Marlin_main.cpp 302 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "cmdqueue.h"
  106. // Macros for bit masks
  107. #define BIT(b) (1<<(b))
  108. #define TEST(n,b) (((n)&BIT(b))!=0)
  109. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  110. //Macro for print fan speed
  111. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  112. #define PRINTING_TYPE_SD 0
  113. #define PRINTING_TYPE_USB 1
  114. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  115. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  116. //Implemented Codes
  117. //-------------------
  118. // PRUSA CODES
  119. // P F - Returns FW versions
  120. // P R - Returns revision of printer
  121. // G0 -> G1
  122. // G1 - Coordinated Movement X Y Z E
  123. // G2 - CW ARC
  124. // G3 - CCW ARC
  125. // G4 - Dwell S<seconds> or P<milliseconds>
  126. // G10 - retract filament according to settings of M207
  127. // G11 - retract recover filament according to settings of M208
  128. // G28 - Home all Axis
  129. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  130. // G30 - Single Z Probe, probes bed at current XY location.
  131. // G31 - Dock sled (Z_PROBE_SLED only)
  132. // G32 - Undock sled (Z_PROBE_SLED only)
  133. // G80 - Automatic mesh bed leveling
  134. // G81 - Print bed profile
  135. // G90 - Use Absolute Coordinates
  136. // G91 - Use Relative Coordinates
  137. // G92 - Set current position to coordinates given
  138. // M Codes
  139. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  140. // M1 - Same as M0
  141. // M17 - Enable/Power all stepper motors
  142. // M18 - Disable all stepper motors; same as M84
  143. // M20 - List SD card
  144. // M21 - Init SD card
  145. // M22 - Release SD card
  146. // M23 - Select SD file (M23 filename.g)
  147. // M24 - Start/resume SD print
  148. // M25 - Pause SD print
  149. // M26 - Set SD position in bytes (M26 S12345)
  150. // M27 - Report SD print status
  151. // M28 - Start SD write (M28 filename.g)
  152. // M29 - Stop SD write
  153. // M30 - Delete file from SD (M30 filename.g)
  154. // M31 - Output time since last M109 or SD card start to serial
  155. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  156. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  157. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  158. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  159. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  160. // M73 - Show percent done and print time remaining
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  169. // M92 - Set axis_steps_per_unit - same syntax as G92
  170. // M104 - Set extruder target temp
  171. // M105 - Read current temp
  172. // M106 - Fan on
  173. // M107 - Fan off
  174. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  175. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  176. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  177. // M112 - Emergency stop
  178. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  179. // M114 - Output current position to serial port
  180. // M115 - Capabilities string
  181. // M117 - display message
  182. // M119 - Output Endstop status to serial port
  183. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  184. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  185. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M140 - Set bed target temp
  188. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  189. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  190. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  191. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  192. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  193. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  194. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  195. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  196. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  197. // M206 - set additional homing offset
  198. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  199. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  200. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  201. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  202. // M220 S<factor in percent>- set speed factor override percentage
  203. // M221 S<factor in percent>- set extrude factor override percentage
  204. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  205. // M240 - Trigger a camera to take a photograph
  206. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  207. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  208. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  209. // M301 - Set PID parameters P I and D
  210. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  211. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  212. // M304 - Set bed PID parameters P I and D
  213. // M400 - Finish all moves
  214. // M401 - Lower z-probe if present
  215. // M402 - Raise z-probe if present
  216. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  217. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  218. // M406 - Turn off Filament Sensor extrusion control
  219. // M407 - Displays measured filament diameter
  220. // M500 - stores parameters in EEPROM
  221. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. // M503 - print the current settings (from memory not from EEPROM)
  224. // M509 - force language selection on next restart
  225. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  226. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  227. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  228. // M860 - Wait for PINDA thermistor to reach target temperature.
  229. // M861 - Set / Read PINDA temperature compensation offsets
  230. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  231. // M907 - Set digital trimpot motor current using axis codes.
  232. // M908 - Control digital trimpot directly.
  233. // M350 - Set microstepping mode.
  234. // M351 - Toggle MS1 MS2 pins directly.
  235. // M928 - Start SD logging (M928 filename.g) - ended by M29
  236. // M999 - Restart after being stopped by error
  237. //Stepper Movement Variables
  238. //===========================================================================
  239. //=============================imported variables============================
  240. //===========================================================================
  241. //===========================================================================
  242. //=============================public variables=============================
  243. //===========================================================================
  244. #ifdef SDSUPPORT
  245. CardReader card;
  246. #endif
  247. unsigned long PingTime = millis();
  248. unsigned long NcTime;
  249. union Data
  250. {
  251. byte b[2];
  252. int value;
  253. };
  254. float homing_feedrate[] = HOMING_FEEDRATE;
  255. // Currently only the extruder axis may be switched to a relative mode.
  256. // Other axes are always absolute or relative based on the common relative_mode flag.
  257. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  258. int feedmultiply=100; //100->1 200->2
  259. int saved_feedmultiply;
  260. int extrudemultiply=100; //100->1 200->2
  261. int extruder_multiply[EXTRUDERS] = {100
  262. #if EXTRUDERS > 1
  263. , 100
  264. #if EXTRUDERS > 2
  265. , 100
  266. #endif
  267. #endif
  268. };
  269. int bowden_length[4] = {385, 385, 385, 385};
  270. bool is_usb_printing = false;
  271. bool homing_flag = false;
  272. bool temp_cal_active = false;
  273. unsigned long kicktime = millis()+100000;
  274. unsigned int usb_printing_counter;
  275. int lcd_change_fil_state = 0;
  276. int feedmultiplyBckp = 100;
  277. float HotendTempBckp = 0;
  278. int fanSpeedBckp = 0;
  279. float pause_lastpos[4];
  280. unsigned long pause_time = 0;
  281. unsigned long start_pause_print = millis();
  282. unsigned long t_fan_rising_edge = millis();
  283. static LongTimer safetyTimer;
  284. static LongTimer crashDetTimer;
  285. //unsigned long load_filament_time;
  286. bool mesh_bed_leveling_flag = false;
  287. bool mesh_bed_run_from_menu = false;
  288. int8_t FarmMode = 0;
  289. bool prusa_sd_card_upload = false;
  290. unsigned int status_number = 0;
  291. unsigned long total_filament_used;
  292. unsigned int heating_status;
  293. unsigned int heating_status_counter;
  294. bool custom_message;
  295. bool loading_flag = false;
  296. unsigned int custom_message_type;
  297. unsigned int custom_message_state;
  298. char snmm_filaments_used = 0;
  299. bool fan_state[2];
  300. int fan_edge_counter[2];
  301. int fan_speed[2];
  302. char dir_names[3][9];
  303. bool sortAlpha = false;
  304. bool volumetric_enabled = false;
  305. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 1
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 2
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #endif
  311. #endif
  312. };
  313. float extruder_multiplier[EXTRUDERS] = {1.0
  314. #if EXTRUDERS > 1
  315. , 1.0
  316. #if EXTRUDERS > 2
  317. , 1.0
  318. #endif
  319. #endif
  320. };
  321. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  322. //shortcuts for more readable code
  323. #define _x current_position[X_AXIS]
  324. #define _y current_position[Y_AXIS]
  325. #define _z current_position[Z_AXIS]
  326. #define _e current_position[E_AXIS]
  327. float add_homing[3]={0,0,0};
  328. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  329. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  330. bool axis_known_position[3] = {false, false, false};
  331. float zprobe_zoffset;
  332. // Extruder offset
  333. #if EXTRUDERS > 1
  334. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  335. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  336. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  337. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  338. #endif
  339. };
  340. #endif
  341. uint8_t active_extruder = 0;
  342. int fanSpeed=0;
  343. #ifdef FWRETRACT
  344. bool autoretract_enabled=false;
  345. bool retracted[EXTRUDERS]={false
  346. #if EXTRUDERS > 1
  347. , false
  348. #if EXTRUDERS > 2
  349. , false
  350. #endif
  351. #endif
  352. };
  353. bool retracted_swap[EXTRUDERS]={false
  354. #if EXTRUDERS > 1
  355. , false
  356. #if EXTRUDERS > 2
  357. , false
  358. #endif
  359. #endif
  360. };
  361. float retract_length = RETRACT_LENGTH;
  362. float retract_length_swap = RETRACT_LENGTH_SWAP;
  363. float retract_feedrate = RETRACT_FEEDRATE;
  364. float retract_zlift = RETRACT_ZLIFT;
  365. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  366. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  367. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  368. #endif
  369. #ifdef ULTIPANEL
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. #endif
  376. bool cancel_heatup = false ;
  377. #ifdef HOST_KEEPALIVE_FEATURE
  378. int busy_state = NOT_BUSY;
  379. static long prev_busy_signal_ms = -1;
  380. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  381. #else
  382. #define host_keepalive();
  383. #define KEEPALIVE_STATE(n);
  384. #endif
  385. const char errormagic[] PROGMEM = "Error:";
  386. const char echomagic[] PROGMEM = "echo:";
  387. bool no_response = false;
  388. uint8_t important_status;
  389. uint8_t saved_filament_type;
  390. // save/restore printing
  391. bool saved_printing = false;
  392. // storing estimated time to end of print counted by slicer
  393. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  396. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  397. //===========================================================================
  398. //=============================Private Variables=============================
  399. //===========================================================================
  400. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  401. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  402. static float delta[3] = {0.0, 0.0, 0.0};
  403. // For tracing an arc
  404. static float offset[3] = {0.0, 0.0, 0.0};
  405. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  406. // Determines Absolute or Relative Coordinates.
  407. // Also there is bool axis_relative_modes[] per axis flag.
  408. static bool relative_mode = false;
  409. #ifndef _DISABLE_M42_M226
  410. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  411. #endif //_DISABLE_M42_M226
  412. //static float tt = 0;
  413. //static float bt = 0;
  414. //Inactivity shutdown variables
  415. static unsigned long previous_millis_cmd = 0;
  416. unsigned long max_inactive_time = 0;
  417. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  418. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  419. unsigned long starttime=0;
  420. unsigned long stoptime=0;
  421. unsigned long _usb_timer = 0;
  422. static uint8_t tmp_extruder;
  423. bool extruder_under_pressure = true;
  424. bool Stopped=false;
  425. #if NUM_SERVOS > 0
  426. Servo servos[NUM_SERVOS];
  427. #endif
  428. bool CooldownNoWait = true;
  429. bool target_direction;
  430. //Insert variables if CHDK is defined
  431. #ifdef CHDK
  432. unsigned long chdkHigh = 0;
  433. boolean chdkActive = false;
  434. #endif
  435. // save/restore printing
  436. static uint32_t saved_sdpos = 0;
  437. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  438. static float saved_pos[4] = { 0, 0, 0, 0 };
  439. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  440. static float saved_feedrate2 = 0;
  441. static uint8_t saved_active_extruder = 0;
  442. static bool saved_extruder_under_pressure = false;
  443. static bool saved_extruder_relative_mode = false;
  444. //===========================================================================
  445. //=============================Routines======================================
  446. //===========================================================================
  447. void get_arc_coordinates();
  448. bool setTargetedHotend(int code);
  449. void serial_echopair_P(const char *s_P, float v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. void serial_echopair_P(const char *s_P, double v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, unsigned long v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. #ifdef SDSUPPORT
  456. #include "SdFatUtil.h"
  457. int freeMemory() { return SdFatUtil::FreeRam(); }
  458. #else
  459. extern "C" {
  460. extern unsigned int __bss_end;
  461. extern unsigned int __heap_start;
  462. extern void *__brkval;
  463. int freeMemory() {
  464. int free_memory;
  465. if ((int)__brkval == 0)
  466. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  467. else
  468. free_memory = ((int)&free_memory) - ((int)__brkval);
  469. return free_memory;
  470. }
  471. }
  472. #endif //!SDSUPPORT
  473. void setup_killpin()
  474. {
  475. #if defined(KILL_PIN) && KILL_PIN > -1
  476. SET_INPUT(KILL_PIN);
  477. WRITE(KILL_PIN,HIGH);
  478. #endif
  479. }
  480. // Set home pin
  481. void setup_homepin(void)
  482. {
  483. #if defined(HOME_PIN) && HOME_PIN > -1
  484. SET_INPUT(HOME_PIN);
  485. WRITE(HOME_PIN,HIGH);
  486. #endif
  487. }
  488. void setup_photpin()
  489. {
  490. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  491. SET_OUTPUT(PHOTOGRAPH_PIN);
  492. WRITE(PHOTOGRAPH_PIN, LOW);
  493. #endif
  494. }
  495. void setup_powerhold()
  496. {
  497. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  498. SET_OUTPUT(SUICIDE_PIN);
  499. WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. SET_OUTPUT(PS_ON_PIN);
  503. #if defined(PS_DEFAULT_OFF)
  504. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  505. #else
  506. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  507. #endif
  508. #endif
  509. }
  510. void suicide()
  511. {
  512. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  513. SET_OUTPUT(SUICIDE_PIN);
  514. WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. }
  535. void stop_and_save_print_to_ram(float z_move, float e_move);
  536. void restore_print_from_ram_and_continue(float e_move);
  537. bool fans_check_enabled = true;
  538. bool filament_autoload_enabled = true;
  539. #ifdef TMC2130
  540. extern int8_t CrashDetectMenu;
  541. void crashdet_enable()
  542. {
  543. tmc2130_sg_stop_on_crash = true;
  544. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  545. CrashDetectMenu = 1;
  546. }
  547. void crashdet_disable()
  548. {
  549. tmc2130_sg_stop_on_crash = false;
  550. tmc2130_sg_crash = 0;
  551. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  552. CrashDetectMenu = 0;
  553. }
  554. void crashdet_stop_and_save_print()
  555. {
  556. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  557. }
  558. void crashdet_restore_print_and_continue()
  559. {
  560. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  561. // babystep_apply();
  562. }
  563. void crashdet_stop_and_save_print2()
  564. {
  565. cli();
  566. planner_abort_hard(); //abort printing
  567. cmdqueue_reset(); //empty cmdqueue
  568. card.sdprinting = false;
  569. card.closefile();
  570. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  571. st_reset_timer();
  572. sei();
  573. }
  574. void crashdet_detected(uint8_t mask)
  575. {
  576. // printf("CRASH_DETECTED");
  577. /* while (!is_buffer_empty())
  578. {
  579. process_commands();
  580. cmdqueue_pop_front();
  581. }*/
  582. st_synchronize();
  583. static uint8_t crashDet_counter = 0;
  584. bool automatic_recovery_after_crash = true;
  585. if (crashDet_counter++ == 0) {
  586. crashDetTimer.start();
  587. }
  588. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  589. crashDetTimer.stop();
  590. crashDet_counter = 0;
  591. }
  592. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  593. automatic_recovery_after_crash = false;
  594. crashDetTimer.stop();
  595. crashDet_counter = 0;
  596. }
  597. else {
  598. crashDetTimer.start();
  599. }
  600. lcd_update_enable(true);
  601. lcd_implementation_clear();
  602. lcd_update(2);
  603. if (mask & X_AXIS_MASK)
  604. {
  605. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  606. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  607. }
  608. if (mask & Y_AXIS_MASK)
  609. {
  610. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  611. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  612. }
  613. lcd_update_enable(true);
  614. lcd_update(2);
  615. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  616. gcode_G28(true, true, false, false); //home X and Y
  617. st_synchronize();
  618. if (automatic_recovery_after_crash) {
  619. enquecommand_P(PSTR("CRASH_RECOVER"));
  620. }else{
  621. HotendTempBckp = degTargetHotend(active_extruder);
  622. setTargetHotend(0, active_extruder);
  623. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  624. lcd_update_enable(true);
  625. if (yesno)
  626. {
  627. char cmd1[10];
  628. strcpy(cmd1, "M109 S");
  629. strcat(cmd1, ftostr3(HotendTempBckp));
  630. enquecommand(cmd1);
  631. enquecommand_P(PSTR("CRASH_RECOVER"));
  632. }
  633. else
  634. {
  635. enquecommand_P(PSTR("CRASH_CANCEL"));
  636. }
  637. }
  638. }
  639. void crashdet_recover()
  640. {
  641. crashdet_restore_print_and_continue();
  642. tmc2130_sg_stop_on_crash = true;
  643. }
  644. void crashdet_cancel()
  645. {
  646. tmc2130_sg_stop_on_crash = true;
  647. if (saved_printing_type == PRINTING_TYPE_SD) {
  648. lcd_print_stop();
  649. }else if(saved_printing_type == PRINTING_TYPE_USB){
  650. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  651. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  652. }
  653. }
  654. #endif //TMC2130
  655. void failstats_reset_print()
  656. {
  657. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  661. }
  662. #ifdef MESH_BED_LEVELING
  663. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  664. #endif
  665. // Factory reset function
  666. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  667. // Level input parameter sets depth of reset
  668. // Quiet parameter masks all waitings for user interact.
  669. int er_progress = 0;
  670. void factory_reset(char level, bool quiet)
  671. {
  672. lcd_implementation_clear();
  673. int cursor_pos = 0;
  674. switch (level) {
  675. // Level 0: Language reset
  676. case 0:
  677. WRITE(BEEPER, HIGH);
  678. _delay_ms(100);
  679. WRITE(BEEPER, LOW);
  680. lang_reset();
  681. break;
  682. //Level 1: Reset statistics
  683. case 1:
  684. WRITE(BEEPER, HIGH);
  685. _delay_ms(100);
  686. WRITE(BEEPER, LOW);
  687. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  688. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  697. lcd_menu_statistics();
  698. break;
  699. // Level 2: Prepare for shipping
  700. case 2:
  701. //lcd_printPGM(PSTR("Factory RESET"));
  702. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  703. // Force language selection at the next boot up.
  704. lang_reset();
  705. // Force the "Follow calibration flow" message at the next boot up.
  706. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  707. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  708. farm_no = 0;
  709. farm_mode = false;
  710. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  711. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  712. WRITE(BEEPER, HIGH);
  713. _delay_ms(100);
  714. WRITE(BEEPER, LOW);
  715. //_delay_ms(2000);
  716. break;
  717. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  718. case 3:
  719. lcd_printPGM(PSTR("Factory RESET"));
  720. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. er_progress = 0;
  725. lcd_print_at_PGM(3, 3, PSTR(" "));
  726. lcd_implementation_print_at(3, 3, er_progress);
  727. // Erase EEPROM
  728. for (int i = 0; i < 4096; i++) {
  729. eeprom_write_byte((uint8_t*)i, 0xFF);
  730. if (i % 41 == 0) {
  731. er_progress++;
  732. lcd_print_at_PGM(3, 3, PSTR(" "));
  733. lcd_implementation_print_at(3, 3, er_progress);
  734. lcd_printPGM(PSTR("%"));
  735. }
  736. }
  737. break;
  738. case 4:
  739. bowden_menu();
  740. break;
  741. default:
  742. break;
  743. }
  744. }
  745. #include "LiquidCrystal_Prusa.h"
  746. extern LiquidCrystal_Prusa lcd;
  747. FILE _lcdout = {0};
  748. int lcd_putchar(char c, FILE *stream)
  749. {
  750. lcd.write(c);
  751. return 0;
  752. }
  753. FILE _uartout = {0};
  754. int uart_putchar(char c, FILE *stream)
  755. {
  756. MYSERIAL.write(c);
  757. return 0;
  758. }
  759. void lcd_splash()
  760. {
  761. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  762. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  763. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  764. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  765. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  766. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  767. }
  768. void factory_reset()
  769. {
  770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  771. if (!READ(BTN_ENC))
  772. {
  773. _delay_ms(1000);
  774. if (!READ(BTN_ENC))
  775. {
  776. lcd_implementation_clear();
  777. lcd_printPGM(PSTR("Factory RESET"));
  778. SET_OUTPUT(BEEPER);
  779. WRITE(BEEPER, HIGH);
  780. while (!READ(BTN_ENC));
  781. WRITE(BEEPER, LOW);
  782. _delay_ms(2000);
  783. char level = reset_menu();
  784. factory_reset(level, false);
  785. switch (level) {
  786. case 0: _delay_ms(0); break;
  787. case 1: _delay_ms(0); break;
  788. case 2: _delay_ms(0); break;
  789. case 3: _delay_ms(0); break;
  790. }
  791. // _delay_ms(100);
  792. /*
  793. #ifdef MESH_BED_LEVELING
  794. _delay_ms(2000);
  795. if (!READ(BTN_ENC))
  796. {
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. _delay_ms(200);
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. int _z = 0;
  805. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  806. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  807. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  809. }
  810. else
  811. {
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. }
  816. #endif // mesh */
  817. }
  818. }
  819. else
  820. {
  821. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  822. }
  823. KEEPALIVE_STATE(IN_HANDLER);
  824. }
  825. void show_fw_version_warnings() {
  826. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  827. switch (FW_DEV_VERSION) {
  828. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  829. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  830. case(FW_VERSION_DEVEL):
  831. case(FW_VERSION_DEBUG):
  832. lcd_update_enable(false);
  833. lcd_implementation_clear();
  834. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  835. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  836. #else
  837. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  838. #endif
  839. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  840. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  841. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  842. lcd_wait_for_click();
  843. break;
  844. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  845. }
  846. lcd_update_enable(true);
  847. }
  848. uint8_t check_printer_version()
  849. {
  850. uint8_t version_changed = 0;
  851. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  852. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  853. if (printer_type != PRINTER_TYPE) {
  854. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  855. else version_changed |= 0b10;
  856. }
  857. if (motherboard != MOTHERBOARD) {
  858. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  859. else version_changed |= 0b01;
  860. }
  861. return version_changed;
  862. }
  863. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  864. {
  865. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  866. }
  867. #if (LANG_MODE != 0) //secondary language support
  868. #ifdef W25X20CL
  869. #include "bootapp.h" //bootloader support
  870. // language update from external flash
  871. #define LANGBOOT_BLOCKSIZE 0x1000
  872. #define LANGBOOT_RAMBUFFER 0x0800
  873. void update_sec_lang_from_external_flash()
  874. {
  875. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  876. {
  877. uint8_t lang = boot_reserved >> 4;
  878. uint8_t state = boot_reserved & 0xf;
  879. lang_table_header_t header;
  880. uint32_t src_addr;
  881. if (lang_get_header(lang, &header, &src_addr))
  882. {
  883. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  884. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  885. delay(100);
  886. boot_reserved = (state + 1) | (lang << 4);
  887. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  888. {
  889. cli();
  890. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  891. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  892. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  893. if (state == 0)
  894. {
  895. //TODO - check header integrity
  896. }
  897. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  898. }
  899. else
  900. {
  901. //TODO - check sec lang data integrity
  902. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  903. }
  904. }
  905. }
  906. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  907. }
  908. #ifdef DEBUG_W25X20CL
  909. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  910. {
  911. lang_table_header_t header;
  912. uint8_t count = 0;
  913. uint32_t addr = 0x00000;
  914. while (1)
  915. {
  916. printf_P(_n("LANGTABLE%d:"), count);
  917. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  918. if (header.magic != LANG_MAGIC)
  919. {
  920. printf_P(_n("NG!\n"));
  921. break;
  922. }
  923. printf_P(_n("OK\n"));
  924. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  925. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  926. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  927. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  928. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  929. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  930. addr += header.size;
  931. codes[count] = header.code;
  932. count ++;
  933. }
  934. return count;
  935. }
  936. void list_sec_lang_from_external_flash()
  937. {
  938. uint16_t codes[8];
  939. uint8_t count = lang_xflash_enum_codes(codes);
  940. printf_P(_n("XFlash lang count = %hhd\n"), count);
  941. }
  942. #endif //DEBUG_W25X20CL
  943. #endif //W25X20CL
  944. #endif //(LANG_MODE != 0)
  945. // "Setup" function is called by the Arduino framework on startup.
  946. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  947. // are initialized by the main() routine provided by the Arduino framework.
  948. void setup()
  949. {
  950. #ifdef W25X20CL
  951. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  952. optiboot_w25x20cl_enter();
  953. #endif
  954. lcd_init();
  955. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  956. spi_init();
  957. lcd_splash();
  958. #if (LANG_MODE != 0) //secondary language support
  959. #ifdef W25X20CL
  960. if (w25x20cl_init())
  961. update_sec_lang_from_external_flash();
  962. else
  963. kill(_i("External SPI flash W25X20CL not responding."));
  964. #endif //W25X20CL
  965. #endif //(LANG_MODE != 0)
  966. setup_killpin();
  967. setup_powerhold();
  968. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  969. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  970. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  971. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  972. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  973. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  974. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  975. if (farm_mode)
  976. {
  977. no_response = true; //we need confirmation by recieving PRUSA thx
  978. important_status = 8;
  979. prusa_statistics(8);
  980. selectedSerialPort = 1;
  981. }
  982. MYSERIAL.begin(BAUDRATE);
  983. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  984. stdout = uartout;
  985. SERIAL_PROTOCOLLNPGM("start");
  986. SERIAL_ECHO_START;
  987. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  988. #ifdef DEBUG_SEC_LANG
  989. lang_table_header_t header;
  990. uint32_t src_addr = 0x00000;
  991. if (lang_get_header(1, &header, &src_addr))
  992. {
  993. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  994. #define LT_PRINT_TEST 2
  995. // flash usage
  996. // total p.test
  997. //0 252718 t+c text code
  998. //1 253142 424 170 254
  999. //2 253040 322 164 158
  1000. //3 253248 530 135 395
  1001. #if (LT_PRINT_TEST==1) //not optimized printf
  1002. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1003. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1004. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1005. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1006. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1007. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1008. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1009. #elif (LT_PRINT_TEST==2) //optimized printf
  1010. printf_P(
  1011. _n(
  1012. " _src_addr = 0x%08lx\n"
  1013. " _lt_magic = 0x%08lx %S\n"
  1014. " _lt_size = 0x%04x (%d)\n"
  1015. " _lt_count = 0x%04x (%d)\n"
  1016. " _lt_chsum = 0x%04x\n"
  1017. " _lt_code = 0x%04x (%c%c)\n"
  1018. " _lt_resv1 = 0x%08lx\n"
  1019. ),
  1020. src_addr,
  1021. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1022. header.size, header.size,
  1023. header.count, header.count,
  1024. header.checksum,
  1025. header.code, header.code >> 8, header.code & 0xff,
  1026. header.signature
  1027. );
  1028. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1029. MYSERIAL.print(" _src_addr = 0x");
  1030. MYSERIAL.println(src_addr, 16);
  1031. MYSERIAL.print(" _lt_magic = 0x");
  1032. MYSERIAL.print(header.magic, 16);
  1033. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1034. MYSERIAL.print(" _lt_size = 0x");
  1035. MYSERIAL.print(header.size, 16);
  1036. MYSERIAL.print(" (");
  1037. MYSERIAL.print(header.size, 10);
  1038. MYSERIAL.println(")");
  1039. MYSERIAL.print(" _lt_count = 0x");
  1040. MYSERIAL.print(header.count, 16);
  1041. MYSERIAL.print(" (");
  1042. MYSERIAL.print(header.count, 10);
  1043. MYSERIAL.println(")");
  1044. MYSERIAL.print(" _lt_chsum = 0x");
  1045. MYSERIAL.println(header.checksum, 16);
  1046. MYSERIAL.print(" _lt_code = 0x");
  1047. MYSERIAL.print(header.code, 16);
  1048. MYSERIAL.print(" (");
  1049. MYSERIAL.print((char)(header.code >> 8), 0);
  1050. MYSERIAL.print((char)(header.code & 0xff), 0);
  1051. MYSERIAL.println(")");
  1052. MYSERIAL.print(" _lt_resv1 = 0x");
  1053. MYSERIAL.println(header.signature, 16);
  1054. #endif //(LT_PRINT_TEST==)
  1055. #undef LT_PRINT_TEST
  1056. #if 0
  1057. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1058. for (uint16_t i = 0; i < 1024; i++)
  1059. {
  1060. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1061. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1062. if ((i % 16) == 15) putchar('\n');
  1063. }
  1064. #endif
  1065. uint16_t sum = 0;
  1066. for (uint16_t i = 0; i < header.size; i++)
  1067. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1068. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1069. sum -= header.checksum; //subtract checksum
  1070. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1071. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1072. if (sum == header.checksum)
  1073. printf_P(_n("Checksum OK\n"), sum);
  1074. else
  1075. printf_P(_n("Checksum NG\n"), sum);
  1076. }
  1077. else
  1078. printf_P(_n("lang_get_header failed!\n"));
  1079. #if 0
  1080. for (uint16_t i = 0; i < 1024*10; i++)
  1081. {
  1082. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1083. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1084. if ((i % 16) == 15) putchar('\n');
  1085. }
  1086. #endif
  1087. #if 0
  1088. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1089. for (int i = 0; i < 4096; ++i) {
  1090. int b = eeprom_read_byte((unsigned char*)i);
  1091. if (b != 255) {
  1092. SERIAL_ECHO(i);
  1093. SERIAL_ECHO(":");
  1094. SERIAL_ECHO(b);
  1095. SERIAL_ECHOLN("");
  1096. }
  1097. }
  1098. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1099. #endif
  1100. #endif //DEBUG_SEC_LANG
  1101. // Check startup - does nothing if bootloader sets MCUSR to 0
  1102. byte mcu = MCUSR;
  1103. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1104. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1105. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1106. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1107. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1108. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1109. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1110. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1111. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1112. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1113. MCUSR = 0;
  1114. //SERIAL_ECHORPGM(MSG_MARLIN);
  1115. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1116. #ifdef STRING_VERSION_CONFIG_H
  1117. #ifdef STRING_CONFIG_H_AUTHOR
  1118. SERIAL_ECHO_START;
  1119. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1120. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1121. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1122. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1123. SERIAL_ECHOPGM("Compiled: ");
  1124. SERIAL_ECHOLNPGM(__DATE__);
  1125. #endif
  1126. #endif
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1129. SERIAL_ECHO(freeMemory());
  1130. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1131. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1132. //lcd_update_enable(false); // why do we need this?? - andre
  1133. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1134. bool previous_settings_retrieved = false;
  1135. uint8_t hw_changed = check_printer_version();
  1136. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1137. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1138. }
  1139. else { //printer version was changed so use default settings
  1140. Config_ResetDefault();
  1141. }
  1142. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1143. tp_init(); // Initialize temperature loop
  1144. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1145. plan_init(); // Initialize planner;
  1146. factory_reset();
  1147. #ifdef TMC2130
  1148. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1149. if (silentMode == 0xff) silentMode = 0;
  1150. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1151. tmc2130_mode = TMC2130_MODE_NORMAL;
  1152. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1153. if (crashdet && !farm_mode)
  1154. {
  1155. crashdet_enable();
  1156. puts_P(_N("CrashDetect ENABLED!"));
  1157. }
  1158. else
  1159. {
  1160. crashdet_disable();
  1161. puts_P(_N("CrashDetect DISABLED"));
  1162. }
  1163. #ifdef TMC2130_LINEARITY_CORRECTION
  1164. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1165. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1166. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1167. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1168. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1169. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1170. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1171. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1172. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1173. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1174. #endif //TMC2130_LINEARITY_CORRECTION
  1175. #ifdef TMC2130_VARIABLE_RESOLUTION
  1176. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1177. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1178. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1179. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1180. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1181. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1182. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1183. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1184. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1185. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1186. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1187. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1188. #else //TMC2130_VARIABLE_RESOLUTION
  1189. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1191. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1192. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1193. #endif //TMC2130_VARIABLE_RESOLUTION
  1194. #endif //TMC2130
  1195. st_init(); // Initialize stepper, this enables interrupts!
