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  1985. #else
  1986. return true;
  1987. #endif
  1988. }
  1989. #endif //PINDA_THERMISTOR