Marlin_main.cpp 210 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "pat9125.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "watchdog.h"
  43. #include "ConfigurationStore.h"
  44. #include "language.h"
  45. #include "pins_arduino.h"
  46. #include "math.h"
  47. #include "util.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // P Y - Starts filament allignment process for multicolor
  75. // G0 -> G1
  76. // G1 - Coordinated Movement X Y Z E
  77. // G2 - CW ARC
  78. // G3 - CCW ARC
  79. // G4 - Dwell S<seconds> or P<milliseconds>
  80. // G10 - retract filament according to settings of M207
  81. // G11 - retract recover filament according to settings of M208
  82. // G28 - Home all Axis
  83. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. // G30 - Single Z Probe, probes bed at current XY location.
  85. // G31 - Dock sled (Z_PROBE_SLED only)
  86. // G32 - Undock sled (Z_PROBE_SLED only)
  87. // G80 - Automatic mesh bed leveling
  88. // G81 - Print bed profile
  89. // G90 - Use Absolute Coordinates
  90. // G91 - Use Relative Coordinates
  91. // G92 - Set current position to coordinates given
  92. // M Codes
  93. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. // M1 - Same as M0
  95. // M17 - Enable/Power all stepper motors
  96. // M18 - Disable all stepper motors; same as M84
  97. // M20 - List SD card
  98. // M21 - Init SD card
  99. // M22 - Release SD card
  100. // M23 - Select SD file (M23 filename.g)
  101. // M24 - Start/resume SD print
  102. // M25 - Pause SD print
  103. // M26 - Set SD position in bytes (M26 S12345)
  104. // M27 - Report SD print status
  105. // M28 - Start SD write (M28 filename.g)
  106. // M29 - Stop SD write
  107. // M30 - Delete file from SD (M30 filename.g)
  108. // M31 - Output time since last M109 or SD card start to serial
  109. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  114. // M80 - Turn on Power Supply
  115. // M81 - Turn off Power Supply
  116. // M82 - Set E codes absolute (default)
  117. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  118. // M84 - Disable steppers until next move,
  119. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  120. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  121. // M92 - Set axis_steps_per_unit - same syntax as G92
  122. // M104 - Set extruder target temp
  123. // M105 - Read current temp
  124. // M106 - Fan on
  125. // M107 - Fan off
  126. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  127. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  128. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  129. // M112 - Emergency stop
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. unsigned long PingTime = millis();
  198. union Data
  199. {
  200. byte b[2];
  201. int value;
  202. };
  203. float homing_feedrate[] = HOMING_FEEDRATE;
  204. // Currently only the extruder axis may be switched to a relative mode.
  205. // Other axes are always absolute or relative based on the common relative_mode flag.
  206. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  207. int feedmultiply=100; //100->1 200->2
  208. int saved_feedmultiply;
  209. int extrudemultiply=100; //100->1 200->2
  210. int extruder_multiply[EXTRUDERS] = {100
  211. #if EXTRUDERS > 1
  212. , 100
  213. #if EXTRUDERS > 2
  214. , 100
  215. #endif
  216. #endif
  217. };
  218. bool is_usb_printing = false;
  219. bool homing_flag = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. unsigned char lang_selected = 0;
  225. int8_t FarmMode = 0;
  226. bool prusa_sd_card_upload = false;
  227. unsigned int status_number = 0;
  228. unsigned long total_filament_used;
  229. unsigned int heating_status;
  230. unsigned int heating_status_counter;
  231. bool custom_message;
  232. bool loading_flag = false;
  233. unsigned int custom_message_type;
  234. unsigned int custom_message_state;
  235. bool volumetric_enabled = false;
  236. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  237. #if EXTRUDERS > 1
  238. , DEFAULT_NOMINAL_FILAMENT_DIA
  239. #if EXTRUDERS > 2
  240. , DEFAULT_NOMINAL_FILAMENT_DIA
  241. #endif
  242. #endif
  243. };
  244. float volumetric_multiplier[EXTRUDERS] = {1.0
  245. #if EXTRUDERS > 1
  246. , 1.0
  247. #if EXTRUDERS > 2
  248. , 1.0
  249. #endif
  250. #endif
  251. };
  252. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  253. float add_homing[3]={0,0,0};
  254. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  255. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  256. bool axis_known_position[3] = {false, false, false};
  257. float zprobe_zoffset;
  258. // Extruder offset
  259. #if EXTRUDERS > 1
  260. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  261. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  262. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  263. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  264. #endif
  265. };
  266. #endif
  267. uint8_t active_extruder = 0;
  268. int fanSpeed=0;
  269. #ifdef FWRETRACT
  270. bool autoretract_enabled=false;
  271. bool retracted[EXTRUDERS]={false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #endif
  277. #endif
  278. };
  279. bool retracted_swap[EXTRUDERS]={false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #endif
  285. #endif
  286. };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif
  295. #ifdef ULTIPANEL
  296. #ifdef PS_DEFAULT_OFF
  297. bool powersupply = false;
  298. #else
  299. bool powersupply = true;
  300. #endif
  301. #endif
  302. bool cancel_heatup = false ;
  303. #ifdef FILAMENT_SENSOR
  304. //Variables for Filament Sensor input
  305. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  306. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  307. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  308. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  309. int delay_index1=0; //index into ring buffer
  310. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  311. float delay_dist=0; //delay distance counter
  312. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  313. #endif
  314. const char errormagic[] PROGMEM = "Error:";
  315. const char echomagic[] PROGMEM = "echo:";
  316. //===========================================================================
  317. //=============================Private Variables=============================
  318. //===========================================================================
  319. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  320. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  321. static float delta[3] = {0.0, 0.0, 0.0};
  322. // For tracing an arc
  323. static float offset[3] = {0.0, 0.0, 0.0};
  324. static bool home_all_axis = true;
  325. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  326. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  327. // Determines Absolute or Relative Coordinates.
  328. // Also there is bool axis_relative_modes[] per axis flag.
  329. static bool relative_mode = false;
  330. // String circular buffer. Commands may be pushed to the buffer from both sides:
  331. // Chained commands will be pushed to the front, interactive (from LCD menu)
  332. // and printing commands (from serial line or from SD card) are pushed to the tail.
  333. // First character of each entry indicates the type of the entry:
  334. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  335. // Command in cmdbuffer was sent over USB.
  336. #define CMDBUFFER_CURRENT_TYPE_USB 1
  337. // Command in cmdbuffer was read from SDCARD.
  338. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  339. // Command in cmdbuffer was generated by the UI.
  340. #define CMDBUFFER_CURRENT_TYPE_UI 3
  341. // Command in cmdbuffer was generated by another G-code.
  342. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  343. // How much space to reserve for the chained commands
  344. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  345. // which are pushed to the front of the queue?
  346. // Maximum 5 commands of max length 20 + null terminator.
  347. #define CMDBUFFER_RESERVE_FRONT (5*21)
  348. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  349. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  350. // Head of the circular buffer, where to read.
  351. static int bufindr = 0;
  352. // Tail of the buffer, where to write.
  353. static int bufindw = 0;
  354. // Number of lines in cmdbuffer.
  355. static int buflen = 0;
  356. // Flag for processing the current command inside the main Arduino loop().
  357. // If a new command was pushed to the front of a command buffer while
  358. // processing another command, this replaces the command on the top.
  359. // Therefore don't remove the command from the queue in the loop() function.
  360. static bool cmdbuffer_front_already_processed = false;
  361. // Type of a command, which is to be executed right now.
  362. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  363. // String of a command, which is to be executed right now.
  364. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  365. // Enable debugging of the command buffer.
  366. // Debugging information will be sent to serial line.
  367. // #define CMDBUFFER_DEBUG
  368. static int serial_count = 0; //index of character read from serial line
  369. static boolean comment_mode = false;
  370. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. //static float tt = 0;
  373. //static float bt = 0;
  374. //Inactivity shutdown variables
  375. static unsigned long previous_millis_cmd = 0;
  376. unsigned long max_inactive_time = 0;
  377. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  378. unsigned long starttime=0;
  379. unsigned long stoptime=0;
  380. unsigned long _usb_timer = 0;
  381. static uint8_t tmp_extruder;
  382. bool Stopped=false;
  383. #if NUM_SERVOS > 0
  384. Servo servos[NUM_SERVOS];
  385. #endif
  386. bool CooldownNoWait = true;
  387. bool target_direction;
  388. //Insert variables if CHDK is defined
  389. #ifdef CHDK
  390. unsigned long chdkHigh = 0;
  391. boolean chdkActive = false;
  392. #endif
  393. //===========================================================================
  394. //=============================Routines======================================
  395. //===========================================================================
  396. void get_arc_coordinates();
  397. bool setTargetedHotend(int code);
  398. void serial_echopair_P(const char *s_P, float v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. void serial_echopair_P(const char *s_P, double v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, unsigned long v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. #ifdef SDSUPPORT
  405. #include "SdFatUtil.h"
  406. int freeMemory() { return SdFatUtil::FreeRam(); }
  407. #else
  408. extern "C" {
  409. extern unsigned int __bss_end;
  410. extern unsigned int __heap_start;
  411. extern void *__brkval;
  412. int freeMemory() {
  413. int free_memory;
  414. if ((int)__brkval == 0)
  415. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  416. else
  417. free_memory = ((int)&free_memory) - ((int)__brkval);
  418. return free_memory;
  419. }
  420. }
  421. #endif //!SDSUPPORT
  422. // Pop the currently processed command from the queue.
  423. // It is expected, that there is at least one command in the queue.
  424. bool cmdqueue_pop_front()
  425. {
  426. if (buflen > 0) {
  427. #ifdef CMDBUFFER_DEBUG
  428. SERIAL_ECHOPGM("Dequeing ");
  429. SERIAL_ECHO(cmdbuffer+bufindr+1);
  430. SERIAL_ECHOLNPGM("");
  431. SERIAL_ECHOPGM("Old indices: buflen ");
  432. SERIAL_ECHO(buflen);
  433. SERIAL_ECHOPGM(", bufindr ");
  434. SERIAL_ECHO(bufindr);
  435. SERIAL_ECHOPGM(", bufindw ");
  436. SERIAL_ECHO(bufindw);
  437. SERIAL_ECHOPGM(", serial_count ");
  438. SERIAL_ECHO(serial_count);
  439. SERIAL_ECHOPGM(", bufsize ");
  440. SERIAL_ECHO(sizeof(cmdbuffer));
  441. SERIAL_ECHOLNPGM("");
  442. #endif /* CMDBUFFER_DEBUG */
  443. if (-- buflen == 0) {
  444. // Empty buffer.
  445. if (serial_count == 0)
  446. // No serial communication is pending. Reset both pointers to zero.
  447. bufindw = 0;
  448. bufindr = bufindw;
  449. } else {
  450. // There is at least one ready line in the buffer.
  451. // First skip the current command ID and iterate up to the end of the string.
  452. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  453. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  454. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  455. // If the end of the buffer was empty,
  456. if (bufindr == sizeof(cmdbuffer)) {
  457. // skip to the start and find the nonzero command.
  458. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  459. }
  460. #ifdef CMDBUFFER_DEBUG
  461. SERIAL_ECHOPGM("New indices: buflen ");
  462. SERIAL_ECHO(buflen);
  463. SERIAL_ECHOPGM(", bufindr ");
  464. SERIAL_ECHO(bufindr);
  465. SERIAL_ECHOPGM(", bufindw ");
  466. SERIAL_ECHO(bufindw);
  467. SERIAL_ECHOPGM(", serial_count ");
  468. SERIAL_ECHO(serial_count);
  469. SERIAL_ECHOPGM(" new command on the top: ");
  470. SERIAL_ECHO(cmdbuffer+bufindr+1);
  471. SERIAL_ECHOLNPGM("");
  472. #endif /* CMDBUFFER_DEBUG */
  473. }
  474. return true;
  475. }
  476. return false;
  477. }
  478. void cmdqueue_reset()
  479. {
  480. while (cmdqueue_pop_front()) ;
  481. }
  482. // How long a string could be pushed to the front of the command queue?
  483. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  484. // len_asked does not contain the zero terminator size.
  485. bool cmdqueue_could_enqueue_front(int len_asked)
  486. {
  487. // MAX_CMD_SIZE has to accommodate the zero terminator.
  488. if (len_asked >= MAX_CMD_SIZE)
  489. return false;
  490. // Remove the currently processed command from the queue.
  491. if (! cmdbuffer_front_already_processed) {
  492. cmdqueue_pop_front();
  493. cmdbuffer_front_already_processed = true;
  494. }
  495. if (bufindr == bufindw && buflen > 0)
  496. // Full buffer.
  497. return false;
  498. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  499. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  500. if (bufindw < bufindr) {
  501. int bufindr_new = bufindr - len_asked - 2;
  502. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  503. if (endw <= bufindr_new) {
  504. bufindr = bufindr_new;
  505. return true;
  506. }
  507. } else {
  508. // Otherwise the free space is split between the start and end.
  509. if (len_asked + 2 <= bufindr) {
  510. // Could fit at the start.
  511. bufindr -= len_asked + 2;
  512. return true;
  513. }
  514. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  515. if (endw <= bufindr_new) {
  516. memset(cmdbuffer, 0, bufindr);
  517. bufindr = bufindr_new;
  518. return true;
  519. }
  520. }
  521. return false;
  522. }
  523. // Could one enqueue a command of lenthg len_asked into the buffer,
  524. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  525. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  526. // len_asked does not contain the zero terminator size.
  527. bool cmdqueue_could_enqueue_back(int len_asked)
  528. {
  529. // MAX_CMD_SIZE has to accommodate the zero terminator.
  530. if (len_asked >= MAX_CMD_SIZE)
  531. return false;
  532. if (bufindr == bufindw && buflen > 0)
  533. // Full buffer.
  534. return false;
  535. if (serial_count > 0) {
  536. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  537. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  538. // serial data.
  539. // How much memory to reserve for the commands pushed to the front?
  540. // End of the queue, when pushing to the end.
  541. int endw = bufindw + len_asked + 2;
  542. if (bufindw < bufindr)
  543. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  544. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  545. // Otherwise the free space is split between the start and end.
  546. if (// Could one fit to the end, including the reserve?
  547. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  548. // Could one fit to the end, and the reserve to the start?
  549. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  550. return true;
  551. // Could one fit both to the start?
  552. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  553. // Mark the rest of the buffer as used.
  554. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  555. // and point to the start.
  556. bufindw = 0;
  557. return true;
  558. }
  559. } else {
  560. // How much memory to reserve for the commands pushed to the front?
  561. // End of the queue, when pushing to the end.
  562. int endw = bufindw + len_asked + 2;
  563. if (bufindw < bufindr)
  564. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  565. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  566. // Otherwise the free space is split between the start and end.
  567. if (// Could one fit to the end, including the reserve?
  568. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  569. // Could one fit to the end, and the reserve to the start?
  570. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  571. return true;
  572. // Could one fit both to the start?
  573. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  574. // Mark the rest of the buffer as used.
  575. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  576. // and point to the start.
  577. bufindw = 0;
  578. return true;
  579. }
  580. }
  581. return false;
  582. }
  583. #ifdef CMDBUFFER_DEBUG
  584. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  585. {
  586. SERIAL_ECHOPGM("Entry nr: ");
  587. SERIAL_ECHO(nr);
  588. SERIAL_ECHOPGM(", type: ");
  589. SERIAL_ECHO(int(*p));
  590. SERIAL_ECHOPGM(", cmd: ");
  591. SERIAL_ECHO(p+1);
  592. SERIAL_ECHOLNPGM("");
  593. }
  594. static void cmdqueue_dump_to_serial()
  595. {
  596. if (buflen == 0) {
  597. SERIAL_ECHOLNPGM("The command buffer is empty.");
  598. } else {
  599. SERIAL_ECHOPGM("Content of the buffer: entries ");
  600. SERIAL_ECHO(buflen);
  601. SERIAL_ECHOPGM(", indr ");
  602. SERIAL_ECHO(bufindr);
  603. SERIAL_ECHOPGM(", indw ");
  604. SERIAL_ECHO(bufindw);
  605. SERIAL_ECHOLNPGM("");
  606. int nr = 0;
  607. if (bufindr < bufindw) {
  608. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  609. cmdqueue_dump_to_serial_single_line(nr, p);
  610. // Skip the command.
  611. for (++p; *p != 0; ++ p);
  612. // Skip the gaps.
  613. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  614. }
  615. } else {
  616. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  617. cmdqueue_dump_to_serial_single_line(nr, p);
  618. // Skip the command.
  619. for (++p; *p != 0; ++ p);
  620. // Skip the gaps.
  621. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  622. }
  623. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  624. cmdqueue_dump_to_serial_single_line(nr, p);
  625. // Skip the command.
  626. for (++p; *p != 0; ++ p);
  627. // Skip the gaps.
  628. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  629. }
  630. }
  631. SERIAL_ECHOLNPGM("End of the buffer.");
  632. }
  633. }
  634. #endif /* CMDBUFFER_DEBUG */
  635. //adds an command to the main command buffer
  636. //thats really done in a non-safe way.
  637. //needs overworking someday
  638. // Currently the maximum length of a command piped through this function is around 20 characters
  639. void enquecommand(const char *cmd, bool from_progmem)
  640. {
  641. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  642. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  643. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  644. if (cmdqueue_could_enqueue_back(len)) {
  645. // This is dangerous if a mixing of serial and this happens
  646. // This may easily be tested: If serial_count > 0, we have a problem.
