| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684 | 
							- /*
 
-   stepper.c - stepper motor driver: executes motion plans using stepper motors
 
-   Part of Grbl
 
-   Copyright (c) 2009-2011 Simen Svale Skogsrud
 
-   Grbl is free software: you can redistribute it and/or modify
 
-   it under the terms of the GNU General Public License as published by
 
-   the Free Software Foundation, either version 3 of the License, or
 
-   (at your option) any later version.
 
-   Grbl is distributed in the hope that it will be useful,
 
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
 
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
-   GNU General Public License for more details.
 
-   You should have received a copy of the GNU General Public License
 
-   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 
- */
 
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 
-    and Philipp Tiefenbacher. */
 
- #include "Marlin.h"
 
- #include "stepper.h"
 
- #include "planner.h"
 
- #include "temperature.h"
 
- #include "ultralcd.h"
 
- #include "language.h"
 
- #include "cardreader.h"
 
- #include "speed_lookuptable.h"
 
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 
- #include <SPI.h>
 
- #endif
 
- #ifdef TMC2130
 
- #include "tmc2130.h"
 
- #endif //TMC2130
 
- #ifdef FILAMENT_SENSOR
 
- #include "fsensor.h"
 
- int fsensor_counter = 0; //counter for e-steps
 
- #endif //FILAMENT_SENSOR
 
- #include "mmu.h"
 
- #include "ConfigurationStore.h"
 
- #ifdef DEBUG_STACK_MONITOR
 
- uint16_t SP_min = 0x21FF;
 
- #endif //DEBUG_STACK_MONITOR
 
- //===========================================================================
 
- //=============================public variables  ============================
 
- //===========================================================================
 
- block_t *current_block;  // A pointer to the block currently being traced
 
- bool x_min_endstop = false;
 
- bool x_max_endstop = false;
 
- bool y_min_endstop = false;
 
- bool y_max_endstop = false;
 
- bool z_min_endstop = false;
 
- bool z_max_endstop = false;
 
- //===========================================================================
 
- //=============================private variables ============================
 
- //===========================================================================
 
- //static makes it inpossible to be called from outside of this file by extern.!
 
- // Variables used by The Stepper Driver Interrupt
 
- static unsigned char out_bits;        // The next stepping-bits to be output
 
- static dda_isteps_t
 
-                counter_x,       // Counter variables for the bresenham line tracer
 
-                counter_y,
 
-                counter_z,
 
-                counter_e;
 
- volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
 
- static int32_t  acceleration_time, deceleration_time;
 
- //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
 
- static uint16_t acc_step_rate; // needed for deccelaration start point
 
- static uint8_t  step_loops;
 
- static uint16_t OCR1A_nominal;
 
- static uint8_t  step_loops_nominal;
 
- volatile long endstops_trigsteps[3]={0,0,0};
 
- volatile long endstops_stepsTotal,endstops_stepsDone;
 
- static volatile bool endstop_x_hit=false;
 
- static volatile bool endstop_y_hit=false;
 
- static volatile bool endstop_z_hit=false;
 
- #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 
- bool abort_on_endstop_hit = false;
 
- #endif
 
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
 
-   int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
 
-   int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
 
-   int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
 
- #endif
 
- #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
 
- static bool old_x_max_endstop=false;
 
- #endif
 
- #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
 
- static bool old_y_max_endstop=false;
 
- #endif
 
- static bool old_x_min_endstop=false;
 
- static bool old_y_min_endstop=false;
 
- static bool old_z_min_endstop=false;
 
- static bool old_z_max_endstop=false;
 
- static bool check_endstops = true;
 
- static bool check_z_endstop = false;
 
- static bool z_endstop_invert = false;
 
- volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
 
- volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
 
- #ifdef LIN_ADVANCE
 
-   static uint16_t nextMainISR = 0;
 
-   static uint16_t eISR_Rate;
 
-   // Extrusion steps to be executed by the stepper.
 
-   // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
 
-   // If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
 
-   static volatile int16_t e_steps = 0;
 
-   // How many extruder steps shall be ticked at a single ISR invocation?
 
-   static uint8_t          estep_loops;
 
-   // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
 
-   // as current_adv_steps.
 
-   static int              current_estep_rate;
 
-   // The current pretension of filament expressed in extruder micro steps.
 
-   static int              current_adv_steps;
 
-   #define _NEXT_ISR(T)    nextMainISR = T
 
- #else
 
-   #define _NEXT_ISR(T)    OCR1A = T
 
- #endif
 
- #ifdef DEBUG_STEPPER_TIMER_MISSED
 
- extern bool stepper_timer_overflow_state;
 
- extern uint16_t stepper_timer_overflow_last;
 
- #endif /* DEBUG_STEPPER_TIMER_MISSED */
 
- //===========================================================================
 
- //=============================functions         ============================
 
- //===========================================================================
 
- #ifndef _NO_ASM
 
- // intRes = intIn1 * intIn2 >> 16
 
- // uses:
 
- // r26 to store 0
 
- // r27 to store the byte 1 of the 24 bit result
 
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
 
- asm volatile ( \
 
- "clr r26 \n\t" \
 
- "mul %A1, %B2 \n\t" \
 
- "movw %A0, r0 \n\t" \
 
- "mul %A1, %A2 \n\t" \
 
- "add %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "lsr r0 \n\t" \
 
- "adc %A0, r26 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "clr r1 \n\t" \
 
- : \
 
- "=&r" (intRes) \
 
- : \
 
- "d" (charIn1), \
 
- "d" (intIn2) \
 
- : \
 
- "r26" \
 
- )
 
- // intRes = longIn1 * longIn2 >> 24
 
- // uses:
 
- // r26 to store 0
 
- // r27 to store the byte 1 of the 48bit result
 
- #define MultiU24X24toH16(intRes, longIn1, longIn2) \
 
- asm volatile ( \
 
- "clr r26 \n\t" \
 
- "mul %A1, %B2 \n\t" \
 
- "mov r27, r1 \n\t" \
 
- "mul %B1, %C2 \n\t" \
 
- "movw %A0, r0 \n\t" \
 
- "mul %C1, %C2 \n\t" \
 
- "add %B0, r0 \n\t" \
 
- "mul %C1, %B2 \n\t" \
 
- "add %A0, r0 \n\t" \
 
- "adc %B0, r1 \n\t" \
 
- "mul %A1, %C2 \n\t" \
 
- "add r27, r0 \n\t" \
 
- "adc %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "mul %B1, %B2 \n\t" \
 
- "add r27, r0 \n\t" \
 
- "adc %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "mul %C1, %A2 \n\t" \
 
- "add r27, r0 \n\t" \
 
- "adc %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "mul %B1, %A2 \n\t" \
 
- "add r27, r1 \n\t" \
 
- "adc %A0, r26 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "lsr r27 \n\t" \
 
- "adc %A0, r26 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "clr r1 \n\t" \
 
- : \
 
- "=&r" (intRes) \
 
- : \
 
- "d" (longIn1), \
 
- "d" (longIn2) \
 
- : \
 
- "r26" , "r27" \
 
- )
 
