stepper.cpp 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  66. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  67. #endif
  68. static bool old_x_min_endstop=false;
  69. static bool old_x_max_endstop=false;
  70. static bool old_y_min_endstop=false;
  71. static bool old_y_max_endstop=false;
  72. static bool old_z_min_endstop=false;
  73. static bool old_z_max_endstop=false;
  74. static bool check_endstops = true;
  75. static bool check_z_endstop = false;
  76. int8_t SilentMode;
  77. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  78. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  79. //===========================================================================
  80. //=============================functions ============================
  81. //===========================================================================
  82. #define CHECK_ENDSTOPS if(check_endstops)
  83. // intRes = intIn1 * intIn2 >> 16
  84. // uses:
  85. // r26 to store 0
  86. // r27 to store the byte 1 of the 24 bit result
  87. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  88. asm volatile ( \
  89. "clr r26 \n\t" \
  90. "mul %A1, %B2 \n\t" \
  91. "movw %A0, r0 \n\t" \
  92. "mul %A1, %A2 \n\t" \
  93. "add %A0, r1 \n\t" \
  94. "adc %B0, r26 \n\t" \
  95. "lsr r0 \n\t" \
  96. "adc %A0, r26 \n\t" \
  97. "adc %B0, r26 \n\t" \
  98. "clr r1 \n\t" \
  99. : \
  100. "=&r" (intRes) \
  101. : \
  102. "d" (charIn1), \
  103. "d" (intIn2) \
  104. : \
  105. "r26" \
  106. )
  107. // intRes = longIn1 * longIn2 >> 24
  108. // uses:
  109. // r26 to store 0
  110. // r27 to store the byte 1 of the 48bit result
  111. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  112. asm volatile ( \
  113. "clr r26 \n\t" \
  114. "mul %A1, %B2 \n\t" \
  115. "mov r27, r1 \n\t" \
  116. "mul %B1, %C2 \n\t" \
  117. "movw %A0, r0 \n\t" \
  118. "mul %C1, %C2 \n\t" \
  119. "add %B0, r0 \n\t" \
  120. "mul %C1, %B2 \n\t" \
  121. "add %A0, r0 \n\t" \
  122. "adc %B0, r1 \n\t" \
  123. "mul %A1, %C2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %B1, %B2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %C1, %A2 \n\t" \
  132. "add r27, r0 \n\t" \
  133. "adc %A0, r1 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "mul %B1, %A2 \n\t" \
  136. "add r27, r1 \n\t" \
  137. "adc %A0, r26 \n\t" \
  138. "adc %B0, r26 \n\t" \
  139. "lsr r27 \n\t" \
  140. "adc %A0, r26 \n\t" \
  141. "adc %B0, r26 \n\t" \
  142. "clr r1 \n\t" \
  143. : \
  144. "=&r" (intRes) \
  145. : \
  146. "d" (longIn1), \
  147. "d" (longIn2) \
  148. : \
  149. "r26" , "r27" \
  150. )
  151. // Some useful constants
  152. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  153. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  154. void checkHitEndstops()
  155. {
  156. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  157. SERIAL_ECHO_START;
  158. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  159. if(endstop_x_hit) {
  160. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  161. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  162. }
  163. if(endstop_y_hit) {
  164. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  165. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  166. }
  167. if(endstop_z_hit) {
  168. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  169. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  170. }
  171. SERIAL_ECHOLN("");
  172. endstop_x_hit=false;
  173. endstop_y_hit=false;
  174. endstop_z_hit=false;
  175. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  176. if (abort_on_endstop_hit)
  177. {
  178. card.sdprinting = false;
  179. card.closefile();
  180. quickStop();
  181. setTargetHotend0(0);
  182. setTargetHotend1(0);
  183. setTargetHotend2(0);
  184. }
  185. #endif
  186. }
  187. }
  188. bool endstops_hit_on_purpose()
  189. {
  190. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  191. endstop_x_hit=false;
  192. endstop_y_hit=false;
  193. endstop_z_hit=false;
  194. return hit;
  195. }
  196. bool endstop_z_hit_on_purpose()
  197. {
  198. bool hit = endstop_z_hit;
  199. endstop_z_hit=false;
  200. return hit;
  201. }
  202. bool enable_endstops(bool check)
  203. {
  204. bool old = check_endstops;
  205. check_endstops = check;
  206. return old;
  207. }
  208. bool enable_z_endstop(bool check)
  209. {
  210. bool old = check_z_endstop;
  211. check_z_endstop = check;
  212. endstop_z_hit=false;
  213. return old;
  214. }
  215. // __________________________
  216. // /| |\ _________________ ^
  217. // / | | \ /| |\ |
  218. // / | | \ / | | \ s
  219. // / | | | | | \ p
  220. // / | | | | | \ e
  221. // +-----+------------------------+---+--+---------------+----+ e
  222. // | BLOCK 1 | BLOCK 2 | d
  223. //
  224. // time ----->
  225. //
  226. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  227. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  228. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  229. // The slope of acceleration is calculated with the leib ramp alghorithm.