  647. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  648. if (from_progmem)
  649. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  650. else
  651. strcpy(cmdbuffer + bufindw + 1, cmd);
  652. SERIAL_ECHO_START;
  653. SERIAL_ECHORPGM(MSG_Enqueing);
  654. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  655. SERIAL_ECHOLNPGM("\"");
  656. bufindw += len + 2;
  657. if (bufindw == sizeof(cmdbuffer))
  658. bufindw = 0;
  659. ++ buflen;
  660. #ifdef CMDBUFFER_DEBUG
  661. cmdqueue_dump_to_serial();
  662. #endif /* CMDBUFFER_DEBUG */
  663. } else {
  664. SERIAL_ERROR_START;
  665. SERIAL_ECHORPGM(MSG_Enqueing);
  666. if (from_progmem)
  667. SERIAL_PROTOCOLRPGM(cmd);
  668. else
  669. SERIAL_ECHO(cmd);
  670. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  671. #ifdef CMDBUFFER_DEBUG
  672. cmdqueue_dump_to_serial();
  673. #endif /* CMDBUFFER_DEBUG */
  674. }
  675. }
  676. void enquecommand_front(const char *cmd, bool from_progmem)
  677. {
  678. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  679. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  680. if (cmdqueue_could_enqueue_front(len)) {
  681. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  682. if (from_progmem)
  683. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  684. else
  685. strcpy(cmdbuffer + bufindr + 1, cmd);
  686. ++ buflen;
  687. SERIAL_ECHO_START;
  688. SERIAL_ECHOPGM("Enqueing to the front: \"");
  689. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  690. SERIAL_ECHOLNPGM("\"");
  691. #ifdef CMDBUFFER_DEBUG
  692. cmdqueue_dump_to_serial();
  693. #endif /* CMDBUFFER_DEBUG */
  694. } else {
  695. SERIAL_ERROR_START;
  696. SERIAL_ECHOPGM("Enqueing to the front: \"");
  697. if (from_progmem)
  698. SERIAL_PROTOCOLRPGM(cmd);
  699. else
  700. SERIAL_ECHO(cmd);
  701. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  702. #ifdef CMDBUFFER_DEBUG
  703. cmdqueue_dump_to_serial();
  704. #endif /* CMDBUFFER_DEBUG */
  705. }
  706. }
  707. // Mark the command at the top of the command queue as new.
  708. // Therefore it will not be removed from the queue.
  709. void repeatcommand_front()
  710. {
  711. cmdbuffer_front_already_processed = true;
  712. }
  713. bool is_buffer_empty()
  714. {
  715. if (buflen == 0) return true;
  716. else return false;
  717. }
  718. void setup_killpin()
  719. {
  720. #if defined(KILL_PIN) && KILL_PIN > -1
  721. SET_INPUT(KILL_PIN);
  722. WRITE(KILL_PIN,HIGH);
  723. #endif
  724. }
  725. // Set home pin
  726. void setup_homepin(void)
  727. {
  728. #if defined(HOME_PIN) && HOME_PIN > -1
  729. SET_INPUT(HOME_PIN);
  730. WRITE(HOME_PIN,HIGH);
  731. #endif
  732. }
  733. void setup_photpin()
  734. {
  735. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  736. SET_OUTPUT(PHOTOGRAPH_PIN);
  737. WRITE(PHOTOGRAPH_PIN, LOW);
  738. #endif
  739. }
  740. void setup_powerhold()
  741. {
  742. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  743. SET_OUTPUT(SUICIDE_PIN);
  744. WRITE(SUICIDE_PIN, HIGH);
  745. #endif
  746. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  747. SET_OUTPUT(PS_ON_PIN);
  748. #if defined(PS_DEFAULT_OFF)
  749. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  750. #else
  751. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  752. #endif
  753. #endif
  754. }
  755. void suicide()
  756. {
  757. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  758. SET_OUTPUT(SUICIDE_PIN);
  759. WRITE(SUICIDE_PIN, LOW);
  760. #endif
  761. }
  762. void servo_init()
  763. {
  764. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  765. servos[0].attach(SERVO0_PIN);
  766. #endif
  767. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  768. servos[1].attach(SERVO1_PIN);
  769. #endif
  770. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  771. servos[2].attach(SERVO2_PIN);
  772. #endif
  773. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  774. servos[3].attach(SERVO3_PIN);
  775. #endif
  776. #if (NUM_SERVOS >= 5)
  777. #error "TODO: enter initalisation code for more servos"
  778. #endif
  779. }
  780. static void lcd_language_menu();
  781. #ifdef MESH_BED_LEVELING
  782. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  783. #endif
  784. // Factory reset function
  785. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  786. // Level input parameter sets depth of reset
  787. // Quiet parameter masks all waitings for user interact.
  788. int er_progress = 0;
  789. void factory_reset(char level, bool quiet)
  790. {
  791. lcd_implementation_clear();
  792. switch (level) {
  793. // Level 0: Language reset
  794. case 0:
  795. WRITE(BEEPER, HIGH);
  796. _delay_ms(100);
  797. WRITE(BEEPER, LOW);
  798. lcd_force_language_selection();
  799. break;
  800. //Level 1: Reset statistics
  801. case 1:
  802. WRITE(BEEPER, HIGH);
  803. _delay_ms(100);
  804. WRITE(BEEPER, LOW);
  805. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  806. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  807. lcd_menu_statistics();
  808. break;
  809. // Level 2: Prepare for shipping
  810. case 2:
  811. //lcd_printPGM(PSTR("Factory RESET"));
  812. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  813. // Force language selection at the next boot up.
  814. lcd_force_language_selection();
  815. // Force the "Follow calibration flow" message at the next boot up.
  816. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  817. farm_no = 0;
  818. farm_mode == false;
  819. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  820. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. //_delay_ms(2000);
  825. break;
  826. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  827. case 3:
  828. lcd_printPGM(PSTR("Factory RESET"));
  829. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  830. WRITE(BEEPER, HIGH);
  831. _delay_ms(100);
  832. WRITE(BEEPER, LOW);
  833. er_progress = 0;
  834. lcd_print_at_PGM(3, 3, PSTR(" "));
  835. lcd_implementation_print_at(3, 3, er_progress);
  836. // Erase EEPROM
  837. for (int i = 0; i < 4096; i++) {
  838. eeprom_write_byte((uint8_t*)i, 0xFF);
  839. if (i % 41 == 0) {
  840. er_progress++;
  841. lcd_print_at_PGM(3, 3, PSTR(" "));
  842. lcd_implementation_print_at(3, 3, er_progress);
  843. lcd_printPGM(PSTR("%"));
  844. }
  845. }
  846. break;
  847. default:
  848. break;
  849. }
  850. }
  851. // "Setup" function is called by the Arduino framework on startup.
  852. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  853. // are initialized by the main() routine provided by the Arduino framework.
  854. void setup()
  855. {
  856. setup_killpin();
  857. setup_powerhold();
  858. MYSERIAL.begin(BAUDRATE);
  859. SERIAL_PROTOCOLLNPGM("start");
  860. SERIAL_ECHO_START;
  861. #if 0
  862. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  863. for (int i = 0; i < 4096; ++ i) {
  864. int b = eeprom_read_byte((unsigned char*)i);
  865. if (b != 255) {
  866. SERIAL_ECHO(i);
  867. SERIAL_ECHO(":");
  868. SERIAL_ECHO(b);
  869. SERIAL_ECHOLN("");
  870. }
  871. }
  872. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  873. #endif
  874. // Check startup - does nothing if bootloader sets MCUSR to 0
  875. byte mcu = MCUSR;
  876. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  877. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  878. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  879. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  880. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  881. MCUSR=0;
  882. //SERIAL_ECHORPGM(MSG_MARLIN);
  883. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  884. #ifdef STRING_VERSION_CONFIG_H
  885. #ifdef STRING_CONFIG_H_AUTHOR
  886. SERIAL_ECHO_START;
  887. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  888. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  889. SERIAL_ECHORPGM(MSG_AUTHOR);
  890. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  891. SERIAL_ECHOPGM("Compiled: ");
  892. SERIAL_ECHOLNPGM(__DATE__);
  893. #endif
  894. #endif
  895. SERIAL_ECHO_START;
  896. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  897. SERIAL_ECHO(freeMemory());
  898. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  899. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  900. lcd_update_enable(false);
  901. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  902. Config_RetrieveSettings();
  903. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  904. tp_init(); // Initialize temperature loop
  905. plan_init(); // Initialize planner;
  906. watchdog_init();
  907. st_init(); // Initialize stepper, this enables interrupts!
  908. setup_photpin();
  909. servo_init();
  910. // Reset the machine correction matrix.
  911. // It does not make sense to load the correction matrix until the machine is homed.
  912. world2machine_reset();
  913. lcd_init();
  914. pat9125_init(200, 200);
  915. if (!READ(BTN_ENC))
  916. {
  917. _delay_ms(1000);
  918. if (!READ(BTN_ENC))
  919. {
  920. lcd_implementation_clear();
  921. lcd_printPGM(PSTR("Factory RESET"));
  922. SET_OUTPUT(BEEPER);
  923. WRITE(BEEPER, HIGH);
  924. while (!READ(BTN_ENC));
  925. WRITE(BEEPER, LOW);
  926. _delay_ms(2000);
  927. char level = reset_menu();
  928. factory_reset(level, false);
  929. switch (level) {
  930. case 0: _delay_ms(0); break;
  931. case 1: _delay_ms(0); break;
  932. case 2: _delay_ms(0); break;
  933. case 3: _delay_ms(0); break;
  934. }
  935. // _delay_ms(100);
  936. /*
  937. #ifdef MESH_BED_LEVELING
  938. _delay_ms(2000);
  939. if (!READ(BTN_ENC))
  940. {
  941. WRITE(BEEPER, HIGH);
  942. _delay_ms(100);
  943. WRITE(BEEPER, LOW);
  944. _delay_ms(200);
  945. WRITE(BEEPER, HIGH);
  946. _delay_ms(100);
  947. WRITE(BEEPER, LOW);
  948. int _z = 0;
  949. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  950. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  951. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  952. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  953. }
  954. else
  955. {
  956. WRITE(BEEPER, HIGH);
  957. _delay_ms(100);
  958. WRITE(BEEPER, LOW);
  959. }
  960. #endif // mesh */
  961. }
  962. }
  963. else
  964. {
  965. _delay_ms(1000); // wait 1sec to display the splash screen
  966. }
  967. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  968. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  969. #endif
  970. #ifdef DIGIPOT_I2C
  971. digipot_i2c_init();
  972. #endif
  973. setup_homepin();
  974. #if defined(Z_AXIS_ALWAYS_ON)
  975. enable_z();
  976. #endif
  977. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  978. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  979. if (farm_mode == 0xFF && farm_no == 0) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero, deactivate farm mode
  980. if (farm_mode)
  981. {
  982. prusa_statistics(8);
  983. }
  984. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  985. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  986. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  987. // but this times out if a blocking dialog is shown in setup().
  988. card.initsd();
  989. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  990. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  991. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  992. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  993. // where all the EEPROM entries are set to 0x0ff.
  994. // Once a firmware boots up, it forces at least a language selection, which changes
  995. // EEPROM_LANG to number lower than 0x0ff.
  996. // 1) Set a high power mode.
  997. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  998. }
  999. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1000. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1001. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1002. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1003. if (lang_selected >= LANG_NUM){
  1004. lcd_mylang();
  1005. }
  1006. check_babystep(); //checking if Z babystep is in allowed range
  1007. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1008. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1009. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1010. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1011. // Show the message.
  1012. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1013. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1014. // Show the message.
  1015. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1016. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1017. // Show the message.
  1018. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1019. }
  1020. lcd_update_enable(true);
  1021. // Store the currently running firmware into an eeprom,
  1022. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1023. update_current_firmware_version_to_eeprom();
  1024. }
  1025. void trace();
  1026. #define CHUNK_SIZE 64 // bytes
  1027. #define SAFETY_MARGIN 1
  1028. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1029. int chunkHead = 0;
  1030. int serial_read_stream() {
  1031. setTargetHotend(0, 0);
  1032. setTargetBed(0);
  1033. lcd_implementation_clear();
  1034. lcd_printPGM(PSTR(" Upload in progress"));
  1035. // first wait for how many bytes we will receive
  1036. uint32_t bytesToReceive;
  1037. // receive the four bytes
  1038. char bytesToReceiveBuffer[4];
  1039. for (int i=0; i<4; i++) {
  1040. int data;
  1041. while ((data = MYSERIAL.read()) == -1) {};
  1042. bytesToReceiveBuffer[i] = data;
  1043. }
  1044. // make it a uint32
  1045. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1046. // we're ready, notify the sender
  1047. MYSERIAL.write('+');
  1048. // lock in the routine
  1049. uint32_t receivedBytes = 0;
  1050. while (prusa_sd_card_upload) {
  1051. int i;
  1052. for (i=0; i<CHUNK_SIZE; i++) {
  1053. int data;
  1054. // check if we're not done
  1055. if (receivedBytes == bytesToReceive) {
  1056. break;
  1057. }
  1058. // read the next byte
  1059. while ((data = MYSERIAL.read()) == -1) {};
  1060. receivedBytes++;
  1061. // save it to the chunk
  1062. chunk[i] = data;
  1063. }
  1064. // write the chunk to SD
  1065. card.write_command_no_newline(&chunk[0]);
  1066. // notify the sender we're ready for more data
  1067. MYSERIAL.write('+');
  1068. // for safety
  1069. manage_heater();
  1070. // check if we're done
  1071. if(receivedBytes == bytesToReceive) {
  1072. trace(); // beep
  1073. card.closefile();
  1074. prusa_sd_card_upload = false;
  1075. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1076. return 0;
  1077. }
  1078. }
  1079. }
  1080. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1081. // Before loop(), the setup() function is called by the main() routine.
  1082. void loop()
  1083. {
  1084. bool stack_integrity = true;
  1085. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1086. {
  1087. is_usb_printing = true;
  1088. usb_printing_counter--;
  1089. _usb_timer = millis();
  1090. }
  1091. if (usb_printing_counter == 0)
  1092. {
  1093. is_usb_printing = false;
  1094. }
  1095. if (prusa_sd_card_upload)
  1096. {
  1097. //we read byte-by byte
  1098. serial_read_stream();
  1099. } else
  1100. {
  1101. get_command();
  1102. #ifdef SDSUPPORT
  1103. card.checkautostart(false);
  1104. #endif
  1105. if(buflen)
  1106. {
  1107. #ifdef SDSUPPORT
  1108. if(card.saving)
  1109. {
  1110. // Saving a G-code file onto an SD-card is in progress.
  1111. // Saving starts with M28, saving until M29 is seen.
  1112. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1113. card.write_command(CMDBUFFER_CURRENT_STRING);
  1114. if(card.logging)
  1115. process_commands();
  1116. else
  1117. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1118. } else {
  1119. card.closefile();
  1120. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1121. }
  1122. } else {
  1123. process_commands();
  1124. }
  1125. #else
  1126. process_commands();
  1127. #endif //SDSUPPORT
  1128. if (! cmdbuffer_front_already_processed)
  1129. cmdqueue_pop_front();
  1130. cmdbuffer_front_already_processed = false;
  1131. }
  1132. }
  1133. //check heater every n milliseconds
  1134. manage_heater();
  1135. manage_inactivity();
  1136. checkHitEndstops();
  1137. lcd_update();
  1138. pat9125_update();
  1139. tmc2130_check_overtemp();
  1140. }
  1141. void get_command()
  1142. {
  1143. // Test and reserve space for the new command string.
  1144. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1145. return;
  1146. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1147. while (MYSERIAL.available() > 0) {
  1148. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1149. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1150. rx_buffer_full = true; //sets flag that buffer was full
  1151. }
  1152. char serial_char = MYSERIAL.read();
  1153. TimeSent = millis();
  1154. TimeNow = millis();
  1155. if (serial_char < 0)
  1156. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1157. // and Marlin does not support such file names anyway.
  1158. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1159. // to a hang-up of the print process from an SD card.
  1160. continue;
  1161. if(serial_char == '\n' ||
  1162. serial_char == '\r' ||
  1163. (serial_char == ':' && comment_mode == false) ||
  1164. serial_count >= (MAX_CMD_SIZE - 1) )
  1165. {
  1166. if(!serial_count) { //if empty line
  1167. comment_mode = false; //for new command
  1168. return;
  1169. }
  1170. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1171. if(!comment_mode){
  1172. comment_mode = false; //for new command
  1173. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1174. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1175. {
  1176. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1177. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1178. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1179. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1180. // M110 - set current line number.
  1181. // Line numbers not sent in succession.
  1182. SERIAL_ERROR_START;
  1183. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1184. SERIAL_ERRORLN(gcode_LastN);
  1185. //Serial.println(gcode_N);
  1186. FlushSerialRequestResend();
  1187. serial_count = 0;
  1188. return;
  1189. }
  1190. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1191. {
  1192. byte checksum = 0;
  1193. char *p = cmdbuffer+bufindw+1;
  1194. while (p != strchr_pointer)
  1195. checksum = checksum^(*p++);
  1196. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1197. SERIAL_ERROR_START;
  1198. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1199. SERIAL_ERRORLN(gcode_LastN);
  1200. FlushSerialRequestResend();
  1201. serial_count = 0;
  1202. return;
  1203. }
  1204. // If no errors, remove the checksum and continue parsing.
  1205. *strchr_pointer = 0;
  1206. }
  1207. else
  1208. {
  1209. SERIAL_ERROR_START;
  1210. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1211. SERIAL_ERRORLN(gcode_LastN);
  1212. FlushSerialRequestResend();
  1213. serial_count = 0;
  1214. return;
  1215. }
  1216. gcode_LastN = gcode_N;
  1217. //if no errors, continue parsing
  1218. } // end of 'N' command
  1219. }
  1220. else // if we don't receive 'N' but still see '*'
  1221. {
  1222. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1223. {
  1224. SERIAL_ERROR_START;
  1225. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1226. SERIAL_ERRORLN(gcode_LastN);
  1227. serial_count = 0;
  1228. return;
  1229. }
  1230. } // end of '*' command
  1231. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1232. if (! IS_SD_PRINTING) {
  1233. usb_printing_counter = 10;
  1234. is_usb_printing = true;
  1235. }
  1236. if (Stopped == true) {
  1237. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1238. if (gcode >= 0 && gcode <= 3) {
  1239. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1240. LCD_MESSAGERPGM(MSG_STOPPED);
  1241. }
  1242. }
  1243. } // end of 'G' command
  1244. //If command was e-stop process now
  1245. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1246. kill();
  1247. // Store the current line into buffer, move to the next line.