- #else //_NO_ASM
 
- void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
 
- {
 
- }
 
- void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
 
- {
 
- }
 
- #endif //_NO_ASM
 
- // Some useful constants
 
- void checkHitEndstops()
 
- {
 
-  if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
 
-    SERIAL_ECHO_START;
 
-    SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
 
-    if(endstop_x_hit) {
 
-      SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
 
- //     LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X")));
 
-    }
 
-    if(endstop_y_hit) {
 
-      SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
 
- //     LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y")));
 
-    }
 
-    if(endstop_z_hit) {
 
-      SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
 
- //     LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z")));
 
-    }
 
-    SERIAL_ECHOLN("");
 
-    endstop_x_hit=false;
 
-    endstop_y_hit=false;
 
-    endstop_z_hit=false;
 
- #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
 
-    if (abort_on_endstop_hit)
 
-    {
 
-      card.sdprinting = false;
 
-      card.closefile();
 
-      quickStop();
 
-      setTargetHotend0(0);
 
-      setTargetHotend1(0);
 
-      setTargetHotend2(0);
 
-    }
 
- #endif
 
-  }
 
- }
 
- bool endstops_hit_on_purpose()
 
- {
 
-   bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
 
-   endstop_x_hit=false;
 
-   endstop_y_hit=false;
 
-   endstop_z_hit=false;
 
-   return hit;
 
- }
 
- bool endstop_z_hit_on_purpose()
 
- {
 
-   bool hit = endstop_z_hit;
 
-   endstop_z_hit=false;
 
-   return hit;
 
- }
 
- bool enable_endstops(bool check)
 
- {
 
-   bool old = check_endstops;
 
-   check_endstops = check;
 
-   return old;
 
- }
 
- bool enable_z_endstop(bool check)
 
- {
 
- 	bool old = check_z_endstop;
 
- 	check_z_endstop = check;
 
- 	endstop_z_hit = false;
 
- 	return old;
 
- }
 
- void invert_z_endstop(bool endstop_invert)
 
- {
 
-   z_endstop_invert = endstop_invert;
 
- }
 
- //         __________________________
 
- //        /|                        |\     _________________         ^
 
- //       / |                        | \   /|               |\        |
 
- //      /  |                        |  \ / |               | \       s
 
- //     /   |                        |   |  |               |  \      p
 
- //    /    |                        |   |  |               |   \     e
 
- //   +-----+------------------------+---+--+---------------+----+    e
 
- //   |               BLOCK 1            |      BLOCK 2          |    d
 
- //
 
- //                           time ----->
 
- //
 
- //  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
 
- //  first block->accelerate_until step_events_completed, then keeps going at constant speed until
 
- //  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 
- //  The slope of acceleration is calculated with the leib ramp alghorithm.
 
- FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
 
-   unsigned short timer;
 
-   if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
 
-   if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
 
-     step_rate = (step_rate >> 2)&0x3fff;
 
-     step_loops = 4;
 
-   }
 
-   else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
 
-     step_rate = (step_rate >> 1)&0x7fff;
 
-     step_loops = 2;
 
-   }
 
-   else {
 
-     step_loops = 1;
 
-   }
 
- //    step_loops = 1;
 
-   if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
 
-   step_rate -= (F_CPU/500000); // Correct for minimal speed
 
-   if(step_rate >= (8*256)){ // higher step rate
 
-     unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
 
-     unsigned char tmp_step_rate = (step_rate & 0x00ff);
 
-     unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
 
-     MultiU16X8toH16(timer, tmp_step_rate, gain);
 
-     timer = (unsigned short)pgm_read_word_near(table_address) - timer;
 
-   }
 
-   else { // lower step rates
 
-     unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
 
-     table_address += ((step_rate)>>1) & 0xfffc;
 
-     timer = (unsigned short)pgm_read_word_near(table_address);
 
-     timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
 
-   }
 
-   if(timer < 100) { timer = 100; MYSERIAL.print(_N("Steprate too high: ")); MYSERIAL.println(step_rate); }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH
 
-   return timer;
 
- }
 
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
 
- ISR(TIMER1_COMPA_vect) {
 
- #ifdef DEBUG_STACK_MONITOR
 
- 	uint16_t sp = SPL + 256 * SPH;
 
- 	if (sp < SP_min) SP_min = sp;
 
- #endif //DEBUG_STACK_MONITOR
 
- #ifdef LIN_ADVANCE
 
-   // If there are any e_steps planned, tick them.
 
-   bool run_main_isr = false;
 
-   if (e_steps) {
 
-     //WRITE_NC(LOGIC_ANALYZER_CH7, true);
 
- 	uint8_t cnt = 0;
 
-     for (uint8_t i = estep_loops; e_steps && i --;) {
 
-         WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 
-         -- e_steps;
 
- 		cnt++;
 
-         WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
 
-     }
 
- #ifdef FILAMENT_SENSOR
 
- 		if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
 
- 		{
 
- 			if (count_direction[E_AXIS] == 1)
 
- 				fsensor_counter -= cnt;
 
- 			else
 
- 				fsensor_counter += cnt;
 
- 		}
 
- 		else
 
- 		{
 
- 			if (count_direction[E_AXIS] == 1)
 
- 				fsensor_counter += cnt;
 
- 			else
 
- 				fsensor_counter -= cnt;
 
- 		}
 
- #endif //FILAMENT_SENSOR
 
-     if (e_steps) {
 
-       // Plan another Linear Advance tick.
 
-       OCR1A = eISR_Rate;
 
-       nextMainISR -= eISR_Rate;
 
-     } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
 
-       // The timer did not overflow and it is big enough, so it makes sense to plan it.
 
-       OCR1A = nextMainISR;
 
-     } else {
 
-       // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
 
-       // in the current interrupt tick.
 
-       run_main_isr = true;
 
-       //FIXME pick the serial line.
 
-     }
 
-     //WRITE_NC(LOGIC_ANALYZER_CH7, false);
 
-   } else
 
-     run_main_isr = true;
 
-   if (run_main_isr)
 
- #endif
 
-     isr();
 
-   // Don't run the ISR faster than possible
 
-   // Is there a 8us time left before the next interrupt triggers?
 
-   if (OCR1A < TCNT1 + 16) {
 
- #ifdef DEBUG_STEPPER_TIMER_MISSED
 
-     // Verify whether the next planned timer interrupt has not been missed already.  
 
-     // This debugging test takes < 1.125us
 
-     // This skews the profiling slightly as the fastest stepper timer
 
-     // interrupt repeats at a 100us rate (10kHz).
 
-     if (OCR1A + 40 < TCNT1) {
 
-       // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
 
-       // Give a warning.
 
-       stepper_timer_overflow_state = true;
 
-       stepper_timer_overflow_last = TCNT1 - OCR1A;
 
-       // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
 
-       WRITE(BEEPER, HIGH);
 
-     }
 
- #endif
 
-     // Fix the next interrupt to be executed after 8us from now.
 