  1196. #ifdef TMC2130
  1197. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1198. tmc2130_init();
  1199. #endif //TMC2130
  1200. setup_photpin();
  1201. servo_init();
  1202. // Reset the machine correction matrix.
  1203. // It does not make sense to load the correction matrix until the machine is homed.
  1204. world2machine_reset();
  1205. #ifdef PAT9125
  1206. fsensor_init();
  1207. #endif //PAT9125
  1208. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1209. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1210. #endif
  1211. setup_homepin();
  1212. #ifdef TMC2130
  1213. if (1) {
  1214. // try to run to zero phase before powering the Z motor.
  1215. // Move in negative direction
  1216. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1217. // Round the current micro-micro steps to micro steps.
  1218. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1219. // Until the phase counter is reset to zero.
  1220. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1221. delay(2);
  1222. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1223. delay(2);
  1224. }
  1225. }
  1226. #endif //TMC2130
  1227. #if defined(Z_AXIS_ALWAYS_ON)
  1228. enable_z();
  1229. #endif
  1230. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1231. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1232. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1233. if (farm_no == 0xFFFF) farm_no = 0;
  1234. if (farm_mode)
  1235. {
  1236. prusa_statistics(8);
  1237. }
  1238. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1239. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1240. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1241. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1242. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1243. // where all the EEPROM entries are set to 0x0ff.
  1244. // Once a firmware boots up, it forces at least a language selection, which changes
  1245. // EEPROM_LANG to number lower than 0x0ff.
  1246. // 1) Set a high power mode.
  1247. #ifdef TMC2130
  1248. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1249. tmc2130_mode = TMC2130_MODE_NORMAL;
  1250. #endif //TMC2130
  1251. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1252. }
  1253. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1254. // but this times out if a blocking dialog is shown in setup().
  1255. card.initsd();
  1256. #ifdef DEBUG_SD_SPEED_TEST
  1257. if (card.cardOK)
  1258. {
  1259. uint8_t* buff = (uint8_t*)block_buffer;
  1260. uint32_t block = 0;
  1261. uint32_t sumr = 0;
  1262. uint32_t sumw = 0;
  1263. for (int i = 0; i < 1024; i++)
  1264. {
  1265. uint32_t u = micros();
  1266. bool res = card.card.readBlock(i, buff);
  1267. u = micros() - u;
  1268. if (res)
  1269. {
  1270. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1271. sumr += u;
  1272. u = micros();
  1273. res = card.card.writeBlock(i, buff);
  1274. u = micros() - u;
  1275. if (res)
  1276. {
  1277. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1278. sumw += u;
  1279. }
  1280. else
  1281. {
  1282. printf_P(PSTR("writeBlock %4d error\n"), i);
  1283. break;
  1284. }
  1285. }
  1286. else
  1287. {
  1288. printf_P(PSTR("readBlock %4d error\n"), i);
  1289. break;
  1290. }
  1291. }
  1292. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1293. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1294. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1295. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1296. }
  1297. else
  1298. printf_P(PSTR("Card NG!\n"));
  1299. #endif //DEBUG_SD_SPEED_TEST
  1300. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1301. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1302. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1303. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1304. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1305. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1306. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1307. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1308. #ifdef SNMM
  1309. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1310. int _z = BOWDEN_LENGTH;
  1311. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1312. }
  1313. #endif
  1314. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1315. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1316. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1317. #if (LANG_MODE != 0) //secondary language support
  1318. #ifdef DEBUG_W25X20CL
  1319. W25X20CL_SPI_ENTER();
  1320. uint8_t uid[8]; // 64bit unique id
  1321. w25x20cl_rd_uid(uid);
  1322. puts_P(_n("W25X20CL UID="));
  1323. for (uint8_t i = 0; i < 8; i ++)
  1324. printf_P(PSTR("%02hhx"), uid[i]);
  1325. putchar('\n');
  1326. list_sec_lang_from_external_flash();
  1327. #endif //DEBUG_W25X20CL
  1328. // lang_reset();
  1329. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1330. lcd_language();
  1331. #ifdef DEBUG_SEC_LANG
  1332. uint16_t sec_lang_code = lang_get_code(1);
  1333. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1334. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1335. // lang_print_sec_lang(uartout);
  1336. #endif //DEBUG_SEC_LANG
  1337. #endif //(LANG_MODE != 0)
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1339. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1340. temp_cal_active = false;
  1341. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1342. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1343. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1344. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1345. int16_t z_shift = 0;
  1346. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1347. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1348. temp_cal_active = false;
  1349. }
  1350. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1351. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1352. }
  1353. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1354. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1355. }
  1356. check_babystep(); //checking if Z babystep is in allowed range
  1357. #ifdef UVLO_SUPPORT
  1358. setup_uvlo_interrupt();
  1359. #endif //UVLO_SUPPORT
  1360. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1361. setup_fan_interrupt();
  1362. #endif //DEBUG_DISABLE_FANCHECK
  1363. #ifdef PAT9125
  1364. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1365. fsensor_setup_interrupt();
  1366. #endif //DEBUG_DISABLE_FSENSORCHECK
  1367. #endif //PAT9125
  1368. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1369. #ifndef DEBUG_DISABLE_STARTMSGS
  1370. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1371. show_fw_version_warnings();
  1372. switch (hw_changed) {
  1373. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1374. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1375. case(0b01):
  1376. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1377. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1378. break;
  1379. case(0b10):
  1380. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1381. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1382. break;
  1383. case(0b11):
  1384. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1385. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1386. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1387. break;
  1388. default: break; //no change, show no message
  1389. }
  1390. if (!previous_settings_retrieved) {
  1391. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1392. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1393. }
  1394. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1395. lcd_wizard(0);
  1396. }
  1397. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1398. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1399. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1400. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1401. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1402. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1403. // Show the message.
  1404. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1405. }
  1406. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1407. // Show the message.
  1408. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1409. lcd_update_enable(true);
  1410. }
  1411. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1412. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1413. lcd_update_enable(true);
  1414. }
  1415. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1416. // Show the message.
  1417. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1418. }
  1419. }
  1420. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1421. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1422. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1423. update_current_firmware_version_to_eeprom();
  1424. lcd_selftest();
  1425. }
  1426. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1427. KEEPALIVE_STATE(IN_PROCESS);
  1428. #endif //DEBUG_DISABLE_STARTMSGS
  1429. lcd_update_enable(true);
  1430. lcd_implementation_clear();
  1431. lcd_update(2);
  1432. // Store the currently running firmware into an eeprom,
  1433. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1434. update_current_firmware_version_to_eeprom();
  1435. #ifdef TMC2130
  1436. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1437. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1438. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1439. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1440. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1441. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1442. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1443. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1444. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1445. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1446. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1447. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1448. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1449. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1450. #endif //TMC2130
  1451. #ifdef UVLO_SUPPORT
  1452. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1453. /*
  1454. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1455. else {
  1456. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1457. lcd_update_enable(true);
  1458. lcd_update(2);
  1459. lcd_setstatuspgm(_T(WELCOME_MSG));
  1460. }
  1461. */
  1462. manage_heater(); // Update temperatures
  1463. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1464. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1465. #endif
  1466. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1467. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1468. puts_P(_N("Automatic recovery!"));
  1469. #endif
  1470. recover_print(1);
  1471. }
  1472. else{
  1473. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1474. puts_P(_N("Normal recovery!"));
  1475. #endif
  1476. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1477. else {
  1478. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1479. lcd_update_enable(true);
  1480. lcd_update(2);
  1481. lcd_setstatuspgm(_T(WELCOME_MSG));
  1482. }
  1483. }
  1484. }
  1485. #endif //UVLO_SUPPORT
  1486. KEEPALIVE_STATE(NOT_BUSY);
  1487. #ifdef WATCHDOG
  1488. wdt_enable(WDTO_4S);
  1489. #endif //WATCHDOG
  1490. }
  1491. #ifdef PAT9125
  1492. void fsensor_init() {
  1493. int pat9125 = pat9125_init();
  1494. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1495. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1496. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1497. if (!pat9125)
  1498. {
  1499. fsensor = 0; //disable sensor
  1500. fsensor_not_responding = true;
  1501. }
  1502. else {
  1503. fsensor_not_responding = false;
  1504. }
  1505. puts_P(PSTR("FSensor "));
  1506. if (fsensor)
  1507. {
  1508. puts_P(PSTR("ENABLED\n"));
  1509. fsensor_enable();
  1510. }
  1511. else
  1512. {
  1513. puts_P(PSTR("DISABLED\n"));
  1514. fsensor_disable();
  1515. }
  1516. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1517. filament_autoload_enabled = false;
  1518. fsensor_disable();
  1519. #endif //DEBUG_DISABLE_FSENSORCHECK
  1520. }
  1521. #endif //PAT9125
  1522. void trace();
  1523. #define CHUNK_SIZE 64 // bytes
  1524. #define SAFETY_MARGIN 1
  1525. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1526. int chunkHead = 0;
  1527. int serial_read_stream() {
  1528. setTargetHotend(0, 0);
  1529. setTargetBed(0);
  1530. lcd_implementation_clear();
  1531. lcd_printPGM(PSTR(" Upload in progress"));
  1532. // first wait for how many bytes we will receive
  1533. uint32_t bytesToReceive;
  1534. // receive the four bytes
  1535. char bytesToReceiveBuffer[4];
  1536. for (int i=0; i<4; i++) {
  1537. int data;
  1538. while ((data = MYSERIAL.read()) == -1) {};
  1539. bytesToReceiveBuffer[i] = data;
  1540. }
  1541. // make it a uint32
  1542. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1543. // we're ready, notify the sender
  1544. MYSERIAL.write('+');
  1545. // lock in the routine
  1546. uint32_t receivedBytes = 0;
  1547. while (prusa_sd_card_upload) {
  1548. int i;
  1549. for (i=0; i<CHUNK_SIZE; i++) {
  1550. int data;
  1551. // check if we're not done
  1552. if (receivedBytes == bytesToReceive) {
  1553. break;
  1554. }
  1555. // read the next byte
  1556. while ((data = MYSERIAL.read()) == -1) {};
  1557. receivedBytes++;
  1558. // save it to the chunk
  1559. chunk[i] = data;
  1560. }
  1561. // write the chunk to SD
  1562. card.write_command_no_newline(&chunk[0]);
  1563. // notify the sender we're ready for more data
  1564. MYSERIAL.write('+');
  1565. // for safety
  1566. manage_heater();
  1567. // check if we're done
  1568. if(receivedBytes == bytesToReceive) {
  1569. trace(); // beep
  1570. card.closefile();
  1571. prusa_sd_card_upload = false;
  1572. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1573. return 0;
  1574. }
  1575. }
  1576. }
  1577. #ifdef HOST_KEEPALIVE_FEATURE
  1578. /**
  1579. * Output a "busy" message at regular intervals
  1580. * while the machine is not accepting commands.
  1581. */
  1582. void host_keepalive() {
  1583. if (farm_mode) return;
  1584. long ms = millis();
  1585. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1586. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1587. switch (busy_state) {
  1588. case IN_HANDLER:
  1589. case IN_PROCESS:
  1590. SERIAL_ECHO_START;
  1591. SERIAL_ECHOLNPGM("busy: processing");
  1592. break;
  1593. case PAUSED_FOR_USER:
  1594. SERIAL_ECHO_START;
  1595. SERIAL_ECHOLNPGM("busy: paused for user");
  1596. break;
  1597. case PAUSED_FOR_INPUT:
  1598. SERIAL_ECHO_START;
  1599. SERIAL_ECHOLNPGM("busy: paused for input");
  1600. break;
  1601. default:
  1602. break;
  1603. }
  1604. }
  1605. prev_busy_signal_ms = ms;
  1606. }
  1607. #endif
  1608. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1609. // Before loop(), the setup() function is called by the main() routine.
  1610. void loop()
  1611. {
  1612. KEEPALIVE_STATE(NOT_BUSY);
  1613. bool stack_integrity = true;
  1614. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1615. {
  1616. is_usb_printing = true;
  1617. usb_printing_counter--;
  1618. _usb_timer = millis();
  1619. }
  1620. if (usb_printing_counter == 0)
  1621. {
  1622. is_usb_printing = false;
  1623. }
  1624. if (prusa_sd_card_upload)
  1625. {
  1626. //we read byte-by byte
  1627. serial_read_stream();
  1628. } else
  1629. {
  1630. get_command();
  1631. #ifdef SDSUPPORT
  1632. card.checkautostart(false);
  1633. #endif
  1634. if(buflen)
  1635. {
  1636. cmdbuffer_front_already_processed = false;
  1637. #ifdef SDSUPPORT
  1638. if(card.saving)
  1639. {
  1640. // Saving a G-code file onto an SD-card is in progress.
  1641. // Saving starts with M28, saving until M29 is seen.
  1642. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1643. card.write_command(CMDBUFFER_CURRENT_STRING);
  1644. if(card.logging)
  1645. process_commands();
  1646. else
  1647. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1648. } else {
  1649. card.closefile();
  1650. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1651. }
  1652. } else {
  1653. process_commands();
  1654. }
  1655. #else
  1656. process_commands();
  1657. #endif //SDSUPPORT
  1658. if (! cmdbuffer_front_already_processed && buflen)
  1659. {
  1660. // ptr points to the start of the block currently being processed.
  1661. // The first character in the block is the block type.
  1662. char *ptr = cmdbuffer + bufindr;
  1663. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1664. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1665. union {
  1666. struct {
  1667. char lo;
  1668. char hi;
  1669. } lohi;
  1670. uint16_t value;
  1671. } sdlen;
  1672. sdlen.value = 0;
  1673. {
  1674. // This block locks the interrupts globally for 3.25 us,
  1675. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1676. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1677. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1678. cli();
  1679. // Reset the command to something, which will be ignored by the power panic routine,
  1680. // so this buffer length will not be counted twice.
  1681. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1682. // Extract the current buffer length.
  1683. sdlen.lohi.lo = *ptr ++;
  1684. sdlen.lohi.hi = *ptr;
  1685. // and pass it to the planner queue.
  1686. planner_add_sd_length(sdlen.value);
  1687. sei();
  1688. }
  1689. }
  1690. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1691. cli();
  1692. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1693. // and one for each command to previous block in the planner queue.
  1694. planner_add_sd_length(1);
  1695. sei();
  1696. }
  1697. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1698. // this block's SD card length will not be counted twice as its command type has been replaced
  1699. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1700. cmdqueue_pop_front();
  1701. }
  1702. host_keepalive();
  1703. }
  1704. }
  1705. //check heater every n milliseconds
  1706. manage_heater();
  1707. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1708. checkHitEndstops();
  1709. lcd_update();
  1710. #ifdef PAT9125
  1711. fsensor_update();
  1712. #endif //PAT9125
  1713. #ifdef TMC2130
  1714. tmc2130_check_overtemp();
  1715. if (tmc2130_sg_crash)
  1716. {
  1717. uint8_t crash = tmc2130_sg_crash;
  1718. tmc2130_sg_crash = 0;
  1719. // crashdet_stop_and_save_print();
  1720. switch (crash)
  1721. {
  1722. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1723. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1724. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1725. }
  1726. }
  1727. #endif //TMC2130
  1728. }
  1729. #define DEFINE_PGM_READ_ANY(type, reader) \
  1730. static inline type pgm_read_any(const type *p) \
  1731. { return pgm_read_##reader##_near(p); }
  1732. DEFINE_PGM_READ_ANY(float, float);
  1733. DEFINE_PGM_READ_ANY(signed char, byte);
  1734. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1735. static const PROGMEM type array##_P[3] = \
  1736. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1737. static inline type array(int axis) \
  1738. { return pgm_read_any(&array##_P[axis]); } \
  1739. type array##_ext(int axis) \
  1740. { return pgm_read_any(&array##_P[axis]); }
  1741. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1742. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1743. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1744. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1745. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1746. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1747. static void axis_is_at_home(int axis) {
  1748. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1749. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1750. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1751. }
  1752. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1753. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1754. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1755. saved_feedrate = feedrate;
  1756. saved_feedmultiply = feedmultiply;
  1757. feedmultiply = 100;
  1758. previous_millis_cmd = millis();
  1759. enable_endstops(enable_endstops_now);
  1760. }
  1761. static void clean_up_after_endstop_move() {
  1762. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1763. enable_endstops(false);
  1764. #endif
  1765. feedrate = saved_feedrate;
  1766. feedmultiply = saved_feedmultiply;
  1767. previous_millis_cmd = millis();
  1768. }
  1769. #ifdef ENABLE_AUTO_BED_LEVELING
  1770. #ifdef AUTO_BED_LEVELING_GRID
  1771. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1772. {
  1773. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1774. planeNormal.debug("planeNormal");
  1775. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1776. //bedLevel.debug("bedLevel");
  1777. //plan_bed_level_matrix.debug("bed level before");
  1778. //vector_3 uncorrected_position = plan_get_position_mm();
  1779. //uncorrected_position.debug("position before");
  1780. vector_3 corrected_position = plan_get_position();
  1781. // corrected_position.debug("position after");
  1782. current_position[X_AXIS] = corrected_position.x;
  1783. current_position[Y_AXIS] = corrected_position.y;
  1784. current_position[Z_AXIS] = corrected_position.z;
  1785. // put the bed at 0 so we don't go below it.
  1786. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. }
  1789. #else // not AUTO_BED_LEVELING_GRID
  1790. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1791. plan_bed_level_matrix.set_to_identity();
  1792. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1793. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1794. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1795. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1796. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1797. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1798. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1799. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1800. vector_3 corrected_position = plan_get_position();
  1801. current_position[X_AXIS] = corrected_position.x;
  1802. current_position[Y_AXIS] = corrected_position.y;
  1803. current_position[Z_AXIS] = corrected_position.z;
  1804. // put the bed at 0 so we don't go below it.
  1805. current_position[Z_AXIS] = zprobe_zoffset;
  1806. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1807. }
  1808. #endif // AUTO_BED_LEVELING_GRID
  1809. static void run_z_probe() {
  1810. plan_bed_level_matrix.set_to_identity();
  1811. feedrate = homing_feedrate[Z_AXIS];
  1812. // move down until you find the bed
  1813. float zPosition = -10;
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1815. st_synchronize();
  1816. // we have to let the planner know where we are right now as it is not where we said to go.
  1817. zPosition = st_get_position_mm(Z_AXIS);
  1818. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1819. // move up the retract distance
  1820. zPosition += home_retract_mm(Z_AXIS);
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. // move back down slowly to find bed
  1824. feedrate = homing_feedrate[Z_AXIS]/4;
  1825. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1827. st_synchronize();
  1828. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1829. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. }
  1832. static void do_blocking_move_to(float x, float y, float z) {
  1833. float oldFeedRate = feedrate;
  1834. feedrate = homing_feedrate[Z_AXIS];
  1835. current_position[Z_AXIS] = z;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. feedrate = XY_TRAVEL_SPEED;
  1839. current_position[X_AXIS] = x;
  1840. current_position[Y_AXIS] = y;
  1841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1842. st_synchronize();
  1843. feedrate = oldFeedRate;
  1844. }
  1845. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1846. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1847. }
  1848. /// Probe bed height at position (x,y), returns the measured z value
  1849. static float probe_pt(float x, float y, float z_before) {
  1850. // move to right place
  1851. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1852. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1853. run_z_probe();
  1854. float measured_z = current_position[Z_AXIS];
  1855. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1856. SERIAL_PROTOCOLPGM(" x: ");
  1857. SERIAL_PROTOCOL(x);
  1858. SERIAL_PROTOCOLPGM(" y: ");
  1859. SERIAL_PROTOCOL(y);
  1860. SERIAL_PROTOCOLPGM(" z: ");
  1861. SERIAL_PROTOCOL(measured_z);
  1862. SERIAL_PROTOCOLPGM("\n");
  1863. return measured_z;
  1864. }
  1865. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1866. #ifdef LIN_ADVANCE
  1867. /**
  1868. * M900: Set and/or Get advance K factor and WH/D ratio
  1869. *
  1870. * K<factor> Set advance K factor
  1871. * R<ratio> Set ratio directly (overrides WH/D)
  1872. * W<width> H<height> D<diam> Set ratio from WH/D
  1873. */
  1874. inline void gcode_M900() {
  1875. st_synchronize();
  1876. const float newK = code_seen('K') ? code_value_float() : -1;
  1877. if (newK >= 0) extruder_advance_k = newK;
  1878. float newR = code_seen('R') ? code_value_float() : -1;
  1879. if (newR < 0) {
  1880. const float newD = code_seen('D') ? code_value_float() : -1,
  1881. newW = code_seen('W') ? code_value_float() : -1,
  1882. newH = code_seen('H') ? code_value_float() : -1;
  1883. if (newD >= 0 && newW >= 0 && newH >= 0)
  1884. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1885. }
  1886. if (newR >= 0) advance_ed_ratio = newR;
  1887. SERIAL_ECHO_START;
  1888. SERIAL_ECHOPGM("Advance K=");
  1889. SERIAL_ECHOLN(extruder_advance_k);
  1890. SERIAL_ECHOPGM(" E/D=");
  1891. const float ratio = advance_ed_ratio;
  1892. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1893. }
  1894. #endif // LIN_ADVANCE
  1895. bool check_commands() {
  1896. bool end_command_found = false;
  1897. while (buflen)
  1898. {
  1899. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1900. if (!cmdbuffer_front_already_processed)
  1901. cmdqueue_pop_front();
  1902. cmdbuffer_front_already_processed = false;
  1903. }
  1904. return end_command_found;
  1905. }
  1906. #ifdef TMC2130
  1907. bool calibrate_z_auto()
  1908. {
  1909. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1910. lcd_implementation_clear();
  1911. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1912. bool endstops_enabled = enable_endstops(true);
  1913. int axis_up_dir = -home_dir(Z_AXIS);
  1914. tmc2130_home_enter(Z_AXIS_MASK);
  1915. current_position[Z_AXIS] = 0;
  1916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1917. set_destination_to_current();
  1918. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1919. feedrate = homing_feedrate[Z_AXIS];
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. // current_position[axis] = 0;
  1923. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1924. tmc2130_home_exit();
  1925. enable_endstops(false);
  1926. current_position[Z_AXIS] = 0;
  1927. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1928. set_destination_to_current();
  1929. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1930. feedrate = homing_feedrate[Z_AXIS] / 2;
  1931. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1932. st_synchronize();
  1933. enable_endstops(endstops_enabled);
  1934. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. return true;
  1937. }
  1938. #endif //TMC2130
  1939. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1940. {
  1941. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1942. #define HOMEAXIS_DO(LETTER) \
  1943. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1944. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1945. {
  1946. int axis_home_dir = home_dir(axis);
  1947. feedrate = homing_feedrate[axis];
  1948. #ifdef TMC2130
  1949. tmc2130_home_enter(X_AXIS_MASK << axis);
  1950. #endif //TMC2130
  1951. // Move right a bit, so that the print head does not touch the left end position,
  1952. // and the following left movement has a chance to achieve the required velocity
  1953. // for the stall guard to work.
  1954. current_position[axis] = 0;
  1955. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1956. set_destination_to_current();
  1957. // destination[axis] = 11.f;
  1958. destination[axis] = 3.f;
  1959. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1960. st_synchronize();
  1961. // Move left away from the possible collision with the collision detection disabled.
  1962. endstops_hit_on_purpose();
  1963. enable_endstops(false);
  1964. current_position[axis] = 0;
  1965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1966. destination[axis] = - 1.;
  1967. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1968. st_synchronize();
  1969. // Now continue to move up to the left end stop with the collision detection enabled.
  1970. enable_endstops(true);
  1971. destination[axis] = - 1.1 * max_length(axis);
  1972. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1973. st_synchronize();
  1974. for (uint8_t i = 0; i < cnt; i++)
  1975. {
  1976. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1977. endstops_hit_on_purpose();
  1978. enable_endstops(false);
  1979. current_position[axis] = 0;
  1980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1981. destination[axis] = 10.f;
  1982. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1983. st_synchronize();
  1984. endstops_hit_on_purpose();
  1985. // Now move left up to the collision, this time with a repeatable velocity.