  1248. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1249. #ifdef CMDBUFFER_DEBUG
  1250. SERIAL_ECHO_START;
  1251. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1252. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1253. SERIAL_ECHOLNPGM("");
  1254. #endif /* CMDBUFFER_DEBUG */
  1255. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1256. if (bufindw == sizeof(cmdbuffer))
  1257. bufindw = 0;
  1258. ++ buflen;
  1259. #ifdef CMDBUFFER_DEBUG
  1260. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1261. SERIAL_ECHO(buflen);
  1262. SERIAL_ECHOLNPGM("");
  1263. #endif /* CMDBUFFER_DEBUG */
  1264. } // end of 'not comment mode'
  1265. serial_count = 0; //clear buffer
  1266. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1267. // in the queue, as this function will reserve the memory.
  1268. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1269. return;
  1270. } // end of "end of line" processing
  1271. else {
  1272. // Not an "end of line" symbol. Store the new character into a buffer.
  1273. if(serial_char == ';') comment_mode = true;
  1274. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1275. }
  1276. } // end of serial line processing loop
  1277. if(farm_mode){
  1278. TimeNow = millis();
  1279. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1280. cmdbuffer[bufindw+serial_count+1] = 0;
  1281. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1282. if (bufindw == sizeof(cmdbuffer))
  1283. bufindw = 0;
  1284. ++ buflen;
  1285. serial_count = 0;
  1286. SERIAL_ECHOPGM("TIMEOUT:");
  1287. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1288. return;
  1289. }
  1290. }
  1291. //add comment
  1292. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1293. rx_buffer_full = false;
  1294. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1295. serial_count = 0;
  1296. }
  1297. #ifdef SDSUPPORT
  1298. if(!card.sdprinting || serial_count!=0){
  1299. // If there is a half filled buffer from serial line, wait until return before
  1300. // continuing with the serial line.
  1301. return;
  1302. }
  1303. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1304. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1305. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1306. static bool stop_buffering=false;
  1307. if(buflen==0) stop_buffering=false;
  1308. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1309. while( !card.eof() && !stop_buffering) {
  1310. int16_t n=card.get();
  1311. char serial_char = (char)n;
  1312. if(serial_char == '\n' ||
  1313. serial_char == '\r' ||
  1314. (serial_char == '#' && comment_mode == false) ||
  1315. (serial_char == ':' && comment_mode == false) ||
  1316. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1317. {
  1318. if(card.eof()){
  1319. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1320. stoptime=millis();
  1321. char time[30];
  1322. unsigned long t=(stoptime-starttime)/1000;
  1323. int hours, minutes;
  1324. minutes=(t/60)%60;
  1325. hours=t/60/60;
  1326. save_statistics(total_filament_used, t);
  1327. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1328. SERIAL_ECHO_START;
  1329. SERIAL_ECHOLN(time);
  1330. lcd_setstatus(time);
  1331. card.printingHasFinished();
  1332. card.checkautostart(true);
  1333. if (farm_mode)
  1334. {
  1335. prusa_statistics(6);
  1336. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1337. }
  1338. }
  1339. if(serial_char=='#')
  1340. stop_buffering=true;
  1341. if(!serial_count)
  1342. {
  1343. comment_mode = false; //for new command
  1344. return; //if empty line
  1345. }
  1346. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1347. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1348. ++ buflen;
  1349. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1350. if (bufindw == sizeof(cmdbuffer))
  1351. bufindw = 0;
  1352. comment_mode = false; //for new command
  1353. serial_count = 0; //clear buffer
  1354. // The following line will reserve buffer space if available.
  1355. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1356. return;
  1357. }
  1358. else
  1359. {
  1360. if(serial_char == ';') comment_mode = true;
  1361. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1362. }
  1363. }
  1364. #endif //SDSUPPORT
  1365. }
  1366. // Return True if a character was found
  1367. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1368. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1369. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1370. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1371. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1372. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1373. #define DEFINE_PGM_READ_ANY(type, reader) \
  1374. static inline type pgm_read_any(const type *p) \
  1375. { return pgm_read_##reader##_near(p); }
  1376. DEFINE_PGM_READ_ANY(float, float);
  1377. DEFINE_PGM_READ_ANY(signed char, byte);
  1378. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1379. static const PROGMEM type array##_P[3] = \
  1380. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1381. static inline type array(int axis) \
  1382. { return pgm_read_any(&array##_P[axis]); } \
  1383. type array##_ext(int axis) \
  1384. { return pgm_read_any(&array##_P[axis]); }
  1385. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1386. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1387. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1388. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1389. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1390. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1391. static void axis_is_at_home(int axis) {
  1392. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1393. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1394. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1395. }
  1396. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1397. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1398. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1399. saved_feedrate = feedrate;
  1400. saved_feedmultiply = feedmultiply;
  1401. feedmultiply = 100;
  1402. previous_millis_cmd = millis();
  1403. enable_endstops(enable_endstops_now);
  1404. }
  1405. static void clean_up_after_endstop_move() {
  1406. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1407. enable_endstops(false);
  1408. #endif
  1409. feedrate = saved_feedrate;
  1410. feedmultiply = saved_feedmultiply;
  1411. previous_millis_cmd = millis();
  1412. }
  1413. #ifdef ENABLE_AUTO_BED_LEVELING
  1414. #ifdef AUTO_BED_LEVELING_GRID
  1415. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1416. {
  1417. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1418. planeNormal.debug("planeNormal");
  1419. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1420. //bedLevel.debug("bedLevel");
  1421. //plan_bed_level_matrix.debug("bed level before");
  1422. //vector_3 uncorrected_position = plan_get_position_mm();
  1423. //uncorrected_position.debug("position before");
  1424. vector_3 corrected_position = plan_get_position();
  1425. // corrected_position.debug("position after");
  1426. current_position[X_AXIS] = corrected_position.x;
  1427. current_position[Y_AXIS] = corrected_position.y;
  1428. current_position[Z_AXIS] = corrected_position.z;
  1429. // put the bed at 0 so we don't go below it.
  1430. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1431. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1432. }
  1433. #else // not AUTO_BED_LEVELING_GRID
  1434. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1435. plan_bed_level_matrix.set_to_identity();
  1436. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1437. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1438. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1439. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1440. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1441. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1442. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1443. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1444. vector_3 corrected_position = plan_get_position();
  1445. current_position[X_AXIS] = corrected_position.x;
  1446. current_position[Y_AXIS] = corrected_position.y;
  1447. current_position[Z_AXIS] = corrected_position.z;
  1448. // put the bed at 0 so we don't go below it.
  1449. current_position[Z_AXIS] = zprobe_zoffset;
  1450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1451. }
  1452. #endif // AUTO_BED_LEVELING_GRID
  1453. static void run_z_probe() {
  1454. plan_bed_level_matrix.set_to_identity();
  1455. feedrate = homing_feedrate[Z_AXIS];
  1456. // move down until you find the bed
  1457. float zPosition = -10;
  1458. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1459. st_synchronize();
  1460. // we have to let the planner know where we are right now as it is not where we said to go.
  1461. zPosition = st_get_position_mm(Z_AXIS);
  1462. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1463. // move up the retract distance
  1464. zPosition += home_retract_mm(Z_AXIS);
  1465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1466. st_synchronize();
  1467. // move back down slowly to find bed
  1468. feedrate = homing_feedrate[Z_AXIS]/4;
  1469. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1471. st_synchronize();
  1472. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1473. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1474. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1475. }
  1476. static void do_blocking_move_to(float x, float y, float z) {
  1477. float oldFeedRate = feedrate;
  1478. feedrate = homing_feedrate[Z_AXIS];
  1479. current_position[Z_AXIS] = z;
  1480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1481. st_synchronize();
  1482. feedrate = XY_TRAVEL_SPEED;
  1483. current_position[X_AXIS] = x;
  1484. current_position[Y_AXIS] = y;
  1485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1486. st_synchronize();
  1487. feedrate = oldFeedRate;
  1488. }
  1489. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1490. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1491. }
  1492. /// Probe bed height at position (x,y), returns the measured z value
  1493. static float probe_pt(float x, float y, float z_before) {
  1494. // move to right place
  1495. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1496. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1497. run_z_probe();
  1498. float measured_z = current_position[Z_AXIS];
  1499. SERIAL_PROTOCOLRPGM(MSG_BED);
  1500. SERIAL_PROTOCOLPGM(" x: ");
  1501. SERIAL_PROTOCOL(x);
  1502. SERIAL_PROTOCOLPGM(" y: ");
  1503. SERIAL_PROTOCOL(y);
  1504. SERIAL_PROTOCOLPGM(" z: ");
  1505. SERIAL_PROTOCOL(measured_z);
  1506. SERIAL_PROTOCOLPGM("\n");
  1507. return measured_z;
  1508. }
  1509. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1510. void homeaxis(int axis) {
  1511. #define HOMEAXIS_DO(LETTER) \
  1512. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1513. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1514. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1515. 0) {
  1516. int axis_home_dir = home_dir(axis);
  1517. #ifdef HAVE_TMC2130_DRIVERS
  1518. st_setSGHoming(axis);
  1519. // Configuration to spreadCycle
  1520. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x01);
  1521. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x6D,0,SG_THRESHOLD,0,0);
  1522. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x14,0,0,0,TCOOLTHRS);
  1523. #endif
  1524. current_position[axis] = 0;
  1525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1526. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1527. feedrate = homing_feedrate[axis];
  1528. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1529. st_synchronize();
  1530. current_position[axis] = 0;
  1531. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1532. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1533. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1534. st_synchronize();
  1535. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1536. if(st_didLastHomingStall())
  1537. feedrate = homing_feedrate[axis];
  1538. else
  1539. feedrate = homing_feedrate[axis]/2 ;
  1540. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1541. st_synchronize();
  1542. axis_is_at_home(axis);
  1543. destination[axis] = current_position[axis];
  1544. feedrate = 0.0;
  1545. endstops_hit_on_purpose();
  1546. axis_known_position[axis] = true;
  1547. #ifdef HAVE_TMC2130_DRIVERS
  1548. // Configuration back to stealthChop
  1549. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x05);
  1550. st_setSGHoming(0xFF);
  1551. st_resetSGflags();
  1552. #endif
  1553. }
  1554. else if (axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1555. 0) {
  1556. int axis_home_dir = home_dir(axis);
  1557. current_position[axis] = 0;
  1558. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1559. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1560. feedrate = homing_feedrate[axis];
  1561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1562. st_synchronize();
  1563. current_position[axis] = 0;
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1567. st_synchronize();
  1568. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1569. feedrate = homing_feedrate[axis]/2 ;
  1570. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1571. st_synchronize();
  1572. axis_is_at_home(axis);
  1573. destination[axis] = current_position[axis];
  1574. feedrate = 0.0;
  1575. endstops_hit_on_purpose();
  1576. axis_known_position[axis] = true;
  1577. }
  1578. }
  1579. void home_xy()
  1580. {
  1581. set_destination_to_current();
  1582. homeaxis(X_AXIS);
  1583. homeaxis(Y_AXIS);
  1584. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1585. endstops_hit_on_purpose();
  1586. }
  1587. void refresh_cmd_timeout(void)
  1588. {
  1589. previous_millis_cmd = millis();
  1590. }
  1591. #ifdef FWRETRACT
  1592. void retract(bool retracting, bool swapretract = false) {
  1593. if(retracting && !retracted[active_extruder]) {
  1594. destination[X_AXIS]=current_position[X_AXIS];
  1595. destination[Y_AXIS]=current_position[Y_AXIS];
  1596. destination[Z_AXIS]=current_position[Z_AXIS];
  1597. destination[E_AXIS]=current_position[E_AXIS];
  1598. if (swapretract) {
  1599. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1600. } else {
  1601. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1602. }
  1603. plan_set_e_position(current_position[E_AXIS]);
  1604. float oldFeedrate = feedrate;
  1605. feedrate=retract_feedrate*60;
  1606. retracted[active_extruder]=true;
  1607. prepare_move();
  1608. current_position[Z_AXIS]-=retract_zlift;
  1609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1610. prepare_move();
  1611. feedrate = oldFeedrate;
  1612. } else if(!retracting && retracted[active_extruder]) {
  1613. destination[X_AXIS]=current_position[X_AXIS];
  1614. destination[Y_AXIS]=current_position[Y_AXIS];
  1615. destination[Z_AXIS]=current_position[Z_AXIS];
  1616. destination[E_AXIS]=current_position[E_AXIS];
  1617. current_position[Z_AXIS]+=retract_zlift;
  1618. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1619. //prepare_move();
  1620. if (swapretract) {
  1621. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1622. } else {
  1623. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1624. }
  1625. plan_set_e_position(current_position[E_AXIS]);
  1626. float oldFeedrate = feedrate;
  1627. feedrate=retract_recover_feedrate*60;
  1628. retracted[active_extruder]=false;
  1629. prepare_move();
  1630. feedrate = oldFeedrate;
  1631. }
  1632. } //retract
  1633. #endif //FWRETRACT
  1634. void trace() {
  1635. tone(BEEPER, 440);
  1636. delay(25);
  1637. noTone(BEEPER);
  1638. delay(20);
  1639. }
  1640. void ramming() {
  1641. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1642. if (current_temperature[0] < 230) {
  1643. //PLA
  1644. max_feedrate[E_AXIS] = 50;
  1645. //current_position[E_AXIS] -= 8;
  1646. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1647. //current_position[E_AXIS] += 8;
  1648. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1649. current_position[E_AXIS] += 5.4;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1651. current_position[E_AXIS] += 3.2;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1653. current_position[E_AXIS] += 3;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1655. st_synchronize();
  1656. max_feedrate[E_AXIS] = 80;
  1657. current_position[E_AXIS] -= 82;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1659. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1660. current_position[E_AXIS] -= 20;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1662. current_position[E_AXIS] += 5;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1664. current_position[E_AXIS] += 5;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1666. current_position[E_AXIS] -= 10;
  1667. st_synchronize();
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1669. current_position[E_AXIS] += 10;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1671. current_position[E_AXIS] -= 10;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1673. current_position[E_AXIS] += 10;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1675. current_position[E_AXIS] -= 10;
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1677. st_synchronize();
  1678. }
  1679. else {
  1680. //ABS
  1681. max_feedrate[E_AXIS] = 50;
  1682. //current_position[E_AXIS] -= 8;
  1683. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1684. //current_position[E_AXIS] += 8;
  1685. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1686. current_position[E_AXIS] += 3.1;
  1687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1688. current_position[E_AXIS] += 3.1;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1690. current_position[E_AXIS] += 4;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1692. st_synchronize();
  1693. /*current_position[X_AXIS] += 23; //delay
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1695. current_position[X_AXIS] -= 23; //delay
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1697. delay(4700);
  1698. max_feedrate[E_AXIS] = 80;
  1699. current_position[E_AXIS] -= 92;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1701. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1702. current_position[E_AXIS] -= 5;
  1703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1704. current_position[E_AXIS] += 5;
  1705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1706. current_position[E_AXIS] -= 5;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1708. st_synchronize();
  1709. current_position[E_AXIS] += 5;
  1710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1711. current_position[E_AXIS] -= 5;
  1712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1713. current_position[E_AXIS] += 5;
  1714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1715. current_position[E_AXIS] -= 5;
  1716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1717. st_synchronize();
  1718. }
  1719. }
  1720. void process_commands()
  1721. {
  1722. #ifdef FILAMENT_RUNOUT_SUPPORT
  1723. SET_INPUT(FR_SENS);
  1724. #endif
  1725. #ifdef CMDBUFFER_DEBUG
  1726. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1727. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1728. SERIAL_ECHOLNPGM("");
  1729. SERIAL_ECHOPGM("In cmdqueue: ");
  1730. SERIAL_ECHO(buflen);
  1731. SERIAL_ECHOLNPGM("");
  1732. #endif /* CMDBUFFER_DEBUG */
  1733. unsigned long codenum; //throw away variable
  1734. char *starpos = NULL;
  1735. #ifdef ENABLE_AUTO_BED_LEVELING
  1736. float x_tmp, y_tmp, z_tmp, real_z;
  1737. #endif
  1738. // PRUSA GCODES
  1739. #ifdef SNMM
  1740. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1741. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1742. int8_t SilentMode;
  1743. #endif
  1744. if(code_seen("PRUSA")){
  1745. if (code_seen("Ping")) { //PRUSA Ping
  1746. if (farm_mode) {
  1747. PingTime = millis();
  1748. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1749. }
  1750. }
  1751. else if (code_seen("PRN")) {
  1752. MYSERIAL.println(status_number);
  1753. }else if (code_seen("fn")) {
  1754. if (farm_mode) {
  1755. MYSERIAL.println(farm_no);
  1756. }
  1757. else {
  1758. MYSERIAL.println("Not in farm mode.");
  1759. }
  1760. }else if (code_seen("fv")) {
  1761. // get file version
  1762. #ifdef SDSUPPORT
  1763. card.openFile(strchr_pointer + 3,true);
  1764. while (true) {
  1765. uint16_t readByte = card.get();
  1766. MYSERIAL.write(readByte);
  1767. if (readByte=='\n') {
  1768. break;
  1769. }
  1770. }
  1771. card.closefile();
  1772. #endif // SDSUPPORT
  1773. } else if (code_seen("M28")) {
  1774. trace();
  1775. prusa_sd_card_upload = true;
  1776. card.openFile(strchr_pointer+4,false);
  1777. } else if(code_seen("Fir")){