-     OCR1A = TCNT1 + 16; 
 
-   }
 
- }
 
- uint8_t last_dir_bits = 0;
 
- #ifdef BACKLASH_X
 
- uint8_t st_backlash_x = 0;
 
- #endif //BACKLASH_X
 
- #ifdef BACKLASH_Y
 
- uint8_t st_backlash_y = 0;
 
- #endif //BACKLASH_Y
 
- FORCE_INLINE void stepper_next_block()
 
- {
 
-   // Anything in the buffer?
 
-   //WRITE_NC(LOGIC_ANALYZER_CH2, true);
 
-   current_block = plan_get_current_block();
 
-   if (current_block != NULL) {
 
- #ifdef BACKLASH_X
 
- 	if (current_block->steps_x.wide)
 
- 	{ //X-axis movement
 
- 		if ((current_block->direction_bits ^ last_dir_bits) & 1)
 
- 		{
 
- 			printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
 
- 			if (current_block->direction_bits & 1)
 
- 				WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
 
- 			else
 
- 				WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
 
- 			_delay_us(100);
 
- 			for (uint8_t i = 0; i < st_backlash_x; i++)
 
- 			{
 
- 				WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
 
- 				_delay_us(100);
 
- 				WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
 
- 				_delay_us(900);
 
- 			}
 
- 		}
 
- 		last_dir_bits &= ~1;
 
- 		last_dir_bits |= current_block->direction_bits & 1;
 
- 	}
 
- #endif
 
- #ifdef BACKLASH_Y
 
- 	if (current_block->steps_y.wide)
 
- 	{ //Y-axis movement
 
- 		if ((current_block->direction_bits ^ last_dir_bits) & 2)
 
- 		{
 
- 			printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
 
- 			if (current_block->direction_bits & 2)
 
- 				WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
 
- 			else
 
- 				WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
 
- 			_delay_us(100);
 
- 			for (uint8_t i = 0; i < st_backlash_y; i++)
 
- 			{
 
- 				WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
 
- 				_delay_us(100);
 
- 				WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 
- 				_delay_us(900);
 
- 			}
 
- 		}
 
- 		last_dir_bits &= ~2;
 
- 		last_dir_bits |= current_block->direction_bits & 2;
 
- 	}
 
- #endif
 
- #ifdef FILAMENT_SENSOR
 
- 	fsensor_counter = 0;
 
- 	fsensor_st_block_begin(current_block);
 
- #endif //FILAMENT_SENSOR
 
-     // The busy flag is set by the plan_get_current_block() call.
 
-     // current_block->busy = true;
 
-     // Initializes the trapezoid generator from the current block. Called whenever a new
 
-     // block begins.
 
-     deceleration_time = 0;
 
-     // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
 
-     // That means, delay the initialization of nominal step rate and step loops until the steady
 
-     // state is reached.
 
-     step_loops_nominal = 0;
 
-     acc_step_rate = uint16_t(current_block->initial_rate);
 
-     acceleration_time = calc_timer(acc_step_rate);
 
- #ifdef LIN_ADVANCE
 
-     current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 
- #endif /* LIN_ADVANCE */
 
-     if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
 
-       counter_x.lo = -(current_block->step_event_count.lo >> 1);
 
-       counter_y.lo = counter_x.lo;
 
-       counter_z.lo = counter_x.lo;
 
-       counter_e.lo = counter_x.lo;
 
-     } else {
 
-       counter_x.wide = -(current_block->step_event_count.wide >> 1);
 
-       counter_y.wide = counter_x.wide;
 
-       counter_z.wide = counter_x.wide;
 
-       counter_e.wide = counter_x.wide;
 
-     }
 
-     step_events_completed.wide = 0;
 
-     // Set directions.
 
-     out_bits = current_block->direction_bits;
 
-     // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
 
-     if((out_bits & (1<<X_AXIS))!=0){
 
-       WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
 
-       count_direction[X_AXIS]=-1;
 
-     } else {
 
-       WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
 
-       count_direction[X_AXIS]=1;
 
-     }
 
-     if((out_bits & (1<<Y_AXIS))!=0){
 
-       WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
 
-       count_direction[Y_AXIS]=-1;
 
-     } else {
 
-       WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
 
-       count_direction[Y_AXIS]=1;
 
-     }
 
-     if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
 
-       WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
 
-       count_direction[Z_AXIS]=-1;
 
-     } else { // +direction
 
-       WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
 
-       count_direction[Z_AXIS]=1;
 
-     }
 
-     if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
 
- #ifndef LIN_ADVANCE
 
-       WRITE(E0_DIR_PIN, 
 
-   #ifdef SNMM
 
-         (mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
 
-   #endif // SNMM
 
-         INVERT_E0_DIR);
 
- #endif /* LIN_ADVANCE */
 
-       count_direction[E_AXIS] = -1;
 
-     } else { // +direction
 
- #ifndef LIN_ADVANCE
 
-       WRITE(E0_DIR_PIN,
 
-   #ifdef SNMM
 
-         (mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
 
-   #endif // SNMM
 
-         !INVERT_E0_DIR);
 
- #endif /* LIN_ADVANCE */
 
-       count_direction[E_AXIS] = 1;
 
-     }
 
-   }
 
-   else {
 
-     OCR1A = 2000; // 1kHz.
 
-   }
 
-   //WRITE_NC(LOGIC_ANALYZER_CH2, false);
 
- }
 
- // Check limit switches.
 
- FORCE_INLINE void stepper_check_endstops()
 
- {
 
-   if(check_endstops) 
 
-   {
 
-     #ifndef COREXY
 
-     if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
 
-     #else
 
-     if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
 
-     #endif
 
-     {
 
-       #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
 
-       #ifdef TMC2130_SG_HOMING
 
-         // Stall guard homing turned on
 
-         x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
 
-       #else
 
-         // Normal homing
 
-         x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
 
-       #endif
 
-         if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
 
-           endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 
-           endstop_x_hit=true;
 
-           step_events_completed.wide = current_block->step_event_count.wide;
 
-         }
 
-         old_x_min_endstop = x_min_endstop;
 
-       #endif
 
-     } else { // +direction
 
-       #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)          
 
-         #ifdef TMC2130_SG_HOMING
 
-         // Stall guard homing turned on
 
-             x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
 
-         #else
 
-         // Normal homing
 
-         x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
 
-         #endif
 
-         if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
 
-           endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 
-           endstop_x_hit=true;
 
-           step_events_completed.wide = current_block->step_event_count.wide;
 
-         }
 
-         old_x_max_endstop = x_max_endstop;
 
-       #endif
 
-     }
 
-     #ifndef COREXY
 
-     if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
 
-     #else
 
-     if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
 
-     #endif
 
-     {        
 
-       #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)          
 
-       #ifdef TMC2130_SG_HOMING
 
-       // Stall guard homing turned on
 
-           y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
 
-       #else
 
-       // Normal homing
 
-       y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
 
-       #endif
 
-         if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
 
-           endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 
-           endstop_y_hit=true;
 
-           step_events_completed.wide = current_block->step_event_count.wide;
 
-         }
 
-         old_y_min_endstop = y_min_endstop;
 
-       #endif
 
-     } else { // +direction
 
-       #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)                
 