  230. void st_wake_up() {
  231. // TCNT1 = 0;
  232. ENABLE_STEPPER_DRIVER_INTERRUPT();
  233. }
  234. void step_wait(){
  235. for(int8_t i=0; i < 6; i++){
  236. }
  237. }
  238. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  239. unsigned short timer;
  240. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  241. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  242. step_rate = (step_rate >> 2)&0x3fff;
  243. step_loops = 4;
  244. }
  245. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  246. step_rate = (step_rate >> 1)&0x7fff;
  247. step_loops = 2;
  248. }
  249. else {
  250. step_loops = 1;
  251. }
  252. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  253. step_rate -= (F_CPU/500000); // Correct for minimal speed
  254. if(step_rate >= (8*256)){ // higher step rate
  255. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  256. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  257. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  258. MultiU16X8toH16(timer, tmp_step_rate, gain);
  259. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  260. }
  261. else { // lower step rates
  262. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  263. table_address += ((step_rate)>>1) & 0xfffc;
  264. timer = (unsigned short)pgm_read_word_near(table_address);
  265. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  266. }
  267. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  268. return timer;
  269. }
  270. // Initializes the trapezoid generator from the current block. Called whenever a new
  271. // block begins.
  272. FORCE_INLINE void trapezoid_generator_reset() {
  273. #ifdef ADVANCE
  274. advance = current_block->initial_advance;
  275. final_advance = current_block->final_advance;
  276. // Do E steps + advance steps
  277. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  278. old_advance = advance >>8;
  279. #endif
  280. deceleration_time = 0;
  281. // step_rate to timer interval
  282. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  283. // make a note of the number of step loops required at nominal speed
  284. step_loops_nominal = step_loops;
  285. acc_step_rate = current_block->initial_rate;
  286. acceleration_time = calc_timer(acc_step_rate);
  287. OCR1A = acceleration_time;
  288. // SERIAL_ECHO_START;
  289. // SERIAL_ECHOPGM("advance :");
  290. // SERIAL_ECHO(current_block->advance/256.0);
  291. // SERIAL_ECHOPGM("advance rate :");
  292. // SERIAL_ECHO(current_block->advance_rate/256.0);
  293. // SERIAL_ECHOPGM("initial advance :");
  294. // SERIAL_ECHO(current_block->initial_advance/256.0);
  295. // SERIAL_ECHOPGM("final advance :");
  296. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  297. }
  298. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  299. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  300. ISR(TIMER1_COMPA_vect)
  301. {
  302. // If there is no current block, attempt to pop one from the buffer
  303. if (current_block == NULL) {
  304. // Anything in the buffer?
  305. current_block = plan_get_current_block();
  306. if (current_block != NULL) {
  307. current_block->busy = true;
  308. trapezoid_generator_reset();
  309. counter_x = -(current_block->step_event_count >> 1);
  310. counter_y = counter_x;
  311. counter_z = counter_x;
  312. counter_e = counter_x;
  313. step_events_completed = 0;
  314. #ifdef Z_LATE_ENABLE
  315. if(current_block->steps_z > 0) {
  316. enable_z();
  317. OCR1A = 2000; //1ms wait
  318. return;
  319. }
  320. #endif
  321. // #ifdef ADVANCE
  322. // e_steps[current_block->active_extruder] = 0;