  1778. SERIAL_PROTOCOLLN(FW_version);
  1779. } else if(code_seen("Rev")){
  1780. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1781. } else if(code_seen("Lang")) {
  1782. lcd_force_language_selection();
  1783. } else if(code_seen("Lz")) {
  1784. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1785. } else if (code_seen("SERIAL LOW")) {
  1786. MYSERIAL.println("SERIAL LOW");
  1787. MYSERIAL.begin(BAUDRATE);
  1788. return;
  1789. } else if (code_seen("SERIAL HIGH")) {
  1790. MYSERIAL.println("SERIAL HIGH");
  1791. MYSERIAL.begin(1152000);
  1792. return;
  1793. } else if(code_seen("Beat")) {
  1794. // Kick farm link timer
  1795. kicktime = millis();
  1796. } else if(code_seen("FR")) {
  1797. // Factory full reset
  1798. factory_reset(0,true);
  1799. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1800. #ifdef SNMM
  1801. int extr;
  1802. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1803. lcd_implementation_clear();
  1804. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1805. current_position[Z_AXIS] = 100;
  1806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1807. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1808. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1809. change_extr(extr);
  1810. ramming();
  1811. }
  1812. change_extr(0);
  1813. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1815. st_synchronize();
  1816. for (extr = 1; extr < 4; extr++) {
  1817. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1818. change_extr(extr);
  1819. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1821. st_synchronize();
  1822. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1823. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1825. st_synchronize();
  1826. }
  1827. change_extr(0);
  1828. current_position[E_AXIS] += 25;
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1830. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1831. ramming();
  1832. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1833. else digipot_current(2, tmp_motor_loud[2]);
  1834. st_synchronize();
  1835. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1836. lcd_implementation_clear();
  1837. lcd_printPGM(MSG_PLEASE_WAIT);
  1838. current_position[Z_AXIS] = 0;
  1839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1840. st_synchronize();
  1841. lcd_update_enable(true);
  1842. #endif
  1843. }
  1844. else if (code_seen("SetF")) {
  1845. #ifdef SNMM
  1846. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1847. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1848. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1849. #endif
  1850. }
  1851. else if (code_seen("ResF")) {
  1852. #ifdef SNMM
  1853. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1854. #endif
  1855. }
  1856. //else if (code_seen('Cal')) {
  1857. // lcd_calibration();
  1858. // }
  1859. }
  1860. else if (code_seen('^')) {
  1861. // nothing, this is a version line
  1862. } else if(code_seen('G'))
  1863. {
  1864. switch((int)code_value())
  1865. {
  1866. case 0: // G0 -> G1
  1867. case 1: // G1
  1868. if(Stopped == false) {
  1869. #ifdef FILAMENT_RUNOUT_SUPPORT
  1870. if(READ(FR_SENS)){
  1871. feedmultiplyBckp=feedmultiply;
  1872. float target[4];
  1873. float lastpos[4];
  1874. target[X_AXIS]=current_position[X_AXIS];
  1875. target[Y_AXIS]=current_position[Y_AXIS];
  1876. target[Z_AXIS]=current_position[Z_AXIS];
  1877. target[E_AXIS]=current_position[E_AXIS];
  1878. lastpos[X_AXIS]=current_position[X_AXIS];
  1879. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1880. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1881. lastpos[E_AXIS]=current_position[E_AXIS];
  1882. //retract by E
  1883. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1884. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1885. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1887. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1888. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1890. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1892. //finish moves
  1893. st_synchronize();
  1894. //disable extruder steppers so filament can be removed
  1895. disable_e0();
  1896. disable_e1();
  1897. disable_e2();
  1898. delay(100);
  1899. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1900. uint8_t cnt=0;
  1901. int counterBeep = 0;
  1902. lcd_wait_interact();
  1903. while(!lcd_clicked()){
  1904. cnt++;
  1905. manage_heater();
  1906. manage_inactivity(true);
  1907. //lcd_update();
  1908. if(cnt==0)
  1909. {
  1910. #if BEEPER > 0
  1911. if (counterBeep== 500){
  1912. counterBeep = 0;
  1913. }
  1914. SET_OUTPUT(BEEPER);
  1915. if (counterBeep== 0){
  1916. WRITE(BEEPER,HIGH);
  1917. }
  1918. if (counterBeep== 20){
  1919. WRITE(BEEPER,LOW);
  1920. }
  1921. counterBeep++;
  1922. #else
  1923. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1924. lcd_buzz(1000/6,100);
  1925. #else
  1926. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1927. #endif
  1928. #endif
  1929. }
  1930. }
  1931. WRITE(BEEPER,LOW);
  1932. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1934. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1935. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1936. lcd_change_fil_state = 0;
  1937. lcd_loading_filament();
  1938. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1939. lcd_change_fil_state = 0;
  1940. lcd_alright();
  1941. switch(lcd_change_fil_state){
  1942. case 2:
  1943. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1944. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1945. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1946. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1947. lcd_loading_filament();
  1948. break;
  1949. case 3:
  1950. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1951. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1952. lcd_loading_color();
  1953. break;
  1954. default:
  1955. lcd_change_success();
  1956. break;
  1957. }
  1958. }
  1959. target[E_AXIS]+= 5;
  1960. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1961. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1963. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1964. //plan_set_e_position(current_position[E_AXIS]);
  1965. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1966. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1967. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1968. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1969. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1970. plan_set_e_position(lastpos[E_AXIS]);
  1971. feedmultiply=feedmultiplyBckp;
  1972. char cmd[9];
  1973. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1974. enquecommand(cmd);
  1975. }
  1976. #endif
  1977. get_coordinates(); // For X Y Z E F
  1978. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1979. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1980. }
  1981. #ifdef FWRETRACT
  1982. if(autoretract_enabled)
  1983. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1984. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1985. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1986. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1987. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1988. retract(!retracted);
  1989. return;
  1990. }
  1991. }
  1992. #endif //FWRETRACT
  1993. prepare_move();
  1994. //ClearToSend();
  1995. }
  1996. break;
  1997. case 2: // G2 - CW ARC
  1998. if(Stopped == false) {
  1999. get_arc_coordinates();
  2000. prepare_arc_move(true);
  2001. }
  2002. break;
  2003. case 3: // G3 - CCW ARC
  2004. if(Stopped == false) {
  2005. get_arc_coordinates();
  2006. prepare_arc_move(false);
  2007. }
  2008. break;
  2009. case 4: // G4 dwell
  2010. LCD_MESSAGERPGM(MSG_DWELL);
  2011. codenum = 0;
  2012. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2013. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2014. st_synchronize();
  2015. codenum += millis(); // keep track of when we started waiting
  2016. previous_millis_cmd = millis();
  2017. while(millis() < codenum) {
  2018. manage_heater();
  2019. manage_inactivity();
  2020. lcd_update();
  2021. }
  2022. break;
  2023. #ifdef FWRETRACT
  2024. case 10: // G10 retract
  2025. #if EXTRUDERS > 1
  2026. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2027. retract(true,retracted_swap[active_extruder]);
  2028. #else
  2029. retract(true);
  2030. #endif
  2031. break;
  2032. case 11: // G11 retract_recover
  2033. #if EXTRUDERS > 1
  2034. retract(false,retracted_swap[active_extruder]);
  2035. #else
  2036. retract(false);
  2037. #endif
  2038. break;
  2039. #endif //FWRETRACT
  2040. case 28: //G28 Home all Axis one at a time
  2041. homing_flag = true;
  2042. #ifdef ENABLE_AUTO_BED_LEVELING
  2043. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2044. #endif //ENABLE_AUTO_BED_LEVELING
  2045. // For mesh bed leveling deactivate the matrix temporarily
  2046. #ifdef MESH_BED_LEVELING
  2047. mbl.active = 0;
  2048. #endif
  2049. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2050. // the planner will not perform any adjustments in the XY plane.
  2051. // Wait for the motors to stop and update the current position with the absolute values.
  2052. world2machine_revert_to_uncorrected();
  2053. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2054. // consumed during the first movements following this statement.
  2055. babystep_undo();
  2056. saved_feedrate = feedrate;
  2057. saved_feedmultiply = feedmultiply;
  2058. feedmultiply = 100;
  2059. previous_millis_cmd = millis();
  2060. enable_endstops(true);
  2061. for(int8_t i=0; i < NUM_AXIS; i++)
  2062. destination[i] = current_position[i];
  2063. feedrate = 0.0;
  2064. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2065. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2066. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2067. homeaxis(Z_AXIS);
  2068. }
  2069. #endif
  2070. #ifdef QUICK_HOME
  2071. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2072. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2073. {
  2074. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2075. int x_axis_home_dir = home_dir(X_AXIS);
  2076. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2077. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2078. feedrate = homing_feedrate[X_AXIS];
  2079. if(homing_feedrate[Y_AXIS]<feedrate)
  2080. feedrate = homing_feedrate[Y_AXIS];
  2081. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2082. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2083. } else {
  2084. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2085. }
  2086. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2087. st_synchronize();
  2088. axis_is_at_home(X_AXIS);
  2089. axis_is_at_home(Y_AXIS);
  2090. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2091. destination[X_AXIS] = current_position[X_AXIS];
  2092. destination[Y_AXIS] = current_position[Y_AXIS];
  2093. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2094. feedrate = 0.0;
  2095. st_synchronize();
  2096. endstops_hit_on_purpose();
  2097. current_position[X_AXIS] = destination[X_AXIS];
  2098. current_position[Y_AXIS] = destination[Y_AXIS];
  2099. current_position[Z_AXIS] = destination[Z_AXIS];
  2100. }
  2101. #endif /* QUICK_HOME */
  2102. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2103. homeaxis(X_AXIS);
  2104. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2105. homeaxis(Y_AXIS);
  2106. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2107. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2108. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2109. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2110. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2111. #ifndef Z_SAFE_HOMING
  2112. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2113. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2114. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2115. feedrate = max_feedrate[Z_AXIS];
  2116. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2117. st_synchronize();
  2118. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2119. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2120. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2121. {
  2122. homeaxis(X_AXIS);
  2123. homeaxis(Y_AXIS);
  2124. }
  2125. // 1st mesh bed leveling measurement point, corrected.
  2126. world2machine_initialize();
  2127. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2128. world2machine_reset();
  2129. if (destination[Y_AXIS] < Y_MIN_POS)
  2130. destination[Y_AXIS] = Y_MIN_POS;
  2131. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2132. feedrate = homing_feedrate[Z_AXIS]/10;
  2133. current_position[Z_AXIS] = 0;
  2134. enable_endstops(false);
  2135. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2136. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2137. st_synchronize();
  2138. current_position[X_AXIS] = destination[X_AXIS];
  2139. current_position[Y_AXIS] = destination[Y_AXIS];
  2140. enable_endstops(true);
  2141. endstops_hit_on_purpose();
  2142. homeaxis(Z_AXIS);
  2143. #else // MESH_BED_LEVELING
  2144. homeaxis(Z_AXIS);
  2145. #endif // MESH_BED_LEVELING
  2146. }
  2147. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2148. if(home_all_axis) {
  2149. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2150. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2151. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2152. feedrate = XY_TRAVEL_SPEED/60;
  2153. current_position[Z_AXIS] = 0;
  2154. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2155. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2156. st_synchronize();
  2157. current_position[X_AXIS] = destination[X_AXIS];
  2158. current_position[Y_AXIS] = destination[Y_AXIS];
  2159. homeaxis(Z_AXIS);
  2160. }
  2161. // Let's see if X and Y are homed and probe is inside bed area.
  2162. if(code_seen(axis_codes[Z_AXIS])) {
  2163. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2164. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2165. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2166. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2167. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2168. current_position[Z_AXIS] = 0;
  2169. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2170. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2171. feedrate = max_feedrate[Z_AXIS];
  2172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2173. st_synchronize();
  2174. homeaxis(Z_AXIS);
  2175. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2176. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2177. SERIAL_ECHO_START;
  2178. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2179. } else {
  2180. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2181. SERIAL_ECHO_START;
  2182. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2183. }
  2184. }
  2185. #endif // Z_SAFE_HOMING
  2186. #endif // Z_HOME_DIR < 0
  2187. if(code_seen(axis_codes[Z_AXIS])) {
  2188. if(code_value_long() != 0) {
  2189. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2190. }
  2191. }
  2192. #ifdef ENABLE_AUTO_BED_LEVELING
  2193. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2194. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2195. }
  2196. #endif
  2197. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2198. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2199. enable_endstops(false);
  2200. #endif
  2201. feedrate = saved_feedrate;
  2202. feedmultiply = saved_feedmultiply;
  2203. previous_millis_cmd = millis();
  2204. endstops_hit_on_purpose();
  2205. #ifndef MESH_BED_LEVELING
  2206. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2207. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2208. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2209. lcd_adjust_z();
  2210. #endif
  2211. // Load the machine correction matrix
  2212. world2machine_initialize();
  2213. // and correct the current_position to match the transformed coordinate system.
  2214. world2machine_update_current();
  2215. #ifdef MESH_BED_LEVELING
  2216. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2217. {
  2218. }
  2219. else
  2220. {
  2221. st_synchronize();
  2222. homing_flag = false;
  2223. // Push the commands to the front of the message queue in the reverse order!
  2224. // There shall be always enough space reserved for these commands.
  2225. // enquecommand_front_P((PSTR("G80")));
  2226. goto case_G80;
  2227. }
  2228. #endif
  2229. if (farm_mode) { prusa_statistics(20); };
  2230. homing_flag = false;
  2231. break;
  2232. #ifdef ENABLE_AUTO_BED_LEVELING
  2233. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2234. {
  2235. #if Z_MIN_PIN == -1
  2236. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2237. #endif
  2238. // Prevent user from running a G29 without first homing in X and Y
  2239. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2240. {
  2241. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2242. SERIAL_ECHO_START;
  2243. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2244. break; // abort G29, since we don't know where we are
  2245. }
  2246. st_synchronize();
  2247. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2248. //vector_3 corrected_position = plan_get_position_mm();
  2249. //corrected_position.debug("position before G29");
  2250. plan_bed_level_matrix.set_to_identity();
  2251. vector_3 uncorrected_position = plan_get_position();
  2252. //uncorrected_position.debug("position durring G29");
  2253. current_position[X_AXIS] = uncorrected_position.x;
  2254. current_position[Y_AXIS] = uncorrected_position.y;
  2255. current_position[Z_AXIS] = uncorrected_position.z;
  2256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2257. setup_for_endstop_move();
  2258. feedrate = homing_feedrate[Z_AXIS];
  2259. #ifdef AUTO_BED_LEVELING_GRID
  2260. // probe at the points of a lattice grid
  2261. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2262. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2263. // solve the plane equation ax + by + d = z
  2264. // A is the matrix with rows [x y 1] for all the probed points
  2265. // B is the vector of the Z positions
  2266. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2267. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2268. // "A" matrix of the linear system of equations
  2269. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2270. // "B" vector of Z points
  2271. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2272. int probePointCounter = 0;
  2273. bool zig = true;
  2274. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2275. {
  2276. int xProbe, xInc;
  2277. if (zig)
  2278. {
  2279. xProbe = LEFT_PROBE_BED_POSITION;
  2280. //xEnd = RIGHT_PROBE_BED_POSITION;
  2281. xInc = xGridSpacing;
  2282. zig = false;
  2283. } else // zag
  2284. {
  2285. xProbe = RIGHT_PROBE_BED_POSITION;
  2286. //xEnd = LEFT_PROBE_BED_POSITION;
  2287. xInc = -xGridSpacing;
  2288. zig = true;
  2289. }
  2290. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2291. {
  2292. float z_before;
  2293. if (probePointCounter == 0)
  2294. {
  2295. // raise before probing
  2296. z_before = Z_RAISE_BEFORE_PROBING;
  2297. } else
  2298. {
  2299. // raise extruder
  2300. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2301. }
  2302. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2303. eqnBVector[probePointCounter] = measured_z;
  2304. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2305. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2306. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2307. probePointCounter++;
  2308. xProbe += xInc;
  2309. }
  2310. }
  2311. clean_up_after_endstop_move();
  2312. // solve lsq problem
  2313. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2314. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2315. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2316. SERIAL_PROTOCOLPGM(" b: ");
  2317. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2318. SERIAL_PROTOCOLPGM(" d: ");
  2319. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2320. set_bed_level_equation_lsq(plane_equation_coefficients);
  2321. free(plane_equation_coefficients);
  2322. #else // AUTO_BED_LEVELING_GRID not defined
  2323. // Probe at 3 arbitrary points
  2324. // probe 1
  2325. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2326. // probe 2
  2327. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2328. // probe 3
  2329. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2330. clean_up_after_endstop_move();
  2331. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2332. #endif // AUTO_BED_LEVELING_GRID
  2333. st_synchronize();
  2334. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2335. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2336. // When the bed is uneven, this height must be corrected.