  1986. enable_endstops(true);
  1987. destination[axis] = - 11.f;
  1988. #ifdef TMC2130
  1989. feedrate = homing_feedrate[axis];
  1990. #else //TMC2130
  1991. feedrate = homing_feedrate[axis] / 2;
  1992. #endif //TMC2130
  1993. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1994. st_synchronize();
  1995. #ifdef TMC2130
  1996. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1997. if (pstep) pstep[i] = mscnt >> 4;
  1998. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1999. #endif //TMC2130
  2000. }
  2001. endstops_hit_on_purpose();
  2002. enable_endstops(false);
  2003. #ifdef TMC2130
  2004. uint8_t orig = tmc2130_home_origin[axis];
  2005. uint8_t back = tmc2130_home_bsteps[axis];
  2006. if (tmc2130_home_enabled && (orig <= 63))
  2007. {
  2008. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2009. if (back > 0)
  2010. tmc2130_do_steps(axis, back, 1, 1000);
  2011. }
  2012. else
  2013. tmc2130_do_steps(axis, 8, 2, 1000);
  2014. tmc2130_home_exit();
  2015. #endif //TMC2130
  2016. axis_is_at_home(axis);
  2017. axis_known_position[axis] = true;
  2018. // Move from minimum
  2019. #ifdef TMC2130
  2020. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2021. #else //TMC2130
  2022. float dist = 0.01f * 64;
  2023. #endif //TMC2130
  2024. current_position[axis] -= dist;
  2025. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2026. current_position[axis] += dist;
  2027. destination[axis] = current_position[axis];
  2028. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2029. st_synchronize();
  2030. feedrate = 0.0;
  2031. }
  2032. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2033. {
  2034. #ifdef TMC2130
  2035. FORCE_HIGH_POWER_START;
  2036. #endif
  2037. int axis_home_dir = home_dir(axis);
  2038. current_position[axis] = 0;
  2039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2040. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2041. feedrate = homing_feedrate[axis];
  2042. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2043. st_synchronize();
  2044. #ifdef TMC2130
  2045. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2046. FORCE_HIGH_POWER_END;
  2047. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2048. return;
  2049. }
  2050. #endif //TMC2130
  2051. current_position[axis] = 0;
  2052. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2053. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2054. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2055. st_synchronize();
  2056. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2057. feedrate = homing_feedrate[axis]/2 ;
  2058. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2059. st_synchronize();
  2060. #ifdef TMC2130
  2061. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2062. FORCE_HIGH_POWER_END;
  2063. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2064. return;
  2065. }
  2066. #endif //TMC2130
  2067. axis_is_at_home(axis);
  2068. destination[axis] = current_position[axis];
  2069. feedrate = 0.0;
  2070. endstops_hit_on_purpose();
  2071. axis_known_position[axis] = true;
  2072. #ifdef TMC2130
  2073. FORCE_HIGH_POWER_END;
  2074. #endif
  2075. }
  2076. enable_endstops(endstops_enabled);
  2077. }
  2078. /**/
  2079. void home_xy()
  2080. {
  2081. set_destination_to_current();
  2082. homeaxis(X_AXIS);
  2083. homeaxis(Y_AXIS);
  2084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2085. endstops_hit_on_purpose();
  2086. }
  2087. void refresh_cmd_timeout(void)
  2088. {
  2089. previous_millis_cmd = millis();
  2090. }
  2091. #ifdef FWRETRACT
  2092. void retract(bool retracting, bool swapretract = false) {
  2093. if(retracting && !retracted[active_extruder]) {
  2094. destination[X_AXIS]=current_position[X_AXIS];
  2095. destination[Y_AXIS]=current_position[Y_AXIS];
  2096. destination[Z_AXIS]=current_position[Z_AXIS];
  2097. destination[E_AXIS]=current_position[E_AXIS];
  2098. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2099. plan_set_e_position(current_position[E_AXIS]);
  2100. float oldFeedrate = feedrate;
  2101. feedrate=retract_feedrate*60;
  2102. retracted[active_extruder]=true;
  2103. prepare_move();
  2104. current_position[Z_AXIS]-=retract_zlift;
  2105. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2106. prepare_move();
  2107. feedrate = oldFeedrate;
  2108. } else if(!retracting && retracted[active_extruder]) {
  2109. destination[X_AXIS]=current_position[X_AXIS];
  2110. destination[Y_AXIS]=current_position[Y_AXIS];
  2111. destination[Z_AXIS]=current_position[Z_AXIS];
  2112. destination[E_AXIS]=current_position[E_AXIS];
  2113. current_position[Z_AXIS]+=retract_zlift;
  2114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2115. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2116. plan_set_e_position(current_position[E_AXIS]);
  2117. float oldFeedrate = feedrate;
  2118. feedrate=retract_recover_feedrate*60;
  2119. retracted[active_extruder]=false;
  2120. prepare_move();
  2121. feedrate = oldFeedrate;
  2122. }
  2123. } //retract
  2124. #endif //FWRETRACT
  2125. void trace() {
  2126. tone(BEEPER, 440);
  2127. delay(25);
  2128. noTone(BEEPER);
  2129. delay(20);
  2130. }
  2131. /*
  2132. void ramming() {
  2133. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2134. if (current_temperature[0] < 230) {
  2135. //PLA
  2136. max_feedrate[E_AXIS] = 50;
  2137. //current_position[E_AXIS] -= 8;
  2138. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2139. //current_position[E_AXIS] += 8;
  2140. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2141. current_position[E_AXIS] += 5.4;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2143. current_position[E_AXIS] += 3.2;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2145. current_position[E_AXIS] += 3;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2147. st_synchronize();
  2148. max_feedrate[E_AXIS] = 80;
  2149. current_position[E_AXIS] -= 82;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2151. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2152. current_position[E_AXIS] -= 20;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2154. current_position[E_AXIS] += 5;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2156. current_position[E_AXIS] += 5;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2158. current_position[E_AXIS] -= 10;
  2159. st_synchronize();
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2161. current_position[E_AXIS] += 10;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2163. current_position[E_AXIS] -= 10;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2165. current_position[E_AXIS] += 10;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2167. current_position[E_AXIS] -= 10;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2169. st_synchronize();
  2170. }
  2171. else {
  2172. //ABS
  2173. max_feedrate[E_AXIS] = 50;
  2174. //current_position[E_AXIS] -= 8;
  2175. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2176. //current_position[E_AXIS] += 8;
  2177. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2178. current_position[E_AXIS] += 3.1;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2180. current_position[E_AXIS] += 3.1;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2182. current_position[E_AXIS] += 4;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2184. st_synchronize();
  2185. //current_position[X_AXIS] += 23; //delay
  2186. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2187. //current_position[X_AXIS] -= 23; //delay
  2188. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2189. delay(4700);
  2190. max_feedrate[E_AXIS] = 80;
  2191. current_position[E_AXIS] -= 92;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2193. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2194. current_position[E_AXIS] -= 5;
  2195. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2196. current_position[E_AXIS] += 5;
  2197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2198. current_position[E_AXIS] -= 5;
  2199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2200. st_synchronize();
  2201. current_position[E_AXIS] += 5;
  2202. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2203. current_position[E_AXIS] -= 5;
  2204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2205. current_position[E_AXIS] += 5;
  2206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2207. current_position[E_AXIS] -= 5;
  2208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2209. st_synchronize();
  2210. }
  2211. }
  2212. */
  2213. #ifdef TMC2130
  2214. void force_high_power_mode(bool start_high_power_section) {
  2215. uint8_t silent;
  2216. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2217. if (silent == 1) {
  2218. //we are in silent mode, set to normal mode to enable crash detection
  2219. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2220. st_synchronize();
  2221. cli();
  2222. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2223. tmc2130_init();
  2224. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2225. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2226. st_reset_timer();
  2227. sei();
  2228. }
  2229. }
  2230. #endif //TMC2130
  2231. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2232. st_synchronize();
  2233. #if 0
  2234. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2235. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2236. #endif
  2237. // Flag for the display update routine and to disable the print cancelation during homing.
  2238. homing_flag = true;
  2239. // Either all X,Y,Z codes are present, or none of them.
  2240. bool home_all_axes = home_x == home_y && home_x == home_z;
  2241. if (home_all_axes)
  2242. // No X/Y/Z code provided means to home all axes.
  2243. home_x = home_y = home_z = true;
  2244. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2245. if (home_all_axes) {
  2246. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2247. feedrate = homing_feedrate[Z_AXIS];
  2248. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2249. st_synchronize();
  2250. }
  2251. #ifdef ENABLE_AUTO_BED_LEVELING
  2252. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2253. #endif //ENABLE_AUTO_BED_LEVELING
  2254. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2255. // the planner will not perform any adjustments in the XY plane.
  2256. // Wait for the motors to stop and update the current position with the absolute values.
  2257. world2machine_revert_to_uncorrected();
  2258. // For mesh bed leveling deactivate the matrix temporarily.
  2259. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2260. // in a single axis only.
  2261. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2262. #ifdef MESH_BED_LEVELING
  2263. uint8_t mbl_was_active = mbl.active;
  2264. mbl.active = 0;
  2265. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2266. #endif
  2267. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2268. // consumed during the first movements following this statement.
  2269. if (home_z)
  2270. babystep_undo();
  2271. saved_feedrate = feedrate;
  2272. saved_feedmultiply = feedmultiply;
  2273. feedmultiply = 100;
  2274. previous_millis_cmd = millis();
  2275. enable_endstops(true);
  2276. memcpy(destination, current_position, sizeof(destination));
  2277. feedrate = 0.0;
  2278. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2279. if(home_z)
  2280. homeaxis(Z_AXIS);
  2281. #endif
  2282. #ifdef QUICK_HOME
  2283. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2284. if(home_x && home_y) //first diagonal move
  2285. {
  2286. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2287. int x_axis_home_dir = home_dir(X_AXIS);
  2288. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2289. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2290. feedrate = homing_feedrate[X_AXIS];
  2291. if(homing_feedrate[Y_AXIS]<feedrate)
  2292. feedrate = homing_feedrate[Y_AXIS];
  2293. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2294. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2295. } else {
  2296. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2297. }
  2298. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2299. st_synchronize();
  2300. axis_is_at_home(X_AXIS);
  2301. axis_is_at_home(Y_AXIS);
  2302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2303. destination[X_AXIS] = current_position[X_AXIS];
  2304. destination[Y_AXIS] = current_position[Y_AXIS];
  2305. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2306. feedrate = 0.0;
  2307. st_synchronize();
  2308. endstops_hit_on_purpose();
  2309. current_position[X_AXIS] = destination[X_AXIS];
  2310. current_position[Y_AXIS] = destination[Y_AXIS];
  2311. current_position[Z_AXIS] = destination[Z_AXIS];
  2312. }
  2313. #endif /* QUICK_HOME */
  2314. #ifdef TMC2130
  2315. if(home_x)
  2316. {
  2317. if (!calib)
  2318. homeaxis(X_AXIS);
  2319. else
  2320. tmc2130_home_calibrate(X_AXIS);
  2321. }
  2322. if(home_y)
  2323. {
  2324. if (!calib)
  2325. homeaxis(Y_AXIS);
  2326. else
  2327. tmc2130_home_calibrate(Y_AXIS);
  2328. }
  2329. #endif //TMC2130
  2330. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2331. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2332. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2333. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2334. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2335. #ifndef Z_SAFE_HOMING
  2336. if(home_z) {
  2337. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2338. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2339. feedrate = max_feedrate[Z_AXIS];
  2340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2341. st_synchronize();
  2342. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2343. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2344. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2345. {
  2346. homeaxis(X_AXIS);
  2347. homeaxis(Y_AXIS);
  2348. }
  2349. // 1st mesh bed leveling measurement point, corrected.
  2350. world2machine_initialize();
  2351. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2352. world2machine_reset();
  2353. if (destination[Y_AXIS] < Y_MIN_POS)
  2354. destination[Y_AXIS] = Y_MIN_POS;
  2355. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2356. feedrate = homing_feedrate[Z_AXIS]/10;
  2357. current_position[Z_AXIS] = 0;
  2358. enable_endstops(false);
  2359. #ifdef DEBUG_BUILD
  2360. SERIAL_ECHOLNPGM("plan_set_position()");
  2361. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2362. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2363. #endif
  2364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2365. #ifdef DEBUG_BUILD
  2366. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2367. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2368. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2369. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2370. #endif
  2371. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2372. st_synchronize();
  2373. current_position[X_AXIS] = destination[X_AXIS];
  2374. current_position[Y_AXIS] = destination[Y_AXIS];
  2375. enable_endstops(true);
  2376. endstops_hit_on_purpose();
  2377. homeaxis(Z_AXIS);
  2378. #else // MESH_BED_LEVELING
  2379. homeaxis(Z_AXIS);
  2380. #endif // MESH_BED_LEVELING
  2381. }
  2382. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2383. if(home_all_axes) {
  2384. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2385. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2386. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2387. feedrate = XY_TRAVEL_SPEED/60;
  2388. current_position[Z_AXIS] = 0;
  2389. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2390. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2391. st_synchronize();
  2392. current_position[X_AXIS] = destination[X_AXIS];
  2393. current_position[Y_AXIS] = destination[Y_AXIS];
  2394. homeaxis(Z_AXIS);
  2395. }
  2396. // Let's see if X and Y are homed and probe is inside bed area.
  2397. if(home_z) {
  2398. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2399. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2400. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2401. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2402. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2403. current_position[Z_AXIS] = 0;
  2404. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2405. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2406. feedrate = max_feedrate[Z_AXIS];
  2407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2408. st_synchronize();
  2409. homeaxis(Z_AXIS);
  2410. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2411. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2412. SERIAL_ECHO_START;
  2413. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2414. } else {
  2415. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2416. SERIAL_ECHO_START;
  2417. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2418. }
  2419. }
  2420. #endif // Z_SAFE_HOMING
  2421. #endif // Z_HOME_DIR < 0
  2422. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2423. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2424. #ifdef ENABLE_AUTO_BED_LEVELING
  2425. if(home_z)
  2426. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2427. #endif
  2428. // Set the planner and stepper routine positions.
  2429. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2430. // contains the machine coordinates.
  2431. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2432. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2433. enable_endstops(false);
  2434. #endif
  2435. feedrate = saved_feedrate;
  2436. feedmultiply = saved_feedmultiply;
  2437. previous_millis_cmd = millis();
  2438. endstops_hit_on_purpose();
  2439. #ifndef MESH_BED_LEVELING
  2440. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2441. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2442. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2443. lcd_adjust_z();
  2444. #endif
  2445. // Load the machine correction matrix
  2446. world2machine_initialize();
  2447. // and correct the current_position XY axes to match the transformed coordinate system.
  2448. world2machine_update_current();
  2449. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2450. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2451. {
  2452. if (! home_z && mbl_was_active) {
  2453. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2454. mbl.active = true;
  2455. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2456. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2457. }
  2458. }
  2459. else
  2460. {
  2461. st_synchronize();
  2462. homing_flag = false;
  2463. // Push the commands to the front of the message queue in the reverse order!
  2464. // There shall be always enough space reserved for these commands.
  2465. enquecommand_front_P((PSTR("G80")));
  2466. //goto case_G80;
  2467. }
  2468. #endif
  2469. if (farm_mode) { prusa_statistics(20); };
  2470. homing_flag = false;
  2471. #if 0
  2472. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2473. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2474. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2475. #endif
  2476. }
  2477. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2478. {
  2479. bool final_result = false;
  2480. #ifdef TMC2130
  2481. FORCE_HIGH_POWER_START;
  2482. #endif // TMC2130
  2483. // Only Z calibration?
  2484. if (!onlyZ)
  2485. {
  2486. setTargetBed(0);
  2487. setTargetHotend(0, 0);
  2488. setTargetHotend(0, 1);
  2489. setTargetHotend(0, 2);
  2490. adjust_bed_reset(); //reset bed level correction
  2491. }
  2492. // Disable the default update procedure of the display. We will do a modal dialog.
  2493. lcd_update_enable(false);
  2494. // Let the planner use the uncorrected coordinates.
  2495. mbl.reset();
  2496. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2497. // the planner will not perform any adjustments in the XY plane.
  2498. // Wait for the motors to stop and update the current position with the absolute values.
  2499. world2machine_revert_to_uncorrected();
  2500. // Reset the baby step value applied without moving the axes.
  2501. babystep_reset();
  2502. // Mark all axes as in a need for homing.
  2503. memset(axis_known_position, 0, sizeof(axis_known_position));
  2504. // Home in the XY plane.
  2505. //set_destination_to_current();
  2506. setup_for_endstop_move();
  2507. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2508. home_xy();
  2509. enable_endstops(false);
  2510. current_position[X_AXIS] += 5;
  2511. current_position[Y_AXIS] += 5;
  2512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2513. st_synchronize();
  2514. // Let the user move the Z axes up to the end stoppers.
  2515. #ifdef TMC2130
  2516. if (calibrate_z_auto())
  2517. {
  2518. #else //TMC2130
  2519. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2520. {
  2521. #endif //TMC2130
  2522. refresh_cmd_timeout();
  2523. #ifndef STEEL_SHEET
  2524. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2525. {
  2526. lcd_wait_for_cool_down();
  2527. }
  2528. #endif //STEEL_SHEET
  2529. if(!onlyZ)
  2530. {
  2531. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2532. #ifdef STEEL_SHEET
  2533. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2534. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2535. #endif //STEEL_SHEET
  2536. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2537. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2538. KEEPALIVE_STATE(IN_HANDLER);
  2539. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2540. lcd_implementation_print_at(0, 2, 1);
  2541. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2542. }
  2543. // Move the print head close to the bed.
  2544. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2545. bool endstops_enabled = enable_endstops(true);
  2546. #ifdef TMC2130
  2547. tmc2130_home_enter(Z_AXIS_MASK);
  2548. #endif //TMC2130
  2549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2550. st_synchronize();
  2551. #ifdef TMC2130
  2552. tmc2130_home_exit();
  2553. #endif //TMC2130
  2554. enable_endstops(endstops_enabled);
  2555. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2556. {
  2557. int8_t verbosity_level = 0;
  2558. if (code_seen('V'))
  2559. {
  2560. // Just 'V' without a number counts as V1.
  2561. char c = strchr_pointer[1];
  2562. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2563. }
  2564. if (onlyZ)
  2565. {
  2566. clean_up_after_endstop_move();
  2567. // Z only calibration.
  2568. // Load the machine correction matrix
  2569. world2machine_initialize();
  2570. // and correct the current_position to match the transformed coordinate system.
  2571. world2machine_update_current();
  2572. //FIXME
  2573. bool result = sample_mesh_and_store_reference();
  2574. if (result)
  2575. {
  2576. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2577. // Shipped, the nozzle height has been set already. The user can start printing now.
  2578. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2579. final_result = true;
  2580. // babystep_apply();
  2581. }
  2582. }
  2583. else
  2584. {
  2585. // Reset the baby step value and the baby step applied flag.
  2586. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2587. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2588. // Complete XYZ calibration.
  2589. uint8_t point_too_far_mask = 0;
  2590. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2591. clean_up_after_endstop_move();
  2592. // Print head up.
  2593. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2595. st_synchronize();
  2596. //#ifndef NEW_XYZCAL
  2597. if (result >= 0)
  2598. {
  2599. #ifdef HEATBED_V2
  2600. sample_z();
  2601. #else //HEATBED_V2
  2602. point_too_far_mask = 0;
  2603. // Second half: The fine adjustment.
  2604. // Let the planner use the uncorrected coordinates.
  2605. mbl.reset();
  2606. world2machine_reset();
  2607. // Home in the XY plane.
  2608. setup_for_endstop_move();
  2609. home_xy();
  2610. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2611. clean_up_after_endstop_move();
  2612. // Print head up.
  2613. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2615. st_synchronize();
  2616. // if (result >= 0) babystep_apply();
  2617. #endif //HEATBED_V2
  2618. }
  2619. //#endif //NEW_XYZCAL
  2620. lcd_update_enable(true);
  2621. lcd_update(2);
  2622. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2623. if (result >= 0)
  2624. {
  2625. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2626. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2627. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2628. final_result = true;
  2629. }
  2630. }
  2631. #ifdef TMC2130
  2632. tmc2130_home_exit();
  2633. #endif
  2634. }
  2635. else
  2636. {
  2637. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2638. final_result = false;
  2639. }
  2640. }
  2641. else
  2642. {
  2643. // Timeouted.
  2644. }
  2645. lcd_update_enable(true);
  2646. #ifdef TMC2130
  2647. FORCE_HIGH_POWER_END;
  2648. #endif // TMC2130
  2649. return final_result;
  2650. }
  2651. void gcode_M114()
  2652. {
  2653. SERIAL_PROTOCOLPGM("X:");
  2654. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2655. SERIAL_PROTOCOLPGM(" Y:");
  2656. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2657. SERIAL_PROTOCOLPGM(" Z:");
  2658. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2659. SERIAL_PROTOCOLPGM(" E:");
  2660. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2661. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2662. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2663. SERIAL_PROTOCOLPGM(" Y:");
  2664. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2665. SERIAL_PROTOCOLPGM(" Z:");
  2666. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2667. SERIAL_PROTOCOLPGM(" E:");
  2668. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2669. SERIAL_PROTOCOLLN("");
  2670. }
  2671. void gcode_M701()
  2672. {
  2673. #ifdef SNMM
  2674. extr_adj(snmm_extruder);//loads current extruder
  2675. #else
  2676. enable_z();
  2677. custom_message = true;
  2678. custom_message_type = 2;
  2679. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2680. current_position[E_AXIS] += 70;
  2681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2682. current_position[E_AXIS] += 25;
  2683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2684. st_synchronize();
  2685. tone(BEEPER, 500);
  2686. delay_keep_alive(50);
  2687. noTone(BEEPER);
  2688. if (!farm_mode && loading_flag) {
  2689. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2690. while (!clean) {
  2691. lcd_update_enable(true);
  2692. lcd_update(2);
  2693. current_position[E_AXIS] += 25;
  2694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2695. st_synchronize();
  2696. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2697. }
  2698. }
  2699. lcd_update_enable(true);
  2700. lcd_update(2);
  2701. lcd_setstatuspgm(_T(WELCOME_MSG));
  2702. disable_z();
  2703. loading_flag = false;
  2704. custom_message = false;
  2705. custom_message_type = 0;
  2706. #endif
  2707. }
  2708. /**
  2709. * @brief Get serial number from 32U2 processor
  2710. *
  2711. * Typical format of S/N is:CZPX0917X003XC13518
  2712. *
  2713. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2714. *
  2715. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2716. * reply is transmitted to serial port 1 character by character.
  2717. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2718. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2719. * in any case.
  2720. */
  2721. static void gcode_PRUSA_SN()
  2722. {
  2723. if (farm_mode) {
  2724. selectedSerialPort = 0;
  2725. putchar(';');
  2726. putchar('S');
  2727. int numbersRead = 0;
  2728. ShortTimer timeout;
  2729. timeout.start();
  2730. while (numbersRead < 19) {
  2731. while (MSerial.available() > 0) {
  2732. uint8_t serial_char = MSerial.read();
  2733. selectedSerialPort = 1;
  2734. putchar(serial_char);
  2735. numbersRead++;
  2736. selectedSerialPort = 0;
  2737. }
  2738. if (timeout.expired(100u)) break;
  2739. }
  2740. selectedSerialPort = 1;
  2741. putchar('\n');
  2742. #if 0
  2743. for (int b = 0; b < 3; b++) {
  2744. tone(BEEPER, 110);
  2745. delay(50);
  2746. noTone(BEEPER);
  2747. delay(50);
  2748. }
  2749. #endif
  2750. } else {
  2751. puts_P(_N("Not in farm mode."));
  2752. }
  2753. }
  2754. void process_commands()
  2755. {
  2756. if (!buflen) return; //empty command
  2757. #ifdef FILAMENT_RUNOUT_SUPPORT
  2758. SET_INPUT(FR_SENS);
  2759. #endif
  2760. #ifdef CMDBUFFER_DEBUG
  2761. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2762. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2763. SERIAL_ECHOLNPGM("");
  2764. SERIAL_ECHOPGM("In cmdqueue: ");
  2765. SERIAL_ECHO(buflen);
  2766. SERIAL_ECHOLNPGM("");
  2767. #endif /* CMDBUFFER_DEBUG */
  2768. unsigned long codenum; //throw away variable
  2769. char *starpos = NULL;
  2770. #ifdef ENABLE_AUTO_BED_LEVELING
  2771. float x_tmp, y_tmp, z_tmp, real_z;
  2772. #endif
  2773. // PRUSA GCODES
  2774. KEEPALIVE_STATE(IN_HANDLER);
  2775. #ifdef SNMM
  2776. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2777. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2778. int8_t SilentMode;
  2779. #endif
  2780. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2781. starpos = (strchr(strchr_pointer + 5, '*'));
  2782. if (starpos != NULL)
  2783. *(starpos) = '\0';
  2784. lcd_setstatus(strchr_pointer + 5);
  2785. }
  2786. #ifdef TMC2130
  2787. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2788. {
  2789. if(code_seen("CRASH_DETECTED"))
  2790. {
  2791. uint8_t mask = 0;
  2792. if (code_seen("X")) mask |= X_AXIS_MASK;
  2793. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2794. crashdet_detected(mask);
  2795. }
  2796. else if(code_seen("CRASH_RECOVER"))
  2797. crashdet_recover();
  2798. else if(code_seen("CRASH_CANCEL"))
  2799. crashdet_cancel();
  2800. }
  2801. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2802. {
  2803. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2804. {
  2805. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2806. tmc2130_set_wave(E_AXIS, 247, fac);
  2807. }
  2808. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2809. {
  2810. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2811. uint16_t res = tmc2130_get_res(E_AXIS);
  2812. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2813. }
  2814. }
  2815. #endif //TMC2130
  2816. else if(code_seen("PRUSA")){
  2817. if (code_seen("Ping")) { //PRUSA Ping
  2818. if (farm_mode) {
  2819. PingTime = millis();
  2820. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2821. }
  2822. }
  2823. else if (code_seen("PRN")) {
  2824. printf_P(_N("%d"), status_number);
  2825. }else if (code_seen("FAN")) {
  2826. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2827. }else if (code_seen("fn")) {
  2828. if (farm_mode) {
  2829. printf_P(_N("%d"), farm_no);
  2830. }
  2831. else {
  2832. puts_P(_N("Not in farm mode."));
  2833. }
  2834. }
  2835. else if (code_seen("thx")) {
  2836. no_response = false;
  2837. } else if (code_seen("RESET")) {
  2838. // careful!
  2839. if (farm_mode) {
  2840. #ifdef WATCHDOG
  2841. wdt_enable(WDTO_15MS);
  2842. cli();
  2843. while(1);
  2844. #else //WATCHDOG
  2845. asm volatile("jmp 0x3E000");
  2846. #endif //WATCHDOG
  2847. }
  2848. else {
  2849. MYSERIAL.println("Not in farm mode.");
  2850. }
  2851. }else if (code_seen("fv")) {
  2852. // get file version
  2853. #ifdef SDSUPPORT
  2854. card.openFile(strchr_pointer + 3,true);
  2855. while (true) {
  2856. uint16_t readByte = card.get();
  2857. MYSERIAL.write(readByte);
  2858. if (readByte=='\n') {
  2859. break;
  2860. }
  2861. }
  2862. card.closefile();
  2863. #endif // SDSUPPORT
  2864. } else if (code_seen("M28")) {
  2865. trace();
  2866. prusa_sd_card_upload = true;
  2867. card.openFile(strchr_pointer+4,false);
  2868. } else if (code_seen("SN")) {
  2869. gcode_PRUSA_SN();
  2870. } else if(code_seen("Fir")){
  2871. SERIAL_PROTOCOLLN(FW_VERSION);
  2872. } else if(code_seen("Rev")){
  2873. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2874. } else if(code_seen("Lang")) {
  2875. lang_reset();
  2876. } else if(code_seen("Lz")) {
  2877. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2878. } else if(code_seen("Beat")) {
  2879. // Kick farm link timer
  2880. kicktime = millis();
  2881. } else if(code_seen("FR")) {
  2882. // Factory full reset
  2883. factory_reset(0,true);
  2884. }
  2885. //else if (code_seen('Cal')) {
  2886. // lcd_calibration();
  2887. // }
  2888. }
  2889. else if (code_seen('^')) {
  2890. // nothing, this is a version line
  2891. } else if(code_seen('G'))
  2892. {
  2893. switch((int)code_value())
  2894. {
  2895. case 0: // G0 -> G1
  2896. case 1: // G1
  2897. if(Stopped == false) {
  2898. #ifdef FILAMENT_RUNOUT_SUPPORT
  2899. if(READ(FR_SENS)){
  2900. feedmultiplyBckp=feedmultiply;
  2901. float target[4];
  2902. float lastpos[4];
  2903. target[X_AXIS]=current_position[X_AXIS];
  2904. target[Y_AXIS]=current_position[Y_AXIS];
  2905. target[Z_AXIS]=current_position[Z_AXIS];
  2906. target[E_AXIS]=current_position[E_AXIS];
  2907. lastpos[X_AXIS]=current_position[X_AXIS];
  2908. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2909. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2910. lastpos[E_AXIS]=current_position[E_AXIS];
  2911. //retract by E
  2912. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2913. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2914. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2915. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2916. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2917. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2919. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2920. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2921. //finish moves
  2922. st_synchronize();
  2923. //disable extruder steppers so filament can be removed
  2924. disable_e0();
  2925. disable_e1();
  2926. disable_e2();
  2927. delay(100);
  2928. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2929. uint8_t cnt=0;
  2930. int counterBeep = 0;
  2931. lcd_wait_interact();
  2932. while(!lcd_clicked()){
  2933. cnt++;
  2934. manage_heater();
  2935. manage_inactivity(true);
  2936. //lcd_update();
  2937. if(cnt==0)
  2938. {
  2939. #if BEEPER > 0
  2940. if (counterBeep== 500){
  2941. counterBeep = 0;
  2942. }
  2943. SET_OUTPUT(BEEPER);
  2944. if (counterBeep== 0){
  2945. WRITE(BEEPER,HIGH);
  2946. }
  2947. if (counterBeep== 20){
  2948. WRITE(BEEPER,LOW);
  2949. }
  2950. counterBeep++;
  2951. #else
  2952. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2953. lcd_buzz(1000/6,100);
  2954. #else
  2955. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2956. #endif
  2957. #endif
  2958. }
  2959. }
  2960. WRITE(BEEPER,LOW);
  2961. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2963. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2964. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2965. lcd_change_fil_state = 0;
  2966. lcd_loading_filament();
  2967. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2968. lcd_change_fil_state = 0;
  2969. lcd_alright();
  2970. switch(lcd_change_fil_state){
  2971. case 2:
  2972. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2973. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2974. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2975. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2976. lcd_loading_filament();
  2977. break;
  2978. case 3:
  2979. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2980. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2981. lcd_loading_color();
  2982. break;
  2983. default:
  2984. lcd_change_success();
  2985. break;
  2986. }
  2987. }
  2988. target[E_AXIS]+= 5;
  2989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2990. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2992. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2993. //plan_set_e_position(current_position[E_AXIS]);
  2994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2995. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2996. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2997. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2998. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2999. plan_set_e_position(lastpos[E_AXIS]);
  3000. feedmultiply=feedmultiplyBckp;
  3001. char cmd[9];
  3002. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3003. enquecommand(cmd);
  3004. }
  3005. #endif
  3006. get_coordinates(); // For X Y Z E F
  3007. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3008. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3009. }
  3010. #ifdef FWRETRACT
  3011. if(autoretract_enabled)
  3012. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3013. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3014. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3015. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3016. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3017. retract(!retracted[active_extruder]);
  3018. return;
  3019. }
  3020. }
  3021. #endif //FWRETRACT
  3022. prepare_move();
  3023. //ClearToSend();
  3024. }
  3025. break;
  3026. case 2: // G2 - CW ARC
  3027. if(Stopped == false) {
  3028. get_arc_coordinates();
  3029. prepare_arc_move(true);
  3030. }
  3031. break;
  3032. case 3: // G3 - CCW ARC
  3033. if(Stopped == false) {
  3034. get_arc_coordinates();
  3035. prepare_arc_move(false);
  3036. }
  3037. break;
  3038. case 4: // G4 dwell
  3039. codenum = 0;
  3040. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3041. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3042. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3043. st_synchronize();
  3044. codenum += millis(); // keep track of when we started waiting
  3045. previous_millis_cmd = millis();
  3046. while(millis() < codenum) {
  3047. manage_heater();
  3048. manage_inactivity();
  3049. lcd_update();
  3050. }
  3051. break;
  3052. #ifdef FWRETRACT
  3053. case 10: // G10 retract
  3054. #if EXTRUDERS > 1
  3055. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3056. retract(true,retracted_swap[active_extruder]);
  3057. #else
  3058. retract(true);
  3059. #endif
  3060. break;
  3061. case 11: // G11 retract_recover
  3062. #if EXTRUDERS > 1
  3063. retract(false,retracted_swap[active_extruder]);
  3064. #else
  3065. retract(false);
  3066. #endif
  3067. break;
  3068. #endif //FWRETRACT
  3069. case 28: //G28 Home all Axis one at a time
  3070. {
  3071. // Which axes should be homed?