  323. // #endif
  324. }
  325. else {
  326. OCR1A=2000; // 1kHz.
  327. }
  328. }
  329. if (current_block != NULL) {
  330. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  331. out_bits = current_block->direction_bits;
  332. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  333. if((out_bits & (1<<X_AXIS))!=0){
  334. #ifdef DUAL_X_CARRIAGE
  335. if (extruder_duplication_enabled){
  336. WRITE(X_DIR_PIN, INVERT_X_DIR);
  337. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  338. }
  339. else{
  340. if (current_block->active_extruder != 0)
  341. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  342. else
  343. WRITE(X_DIR_PIN, INVERT_X_DIR);
  344. }
  345. #else
  346. WRITE(X_DIR_PIN, INVERT_X_DIR);
  347. #endif
  348. count_direction[X_AXIS]=-1;
  349. }
  350. else{
  351. #ifdef DUAL_X_CARRIAGE
  352. if (extruder_duplication_enabled){
  353. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  354. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  355. }
  356. else{
  357. if (current_block->active_extruder != 0)
  358. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  359. else
  360. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  361. }
  362. #else
  363. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  364. #endif
  365. count_direction[X_AXIS]=1;
  366. }
  367. if((out_bits & (1<<Y_AXIS))!=0){
  368. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  369. #ifdef Y_DUAL_STEPPER_DRIVERS
  370. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  371. #endif
  372. count_direction[Y_AXIS]=-1;
  373. }
  374. else{
  375. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  376. #ifdef Y_DUAL_STEPPER_DRIVERS
  377. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  378. #endif
  379. count_direction[Y_AXIS]=1;
  380. }
  381. // Set direction en check limit switches
  382. #ifndef COREXY
  383. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  384. #else
  385. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  386. #endif
  387. CHECK_ENDSTOPS
  388. {
  389. #ifdef DUAL_X_CARRIAGE
  390. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  391. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
  392. || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  393. #endif
  394. {
  395. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  396. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  397. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  398. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  399. endstop_x_hit=true;
  400. step_events_completed = current_block->step_event_count;
  401. }
  402. old_x_min_endstop = x_min_endstop;
  403. #endif
  404. }
  405. }
  406. }
  407. else { // +direction
  408. CHECK_ENDSTOPS
  409. {
  410. #ifdef DUAL_X_CARRIAGE
  411. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  412. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
  413. || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  414. #endif
  415. {
  416. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  417. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  418. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  419. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  420. endstop_x_hit=true;
  421. step_events_completed = current_block->step_event_count;
  422. }
  423. old_x_max_endstop = x_max_endstop;
  424. #endif
  425. }
  426. }
  427. }
  428. #ifndef COREXY
  429. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  430. #else
  431. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  432. #endif
  433. CHECK_ENDSTOPS
  434. {
  435. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  436. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  437. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  438. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  439. endstop_y_hit=true;
  440. step_events_completed = current_block->step_event_count;
  441. }
  442. old_y_min_endstop = y_min_endstop;
  443. #endif
  444. }
  445. }
  446. else { // +direction
  447. CHECK_ENDSTOPS
  448. {
  449. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  450. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  451. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  452. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  453. endstop_y_hit=true;
  454. step_events_completed = current_block->step_event_count;
  455. }
  456. old_y_max_endstop = y_max_endstop;
  457. #endif
  458. }
  459. }
  460. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  461. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  462. #ifdef Z_DUAL_STEPPER_DRIVERS
  463. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  464. #endif
  465. count_direction[Z_AXIS]=-1;
  466. if(check_endstops && ! check_z_endstop)
  467. {
  468. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  469. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  470. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  471. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  472. endstop_z_hit=true;
  473. step_events_completed = current_block->step_event_count;
  474. }
  475. old_z_min_endstop = z_min_endstop;
  476. #endif
  477. }
  478. }
  479. else { // +direction
  480. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  481. #ifdef Z_DUAL_STEPPER_DRIVERS
  482. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  483. #endif
  484. count_direction[Z_AXIS]=1;
  485. CHECK_ENDSTOPS
  486. {
  487. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  488. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  489. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  490. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  491. endstop_z_hit=true;
  492. step_events_completed = current_block->step_event_count;
  493. }
  494. old_z_max_endstop = z_max_endstop;
  495. #endif
  496. }
  497. }
  498. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  499. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  500. if(check_z_endstop) {
  501. // Check the Z min end-stop no matter what.
  502. // Good for searching for the center of an induction target.
  503. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  504. if(z_min_endstop && old_z_min_endstop) {
  505. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  506. endstop_z_hit=true;
  507. step_events_completed = current_block->step_event_count;
  508. }
  509. old_z_min_endstop = z_min_endstop;
  510. }
  511. #endif
  512. #ifndef ADVANCE
  513. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  514. REV_E_DIR();
  515. count_direction[E_AXIS]=-1;
  516. }
  517. else { // +direction
  518. NORM_E_DIR();
  519. count_direction[E_AXIS]=1;