  2337. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2338. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2339. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2340. z_tmp = current_position[Z_AXIS];
  2341. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2342. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2344. }
  2345. break;
  2346. #ifndef Z_PROBE_SLED
  2347. case 30: // G30 Single Z Probe
  2348. {
  2349. st_synchronize();
  2350. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2351. setup_for_endstop_move();
  2352. feedrate = homing_feedrate[Z_AXIS];
  2353. run_z_probe();
  2354. SERIAL_PROTOCOLPGM(MSG_BED);
  2355. SERIAL_PROTOCOLPGM(" X: ");
  2356. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2357. SERIAL_PROTOCOLPGM(" Y: ");
  2358. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2359. SERIAL_PROTOCOLPGM(" Z: ");
  2360. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2361. SERIAL_PROTOCOLPGM("\n");
  2362. clean_up_after_endstop_move();
  2363. }
  2364. break;
  2365. #else
  2366. case 31: // dock the sled
  2367. dock_sled(true);
  2368. break;
  2369. case 32: // undock the sled
  2370. dock_sled(false);
  2371. break;
  2372. #endif // Z_PROBE_SLED
  2373. #endif // ENABLE_AUTO_BED_LEVELING
  2374. #ifdef MESH_BED_LEVELING
  2375. case 30: // G30 Single Z Probe
  2376. {
  2377. st_synchronize();
  2378. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2379. setup_for_endstop_move();
  2380. feedrate = homing_feedrate[Z_AXIS];
  2381. find_bed_induction_sensor_point_z(-10.f, 3);
  2382. SERIAL_PROTOCOLRPGM(MSG_BED);
  2383. SERIAL_PROTOCOLPGM(" X: ");
  2384. MYSERIAL.print(current_position[X_AXIS], 5);
  2385. SERIAL_PROTOCOLPGM(" Y: ");
  2386. MYSERIAL.print(current_position[Y_AXIS], 5);
  2387. SERIAL_PROTOCOLPGM(" Z: ");
  2388. MYSERIAL.print(current_position[Z_AXIS], 5);
  2389. SERIAL_PROTOCOLPGM("\n");
  2390. clean_up_after_endstop_move();
  2391. }
  2392. break;
  2393. #ifdef DIS
  2394. case 77:
  2395. {
  2396. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2397. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2398. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2399. float dimension_x = 40;
  2400. float dimension_y = 40;
  2401. int points_x = 40;
  2402. int points_y = 40;
  2403. float offset_x = 74;
  2404. float offset_y = 33;
  2405. if (code_seen('X')) dimension_x = code_value();
  2406. if (code_seen('Y')) dimension_y = code_value();
  2407. if (code_seen('XP')) points_x = code_value();
  2408. if (code_seen('YP')) points_y = code_value();
  2409. if (code_seen('XO')) offset_x = code_value();
  2410. if (code_seen('YO')) offset_y = code_value();
  2411. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2412. } break;
  2413. #endif
  2414. /**
  2415. * G80: Mesh-based Z probe, probes a grid and produces a
  2416. * mesh to compensate for variable bed height
  2417. *
  2418. * The S0 report the points as below
  2419. *
  2420. * +----> X-axis
  2421. * |
  2422. * |
  2423. * v Y-axis
  2424. *
  2425. */
  2426. case 80:
  2427. case_G80:
  2428. {
  2429. // Firstly check if we know where we are
  2430. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2431. // We don't know where we are! HOME!
  2432. // Push the commands to the front of the message queue in the reverse order!
  2433. // There shall be always enough space reserved for these commands.
  2434. repeatcommand_front(); // repeat G80 with all its parameters
  2435. enquecommand_front_P((PSTR("G28 W0")));
  2436. break;
  2437. }
  2438. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2439. bool custom_message_old = custom_message;
  2440. unsigned int custom_message_type_old = custom_message_type;
  2441. unsigned int custom_message_state_old = custom_message_state;
  2442. custom_message = true;
  2443. custom_message_type = 1;
  2444. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2445. lcd_update(1);
  2446. mbl.reset();
  2447. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2448. // consumed during the first movements following this statement.
  2449. babystep_undo();
  2450. // Cycle through all points and probe them
  2451. // First move up. During this first movement, the babystepping will be reverted.
  2452. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2454. // The move to the first calibration point.
  2455. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2456. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2457. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2458. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2460. // Wait until the move is finished.
  2461. st_synchronize();
  2462. int mesh_point = 0;
  2463. int ix = 0;
  2464. int iy = 0;
  2465. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2466. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2467. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2468. bool has_z = is_bed_z_jitter_data_valid();
  2469. setup_for_endstop_move(false);
  2470. const char *kill_message = NULL;
  2471. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2472. // Get coords of a measuring point.
  2473. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2474. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2475. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2476. float z0 = 0.f;
  2477. if (has_z && mesh_point > 0) {
  2478. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2479. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2480. #if 0
  2481. SERIAL_ECHOPGM("Bed leveling, point: ");
  2482. MYSERIAL.print(mesh_point);
  2483. SERIAL_ECHOPGM(", calibration z: ");
  2484. MYSERIAL.print(z0, 5);
  2485. SERIAL_ECHOLNPGM("");
  2486. #endif
  2487. }
  2488. // Move Z up to MESH_HOME_Z_SEARCH.
  2489. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2491. st_synchronize();
  2492. // Move to XY position of the sensor point.
  2493. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2494. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2495. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2497. st_synchronize();
  2498. // Go down until endstop is hit
  2499. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2500. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2501. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2502. break;
  2503. }
  2504. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2505. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2506. break;
  2507. }
  2508. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2509. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2510. break;
  2511. }
  2512. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2513. custom_message_state--;
  2514. mesh_point++;
  2515. lcd_update(1);
  2516. }
  2517. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2519. st_synchronize();
  2520. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2521. kill(kill_message);
  2522. }
  2523. clean_up_after_endstop_move();
  2524. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2525. babystep_apply();
  2526. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2527. for (uint8_t i = 0; i < 4; ++ i) {
  2528. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2529. long correction = 0;
  2530. if (code_seen(codes[i]))
  2531. correction = code_value_long();
  2532. else if (eeprom_bed_correction_valid) {
  2533. unsigned char *addr = (i < 2) ?
  2534. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2535. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2536. correction = eeprom_read_int8(addr);
  2537. }
  2538. if (correction == 0)
  2539. continue;
  2540. float offset = float(correction) * 0.001f;
  2541. if (fabs(offset) > 0.101f) {
  2542. SERIAL_ERROR_START;
  2543. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2544. SERIAL_ECHO(offset);
  2545. SERIAL_ECHOLNPGM(" microns");
  2546. } else {
  2547. switch (i) {
  2548. case 0:
  2549. for (uint8_t row = 0; row < 3; ++ row) {
  2550. mbl.z_values[row][1] += 0.5f * offset;
  2551. mbl.z_values[row][0] += offset;
  2552. }
  2553. break;
  2554. case 1:
  2555. for (uint8_t row = 0; row < 3; ++ row) {
  2556. mbl.z_values[row][1] += 0.5f * offset;
  2557. mbl.z_values[row][2] += offset;
  2558. }
  2559. break;
  2560. case 2:
  2561. for (uint8_t col = 0; col < 3; ++ col) {
  2562. mbl.z_values[1][col] += 0.5f * offset;
  2563. mbl.z_values[0][col] += offset;
  2564. }
  2565. break;
  2566. case 3:
  2567. for (uint8_t col = 0; col < 3; ++ col) {
  2568. mbl.z_values[1][col] += 0.5f * offset;
  2569. mbl.z_values[2][col] += offset;
  2570. }
  2571. break;
  2572. }
  2573. }
  2574. }
  2575. mbl.upsample_3x3();
  2576. mbl.active = 1;
  2577. go_home_with_z_lift();
  2578. // Restore custom message state
  2579. custom_message = custom_message_old;
  2580. custom_message_type = custom_message_type_old;
  2581. custom_message_state = custom_message_state_old;
  2582. lcd_update(1);
  2583. }
  2584. break;
  2585. /**
  2586. * G81: Print mesh bed leveling status and bed profile if activated
  2587. */
  2588. case 81:
  2589. if (mbl.active) {
  2590. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2591. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2592. SERIAL_PROTOCOLPGM(",");
  2593. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2594. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2595. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2596. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2597. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2598. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2599. SERIAL_PROTOCOLPGM(" ");
  2600. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2601. }
  2602. SERIAL_PROTOCOLPGM("\n");
  2603. }
  2604. }
  2605. else
  2606. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2607. break;
  2608. #if 0
  2609. /**
  2610. * G82: Single Z probe at current location
  2611. *
  2612. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2613. *
  2614. */
  2615. case 82:
  2616. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2617. setup_for_endstop_move();
  2618. find_bed_induction_sensor_point_z();
  2619. clean_up_after_endstop_move();
  2620. SERIAL_PROTOCOLPGM("Bed found at: ");
  2621. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2622. SERIAL_PROTOCOLPGM("\n");
  2623. break;
  2624. /**
  2625. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2626. */
  2627. case 83:
  2628. {
  2629. int babystepz = code_seen('S') ? code_value() : 0;
  2630. int BabyPosition = code_seen('P') ? code_value() : 0;
  2631. if (babystepz != 0) {
  2632. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2633. // Is the axis indexed starting with zero or one?
  2634. if (BabyPosition > 4) {
  2635. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2636. }else{
  2637. // Save it to the eeprom
  2638. babystepLoadZ = babystepz;
  2639. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2640. // adjust the Z
  2641. babystepsTodoZadd(babystepLoadZ);
  2642. }
  2643. }
  2644. }
  2645. break;
  2646. /**
  2647. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2648. */
  2649. case 84:
  2650. babystepsTodoZsubtract(babystepLoadZ);
  2651. // babystepLoadZ = 0;
  2652. break;
  2653. /**
  2654. * G85: Prusa3D specific: Pick best babystep
  2655. */
  2656. case 85:
  2657. lcd_pick_babystep();
  2658. break;
  2659. #endif
  2660. /**
  2661. * G86: Prusa3D specific: Disable babystep correction after home.
  2662. * This G-code will be performed at the start of a calibration script.
  2663. */
  2664. case 86:
  2665. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2666. break;
  2667. /**
  2668. * G87: Prusa3D specific: Enable babystep correction after home
  2669. * This G-code will be performed at the end of a calibration script.
  2670. */
  2671. case 87:
  2672. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2673. break;
  2674. /**
  2675. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2676. */
  2677. case 88:
  2678. break;
  2679. #endif // ENABLE_MESH_BED_LEVELING
  2680. case 90: // G90
  2681. relative_mode = false;
  2682. break;
  2683. case 91: // G91
  2684. relative_mode = true;
  2685. break;
  2686. case 92: // G92
  2687. if(!code_seen(axis_codes[E_AXIS]))
  2688. st_synchronize();
  2689. for(int8_t i=0; i < NUM_AXIS; i++) {
  2690. if(code_seen(axis_codes[i])) {
  2691. if(i == E_AXIS) {
  2692. current_position[i] = code_value();
  2693. plan_set_e_position(current_position[E_AXIS]);
  2694. }
  2695. else {
  2696. current_position[i] = code_value()+add_homing[i];
  2697. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2698. }
  2699. }
  2700. }
  2701. break;
  2702. case 98: //activate farm mode
  2703. farm_mode = 1;
  2704. PingTime = millis();
  2705. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2706. break;
  2707. case 99: //deactivate farm mode
  2708. farm_mode = 0;
  2709. lcd_printer_connected();
  2710. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2711. lcd_update(2);
  2712. break;
  2713. }
  2714. } // end if(code_seen('G'))
  2715. else if(code_seen('M'))
  2716. {
  2717. int index;
  2718. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2719. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2720. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2721. SERIAL_ECHOLNPGM("Invalid M code");
  2722. } else
  2723. switch((int)code_value())
  2724. {
  2725. #ifdef ULTIPANEL
  2726. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2727. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2728. {
  2729. char *src = strchr_pointer + 2;
  2730. codenum = 0;
  2731. bool hasP = false, hasS = false;
  2732. if (code_seen('P')) {
  2733. codenum = code_value(); // milliseconds to wait
  2734. hasP = codenum > 0;
  2735. }
  2736. if (code_seen('S')) {
  2737. codenum = code_value() * 1000; // seconds to wait
  2738. hasS = codenum > 0;
  2739. }
  2740. starpos = strchr(src, '*');
  2741. if (starpos != NULL) *(starpos) = '\0';
  2742. while (*src == ' ') ++src;
  2743. if (!hasP && !hasS && *src != '\0') {
  2744. lcd_setstatus(src);
  2745. } else {
  2746. LCD_MESSAGERPGM(MSG_USERWAIT);
  2747. }
  2748. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2749. st_synchronize();
  2750. previous_millis_cmd = millis();
  2751. if (codenum > 0){
  2752. codenum += millis(); // keep track of when we started waiting
  2753. while(millis() < codenum && !lcd_clicked()){
  2754. manage_heater();
  2755. manage_inactivity(true);
  2756. lcd_update();
  2757. }
  2758. lcd_ignore_click(false);
  2759. }else{
  2760. if (!lcd_detected())
  2761. break;
  2762. while(!lcd_clicked()){
  2763. manage_heater();
  2764. manage_inactivity(true);
  2765. lcd_update();
  2766. }
  2767. }
  2768. if (IS_SD_PRINTING)
  2769. LCD_MESSAGERPGM(MSG_RESUMING);
  2770. else
  2771. LCD_MESSAGERPGM(WELCOME_MSG);
  2772. }
  2773. break;
  2774. #endif
  2775. case 17:
  2776. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2777. enable_x();
  2778. enable_y();
  2779. enable_z();
  2780. enable_e0();
  2781. enable_e1();
  2782. enable_e2();
  2783. break;
  2784. #ifdef SDSUPPORT
  2785. case 20: // M20 - list SD card
  2786. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2787. card.ls();
  2788. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2789. break;
  2790. case 21: // M21 - init SD card
  2791. card.initsd();
  2792. break;
  2793. case 22: //M22 - release SD card
  2794. card.release();
  2795. break;
  2796. case 23: //M23 - Select file
  2797. starpos = (strchr(strchr_pointer + 4,'*'));
  2798. if(starpos!=NULL)
  2799. *(starpos)='\0';
  2800. card.openFile(strchr_pointer + 4,true);
  2801. break;
  2802. case 24: //M24 - Start SD print
  2803. card.startFileprint();
  2804. starttime=millis();
  2805. break;
  2806. case 25: //M25 - Pause SD print
  2807. card.pauseSDPrint();
  2808. break;
  2809. case 26: //M26 - Set SD index
  2810. if(card.cardOK && code_seen('S')) {
  2811. card.setIndex(code_value_long());
  2812. }
  2813. break;
  2814. case 27: //M27 - Get SD status
  2815. card.getStatus();
  2816. break;
  2817. case 28: //M28 - Start SD write
  2818. starpos = (strchr(strchr_pointer + 4,'*'));
  2819. if(starpos != NULL){
  2820. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2821. strchr_pointer = strchr(npos,' ') + 1;
  2822. *(starpos) = '\0';
  2823. }
  2824. card.openFile(strchr_pointer+4,false);
  2825. break;
  2826. case 29: //M29 - Stop SD write
  2827. //processed in write to file routine above
  2828. //card,saving = false;
  2829. break;
  2830. case 30: //M30 <filename> Delete File
  2831. if (card.cardOK){
  2832. card.closefile();
  2833. starpos = (strchr(strchr_pointer + 4,'*'));
  2834. if(starpos != NULL){
  2835. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2836. strchr_pointer = strchr(npos,' ') + 1;
  2837. *(starpos) = '\0';
  2838. }
  2839. card.removeFile(strchr_pointer + 4);
  2840. }
  2841. break;
  2842. case 32: //M32 - Select file and start SD print
  2843. {
  2844. if(card.sdprinting) {
  2845. st_synchronize();
  2846. }
  2847. starpos = (strchr(strchr_pointer + 4,'*'));
  2848. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2849. if(namestartpos==NULL)
  2850. {
  2851. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2852. }
  2853. else
  2854. namestartpos++; //to skip the '!'
  2855. if(starpos!=NULL)
  2856. *(starpos)='\0';
  2857. bool call_procedure=(code_seen('P'));
  2858. if(strchr_pointer>namestartpos)
  2859. call_procedure=false; //false alert, 'P' found within filename
  2860. if( card.cardOK )
  2861. {
  2862. card.openFile(namestartpos,true,!call_procedure);
  2863. if(code_seen('S'))
  2864. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2865. card.setIndex(code_value_long());
  2866. card.startFileprint();
  2867. if(!call_procedure)
  2868. starttime=millis(); //procedure calls count as normal print time.
  2869. }
  2870. } break;
  2871. case 928: //M928 - Start SD write
  2872. starpos = (strchr(strchr_pointer + 5,'*'));
  2873. if(starpos != NULL){
  2874. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2875. strchr_pointer = strchr(npos,' ') + 1;
  2876. *(starpos) = '\0';
  2877. }
  2878. card.openLogFile(strchr_pointer+5);
  2879. break;
  2880. #endif //SDSUPPORT
  2881. case 31: //M31 take time since the start of the SD print or an M109 command
  2882. {
  2883. stoptime=millis();
  2884. char time[30];
  2885. unsigned long t=(stoptime-starttime)/1000;
  2886. int sec,min;
  2887. min=t/60;
  2888. sec=t%60;
  2889. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2890. SERIAL_ECHO_START;
  2891. SERIAL_ECHOLN(time);
  2892. lcd_setstatus(time);
  2893. autotempShutdown();
  2894. }
  2895. break;
  2896. case 42: //M42 -Change pin status via gcode
  2897. if (code_seen('S'))
  2898. {
  2899. int pin_status = code_value();
  2900. int pin_number = LED_PIN;
  2901. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2902. pin_number = code_value();
  2903. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2904. {
  2905. if (sensitive_pins[i] == pin_number)
  2906. {
  2907. pin_number = -1;
  2908. break;
  2909. }
  2910. }
  2911. #if defined(FAN_PIN) && FAN_PIN > -1
  2912. if (pin_number == FAN_PIN)
  2913. fanSpeed = pin_status;
  2914. #endif
  2915. if (pin_number > -1)
  2916. {
  2917. pinMode(pin_number, OUTPUT);
  2918. digitalWrite(pin_number, pin_status);
  2919. analogWrite(pin_number, pin_status);
  2920. }
  2921. }
  2922. break;
  2923. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2924. // Reset the baby step value and the baby step applied flag.
  2925. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2926. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2927. // Reset the skew and offset in both RAM and EEPROM.
  2928. reset_bed_offset_and_skew();
  2929. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2930. // the planner will not perform any adjustments in the XY plane.
  2931. // Wait for the motors to stop and update the current position with the absolute values.
  2932. world2machine_revert_to_uncorrected();
  2933. break;
  2934. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2935. {
  2936. // Only Z calibration?
  2937. bool onlyZ = code_seen('Z');
  2938. if (!onlyZ) {
  2939. setTargetBed(0);
  2940. setTargetHotend(0, 0);
  2941. setTargetHotend(0, 1);
  2942. setTargetHotend(0, 2);
  2943. adjust_bed_reset(); //reset bed level correction
  2944. }
  2945. // Disable the default update procedure of the display. We will do a modal dialog.
  2946. lcd_update_enable(false);
  2947. // Let the planner use the uncorrected coordinates.
  2948. mbl.reset();
  2949. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2950. // the planner will not perform any adjustments in the XY plane.