  3072. bool home_x = code_seen(axis_codes[X_AXIS]);
  3073. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3074. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3075. // calibrate?
  3076. bool calib = code_seen('C');
  3077. gcode_G28(home_x, home_y, home_z, calib);
  3078. break;
  3079. }
  3080. #ifdef ENABLE_AUTO_BED_LEVELING
  3081. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3082. {
  3083. #if Z_MIN_PIN == -1
  3084. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3085. #endif
  3086. // Prevent user from running a G29 without first homing in X and Y
  3087. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3088. {
  3089. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3090. SERIAL_ECHO_START;
  3091. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3092. break; // abort G29, since we don't know where we are
  3093. }
  3094. st_synchronize();
  3095. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3096. //vector_3 corrected_position = plan_get_position_mm();
  3097. //corrected_position.debug("position before G29");
  3098. plan_bed_level_matrix.set_to_identity();
  3099. vector_3 uncorrected_position = plan_get_position();
  3100. //uncorrected_position.debug("position durring G29");
  3101. current_position[X_AXIS] = uncorrected_position.x;
  3102. current_position[Y_AXIS] = uncorrected_position.y;
  3103. current_position[Z_AXIS] = uncorrected_position.z;
  3104. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3105. setup_for_endstop_move();
  3106. feedrate = homing_feedrate[Z_AXIS];
  3107. #ifdef AUTO_BED_LEVELING_GRID
  3108. // probe at the points of a lattice grid
  3109. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3110. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3111. // solve the plane equation ax + by + d = z
  3112. // A is the matrix with rows [x y 1] for all the probed points
  3113. // B is the vector of the Z positions
  3114. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3115. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3116. // "A" matrix of the linear system of equations
  3117. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3118. // "B" vector of Z points
  3119. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3120. int probePointCounter = 0;
  3121. bool zig = true;
  3122. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3123. {
  3124. int xProbe, xInc;
  3125. if (zig)
  3126. {
  3127. xProbe = LEFT_PROBE_BED_POSITION;
  3128. //xEnd = RIGHT_PROBE_BED_POSITION;
  3129. xInc = xGridSpacing;
  3130. zig = false;
  3131. } else // zag
  3132. {
  3133. xProbe = RIGHT_PROBE_BED_POSITION;
  3134. //xEnd = LEFT_PROBE_BED_POSITION;
  3135. xInc = -xGridSpacing;
  3136. zig = true;
  3137. }
  3138. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3139. {
  3140. float z_before;
  3141. if (probePointCounter == 0)
  3142. {
  3143. // raise before probing
  3144. z_before = Z_RAISE_BEFORE_PROBING;
  3145. } else
  3146. {
  3147. // raise extruder
  3148. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3149. }
  3150. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3151. eqnBVector[probePointCounter] = measured_z;
  3152. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3153. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3154. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3155. probePointCounter++;
  3156. xProbe += xInc;
  3157. }
  3158. }
  3159. clean_up_after_endstop_move();
  3160. // solve lsq problem
  3161. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3162. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3163. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3164. SERIAL_PROTOCOLPGM(" b: ");
  3165. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3166. SERIAL_PROTOCOLPGM(" d: ");
  3167. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3168. set_bed_level_equation_lsq(plane_equation_coefficients);
  3169. free(plane_equation_coefficients);
  3170. #else // AUTO_BED_LEVELING_GRID not defined
  3171. // Probe at 3 arbitrary points
  3172. // probe 1
  3173. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3174. // probe 2
  3175. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3176. // probe 3
  3177. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3178. clean_up_after_endstop_move();
  3179. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3180. #endif // AUTO_BED_LEVELING_GRID
  3181. st_synchronize();
  3182. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3183. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3184. // When the bed is uneven, this height must be corrected.
  3185. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3186. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3187. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3188. z_tmp = current_position[Z_AXIS];
  3189. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3190. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3192. }
  3193. break;
  3194. #ifndef Z_PROBE_SLED
  3195. case 30: // G30 Single Z Probe
  3196. {
  3197. st_synchronize();
  3198. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3199. setup_for_endstop_move();
  3200. feedrate = homing_feedrate[Z_AXIS];
  3201. run_z_probe();
  3202. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3203. SERIAL_PROTOCOLPGM(" X: ");
  3204. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3205. SERIAL_PROTOCOLPGM(" Y: ");
  3206. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3207. SERIAL_PROTOCOLPGM(" Z: ");
  3208. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3209. SERIAL_PROTOCOLPGM("\n");
  3210. clean_up_after_endstop_move();
  3211. }
  3212. break;
  3213. #else
  3214. case 31: // dock the sled
  3215. dock_sled(true);
  3216. break;
  3217. case 32: // undock the sled
  3218. dock_sled(false);
  3219. break;
  3220. #endif // Z_PROBE_SLED
  3221. #endif // ENABLE_AUTO_BED_LEVELING
  3222. #ifdef MESH_BED_LEVELING
  3223. case 30: // G30 Single Z Probe
  3224. {
  3225. st_synchronize();
  3226. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3227. setup_for_endstop_move();
  3228. feedrate = homing_feedrate[Z_AXIS];
  3229. find_bed_induction_sensor_point_z(-10.f, 3);
  3230. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3231. clean_up_after_endstop_move();
  3232. }
  3233. break;
  3234. case 75:
  3235. {
  3236. for (int i = 40; i <= 110; i++)
  3237. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3238. }
  3239. break;
  3240. case 76: //PINDA probe temperature calibration
  3241. {
  3242. #ifdef PINDA_THERMISTOR
  3243. if (true)
  3244. {
  3245. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3246. //we need to know accurate position of first calibration point
  3247. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3248. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3249. break;
  3250. }
  3251. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3252. {
  3253. // We don't know where we are! HOME!
  3254. // Push the commands to the front of the message queue in the reverse order!
  3255. // There shall be always enough space reserved for these commands.
  3256. repeatcommand_front(); // repeat G76 with all its parameters
  3257. enquecommand_front_P((PSTR("G28 W0")));
  3258. break;
  3259. }
  3260. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3261. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3262. if (result)
  3263. {
  3264. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3266. current_position[Z_AXIS] = 50;
  3267. current_position[Y_AXIS] = 180;
  3268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3269. st_synchronize();
  3270. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3271. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3272. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3274. st_synchronize();
  3275. gcode_G28(false, false, true, false);
  3276. }
  3277. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3278. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3279. current_position[Z_AXIS] = 100;
  3280. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3281. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3282. lcd_temp_cal_show_result(false);
  3283. break;
  3284. }
  3285. }
  3286. lcd_update_enable(true);
  3287. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3288. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3289. float zero_z;
  3290. int z_shift = 0; //unit: steps
  3291. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3292. if (start_temp < 35) start_temp = 35;
  3293. if (start_temp < current_temperature_pinda) start_temp += 5;
  3294. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3295. // setTargetHotend(200, 0);
  3296. setTargetBed(70 + (start_temp - 30));
  3297. custom_message = true;
  3298. custom_message_type = 4;
  3299. custom_message_state = 1;
  3300. custom_message = _T(MSG_TEMP_CALIBRATION);
  3301. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3302. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3303. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3304. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3306. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3308. st_synchronize();
  3309. while (current_temperature_pinda < start_temp)
  3310. {
  3311. delay_keep_alive(1000);
  3312. serialecho_temperatures();
  3313. }
  3314. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3315. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3317. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3318. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3319. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3320. st_synchronize();
  3321. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3322. if (find_z_result == false) {
  3323. lcd_temp_cal_show_result(find_z_result);
  3324. break;
  3325. }
  3326. zero_z = current_position[Z_AXIS];
  3327. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3328. int i = -1; for (; i < 5; i++)
  3329. {
  3330. float temp = (40 + i * 5);
  3331. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3332. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3333. if (start_temp <= temp) break;
  3334. }
  3335. for (i++; i < 5; i++)
  3336. {
  3337. float temp = (40 + i * 5);
  3338. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3339. custom_message_state = i + 2;
  3340. setTargetBed(50 + 10 * (temp - 30) / 5);
  3341. // setTargetHotend(255, 0);
  3342. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3344. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3345. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3347. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3348. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3349. st_synchronize();
  3350. while (current_temperature_pinda < temp)
  3351. {
  3352. delay_keep_alive(1000);
  3353. serialecho_temperatures();
  3354. }
  3355. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3357. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3358. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3360. st_synchronize();
  3361. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3362. if (find_z_result == false) {
  3363. lcd_temp_cal_show_result(find_z_result);
  3364. break;
  3365. }
  3366. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3367. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3368. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3369. }
  3370. lcd_temp_cal_show_result(true);
  3371. break;
  3372. }
  3373. #endif //PINDA_THERMISTOR
  3374. setTargetBed(PINDA_MIN_T);
  3375. float zero_z;
  3376. int z_shift = 0; //unit: steps
  3377. int t_c; // temperature
  3378. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3379. // We don't know where we are! HOME!
  3380. // Push the commands to the front of the message queue in the reverse order!
  3381. // There shall be always enough space reserved for these commands.
  3382. repeatcommand_front(); // repeat G76 with all its parameters
  3383. enquecommand_front_P((PSTR("G28 W0")));
  3384. break;
  3385. }
  3386. puts_P(_N("PINDA probe calibration start"));
  3387. custom_message = true;
  3388. custom_message_type = 4;
  3389. custom_message_state = 1;
  3390. custom_message = _T(MSG_TEMP_CALIBRATION);
  3391. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3392. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3393. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3395. st_synchronize();
  3396. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3397. delay_keep_alive(1000);
  3398. serialecho_temperatures();
  3399. }
  3400. //enquecommand_P(PSTR("M190 S50"));
  3401. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3402. delay_keep_alive(1000);
  3403. serialecho_temperatures();
  3404. }
  3405. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3406. current_position[Z_AXIS] = 5;
  3407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3408. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3409. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3411. st_synchronize();
  3412. find_bed_induction_sensor_point_z(-1.f);
  3413. zero_z = current_position[Z_AXIS];
  3414. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3415. for (int i = 0; i<5; i++) {
  3416. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3417. custom_message_state = i + 2;
  3418. t_c = 60 + i * 10;
  3419. setTargetBed(t_c);
  3420. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3421. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3422. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3424. st_synchronize();
  3425. while (degBed() < t_c) {
  3426. delay_keep_alive(1000);
  3427. serialecho_temperatures();
  3428. }
  3429. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3430. delay_keep_alive(1000);
  3431. serialecho_temperatures();
  3432. }
  3433. current_position[Z_AXIS] = 5;
  3434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3435. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3436. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3438. st_synchronize();
  3439. find_bed_induction_sensor_point_z(-1.f);
  3440. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3441. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3442. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3443. }
  3444. custom_message_type = 0;
  3445. custom_message = false;
  3446. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3447. puts_P(_N("Temperature calibration done."));
  3448. disable_x();
  3449. disable_y();
  3450. disable_z();
  3451. disable_e0();
  3452. disable_e1();
  3453. disable_e2();
  3454. setTargetBed(0); //set bed target temperature back to 0
  3455. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3456. temp_cal_active = true;
  3457. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3458. lcd_update_enable(true);
  3459. lcd_update(2);
  3460. }
  3461. break;
  3462. #ifdef DIS
  3463. case 77:
  3464. {
  3465. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3466. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3467. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3468. float dimension_x = 40;
  3469. float dimension_y = 40;
  3470. int points_x = 40;
  3471. int points_y = 40;
  3472. float offset_x = 74;
  3473. float offset_y = 33;
  3474. if (code_seen('X')) dimension_x = code_value();
  3475. if (code_seen('Y')) dimension_y = code_value();
  3476. if (code_seen('XP')) points_x = code_value();
  3477. if (code_seen('YP')) points_y = code_value();
  3478. if (code_seen('XO')) offset_x = code_value();
  3479. if (code_seen('YO')) offset_y = code_value();
  3480. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3481. } break;
  3482. #endif
  3483. case 79: {
  3484. for (int i = 255; i > 0; i = i - 5) {
  3485. fanSpeed = i;
  3486. //delay_keep_alive(2000);
  3487. for (int j = 0; j < 100; j++) {
  3488. delay_keep_alive(100);
  3489. }
  3490. fan_speed[1];
  3491. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3492. }
  3493. }break;
  3494. /**
  3495. * G80: Mesh-based Z probe, probes a grid and produces a
  3496. * mesh to compensate for variable bed height
  3497. *
  3498. * The S0 report the points as below
  3499. *
  3500. * +----> X-axis
  3501. * |
  3502. * |
  3503. * v Y-axis
  3504. *
  3505. */
  3506. case 80:
  3507. #ifdef MK1BP
  3508. break;
  3509. #endif //MK1BP
  3510. case_G80:
  3511. {
  3512. mesh_bed_leveling_flag = true;
  3513. int8_t verbosity_level = 0;
  3514. static bool run = false;
  3515. if (code_seen('V')) {
  3516. // Just 'V' without a number counts as V1.
  3517. char c = strchr_pointer[1];
  3518. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3519. }
  3520. // Firstly check if we know where we are
  3521. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3522. // We don't know where we are! HOME!
  3523. // Push the commands to the front of the message queue in the reverse order!
  3524. // There shall be always enough space reserved for these commands.
  3525. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3526. repeatcommand_front(); // repeat G80 with all its parameters
  3527. enquecommand_front_P((PSTR("G28 W0")));
  3528. }
  3529. else {
  3530. mesh_bed_leveling_flag = false;
  3531. }
  3532. break;
  3533. }
  3534. bool temp_comp_start = true;
  3535. #ifdef PINDA_THERMISTOR
  3536. temp_comp_start = false;
  3537. #endif //PINDA_THERMISTOR
  3538. if (temp_comp_start)
  3539. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3540. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3541. temp_compensation_start();
  3542. run = true;
  3543. repeatcommand_front(); // repeat G80 with all its parameters
  3544. enquecommand_front_P((PSTR("G28 W0")));
  3545. }
  3546. else {
  3547. mesh_bed_leveling_flag = false;
  3548. }
  3549. break;
  3550. }
  3551. run = false;
  3552. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3553. mesh_bed_leveling_flag = false;
  3554. break;
  3555. }
  3556. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3557. bool custom_message_old = custom_message;
  3558. unsigned int custom_message_type_old = custom_message_type;
  3559. unsigned int custom_message_state_old = custom_message_state;
  3560. custom_message = true;
  3561. custom_message_type = 1;
  3562. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3563. lcd_update(1);
  3564. mbl.reset(); //reset mesh bed leveling
  3565. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3566. // consumed during the first movements following this statement.
  3567. babystep_undo();
  3568. // Cycle through all points and probe them
  3569. // First move up. During this first movement, the babystepping will be reverted.
  3570. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3572. // The move to the first calibration point.
  3573. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3574. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3575. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3576. #ifdef SUPPORT_VERBOSITY
  3577. if (verbosity_level >= 1) {
  3578. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3579. }
  3580. #endif //SUPPORT_VERBOSITY
  3581. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3583. // Wait until the move is finished.
  3584. st_synchronize();
  3585. int mesh_point = 0; //index number of calibration point
  3586. int ix = 0;
  3587. int iy = 0;
  3588. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3589. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3590. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3591. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3592. #ifdef SUPPORT_VERBOSITY
  3593. if (verbosity_level >= 1) {
  3594. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3595. }
  3596. #endif // SUPPORT_VERBOSITY
  3597. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3598. const char *kill_message = NULL;
  3599. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3600. // Get coords of a measuring point.
  3601. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3602. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3603. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3604. float z0 = 0.f;
  3605. if (has_z && mesh_point > 0) {
  3606. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3607. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3608. //#if 0
  3609. #ifdef SUPPORT_VERBOSITY
  3610. if (verbosity_level >= 1) {
  3611. SERIAL_ECHOLNPGM("");
  3612. SERIAL_ECHOPGM("Bed leveling, point: ");
  3613. MYSERIAL.print(mesh_point);
  3614. SERIAL_ECHOPGM(", calibration z: ");
  3615. MYSERIAL.print(z0, 5);
  3616. SERIAL_ECHOLNPGM("");
  3617. }
  3618. #endif // SUPPORT_VERBOSITY
  3619. //#endif
  3620. }
  3621. // Move Z up to MESH_HOME_Z_SEARCH.
  3622. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3624. st_synchronize();
  3625. // Move to XY position of the sensor point.
  3626. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3627. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3628. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3629. #ifdef SUPPORT_VERBOSITY
  3630. if (verbosity_level >= 1) {
  3631. SERIAL_PROTOCOL(mesh_point);
  3632. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3633. }
  3634. #endif // SUPPORT_VERBOSITY
  3635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3636. st_synchronize();
  3637. // Go down until endstop is hit
  3638. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3639. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3640. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3641. break;
  3642. }
  3643. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3644. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3645. break;
  3646. }
  3647. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3648. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3649. break;
  3650. }
  3651. #ifdef SUPPORT_VERBOSITY
  3652. if (verbosity_level >= 10) {
  3653. SERIAL_ECHOPGM("X: ");
  3654. MYSERIAL.print(current_position[X_AXIS], 5);
  3655. SERIAL_ECHOLNPGM("");
  3656. SERIAL_ECHOPGM("Y: ");
  3657. MYSERIAL.print(current_position[Y_AXIS], 5);
  3658. SERIAL_PROTOCOLPGM("\n");
  3659. }
  3660. #endif // SUPPORT_VERBOSITY
  3661. float offset_z = 0;
  3662. #ifdef PINDA_THERMISTOR
  3663. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3664. #endif //PINDA_THERMISTOR
  3665. // #ifdef SUPPORT_VERBOSITY
  3666. /* if (verbosity_level >= 1)
  3667. {
  3668. SERIAL_ECHOPGM("mesh bed leveling: ");
  3669. MYSERIAL.print(current_position[Z_AXIS], 5);
  3670. SERIAL_ECHOPGM(" offset: ");
  3671. MYSERIAL.print(offset_z, 5);
  3672. SERIAL_ECHOLNPGM("");
  3673. }*/
  3674. // #endif // SUPPORT_VERBOSITY
  3675. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3676. custom_message_state--;
  3677. mesh_point++;
  3678. lcd_update(1);
  3679. }
  3680. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3681. #ifdef SUPPORT_VERBOSITY
  3682. if (verbosity_level >= 20) {
  3683. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3684. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3685. MYSERIAL.print(current_position[Z_AXIS], 5);
  3686. }
  3687. #endif // SUPPORT_VERBOSITY
  3688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3689. st_synchronize();
  3690. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3691. kill(kill_message);
  3692. SERIAL_ECHOLNPGM("killed");
  3693. }
  3694. clean_up_after_endstop_move();
  3695. // SERIAL_ECHOLNPGM("clean up finished ");
  3696. bool apply_temp_comp = true;
  3697. #ifdef PINDA_THERMISTOR
  3698. apply_temp_comp = false;
  3699. #endif
  3700. if (apply_temp_comp)
  3701. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3702. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3703. // SERIAL_ECHOLNPGM("babystep applied");
  3704. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3705. #ifdef SUPPORT_VERBOSITY
  3706. if (verbosity_level >= 1) {
  3707. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3708. }
  3709. #endif // SUPPORT_VERBOSITY
  3710. for (uint8_t i = 0; i < 4; ++i) {
  3711. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3712. long correction = 0;
  3713. if (code_seen(codes[i]))
  3714. correction = code_value_long();
  3715. else if (eeprom_bed_correction_valid) {
  3716. unsigned char *addr = (i < 2) ?
  3717. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3718. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3719. correction = eeprom_read_int8(addr);
  3720. }
  3721. if (correction == 0)
  3722. continue;
  3723. float offset = float(correction) * 0.001f;
  3724. if (fabs(offset) > 0.101f) {
  3725. SERIAL_ERROR_START;
  3726. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3727. SERIAL_ECHO(offset);
  3728. SERIAL_ECHOLNPGM(" microns");
  3729. }
  3730. else {
  3731. switch (i) {
  3732. case 0:
  3733. for (uint8_t row = 0; row < 3; ++row) {
  3734. mbl.z_values[row][1] += 0.5f * offset;
  3735. mbl.z_values[row][0] += offset;
  3736. }
  3737. break;
  3738. case 1:
  3739. for (uint8_t row = 0; row < 3; ++row) {
  3740. mbl.z_values[row][1] += 0.5f * offset;
  3741. mbl.z_values[row][2] += offset;
  3742. }
  3743. break;
  3744. case 2:
  3745. for (uint8_t col = 0; col < 3; ++col) {
  3746. mbl.z_values[1][col] += 0.5f * offset;
  3747. mbl.z_values[0][col] += offset;
  3748. }
  3749. break;
  3750. case 3:
  3751. for (uint8_t col = 0; col < 3; ++col) {
  3752. mbl.z_values[1][col] += 0.5f * offset;
  3753. mbl.z_values[2][col] += offset;
  3754. }
  3755. break;
  3756. }
  3757. }
  3758. }
  3759. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3760. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3761. // SERIAL_ECHOLNPGM("Upsample finished");
  3762. mbl.active = 1; //activate mesh bed leveling
  3763. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3764. go_home_with_z_lift();
  3765. // SERIAL_ECHOLNPGM("Go home finished");
  3766. //unretract (after PINDA preheat retraction)
  3767. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3768. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3770. }
  3771. KEEPALIVE_STATE(NOT_BUSY);
  3772. // Restore custom message state
  3773. lcd_setstatuspgm(_T(WELCOME_MSG));
  3774. custom_message = custom_message_old;
  3775. custom_message_type = custom_message_type_old;
  3776. custom_message_state = custom_message_state_old;
  3777. mesh_bed_leveling_flag = false;
  3778. mesh_bed_run_from_menu = false;
  3779. lcd_update(2);
  3780. }
  3781. break;
  3782. /**
  3783. * G81: Print mesh bed leveling status and bed profile if activated
  3784. */
  3785. case 81:
  3786. if (mbl.active) {
  3787. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3788. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3789. SERIAL_PROTOCOLPGM(",");
  3790. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3791. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3792. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3793. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3794. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3795. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3796. SERIAL_PROTOCOLPGM(" ");
  3797. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3798. }
  3799. SERIAL_PROTOCOLPGM("\n");
  3800. }
  3801. }
  3802. else
  3803. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3804. break;
  3805. #if 0
  3806. /**
  3807. * G82: Single Z probe at current location
  3808. *
  3809. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3810. *
  3811. */
  3812. case 82:
  3813. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3814. setup_for_endstop_move();
  3815. find_bed_induction_sensor_point_z();
  3816. clean_up_after_endstop_move();
  3817. SERIAL_PROTOCOLPGM("Bed found at: ");
  3818. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3819. SERIAL_PROTOCOLPGM("\n");
  3820. break;
  3821. /**
  3822. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3823. */
  3824. case 83:
  3825. {
  3826. int babystepz = code_seen('S') ? code_value() : 0;
  3827. int BabyPosition = code_seen('P') ? code_value() : 0;
  3828. if (babystepz != 0) {
  3829. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3830. // Is the axis indexed starting with zero or one?
  3831. if (BabyPosition > 4) {
  3832. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3833. }else{
  3834. // Save it to the eeprom
  3835. babystepLoadZ = babystepz;
  3836. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3837. // adjust the Z
  3838. babystepsTodoZadd(babystepLoadZ);
  3839. }
  3840. }
  3841. }
  3842. break;
  3843. /**
  3844. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3845. */
  3846. case 84:
  3847. babystepsTodoZsubtract(babystepLoadZ);
  3848. // babystepLoadZ = 0;
  3849. break;
  3850. /**
  3851. * G85: Prusa3D specific: Pick best babystep
  3852. */
  3853. case 85:
  3854. lcd_pick_babystep();
  3855. break;
  3856. #endif
  3857. /**
  3858. * G86: Prusa3D specific: Disable babystep correction after home.
  3859. * This G-code will be performed at the start of a calibration script.
  3860. */
  3861. case 86:
  3862. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3863. break;
  3864. /**
  3865. * G87: Prusa3D specific: Enable babystep correction after home
  3866. * This G-code will be performed at the end of a calibration script.
  3867. */
  3868. case 87:
  3869. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3870. break;
  3871. /**
  3872. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3873. */
  3874. case 88:
  3875. break;
  3876. #endif // ENABLE_MESH_BED_LEVELING
  3877. case 90: // G90
  3878. relative_mode = false;
  3879. break;
  3880. case 91: // G91
  3881. relative_mode = true;
  3882. break;
  3883. case 92: // G92
  3884. if(!code_seen(axis_codes[E_AXIS]))
  3885. st_synchronize();
  3886. for(int8_t i=0; i < NUM_AXIS; i++) {
  3887. if(code_seen(axis_codes[i])) {
  3888. if(i == E_AXIS) {
  3889. current_position[i] = code_value();
  3890. plan_set_e_position(current_position[E_AXIS]);
  3891. }
  3892. else {
  3893. current_position[i] = code_value()+add_homing[i];
  3894. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3895. }
  3896. }
  3897. }
  3898. break;
  3899. case 98: // G98 (activate farm mode)
  3900. farm_mode = 1;
  3901. PingTime = millis();
  3902. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3903. SilentModeMenu = SILENT_MODE_OFF;
  3904. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3905. break;
  3906. case 99: // G99 (deactivate farm mode)
  3907. farm_mode = 0;
  3908. lcd_printer_connected();
  3909. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3910. lcd_update(2);
  3911. break;
  3912. default:
  3913. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3914. }
  3915. } // end if(code_seen('G'))
  3916. else if(code_seen('M'))
  3917. {
  3918. int index;
  3919. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3920. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3921. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3922. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3923. } else
  3924. switch((int)code_value())
  3925. {
  3926. #ifdef ULTIPANEL
  3927. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3928. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3929. {
  3930. char *src = strchr_pointer + 2;
  3931. codenum = 0;
  3932. bool hasP = false, hasS = false;
  3933. if (code_seen('P')) {
  3934. codenum = code_value(); // milliseconds to wait
  3935. hasP = codenum > 0;
  3936. }
  3937. if (code_seen('S')) {
  3938. codenum = code_value() * 1000; // seconds to wait
  3939. hasS = codenum > 0;
  3940. }
  3941. starpos = strchr(src, '*');
  3942. if (starpos != NULL) *(starpos) = '\0';
  3943. while (*src == ' ') ++src;
  3944. if (!hasP && !hasS && *src != '\0') {
  3945. lcd_setstatus(src);
  3946. } else {
  3947. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3948. }
  3949. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3950. st_synchronize();
  3951. previous_millis_cmd = millis();
  3952. if (codenum > 0){
  3953. codenum += millis(); // keep track of when we started waiting
  3954. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3955. while(millis() < codenum && !lcd_clicked()){
  3956. manage_heater();
  3957. manage_inactivity(true);
  3958. lcd_update();
  3959. }
  3960. KEEPALIVE_STATE(IN_HANDLER);
  3961. lcd_ignore_click(false);
  3962. }else{
  3963. if (!lcd_detected())
  3964. break;
  3965. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3966. while(!lcd_clicked()){
  3967. manage_heater();
  3968. manage_inactivity(true);
  3969. lcd_update();
  3970. }
  3971. KEEPALIVE_STATE(IN_HANDLER);
  3972. }
  3973. if (IS_SD_PRINTING)
  3974. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3975. else
  3976. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3977. }
  3978. break;
  3979. #endif
  3980. case 17:
  3981. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3982. enable_x();
  3983. enable_y();
  3984. enable_z();
  3985. enable_e0();
  3986. enable_e1();
  3987. enable_e2();
  3988. break;
  3989. #ifdef SDSUPPORT
  3990. case 20: // M20 - list SD card
  3991. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3992. card.ls();
  3993. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3994. break;
  3995. case 21: // M21 - init SD card
  3996. card.initsd();
  3997. break;
  3998. case 22: //M22 - release SD card
  3999. card.release();
  4000. break;
  4001. case 23: //M23 - Select file
  4002. starpos = (strchr(strchr_pointer + 4,'*'));
  4003. if(starpos!=NULL)
  4004. *(starpos)='\0';
  4005. card.openFile(strchr_pointer + 4,true);
  4006. break;
  4007. case 24: //M24 - Start SD print
  4008. if (!card.paused)
  4009. failstats_reset_print();
  4010. card.startFileprint();
  4011. starttime=millis();
  4012. break;
  4013. case 25: //M25 - Pause SD print
  4014. card.pauseSDPrint();
  4015. break;
  4016. case 26: //M26 - Set SD index
  4017. if(card.cardOK && code_seen('S')) {
  4018. card.setIndex(code_value_long());
  4019. }
  4020. break;
  4021. case 27: //M27 - Get SD status
  4022. card.getStatus();
  4023. break;
  4024. case 28: //M28 - Start SD write
  4025. starpos = (strchr(strchr_pointer + 4,'*'));
  4026. if(starpos != NULL){
  4027. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4028. strchr_pointer = strchr(npos,' ') + 1;
  4029. *(starpos) = '\0';
  4030. }
  4031. card.openFile(strchr_pointer+4,false);
  4032. break;
  4033. case 29: //M29 - Stop SD write
  4034. //processed in write to file routine above
  4035. //card,saving = false;
  4036. break;
  4037. case 30: //M30 <filename> Delete File
  4038. if (card.cardOK){
  4039. card.closefile();
  4040. starpos = (strchr(strchr_pointer + 4,'*'));
  4041. if(starpos != NULL){
  4042. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4043. strchr_pointer = strchr(npos,' ') + 1;
  4044. *(starpos) = '\0';
  4045. }
  4046. card.removeFile(strchr_pointer + 4);
  4047. }
  4048. break;
  4049. case 32: //M32 - Select file and start SD print
  4050. {
  4051. if(card.sdprinting) {
  4052. st_synchronize();
  4053. }
  4054. starpos = (strchr(strchr_pointer + 4,'*'));
  4055. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4056. if(namestartpos==NULL)
  4057. {
  4058. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4059. }
  4060. else
  4061. namestartpos++; //to skip the '!'