-         #ifdef TMC2130_SG_HOMING
 
-         // Stall guard homing turned on
 
-             y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
 
-         #else
 
-         // Normal homing
 
-         y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
 
-         #endif
 
-         if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
 
-           endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 
-           endstop_y_hit=true;
 
-           step_events_completed.wide = current_block->step_event_count.wide;
 
-         }
 
-         old_y_max_endstop = y_max_endstop;
 
-       #endif
 
-     }
 
-     if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
 
-     {
 
-       #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
 
-       if (! check_z_endstop) {
 
-         #ifdef TMC2130_SG_HOMING
 
-           // Stall guard homing turned on
 
- #ifdef TMC2130_STEALTH_Z
 
- 		  if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
 
- 	          z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 
- 		  else
 
- #endif //TMC2130_STEALTH_Z
 
- 	          z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
 
-         #else
 
-           z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 
-         #endif //TMC2130_SG_HOMING
 
-         if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
 
-           endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 
-           endstop_z_hit=true;
 
-           step_events_completed.wide = current_block->step_event_count.wide;
 
-         }
 
-         old_z_min_endstop = z_min_endstop;
 
-       }
 
-       #endif
 
-     } else { // +direction
 
-       #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
 
-         #ifdef TMC2130_SG_HOMING
 
-         // Stall guard homing turned on
 
- #ifdef TMC2130_STEALTH_Z
 
- 		  if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
 
- 	          z_max_endstop = false;
 
- 		  else
 
- #endif //TMC2130_STEALTH_Z
 
-         z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
 
-         #else
 
-         z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
 
-         #endif //TMC2130_SG_HOMING
 
-         if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
 
-           endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 
-           endstop_z_hit=true;
 
-           step_events_completed.wide = current_block->step_event_count.wide;
 
-         }
 
-         old_z_max_endstop = z_max_endstop;
 
-       #endif
 
-     }
 
-   }
 
-   // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
 
-   #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
 
-   if (check_z_endstop) {
 
-       // Check the Z min end-stop no matter what.
 
-       // Good for searching for the center of an induction target.
 
-       #ifdef TMC2130_SG_HOMING
 
-       // Stall guard homing turned on
 
- #ifdef TMC2130_STEALTH_Z
 
- 		  if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
 
- 	          z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 
- 		  else
 
- #endif //TMC2130_STEALTH_Z
 
-        z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
 
-       #else
 
-         z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 
-       #endif //TMC2130_SG_HOMING
 
-       if(z_min_endstop && old_z_min_endstop) {
 
-         endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 
-         endstop_z_hit=true;
 
-         step_events_completed.wide = current_block->step_event_count.wide;
 
-       }
 
-       old_z_min_endstop = z_min_endstop;
 
-   }
 
-   #endif
 
- }
 
- FORCE_INLINE void stepper_tick_lowres()
 
- {
 
-   for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
 
-     MSerial.checkRx(); // Check for serial chars.
 
-     // Step in X axis
 
-     counter_x.lo += current_block->steps_x.lo;
 
-     if (counter_x.lo > 0) {
 
-       WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
 
- #ifdef DEBUG_XSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
 
- #endif //DEBUG_XSTEP_DUP_PIN
 
-       counter_x.lo -= current_block->step_event_count.lo;
 
-       count_position[X_AXIS]+=count_direction[X_AXIS];
 
-       WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
 
- #ifdef DEBUG_XSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
 
- #endif //DEBUG_XSTEP_DUP_PIN
 
-     }
 
-     // Step in Y axis
 
-     counter_y.lo += current_block->steps_y.lo;
 
-     if (counter_y.lo > 0) {
 
-       WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
 
- #ifdef DEBUG_YSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
 
- #endif //DEBUG_YSTEP_DUP_PIN
 
-       counter_y.lo -= current_block->step_event_count.lo;
 
-       count_position[Y_AXIS]+=count_direction[Y_AXIS];
 
-       WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 
- #ifdef DEBUG_YSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
 
- #endif //DEBUG_YSTEP_DUP_PIN    
 
-     }
 
-     // Step in Z axis
 
-     counter_z.lo += current_block->steps_z.lo;
 
-     if (counter_z.lo > 0) {
 
-       WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
 
-       counter_z.lo -= current_block->step_event_count.lo;
 
-       count_position[Z_AXIS]+=count_direction[Z_AXIS];
 
-       WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 
-     }
 
-     // Step in E axis
 
-     counter_e.lo += current_block->steps_e.lo;
 
-     if (counter_e.lo > 0) {
 
- #ifndef LIN_ADVANCE
 
-       WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 
- #endif /* LIN_ADVANCE */
 
-       counter_e.lo -= current_block->step_event_count.lo;
 
-       count_position[E_AXIS] += count_direction[E_AXIS];
 
- #ifdef LIN_ADVANCE
 
-       ++ e_steps;
 
- #else
 
- 	#ifdef FILAMENT_SENSOR
 
- 	  ++ fsensor_counter;
 
- 	#endif //FILAMENT_SENSOR
 
-       WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 
- #endif
 
-     }
 
-     if(++ step_events_completed.lo >= current_block->step_event_count.lo)
 
-       break;
 
-   }
 
- }
 
- FORCE_INLINE void stepper_tick_highres()
 
- {
 
-   for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
 
-     MSerial.checkRx(); // Check for serial chars.
 
-     // Step in X axis
 
-     counter_x.wide += current_block->steps_x.wide;
 
-     if (counter_x.wide > 0) {
 
-       WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
 
- #ifdef DEBUG_XSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
 
- #endif //DEBUG_XSTEP_DUP_PIN
 
-       counter_x.wide -= current_block->step_event_count.wide;
 
-       count_position[X_AXIS]+=count_direction[X_AXIS];   
 
-       WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
 
- #ifdef DEBUG_XSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
 
- #endif //DEBUG_XSTEP_DUP_PIN
 
-     }
 
-     // Step in Y axis
 
-     counter_y.wide += current_block->steps_y.wide;
 
-     if (counter_y.wide > 0) {
 
-       WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
 
- #ifdef DEBUG_YSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
 
- #endif //DEBUG_YSTEP_DUP_PIN
 
-       counter_y.wide -= current_block->step_event_count.wide;
 
-       count_position[Y_AXIS]+=count_direction[Y_AXIS];
 
-       WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 
- #ifdef DEBUG_YSTEP_DUP_PIN
 
-       WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
 
- #endif //DEBUG_YSTEP_DUP_PIN    
 
-     }
 
-     // Step in Z axis
 
-     counter_z.wide += current_block->steps_z.wide;
 
-     if (counter_z.wide > 0) {
 
-       WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
 
-       counter_z.wide -= current_block->step_event_count.wide;
 
-       count_position[Z_AXIS]+=count_direction[Z_AXIS];
 
-       WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 
-     }
 
-     // Step in E axis
 
-     counter_e.wide += current_block->steps_e.wide;
 
-     if (counter_e.wide > 0) {
 
- #ifndef LIN_ADVANCE
 
-       WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 
- #endif /* LIN_ADVANCE */
 
-       counter_e.wide -= current_block->step_event_count.wide;
 
-       count_position[E_AXIS]+=count_direction[E_AXIS];
 