  2951. // Wait for the motors to stop and update the current position with the absolute values.
  2952. world2machine_revert_to_uncorrected();
  2953. // Reset the baby step value applied without moving the axes.
  2954. babystep_reset();
  2955. // Mark all axes as in a need for homing.
  2956. memset(axis_known_position, 0, sizeof(axis_known_position));
  2957. // Let the user move the Z axes up to the end stoppers.
  2958. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2959. refresh_cmd_timeout();
  2960. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  2961. lcd_wait_for_cool_down();
  2962. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  2963. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  2964. lcd_implementation_print_at(0, 2, 1);
  2965. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  2966. }
  2967. // Move the print head close to the bed.
  2968. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2970. st_synchronize();
  2971. // Home in the XY plane.
  2972. set_destination_to_current();
  2973. setup_for_endstop_move();
  2974. home_xy();
  2975. int8_t verbosity_level = 0;
  2976. if (code_seen('V')) {
  2977. // Just 'V' without a number counts as V1.
  2978. char c = strchr_pointer[1];
  2979. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2980. }
  2981. if (onlyZ) {
  2982. clean_up_after_endstop_move();
  2983. // Z only calibration.
  2984. // Load the machine correction matrix
  2985. world2machine_initialize();
  2986. // and correct the current_position to match the transformed coordinate system.
  2987. world2machine_update_current();
  2988. //FIXME
  2989. bool result = sample_mesh_and_store_reference();
  2990. if (result) {
  2991. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2992. // Shipped, the nozzle height has been set already. The user can start printing now.
  2993. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2994. // babystep_apply();
  2995. }
  2996. } else {
  2997. // Reset the baby step value and the baby step applied flag.
  2998. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2999. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3000. // Complete XYZ calibration.
  3001. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3002. uint8_t point_too_far_mask = 0;
  3003. clean_up_after_endstop_move();
  3004. // Print head up.
  3005. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3007. st_synchronize();
  3008. if (result >= 0) {
  3009. // Second half: The fine adjustment.
  3010. // Let the planner use the uncorrected coordinates.
  3011. mbl.reset();
  3012. world2machine_reset();
  3013. // Home in the XY plane.
  3014. setup_for_endstop_move();
  3015. home_xy();
  3016. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3017. clean_up_after_endstop_move();
  3018. // Print head up.
  3019. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3021. st_synchronize();
  3022. // if (result >= 0) babystep_apply();
  3023. }
  3024. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3025. if (result >= 0) {
  3026. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3027. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3028. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3029. }
  3030. }
  3031. } else {
  3032. // Timeouted.
  3033. }
  3034. lcd_update_enable(true);
  3035. break;
  3036. }
  3037. /*
  3038. case 46:
  3039. {
  3040. // M46: Prusa3D: Show the assigned IP address.
  3041. uint8_t ip[4];
  3042. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3043. if (hasIP) {
  3044. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3045. SERIAL_ECHO(int(ip[0]));
  3046. SERIAL_ECHOPGM(".");
  3047. SERIAL_ECHO(int(ip[1]));
  3048. SERIAL_ECHOPGM(".");
  3049. SERIAL_ECHO(int(ip[2]));
  3050. SERIAL_ECHOPGM(".");
  3051. SERIAL_ECHO(int(ip[3]));
  3052. SERIAL_ECHOLNPGM("");
  3053. } else {
  3054. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3055. }
  3056. break;
  3057. }
  3058. */
  3059. case 47:
  3060. // M47: Prusa3D: Show end stops dialog on the display.
  3061. lcd_diag_show_end_stops();
  3062. break;
  3063. #if 0
  3064. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3065. {
  3066. // Disable the default update procedure of the display. We will do a modal dialog.
  3067. lcd_update_enable(false);
  3068. // Let the planner use the uncorrected coordinates.
  3069. mbl.reset();
  3070. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3071. // the planner will not perform any adjustments in the XY plane.
  3072. // Wait for the motors to stop and update the current position with the absolute values.
  3073. world2machine_revert_to_uncorrected();
  3074. // Move the print head close to the bed.
  3075. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3077. st_synchronize();
  3078. // Home in the XY plane.
  3079. set_destination_to_current();
  3080. setup_for_endstop_move();
  3081. home_xy();
  3082. int8_t verbosity_level = 0;
  3083. if (code_seen('V')) {
  3084. // Just 'V' without a number counts as V1.
  3085. char c = strchr_pointer[1];
  3086. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3087. }
  3088. bool success = scan_bed_induction_points(verbosity_level);
  3089. clean_up_after_endstop_move();
  3090. // Print head up.
  3091. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3093. st_synchronize();
  3094. lcd_update_enable(true);
  3095. break;
  3096. }
  3097. #endif
  3098. // M48 Z-Probe repeatability measurement function.
  3099. //
  3100. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3101. //
  3102. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3103. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3104. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3105. // regenerated.
  3106. //
  3107. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3108. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3109. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3110. //
  3111. #ifdef ENABLE_AUTO_BED_LEVELING
  3112. #ifdef Z_PROBE_REPEATABILITY_TEST
  3113. case 48: // M48 Z-Probe repeatability
  3114. {
  3115. #if Z_MIN_PIN == -1
  3116. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3117. #endif
  3118. double sum=0.0;
  3119. double mean=0.0;
  3120. double sigma=0.0;
  3121. double sample_set[50];
  3122. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3123. double X_current, Y_current, Z_current;
  3124. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3125. if (code_seen('V') || code_seen('v')) {
  3126. verbose_level = code_value();
  3127. if (verbose_level<0 || verbose_level>4 ) {
  3128. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3129. goto Sigma_Exit;
  3130. }
  3131. }
  3132. if (verbose_level > 0) {
  3133. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3134. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3135. }
  3136. if (code_seen('n')) {
  3137. n_samples = code_value();
  3138. if (n_samples<4 || n_samples>50 ) {
  3139. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3140. goto Sigma_Exit;
  3141. }
  3142. }
  3143. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3144. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3145. Z_current = st_get_position_mm(Z_AXIS);
  3146. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3147. ext_position = st_get_position_mm(E_AXIS);
  3148. if (code_seen('X') || code_seen('x') ) {
  3149. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3150. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3151. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3152. goto Sigma_Exit;
  3153. }
  3154. }
  3155. if (code_seen('Y') || code_seen('y') ) {
  3156. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3157. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3158. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3159. goto Sigma_Exit;
  3160. }
  3161. }
  3162. if (code_seen('L') || code_seen('l') ) {
  3163. n_legs = code_value();
  3164. if ( n_legs==1 )
  3165. n_legs = 2;
  3166. if ( n_legs<0 || n_legs>15 ) {
  3167. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3168. goto Sigma_Exit;
  3169. }
  3170. }
  3171. //
  3172. // Do all the preliminary setup work. First raise the probe.
  3173. //
  3174. st_synchronize();
  3175. plan_bed_level_matrix.set_to_identity();
  3176. plan_buffer_line( X_current, Y_current, Z_start_location,
  3177. ext_position,
  3178. homing_feedrate[Z_AXIS]/60,
  3179. active_extruder);
  3180. st_synchronize();
  3181. //
  3182. // Now get everything to the specified probe point So we can safely do a probe to
  3183. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3184. // use that as a starting point for each probe.
  3185. //
  3186. if (verbose_level > 2)
  3187. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3188. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3189. ext_position,
  3190. homing_feedrate[X_AXIS]/60,
  3191. active_extruder);
  3192. st_synchronize();
  3193. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3194. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3195. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3196. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3197. //
  3198. // OK, do the inital probe to get us close to the bed.
  3199. // Then retrace the right amount and use that in subsequent probes
  3200. //
  3201. setup_for_endstop_move();
  3202. run_z_probe();
  3203. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3204. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3205. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3206. ext_position,
  3207. homing_feedrate[X_AXIS]/60,
  3208. active_extruder);
  3209. st_synchronize();
  3210. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3211. for( n=0; n<n_samples; n++) {
  3212. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3213. if ( n_legs) {
  3214. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3215. int rotational_direction, l;
  3216. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3217. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3218. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3219. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3220. //SERIAL_ECHOPAIR(" theta: ",theta);
  3221. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3222. //SERIAL_PROTOCOLLNPGM("");
  3223. for( l=0; l<n_legs-1; l++) {
  3224. if (rotational_direction==1)
  3225. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3226. else
  3227. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3228. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3229. if ( radius<0.0 )
  3230. radius = -radius;
  3231. X_current = X_probe_location + cos(theta) * radius;
  3232. Y_current = Y_probe_location + sin(theta) * radius;
  3233. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3234. X_current = X_MIN_POS;
  3235. if ( X_current>X_MAX_POS)
  3236. X_current = X_MAX_POS;
  3237. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3238. Y_current = Y_MIN_POS;
  3239. if ( Y_current>Y_MAX_POS)
  3240. Y_current = Y_MAX_POS;
  3241. if (verbose_level>3 ) {
  3242. SERIAL_ECHOPAIR("x: ", X_current);
  3243. SERIAL_ECHOPAIR("y: ", Y_current);
  3244. SERIAL_PROTOCOLLNPGM("");
  3245. }
  3246. do_blocking_move_to( X_current, Y_current, Z_current );
  3247. }
  3248. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3249. }
  3250. setup_for_endstop_move();
  3251. run_z_probe();
  3252. sample_set[n] = current_position[Z_AXIS];
  3253. //
  3254. // Get the current mean for the data points we have so far
  3255. //
  3256. sum=0.0;
  3257. for( j=0; j<=n; j++) {
  3258. sum = sum + sample_set[j];
  3259. }
  3260. mean = sum / (double (n+1));
  3261. //
  3262. // Now, use that mean to calculate the standard deviation for the
  3263. // data points we have so far
  3264. //
  3265. sum=0.0;
  3266. for( j=0; j<=n; j++) {
  3267. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3268. }
  3269. sigma = sqrt( sum / (double (n+1)) );
  3270. if (verbose_level > 1) {
  3271. SERIAL_PROTOCOL(n+1);
  3272. SERIAL_PROTOCOL(" of ");
  3273. SERIAL_PROTOCOL(n_samples);
  3274. SERIAL_PROTOCOLPGM(" z: ");
  3275. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3276. }
  3277. if (verbose_level > 2) {
  3278. SERIAL_PROTOCOL(" mean: ");
  3279. SERIAL_PROTOCOL_F(mean,6);
  3280. SERIAL_PROTOCOL(" sigma: ");
  3281. SERIAL_PROTOCOL_F(sigma,6);
  3282. }
  3283. if (verbose_level > 0)
  3284. SERIAL_PROTOCOLPGM("\n");
  3285. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3286. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3287. st_synchronize();
  3288. }
  3289. delay(1000);
  3290. clean_up_after_endstop_move();
  3291. // enable_endstops(true);
  3292. if (verbose_level > 0) {
  3293. SERIAL_PROTOCOLPGM("Mean: ");
  3294. SERIAL_PROTOCOL_F(mean, 6);
  3295. SERIAL_PROTOCOLPGM("\n");
  3296. }
  3297. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3298. SERIAL_PROTOCOL_F(sigma, 6);
  3299. SERIAL_PROTOCOLPGM("\n\n");
  3300. Sigma_Exit:
  3301. break;
  3302. }
  3303. #endif // Z_PROBE_REPEATABILITY_TEST
  3304. #endif // ENABLE_AUTO_BED_LEVELING
  3305. case 104: // M104
  3306. if(setTargetedHotend(104)){
  3307. break;
  3308. }
  3309. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3310. setWatch();
  3311. break;
  3312. case 112: // M112 -Emergency Stop
  3313. kill();
  3314. break;
  3315. case 140: // M140 set bed temp
  3316. if (code_seen('S')) setTargetBed(code_value());
  3317. break;
  3318. case 105 : // M105
  3319. if(setTargetedHotend(105)){
  3320. break;
  3321. }
  3322. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3323. SERIAL_PROTOCOLPGM("ok T:");
  3324. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3325. SERIAL_PROTOCOLPGM(" /");
  3326. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3327. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3328. SERIAL_PROTOCOLPGM(" B:");
  3329. SERIAL_PROTOCOL_F(degBed(),1);
  3330. SERIAL_PROTOCOLPGM(" /");
  3331. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3332. #endif //TEMP_BED_PIN
  3333. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3334. SERIAL_PROTOCOLPGM(" T");
  3335. SERIAL_PROTOCOL(cur_extruder);
  3336. SERIAL_PROTOCOLPGM(":");
  3337. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3338. SERIAL_PROTOCOLPGM(" /");
  3339. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3340. }
  3341. #else
  3342. SERIAL_ERROR_START;
  3343. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3344. #endif
  3345. SERIAL_PROTOCOLPGM(" @:");
  3346. #ifdef EXTRUDER_WATTS
  3347. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3348. SERIAL_PROTOCOLPGM("W");
  3349. #else
  3350. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3351. #endif
  3352. SERIAL_PROTOCOLPGM(" B@:");
  3353. #ifdef BED_WATTS
  3354. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3355. SERIAL_PROTOCOLPGM("W");
  3356. #else
  3357. SERIAL_PROTOCOL(getHeaterPower(-1));
  3358. #endif
  3359. #ifdef SHOW_TEMP_ADC_VALUES
  3360. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3361. SERIAL_PROTOCOLPGM(" ADC B:");
  3362. SERIAL_PROTOCOL_F(degBed(),1);
  3363. SERIAL_PROTOCOLPGM("C->");
  3364. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3365. #endif
  3366. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3367. SERIAL_PROTOCOLPGM(" T");
  3368. SERIAL_PROTOCOL(cur_extruder);
  3369. SERIAL_PROTOCOLPGM(":");
  3370. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3371. SERIAL_PROTOCOLPGM("C->");
  3372. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3373. }
  3374. #endif
  3375. SERIAL_PROTOCOLLN("");
  3376. return;
  3377. break;
  3378. case 109:
  3379. {// M109 - Wait for extruder heater to reach target.
  3380. if(setTargetedHotend(109)){
  3381. break;
  3382. }
  3383. LCD_MESSAGERPGM(MSG_HEATING);
  3384. heating_status = 1;
  3385. if (farm_mode) { prusa_statistics(1); };
  3386. #ifdef AUTOTEMP
  3387. autotemp_enabled=false;
  3388. #endif
  3389. if (code_seen('S')) {
  3390. setTargetHotend(code_value(), tmp_extruder);
  3391. CooldownNoWait = true;
  3392. } else if (code_seen('R')) {
  3393. setTargetHotend(code_value(), tmp_extruder);
  3394. CooldownNoWait = false;
  3395. }
  3396. #ifdef AUTOTEMP
  3397. if (code_seen('S')) autotemp_min=code_value();
  3398. if (code_seen('B')) autotemp_max=code_value();
  3399. if (code_seen('F'))
  3400. {
  3401. autotemp_factor=code_value();
  3402. autotemp_enabled=true;
  3403. }
  3404. #endif
  3405. setWatch();
  3406. codenum = millis();
  3407. /* See if we are heating up or cooling down */
  3408. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3409. cancel_heatup = false;
  3410. #ifdef TEMP_RESIDENCY_TIME
  3411. long residencyStart;
  3412. residencyStart = -1;
  3413. /* continue to loop until we have reached the target temp
  3414. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3415. while((!cancel_heatup)&&((residencyStart == -1) ||
  3416. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3417. #else
  3418. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3419. #endif //TEMP_RESIDENCY_TIME
  3420. if( (millis() - codenum) > 1000UL )
  3421. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3422. if (!farm_mode) {
  3423. SERIAL_PROTOCOLPGM("T:");
  3424. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  3425. SERIAL_PROTOCOLPGM(" E:");
  3426. SERIAL_PROTOCOL((int)tmp_extruder);
  3427. #ifdef TEMP_RESIDENCY_TIME
  3428. SERIAL_PROTOCOLPGM(" W:");
  3429. if (residencyStart > -1)
  3430. {
  3431. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3432. SERIAL_PROTOCOLLN(codenum);
  3433. }
  3434. else
  3435. {
  3436. SERIAL_PROTOCOLLN("?");
  3437. }
  3438. }
  3439. #else
  3440. SERIAL_PROTOCOLLN("");
  3441. #endif
  3442. codenum = millis();
  3443. }
  3444. manage_heater();
  3445. manage_inactivity();
  3446. lcd_update();
  3447. #ifdef TEMP_RESIDENCY_TIME
  3448. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3449. or when current temp falls outside the hysteresis after target temp was reached */
  3450. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3451. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3452. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3453. {
  3454. residencyStart = millis();
  3455. }
  3456. #endif //TEMP_RESIDENCY_TIME
  3457. }
  3458. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3459. heating_status = 2;
  3460. if (farm_mode) { prusa_statistics(2); };
  3461. starttime=millis();
  3462. previous_millis_cmd = millis();
  3463. }
  3464. break;
  3465. case 190: // M190 - Wait for bed heater to reach target.
  3466. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3467. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3468. heating_status = 3;
  3469. if (farm_mode) { prusa_statistics(1); };
  3470. if (code_seen('S'))
  3471. {
  3472. setTargetBed(code_value());
  3473. CooldownNoWait = true;
  3474. }
  3475. else if (code_seen('R'))
  3476. {
  3477. setTargetBed(code_value());
  3478. CooldownNoWait = false;
  3479. }
  3480. codenum = millis();
  3481. cancel_heatup = false;
  3482. target_direction = isHeatingBed(); // true if heating, false if cooling
  3483. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3484. {
  3485. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3486. {
  3487. if (!farm_mode) {
  3488. float tt = degHotend(active_extruder);
  3489. SERIAL_PROTOCOLPGM("T:");
  3490. SERIAL_PROTOCOL(tt);
  3491. SERIAL_PROTOCOLPGM(" E:");
  3492. SERIAL_PROTOCOL((int)active_extruder);
  3493. SERIAL_PROTOCOLPGM(" B:");
  3494. SERIAL_PROTOCOL_F(degBed(), 1);
  3495. SERIAL_PROTOCOLLN("");
  3496. }
  3497. codenum = millis();
  3498. }
  3499. manage_heater();
  3500. manage_inactivity();
  3501. lcd_update();
  3502. }
  3503. LCD_MESSAGERPGM(MSG_BED_DONE);
  3504. heating_status = 4;
  3505. previous_millis_cmd = millis();
  3506. #endif
  3507. break;
  3508. #if defined(FAN_PIN) && FAN_PIN > -1
  3509. case 106: //M106 Fan On
  3510. if (code_seen('S')){
  3511. fanSpeed=constrain(code_value(),0,255);
  3512. }
  3513. else {
  3514. fanSpeed=255;
  3515. }
  3516. break;
  3517. case 107: //M107 Fan Off
  3518. fanSpeed = 0;
  3519. break;
  3520. #endif //FAN_PIN
  3521. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3522. case 80: // M80 - Turn on Power Supply
  3523. SET_OUTPUT(PS_ON_PIN); //GND
  3524. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3525. // If you have a switch on suicide pin, this is useful
  3526. // if you want to start another print with suicide feature after
  3527. // a print without suicide...