  520. }
  521. #endif //!ADVANCE
  522. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  523. #ifndef AT90USB
  524. MSerial.checkRx(); // Check for serial chars.
  525. #endif
  526. #ifdef ADVANCE
  527. counter_e += current_block->steps_e;
  528. if (counter_e > 0) {
  529. counter_e -= current_block->step_event_count;
  530. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  531. e_steps[current_block->active_extruder]--;
  532. }
  533. else {
  534. e_steps[current_block->active_extruder]++;
  535. }
  536. }
  537. #endif //ADVANCE
  538. counter_x += current_block->steps_x;
  539. #ifdef CONFIG_STEPPERS_TOSHIBA
  540. /* The toshiba stepper controller require much longer pulses
  541. * tjerfore we 'stage' decompose the pulses between high, and
  542. * low instead of doing each in turn. The extra tests add enough
  543. * lag to allow it work with without needing NOPs */
  544. if (counter_x > 0) {
  545. WRITE(X_STEP_PIN, HIGH);
  546. }
  547. counter_y += current_block->steps_y;
  548. if (counter_y > 0) {
  549. WRITE(Y_STEP_PIN, HIGH);
  550. }
  551. counter_z += current_block->steps_z;
  552. if (counter_z > 0) {
  553. WRITE(Z_STEP_PIN, HIGH);
  554. }
  555. #ifndef ADVANCE
  556. counter_e += current_block->steps_e;
  557. if (counter_e > 0) {
  558. WRITE_E_STEP(HIGH);
  559. }
  560. #endif //!ADVANCE
  561. if (counter_x > 0) {
  562. counter_x -= current_block->step_event_count;
  563. count_position[X_AXIS]+=count_direction[X_AXIS];
  564. WRITE(X_STEP_PIN, LOW);
  565. }
  566. if (counter_y > 0) {
  567. counter_y -= current_block->step_event_count;
  568. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  569. WRITE(Y_STEP_PIN, LOW);
  570. }
  571. if (counter_z > 0) {
  572. counter_z -= current_block->step_event_count;
  573. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  574. WRITE(Z_STEP_PIN, LOW);
  575. }
  576. #ifndef ADVANCE
  577. if (counter_e > 0) {
  578. counter_e -= current_block->step_event_count;
  579. count_position[E_AXIS]+=count_direction[E_AXIS];
  580. WRITE_E_STEP(LOW);
  581. }
  582. #endif //!ADVANCE
  583. #else
  584. if (counter_x > 0) {
  585. #ifdef DUAL_X_CARRIAGE
  586. if (extruder_duplication_enabled){
  587. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  588. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  589. }
  590. else {
  591. if (current_block->active_extruder != 0)
  592. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  593. else
  594. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  595. }
  596. #else
  597. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  598. #endif
  599. counter_x -= current_block->step_event_count;
  600. count_position[X_AXIS]+=count_direction[X_AXIS];
  601. #ifdef DUAL_X_CARRIAGE
  602. if (extruder_duplication_enabled){
  603. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  604. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  605. }
  606. else {
  607. if (current_block->active_extruder != 0)
  608. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  609. else
  610. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  611. }
  612. #else
  613. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  614. #endif
  615. }
  616. counter_y += current_block->steps_y;
  617. if (counter_y > 0) {
  618. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  619. #ifdef Y_DUAL_STEPPER_DRIVERS
  620. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  621. #endif
  622. counter_y -= current_block->step_event_count;
  623. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  624. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  625. #ifdef Y_DUAL_STEPPER_DRIVERS
  626. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  627. #endif
  628. }
  629. counter_z += current_block->steps_z;
  630. if (counter_z > 0) {
  631. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  632. #ifdef Z_DUAL_STEPPER_DRIVERS
  633. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  634. #endif
  635. counter_z -= current_block->step_event_count;
  636. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  637. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  638. #ifdef Z_DUAL_STEPPER_DRIVERS
  639. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  640. #endif
  641. }
  642. #ifndef ADVANCE
  643. counter_e += current_block->steps_e;
  644. if (counter_e > 0) {
  645. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  646. counter_e -= current_block->step_event_count;
  647. count_position[E_AXIS]+=count_direction[E_AXIS];
  648. WRITE_E_STEP(INVERT_E_STEP_PIN);
  649. }
  650. #endif //!ADVANCE
  651. #endif
  652. step_events_completed += 1;
  653. if(step_events_completed >= current_block->step_event_count) break;
  654. }
  655. // Calculare new timer value
  656. unsigned short timer;
  657. unsigned short step_rate;
  658. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  659. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  660. acc_step_rate += current_block->initial_rate;