- #ifdef LIN_ADVANCE
 
-       ++ e_steps;
 
- #else
 
-   #ifdef FILAMENT_SENSOR
 
-       ++ fsensor_counter;
 
-   #endif //FILAMENT_SENSOR
 
-       WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 
- #endif
 
-     }
 
-     if(++ step_events_completed.wide >= current_block->step_event_count.wide)
 
-       break;
 
-   }
 
- }
 
- // 50us delay
 
- #define LIN_ADV_FIRST_TICK_DELAY 100
 
- FORCE_INLINE void isr() {
 
-   //WRITE_NC(LOGIC_ANALYZER_CH0, true);
 
- 	//if (UVLO) uvlo();
 
-   // If there is no current block, attempt to pop one from the buffer
 
-   if (current_block == NULL)
 
-     stepper_next_block();
 
-   if (current_block != NULL) 
 
-   {
 
-     stepper_check_endstops();
 
- #ifdef LIN_ADVANCE
 
-       e_steps = 0;
 
- #endif /* LIN_ADVANCE */
 
-     if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
 
-       stepper_tick_lowres();
 
-     else
 
-       stepper_tick_highres();
 
- #ifdef LIN_ADVANCE
 
-       if (out_bits&(1<<E_AXIS))
 
-         // Move in negative direction.
 
-         e_steps = - e_steps;
 
-       if (current_block->use_advance_lead) {
 
-         //int esteps_inc = 0;
 
-         //esteps_inc = current_estep_rate - current_adv_steps;
 
-         //e_steps += esteps_inc;
 
-         e_steps += current_estep_rate - current_adv_steps;
 
- #if 0
 
-         if (abs(esteps_inc) > 4) {
 
-           LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
 
-           if (esteps_inc < -511 || esteps_inc > 511)
 
-             LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
 
-         }
 
- #endif
 
-         current_adv_steps = current_estep_rate;
 
-       }
 
-       // If we have esteps to execute, step some of them now.
 
-       if (e_steps) {
 
-         //WRITE_NC(LOGIC_ANALYZER_CH7, true);
 
-         // Set the step direction.
 
- 		bool neg = e_steps < 0;
 
-         {
 
-           bool dir =
 
-         #ifdef SNMM
 
-             (neg == (mmu_extruder & 1))
 
-         #else
 
-             neg
 
-         #endif
 
-             ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
 
-           WRITE_NC(E0_DIR_PIN, dir);
 
-           if (neg)
 
-             // Flip the e_steps counter to be always positive.
 
-             e_steps = - e_steps;
 
-         }
 
-         // Tick min(step_loops, abs(e_steps)).
 
-         estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
 
-         if (step_loops < estep_loops)
 
-           estep_loops = step_loops;
 
- #ifdef FILAMENT_SENSOR
 
- 		if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
 
- 		{
 
- 			if (count_direction[E_AXIS] == 1)
 
- 				fsensor_counter -= estep_loops;
 
- 			else
 
- 				fsensor_counter += estep_loops;
 
- 		}
 
- 		else
 
- 		{
 
- 			if (count_direction[E_AXIS] == 1)
 
- 				fsensor_counter += estep_loops;
 
- 			else
 
- 				fsensor_counter -= estep_loops;
 
- 		}
 
- #endif //FILAMENT_SENSOR
 
-         do {
 
-           WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 
-           -- e_steps;
 
-           WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
 
-         } while (-- estep_loops != 0);
 
-         //WRITE_NC(LOGIC_ANALYZER_CH7, false);
 
-         MSerial.checkRx(); // Check for serial chars.
 
-       }
 
- #endif
 
-     // Calculare new timer value
 
-     // 13.38-14.63us for steady state,
 
-     // 25.12us for acceleration / deceleration.
 
-     {
 
-       //WRITE_NC(LOGIC_ANALYZER_CH1, true);
 
-       if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
 
-         // v = t * a   ->   acc_step_rate = acceleration_time * current_block->acceleration_rate
 
-         MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 
-         acc_step_rate += uint16_t(current_block->initial_rate);
 
-         // upper limit
 
-         if(acc_step_rate > uint16_t(current_block->nominal_rate))
 
-           acc_step_rate = current_block->nominal_rate;
 
-         // step_rate to timer interval
 
-         uint16_t timer = calc_timer(acc_step_rate);
 
-         _NEXT_ISR(timer);
 
-         acceleration_time += timer;
 
-   #ifdef LIN_ADVANCE
 
-         if (current_block->use_advance_lead)
 
-           // int32_t = (uint16_t * uint32_t) >> 17
 
-           current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 
-   #endif
 
-       }
 
-       else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
 
-         uint16_t step_rate;
 
-         MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 
-         step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
 
-         if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
 
-           // Result is negative or too small.
 
-           step_rate = uint16_t(current_block->final_rate);
 
-         }
 
-         // Step_rate to timer interval.
 
-         uint16_t timer = calc_timer(step_rate);
 
-         _NEXT_ISR(timer);
 
-         deceleration_time += timer;
 
-   #ifdef LIN_ADVANCE
 
-         if (current_block->use_advance_lead)
 
-           current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 
-   #endif
 
-       }
 
-       else {
 
-         if (! step_loops_nominal) {
 
-           // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
 
-           // the initial interrupt blocking.
 
-           OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
 
-           step_loops_nominal = step_loops;
 
-   #ifdef LIN_ADVANCE
 
-           if (current_block->use_advance_lead)
 
-             current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 
-   #endif
 
-         }
 
-         _NEXT_ISR(OCR1A_nominal);
 
-       }
 
-       //WRITE_NC(LOGIC_ANALYZER_CH1, false);
 
-     }
 
- #ifdef LIN_ADVANCE
 
-     if (e_steps && current_block->use_advance_lead) {
 
-       //WRITE_NC(LOGIC_ANALYZER_CH7, true);
 
-       MSerial.checkRx(); // Check for serial chars.
 
-       // Some of the E steps were not ticked yet. Plan additional interrupts.
 
-       uint16_t now = TCNT1;
 
-       // Plan the first linear advance interrupt after 50us from now.
 
-       uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
 
-       eISR_Rate = 0;
 
-       if ((to_go & 0x8000) == 0) {
 
-         // The to_go number is not negative.
 
-         // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
 
-         uint8_t ticks = to_go >> 8;
 
-         if (ticks == 1) {
 
-           // Avoid running the following loop for a very short interval.
 
-           estep_loops = 255;
 
-           eISR_Rate = 1;
 
-         } else if ((e_steps & 0x0ff00) == 0) {
 
-           // e_steps <= 0x0ff
 
-           if (uint8_t(e_steps) <= ticks) {
 
-             // Spread the e_steps along the whole go_to interval.
 
-             eISR_Rate = to_go / uint8_t(e_steps);
 
-             estep_loops = 1;
 
-           } else if (ticks != 0) {
 
-             // At least one tick fits into the to_go interval. Calculate the e-step grouping.
 