  3528. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3529. SET_OUTPUT(SUICIDE_PIN);
  3530. WRITE(SUICIDE_PIN, HIGH);
  3531. #endif
  3532. #ifdef ULTIPANEL
  3533. powersupply = true;
  3534. LCD_MESSAGERPGM(WELCOME_MSG);
  3535. lcd_update();
  3536. #endif
  3537. break;
  3538. #endif
  3539. case 81: // M81 - Turn off Power Supply
  3540. disable_heater();
  3541. st_synchronize();
  3542. disable_e0();
  3543. disable_e1();
  3544. disable_e2();
  3545. finishAndDisableSteppers();
  3546. fanSpeed = 0;
  3547. delay(1000); // Wait a little before to switch off
  3548. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3549. st_synchronize();
  3550. suicide();
  3551. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3552. SET_OUTPUT(PS_ON_PIN);
  3553. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3554. #endif
  3555. #ifdef ULTIPANEL
  3556. powersupply = false;
  3557. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3558. /*
  3559. MACHNAME = "Prusa i3"
  3560. MSGOFF = "Vypnuto"
  3561. "Prusai3"" ""vypnuto""."
  3562. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3563. */
  3564. lcd_update();
  3565. #endif
  3566. break;
  3567. case 82:
  3568. axis_relative_modes[3] = false;
  3569. break;
  3570. case 83:
  3571. axis_relative_modes[3] = true;
  3572. break;
  3573. case 18: //compatibility
  3574. case 84: // M84
  3575. if(code_seen('S')){
  3576. stepper_inactive_time = code_value() * 1000;
  3577. }
  3578. else
  3579. {
  3580. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3581. if(all_axis)
  3582. {
  3583. st_synchronize();
  3584. disable_e0();
  3585. disable_e1();
  3586. disable_e2();
  3587. finishAndDisableSteppers();
  3588. }
  3589. else
  3590. {
  3591. st_synchronize();
  3592. if(code_seen('X')) disable_x();
  3593. if(code_seen('Y')) disable_y();
  3594. if(code_seen('Z')) disable_z();
  3595. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3596. if(code_seen('E')) {
  3597. disable_e0();
  3598. disable_e1();
  3599. disable_e2();
  3600. }
  3601. #endif
  3602. }
  3603. }
  3604. break;
  3605. case 85: // M85
  3606. if(code_seen('S')) {
  3607. max_inactive_time = code_value() * 1000;
  3608. }
  3609. break;
  3610. case 92: // M92
  3611. for(int8_t i=0; i < NUM_AXIS; i++)
  3612. {
  3613. if(code_seen(axis_codes[i]))
  3614. {
  3615. if(i == 3) { // E
  3616. float value = code_value();
  3617. if(value < 20.0) {
  3618. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3619. max_jerk[E_AXIS] *= factor;
  3620. max_feedrate[i] *= factor;
  3621. axis_steps_per_sqr_second[i] *= factor;
  3622. }
  3623. axis_steps_per_unit[i] = value;
  3624. }
  3625. else {
  3626. axis_steps_per_unit[i] = code_value();
  3627. }
  3628. }
  3629. }
  3630. break;
  3631. case 115: // M115
  3632. if (code_seen('V')) {
  3633. // Report the Prusa version number.
  3634. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3635. } else if (code_seen('U')) {
  3636. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3637. // pause the print and ask the user to upgrade the firmware.
  3638. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3639. } else {
  3640. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3641. }
  3642. break;
  3643. case 117: // M117 display message
  3644. starpos = (strchr(strchr_pointer + 5,'*'));
  3645. if(starpos!=NULL)
  3646. *(starpos)='\0';
  3647. lcd_setstatus(strchr_pointer + 5);
  3648. break;
  3649. case 114: // M114
  3650. SERIAL_PROTOCOLPGM("X:");
  3651. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3652. SERIAL_PROTOCOLPGM(" Y:");
  3653. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3654. SERIAL_PROTOCOLPGM(" Z:");
  3655. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3656. SERIAL_PROTOCOLPGM(" E:");
  3657. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3658. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3659. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3660. SERIAL_PROTOCOLPGM(" Y:");
  3661. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3662. SERIAL_PROTOCOLPGM(" Z:");
  3663. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3664. SERIAL_PROTOCOLLN("");
  3665. break;
  3666. case 120: // M120
  3667. enable_endstops(false) ;
  3668. break;
  3669. case 121: // M121
  3670. enable_endstops(true) ;
  3671. break;
  3672. case 119: // M119
  3673. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3674. SERIAL_PROTOCOLLN("");
  3675. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3676. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3677. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3678. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3679. }else{
  3680. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3681. }
  3682. SERIAL_PROTOCOLLN("");
  3683. #endif
  3684. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3685. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3686. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3687. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3688. }else{
  3689. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3690. }
  3691. SERIAL_PROTOCOLLN("");
  3692. #endif
  3693. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3694. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3695. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3696. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3697. }else{
  3698. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3699. }
  3700. SERIAL_PROTOCOLLN("");
  3701. #endif
  3702. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3703. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3704. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3705. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3706. }else{
  3707. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3708. }
  3709. SERIAL_PROTOCOLLN("");
  3710. #endif
  3711. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3712. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3713. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3714. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3715. }else{
  3716. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3717. }
  3718. SERIAL_PROTOCOLLN("");
  3719. #endif
  3720. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3721. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3722. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3723. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3724. }else{
  3725. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3726. }
  3727. SERIAL_PROTOCOLLN("");
  3728. #endif
  3729. break;
  3730. //TODO: update for all axis, use for loop
  3731. #ifdef BLINKM
  3732. case 150: // M150
  3733. {
  3734. byte red;
  3735. byte grn;
  3736. byte blu;
  3737. if(code_seen('R')) red = code_value();
  3738. if(code_seen('U')) grn = code_value();
  3739. if(code_seen('B')) blu = code_value();
  3740. SendColors(red,grn,blu);
  3741. }
  3742. break;
  3743. #endif //BLINKM
  3744. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3745. {
  3746. tmp_extruder = active_extruder;
  3747. if(code_seen('T')) {
  3748. tmp_extruder = code_value();
  3749. if(tmp_extruder >= EXTRUDERS) {
  3750. SERIAL_ECHO_START;
  3751. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3752. break;
  3753. }
  3754. }
  3755. float area = .0;
  3756. if(code_seen('D')) {
  3757. float diameter = (float)code_value();
  3758. if (diameter == 0.0) {
  3759. // setting any extruder filament size disables volumetric on the assumption that
  3760. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3761. // for all extruders
  3762. volumetric_enabled = false;
  3763. } else {
  3764. filament_size[tmp_extruder] = (float)code_value();
  3765. // make sure all extruders have some sane value for the filament size
  3766. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3767. #if EXTRUDERS > 1
  3768. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3769. #if EXTRUDERS > 2
  3770. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3771. #endif
  3772. #endif
  3773. volumetric_enabled = true;
  3774. }
  3775. } else {
  3776. //reserved for setting filament diameter via UFID or filament measuring device
  3777. break;
  3778. }
  3779. calculate_volumetric_multipliers();
  3780. }
  3781. break;
  3782. case 201: // M201
  3783. for(int8_t i=0; i < NUM_AXIS; i++)
  3784. {
  3785. if(code_seen(axis_codes[i]))
  3786. {
  3787. max_acceleration_units_per_sq_second[i] = code_value();
  3788. }
  3789. }
  3790. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3791. reset_acceleration_rates();
  3792. break;
  3793. #if 0 // Not used for Sprinter/grbl gen6
  3794. case 202: // M202
  3795. for(int8_t i=0; i < NUM_AXIS; i++) {
  3796. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3797. }
  3798. break;
  3799. #endif
  3800. case 203: // M203 max feedrate mm/sec
  3801. for(int8_t i=0; i < NUM_AXIS; i++) {
  3802. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3803. }
  3804. break;
  3805. case 204: // M204 acclereration S normal moves T filmanent only moves
  3806. {
  3807. if(code_seen('S')) acceleration = code_value() ;
  3808. if(code_seen('T')) retract_acceleration = code_value() ;
  3809. }
  3810. break;
  3811. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3812. {
  3813. if(code_seen('S')) minimumfeedrate = code_value();
  3814. if(code_seen('T')) mintravelfeedrate = code_value();
  3815. if(code_seen('B')) minsegmenttime = code_value() ;
  3816. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3817. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3818. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3819. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3820. }
  3821. break;
  3822. case 206: // M206 additional homing offset
  3823. for(int8_t i=0; i < 3; i++)
  3824. {
  3825. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3826. }
  3827. break;
  3828. #ifdef FWRETRACT
  3829. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3830. {
  3831. if(code_seen('S'))
  3832. {
  3833. retract_length = code_value() ;
  3834. }
  3835. if(code_seen('F'))
  3836. {
  3837. retract_feedrate = code_value()/60 ;
  3838. }
  3839. if(code_seen('Z'))
  3840. {
  3841. retract_zlift = code_value() ;
  3842. }
  3843. }break;
  3844. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3845. {
  3846. if(code_seen('S'))
  3847. {
  3848. retract_recover_length = code_value() ;
  3849. }
  3850. if(code_seen('F'))
  3851. {
  3852. retract_recover_feedrate = code_value()/60 ;
  3853. }
  3854. }break;
  3855. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3856. {
  3857. if(code_seen('S'))
  3858. {
  3859. int t= code_value() ;
  3860. switch(t)
  3861. {
  3862. case 0:
  3863. {
  3864. autoretract_enabled=false;
  3865. retracted[0]=false;
  3866. #if EXTRUDERS > 1
  3867. retracted[1]=false;
  3868. #endif
  3869. #if EXTRUDERS > 2
  3870. retracted[2]=false;
  3871. #endif
  3872. }break;
  3873. case 1:
  3874. {
  3875. autoretract_enabled=true;
  3876. retracted[0]=false;
  3877. #if EXTRUDERS > 1
  3878. retracted[1]=false;
  3879. #endif
  3880. #if EXTRUDERS > 2
  3881. retracted[2]=false;
  3882. #endif
  3883. }break;
  3884. default:
  3885. SERIAL_ECHO_START;
  3886. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3887. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3888. SERIAL_ECHOLNPGM("\"");
  3889. }
  3890. }
  3891. }break;
  3892. #endif // FWRETRACT
  3893. #if EXTRUDERS > 1
  3894. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3895. {
  3896. if(setTargetedHotend(218)){
  3897. break;
  3898. }
  3899. if(code_seen('X'))
  3900. {
  3901. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3902. }
  3903. if(code_seen('Y'))
  3904. {
  3905. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3906. }
  3907. SERIAL_ECHO_START;
  3908. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3909. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3910. {
  3911. SERIAL_ECHO(" ");
  3912. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3913. SERIAL_ECHO(",");
  3914. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3915. }
  3916. SERIAL_ECHOLN("");
  3917. }break;
  3918. #endif
  3919. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3920. {
  3921. if(code_seen('S'))
  3922. {
  3923. feedmultiply = code_value() ;
  3924. }
  3925. }
  3926. break;
  3927. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3928. {
  3929. if(code_seen('S'))
  3930. {
  3931. int tmp_code = code_value();
  3932. if (code_seen('T'))
  3933. {
  3934. if(setTargetedHotend(221)){
  3935. break;
  3936. }
  3937. extruder_multiply[tmp_extruder] = tmp_code;
  3938. }
  3939. else
  3940. {
  3941. extrudemultiply = tmp_code ;
  3942. }
  3943. }
  3944. }
  3945. break;
  3946. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3947. {
  3948. if(code_seen('P')){
  3949. int pin_number = code_value(); // pin number
  3950. int pin_state = -1; // required pin state - default is inverted
  3951. if(code_seen('S')) pin_state = code_value(); // required pin state
  3952. if(pin_state >= -1 && pin_state <= 1){
  3953. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3954. {
  3955. if (sensitive_pins[i] == pin_number)
  3956. {
  3957. pin_number = -1;
  3958. break;
  3959. }
  3960. }
  3961. if (pin_number > -1)
  3962. {
  3963. int target = LOW;
  3964. st_synchronize();
  3965. pinMode(pin_number, INPUT);
  3966. switch(pin_state){
  3967. case 1:
  3968. target = HIGH;
  3969. break;
  3970. case 0:
  3971. target = LOW;
  3972. break;
  3973. case -1:
  3974. target = !digitalRead(pin_number);
  3975. break;
  3976. }
  3977. while(digitalRead(pin_number) != target){
  3978. manage_heater();
  3979. manage_inactivity();
  3980. lcd_update();
  3981. }
  3982. }
  3983. }
  3984. }
  3985. }
  3986. break;
  3987. #if NUM_SERVOS > 0
  3988. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3989. {
  3990. int servo_index = -1;
  3991. int servo_position = 0;
  3992. if (code_seen('P'))
  3993. servo_index = code_value();
  3994. if (code_seen('S')) {
  3995. servo_position = code_value();
  3996. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3997. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3998. servos[servo_index].attach(0);
  3999. #endif
  4000. servos[servo_index].write(servo_position);
  4001. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4002. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4003. servos[servo_index].detach();
  4004. #endif
  4005. }
  4006. else {
  4007. SERIAL_ECHO_START;
  4008. SERIAL_ECHO("Servo ");
  4009. SERIAL_ECHO(servo_index);
  4010. SERIAL_ECHOLN(" out of range");
  4011. }
  4012. }
  4013. else if (servo_index >= 0) {
  4014. SERIAL_PROTOCOL(MSG_OK);
  4015. SERIAL_PROTOCOL(" Servo ");
  4016. SERIAL_PROTOCOL(servo_index);
  4017. SERIAL_PROTOCOL(": ");
  4018. SERIAL_PROTOCOL(servos[servo_index].read());
  4019. SERIAL_PROTOCOLLN("");
  4020. }
  4021. }
  4022. break;
  4023. #endif // NUM_SERVOS > 0
  4024. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4025. case 300: // M300
  4026. {
  4027. int beepS = code_seen('S') ? code_value() : 110;
  4028. int beepP = code_seen('P') ? code_value() : 1000;
  4029. if (beepS > 0)
  4030. {
  4031. #if BEEPER > 0
  4032. tone(BEEPER, beepS);
  4033. delay(beepP);
  4034. noTone(BEEPER);
  4035. #elif defined(ULTRALCD)
  4036. lcd_buzz(beepS, beepP);
  4037. #elif defined(LCD_USE_I2C_BUZZER)
  4038. lcd_buzz(beepP, beepS);
  4039. #endif
  4040. }
  4041. else
  4042. {
  4043. delay(beepP);
  4044. }
  4045. }
  4046. break;
  4047. #endif // M300
  4048. #ifdef PIDTEMP
  4049. case 301: // M301
  4050. {
  4051. if(code_seen('P')) Kp = code_value();
  4052. if(code_seen('I')) Ki = scalePID_i(code_value());
  4053. if(code_seen('D')) Kd = scalePID_d(code_value());
  4054. #ifdef PID_ADD_EXTRUSION_RATE
  4055. if(code_seen('C')) Kc = code_value();
  4056. #endif
  4057. updatePID();
  4058. SERIAL_PROTOCOLRPGM(MSG_OK);
  4059. SERIAL_PROTOCOL(" p:");
  4060. SERIAL_PROTOCOL(Kp);
  4061. SERIAL_PROTOCOL(" i:");
  4062. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4063. SERIAL_PROTOCOL(" d:");
  4064. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4065. #ifdef PID_ADD_EXTRUSION_RATE
  4066. SERIAL_PROTOCOL(" c:");
  4067. //Kc does not have scaling applied above, or in resetting defaults
  4068. SERIAL_PROTOCOL(Kc);
  4069. #endif
  4070. SERIAL_PROTOCOLLN("");
  4071. }
  4072. break;
  4073. #endif //PIDTEMP
  4074. #ifdef PIDTEMPBED
  4075. case 304: // M304
  4076. {
  4077. if(code_seen('P')) bedKp = code_value();
  4078. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4079. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4080. updatePID();
  4081. SERIAL_PROTOCOLRPGM(MSG_OK);
  4082. SERIAL_PROTOCOL(" p:");
  4083. SERIAL_PROTOCOL(bedKp);
  4084. SERIAL_PROTOCOL(" i:");
  4085. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4086. SERIAL_PROTOCOL(" d:");
  4087. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4088. SERIAL_PROTOCOLLN("");
  4089. }
  4090. break;
  4091. #endif //PIDTEMP
  4092. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4093. {
  4094. #ifdef CHDK
  4095. SET_OUTPUT(CHDK);
  4096. WRITE(CHDK, HIGH);
  4097. chdkHigh = millis();
  4098. chdkActive = true;
  4099. #else
  4100. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4101. const uint8_t NUM_PULSES=16;
  4102. const float PULSE_LENGTH=0.01524;
  4103. for(int i=0; i < NUM_PULSES; i++) {
  4104. WRITE(PHOTOGRAPH_PIN, HIGH);
  4105. _delay_ms(PULSE_LENGTH);
  4106. WRITE(PHOTOGRAPH_PIN, LOW);
  4107. _delay_ms(PULSE_LENGTH);
  4108. }
  4109. delay(7.33);
  4110. for(int i=0; i < NUM_PULSES; i++) {
  4111. WRITE(PHOTOGRAPH_PIN, HIGH);
  4112. _delay_ms(PULSE_LENGTH);
  4113. WRITE(PHOTOGRAPH_PIN, LOW);
  4114. _delay_ms(PULSE_LENGTH);
  4115. }
  4116. #endif
  4117. #endif //chdk end if
  4118. }
  4119. break;
  4120. #ifdef DOGLCD
  4121. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4122. {
  4123. if (code_seen('C')) {
  4124. lcd_setcontrast( ((int)code_value())&63 );
  4125. }
  4126. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4127. SERIAL_PROTOCOL(lcd_contrast);