  4062. if(starpos!=NULL)
  4063. *(starpos)='\0';
  4064. bool call_procedure=(code_seen('P'));
  4065. if(strchr_pointer>namestartpos)
  4066. call_procedure=false; //false alert, 'P' found within filename
  4067. if( card.cardOK )
  4068. {
  4069. card.openFile(namestartpos,true,!call_procedure);
  4070. if(code_seen('S'))
  4071. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4072. card.setIndex(code_value_long());
  4073. card.startFileprint();
  4074. if(!call_procedure)
  4075. starttime=millis(); //procedure calls count as normal print time.
  4076. }
  4077. } break;
  4078. case 928: //M928 - Start SD write
  4079. starpos = (strchr(strchr_pointer + 5,'*'));
  4080. if(starpos != NULL){
  4081. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4082. strchr_pointer = strchr(npos,' ') + 1;
  4083. *(starpos) = '\0';
  4084. }
  4085. card.openLogFile(strchr_pointer+5);
  4086. break;
  4087. #endif //SDSUPPORT
  4088. case 31: //M31 take time since the start of the SD print or an M109 command
  4089. {
  4090. stoptime=millis();
  4091. char time[30];
  4092. unsigned long t=(stoptime-starttime)/1000;
  4093. int sec,min;
  4094. min=t/60;
  4095. sec=t%60;
  4096. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4097. SERIAL_ECHO_START;
  4098. SERIAL_ECHOLN(time);
  4099. lcd_setstatus(time);
  4100. autotempShutdown();
  4101. }
  4102. break;
  4103. #ifndef _DISABLE_M42_M226
  4104. case 42: //M42 -Change pin status via gcode
  4105. if (code_seen('S'))
  4106. {
  4107. int pin_status = code_value();
  4108. int pin_number = LED_PIN;
  4109. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4110. pin_number = code_value();
  4111. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4112. {
  4113. if (sensitive_pins[i] == pin_number)
  4114. {
  4115. pin_number = -1;
  4116. break;
  4117. }
  4118. }
  4119. #if defined(FAN_PIN) && FAN_PIN > -1
  4120. if (pin_number == FAN_PIN)
  4121. fanSpeed = pin_status;
  4122. #endif
  4123. if (pin_number > -1)
  4124. {
  4125. pinMode(pin_number, OUTPUT);
  4126. digitalWrite(pin_number, pin_status);
  4127. analogWrite(pin_number, pin_status);
  4128. }
  4129. }
  4130. break;
  4131. #endif //_DISABLE_M42_M226
  4132. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4133. // Reset the baby step value and the baby step applied flag.
  4134. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4135. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4136. // Reset the skew and offset in both RAM and EEPROM.
  4137. reset_bed_offset_and_skew();
  4138. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4139. // the planner will not perform any adjustments in the XY plane.
  4140. // Wait for the motors to stop and update the current position with the absolute values.
  4141. world2machine_revert_to_uncorrected();
  4142. break;
  4143. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4144. {
  4145. int8_t verbosity_level = 0;
  4146. bool only_Z = code_seen('Z');
  4147. #ifdef SUPPORT_VERBOSITY
  4148. if (code_seen('V'))
  4149. {
  4150. // Just 'V' without a number counts as V1.
  4151. char c = strchr_pointer[1];
  4152. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4153. }
  4154. #endif //SUPPORT_VERBOSITY
  4155. gcode_M45(only_Z, verbosity_level);
  4156. }
  4157. break;
  4158. /*
  4159. case 46:
  4160. {
  4161. // M46: Prusa3D: Show the assigned IP address.
  4162. uint8_t ip[4];
  4163. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4164. if (hasIP) {
  4165. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4166. SERIAL_ECHO(int(ip[0]));
  4167. SERIAL_ECHOPGM(".");
  4168. SERIAL_ECHO(int(ip[1]));
  4169. SERIAL_ECHOPGM(".");
  4170. SERIAL_ECHO(int(ip[2]));
  4171. SERIAL_ECHOPGM(".");
  4172. SERIAL_ECHO(int(ip[3]));
  4173. SERIAL_ECHOLNPGM("");
  4174. } else {
  4175. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4176. }
  4177. break;
  4178. }
  4179. */
  4180. case 47:
  4181. // M47: Prusa3D: Show end stops dialog on the display.
  4182. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4183. lcd_diag_show_end_stops();
  4184. KEEPALIVE_STATE(IN_HANDLER);
  4185. break;
  4186. #if 0
  4187. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4188. {
  4189. // Disable the default update procedure of the display. We will do a modal dialog.
  4190. lcd_update_enable(false);
  4191. // Let the planner use the uncorrected coordinates.
  4192. mbl.reset();
  4193. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4194. // the planner will not perform any adjustments in the XY plane.
  4195. // Wait for the motors to stop and update the current position with the absolute values.
  4196. world2machine_revert_to_uncorrected();
  4197. // Move the print head close to the bed.
  4198. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4200. st_synchronize();
  4201. // Home in the XY plane.
  4202. set_destination_to_current();
  4203. setup_for_endstop_move();
  4204. home_xy();
  4205. int8_t verbosity_level = 0;
  4206. if (code_seen('V')) {
  4207. // Just 'V' without a number counts as V1.
  4208. char c = strchr_pointer[1];
  4209. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4210. }
  4211. bool success = scan_bed_induction_points(verbosity_level);
  4212. clean_up_after_endstop_move();
  4213. // Print head up.
  4214. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4216. st_synchronize();
  4217. lcd_update_enable(true);
  4218. break;
  4219. }
  4220. #endif
  4221. // M48 Z-Probe repeatability measurement function.
  4222. //
  4223. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4224. //
  4225. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4226. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4227. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4228. // regenerated.
  4229. //
  4230. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4231. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4232. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4233. //
  4234. #ifdef ENABLE_AUTO_BED_LEVELING
  4235. #ifdef Z_PROBE_REPEATABILITY_TEST
  4236. case 48: // M48 Z-Probe repeatability
  4237. {
  4238. #if Z_MIN_PIN == -1
  4239. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4240. #endif
  4241. double sum=0.0;
  4242. double mean=0.0;
  4243. double sigma=0.0;
  4244. double sample_set[50];
  4245. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4246. double X_current, Y_current, Z_current;
  4247. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4248. if (code_seen('V') || code_seen('v')) {
  4249. verbose_level = code_value();
  4250. if (verbose_level<0 || verbose_level>4 ) {
  4251. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4252. goto Sigma_Exit;
  4253. }
  4254. }
  4255. if (verbose_level > 0) {
  4256. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4257. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4258. }
  4259. if (code_seen('n')) {
  4260. n_samples = code_value();
  4261. if (n_samples<4 || n_samples>50 ) {
  4262. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4263. goto Sigma_Exit;
  4264. }
  4265. }
  4266. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4267. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4268. Z_current = st_get_position_mm(Z_AXIS);
  4269. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4270. ext_position = st_get_position_mm(E_AXIS);
  4271. if (code_seen('X') || code_seen('x') ) {
  4272. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4273. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4274. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4275. goto Sigma_Exit;
  4276. }
  4277. }
  4278. if (code_seen('Y') || code_seen('y') ) {
  4279. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4280. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4281. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4282. goto Sigma_Exit;
  4283. }
  4284. }
  4285. if (code_seen('L') || code_seen('l') ) {
  4286. n_legs = code_value();
  4287. if ( n_legs==1 )
  4288. n_legs = 2;
  4289. if ( n_legs<0 || n_legs>15 ) {
  4290. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4291. goto Sigma_Exit;
  4292. }
  4293. }
  4294. //
  4295. // Do all the preliminary setup work. First raise the probe.
  4296. //
  4297. st_synchronize();
  4298. plan_bed_level_matrix.set_to_identity();
  4299. plan_buffer_line( X_current, Y_current, Z_start_location,
  4300. ext_position,
  4301. homing_feedrate[Z_AXIS]/60,
  4302. active_extruder);
  4303. st_synchronize();
  4304. //
  4305. // Now get everything to the specified probe point So we can safely do a probe to
  4306. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4307. // use that as a starting point for each probe.
  4308. //
  4309. if (verbose_level > 2)
  4310. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4311. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4312. ext_position,
  4313. homing_feedrate[X_AXIS]/60,
  4314. active_extruder);
  4315. st_synchronize();
  4316. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4317. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4318. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4319. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4320. //
  4321. // OK, do the inital probe to get us close to the bed.
  4322. // Then retrace the right amount and use that in subsequent probes
  4323. //
  4324. setup_for_endstop_move();
  4325. run_z_probe();
  4326. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4327. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4328. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4329. ext_position,
  4330. homing_feedrate[X_AXIS]/60,
  4331. active_extruder);
  4332. st_synchronize();
  4333. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4334. for( n=0; n<n_samples; n++) {
  4335. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4336. if ( n_legs) {
  4337. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4338. int rotational_direction, l;
  4339. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4340. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4341. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4342. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4343. //SERIAL_ECHOPAIR(" theta: ",theta);
  4344. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4345. //SERIAL_PROTOCOLLNPGM("");
  4346. for( l=0; l<n_legs-1; l++) {
  4347. if (rotational_direction==1)
  4348. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4349. else
  4350. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4351. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4352. if ( radius<0.0 )
  4353. radius = -radius;
  4354. X_current = X_probe_location + cos(theta) * radius;
  4355. Y_current = Y_probe_location + sin(theta) * radius;
  4356. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4357. X_current = X_MIN_POS;
  4358. if ( X_current>X_MAX_POS)
  4359. X_current = X_MAX_POS;
  4360. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4361. Y_current = Y_MIN_POS;
  4362. if ( Y_current>Y_MAX_POS)
  4363. Y_current = Y_MAX_POS;
  4364. if (verbose_level>3 ) {
  4365. SERIAL_ECHOPAIR("x: ", X_current);
  4366. SERIAL_ECHOPAIR("y: ", Y_current);
  4367. SERIAL_PROTOCOLLNPGM("");
  4368. }
  4369. do_blocking_move_to( X_current, Y_current, Z_current );
  4370. }
  4371. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4372. }
  4373. setup_for_endstop_move();
  4374. run_z_probe();
  4375. sample_set[n] = current_position[Z_AXIS];
  4376. //
  4377. // Get the current mean for the data points we have so far
  4378. //
  4379. sum=0.0;
  4380. for( j=0; j<=n; j++) {
  4381. sum = sum + sample_set[j];
  4382. }
  4383. mean = sum / (double (n+1));
  4384. //
  4385. // Now, use that mean to calculate the standard deviation for the
  4386. // data points we have so far
  4387. //
  4388. sum=0.0;
  4389. for( j=0; j<=n; j++) {
  4390. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4391. }
  4392. sigma = sqrt( sum / (double (n+1)) );
  4393. if (verbose_level > 1) {
  4394. SERIAL_PROTOCOL(n+1);
  4395. SERIAL_PROTOCOL(" of ");
  4396. SERIAL_PROTOCOL(n_samples);
  4397. SERIAL_PROTOCOLPGM(" z: ");
  4398. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4399. }
  4400. if (verbose_level > 2) {
  4401. SERIAL_PROTOCOL(" mean: ");
  4402. SERIAL_PROTOCOL_F(mean,6);
  4403. SERIAL_PROTOCOL(" sigma: ");
  4404. SERIAL_PROTOCOL_F(sigma,6);
  4405. }
  4406. if (verbose_level > 0)
  4407. SERIAL_PROTOCOLPGM("\n");
  4408. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4409. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4410. st_synchronize();
  4411. }
  4412. delay(1000);
  4413. clean_up_after_endstop_move();
  4414. // enable_endstops(true);
  4415. if (verbose_level > 0) {
  4416. SERIAL_PROTOCOLPGM("Mean: ");
  4417. SERIAL_PROTOCOL_F(mean, 6);
  4418. SERIAL_PROTOCOLPGM("\n");
  4419. }
  4420. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4421. SERIAL_PROTOCOL_F(sigma, 6);
  4422. SERIAL_PROTOCOLPGM("\n\n");
  4423. Sigma_Exit:
  4424. break;
  4425. }
  4426. #endif // Z_PROBE_REPEATABILITY_TEST
  4427. #endif // ENABLE_AUTO_BED_LEVELING
  4428. case 73: //M73 show percent done and time remaining
  4429. if(code_seen('P')) print_percent_done_normal = code_value();
  4430. if(code_seen('R')) print_time_remaining_normal = code_value();
  4431. if(code_seen('Q')) print_percent_done_silent = code_value();
  4432. if(code_seen('S')) print_time_remaining_silent = code_value();
  4433. {
  4434. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4435. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4436. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4437. }
  4438. break;
  4439. case 104: // M104
  4440. if(setTargetedHotend(104)){
  4441. break;
  4442. }
  4443. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4444. setWatch();
  4445. break;
  4446. case 112: // M112 -Emergency Stop
  4447. kill(_n(""), 3);
  4448. break;
  4449. case 140: // M140 set bed temp
  4450. if (code_seen('S')) setTargetBed(code_value());
  4451. break;
  4452. case 105 : // M105
  4453. if(setTargetedHotend(105)){
  4454. break;
  4455. }
  4456. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4457. SERIAL_PROTOCOLPGM("ok T:");
  4458. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4459. SERIAL_PROTOCOLPGM(" /");
  4460. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4461. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4462. SERIAL_PROTOCOLPGM(" B:");
  4463. SERIAL_PROTOCOL_F(degBed(),1);
  4464. SERIAL_PROTOCOLPGM(" /");
  4465. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4466. #endif //TEMP_BED_PIN
  4467. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4468. SERIAL_PROTOCOLPGM(" T");
  4469. SERIAL_PROTOCOL(cur_extruder);
  4470. SERIAL_PROTOCOLPGM(":");
  4471. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4472. SERIAL_PROTOCOLPGM(" /");
  4473. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4474. }
  4475. #else
  4476. SERIAL_ERROR_START;
  4477. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4478. #endif
  4479. SERIAL_PROTOCOLPGM(" @:");
  4480. #ifdef EXTRUDER_WATTS
  4481. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4482. SERIAL_PROTOCOLPGM("W");
  4483. #else
  4484. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4485. #endif
  4486. SERIAL_PROTOCOLPGM(" B@:");
  4487. #ifdef BED_WATTS
  4488. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4489. SERIAL_PROTOCOLPGM("W");
  4490. #else
  4491. SERIAL_PROTOCOL(getHeaterPower(-1));
  4492. #endif
  4493. #ifdef PINDA_THERMISTOR
  4494. SERIAL_PROTOCOLPGM(" P:");
  4495. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4496. #endif //PINDA_THERMISTOR
  4497. #ifdef AMBIENT_THERMISTOR
  4498. SERIAL_PROTOCOLPGM(" A:");
  4499. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4500. #endif //AMBIENT_THERMISTOR
  4501. #ifdef SHOW_TEMP_ADC_VALUES
  4502. {float raw = 0.0;
  4503. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4504. SERIAL_PROTOCOLPGM(" ADC B:");
  4505. SERIAL_PROTOCOL_F(degBed(),1);
  4506. SERIAL_PROTOCOLPGM("C->");
  4507. raw = rawBedTemp();
  4508. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4509. SERIAL_PROTOCOLPGM(" Rb->");
  4510. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4511. SERIAL_PROTOCOLPGM(" Rxb->");
  4512. SERIAL_PROTOCOL_F(raw, 5);
  4513. #endif
  4514. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4515. SERIAL_PROTOCOLPGM(" T");
  4516. SERIAL_PROTOCOL(cur_extruder);
  4517. SERIAL_PROTOCOLPGM(":");
  4518. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4519. SERIAL_PROTOCOLPGM("C->");
  4520. raw = rawHotendTemp(cur_extruder);
  4521. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4522. SERIAL_PROTOCOLPGM(" Rt");
  4523. SERIAL_PROTOCOL(cur_extruder);
  4524. SERIAL_PROTOCOLPGM("->");
  4525. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4526. SERIAL_PROTOCOLPGM(" Rx");
  4527. SERIAL_PROTOCOL(cur_extruder);
  4528. SERIAL_PROTOCOLPGM("->");
  4529. SERIAL_PROTOCOL_F(raw, 5);
  4530. }}
  4531. #endif
  4532. SERIAL_PROTOCOLLN("");
  4533. KEEPALIVE_STATE(NOT_BUSY);
  4534. return;
  4535. break;
  4536. case 109:
  4537. {// M109 - Wait for extruder heater to reach target.
  4538. if(setTargetedHotend(109)){
  4539. break;
  4540. }
  4541. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4542. heating_status = 1;
  4543. if (farm_mode) { prusa_statistics(1); };
  4544. #ifdef AUTOTEMP
  4545. autotemp_enabled=false;
  4546. #endif
  4547. if (code_seen('S')) {
  4548. setTargetHotend(code_value(), tmp_extruder);
  4549. CooldownNoWait = true;
  4550. } else if (code_seen('R')) {
  4551. setTargetHotend(code_value(), tmp_extruder);
  4552. CooldownNoWait = false;
  4553. }
  4554. #ifdef AUTOTEMP
  4555. if (code_seen('S')) autotemp_min=code_value();
  4556. if (code_seen('B')) autotemp_max=code_value();
  4557. if (code_seen('F'))
  4558. {
  4559. autotemp_factor=code_value();
  4560. autotemp_enabled=true;
  4561. }
  4562. #endif
  4563. setWatch();
  4564. codenum = millis();
  4565. /* See if we are heating up or cooling down */
  4566. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4567. KEEPALIVE_STATE(NOT_BUSY);
  4568. cancel_heatup = false;
  4569. wait_for_heater(codenum); //loops until target temperature is reached
  4570. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4571. KEEPALIVE_STATE(IN_HANDLER);
  4572. heating_status = 2;
  4573. if (farm_mode) { prusa_statistics(2); };
  4574. //starttime=millis();
  4575. previous_millis_cmd = millis();
  4576. }
  4577. break;
  4578. case 190: // M190 - Wait for bed heater to reach target.
  4579. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4580. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4581. heating_status = 3;
  4582. if (farm_mode) { prusa_statistics(1); };
  4583. if (code_seen('S'))
  4584. {
  4585. setTargetBed(code_value());
  4586. CooldownNoWait = true;
  4587. }
  4588. else if (code_seen('R'))
  4589. {
  4590. setTargetBed(code_value());
  4591. CooldownNoWait = false;
  4592. }
  4593. codenum = millis();
  4594. cancel_heatup = false;
  4595. target_direction = isHeatingBed(); // true if heating, false if cooling
  4596. KEEPALIVE_STATE(NOT_BUSY);
  4597. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4598. {
  4599. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4600. {
  4601. if (!farm_mode) {
  4602. float tt = degHotend(active_extruder);
  4603. SERIAL_PROTOCOLPGM("T:");
  4604. SERIAL_PROTOCOL(tt);
  4605. SERIAL_PROTOCOLPGM(" E:");
  4606. SERIAL_PROTOCOL((int)active_extruder);
  4607. SERIAL_PROTOCOLPGM(" B:");
  4608. SERIAL_PROTOCOL_F(degBed(), 1);
  4609. SERIAL_PROTOCOLLN("");
  4610. }
  4611. codenum = millis();
  4612. }
  4613. manage_heater();
  4614. manage_inactivity();
  4615. lcd_update();
  4616. }
  4617. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4618. KEEPALIVE_STATE(IN_HANDLER);
  4619. heating_status = 4;
  4620. previous_millis_cmd = millis();
  4621. #endif
  4622. break;
  4623. #if defined(FAN_PIN) && FAN_PIN > -1
  4624. case 106: //M106 Fan On
  4625. if (code_seen('S')){
  4626. fanSpeed=constrain(code_value(),0,255);
  4627. }
  4628. else {
  4629. fanSpeed=255;
  4630. }
  4631. break;
  4632. case 107: //M107 Fan Off
  4633. fanSpeed = 0;
  4634. break;
  4635. #endif //FAN_PIN
  4636. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4637. case 80: // M80 - Turn on Power Supply
  4638. SET_OUTPUT(PS_ON_PIN); //GND
  4639. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4640. // If you have a switch on suicide pin, this is useful
  4641. // if you want to start another print with suicide feature after
  4642. // a print without suicide...
  4643. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4644. SET_OUTPUT(SUICIDE_PIN);
  4645. WRITE(SUICIDE_PIN, HIGH);
  4646. #endif
  4647. #ifdef ULTIPANEL
  4648. powersupply = true;
  4649. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4650. lcd_update();
  4651. #endif
  4652. break;
  4653. #endif
  4654. case 81: // M81 - Turn off Power Supply
  4655. disable_heater();
  4656. st_synchronize();
  4657. disable_e0();
  4658. disable_e1();
  4659. disable_e2();
  4660. finishAndDisableSteppers();
  4661. fanSpeed = 0;
  4662. delay(1000); // Wait a little before to switch off
  4663. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4664. st_synchronize();
  4665. suicide();
  4666. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4667. SET_OUTPUT(PS_ON_PIN);
  4668. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4669. #endif
  4670. #ifdef ULTIPANEL
  4671. powersupply = false;
  4672. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4673. lcd_update();
  4674. #endif
  4675. break;
  4676. case 82:
  4677. axis_relative_modes[3] = false;
  4678. break;
  4679. case 83:
  4680. axis_relative_modes[3] = true;
  4681. break;
  4682. case 18: //compatibility
  4683. case 84: // M84
  4684. if(code_seen('S')){
  4685. stepper_inactive_time = code_value() * 1000;
  4686. }
  4687. else
  4688. {
  4689. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4690. if(all_axis)
  4691. {
  4692. st_synchronize();
  4693. disable_e0();
  4694. disable_e1();
  4695. disable_e2();
  4696. finishAndDisableSteppers();
  4697. }
  4698. else
  4699. {
  4700. st_synchronize();
  4701. if (code_seen('X')) disable_x();
  4702. if (code_seen('Y')) disable_y();
  4703. if (code_seen('Z')) disable_z();
  4704. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4705. if (code_seen('E')) {
  4706. disable_e0();
  4707. disable_e1();
  4708. disable_e2();
  4709. }
  4710. #endif
  4711. }
  4712. }
  4713. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4714. print_time_remaining_init();
  4715. snmm_filaments_used = 0;
  4716. break;
  4717. case 85: // M85
  4718. if(code_seen('S')) {
  4719. max_inactive_time = code_value() * 1000;
  4720. }
  4721. break;
  4722. #ifdef SAFETYTIMER
  4723. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4724. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4725. if (code_seen('S')) {
  4726. safetytimer_inactive_time = code_value() * 1000;
  4727. safetyTimer.start();
  4728. }
  4729. break;
  4730. #endif
  4731. case 92: // M92
  4732. for(int8_t i=0; i < NUM_AXIS; i++)
  4733. {
  4734. if(code_seen(axis_codes[i]))
  4735. {
  4736. if(i == 3) { // E
  4737. float value = code_value();
  4738. if(value < 20.0) {
  4739. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4740. max_jerk[E_AXIS] *= factor;
  4741. max_feedrate[i] *= factor;
  4742. axis_steps_per_sqr_second[i] *= factor;
  4743. }
  4744. axis_steps_per_unit[i] = value;
  4745. }
  4746. else {
  4747. axis_steps_per_unit[i] = code_value();
  4748. }
  4749. }
  4750. }
  4751. break;
  4752. case 110: // M110 - reset line pos
  4753. if (code_seen('N'))
  4754. gcode_LastN = code_value_long();
  4755. break;
  4756. #ifdef HOST_KEEPALIVE_FEATURE
  4757. case 113: // M113 - Get or set Host Keepalive interval
  4758. if (code_seen('S')) {
  4759. host_keepalive_interval = (uint8_t)code_value_short();
  4760. // NOMORE(host_keepalive_interval, 60);
  4761. }
  4762. else {
  4763. SERIAL_ECHO_START;
  4764. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4765. SERIAL_PROTOCOLLN("");
  4766. }
  4767. break;
  4768. #endif
  4769. case 115: // M115
  4770. if (code_seen('V')) {
  4771. // Report the Prusa version number.
  4772. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4773. } else if (code_seen('U')) {
  4774. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4775. // pause the print and ask the user to upgrade the firmware.