  661. // upper limit
  662. if(acc_step_rate > current_block->nominal_rate)
  663. acc_step_rate = current_block->nominal_rate;
  664. // step_rate to timer interval
  665. timer = calc_timer(acc_step_rate);
  666. OCR1A = timer;
  667. acceleration_time += timer;
  668. #ifdef ADVANCE
  669. for(int8_t i=0; i < step_loops; i++) {
  670. advance += advance_rate;
  671. }
  672. //if(advance > current_block->advance) advance = current_block->advance;
  673. // Do E steps + advance steps
  674. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  675. old_advance = advance >>8;
  676. #endif
  677. }
  678. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  679. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  680. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  681. step_rate = current_block->final_rate;
  682. }
  683. else {
  684. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  685. }
  686. // lower limit
  687. if(step_rate < current_block->final_rate)
  688. step_rate = current_block->final_rate;
  689. // step_rate to timer interval
  690. timer = calc_timer(step_rate);
  691. OCR1A = timer;
  692. deceleration_time += timer;
  693. #ifdef ADVANCE
  694. for(int8_t i=0; i < step_loops; i++) {
  695. advance -= advance_rate;
  696. }
  697. if(advance < final_advance) advance = final_advance;
  698. // Do E steps + advance steps
  699. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  700. old_advance = advance >>8;
  701. #endif //ADVANCE
  702. }
  703. else {
  704. OCR1A = OCR1A_nominal;
  705. // ensure we're running at the correct step rate, even if we just came off an acceleration
  706. step_loops = step_loops_nominal;
  707. }
  708. // If current block is finished, reset pointer
  709. if (step_events_completed >= current_block->step_event_count) {
  710. current_block = NULL;
  711. plan_discard_current_block();
  712. }
  713. }
  714. }
  715. #ifdef ADVANCE
  716. unsigned char old_OCR0A;
  717. // Timer interrupt for E. e_steps is set in the main routine;
  718. // Timer 0 is shared with millies
  719. ISR(TIMER0_COMPA_vect)
  720. {
  721. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  722. OCR0A = old_OCR0A;
  723. // Set E direction (Depends on E direction + advance)
  724. for(unsigned char i=0; i<4;i++) {
  725. if (e_steps[0] != 0) {
  726. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  727. if (e_steps[0] < 0) {
  728. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  729. e_steps[0]++;
  730. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  731. }
  732. else if (e_steps[0] > 0) {
  733. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  734. e_steps[0]--;
  735. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  736. }
  737. }
  738. #if EXTRUDERS > 1
  739. if (e_steps[1] != 0) {
  740. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  741. if (e_steps[1] < 0) {
  742. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  743. e_steps[1]++;
  744. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  745. }
  746. else if (e_steps[1] > 0) {
  747. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  748. e_steps[1]--;
  749. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  750. }
  751. }
  752. #endif
  753. #if EXTRUDERS > 2
  754. if (e_steps[2] != 0) {
  755. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  756. if (e_steps[2] < 0) {
  757. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  758. e_steps[2]++;
  759. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  760. }
  761. else if (e_steps[2] > 0) {
  762. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  763. e_steps[2]--;
  764. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  765. }
  766. }
  767. #endif
  768. }
  769. }
  770. #endif // ADVANCE
  771. void st_init()
  772. {
  773. digipot_init(); //Initialize Digipot Motor Current
  774. microstep_init(); //Initialize Microstepping Pins
  775. //Initialize Dir Pins
  776. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  777. SET_OUTPUT(X_DIR_PIN);
  778. #endif
  779. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  780. SET_OUTPUT(X2_DIR_PIN);
  781. #endif
  782. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  783. SET_OUTPUT(Y_DIR_PIN);
  784. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  785. SET_OUTPUT(Y2_DIR_PIN);
  786. #endif
  787. #endif
  788. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  789. SET_OUTPUT(Z_DIR_PIN);
  790. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  791. SET_OUTPUT(Z2_DIR_PIN);
  792. #endif
  793. #endif
  794. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  795. SET_OUTPUT(E0_DIR_PIN);
  796. #endif
  797. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  798. SET_OUTPUT(E1_DIR_PIN);
  799. #endif
  800. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  801. SET_OUTPUT(E2_DIR_PIN);
  802. #endif
  803. //Initialize Enable Pins - steppers default to disabled.