-             uint8_t e = uint8_t(e_steps) >> 1;
 
-             estep_loops = 2;
 
-             while (e > ticks) {
 
-               e >>= 1;
 
-               estep_loops <<= 1;
 
-             }
 
-             // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
 
-             // to squeeze enough of Linear Advance ticks until nextMainISR.
 
-             // Calculate the tick rate.
 
-             eISR_Rate = to_go / ticks;          
 
-           }
 
-         } else {
 
-           // This is an exterme case with too many e_steps inserted by the linear advance.
 
-           // At least one tick fits into the to_go interval. Calculate the e-step grouping.
 
-           estep_loops = 2;
 
-           uint16_t e = e_steps >> 1;
 
-           while (e & 0x0ff00) {
 
-             e >>= 1;
 
-             estep_loops <<= 1;
 
-           }
 
-           while (uint8_t(e) > ticks) {
 
-             e >>= 1;
 
-             estep_loops <<= 1;
 
-           }
 
-           // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
 
-           // to squeeze enough of Linear Advance ticks until nextMainISR.
 
-           // Calculate the tick rate.
 
-           eISR_Rate = to_go / ticks;
 
-         }
 
-       }
 
-       if (eISR_Rate == 0) {
 
-         // There is not enough time to fit even a single additional tick.
 
-         // Tick all the extruder ticks now.
 
-         MSerial.checkRx(); // Check for serial chars.
 
- #ifdef FILAMENT_SENSOR
 
- 		if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
 
- 		{
 
- 			if (count_direction[E_AXIS] == 1)
 
- 				fsensor_counter -= e_steps;
 
- 			else
 
- 				fsensor_counter += e_steps;
 
- 		}
 
- 		else
 
- 		{
 
- 			if (count_direction[E_AXIS] == 1)
 
- 				fsensor_counter += e_steps;
 
- 			else
 
- 				fsensor_counter -= e_steps;
 
- 		}
 
- #endif //FILAMENT_SENSOR
 
-         do {
 
-           WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 
-           -- e_steps;
 
-           WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
 
-         } while (e_steps);
 
-         OCR1A = nextMainISR;
 
-       } else {
 
-         // Tick the 1st Linear Advance interrupt after 50us from now.
 
-         nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
 
-         OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
 
-       }
 
-       //WRITE_NC(LOGIC_ANALYZER_CH7, false);
 
-     } else
 
-       OCR1A = nextMainISR;
 
- #endif
 
-     // If current block is finished, reset pointer
 
-     if (step_events_completed.wide >= current_block->step_event_count.wide) {
 
- #ifdef FILAMENT_SENSOR
 
- 		fsensor_st_block_chunk(current_block, fsensor_counter);
 
- 		fsensor_counter = 0;
 
- #endif //FILAMENT_SENSOR
 
-       current_block = NULL;
 
-       plan_discard_current_block();
 
-     }
 
- #ifdef FILAMENT_SENSOR
 
-   	else if ((fsensor_counter >= fsensor_chunk_len))
 
-   	{
 
-       fsensor_st_block_chunk(current_block, fsensor_counter);
 
-   	  fsensor_counter = 0;
 
-   	}
 
- #endif //FILAMENT_SENSOR
 
-   }
 
- #ifdef TMC2130
 
- 	tmc2130_st_isr();
 
- #endif //TMC2130
 
-   //WRITE_NC(LOGIC_ANALYZER_CH0, false);
 
- }
 
- #ifdef LIN_ADVANCE
 
- void clear_current_adv_vars() {
 
-   e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
 
-   current_adv_steps = 0;
 
- }
 
- #endif // LIN_ADVANCE
 
-       
 
- void st_init()
 
- {
 
- #ifdef TMC2130
 
- 	tmc2130_init();
 
- #endif //TMC2130
 
-   st_current_init(); //Initialize Digipot Motor Current
 
-   microstep_init(); //Initialize Microstepping Pins
 
-   //Initialize Dir Pins
 
-   #if defined(X_DIR_PIN) && X_DIR_PIN > -1
 
-     SET_OUTPUT(X_DIR_PIN);
 
-   #endif
 
-   #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
 
-     SET_OUTPUT(X2_DIR_PIN);
 
-   #endif
 
-   #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
 
-     SET_OUTPUT(Y_DIR_PIN);
 
- 		
 
- 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
 
- 	  SET_OUTPUT(Y2_DIR_PIN);
 
- 	#endif
 
-   #endif
 
-   #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
 
-     SET_OUTPUT(Z_DIR_PIN);
 
-     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
 
-       SET_OUTPUT(Z2_DIR_PIN);
 
-     #endif
 
-   #endif
 
-   #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
 
-     SET_OUTPUT(E0_DIR_PIN);
 
-   #endif
 
-   #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
 
-     SET_OUTPUT(E1_DIR_PIN);
 
-   #endif
 
-   #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
 
-     SET_OUTPUT(E2_DIR_PIN);
 
-   #endif
 
-   //Initialize Enable Pins - steppers default to disabled.
 
-   #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
 
-     SET_OUTPUT(X_ENABLE_PIN);
 
-     if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
 
-     SET_OUTPUT(X2_ENABLE_PIN);
 
-     if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
 
-     SET_OUTPUT(Y_ENABLE_PIN);
 
-     if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
 
- 	
 
- 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
 
- 	  SET_OUTPUT(Y2_ENABLE_PIN);
 
- 	  if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
 
- 	#endif
 
-   #endif
 
-   #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
 
-     SET_OUTPUT(Z_ENABLE_PIN);
 
-     if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
 
-     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
 
-       SET_OUTPUT(Z2_ENABLE_PIN);
 
-       if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
 
-     SET_OUTPUT(E0_ENABLE_PIN);
 
-     if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
 
-     SET_OUTPUT(E1_ENABLE_PIN);
 
-     if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
 
-     SET_OUTPUT(E2_ENABLE_PIN);
 
-     if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
 
-   #endif
 
-   //endstops and pullups
 
-   #ifdef TMC2130_SG_HOMING
 
-     SET_INPUT(X_TMC2130_DIAG);
 
-     WRITE(X_TMC2130_DIAG,HIGH);
 
-     
 
-     SET_INPUT(Y_TMC2130_DIAG);
 
-     WRITE(Y_TMC2130_DIAG,HIGH);
 
-     
 
-     SET_INPUT(Z_TMC2130_DIAG);
 
-     WRITE(Z_TMC2130_DIAG,HIGH);
 
- 	SET_INPUT(E0_TMC2130_DIAG);
 
-     WRITE(E0_TMC2130_DIAG,HIGH);
 
-     
 
-   #endif
 
-     
 
-   #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 
-     SET_INPUT(X_MIN_PIN);
 
-     #ifdef ENDSTOPPULLUP_XMIN
 
-       WRITE(X_MIN_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 
-     SET_INPUT(Y_MIN_PIN);
 
-     #ifdef ENDSTOPPULLUP_YMIN
 
-       WRITE(Y_MIN_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 
-     SET_INPUT(Z_MIN_PIN);
 
-     #ifdef ENDSTOPPULLUP_ZMIN
 
-       WRITE(Z_MIN_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 
-     SET_INPUT(X_MAX_PIN);
 