  4776. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4777. } else {
  4778. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4779. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4780. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4781. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4782. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4783. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4784. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4785. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4786. SERIAL_ECHOPGM(" UUID:");
  4787. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4788. }
  4789. break;
  4790. /* case 117: // M117 display message
  4791. starpos = (strchr(strchr_pointer + 5,'*'));
  4792. if(starpos!=NULL)
  4793. *(starpos)='\0';
  4794. lcd_setstatus(strchr_pointer + 5);
  4795. break;*/
  4796. case 114: // M114
  4797. gcode_M114();
  4798. break;
  4799. case 120: // M120
  4800. enable_endstops(false) ;
  4801. break;
  4802. case 121: // M121
  4803. enable_endstops(true) ;
  4804. break;
  4805. case 119: // M119
  4806. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4807. SERIAL_PROTOCOLLN("");
  4808. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4809. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4810. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4811. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4812. }else{
  4813. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4814. }
  4815. SERIAL_PROTOCOLLN("");
  4816. #endif
  4817. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4818. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4819. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4820. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4821. }else{
  4822. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4823. }
  4824. SERIAL_PROTOCOLLN("");
  4825. #endif
  4826. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4827. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4828. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4829. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4830. }else{
  4831. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4832. }
  4833. SERIAL_PROTOCOLLN("");
  4834. #endif
  4835. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4836. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4837. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4838. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4839. }else{
  4840. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4841. }
  4842. SERIAL_PROTOCOLLN("");
  4843. #endif
  4844. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4845. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4846. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4847. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4848. }else{
  4849. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4850. }
  4851. SERIAL_PROTOCOLLN("");
  4852. #endif
  4853. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4854. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4855. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4856. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4857. }else{
  4858. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4859. }
  4860. SERIAL_PROTOCOLLN("");
  4861. #endif
  4862. break;
  4863. //TODO: update for all axis, use for loop
  4864. #ifdef BLINKM
  4865. case 150: // M150
  4866. {
  4867. byte red;
  4868. byte grn;
  4869. byte blu;
  4870. if(code_seen('R')) red = code_value();
  4871. if(code_seen('U')) grn = code_value();
  4872. if(code_seen('B')) blu = code_value();
  4873. SendColors(red,grn,blu);
  4874. }
  4875. break;
  4876. #endif //BLINKM
  4877. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4878. {
  4879. tmp_extruder = active_extruder;
  4880. if(code_seen('T')) {
  4881. tmp_extruder = code_value();
  4882. if(tmp_extruder >= EXTRUDERS) {
  4883. SERIAL_ECHO_START;
  4884. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4885. break;
  4886. }
  4887. }
  4888. float area = .0;
  4889. if(code_seen('D')) {
  4890. float diameter = (float)code_value();
  4891. if (diameter == 0.0) {
  4892. // setting any extruder filament size disables volumetric on the assumption that
  4893. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4894. // for all extruders
  4895. volumetric_enabled = false;
  4896. } else {
  4897. filament_size[tmp_extruder] = (float)code_value();
  4898. // make sure all extruders have some sane value for the filament size
  4899. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4900. #if EXTRUDERS > 1
  4901. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4902. #if EXTRUDERS > 2
  4903. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4904. #endif
  4905. #endif
  4906. volumetric_enabled = true;
  4907. }
  4908. } else {
  4909. //reserved for setting filament diameter via UFID or filament measuring device
  4910. break;
  4911. }
  4912. calculate_extruder_multipliers();
  4913. }
  4914. break;
  4915. case 201: // M201
  4916. for(int8_t i=0; i < NUM_AXIS; i++)
  4917. {
  4918. if(code_seen(axis_codes[i]))
  4919. {
  4920. max_acceleration_units_per_sq_second[i] = code_value();
  4921. }
  4922. }
  4923. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4924. reset_acceleration_rates();
  4925. break;
  4926. #if 0 // Not used for Sprinter/grbl gen6
  4927. case 202: // M202
  4928. for(int8_t i=0; i < NUM_AXIS; i++) {
  4929. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4930. }
  4931. break;
  4932. #endif
  4933. case 203: // M203 max feedrate mm/sec
  4934. for(int8_t i=0; i < NUM_AXIS; i++) {
  4935. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4936. }
  4937. break;
  4938. case 204: // M204 acclereration S normal moves T filmanent only moves
  4939. {
  4940. if(code_seen('S')) acceleration = code_value() ;
  4941. if(code_seen('T')) retract_acceleration = code_value() ;
  4942. }
  4943. break;
  4944. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4945. {
  4946. if(code_seen('S')) minimumfeedrate = code_value();
  4947. if(code_seen('T')) mintravelfeedrate = code_value();
  4948. if(code_seen('B')) minsegmenttime = code_value() ;
  4949. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4950. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4951. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4952. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4953. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4954. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4955. }
  4956. break;
  4957. case 206: // M206 additional homing offset
  4958. for(int8_t i=0; i < 3; i++)
  4959. {
  4960. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4961. }
  4962. break;
  4963. #ifdef FWRETRACT
  4964. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4965. {
  4966. if(code_seen('S'))
  4967. {
  4968. retract_length = code_value() ;
  4969. }
  4970. if(code_seen('F'))
  4971. {
  4972. retract_feedrate = code_value()/60 ;
  4973. }
  4974. if(code_seen('Z'))
  4975. {
  4976. retract_zlift = code_value() ;
  4977. }
  4978. }break;
  4979. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4980. {
  4981. if(code_seen('S'))
  4982. {
  4983. retract_recover_length = code_value() ;
  4984. }
  4985. if(code_seen('F'))
  4986. {
  4987. retract_recover_feedrate = code_value()/60 ;
  4988. }
  4989. }break;
  4990. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4991. {
  4992. if(code_seen('S'))
  4993. {
  4994. int t= code_value() ;
  4995. switch(t)
  4996. {
  4997. case 0:
  4998. {
  4999. autoretract_enabled=false;
  5000. retracted[0]=false;
  5001. #if EXTRUDERS > 1
  5002. retracted[1]=false;
  5003. #endif
  5004. #if EXTRUDERS > 2
  5005. retracted[2]=false;
  5006. #endif
  5007. }break;
  5008. case 1:
  5009. {
  5010. autoretract_enabled=true;
  5011. retracted[0]=false;
  5012. #if EXTRUDERS > 1
  5013. retracted[1]=false;
  5014. #endif
  5015. #if EXTRUDERS > 2
  5016. retracted[2]=false;
  5017. #endif
  5018. }break;
  5019. default:
  5020. SERIAL_ECHO_START;
  5021. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5022. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5023. SERIAL_ECHOLNPGM("\"(1)");
  5024. }
  5025. }
  5026. }break;
  5027. #endif // FWRETRACT
  5028. #if EXTRUDERS > 1
  5029. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5030. {
  5031. if(setTargetedHotend(218)){
  5032. break;
  5033. }
  5034. if(code_seen('X'))
  5035. {
  5036. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5037. }
  5038. if(code_seen('Y'))
  5039. {
  5040. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5041. }
  5042. SERIAL_ECHO_START;
  5043. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5044. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5045. {
  5046. SERIAL_ECHO(" ");
  5047. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5048. SERIAL_ECHO(",");
  5049. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5050. }
  5051. SERIAL_ECHOLN("");
  5052. }break;
  5053. #endif
  5054. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5055. {
  5056. if(code_seen('S'))
  5057. {
  5058. feedmultiply = code_value() ;
  5059. }
  5060. }
  5061. break;
  5062. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5063. {
  5064. if(code_seen('S'))
  5065. {
  5066. int tmp_code = code_value();
  5067. if (code_seen('T'))
  5068. {
  5069. if(setTargetedHotend(221)){
  5070. break;
  5071. }
  5072. extruder_multiply[tmp_extruder] = tmp_code;
  5073. }
  5074. else
  5075. {
  5076. extrudemultiply = tmp_code ;
  5077. }
  5078. }
  5079. calculate_extruder_multipliers();
  5080. }
  5081. break;
  5082. #ifndef _DISABLE_M42_M226
  5083. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5084. {
  5085. if(code_seen('P')){
  5086. int pin_number = code_value(); // pin number
  5087. int pin_state = -1; // required pin state - default is inverted
  5088. if(code_seen('S')) pin_state = code_value(); // required pin state
  5089. if(pin_state >= -1 && pin_state <= 1){
  5090. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5091. {
  5092. if (sensitive_pins[i] == pin_number)
  5093. {
  5094. pin_number = -1;
  5095. break;
  5096. }
  5097. }
  5098. if (pin_number > -1)
  5099. {
  5100. int target = LOW;
  5101. st_synchronize();
  5102. pinMode(pin_number, INPUT);
  5103. switch(pin_state){
  5104. case 1:
  5105. target = HIGH;
  5106. break;
  5107. case 0:
  5108. target = LOW;
  5109. break;
  5110. case -1:
  5111. target = !digitalRead(pin_number);
  5112. break;
  5113. }
  5114. while(digitalRead(pin_number) != target){
  5115. manage_heater();
  5116. manage_inactivity();
  5117. lcd_update();
  5118. }
  5119. }
  5120. }
  5121. }
  5122. }
  5123. break;
  5124. #endif //_DISABLE_M42_M226
  5125. #if NUM_SERVOS > 0
  5126. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5127. {
  5128. int servo_index = -1;
  5129. int servo_position = 0;
  5130. if (code_seen('P'))
  5131. servo_index = code_value();
  5132. if (code_seen('S')) {
  5133. servo_position = code_value();
  5134. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5135. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5136. servos[servo_index].attach(0);
  5137. #endif
  5138. servos[servo_index].write(servo_position);
  5139. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5140. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5141. servos[servo_index].detach();
  5142. #endif
  5143. }
  5144. else {
  5145. SERIAL_ECHO_START;
  5146. SERIAL_ECHO("Servo ");
  5147. SERIAL_ECHO(servo_index);
  5148. SERIAL_ECHOLN(" out of range");
  5149. }
  5150. }
  5151. else if (servo_index >= 0) {
  5152. SERIAL_PROTOCOL(_T(MSG_OK));
  5153. SERIAL_PROTOCOL(" Servo ");
  5154. SERIAL_PROTOCOL(servo_index);
  5155. SERIAL_PROTOCOL(": ");
  5156. SERIAL_PROTOCOL(servos[servo_index].read());
  5157. SERIAL_PROTOCOLLN("");
  5158. }
  5159. }
  5160. break;
  5161. #endif // NUM_SERVOS > 0
  5162. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5163. case 300: // M300
  5164. {
  5165. int beepS = code_seen('S') ? code_value() : 110;
  5166. int beepP = code_seen('P') ? code_value() : 1000;
  5167. if (beepS > 0)
  5168. {
  5169. #if BEEPER > 0
  5170. tone(BEEPER, beepS);
  5171. delay(beepP);
  5172. noTone(BEEPER);
  5173. #elif defined(ULTRALCD)
  5174. lcd_buzz(beepS, beepP);
  5175. #elif defined(LCD_USE_I2C_BUZZER)
  5176. lcd_buzz(beepP, beepS);
  5177. #endif
  5178. }
  5179. else
  5180. {
  5181. delay(beepP);
  5182. }
  5183. }
  5184. break;
  5185. #endif // M300
  5186. #ifdef PIDTEMP
  5187. case 301: // M301
  5188. {
  5189. if(code_seen('P')) Kp = code_value();
  5190. if(code_seen('I')) Ki = scalePID_i(code_value());
  5191. if(code_seen('D')) Kd = scalePID_d(code_value());
  5192. #ifdef PID_ADD_EXTRUSION_RATE
  5193. if(code_seen('C')) Kc = code_value();
  5194. #endif
  5195. updatePID();
  5196. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5197. SERIAL_PROTOCOL(" p:");
  5198. SERIAL_PROTOCOL(Kp);
  5199. SERIAL_PROTOCOL(" i:");
  5200. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5201. SERIAL_PROTOCOL(" d:");
  5202. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5203. #ifdef PID_ADD_EXTRUSION_RATE
  5204. SERIAL_PROTOCOL(" c:");
  5205. //Kc does not have scaling applied above, or in resetting defaults
  5206. SERIAL_PROTOCOL(Kc);
  5207. #endif
  5208. SERIAL_PROTOCOLLN("");
  5209. }
  5210. break;
  5211. #endif //PIDTEMP
  5212. #ifdef PIDTEMPBED
  5213. case 304: // M304
  5214. {
  5215. if(code_seen('P')) bedKp = code_value();
  5216. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5217. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5218. updatePID();
  5219. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5220. SERIAL_PROTOCOL(" p:");
  5221. SERIAL_PROTOCOL(bedKp);
  5222. SERIAL_PROTOCOL(" i:");
  5223. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5224. SERIAL_PROTOCOL(" d:");
  5225. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5226. SERIAL_PROTOCOLLN("");
  5227. }
  5228. break;
  5229. #endif //PIDTEMP
  5230. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5231. {
  5232. #ifdef CHDK
  5233. SET_OUTPUT(CHDK);
  5234. WRITE(CHDK, HIGH);
  5235. chdkHigh = millis();
  5236. chdkActive = true;
  5237. #else
  5238. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5239. const uint8_t NUM_PULSES=16;
  5240. const float PULSE_LENGTH=0.01524;
  5241. for(int i=0; i < NUM_PULSES; i++) {
  5242. WRITE(PHOTOGRAPH_PIN, HIGH);
  5243. _delay_ms(PULSE_LENGTH);
  5244. WRITE(PHOTOGRAPH_PIN, LOW);
  5245. _delay_ms(PULSE_LENGTH);
  5246. }
  5247. delay(7.33);
  5248. for(int i=0; i < NUM_PULSES; i++) {
  5249. WRITE(PHOTOGRAPH_PIN, HIGH);
  5250. _delay_ms(PULSE_LENGTH);
  5251. WRITE(PHOTOGRAPH_PIN, LOW);
  5252. _delay_ms(PULSE_LENGTH);
  5253. }
  5254. #endif
  5255. #endif //chdk end if
  5256. }
  5257. break;
  5258. #ifdef DOGLCD
  5259. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5260. {
  5261. if (code_seen('C')) {
  5262. lcd_setcontrast( ((int)code_value())&63 );
  5263. }
  5264. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5265. SERIAL_PROTOCOL(lcd_contrast);
  5266. SERIAL_PROTOCOLLN("");
  5267. }
  5268. break;
  5269. #endif
  5270. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5271. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5272. {
  5273. float temp = .0;
  5274. if (code_seen('S')) temp=code_value();
  5275. set_extrude_min_temp(temp);
  5276. }
  5277. break;
  5278. #endif
  5279. case 303: // M303 PID autotune
  5280. {
  5281. float temp = 150.0;
  5282. int e=0;
  5283. int c=5;
  5284. if (code_seen('E')) e=code_value();
  5285. if (e<0)
  5286. temp=70;
  5287. if (code_seen('S')) temp=code_value();
  5288. if (code_seen('C')) c=code_value();
  5289. PID_autotune(temp, e, c);
  5290. }
  5291. break;
  5292. case 400: // M400 finish all moves
  5293. {
  5294. st_synchronize();
  5295. }
  5296. break;
  5297. case 500: // M500 Store settings in EEPROM
  5298. {
  5299. Config_StoreSettings(EEPROM_OFFSET);
  5300. }
  5301. break;
  5302. case 501: // M501 Read settings from EEPROM
  5303. {
  5304. Config_RetrieveSettings(EEPROM_OFFSET);
  5305. }
  5306. break;
  5307. case 502: // M502 Revert to default settings
  5308. {
  5309. Config_ResetDefault();
  5310. }
  5311. break;
  5312. case 503: // M503 print settings currently in memory
  5313. {
  5314. Config_PrintSettings();
  5315. }
  5316. break;
  5317. case 509: //M509 Force language selection
  5318. {
  5319. lang_reset();
  5320. SERIAL_ECHO_START;
  5321. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5322. }
  5323. break;
  5324. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5325. case 540:
  5326. {
  5327. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5328. }
  5329. break;
  5330. #endif
  5331. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5332. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5333. {
  5334. float value;
  5335. if (code_seen('Z'))
  5336. {
  5337. value = code_value();
  5338. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5339. {
  5340. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5341. SERIAL_ECHO_START;
  5342. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5343. SERIAL_PROTOCOLLN("");
  5344. }
  5345. else
  5346. {
  5347. SERIAL_ECHO_START;
  5348. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5349. SERIAL_ECHORPGM(MSG_Z_MIN);
  5350. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5351. SERIAL_ECHORPGM(MSG_Z_MAX);
  5352. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5353. SERIAL_PROTOCOLLN("");
  5354. }
  5355. }
  5356. else
  5357. {
  5358. SERIAL_ECHO_START;
  5359. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5360. SERIAL_ECHO(-zprobe_zoffset);
  5361. SERIAL_PROTOCOLLN("");
  5362. }
  5363. break;
  5364. }
  5365. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5366. #ifdef FILAMENTCHANGEENABLE
  5367. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5368. {
  5369. #ifdef PAT9125
  5370. bool old_fsensor_enabled = fsensor_enabled;
  5371. fsensor_enabled = false; //temporary solution for unexpected restarting
  5372. #endif //PAT9125
  5373. st_synchronize();
  5374. float target[4];
  5375. float lastpos[4];
  5376. if (farm_mode)
  5377. {
  5378. prusa_statistics(22);
  5379. }
  5380. feedmultiplyBckp=feedmultiply;
  5381. int8_t TooLowZ = 0;
  5382. float HotendTempBckp = degTargetHotend(active_extruder);
  5383. int fanSpeedBckp = fanSpeed;
  5384. target[X_AXIS]=current_position[X_AXIS];
  5385. target[Y_AXIS]=current_position[Y_AXIS];
  5386. target[Z_AXIS]=current_position[Z_AXIS];
  5387. target[E_AXIS]=current_position[E_AXIS];
  5388. lastpos[X_AXIS]=current_position[X_AXIS];
  5389. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5390. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5391. lastpos[E_AXIS]=current_position[E_AXIS];
  5392. //Restract extruder
  5393. if(code_seen('E'))
  5394. {
  5395. target[E_AXIS]+= code_value();
  5396. }
  5397. else
  5398. {
  5399. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5400. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5401. #endif
  5402. }
  5403. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5404. //Lift Z
  5405. if(code_seen('Z'))
  5406. {
  5407. target[Z_AXIS]+= code_value();
  5408. }
  5409. else
  5410. {
  5411. #ifdef FILAMENTCHANGE_ZADD
  5412. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5413. if(target[Z_AXIS] < 10){
  5414. target[Z_AXIS]+= 10 ;
  5415. TooLowZ = 1;
  5416. }else{
  5417. TooLowZ = 0;
  5418. }
  5419. #endif
  5420. }
  5421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5422. //Move XY to side
  5423. if(code_seen('X'))
  5424. {
  5425. target[X_AXIS]+= code_value();
  5426. }
  5427. else
  5428. {
  5429. #ifdef FILAMENTCHANGE_XPOS
  5430. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5431. #endif
  5432. }
  5433. if(code_seen('Y'))
  5434. {
  5435. target[Y_AXIS]= code_value();
  5436. }
  5437. else
  5438. {
  5439. #ifdef FILAMENTCHANGE_YPOS
  5440. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5441. #endif
  5442. }
  5443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5444. st_synchronize();
  5445. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5446. uint8_t cnt = 0;
  5447. int counterBeep = 0;
  5448. fanSpeed = 0;
  5449. unsigned long waiting_start_time = millis();
  5450. uint8_t wait_for_user_state = 0;
  5451. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5452. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5453. //cnt++;
  5454. manage_heater();
  5455. manage_inactivity(true);
  5456. /*#ifdef SNMM
  5457. target[E_AXIS] += 0.002;
  5458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5459. #endif // SNMM*/
  5460. //if (cnt == 0)
  5461. {
  5462. #if BEEPER > 0
  5463. if (counterBeep == 500) {
  5464. counterBeep = 0;
  5465. }
  5466. SET_OUTPUT(BEEPER);
  5467. if (counterBeep == 0) {
  5468. WRITE(BEEPER, HIGH);
  5469. }
  5470. if (counterBeep == 20) {
  5471. WRITE(BEEPER, LOW);
  5472. }
  5473. counterBeep++;
  5474. #else
  5475. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5476. lcd_buzz(1000 / 6, 100);
  5477. #else
  5478. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5479. #endif
  5480. #endif
  5481. }
  5482. switch (wait_for_user_state) {
  5483. case 0:
  5484. delay_keep_alive(4);
  5485. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5486. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5487. wait_for_user_state = 1;
  5488. setTargetHotend(0, 0);
  5489. setTargetHotend(0, 1);
  5490. setTargetHotend(0, 2);
  5491. st_synchronize();
  5492. disable_e0();
  5493. disable_e1();
  5494. disable_e2();
  5495. }
  5496. break;
  5497. case 1:
  5498. delay_keep_alive(4);
  5499. if (lcd_clicked()) {
  5500. setTargetHotend(HotendTempBckp, active_extruder);
  5501. lcd_wait_for_heater();
  5502. wait_for_user_state = 2;
  5503. }
  5504. break;
  5505. case 2:
  5506. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5507. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5508. waiting_start_time = millis();
  5509. wait_for_user_state = 0;
  5510. }
  5511. else {
  5512. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5513. lcd.setCursor(1, 4);
  5514. lcd.print(ftostr3(degHotend(active_extruder)));
  5515. }
  5516. break;
  5517. }
  5518. }
  5519. WRITE(BEEPER, LOW);
  5520. lcd_change_fil_state = 0;
  5521. // Unload filament
  5522. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5523. KEEPALIVE_STATE(IN_HANDLER);
  5524. custom_message = true;
  5525. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5526. if (code_seen('L'))
  5527. {
  5528. target[E_AXIS] += code_value();
  5529. }
  5530. else
  5531. {
  5532. #ifdef SNMM
  5533. #else
  5534. #ifdef FILAMENTCHANGE_FINALRETRACT
  5535. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5536. #endif
  5537. #endif // SNMM
  5538. }
  5539. #ifdef SNMM
  5540. target[E_AXIS] += 12;
  5541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5542. target[E_AXIS] += 6;
  5543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5544. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5545. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5546. st_synchronize();
  5547. target[E_AXIS] += (FIL_COOLING);
  5548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5549. target[E_AXIS] += (FIL_COOLING*-1);
  5550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5551. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5553. st_synchronize();
  5554. #else
  5555. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5556. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5557. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5558. st_synchronize();
  5559. #ifdef TMC2130
  5560. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5561. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5562. #else
  5563. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5564. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5565. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5566. #endif //TMC2130
  5567. target[E_AXIS] -= 45;
  5568. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5569. st_synchronize();
  5570. target[E_AXIS] -= 15;
  5571. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5572. st_synchronize();
  5573. target[E_AXIS] -= 20;
  5574. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5575. st_synchronize();
  5576. #ifdef TMC2130
  5577. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5578. #else
  5579. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5580. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5581. else st_current_set(2, tmp_motor_loud[2]);
  5582. #endif //TMC2130
  5583. #endif // SNMM
  5584. //finish moves
  5585. st_synchronize();
  5586. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5587. //disable extruder steppers so filament can be removed
  5588. disable_e0();
  5589. disable_e1();
  5590. disable_e2();
  5591. delay(100);
  5592. WRITE(BEEPER, HIGH);
  5593. counterBeep = 0;
  5594. while(!lcd_clicked() && (counterBeep < 50)) {
  5595. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5596. delay_keep_alive(100);
  5597. counterBeep++;
  5598. }
  5599. WRITE(BEEPER, LOW);
  5600. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5601. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5602. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5603. //lcd_return_to_status();
  5604. lcd_update_enable(true);
  5605. //Wait for user to insert filament
  5606. lcd_wait_interact();
  5607. //load_filament_time = millis();
  5608. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5609. #ifdef PAT9125
  5610. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5611. #endif //PAT9125
  5612. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5613. while(!lcd_clicked())
  5614. {
  5615. manage_heater();
  5616. manage_inactivity(true);
  5617. #ifdef PAT9125
  5618. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5619. {
  5620. tone(BEEPER, 1000);
  5621. delay_keep_alive(50);
  5622. noTone(BEEPER);
  5623. break;
  5624. }
  5625. #endif //PAT9125
  5626. /*#ifdef SNMM
  5627. target[E_AXIS] += 0.002;
  5628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5629. #endif // SNMM*/
  5630. }
  5631. #ifdef PAT9125
  5632. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5633. #endif //PAT9125
  5634. //WRITE(BEEPER, LOW);
  5635. KEEPALIVE_STATE(IN_HANDLER);
  5636. #ifdef SNMM
  5637. display_loading();
  5638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5639. do {
  5640. target[E_AXIS] += 0.002;
  5641. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5642. delay_keep_alive(2);
  5643. } while (!lcd_clicked());
  5644. KEEPALIVE_STATE(IN_HANDLER);
  5645. /*if (millis() - load_filament_time > 2) {
  5646. load_filament_time = millis();
  5647. target[E_AXIS] += 0.001;
  5648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5649. }*/
  5650. //Filament inserted
  5651. //Feed the filament to the end of nozzle quickly
  5652. st_synchronize();
  5653. target[E_AXIS] += bowden_length[snmm_extruder];
  5654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5655. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5656. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5657. target[E_AXIS] += 40;
  5658. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5659. target[E_AXIS] += 10;
  5660. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5661. #else
  5662. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5663. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5664. #endif // SNMM
  5665. //Extrude some filament
  5666. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5668. //Wait for user to check the state
  5669. lcd_change_fil_state = 0;
  5670. lcd_loading_filament();
  5671. tone(BEEPER, 500);
  5672. delay_keep_alive(50);
  5673. noTone(BEEPER);
  5674. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5675. lcd_change_fil_state = 0;
  5676. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5677. lcd_alright();
  5678. KEEPALIVE_STATE(IN_HANDLER);
  5679. switch(lcd_change_fil_state){
  5680. // Filament failed to load so load it again
  5681. case 2:
  5682. #ifdef SNMM
  5683. display_loading();
  5684. do {
  5685. target[E_AXIS] += 0.002;
  5686. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5687. delay_keep_alive(2);
  5688. } while (!lcd_clicked());
  5689. st_synchronize();
  5690. target[E_AXIS] += bowden_length[snmm_extruder];
  5691. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5692. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5693. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5694. target[E_AXIS] += 40;
  5695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5696. target[E_AXIS] += 10;
  5697. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5698. #else
  5699. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5700. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5701. #endif
  5702. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5703. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5704. lcd_loading_filament();
  5705. break;
  5706. // Filament loaded properly but color is not clear
  5707. case 3:
  5708. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5709. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5710. lcd_loading_color();
  5711. break;
  5712. // Everything good
  5713. default:
  5714. lcd_change_success();
  5715. lcd_update_enable(true);
  5716. break;
  5717. }
  5718. }
  5719. //Not let's go back to print
  5720. fanSpeed = fanSpeedBckp;
  5721. //Feed a little of filament to stabilize pressure
  5722. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5723. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5724. //Retract
  5725. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5726. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5727. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5728. //Move XY back
  5729. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5730. //Move Z back
  5731. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5732. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5733. //Unretract
  5734. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5735. //Set E position to original
  5736. plan_set_e_position(lastpos[E_AXIS]);
  5737. //Recover feed rate
  5738. feedmultiply=feedmultiplyBckp;
  5739. char cmd[9];
  5740. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5741. enquecommand(cmd);
  5742. lcd_setstatuspgm(_T(WELCOME_MSG));
  5743. custom_message = false;
  5744. custom_message_type = 0;
  5745. #ifdef PAT9125
  5746. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5747. if (fsensor_M600)
  5748. {
  5749. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5750. st_synchronize();
  5751. while (!is_buffer_empty())
  5752. {
  5753. process_commands();
  5754. cmdqueue_pop_front();
  5755. }
  5756. KEEPALIVE_STATE(IN_HANDLER);
  5757. fsensor_enable();
  5758. fsensor_restore_print_and_continue();
  5759. }
  5760. #endif //PAT9125
  5761. }
  5762. break;
  5763. #endif //FILAMENTCHANGEENABLE
  5764. case 601: {
  5765. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5766. }
  5767. break;
  5768. case 602: {
  5769. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5770. }
  5771. break;
  5772. #ifdef PINDA_THERMISTOR
  5773. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5774. {
  5775. int set_target_pinda = 0;
  5776. if (code_seen('S')) {
  5777. set_target_pinda = code_value();
  5778. }
  5779. else {
  5780. break;
  5781. }
  5782. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5783. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5784. SERIAL_PROTOCOL(set_target_pinda);
  5785. SERIAL_PROTOCOLLN("");
  5786. codenum = millis();
  5787. cancel_heatup = false;
  5788. bool is_pinda_cooling = false;
  5789. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5790. is_pinda_cooling = true;
  5791. }
  5792. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5793. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5794. {
  5795. SERIAL_PROTOCOLPGM("P:");
  5796. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5797. SERIAL_PROTOCOLPGM("/");
  5798. SERIAL_PROTOCOL(set_target_pinda);
  5799. SERIAL_PROTOCOLLN("");
  5800. codenum = millis();
  5801. }
  5802. manage_heater();
  5803. manage_inactivity();
  5804. lcd_update();
  5805. }
  5806. LCD_MESSAGERPGM(_T(MSG_OK));
  5807. break;
  5808. }
  5809. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5810. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5811. uint8_t cal_status = calibration_status_pinda();
  5812. int16_t usteps = 0;
  5813. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5814. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5815. for (uint8_t i = 0; i < 6; i++)
  5816. {
  5817. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5818. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5819. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5820. SERIAL_PROTOCOLPGM(", ");
  5821. SERIAL_PROTOCOL(35 + (i * 5));
  5822. SERIAL_PROTOCOLPGM(", ");
  5823. SERIAL_PROTOCOL(usteps);
  5824. SERIAL_PROTOCOLPGM(", ");
  5825. SERIAL_PROTOCOL(mm * 1000);
  5826. SERIAL_PROTOCOLLN("");
  5827. }
  5828. }
  5829. else if (code_seen('!')) { // ! - Set factory default values
  5830. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5831. int16_t z_shift = 8; //40C - 20um - 8usteps
  5832. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5833. z_shift = 24; //45C - 60um - 24usteps
  5834. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5835. z_shift = 48; //50C - 120um - 48usteps
  5836. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5837. z_shift = 80; //55C - 200um - 80usteps
  5838. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5839. z_shift = 120; //60C - 300um - 120usteps
  5840. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5841. SERIAL_PROTOCOLLN("factory restored");
  5842. }
  5843. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5844. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5845. int16_t z_shift = 0;
  5846. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5847. SERIAL_PROTOCOLLN("zerorized");
  5848. }
  5849. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5850. int16_t usteps = code_value();
  5851. if (code_seen('I')) {
  5852. byte index = code_value();
  5853. if ((index >= 0) && (index < 5)) {
  5854. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5855. SERIAL_PROTOCOLLN("OK");
  5856. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5857. for (uint8_t i = 0; i < 6; i++)
  5858. {
  5859. usteps = 0;
  5860. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5861. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5862. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5863. SERIAL_PROTOCOLPGM(", ");
  5864. SERIAL_PROTOCOL(35 + (i * 5));
  5865. SERIAL_PROTOCOLPGM(", ");
  5866. SERIAL_PROTOCOL(usteps);
  5867. SERIAL_PROTOCOLPGM(", ");
  5868. SERIAL_PROTOCOL(mm * 1000);
  5869. SERIAL_PROTOCOLLN("");
  5870. }
  5871. }
  5872. }
  5873. }
  5874. else {
  5875. SERIAL_PROTOCOLPGM("no valid command");
  5876. }
  5877. break;
  5878. #endif //PINDA_THERMISTOR
  5879. #ifdef LIN_ADVANCE
  5880. case 900: // M900: Set LIN_ADVANCE options.
  5881. gcode_M900();
  5882. break;
  5883. #endif
  5884. case 907: // M907 Set digital trimpot motor current using axis codes.
  5885. {
  5886. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5887. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5888. if(code_seen('B')) st_current_set(4,code_value());
  5889. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5890. #endif
  5891. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5892. if(code_seen('X')) st_current_set(0, code_value());
  5893. #endif
  5894. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5895. if(code_seen('Z')) st_current_set(1, code_value());
  5896. #endif
  5897. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5898. if(code_seen('E')) st_current_set(2, code_value());
  5899. #endif
  5900. }
  5901. break;
  5902. case 908: // M908 Control digital trimpot directly.