  804. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  805. SET_OUTPUT(X_ENABLE_PIN);
  806. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  807. #endif
  808. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  809. SET_OUTPUT(X2_ENABLE_PIN);
  810. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  811. #endif
  812. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  813. SET_OUTPUT(Y_ENABLE_PIN);
  814. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  815. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  816. SET_OUTPUT(Y2_ENABLE_PIN);
  817. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  818. #endif
  819. #endif
  820. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  821. SET_OUTPUT(Z_ENABLE_PIN);
  822. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  823. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  824. SET_OUTPUT(Z2_ENABLE_PIN);
  825. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  826. #endif
  827. #endif
  828. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  829. SET_OUTPUT(E0_ENABLE_PIN);
  830. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  831. #endif
  832. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  833. SET_OUTPUT(E1_ENABLE_PIN);
  834. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  835. #endif
  836. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  837. SET_OUTPUT(E2_ENABLE_PIN);
  838. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  839. #endif
  840. //endstops and pullups
  841. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  842. SET_INPUT(X_MIN_PIN);
  843. #ifdef ENDSTOPPULLUP_XMIN
  844. WRITE(X_MIN_PIN,HIGH);
  845. #endif
  846. #endif
  847. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  848. SET_INPUT(Y_MIN_PIN);
  849. #ifdef ENDSTOPPULLUP_YMIN
  850. WRITE(Y_MIN_PIN,HIGH);
  851. #endif
  852. #endif
  853. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  854. SET_INPUT(Z_MIN_PIN);
  855. #ifdef ENDSTOPPULLUP_ZMIN
  856. WRITE(Z_MIN_PIN,HIGH);
  857. #endif
  858. #endif
  859. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  860. SET_INPUT(X_MAX_PIN);
  861. #ifdef ENDSTOPPULLUP_XMAX
  862. WRITE(X_MAX_PIN,HIGH);
  863. #endif
  864. #endif
  865. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  866. SET_INPUT(Y_MAX_PIN);
  867. #ifdef ENDSTOPPULLUP_YMAX
  868. WRITE(Y_MAX_PIN,HIGH);
  869. #endif
  870. #endif
  871. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  872. SET_INPUT(Z_MAX_PIN);
  873. #ifdef ENDSTOPPULLUP_ZMAX
  874. WRITE(Z_MAX_PIN,HIGH);
  875. #endif
  876. #endif
  877. //Initialize Step Pins
  878. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  879. SET_OUTPUT(X_STEP_PIN);
  880. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  881. disable_x();
  882. #endif
  883. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  884. SET_OUTPUT(X2_STEP_PIN);
  885. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  886. disable_x();
  887. #endif
  888. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  889. SET_OUTPUT(Y_STEP_PIN);
  890. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  891. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  892. SET_OUTPUT(Y2_STEP_PIN);
  893. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  894. #endif
  895. disable_y();
  896. #endif
  897. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  898. SET_OUTPUT(Z_STEP_PIN);
  899. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  900. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  901. SET_OUTPUT(Z2_STEP_PIN);
  902. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  903. #endif
  904. disable_z();
  905. #endif
  906. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  907. SET_OUTPUT(E0_STEP_PIN);
  908. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  909. disable_e0();
  910. #endif
  911. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  912. SET_OUTPUT(E1_STEP_PIN);
  913. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  914. disable_e1();
  915. #endif
  916. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  917. SET_OUTPUT(E2_STEP_PIN);
  918. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  919. disable_e2();
  920. #endif
  921. // waveform generation = 0100 = CTC
  922. TCCR1B &= ~(1<<WGM13);
  923. TCCR1B |= (1<<WGM12);
  924. TCCR1A &= ~(1<<WGM11);
  925. TCCR1A &= ~(1<<WGM10);
  926. // output mode = 00 (disconnected)
  927. TCCR1A &= ~(3<<COM1A0);
  928. TCCR1A &= ~(3<<COM1B0);
  929. // Set the timer pre-scaler
  930. // Generally we use a divider of 8, resulting in a 2MHz timer
  931. // frequency on a 16MHz MCU. If you are going to change this, be
  932. // sure to regenerate speed_lookuptable.h with
  933. // create_speed_lookuptable.py
  934. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  935. OCR1A = 0x4000;
  936. TCNT1 = 0;
  937. ENABLE_STEPPER_DRIVER_INTERRUPT();
  938. #ifdef ADVANCE
  939. #if defined(TCCR0A) && defined(WGM01)
  940. TCCR0A &= ~(1<<WGM01);
  941. TCCR0A &= ~(1<<WGM00);
  942. #endif
  943. e_steps[0] = 0;
  944. e_steps[1] = 0;
  945. e_steps[2] = 0;
  946. TIMSK0 |= (1<<OCIE0A);
  947. #endif //ADVANCE
  948. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  949. sei();
  950. }
  951. // Block until all buffered steps are executed
  952. void st_synchronize()
  953. {
  954. while( blocks_queued()) {
  955. manage_heater();
  956. manage_inactivity();