-     #ifdef ENDSTOPPULLUP_XMAX
 
-       WRITE(X_MAX_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 
-     SET_INPUT(Y_MAX_PIN);
 
-     #ifdef ENDSTOPPULLUP_YMAX
 
-       WRITE(Y_MAX_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 
-     SET_INPUT(Z_MAX_PIN);
 
-     #ifdef ENDSTOPPULLUP_ZMAX
 
-       WRITE(Z_MAX_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
 
- 	SET_INPUT(TACH_0);
 
-     #ifdef TACH0PULLUP
 
- 	  WRITE(TACH_0, HIGH);
 
-     #endif
 
-   #endif
 
-   //Initialize Step Pins
 
- #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
 
-     SET_OUTPUT(X_STEP_PIN);
 
-     WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
 
- #ifdef DEBUG_XSTEP_DUP_PIN
 
-     SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
 
-     WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
 
- #endif //DEBUG_XSTEP_DUP_PIN
 
-     disable_x();
 
-   #endif
 
-   #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
 
-     SET_OUTPUT(X2_STEP_PIN);
 
-     WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
 
-     disable_x();
 
-   #endif
 
-   #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
 
-     SET_OUTPUT(Y_STEP_PIN);
 
-     WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
 
- #ifdef DEBUG_YSTEP_DUP_PIN
 
-     SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
 
-     WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
 
- #endif //DEBUG_YSTEP_DUP_PIN
 
-     #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
 
-       SET_OUTPUT(Y2_STEP_PIN);
 
-       WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
 
-     #endif
 
-     disable_y();
 
-   #endif
 
-   #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
 
-     SET_OUTPUT(Z_STEP_PIN);
 
-     WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
 
-     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
 
-       SET_OUTPUT(Z2_STEP_PIN);
 
-       WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
 
-     #endif
 
-     disable_z();
 
-   #endif
 
-   #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
 
-     SET_OUTPUT(E0_STEP_PIN);
 
-     WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
 
-     disable_e0();
 
-   #endif
 
-   #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
 
-     SET_OUTPUT(E1_STEP_PIN);
 
-     WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
 
-     disable_e1();
 
-   #endif
 
-   #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
 
-     SET_OUTPUT(E2_STEP_PIN);
 
-     WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
 
-     disable_e2();
 
-   #endif
 
-   // waveform generation = 0100 = CTC
 
-   TCCR1B &= ~(1<<WGM13);
 
-   TCCR1B |=  (1<<WGM12);
 
-   TCCR1A &= ~(1<<WGM11);
 
-   TCCR1A &= ~(1<<WGM10);
 
-   // output mode = 00 (disconnected)
 
-   TCCR1A &= ~(3<<COM1A0);
 
-   TCCR1A &= ~(3<<COM1B0);
 
-   // Set the timer pre-scaler
 
-   // Generally we use a divider of 8, resulting in a 2MHz timer
 
-   // frequency on a 16MHz MCU. If you are going to change this, be
 
-   // sure to regenerate speed_lookuptable.h with
 
-   // create_speed_lookuptable.py
 
-   TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
 
-   // Plan the first interrupt after 8ms from now.
 
-   OCR1A = 0x4000;
 
-   TCNT1 = 0;
 
-   ENABLE_STEPPER_DRIVER_INTERRUPT();
 
- #ifdef LIN_ADVANCE
 
-     e_steps = 0;
 
-     current_adv_steps = 0;
 
- #endif
 
-     
 
-   enable_endstops(true); // Start with endstops active. After homing they can be disabled
 
-   sei();
 
- }
 
- // Block until all buffered steps are executed
 
- void st_synchronize()
 
- {
 
- 	while(blocks_queued())
 
- 	{
 
- #ifdef TMC2130
 
- 		manage_heater();
 
- 		// Vojtech: Don't disable motors inside the planner!
 
- 		if (!tmc2130_update_sg())
 
- 		{
 
- 			manage_inactivity(true);
 
- 			lcd_update(0);
 
- 		}
 
- #else //TMC2130
 
- 		manage_heater();
 
- 		// Vojtech: Don't disable motors inside the planner!
 
- 		manage_inactivity(true);
 
- 		lcd_update(0);
 
- #endif //TMC2130
 
- 	}
 
- }
 
- void st_set_position(const long &x, const long &y, const long &z, const long &e)
 
- {
 
-   CRITICAL_SECTION_START;
 
-   // Copy 4x4B.
 
-   // This block locks the interrupts globally for 4.56 us,
 
-   // which corresponds to a maximum repeat frequency of 219.18 kHz.
 
-   // This blocking is safe in the context of a 10kHz stepper driver interrupt
 
-   // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
 
-   count_position[X_AXIS] = x;
 
-   count_position[Y_AXIS] = y;
 
-   count_position[Z_AXIS] = z;
 
-   count_position[E_AXIS] = e;
 
-   CRITICAL_SECTION_END;
 
- }
 
- void st_set_e_position(const long &e)
 
- {
 
-   CRITICAL_SECTION_START;
 
-   count_position[E_AXIS] = e;
 
-   CRITICAL_SECTION_END;
 
- }
 
- long st_get_position(uint8_t axis)
 
- {
 
-   long count_pos;
 
-   CRITICAL_SECTION_START;
 
-   count_pos = count_position[axis];
 
-   CRITICAL_SECTION_END;
 
-   return count_pos;
 
- }
 
- void st_get_position_xy(long &x, long &y)
 
- {
 
-   CRITICAL_SECTION_START;
 
-   x = count_position[X_AXIS];
 
-   y = count_position[Y_AXIS];
 
-   CRITICAL_SECTION_END;
 
- }
 
- float st_get_position_mm(uint8_t axis)
 
- {
 
-   float steper_position_in_steps = st_get_position(axis);
 
-   return steper_position_in_steps / cs.axis_steps_per_unit[axis];
 
- }
 
- void finishAndDisableSteppers()
 
- {
 
-   st_synchronize();
 
-   disable_x();
 
-   disable_y();
 
-   disable_z();
 
-   disable_e0();
 
-   disable_e1();
 
-   disable_e2();
 
- }
 
- void quickStop()
 
- {
 
-   DISABLE_STEPPER_DRIVER_INTERRUPT();
 
-   while (blocks_queued()) plan_discard_current_block(); 
 
-   current_block = NULL;
 
-   st_reset_timer();
 
-   ENABLE_STEPPER_DRIVER_INTERRUPT();
 
- }
 
- #ifdef BABYSTEPPING
 
- void babystep(const uint8_t axis,const bool direction)
 
- {
 
-   //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
 
-     //store initial pin states
 
-   switch(axis)
 
-   {
 
-   case X_AXIS:
 
-   {
 
-     enable_x();   
 
-     uint8_t old_x_dir_pin= READ(X_DIR_PIN);  //if dualzstepper, both point to same direction.
 
-    
 
-     //setup new step
 
-     WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
 
-     
 
-     //perform step 
 
-     WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); 
 
- #ifdef DEBUG_XSTEP_DUP_PIN
 
-     WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
 
- #endif //DEBUG_XSTEP_DUP_PIN
 
-     delayMicroseconds(1);
 
-     WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 
- #ifdef DEBUG_XSTEP_DUP_PIN
 
-     WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
 
- #endif //DEBUG_XSTEP_DUP_PIN
 
-     //get old pin state back.
 
