123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- //swi2c.c
- #include "swi2c.h"
- #include <avr/io.h>
- #include <util/delay.h>
- #include <avr/pgmspace.h>
- #include "stdbool.h"
- #include "Configuration_prusa.h"
- #include "pins.h"
- #include "fastio.h"
- #ifdef SWI2C_SCL
- #define SWI2C_RMSK 0x01 //read mask (bit0 = 1)
- #define SWI2C_WMSK 0x00 //write mask (bit0 = 0)
- #define SWI2C_ASHF 0x01 //address shift (<< 1)
- #define SWI2C_DMSK 0x7f //device address mask
- static void __delay(void);
- static void swi2c_start(void);
- static void swi2c_stop(void);
- // static void swi2c_ack(void);
- static void swi2c_nack(void);
- static uint8_t swi2c_wait_ack();
- static uint8_t swi2c_read(void);
- static void swi2c_write(uint8_t data);
- void swi2c_init(void)
- {
- SET_INPUT(SWI2C_SDA);
- WRITE(SWI2C_SDA, 1); //SDA must be input with pullups while we are not sure if the slave is outputing or not
- WRITE(SWI2C_SCL, 0);
- SET_OUTPUT(SWI2C_SCL); //SCL can be an output at all times. The bus is not in a multi-master configuration.
- for (uint8_t i = 0; i < 100; i++) //wait. Not sure what for, but wait anyway.
- __delay();
- for (uint8_t i = 0; i < 10; i++) { //send nack 10 times. This makes sure that the slave gets a nack regardless of it's state when we init the bus.
- swi2c_nack();
- }
- swi2c_stop(); //"release" the bus by sending a stop condition.
- SET_OUTPUT(SWI2C_SDA); //finally make the SDA line an output since the bus is idle for sure.
- }
- void swi2c_disable(void)
- {
- SET_INPUT(SWI2C_SDA);
- WRITE(SWI2C_SDA, 0);
- SET_INPUT(SWI2C_SCL);
- WRITE(SWI2C_SCL, 0);
- }
- static void __delay(void)
- {
- _delay_us(1.5);
- }
- static void swi2c_start(void)
- {
- WRITE(SWI2C_SDA, 0);
- __delay();
- WRITE(SWI2C_SCL, 0);
- __delay();
- }
- static void swi2c_stop(void)
- {
- WRITE(SWI2C_SCL, 1);
- __delay();
- WRITE(SWI2C_SDA, 1);
- __delay();
- }
- /*
- static void swi2c_ack(void)
- {
- WRITE(SWI2C_SDA, 0);
- __delay();
- WRITE(SWI2C_SCL, 1);
- __delay();
- WRITE(SWI2C_SCL, 0);
- __delay();
- }
- */
- static void swi2c_nack(void)
- {
- WRITE(SWI2C_SDA, 1);
- __delay();
- WRITE(SWI2C_SCL, 1);
- __delay();
- WRITE(SWI2C_SCL, 0);
- __delay();
- }
- static uint8_t swi2c_wait_ack()
- {
- SET_INPUT(SWI2C_SDA);
- __delay();
- // WRITE(SWI2C_SDA, 1);
- __delay();
- WRITE(SWI2C_SCL, 1);
- // __delay();
- uint8_t ack = 0;
- uint16_t ackto = SWI2C_TMO;
- while (!(ack = (!READ(SWI2C_SDA))) && ackto--) __delay();
- WRITE(SWI2C_SCL, 0);
- __delay();
- SET_OUTPUT(SWI2C_SDA);
- __delay();
- WRITE(SWI2C_SDA, 0);
- __delay();
- return ack;
- }
- static uint8_t swi2c_read(void)
- {
- WRITE(SWI2C_SDA, 1);
- __delay();
- SET_INPUT(SWI2C_SDA);
- uint8_t data = 0;
- for (uint8_t bit = 8; bit-- > 0;)
- {
- WRITE(SWI2C_SCL, 1);
- __delay();
- data |= (READ(SWI2C_SDA)) << bit;
- WRITE(SWI2C_SCL, 0);
- __delay();
- }
- SET_OUTPUT(SWI2C_SDA);
- return data;
- }
- static void swi2c_write(uint8_t data)
- {
- for (uint8_t bit = 8; bit-- > 0;)
- {
- WRITE(SWI2C_SDA, data & _BV(bit));
- __delay();
- WRITE(SWI2C_SCL, 1);
- __delay();
- WRITE(SWI2C_SCL, 0);
- __delay();
- }
- }
- uint8_t swi2c_check(uint8_t dev_addr)
- {
- swi2c_start();
- swi2c_write((dev_addr & SWI2C_DMSK) << SWI2C_ASHF);
- if (!swi2c_wait_ack()) { swi2c_stop(); return 1; }
- swi2c_stop();
- return 0;
- }
- #ifdef SWI2C_A8 //8bit address
- uint8_t swi2c_readByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte)
- {
- swi2c_start();
- swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
- if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
- swi2c_write(addr & 0xff);
- if (!swi2c_wait_ack()) return 0;
- swi2c_stop();
- swi2c_start();
- swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
- if (!swi2c_wait_ack()) return 0;
- uint8_t byte = swi2c_read();
- swi2c_stop();
- if (pbyte) *pbyte = byte;
- return 1;
- }
- uint8_t swi2c_writeByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte)
- {
- swi2c_start();
- swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
- if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
- swi2c_write(addr & 0xff);
- if (!swi2c_wait_ack()) return 0;
- swi2c_write(*pbyte);
- if (!swi2c_wait_ack()) return 0;
- swi2c_stop();
- return 1;
- }
- #endif //SWI2C_A8
- #ifdef SWI2C_A16 //16bit address
- uint8_t swi2c_readByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte)
- {
- swi2c_start();
- swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
- if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
- swi2c_write(addr >> 8);
- if (!swi2c_wait_ack()) return 0;
- swi2c_write(addr & 0xff);
- if (!swi2c_wait_ack()) return 0;
- swi2c_stop();
- swi2c_start();
- swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
- if (!swi2c_wait_ack()) return 0;
- uint8_t byte = swi2c_read();
- swi2c_stop();
- if (pbyte) *pbyte = byte;
- return 1;
- }
- uint8_t swi2c_writeByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte)
- {
- swi2c_start();
- swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
- if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
- swi2c_write(addr >> 8);
- if (!swi2c_wait_ack()) return 0;
- swi2c_write(addr & 0xff);
- if (!swi2c_wait_ack()) return 0;
- swi2c_write(*pbyte);
- if (!swi2c_wait_ack()) return 0;
- swi2c_stop();
- return 1;
- }
- #endif //SWI2C_A16
- #endif //SWI2C_SCL
|