  957. lcd_update();
  958. }
  959. }
  960. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  961. {
  962. CRITICAL_SECTION_START;
  963. count_position[X_AXIS] = x;
  964. count_position[Y_AXIS] = y;
  965. count_position[Z_AXIS] = z;
  966. count_position[E_AXIS] = e;
  967. CRITICAL_SECTION_END;
  968. }
  969. void st_set_e_position(const long &e)
  970. {
  971. CRITICAL_SECTION_START;
  972. count_position[E_AXIS] = e;
  973. CRITICAL_SECTION_END;
  974. }
  975. long st_get_position(uint8_t axis)
  976. {
  977. long count_pos;
  978. CRITICAL_SECTION_START;
  979. count_pos = count_position[axis];
  980. CRITICAL_SECTION_END;
  981. return count_pos;
  982. }
  983. float st_get_position_mm(uint8_t axis)
  984. {
  985. float steper_position_in_steps = st_get_position(axis);
  986. return steper_position_in_steps / axis_steps_per_unit[axis];
  987. }
  988. void finishAndDisableSteppers()
  989. {
  990. st_synchronize();
  991. disable_x();
  992. disable_y();
  993. disable_z();
  994. disable_e0();
  995. disable_e1();
  996. disable_e2();
  997. }
  998. void quickStop()
  999. {
  1000. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1001. while (blocks_queued()) plan_discard_current_block();
  1002. current_block = NULL;
  1003. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1004. }
  1005. #ifdef BABYSTEPPING
  1006. void babystep(const uint8_t axis,const bool direction)
  1007. {
  1008. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1009. //store initial pin states
  1010. switch(axis)
  1011. {
  1012. case X_AXIS:
  1013. {
  1014. enable_x();
  1015. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1016. //setup new step
  1017. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1018. #ifdef DUAL_X_CARRIAGE
  1019. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  1020. #endif
  1021. //perform step
  1022. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1023. #ifdef DUAL_X_CARRIAGE
  1024. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  1025. #endif
  1026. {
  1027. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1028. }
  1029. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1030. #ifdef DUAL_X_CARRIAGE
  1031. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  1032. #endif
  1033. //get old pin state back.
  1034. WRITE(X_DIR_PIN,old_x_dir_pin);
  1035. #ifdef DUAL_X_CARRIAGE
  1036. WRITE(X2_DIR_PIN,old_x_dir_pin);
  1037. #endif
  1038. }
  1039. break;
  1040. case Y_AXIS:
  1041. {
  1042. enable_y();
  1043. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1044. //setup new step
  1045. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1046. #ifdef DUAL_Y_CARRIAGE
  1047. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  1048. #endif
  1049. //perform step
  1050. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1051. #ifdef DUAL_Y_CARRIAGE
  1052. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  1053. #endif
  1054. {
  1055. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1056. }
  1057. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1058. #ifdef DUAL_Y_CARRIAGE
  1059. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  1060. #endif
  1061. //get old pin state back.
  1062. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1063. #ifdef DUAL_Y_CARRIAGE
  1064. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  1065. #endif
  1066. }
  1067. break;
  1068. #ifndef DELTA
  1069. case Z_AXIS:
  1070. {
  1071. enable_z();
  1072. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1073. //setup new step
  1074. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1075. #ifdef Z_DUAL_STEPPER_DRIVERS
  1076. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1077. #endif
  1078. //perform step
  1079. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1080. #ifdef Z_DUAL_STEPPER_DRIVERS
  1081. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1082. #endif
  1083. //wait a tiny bit
  1084. {
  1085. float x=1./float(axis+1); //absolutely useless
  1086. }
  1087. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1088. #ifdef Z_DUAL_STEPPER_DRIVERS
  1089. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1090. #endif
  1091. //get old pin state back.
  1092. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1093. #ifdef Z_DUAL_STEPPER_DRIVERS
  1094. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1095. #endif
  1096. }
  1097. break;
  1098. #else //DELTA
  1099. case Z_AXIS:
  1100. {
  1101. enable_x();
  1102. enable_y();
  1103. enable_z();
  1104. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1105. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1106. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1107. //setup new step
  1108. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1109. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1110. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1111. //perform step
  1112. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1113. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1114. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1115. //wait a tiny bit
  1116. {
  1117. float x=1./float(axis+1); //absolutely useless
  1118. }
  1119. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1120. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1121. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1122. //get old pin state back.