-     WRITE(X_DIR_PIN,old_x_dir_pin);
 
-   }
 
-   break;
 
-   case Y_AXIS:
 
-   {
 
-     enable_y();   
 
-     uint8_t old_y_dir_pin= READ(Y_DIR_PIN);  //if dualzstepper, both point to same direction.
 
-    
 
-     //setup new step
 
-     WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
 
-     
 
-     //perform step 
 
-     WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); 
 
- #ifdef DEBUG_YSTEP_DUP_PIN
 
-     WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
 
- #endif //DEBUG_YSTEP_DUP_PIN
 
-     delayMicroseconds(1);
 
-     WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 
- #ifdef DEBUG_YSTEP_DUP_PIN
 
-     WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
 
- #endif //DEBUG_YSTEP_DUP_PIN
 
-     //get old pin state back.
 
-     WRITE(Y_DIR_PIN,old_y_dir_pin);
 
-   }
 
-   break;
 
-  
 
-   case Z_AXIS:
 
-   {
 
-     enable_z();
 
-     uint8_t old_z_dir_pin= READ(Z_DIR_PIN);  //if dualzstepper, both point to same direction.
 
-     //setup new step
 
-     WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
 
-     #endif
 
-     //perform step 
 
-     WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); 
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
 
-     #endif
 
-     delayMicroseconds(1);
 
-     WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
 
-     #endif
 
-     //get old pin state back.
 
-     WRITE(Z_DIR_PIN,old_z_dir_pin);
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_DIR_PIN,old_z_dir_pin);
 
-     #endif
 
-   }
 
-   break;
 
-  
 
-   default:    break;
 
-   }
 
- }
 
- #endif //BABYSTEPPING
 
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 
- void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
 
- {
 
-     digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
 
-     SPI.transfer(address); //  send in the address and value via SPI:
 
-     SPI.transfer(value);
 
-     digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
 
-     //_delay(10);
 
- }
 
- #endif
 
- void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
 
- {
 
-     do
 
-     {
 
-         *value = eeprom_read_byte((unsigned char*)pos);
 
-         pos++;
 
-         value++;
 
-     }while(--size);
 
- }
 
- void st_current_init() //Initialize Digipot Motor Current
 
- {  
 
- uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
 
-   SilentModeMenu = SilentMode;
 
-   #ifdef MOTOR_CURRENT_PWM_XY_PIN
 
-     pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
 
-     pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
 
-     pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
 
-     if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
 
-      motor_current_setting[0] = motor_current_setting_loud[0];
 
-      motor_current_setting[1] = motor_current_setting_loud[1];
 
-      motor_current_setting[2] = motor_current_setting_loud[2];
 
-     }else{
 
-      motor_current_setting[0] = motor_current_setting_silent[0];
 
-      motor_current_setting[1] = motor_current_setting_silent[1];
 
-      motor_current_setting[2] = motor_current_setting_silent[2];
 
-     }
 
-     st_current_set(0, motor_current_setting[0]);
 
-     st_current_set(1, motor_current_setting[1]);
 
-     st_current_set(2, motor_current_setting[2]);
 
-     //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 
-     TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
 
-   #endif
 
- }
 
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
 
- void st_current_set(uint8_t driver, int current)
 
- {
 
-   if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 
-   if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 
-   if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 
- }
 
- #else //MOTOR_CURRENT_PWM_XY_PIN
 
- void st_current_set(uint8_t, int ){}
 
- #endif //MOTOR_CURRENT_PWM_XY_PIN
 
- void microstep_init()
 
- {
 
-   #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 
-   pinMode(E1_MS1_PIN,OUTPUT);
 
-   pinMode(E1_MS2_PIN,OUTPUT); 
 
-   #endif
 
-   #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 
-   const uint8_t microstep_modes[] = MICROSTEP_MODES;
 
-   pinMode(X_MS1_PIN,OUTPUT);
 
-   pinMode(X_MS2_PIN,OUTPUT);  
 
-   pinMode(Y_MS1_PIN,OUTPUT);
 
-   pinMode(Y_MS2_PIN,OUTPUT);
 
-   pinMode(Z_MS1_PIN,OUTPUT);
 
-   pinMode(Z_MS2_PIN,OUTPUT);
 
-   pinMode(E0_MS1_PIN,OUTPUT);
 
-   pinMode(E0_MS2_PIN,OUTPUT);
 
-   for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
 
-   #endif
 
- }
 
- #ifndef TMC2130
 
- void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
 
- {
 
-   if(ms1 > -1) switch(driver)
 
-   {
 
-     case 0: digitalWrite( X_MS1_PIN,ms1); break;
 
-     case 1: digitalWrite( Y_MS1_PIN,ms1); break;
 
-     case 2: digitalWrite( Z_MS1_PIN,ms1); break;
 
-     case 3: digitalWrite(E0_MS1_PIN,ms1); break;
 
-     #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 
-     case 4: digitalWrite(E1_MS1_PIN,ms1); break;
 
-     #endif
 
-   }
 
-   if(ms2 > -1) switch(driver)
 
-   {
 
-     case 0: digitalWrite( X_MS2_PIN,ms2); break;
 
-     case 1: digitalWrite( Y_MS2_PIN,ms2); break;
 
-     case 2: digitalWrite( Z_MS2_PIN,ms2); break;
 
-     case 3: digitalWrite(E0_MS2_PIN,ms2); break;
 
-     #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
 
-     case 4: digitalWrite(E1_MS2_PIN,ms2); break;
 
-     #endif
 
-   }
 
- }
 
- void microstep_mode(uint8_t driver, uint8_t stepping_mode)
 
- {
 
-   switch(stepping_mode)
 
-   {
 
-     case 1: microstep_ms(driver,MICROSTEP1); break;
 
-     case 2: microstep_ms(driver,MICROSTEP2); break;
 
-     case 4: microstep_ms(driver,MICROSTEP4); break;
 
-     case 8: microstep_ms(driver,MICROSTEP8); break;
 
-     case 16: microstep_ms(driver,MICROSTEP16); break;
 
-   }
 
- }
 
- void microstep_readings()
 
- {
 
-       SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
 
-       SERIAL_PROTOCOLPGM("X: ");
 
-       SERIAL_PROTOCOL(   digitalRead(X_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
 
-       SERIAL_PROTOCOLPGM("Y: ");
 
-       SERIAL_PROTOCOL(   digitalRead(Y_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
 
-       SERIAL_PROTOCOLPGM("Z: ");
 
-       SERIAL_PROTOCOL(   digitalRead(Z_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
 
-       SERIAL_PROTOCOLPGM("E0: ");
 
-       SERIAL_PROTOCOL(   digitalRead(E0_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
 
-       #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 
-       SERIAL_PROTOCOLPGM("E1: ");
 
-       SERIAL_PROTOCOL(   digitalRead(E1_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
 
-       #endif
 
- }
 
- #endif //TMC2130
 
 
  |