  5903. {
  5904. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5905. uint8_t channel,current;
  5906. if(code_seen('P')) channel=code_value();
  5907. if(code_seen('S')) current=code_value();
  5908. digitalPotWrite(channel, current);
  5909. #endif
  5910. }
  5911. break;
  5912. #ifdef TMC2130
  5913. case 910: // M910 TMC2130 init
  5914. {
  5915. tmc2130_init();
  5916. }
  5917. break;
  5918. case 911: // M911 Set TMC2130 holding currents
  5919. {
  5920. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5921. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5922. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5923. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5924. }
  5925. break;
  5926. case 912: // M912 Set TMC2130 running currents
  5927. {
  5928. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5929. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5930. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5931. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5932. }
  5933. break;
  5934. case 913: // M913 Print TMC2130 currents
  5935. {
  5936. tmc2130_print_currents();
  5937. }
  5938. break;
  5939. case 914: // M914 Set normal mode
  5940. {
  5941. tmc2130_mode = TMC2130_MODE_NORMAL;
  5942. tmc2130_init();
  5943. }
  5944. break;
  5945. case 915: // M915 Set silent mode
  5946. {
  5947. tmc2130_mode = TMC2130_MODE_SILENT;
  5948. tmc2130_init();
  5949. }
  5950. break;
  5951. case 916: // M916 Set sg_thrs
  5952. {
  5953. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5954. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5955. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5956. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5957. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5958. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5959. }
  5960. break;
  5961. case 917: // M917 Set TMC2130 pwm_ampl
  5962. {
  5963. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5964. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5965. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5966. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5967. }
  5968. break;
  5969. case 918: // M918 Set TMC2130 pwm_grad
  5970. {
  5971. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5972. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5973. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5974. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5975. }
  5976. break;
  5977. #endif //TMC2130
  5978. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5979. {
  5980. #ifdef TMC2130
  5981. if(code_seen('E'))
  5982. {
  5983. uint16_t res_new = code_value();
  5984. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5985. {
  5986. st_synchronize();
  5987. uint8_t axis = E_AXIS;
  5988. uint16_t res = tmc2130_get_res(axis);
  5989. tmc2130_set_res(axis, res_new);
  5990. if (res_new > res)
  5991. {
  5992. uint16_t fac = (res_new / res);
  5993. axis_steps_per_unit[axis] *= fac;
  5994. position[E_AXIS] *= fac;
  5995. }
  5996. else
  5997. {
  5998. uint16_t fac = (res / res_new);
  5999. axis_steps_per_unit[axis] /= fac;
  6000. position[E_AXIS] /= fac;
  6001. }
  6002. }
  6003. }
  6004. #else //TMC2130
  6005. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6006. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6007. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6008. if(code_seen('B')) microstep_mode(4,code_value());
  6009. microstep_readings();
  6010. #endif
  6011. #endif //TMC2130
  6012. }
  6013. break;
  6014. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6015. {
  6016. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6017. if(code_seen('S')) switch((int)code_value())
  6018. {
  6019. case 1:
  6020. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6021. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6022. break;
  6023. case 2:
  6024. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6025. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6026. break;
  6027. }
  6028. microstep_readings();
  6029. #endif
  6030. }
  6031. break;
  6032. case 701: //M701: load filament
  6033. {
  6034. gcode_M701();
  6035. }
  6036. break;
  6037. case 702:
  6038. {
  6039. #ifdef SNMM
  6040. if (code_seen('U')) {
  6041. extr_unload_used(); //unload all filaments which were used in current print
  6042. }
  6043. else if (code_seen('C')) {
  6044. extr_unload(); //unload just current filament
  6045. }
  6046. else {
  6047. extr_unload_all(); //unload all filaments
  6048. }
  6049. #else
  6050. #ifdef PAT9125
  6051. bool old_fsensor_enabled = fsensor_enabled;
  6052. fsensor_enabled = false;
  6053. #endif //PAT9125
  6054. custom_message = true;
  6055. custom_message_type = 2;
  6056. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6057. // extr_unload2();
  6058. current_position[E_AXIS] -= 45;
  6059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6060. st_synchronize();
  6061. current_position[E_AXIS] -= 15;
  6062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6063. st_synchronize();
  6064. current_position[E_AXIS] -= 20;
  6065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6066. st_synchronize();
  6067. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6068. //disable extruder steppers so filament can be removed
  6069. disable_e0();
  6070. disable_e1();
  6071. disable_e2();
  6072. delay(100);
  6073. WRITE(BEEPER, HIGH);
  6074. uint8_t counterBeep = 0;
  6075. while (!lcd_clicked() && (counterBeep < 50)) {
  6076. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6077. delay_keep_alive(100);
  6078. counterBeep++;
  6079. }
  6080. WRITE(BEEPER, LOW);
  6081. st_synchronize();
  6082. while (lcd_clicked()) delay_keep_alive(100);
  6083. lcd_update_enable(true);
  6084. lcd_setstatuspgm(_T(WELCOME_MSG));
  6085. custom_message = false;
  6086. custom_message_type = 0;
  6087. #ifdef PAT9125
  6088. fsensor_enabled = old_fsensor_enabled;
  6089. #endif //PAT9125
  6090. #endif
  6091. }
  6092. break;
  6093. case 999: // M999: Restart after being stopped
  6094. Stopped = false;
  6095. lcd_reset_alert_level();
  6096. gcode_LastN = Stopped_gcode_LastN;
  6097. FlushSerialRequestResend();
  6098. break;
  6099. default:
  6100. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6101. }
  6102. } // end if(code_seen('M')) (end of M codes)
  6103. else if(code_seen('T'))
  6104. {
  6105. int index;
  6106. st_synchronize();
  6107. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6108. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6109. SERIAL_ECHOLNPGM("Invalid T code.");
  6110. }
  6111. else {
  6112. if (*(strchr_pointer + index) == '?') {
  6113. tmp_extruder = choose_extruder_menu();
  6114. }
  6115. else {
  6116. tmp_extruder = code_value();
  6117. }
  6118. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6119. #ifdef SNMM
  6120. #ifdef LIN_ADVANCE
  6121. if (snmm_extruder != tmp_extruder)
  6122. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6123. #endif
  6124. snmm_extruder = tmp_extruder;
  6125. delay(100);
  6126. disable_e0();
  6127. disable_e1();
  6128. disable_e2();
  6129. pinMode(E_MUX0_PIN, OUTPUT);
  6130. pinMode(E_MUX1_PIN, OUTPUT);
  6131. delay(100);
  6132. SERIAL_ECHO_START;
  6133. SERIAL_ECHO("T:");
  6134. SERIAL_ECHOLN((int)tmp_extruder);
  6135. switch (tmp_extruder) {
  6136. case 1:
  6137. WRITE(E_MUX0_PIN, HIGH);
  6138. WRITE(E_MUX1_PIN, LOW);
  6139. break;
  6140. case 2:
  6141. WRITE(E_MUX0_PIN, LOW);
  6142. WRITE(E_MUX1_PIN, HIGH);
  6143. break;
  6144. case 3:
  6145. WRITE(E_MUX0_PIN, HIGH);
  6146. WRITE(E_MUX1_PIN, HIGH);
  6147. break;
  6148. default:
  6149. WRITE(E_MUX0_PIN, LOW);
  6150. WRITE(E_MUX1_PIN, LOW);
  6151. break;
  6152. }
  6153. delay(100);
  6154. #else
  6155. if (tmp_extruder >= EXTRUDERS) {
  6156. SERIAL_ECHO_START;
  6157. SERIAL_ECHOPGM("T");
  6158. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6159. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6160. }
  6161. else {
  6162. boolean make_move = false;
  6163. if (code_seen('F')) {
  6164. make_move = true;
  6165. next_feedrate = code_value();
  6166. if (next_feedrate > 0.0) {
  6167. feedrate = next_feedrate;
  6168. }
  6169. }
  6170. #if EXTRUDERS > 1
  6171. if (tmp_extruder != active_extruder) {
  6172. // Save current position to return to after applying extruder offset
  6173. memcpy(destination, current_position, sizeof(destination));
  6174. // Offset extruder (only by XY)
  6175. int i;
  6176. for (i = 0; i < 2; i++) {
  6177. current_position[i] = current_position[i] -
  6178. extruder_offset[i][active_extruder] +
  6179. extruder_offset[i][tmp_extruder];
  6180. }
  6181. // Set the new active extruder and position
  6182. active_extruder = tmp_extruder;
  6183. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6184. // Move to the old position if 'F' was in the parameters
  6185. if (make_move && Stopped == false) {
  6186. prepare_move();
  6187. }
  6188. }
  6189. #endif
  6190. SERIAL_ECHO_START;
  6191. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6192. SERIAL_PROTOCOLLN((int)active_extruder);
  6193. }
  6194. #endif
  6195. }
  6196. } // end if(code_seen('T')) (end of T codes)
  6197. #ifdef DEBUG_DCODES
  6198. else if (code_seen('D')) // D codes (debug)
  6199. {
  6200. switch((int)code_value())
  6201. {
  6202. case -1: // D-1 - Endless loop
  6203. dcode__1(); break;
  6204. case 0: // D0 - Reset
  6205. dcode_0(); break;
  6206. case 1: // D1 - Clear EEPROM
  6207. dcode_1(); break;
  6208. case 2: // D2 - Read/Write RAM
  6209. dcode_2(); break;
  6210. case 3: // D3 - Read/Write EEPROM
  6211. dcode_3(); break;
  6212. case 4: // D4 - Read/Write PIN
  6213. dcode_4(); break;
  6214. case 5: // D5 - Read/Write FLASH
  6215. // dcode_5(); break;
  6216. break;
  6217. case 6: // D6 - Read/Write external FLASH
  6218. dcode_6(); break;
  6219. case 7: // D7 - Read/Write Bootloader
  6220. dcode_7(); break;
  6221. case 8: // D8 - Read/Write PINDA
  6222. dcode_8(); break;
  6223. case 9: // D9 - Read/Write ADC
  6224. dcode_9(); break;
  6225. case 10: // D10 - XYZ calibration = OK
  6226. dcode_10(); break;
  6227. #ifdef TMC2130
  6228. case 2130: // D9125 - TMC2130
  6229. dcode_2130(); break;
  6230. #endif //TMC2130
  6231. #ifdef PAT9125
  6232. case 9125: // D9125 - PAT9125
  6233. dcode_9125(); break;
  6234. #endif //PAT9125
  6235. }
  6236. }
  6237. #endif //DEBUG_DCODES
  6238. else
  6239. {
  6240. SERIAL_ECHO_START;
  6241. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6242. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6243. SERIAL_ECHOLNPGM("\"(2)");
  6244. }
  6245. KEEPALIVE_STATE(NOT_BUSY);
  6246. ClearToSend();
  6247. }
  6248. void FlushSerialRequestResend()
  6249. {
  6250. //char cmdbuffer[bufindr][100]="Resend:";
  6251. MYSERIAL.flush();
  6252. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6253. }
  6254. // Confirm the execution of a command, if sent from a serial line.
  6255. // Execution of a command from a SD card will not be confirmed.
  6256. void ClearToSend()
  6257. {
  6258. previous_millis_cmd = millis();
  6259. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6260. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6261. }
  6262. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6263. void update_currents() {
  6264. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6265. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6266. float tmp_motor[3];
  6267. //SERIAL_ECHOLNPGM("Currents updated: ");
  6268. if (destination[Z_AXIS] < Z_SILENT) {
  6269. //SERIAL_ECHOLNPGM("LOW");
  6270. for (uint8_t i = 0; i < 3; i++) {
  6271. st_current_set(i, current_low[i]);
  6272. /*MYSERIAL.print(int(i));
  6273. SERIAL_ECHOPGM(": ");
  6274. MYSERIAL.println(current_low[i]);*/
  6275. }
  6276. }
  6277. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6278. //SERIAL_ECHOLNPGM("HIGH");
  6279. for (uint8_t i = 0; i < 3; i++) {
  6280. st_current_set(i, current_high[i]);
  6281. /*MYSERIAL.print(int(i));
  6282. SERIAL_ECHOPGM(": ");
  6283. MYSERIAL.println(current_high[i]);*/
  6284. }
  6285. }
  6286. else {
  6287. for (uint8_t i = 0; i < 3; i++) {
  6288. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6289. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6290. st_current_set(i, tmp_motor[i]);
  6291. /*MYSERIAL.print(int(i));
  6292. SERIAL_ECHOPGM(": ");
  6293. MYSERIAL.println(tmp_motor[i]);*/
  6294. }
  6295. }
  6296. }
  6297. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6298. void get_coordinates()
  6299. {
  6300. bool seen[4]={false,false,false,false};
  6301. for(int8_t i=0; i < NUM_AXIS; i++) {
  6302. if(code_seen(axis_codes[i]))
  6303. {
  6304. bool relative = axis_relative_modes[i] || relative_mode;
  6305. destination[i] = (float)code_value();
  6306. if (i == E_AXIS) {
  6307. float emult = extruder_multiplier[active_extruder];
  6308. if (emult != 1.) {
  6309. if (! relative) {
  6310. destination[i] -= current_position[i];
  6311. relative = true;
  6312. }
  6313. destination[i] *= emult;
  6314. }
  6315. }
  6316. if (relative)
  6317. destination[i] += current_position[i];
  6318. seen[i]=true;
  6319. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6320. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6321. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6322. }
  6323. else destination[i] = current_position[i]; //Are these else lines really needed?
  6324. }
  6325. if(code_seen('F')) {
  6326. next_feedrate = code_value();
  6327. #ifdef MAX_SILENT_FEEDRATE
  6328. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6329. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6330. #endif //MAX_SILENT_FEEDRATE
  6331. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6332. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6333. {
  6334. // float e_max_speed =
  6335. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6336. }
  6337. }
  6338. }
  6339. void get_arc_coordinates()
  6340. {
  6341. #ifdef SF_ARC_FIX
  6342. bool relative_mode_backup = relative_mode;
  6343. relative_mode = true;
  6344. #endif
  6345. get_coordinates();
  6346. #ifdef SF_ARC_FIX
  6347. relative_mode=relative_mode_backup;
  6348. #endif
  6349. if(code_seen('I')) {
  6350. offset[0] = code_value();
  6351. }
  6352. else {
  6353. offset[0] = 0.0;
  6354. }
  6355. if(code_seen('J')) {
  6356. offset[1] = code_value();
  6357. }
  6358. else {
  6359. offset[1] = 0.0;
  6360. }
  6361. }
  6362. void clamp_to_software_endstops(float target[3])
  6363. {
  6364. #ifdef DEBUG_DISABLE_SWLIMITS
  6365. return;
  6366. #endif //DEBUG_DISABLE_SWLIMITS
  6367. world2machine_clamp(target[0], target[1]);
  6368. // Clamp the Z coordinate.
  6369. if (min_software_endstops) {
  6370. float negative_z_offset = 0;
  6371. #ifdef ENABLE_AUTO_BED_LEVELING
  6372. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6373. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6374. #endif
  6375. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6376. }
  6377. if (max_software_endstops) {
  6378. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6379. }
  6380. }
  6381. #ifdef MESH_BED_LEVELING
  6382. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6383. float dx = x - current_position[X_AXIS];
  6384. float dy = y - current_position[Y_AXIS];
  6385. float dz = z - current_position[Z_AXIS];
  6386. int n_segments = 0;
  6387. if (mbl.active) {
  6388. float len = abs(dx) + abs(dy);
  6389. if (len > 0)
  6390. // Split to 3cm segments or shorter.
  6391. n_segments = int(ceil(len / 30.f));
  6392. }
  6393. if (n_segments > 1) {
  6394. float de = e - current_position[E_AXIS];
  6395. for (int i = 1; i < n_segments; ++ i) {
  6396. float t = float(i) / float(n_segments);
  6397. if (saved_printing || (mbl.active == false)) return;
  6398. plan_buffer_line(
  6399. current_position[X_AXIS] + t * dx,
  6400. current_position[Y_AXIS] + t * dy,
  6401. current_position[Z_AXIS] + t * dz,
  6402. current_position[E_AXIS] + t * de,
  6403. feed_rate, extruder);
  6404. }
  6405. }
  6406. // The rest of the path.
  6407. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6408. current_position[X_AXIS] = x;
  6409. current_position[Y_AXIS] = y;
  6410. current_position[Z_AXIS] = z;
  6411. current_position[E_AXIS] = e;
  6412. }
  6413. #endif // MESH_BED_LEVELING
  6414. void prepare_move()
  6415. {
  6416. clamp_to_software_endstops(destination);
  6417. previous_millis_cmd = millis();
  6418. // Do not use feedmultiply for E or Z only moves
  6419. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6420. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6421. }
  6422. else {
  6423. #ifdef MESH_BED_LEVELING
  6424. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6425. #else
  6426. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6427. #endif
  6428. }
  6429. for(int8_t i=0; i < NUM_AXIS; i++) {
  6430. current_position[i] = destination[i];
  6431. }
  6432. }
  6433. void prepare_arc_move(char isclockwise) {
  6434. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6435. // Trace the arc
  6436. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6437. // As far as the parser is concerned, the position is now == target. In reality the
  6438. // motion control system might still be processing the action and the real tool position
  6439. // in any intermediate location.
  6440. for(int8_t i=0; i < NUM_AXIS; i++) {
  6441. current_position[i] = destination[i];
  6442. }
  6443. previous_millis_cmd = millis();
  6444. }
  6445. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6446. #if defined(FAN_PIN)
  6447. #if CONTROLLERFAN_PIN == FAN_PIN
  6448. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6449. #endif
  6450. #endif
  6451. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6452. unsigned long lastMotorCheck = 0;
  6453. void controllerFan()
  6454. {
  6455. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6456. {
  6457. lastMotorCheck = millis();
  6458. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6459. #if EXTRUDERS > 2
  6460. || !READ(E2_ENABLE_PIN)
  6461. #endif
  6462. #if EXTRUDER > 1
  6463. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6464. || !READ(X2_ENABLE_PIN)
  6465. #endif
  6466. || !READ(E1_ENABLE_PIN)
  6467. #endif
  6468. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6469. {
  6470. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6471. }
  6472. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6473. {
  6474. digitalWrite(CONTROLLERFAN_PIN, 0);
  6475. analogWrite(CONTROLLERFAN_PIN, 0);
  6476. }
  6477. else
  6478. {
  6479. // allows digital or PWM fan output to be used (see M42 handling)
  6480. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6481. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6482. }
  6483. }
  6484. }
  6485. #endif
  6486. #ifdef TEMP_STAT_LEDS
  6487. static bool blue_led = false;
  6488. static bool red_led = false;
  6489. static uint32_t stat_update = 0;
  6490. void handle_status_leds(void) {
  6491. float max_temp = 0.0;
  6492. if(millis() > stat_update) {
  6493. stat_update += 500; // Update every 0.5s
  6494. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6495. max_temp = max(max_temp, degHotend(cur_extruder));
  6496. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6497. }
  6498. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6499. max_temp = max(max_temp, degTargetBed());
  6500. max_temp = max(max_temp, degBed());
  6501. #endif
  6502. if((max_temp > 55.0) && (red_led == false)) {
  6503. digitalWrite(STAT_LED_RED, 1);
  6504. digitalWrite(STAT_LED_BLUE, 0);
  6505. red_led = true;
  6506. blue_led = false;
  6507. }
  6508. if((max_temp < 54.0) && (blue_led == false)) {
  6509. digitalWrite(STAT_LED_RED, 0);
  6510. digitalWrite(STAT_LED_BLUE, 1);
  6511. red_led = false;
  6512. blue_led = true;
  6513. }
  6514. }
  6515. }
  6516. #endif
  6517. #ifdef SAFETYTIMER
  6518. /**
  6519. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6520. *
  6521. * Full screen blocking notification message is shown after heater turning off.
  6522. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6523. * damage print.
  6524. *
  6525. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6526. */
  6527. static void handleSafetyTimer()
  6528. {
  6529. #if (EXTRUDERS > 1)
  6530. #error Implemented only for one extruder.
  6531. #endif //(EXTRUDERS > 1)
  6532. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6533. {
  6534. safetyTimer.stop();
  6535. }
  6536. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6537. {
  6538. safetyTimer.start();
  6539. }
  6540. else if (safetyTimer.expired(safetytimer_inactive_time))
  6541. {
  6542. setTargetBed(0);
  6543. setTargetHotend(0, 0);
  6544. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6545. }
  6546. }
  6547. #endif //SAFETYTIMER
  6548. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6549. {
  6550. #ifdef PAT9125
  6551. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6552. {
  6553. if (fsensor_autoload_enabled)
  6554. {
  6555. if (fsensor_check_autoload())
  6556. {
  6557. if (degHotend0() > EXTRUDE_MINTEMP)
  6558. {
  6559. fsensor_autoload_check_stop();
  6560. tone(BEEPER, 1000);
  6561. delay_keep_alive(50);
  6562. noTone(BEEPER);
  6563. loading_flag = true;
  6564. enquecommand_front_P((PSTR("M701")));
  6565. }
  6566. else
  6567. {
  6568. lcd_update_enable(false);
  6569. lcd_implementation_clear();
  6570. lcd.setCursor(0, 0);
  6571. lcd_printPGM(_T(MSG_ERROR));
  6572. lcd.setCursor(0, 2);
  6573. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6574. delay(2000);
  6575. lcd_implementation_clear();
  6576. lcd_update_enable(true);
  6577. }
  6578. }
  6579. }
  6580. else
  6581. fsensor_autoload_check_start();
  6582. }
  6583. else
  6584. if (fsensor_autoload_enabled)
  6585. fsensor_autoload_check_stop();
  6586. #endif //PAT9125
  6587. #ifdef SAFETYTIMER
  6588. handleSafetyTimer();
  6589. #endif //SAFETYTIMER
  6590. #if defined(KILL_PIN) && KILL_PIN > -1
  6591. static int killCount = 0; // make the inactivity button a bit less responsive
  6592. const int KILL_DELAY = 10000;
  6593. #endif
  6594. if(buflen < (BUFSIZE-1)){
  6595. get_command();
  6596. }
  6597. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6598. if(max_inactive_time)
  6599. kill(_n(""), 4);
  6600. if(stepper_inactive_time) {
  6601. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6602. {
  6603. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6604. disable_x();
  6605. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6606. disable_y();
  6607. disable_z();
  6608. disable_e0();
  6609. disable_e1();
  6610. disable_e2();
  6611. }
  6612. }
  6613. }
  6614. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6615. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6616. {
  6617. chdkActive = false;
  6618. WRITE(CHDK, LOW);
  6619. }
  6620. #endif
  6621. #if defined(KILL_PIN) && KILL_PIN > -1
  6622. // Check if the kill button was pressed and wait just in case it was an accidental
  6623. // key kill key press
  6624. // -------------------------------------------------------------------------------
  6625. if( 0 == READ(KILL_PIN) )
  6626. {
  6627. killCount++;
  6628. }
  6629. else if (killCount > 0)
  6630. {
  6631. killCount--;
  6632. }
  6633. // Exceeded threshold and we can confirm that it was not accidental
  6634. // KILL the machine
  6635. // ----------------------------------------------------------------
  6636. if ( killCount >= KILL_DELAY)
  6637. {
  6638. kill("", 5);
  6639. }
  6640. #endif
  6641. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6642. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6643. #endif
  6644. #ifdef EXTRUDER_RUNOUT_PREVENT
  6645. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6646. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6647. {
  6648. bool oldstatus=READ(E0_ENABLE_PIN);
  6649. enable_e0();
  6650. float oldepos=current_position[E_AXIS];
  6651. float oldedes=destination[E_AXIS];
  6652. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6653. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6654. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6655. current_position[E_AXIS]=oldepos;
  6656. destination[E_AXIS]=oldedes;
  6657. plan_set_e_position(oldepos);
  6658. previous_millis_cmd=millis();
  6659. st_synchronize();
  6660. WRITE(E0_ENABLE_PIN,oldstatus);
  6661. }
  6662. #endif
  6663. #ifdef TEMP_STAT_LEDS
  6664. handle_status_leds();
  6665. #endif
  6666. check_axes_activity();
  6667. }
  6668. void kill(const char *full_screen_message, unsigned char id)
  6669. {
  6670. printf_P(_N("KILL: %d\n"), id);
  6671. //return;
  6672. cli(); // Stop interrupts
  6673. disable_heater();
  6674. disable_x();
  6675. // SERIAL_ECHOLNPGM("kill - disable Y");
  6676. disable_y();
  6677. disable_z();
  6678. disable_e0();
  6679. disable_e1();
  6680. disable_e2();
  6681. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6682. pinMode(PS_ON_PIN,INPUT);
  6683. #endif
  6684. SERIAL_ERROR_START;
  6685. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6686. if (full_screen_message != NULL) {
  6687. SERIAL_ERRORLNRPGM(full_screen_message);
  6688. lcd_display_message_fullscreen_P(full_screen_message);
  6689. } else {
  6690. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6691. }
  6692. // FMC small patch to update the LCD before ending
  6693. sei(); // enable interrupts
  6694. for ( int i=5; i--; lcd_update())
  6695. {
  6696. delay(200);
  6697. }
  6698. cli(); // disable interrupts
  6699. suicide();
  6700. while(1)
  6701. {
  6702. #ifdef WATCHDOG
  6703. wdt_reset();
  6704. #endif //WATCHDOG
  6705. /* Intentionally left empty */
  6706. } // Wait for reset
  6707. }
  6708. void Stop()
  6709. {
  6710. disable_heater();
  6711. if(Stopped == false) {
  6712. Stopped = true;
  6713. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6714. SERIAL_ERROR_START;
  6715. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6716. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6717. }
  6718. }
  6719. bool IsStopped() { return Stopped; };
  6720. #ifdef FAST_PWM_FAN
  6721. void setPwmFrequency(uint8_t pin, int val)
  6722. {
  6723. val &= 0x07;
  6724. switch(digitalPinToTimer(pin))
  6725. {
  6726. #if defined(TCCR0A)
  6727. case TIMER0A:
  6728. case TIMER0B:
  6729. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6730. // TCCR0B |= val;
  6731. break;
  6732. #endif
  6733. #if defined(TCCR1A)
  6734. case TIMER1A:
  6735. case TIMER1B:
  6736. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6737. // TCCR1B |= val;
  6738. break;
  6739. #endif
  6740. #if defined(TCCR2)
  6741. case TIMER2:
  6742. case TIMER2:
  6743. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6744. TCCR2 |= val;
  6745. break;
  6746. #endif
  6747. #if defined(TCCR2A)
  6748. case TIMER2A:
  6749. case TIMER2B:
  6750. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6751. TCCR2B |= val;
  6752. break;
  6753. #endif
  6754. #if defined(TCCR3A)
  6755. case TIMER3A:
  6756. case TIMER3B:
  6757. case TIMER3C:
  6758. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6759. TCCR3B |= val;
  6760. break;
  6761. #endif
  6762. #if defined(TCCR4A)
  6763. case TIMER4A:
  6764. case TIMER4B:
  6765. case TIMER4C:
  6766. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6767. TCCR4B |= val;
  6768. break;
  6769. #endif
  6770. #if defined(TCCR5A)
  6771. case TIMER5A:
  6772. case TIMER5B:
  6773. case TIMER5C:
  6774. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6775. TCCR5B |= val;
  6776. break;
  6777. #endif
  6778. }
  6779. }
  6780. #endif //FAST_PWM_FAN
  6781. bool setTargetedHotend(int code){
  6782. tmp_extruder = active_extruder;
  6783. if(code_seen('T')) {
  6784. tmp_extruder = code_value();
  6785. if(tmp_extruder >= EXTRUDERS) {
  6786. SERIAL_ECHO_START;
  6787. switch(code){
  6788. case 104:
  6789. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6790. break;
  6791. case 105:
  6792. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6793. break;
  6794. case 109:
  6795. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6796. break;
  6797. case 218:
  6798. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6799. break;
  6800. case 221:
  6801. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6802. break;
  6803. }
  6804. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6805. return true;
  6806. }
  6807. }
  6808. return false;
  6809. }
  6810. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6811. {
  6812. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6813. {
  6814. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6815. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6816. }
  6817. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6818. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6819. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6820. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6821. total_filament_used = 0;
  6822. }
  6823. float calculate_extruder_multiplier(float diameter) {
  6824. float out = 1.f;
  6825. if (volumetric_enabled && diameter > 0.f) {
  6826. float area = M_PI * diameter * diameter * 0.25;
  6827. out = 1.f / area;
  6828. }
  6829. if (extrudemultiply != 100)
  6830. out *= float(extrudemultiply) * 0.01f;
  6831. return out;
  6832. }
  6833. void calculate_extruder_multipliers() {
  6834. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6835. #if EXTRUDERS > 1
  6836. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6837. #if EXTRUDERS > 2
  6838. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6839. #endif
  6840. #endif
  6841. }
  6842. void delay_keep_alive(unsigned int ms)
  6843. {
  6844. for (;;) {
  6845. manage_heater();
  6846. // Manage inactivity, but don't disable steppers on timeout.