  1123. WRITE(X_DIR_PIN,old_x_dir_pin);
  1124. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1125. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1126. }
  1127. break;
  1128. #endif
  1129. default: break;
  1130. }
  1131. }
  1132. #endif //BABYSTEPPING
  1133. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1134. {
  1135. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1136. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1137. SPI.transfer(address); // send in the address and value via SPI:
  1138. SPI.transfer(value);
  1139. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1140. //delay(10);
  1141. #endif
  1142. }
  1143. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1144. {
  1145. do
  1146. {
  1147. *value = eeprom_read_byte((unsigned char*)pos);
  1148. pos++;
  1149. value++;
  1150. }while(--size);
  1151. }
  1152. void digipot_init() //Initialize Digipot Motor Current
  1153. {
  1154. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1155. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1156. if(SilentMode == 0){
  1157. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  1158. }else{
  1159. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1160. }
  1161. SPI.begin();
  1162. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1163. for(int i=0;i<=4;i++)
  1164. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1165. digipot_current(i,digipot_motor_current[i]);
  1166. #endif
  1167. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1168. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1169. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1170. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1171. if(SilentMode == 0){
  1172. motor_current_setting[0] = motor_current_setting_loud[0];
  1173. motor_current_setting[1] = motor_current_setting_loud[1];
  1174. motor_current_setting[2] = motor_current_setting_loud[2];
  1175. }else{
  1176. motor_current_setting[0] = motor_current_setting_silent[0];
  1177. motor_current_setting[1] = motor_current_setting_silent[1];
  1178. motor_current_setting[2] = motor_current_setting_silent[2];
  1179. }
  1180. digipot_current(0, motor_current_setting[0]);
  1181. digipot_current(1, motor_current_setting[1]);
  1182. digipot_current(2, motor_current_setting[2]);
  1183. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1184. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1185. #endif
  1186. }
  1187. void digipot_current(uint8_t driver, int current)
  1188. {
  1189. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1190. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1191. digitalPotWrite(digipot_ch[driver], current);
  1192. #endif
  1193. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1194. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1195. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1196. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1197. #endif
  1198. }
  1199. void microstep_init()
  1200. {
  1201. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1202. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1203. pinMode(E1_MS1_PIN,OUTPUT);
  1204. pinMode(E1_MS2_PIN,OUTPUT);
  1205. #endif
  1206. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1207. pinMode(X_MS1_PIN,OUTPUT);
  1208. pinMode(X_MS2_PIN,OUTPUT);
  1209. pinMode(Y_MS1_PIN,OUTPUT);
  1210. pinMode(Y_MS2_PIN,OUTPUT);
  1211. pinMode(Z_MS1_PIN,OUTPUT);
  1212. pinMode(Z_MS2_PIN,OUTPUT);
  1213. pinMode(E0_MS1_PIN,OUTPUT);
  1214. pinMode(E0_MS2_PIN,OUTPUT);
  1215. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1216. #endif
  1217. }
  1218. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1219. {
  1220. if(ms1 > -1) switch(driver)
  1221. {
  1222. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1223. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1224. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1225. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1226. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1227. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1228. #endif
  1229. }
  1230. if(ms2 > -1) switch(driver)
  1231. {
  1232. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1233. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1234. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1235. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1236. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1237. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1238. #endif
  1239. }
  1240. }
  1241. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1242. {
  1243. switch(stepping_mode)
  1244. {
  1245. case 1: microstep_ms(driver,MICROSTEP1); break;
  1246. case 2: microstep_ms(driver,MICROSTEP2); break;
  1247. case 4: microstep_ms(driver,MICROSTEP4); break;
  1248. case 8: microstep_ms(driver,MICROSTEP8); break;
  1249. case 16: microstep_ms(driver,MICROSTEP16); break;
  1250. }
  1251. }
  1252. void microstep_readings()
  1253. {
  1254. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1255. SERIAL_PROTOCOLPGM("X: ");
  1256. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1257. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1258. SERIAL_PROTOCOLPGM("Y: ");
  1259. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1260. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1261. SERIAL_PROTOCOLPGM("Z: ");
  1262. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1263. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1264. SERIAL_PROTOCOLPGM("E0: ");
  1265. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1266. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1267. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1268. SERIAL_PROTOCOLPGM("E1: ");
  1269. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1270. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1271. #endif
  1272. }