  6847. manage_inactivity(true);
  6848. lcd_update();
  6849. if (ms == 0)
  6850. break;
  6851. else if (ms >= 50) {
  6852. delay(50);
  6853. ms -= 50;
  6854. } else {
  6855. delay(ms);
  6856. ms = 0;
  6857. }
  6858. }
  6859. }
  6860. void wait_for_heater(long codenum) {
  6861. #ifdef TEMP_RESIDENCY_TIME
  6862. long residencyStart;
  6863. residencyStart = -1;
  6864. /* continue to loop until we have reached the target temp
  6865. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6866. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6867. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6868. #else
  6869. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6870. #endif //TEMP_RESIDENCY_TIME
  6871. if ((millis() - codenum) > 1000UL)
  6872. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6873. if (!farm_mode) {
  6874. SERIAL_PROTOCOLPGM("T:");
  6875. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6876. SERIAL_PROTOCOLPGM(" E:");
  6877. SERIAL_PROTOCOL((int)tmp_extruder);
  6878. #ifdef TEMP_RESIDENCY_TIME
  6879. SERIAL_PROTOCOLPGM(" W:");
  6880. if (residencyStart > -1)
  6881. {
  6882. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6883. SERIAL_PROTOCOLLN(codenum);
  6884. }
  6885. else
  6886. {
  6887. SERIAL_PROTOCOLLN("?");
  6888. }
  6889. }
  6890. #else
  6891. SERIAL_PROTOCOLLN("");
  6892. #endif
  6893. codenum = millis();
  6894. }
  6895. manage_heater();
  6896. manage_inactivity();
  6897. lcd_update();
  6898. #ifdef TEMP_RESIDENCY_TIME
  6899. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6900. or when current temp falls outside the hysteresis after target temp was reached */
  6901. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6902. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6903. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6904. {
  6905. residencyStart = millis();
  6906. }
  6907. #endif //TEMP_RESIDENCY_TIME
  6908. }
  6909. }
  6910. void check_babystep() {
  6911. int babystep_z;
  6912. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6913. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6914. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6915. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6916. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6917. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6918. lcd_update_enable(true);
  6919. }
  6920. }
  6921. #ifdef DIS
  6922. void d_setup()
  6923. {
  6924. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6925. pinMode(D_DATA, INPUT_PULLUP);
  6926. pinMode(D_REQUIRE, OUTPUT);
  6927. digitalWrite(D_REQUIRE, HIGH);
  6928. }
  6929. float d_ReadData()
  6930. {
  6931. int digit[13];
  6932. String mergeOutput;
  6933. float output;
  6934. digitalWrite(D_REQUIRE, HIGH);
  6935. for (int i = 0; i<13; i++)
  6936. {
  6937. for (int j = 0; j < 4; j++)
  6938. {
  6939. while (digitalRead(D_DATACLOCK) == LOW) {}
  6940. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6941. bitWrite(digit[i], j, digitalRead(D_DATA));
  6942. }
  6943. }
  6944. digitalWrite(D_REQUIRE, LOW);
  6945. mergeOutput = "";
  6946. output = 0;
  6947. for (int r = 5; r <= 10; r++) //Merge digits
  6948. {
  6949. mergeOutput += digit[r];
  6950. }
  6951. output = mergeOutput.toFloat();
  6952. if (digit[4] == 8) //Handle sign
  6953. {
  6954. output *= -1;
  6955. }
  6956. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6957. {
  6958. output /= 10;
  6959. }
  6960. return output;
  6961. }
  6962. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6963. int t1 = 0;
  6964. int t_delay = 0;
  6965. int digit[13];
  6966. int m;
  6967. char str[3];
  6968. //String mergeOutput;
  6969. char mergeOutput[15];
  6970. float output;
  6971. int mesh_point = 0; //index number of calibration point
  6972. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6973. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6974. float mesh_home_z_search = 4;
  6975. float row[x_points_num];
  6976. int ix = 0;
  6977. int iy = 0;
  6978. char* filename_wldsd = "wldsd.txt";
  6979. char data_wldsd[70];
  6980. char numb_wldsd[10];
  6981. d_setup();
  6982. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6983. // We don't know where we are! HOME!
  6984. // Push the commands to the front of the message queue in the reverse order!
  6985. // There shall be always enough space reserved for these commands.
  6986. repeatcommand_front(); // repeat G80 with all its parameters
  6987. enquecommand_front_P((PSTR("G28 W0")));
  6988. enquecommand_front_P((PSTR("G1 Z5")));
  6989. return;
  6990. }
  6991. bool custom_message_old = custom_message;
  6992. unsigned int custom_message_type_old = custom_message_type;
  6993. unsigned int custom_message_state_old = custom_message_state;
  6994. custom_message = true;
  6995. custom_message_type = 1;
  6996. custom_message_state = (x_points_num * y_points_num) + 10;
  6997. lcd_update(1);
  6998. mbl.reset();
  6999. babystep_undo();
  7000. card.openFile(filename_wldsd, false);
  7001. current_position[Z_AXIS] = mesh_home_z_search;
  7002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7003. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7004. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7005. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7006. setup_for_endstop_move(false);
  7007. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7008. SERIAL_PROTOCOL(x_points_num);
  7009. SERIAL_PROTOCOLPGM(",");
  7010. SERIAL_PROTOCOL(y_points_num);
  7011. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7012. SERIAL_PROTOCOL(mesh_home_z_search);
  7013. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7014. SERIAL_PROTOCOL(x_dimension);
  7015. SERIAL_PROTOCOLPGM(",");
  7016. SERIAL_PROTOCOL(y_dimension);
  7017. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7018. while (mesh_point != x_points_num * y_points_num) {
  7019. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7020. iy = mesh_point / x_points_num;
  7021. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7022. float z0 = 0.f;
  7023. current_position[Z_AXIS] = mesh_home_z_search;
  7024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7025. st_synchronize();
  7026. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7027. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7029. st_synchronize();
  7030. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7031. break;
  7032. card.closefile();
  7033. }
  7034. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7035. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7036. //strcat(data_wldsd, numb_wldsd);
  7037. //MYSERIAL.println(data_wldsd);
  7038. //delay(1000);
  7039. //delay(3000);
  7040. //t1 = millis();
  7041. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7042. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7043. memset(digit, 0, sizeof(digit));
  7044. //cli();
  7045. digitalWrite(D_REQUIRE, LOW);
  7046. for (int i = 0; i<13; i++)
  7047. {
  7048. //t1 = millis();
  7049. for (int j = 0; j < 4; j++)
  7050. {
  7051. while (digitalRead(D_DATACLOCK) == LOW) {}
  7052. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7053. bitWrite(digit[i], j, digitalRead(D_DATA));
  7054. }
  7055. //t_delay = (millis() - t1);
  7056. //SERIAL_PROTOCOLPGM(" ");
  7057. //SERIAL_PROTOCOL_F(t_delay, 5);
  7058. //SERIAL_PROTOCOLPGM(" ");
  7059. }
  7060. //sei();
  7061. digitalWrite(D_REQUIRE, HIGH);
  7062. mergeOutput[0] = '\0';
  7063. output = 0;
  7064. for (int r = 5; r <= 10; r++) //Merge digits
  7065. {
  7066. sprintf(str, "%d", digit[r]);
  7067. strcat(mergeOutput, str);
  7068. }
  7069. output = atof(mergeOutput);
  7070. if (digit[4] == 8) //Handle sign
  7071. {
  7072. output *= -1;
  7073. }
  7074. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7075. {
  7076. output *= 0.1;
  7077. }
  7078. //output = d_ReadData();
  7079. //row[ix] = current_position[Z_AXIS];
  7080. memset(data_wldsd, 0, sizeof(data_wldsd));
  7081. for (int i = 0; i <3; i++) {
  7082. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7083. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7084. strcat(data_wldsd, numb_wldsd);
  7085. strcat(data_wldsd, ";");
  7086. }
  7087. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7088. dtostrf(output, 8, 5, numb_wldsd);
  7089. strcat(data_wldsd, numb_wldsd);
  7090. //strcat(data_wldsd, ";");
  7091. card.write_command(data_wldsd);
  7092. //row[ix] = d_ReadData();
  7093. row[ix] = output; // current_position[Z_AXIS];
  7094. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7095. for (int i = 0; i < x_points_num; i++) {
  7096. SERIAL_PROTOCOLPGM(" ");
  7097. SERIAL_PROTOCOL_F(row[i], 5);
  7098. }
  7099. SERIAL_PROTOCOLPGM("\n");
  7100. }
  7101. custom_message_state--;
  7102. mesh_point++;
  7103. lcd_update(1);
  7104. }
  7105. card.closefile();
  7106. }
  7107. #endif
  7108. void temp_compensation_start() {
  7109. custom_message = true;
  7110. custom_message_type = 5;
  7111. custom_message_state = PINDA_HEAT_T + 1;
  7112. lcd_update(2);
  7113. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7114. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7115. }
  7116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7117. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7118. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7119. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7121. st_synchronize();
  7122. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7123. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7124. delay_keep_alive(1000);
  7125. custom_message_state = PINDA_HEAT_T - i;
  7126. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7127. else lcd_update(1);
  7128. }
  7129. custom_message_type = 0;
  7130. custom_message_state = 0;
  7131. custom_message = false;
  7132. }
  7133. void temp_compensation_apply() {
  7134. int i_add;
  7135. int compensation_value;
  7136. int z_shift = 0;
  7137. float z_shift_mm;
  7138. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7139. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7140. i_add = (target_temperature_bed - 60) / 10;
  7141. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7142. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7143. }else {
  7144. //interpolation
  7145. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7146. }
  7147. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7149. st_synchronize();
  7150. plan_set_z_position(current_position[Z_AXIS]);
  7151. }
  7152. else {
  7153. //we have no temp compensation data
  7154. }
  7155. }
  7156. float temp_comp_interpolation(float inp_temperature) {
  7157. //cubic spline interpolation
  7158. int n, i, j, k;
  7159. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7160. int shift[10];
  7161. int temp_C[10];
  7162. n = 6; //number of measured points
  7163. shift[0] = 0;
  7164. for (i = 0; i < n; i++) {
  7165. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7166. temp_C[i] = 50 + i * 10; //temperature in C
  7167. #ifdef PINDA_THERMISTOR
  7168. temp_C[i] = 35 + i * 5; //temperature in C
  7169. #else
  7170. temp_C[i] = 50 + i * 10; //temperature in C
  7171. #endif
  7172. x[i] = (float)temp_C[i];
  7173. f[i] = (float)shift[i];
  7174. }
  7175. if (inp_temperature < x[0]) return 0;
  7176. for (i = n - 1; i>0; i--) {
  7177. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7178. h[i - 1] = x[i] - x[i - 1];
  7179. }
  7180. //*********** formation of h, s , f matrix **************
  7181. for (i = 1; i<n - 1; i++) {
  7182. m[i][i] = 2 * (h[i - 1] + h[i]);
  7183. if (i != 1) {
  7184. m[i][i - 1] = h[i - 1];
  7185. m[i - 1][i] = h[i - 1];
  7186. }
  7187. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7188. }
  7189. //*********** forward elimination **************
  7190. for (i = 1; i<n - 2; i++) {
  7191. temp = (m[i + 1][i] / m[i][i]);
  7192. for (j = 1; j <= n - 1; j++)
  7193. m[i + 1][j] -= temp*m[i][j];
  7194. }
  7195. //*********** backward substitution *********
  7196. for (i = n - 2; i>0; i--) {
  7197. sum = 0;
  7198. for (j = i; j <= n - 2; j++)
  7199. sum += m[i][j] * s[j];
  7200. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7201. }
  7202. for (i = 0; i<n - 1; i++)
  7203. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7204. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7205. b = s[i] / 2;
  7206. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7207. d = f[i];
  7208. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7209. }
  7210. return sum;
  7211. }
  7212. #ifdef PINDA_THERMISTOR
  7213. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7214. {
  7215. if (!temp_cal_active) return 0;
  7216. if (!calibration_status_pinda()) return 0;
  7217. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7218. }
  7219. #endif //PINDA_THERMISTOR
  7220. void long_pause() //long pause print
  7221. {
  7222. st_synchronize();
  7223. //save currently set parameters to global variables
  7224. saved_feedmultiply = feedmultiply;
  7225. HotendTempBckp = degTargetHotend(active_extruder);
  7226. fanSpeedBckp = fanSpeed;
  7227. start_pause_print = millis();
  7228. //save position
  7229. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7230. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7231. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7232. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7233. //retract
  7234. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7236. //lift z
  7237. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7238. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7240. //set nozzle target temperature to 0
  7241. setTargetHotend(0, 0);
  7242. setTargetHotend(0, 1);
  7243. setTargetHotend(0, 2);
  7244. //Move XY to side
  7245. current_position[X_AXIS] = X_PAUSE_POS;
  7246. current_position[Y_AXIS] = Y_PAUSE_POS;
  7247. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7248. // Turn off the print fan
  7249. fanSpeed = 0;
  7250. st_synchronize();
  7251. }
  7252. void serialecho_temperatures() {
  7253. float tt = degHotend(active_extruder);
  7254. SERIAL_PROTOCOLPGM("T:");
  7255. SERIAL_PROTOCOL(tt);
  7256. SERIAL_PROTOCOLPGM(" E:");
  7257. SERIAL_PROTOCOL((int)active_extruder);
  7258. SERIAL_PROTOCOLPGM(" B:");
  7259. SERIAL_PROTOCOL_F(degBed(), 1);
  7260. SERIAL_PROTOCOLLN("");
  7261. }
  7262. extern uint32_t sdpos_atomic;
  7263. #ifdef UVLO_SUPPORT
  7264. void uvlo_()
  7265. {
  7266. unsigned long time_start = millis();
  7267. bool sd_print = card.sdprinting;
  7268. // Conserve power as soon as possible.
  7269. disable_x();
  7270. disable_y();
  7271. #ifdef TMC2130
  7272. tmc2130_set_current_h(Z_AXIS, 20);
  7273. tmc2130_set_current_r(Z_AXIS, 20);
  7274. tmc2130_set_current_h(E_AXIS, 20);
  7275. tmc2130_set_current_r(E_AXIS, 20);
  7276. #endif //TMC2130
  7277. // Indicate that the interrupt has been triggered.
  7278. // SERIAL_ECHOLNPGM("UVLO");
  7279. // Read out the current Z motor microstep counter. This will be later used
  7280. // for reaching the zero full step before powering off.
  7281. uint16_t z_microsteps = 0;
  7282. #ifdef TMC2130
  7283. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7284. #endif //TMC2130
  7285. // Calculate the file position, from which to resume this print.
  7286. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7287. {
  7288. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7289. sd_position -= sdlen_planner;
  7290. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7291. sd_position -= sdlen_cmdqueue;
  7292. if (sd_position < 0) sd_position = 0;
  7293. }
  7294. // Backup the feedrate in mm/min.
  7295. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7296. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7297. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7298. // are in action.
  7299. planner_abort_hard();
  7300. // Store the current extruder position.
  7301. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7302. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7303. // Clean the input command queue.
  7304. cmdqueue_reset();
  7305. card.sdprinting = false;
  7306. // card.closefile();
  7307. // Enable stepper driver interrupt to move Z axis.
  7308. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7309. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7310. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7311. sei();
  7312. plan_buffer_line(
  7313. current_position[X_AXIS],
  7314. current_position[Y_AXIS],
  7315. current_position[Z_AXIS],
  7316. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7317. 95, active_extruder);
  7318. st_synchronize();
  7319. disable_e0();
  7320. plan_buffer_line(
  7321. current_position[X_AXIS],
  7322. current_position[Y_AXIS],
  7323. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7324. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7325. 40, active_extruder);
  7326. st_synchronize();
  7327. disable_e0();
  7328. plan_buffer_line(
  7329. current_position[X_AXIS],
  7330. current_position[Y_AXIS],
  7331. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7332. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7333. 40, active_extruder);
  7334. st_synchronize();
  7335. disable_e0();
  7336. disable_z();
  7337. // Move Z up to the next 0th full step.
  7338. // Write the file position.
  7339. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7340. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7341. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7342. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7343. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7344. // Scale the z value to 1u resolution.
  7345. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7346. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7347. }
  7348. // Read out the current Z motor microstep counter. This will be later used
  7349. // for reaching the zero full step before powering off.
  7350. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7351. // Store the current position.
  7352. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7353. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7354. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7355. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7356. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7357. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7358. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7359. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7360. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7361. #if EXTRUDERS > 1
  7362. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7363. #if EXTRUDERS > 2
  7364. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7365. #endif
  7366. #endif
  7367. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7368. // Finaly store the "power outage" flag.
  7369. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7370. st_synchronize();
  7371. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7372. disable_z();
  7373. // Increment power failure counter
  7374. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7375. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7376. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7377. #if 0
  7378. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7379. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7381. st_synchronize();
  7382. #endif
  7383. cli();
  7384. volatile unsigned int ppcount = 0;
  7385. SET_OUTPUT(BEEPER);
  7386. WRITE(BEEPER, HIGH);
  7387. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7388. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7389. }
  7390. WRITE(BEEPER, LOW);
  7391. while(1){
  7392. #if 1
  7393. WRITE(BEEPER, LOW);
  7394. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7395. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7396. }
  7397. #endif
  7398. };
  7399. }
  7400. #endif //UVLO_SUPPORT
  7401. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7402. void setup_fan_interrupt() {
  7403. //INT7
  7404. DDRE &= ~(1 << 7); //input pin
  7405. PORTE &= ~(1 << 7); //no internal pull-up
  7406. //start with sensing rising edge
  7407. EICRB &= ~(1 << 6);
  7408. EICRB |= (1 << 7);
  7409. //enable INT7 interrupt
  7410. EIMSK |= (1 << 7);
  7411. }
  7412. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7413. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7414. ISR(INT7_vect) {
  7415. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7416. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7417. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7418. t_fan_rising_edge = millis_nc();
  7419. }
  7420. else { //interrupt was triggered by falling edge
  7421. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7422. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7423. }
  7424. }
  7425. EICRB ^= (1 << 6); //change edge
  7426. }
  7427. #endif
  7428. #ifdef UVLO_SUPPORT
  7429. void setup_uvlo_interrupt() {
  7430. DDRE &= ~(1 << 4); //input pin
  7431. PORTE &= ~(1 << 4); //no internal pull-up
  7432. //sensing falling edge
  7433. EICRB |= (1 << 0);
  7434. EICRB &= ~(1 << 1);
  7435. //enable INT4 interrupt
  7436. EIMSK |= (1 << 4);
  7437. }
  7438. ISR(INT4_vect) {
  7439. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7440. SERIAL_ECHOLNPGM("INT4");
  7441. if (IS_SD_PRINTING) uvlo_();
  7442. }
  7443. void recover_print(uint8_t automatic) {
  7444. char cmd[30];
  7445. lcd_update_enable(true);
  7446. lcd_update(2);
  7447. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7448. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7449. // Lift the print head, so one may remove the excess priming material.
  7450. if (current_position[Z_AXIS] < 25)
  7451. enquecommand_P(PSTR("G1 Z25 F800"));
  7452. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7453. enquecommand_P(PSTR("G28 X Y"));
  7454. // Set the target bed and nozzle temperatures and wait.
  7455. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7456. enquecommand(cmd);
  7457. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7458. enquecommand(cmd);
  7459. enquecommand_P(PSTR("M83")); //E axis relative mode
  7460. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7461. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7462. if(automatic == 0){
  7463. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7464. }
  7465. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7466. // Mark the power panic status as inactive.
  7467. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7468. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7469. delay_keep_alive(1000);
  7470. }*/
  7471. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7472. // Restart the print.
  7473. restore_print_from_eeprom();
  7474. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7475. }
  7476. void recover_machine_state_after_power_panic()
  7477. {
  7478. char cmd[30];
  7479. // 1) Recover the logical cordinates at the time of the power panic.
  7480. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7481. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7482. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7483. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7484. // The current position after power panic is moved to the next closest 0th full step.
  7485. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7486. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7487. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7488. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7489. sprintf_P(cmd, PSTR("G92 E"));
  7490. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7491. enquecommand(cmd);
  7492. }
  7493. memcpy(destination, current_position, sizeof(destination));
  7494. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7495. print_world_coordinates();
  7496. // 2) Initialize the logical to physical coordinate system transformation.
  7497. world2machine_initialize();
  7498. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7499. mbl.active = false;
  7500. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7501. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7502. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7503. // Scale the z value to 10u resolution.
  7504. int16_t v;
  7505. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7506. if (v != 0)
  7507. mbl.active = true;
  7508. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7509. }
  7510. if (mbl.active)
  7511. mbl.upsample_3x3();
  7512. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7513. // print_mesh_bed_leveling_table();
  7514. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7515. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7516. babystep_load();
  7517. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7518. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7519. // 6) Power up the motors, mark their positions as known.
  7520. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7521. axis_known_position[X_AXIS] = true; enable_x();
  7522. axis_known_position[Y_AXIS] = true; enable_y();
  7523. axis_known_position[Z_AXIS] = true; enable_z();
  7524. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7525. print_physical_coordinates();
  7526. // 7) Recover the target temperatures.
  7527. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7528. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7529. // 8) Recover extruder multipilers
  7530. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7531. #if EXTRUDERS > 1
  7532. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7533. #if EXTRUDERS > 2
  7534. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7535. #endif
  7536. #endif
  7537. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7538. }
  7539. void restore_print_from_eeprom() {
  7540. float x_rec, y_rec, z_pos;
  7541. int feedrate_rec;
  7542. uint8_t fan_speed_rec;
  7543. char cmd[30];
  7544. char* c;
  7545. char filename[13];
  7546. uint8_t depth = 0;
  7547. char dir_name[9];
  7548. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7549. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7550. SERIAL_ECHOPGM("Feedrate:");
  7551. MYSERIAL.println(feedrate_rec);
  7552. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7553. MYSERIAL.println(int(depth));
  7554. for (int i = 0; i < depth; i++) {
  7555. for (int j = 0; j < 8; j++) {
  7556. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7557. }
  7558. dir_name[8] = '\0';
  7559. MYSERIAL.println(dir_name);
  7560. strcpy(dir_names[i], dir_name);
  7561. card.chdir(dir_name);
  7562. }
  7563. for (int i = 0; i < 8; i++) {
  7564. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7565. }
  7566. filename[8] = '\0';
  7567. MYSERIAL.print(filename);
  7568. strcat_P(filename, PSTR(".gco"));
  7569. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7570. enquecommand(cmd);
  7571. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7572. SERIAL_ECHOPGM("Position read from eeprom:");
  7573. MYSERIAL.println(position);
  7574. // E axis relative mode.
  7575. enquecommand_P(PSTR("M83"));
  7576. // Move to the XY print position in logical coordinates, where the print has been killed.
  7577. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7578. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7579. strcat_P(cmd, PSTR(" F2000"));
  7580. enquecommand(cmd);
  7581. // Move the Z axis down to the print, in logical coordinates.
  7582. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7583. enquecommand(cmd);
  7584. // Unretract.
  7585. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7586. // Set the feedrate saved at the power panic.
  7587. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7588. enquecommand(cmd);
  7589. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7590. {
  7591. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7592. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7593. }
  7594. // Set the fan speed saved at the power panic.
  7595. strcpy_P(cmd, PSTR("M106 S"));
  7596. strcat(cmd, itostr3(int(fan_speed_rec)));
  7597. enquecommand(cmd);
  7598. // Set a position in the file.
  7599. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7600. enquecommand(cmd);
  7601. // Start SD print.
  7602. enquecommand_P(PSTR("M24"));
  7603. }
  7604. #endif //UVLO_SUPPORT
  7605. ////////////////////////////////////////////////////////////////////////////////
  7606. // save/restore printing
  7607. void stop_and_save_print_to_ram(float z_move, float e_move)
  7608. {
  7609. if (saved_printing) return;
  7610. unsigned char nplanner_blocks;
  7611. unsigned char nlines;
  7612. uint16_t sdlen_planner;
  7613. uint16_t sdlen_cmdqueue;
  7614. cli();
  7615. if (card.sdprinting) {
  7616. nplanner_blocks = number_of_blocks();
  7617. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7618. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7619. saved_sdpos -= sdlen_planner;
  7620. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7621. saved_sdpos -= sdlen_cmdqueue;
  7622. saved_printing_type = PRINTING_TYPE_SD;
  7623. }
  7624. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7625. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7626. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7627. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7628. saved_sdpos -= nlines;
  7629. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7630. saved_printing_type = PRINTING_TYPE_USB;
  7631. }
  7632. else {
  7633. //not sd printing nor usb printing
  7634. }
  7635. #if 0
  7636. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7637. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7638. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7639. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7640. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7641. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7642. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7643. {
  7644. card.setIndex(saved_sdpos);
  7645. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7646. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7647. MYSERIAL.print(char(card.get()));
  7648. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7649. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7650. MYSERIAL.print(char(card.get()));
  7651. SERIAL_ECHOLNPGM("End of command buffer");
  7652. }
  7653. {
  7654. // Print the content of the planner buffer, line by line:
  7655. card.setIndex(saved_sdpos);
  7656. int8_t iline = 0;
  7657. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7658. SERIAL_ECHOPGM("Planner line (from file): ");
  7659. MYSERIAL.print(int(iline), DEC);
  7660. SERIAL_ECHOPGM(", length: ");
  7661. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7662. SERIAL_ECHOPGM(", steps: (");
  7663. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7664. SERIAL_ECHOPGM(",");
  7665. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7666. SERIAL_ECHOPGM(",");
  7667. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7668. SERIAL_ECHOPGM(",");
  7669. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7670. SERIAL_ECHOPGM("), events: ");
  7671. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7672. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7673. MYSERIAL.print(char(card.get()));
  7674. }
  7675. }
  7676. {
  7677. // Print the content of the command buffer, line by line:
  7678. int8_t iline = 0;
  7679. union {
  7680. struct {
  7681. char lo;
  7682. char hi;
  7683. } lohi;
  7684. uint16_t value;
  7685. } sdlen_single;
  7686. int _bufindr = bufindr;
  7687. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7688. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7689. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7690. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7691. }
  7692. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7693. MYSERIAL.print(int(iline), DEC);
  7694. SERIAL_ECHOPGM(", type: ");
  7695. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7696. SERIAL_ECHOPGM(", len: ");
  7697. MYSERIAL.println(sdlen_single.value, DEC);
  7698. // Print the content of the buffer line.
  7699. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7700. SERIAL_ECHOPGM("Buffer line (from file): ");
  7701. MYSERIAL.println(int(iline), DEC);
  7702. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7703. MYSERIAL.print(char(card.get()));
  7704. if (-- _buflen == 0)
  7705. break;
  7706. // First skip the current command ID and iterate up to the end of the string.
  7707. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7708. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7709. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7710. // If the end of the buffer was empty,
  7711. if (_bufindr == sizeof(cmdbuffer)) {
  7712. // skip to the start and find the nonzero command.
  7713. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7714. }
  7715. }
  7716. }
  7717. #endif
  7718. #if 0
  7719. saved_feedrate2 = feedrate; //save feedrate
  7720. #else
  7721. // Try to deduce the feedrate from the first block of the planner.
  7722. // Speed is in mm/min.
  7723. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7724. #endif
  7725. planner_abort_hard(); //abort printing
  7726. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7727. saved_active_extruder = active_extruder; //save active_extruder
  7728. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7729. cmdqueue_reset(); //empty cmdqueue
  7730. card.sdprinting = false;
  7731. // card.closefile();
  7732. saved_printing = true;
  7733. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7734. st_reset_timer();
  7735. sei();
  7736. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7737. #if 1
  7738. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7739. char buf[48];
  7740. // First unretract (relative extrusion)
  7741. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7742. if(!saved_extruder_relative_mode){
  7743. strcpy_P(buf, PSTR("M83"));
  7744. enquecommand(buf, false);
  7745. }
  7746. //retract 45mm/s
  7747. strcpy_P(buf, PSTR("G1 E"));
  7748. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7749. strcat_P(buf, PSTR(" F"));
  7750. dtostrf(2700, 8, 3, buf + strlen(buf));
  7751. enquecommand(buf, false);
  7752. // Then lift Z axis
  7753. strcpy_P(buf, PSTR("G1 Z"));
  7754. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7755. strcat_P(buf, PSTR(" F"));
  7756. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7757. // At this point the command queue is empty.
  7758. enquecommand(buf, false);
  7759. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7760. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7761. repeatcommand_front();
  7762. #else
  7763. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7764. st_synchronize(); //wait moving
  7765. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7766. memcpy(destination, current_position, sizeof(destination));
  7767. #endif
  7768. }
  7769. }
  7770. void restore_print_from_ram_and_continue(float e_move)
  7771. {
  7772. if (!saved_printing) return;
  7773. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7774. // current_position[axis] = st_get_position_mm(axis);
  7775. active_extruder = saved_active_extruder; //restore active_extruder
  7776. feedrate = saved_feedrate2; //restore feedrate
  7777. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7778. float e = saved_pos[E_AXIS] - e_move;
  7779. plan_set_e_position(e);
  7780. //first move print head in XY to the saved position:
  7781. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7782. st_synchronize();
  7783. //then move Z
  7784. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7785. st_synchronize();
  7786. //and finaly unretract (35mm/s)
  7787. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7788. st_synchronize();
  7789. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7790. memcpy(destination, current_position, sizeof(destination));
  7791. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7792. card.setIndex(saved_sdpos);
  7793. sdpos_atomic = saved_sdpos;
  7794. card.sdprinting = true;
  7795. }
  7796. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7797. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7798. serial_count = 0;
  7799. FlushSerialRequestResend();
  7800. }
  7801. else {
  7802. //not sd printing nor usb printing
  7803. }
  7804. lcd_setstatuspgm(_T(WELCOME_MSG));
  7805. saved_printing = false;
  7806. }
  7807. void print_world_coordinates()
  7808. {
  7809. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7810. }
  7811. void print_physical_coordinates()
  7812. {
  7813. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7814. }
  7815. void print_mesh_bed_leveling_table()
  7816. {
  7817. SERIAL_ECHOPGM("mesh bed leveling: ");
  7818. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7819. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7820. MYSERIAL.print(mbl.z_values[y][x], 3);
  7821. SERIAL_ECHOPGM(" ");
  7822. }
  7823. SERIAL_ECHOLNPGM("");
  7824. }
  7825. uint16_t print_time_remaining() {
  7826. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7827. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7828. else print_t = print_time_remaining_silent;
  7829. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7830. return print_t;
  7831. }
  7832. uint8_t print_percent_done() {
  7833. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7834. uint8_t percent_done = 0;
  7835. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7836. percent_done = print_percent_done_normal;
  7837. }
  7838. else if (print_percent_done_silent <= 100) {
  7839. percent_done = print_percent_done_silent;
  7840. }
  7841. else {
  7842. percent_done = card.percentDone();
  7843. }
  7844. return percent_done;
  7845. }
  7846. static void print_time_remaining_init() {
  7847. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7848. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7849. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7850. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7851. }
  7852. #define FIL_LOAD_LENGTH 60