  4128. SERIAL_PROTOCOLLN("");
  4129. }
  4130. break;
  4131. #endif
  4132. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4133. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4134. {
  4135. float temp = .0;
  4136. if (code_seen('S')) temp=code_value();
  4137. set_extrude_min_temp(temp);
  4138. }
  4139. break;
  4140. #endif
  4141. case 303: // M303 PID autotune
  4142. {
  4143. float temp = 150.0;
  4144. int e=0;
  4145. int c=5;
  4146. if (code_seen('E')) e=code_value();
  4147. if (e<0)
  4148. temp=70;
  4149. if (code_seen('S')) temp=code_value();
  4150. if (code_seen('C')) c=code_value();
  4151. PID_autotune(temp, e, c);
  4152. }
  4153. break;
  4154. case 400: // M400 finish all moves
  4155. {
  4156. st_synchronize();
  4157. }
  4158. break;
  4159. #ifdef FILAMENT_SENSOR
  4160. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4161. {
  4162. #if (FILWIDTH_PIN > -1)
  4163. if(code_seen('N')) filament_width_nominal=code_value();
  4164. else{
  4165. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4166. SERIAL_PROTOCOLLN(filament_width_nominal);
  4167. }
  4168. #endif
  4169. }
  4170. break;
  4171. case 405: //M405 Turn on filament sensor for control
  4172. {
  4173. if(code_seen('D')) meas_delay_cm=code_value();
  4174. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4175. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4176. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4177. {
  4178. int temp_ratio = widthFil_to_size_ratio();
  4179. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4180. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4181. }
  4182. delay_index1=0;
  4183. delay_index2=0;
  4184. }
  4185. filament_sensor = true ;
  4186. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4187. //SERIAL_PROTOCOL(filament_width_meas);
  4188. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4189. //SERIAL_PROTOCOL(extrudemultiply);
  4190. }
  4191. break;
  4192. case 406: //M406 Turn off filament sensor for control
  4193. {
  4194. filament_sensor = false ;
  4195. }
  4196. break;
  4197. case 407: //M407 Display measured filament diameter
  4198. {
  4199. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4200. SERIAL_PROTOCOLLN(filament_width_meas);
  4201. }
  4202. break;
  4203. #endif
  4204. case 500: // M500 Store settings in EEPROM
  4205. {
  4206. Config_StoreSettings();
  4207. }
  4208. break;
  4209. case 501: // M501 Read settings from EEPROM
  4210. {
  4211. Config_RetrieveSettings();
  4212. }
  4213. break;
  4214. case 502: // M502 Revert to default settings
  4215. {
  4216. Config_ResetDefault();
  4217. }
  4218. break;
  4219. case 503: // M503 print settings currently in memory
  4220. {
  4221. Config_PrintSettings();
  4222. }
  4223. break;
  4224. case 509: //M509 Force language selection
  4225. {
  4226. lcd_force_language_selection();
  4227. SERIAL_ECHO_START;
  4228. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4229. }
  4230. break;
  4231. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4232. case 540:
  4233. {
  4234. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4235. }
  4236. break;
  4237. #endif
  4238. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4239. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4240. {
  4241. float value;
  4242. if (code_seen('Z'))
  4243. {
  4244. value = code_value();
  4245. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4246. {
  4247. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4248. SERIAL_ECHO_START;
  4249. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4250. SERIAL_PROTOCOLLN("");
  4251. }
  4252. else
  4253. {
  4254. SERIAL_ECHO_START;
  4255. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4256. SERIAL_ECHORPGM(MSG_Z_MIN);
  4257. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4258. SERIAL_ECHORPGM(MSG_Z_MAX);
  4259. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4260. SERIAL_PROTOCOLLN("");
  4261. }
  4262. }
  4263. else
  4264. {
  4265. SERIAL_ECHO_START;
  4266. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4267. SERIAL_ECHO(-zprobe_zoffset);
  4268. SERIAL_PROTOCOLLN("");
  4269. }
  4270. break;
  4271. }
  4272. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4273. #ifdef FILAMENTCHANGEENABLE
  4274. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4275. {
  4276. st_synchronize();
  4277. if (farm_mode)
  4278. {
  4279. prusa_statistics(22);
  4280. }
  4281. feedmultiplyBckp=feedmultiply;
  4282. int8_t TooLowZ = 0;
  4283. float target[4];
  4284. float lastpos[4];
  4285. target[X_AXIS]=current_position[X_AXIS];
  4286. target[Y_AXIS]=current_position[Y_AXIS];
  4287. target[Z_AXIS]=current_position[Z_AXIS];
  4288. target[E_AXIS]=current_position[E_AXIS];
  4289. lastpos[X_AXIS]=current_position[X_AXIS];
  4290. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4291. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4292. lastpos[E_AXIS]=current_position[E_AXIS];
  4293. //Restract extruder
  4294. if(code_seen('E'))
  4295. {
  4296. target[E_AXIS]+= code_value();
  4297. }
  4298. else
  4299. {
  4300. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4301. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4302. #endif
  4303. }
  4304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4305. //Lift Z
  4306. if(code_seen('Z'))
  4307. {
  4308. target[Z_AXIS]+= code_value();
  4309. }
  4310. else
  4311. {
  4312. #ifdef FILAMENTCHANGE_ZADD
  4313. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4314. if(target[Z_AXIS] < 10){
  4315. target[Z_AXIS]+= 10 ;
  4316. TooLowZ = 1;
  4317. }else{
  4318. TooLowZ = 0;
  4319. }
  4320. #endif
  4321. }
  4322. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4323. //Move XY to side
  4324. if(code_seen('X'))
  4325. {
  4326. target[X_AXIS]+= code_value();
  4327. }
  4328. else
  4329. {
  4330. #ifdef FILAMENTCHANGE_XPOS
  4331. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4332. #endif
  4333. }
  4334. if(code_seen('Y'))
  4335. {
  4336. target[Y_AXIS]= code_value();
  4337. }
  4338. else
  4339. {
  4340. #ifdef FILAMENTCHANGE_YPOS
  4341. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4342. #endif
  4343. }
  4344. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4345. // Unload filament
  4346. if(code_seen('L'))
  4347. {
  4348. target[E_AXIS]+= code_value();
  4349. }
  4350. else
  4351. {
  4352. #ifdef FILAMENTCHANGE_FINALRETRACT
  4353. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4354. #endif
  4355. }
  4356. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4357. //finish moves
  4358. st_synchronize();
  4359. //disable extruder steppers so filament can be removed
  4360. disable_e0();
  4361. disable_e1();
  4362. disable_e2();
  4363. delay(100);
  4364. //Wait for user to insert filament
  4365. uint8_t cnt=0;
  4366. int counterBeep = 0;
  4367. lcd_wait_interact();
  4368. while(!lcd_clicked()){
  4369. cnt++;
  4370. manage_heater();
  4371. manage_inactivity(true);
  4372. if(cnt==0)
  4373. {
  4374. #if BEEPER > 0
  4375. if (counterBeep== 500){
  4376. counterBeep = 0;
  4377. }
  4378. SET_OUTPUT(BEEPER);
  4379. if (counterBeep== 0){
  4380. WRITE(BEEPER,HIGH);
  4381. }
  4382. if (counterBeep== 20){
  4383. WRITE(BEEPER,LOW);
  4384. }
  4385. counterBeep++;
  4386. #else
  4387. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4388. lcd_buzz(1000/6,100);
  4389. #else
  4390. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4391. #endif
  4392. #endif
  4393. }
  4394. }
  4395. //Filament inserted
  4396. WRITE(BEEPER,LOW);
  4397. //Feed the filament to the end of nozzle quickly
  4398. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4399. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4400. //Extrude some filament
  4401. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4403. //Wait for user to check the state
  4404. lcd_change_fil_state = 0;
  4405. lcd_loading_filament();
  4406. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4407. lcd_change_fil_state = 0;
  4408. lcd_alright();
  4409. switch(lcd_change_fil_state){
  4410. // Filament failed to load so load it again
  4411. case 2:
  4412. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4414. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4416. lcd_loading_filament();
  4417. break;
  4418. // Filament loaded properly but color is not clear
  4419. case 3:
  4420. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4422. lcd_loading_color();
  4423. break;
  4424. // Everything good
  4425. default:
  4426. lcd_change_success();
  4427. break;
  4428. }
  4429. }
  4430. //Not let's go back to print
  4431. //Feed a little of filament to stabilize pressure
  4432. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4434. //Retract
  4435. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4436. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4437. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4438. //Move XY back
  4439. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4440. //Move Z back
  4441. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4442. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4443. //Unretract
  4444. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4445. //Set E position to original
  4446. plan_set_e_position(lastpos[E_AXIS]);
  4447. //Recover feed rate
  4448. feedmultiply=feedmultiplyBckp;
  4449. char cmd[9];
  4450. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4451. enquecommand(cmd);
  4452. }
  4453. break;
  4454. #endif //FILAMENTCHANGEENABLE
  4455. case 907: // M907 Set digital trimpot motor current using axis codes.
  4456. {
  4457. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4458. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4459. if(code_seen('B')) digipot_current(4,code_value());
  4460. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4461. #endif
  4462. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4463. if(code_seen('X')) digipot_current(0, code_value());
  4464. #endif
  4465. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4466. if(code_seen('Z')) digipot_current(1, code_value());
  4467. #endif
  4468. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4469. if(code_seen('E')) digipot_current(2, code_value());
  4470. #endif
  4471. #ifdef DIGIPOT_I2C
  4472. // this one uses actual amps in floating point
  4473. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4474. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4475. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4476. #endif
  4477. }
  4478. break;
  4479. case 908: // M908 Control digital trimpot directly.
  4480. {
  4481. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4482. uint8_t channel,current;
  4483. if(code_seen('P')) channel=code_value();
  4484. if(code_seen('S')) current=code_value();
  4485. digitalPotWrite(channel, current);
  4486. #endif
  4487. }
  4488. break;
  4489. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4490. {
  4491. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4492. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4493. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4494. if(code_seen('B')) microstep_mode(4,code_value());
  4495. microstep_readings();
  4496. #endif
  4497. }
  4498. break;
  4499. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4500. {
  4501. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4502. if(code_seen('S')) switch((int)code_value())
  4503. {
  4504. case 1:
  4505. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4506. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4507. break;
  4508. case 2:
  4509. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4510. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4511. break;
  4512. }
  4513. microstep_readings();
  4514. #endif
  4515. }
  4516. break;
  4517. case 701: //M701: load filament
  4518. {
  4519. enable_z();
  4520. custom_message = true;
  4521. custom_message_type = 2;
  4522. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4523. current_position[E_AXIS] += 65;
  4524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4525. current_position[E_AXIS] += 40;
  4526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4527. st_synchronize();
  4528. if (!farm_mode && loading_flag) {
  4529. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4530. while (!clean) {
  4531. lcd_update_enable(true);
  4532. lcd_update(2);
  4533. current_position[E_AXIS] += 40;
  4534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4535. st_synchronize();
  4536. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4537. }
  4538. }
  4539. lcd_update_enable(true);
  4540. lcd_update(2);
  4541. lcd_setstatuspgm(WELCOME_MSG);
  4542. disable_z();
  4543. loading_flag = false;
  4544. custom_message = false;
  4545. custom_message_type = 0;
  4546. }
  4547. break;
  4548. case 702:
  4549. {
  4550. custom_message = true;
  4551. custom_message_type = 2;
  4552. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4553. current_position[E_AXIS] -= 80;
  4554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4555. st_synchronize();
  4556. lcd_setstatuspgm(WELCOME_MSG);
  4557. custom_message = false;
  4558. custom_message_type = 0;
  4559. }
  4560. break;
  4561. case 999: // M999: Restart after being stopped
  4562. Stopped = false;
  4563. lcd_reset_alert_level();
  4564. gcode_LastN = Stopped_gcode_LastN;
  4565. FlushSerialRequestResend();
  4566. break;
  4567. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4568. }
  4569. } // end if(code_seen('M')) (end of M codes)
  4570. else if(code_seen('T'))
  4571. {
  4572. int index;
  4573. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4574. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4575. SERIAL_ECHOLNPGM("Invalid T code.");
  4576. }
  4577. else {
  4578. tmp_extruder = code_value();
  4579. #ifdef SNMM
  4580. st_synchronize();
  4581. delay(100);
  4582. disable_e0();
  4583. disable_e1();
  4584. disable_e2();
  4585. pinMode(E_MUX0_PIN, OUTPUT);
  4586. pinMode(E_MUX1_PIN, OUTPUT);
  4587. pinMode(E_MUX2_PIN, OUTPUT);
  4588. delay(100);
  4589. SERIAL_ECHO_START;
  4590. SERIAL_ECHO("T:");
  4591. SERIAL_ECHOLN((int)tmp_extruder);
  4592. switch (tmp_extruder) {
  4593. case 1:
  4594. WRITE(E_MUX0_PIN, HIGH);
  4595. WRITE(E_MUX1_PIN, LOW);
  4596. WRITE(E_MUX2_PIN, LOW);
  4597. break;
  4598. case 2:
  4599. WRITE(E_MUX0_PIN, LOW);
  4600. WRITE(E_MUX1_PIN, HIGH);
  4601. WRITE(E_MUX2_PIN, LOW);
  4602. break;
  4603. case 3:
  4604. WRITE(E_MUX0_PIN, HIGH);
  4605. WRITE(E_MUX1_PIN, HIGH);
  4606. WRITE(E_MUX2_PIN, LOW);
  4607. break;
  4608. default:
  4609. WRITE(E_MUX0_PIN, LOW);
  4610. WRITE(E_MUX1_PIN, LOW);
  4611. WRITE(E_MUX2_PIN, LOW);
  4612. break;
  4613. }
  4614. delay(100);
  4615. #else
  4616. if (tmp_extruder >= EXTRUDERS) {
  4617. SERIAL_ECHO_START;
  4618. SERIAL_ECHOPGM("T");
  4619. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4620. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4621. }
  4622. else {
  4623. boolean make_move = false;
  4624. if (code_seen('F')) {
  4625. make_move = true;
  4626. next_feedrate = code_value();
  4627. if (next_feedrate > 0.0) {
  4628. feedrate = next_feedrate;
  4629. }
  4630. }
  4631. #if EXTRUDERS > 1
  4632. if (tmp_extruder != active_extruder) {
  4633. // Save current position to return to after applying extruder offset
  4634. memcpy(destination, current_position, sizeof(destination));
  4635. // Offset extruder (only by XY)
  4636. int i;
  4637. for (i = 0; i < 2; i++) {
  4638. current_position[i] = current_position[i] -
  4639. extruder_offset[i][active_extruder] +
  4640. extruder_offset[i][tmp_extruder];
  4641. }
  4642. // Set the new active extruder and position
  4643. active_extruder = tmp_extruder;
  4644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4645. // Move to the old position if 'F' was in the parameters
  4646. if (make_move && Stopped == false) {
  4647. prepare_move();
  4648. }
  4649. }
  4650. #endif
  4651. SERIAL_ECHO_START;
  4652. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4653. SERIAL_PROTOCOLLN((int)active_extruder);
  4654. }
  4655. #endif
  4656. }
  4657. } // end if(code_seen('T')) (end of T codes)
  4658. else
  4659. {
  4660. SERIAL_ECHO_START;
  4661. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4662. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4663. SERIAL_ECHOLNPGM("\"");
  4664. }
  4665. ClearToSend();
  4666. }
  4667. void FlushSerialRequestResend()
  4668. {
  4669. //char cmdbuffer[bufindr][100]="Resend:";
  4670. MYSERIAL.flush();
  4671. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4672. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4673. ClearToSend();
  4674. }
  4675. // Confirm the execution of a command, if sent from a serial line.
  4676. // Execution of a command from a SD card will not be confirmed.
  4677. void ClearToSend()
  4678. {
  4679. previous_millis_cmd = millis();
  4680. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4681. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4682. }
  4683. void get_coordinates()
  4684. {
  4685. bool seen[4]={false,false,false,false};
  4686. for(int8_t i=0; i < NUM_AXIS; i++) {
  4687. if(code_seen(axis_codes[i]))
  4688. {
  4689. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4690. seen[i]=true;
  4691. }
  4692. else destination[i] = current_position[i]; //Are these else lines really needed?
  4693. }
  4694. if(code_seen('F')) {
  4695. next_feedrate = code_value();
  4696. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4697. }
  4698. }
  4699. void get_arc_coordinates()
  4700. {
  4701. #ifdef SF_ARC_FIX
  4702. bool relative_mode_backup = relative_mode;
  4703. relative_mode = true;
  4704. #endif
  4705. get_coordinates();
  4706. #ifdef SF_ARC_FIX
  4707. relative_mode=relative_mode_backup;
  4708. #endif
  4709. if(code_seen('I')) {
  4710. offset[0] = code_value();
  4711. }
  4712. else {
  4713. offset[0] = 0.0;
  4714. }
  4715. if(code_seen('J')) {
  4716. offset[1] = code_value();
  4717. }
  4718. else {
  4719. offset[1] = 0.0;
  4720. }
  4721. }
  4722. void clamp_to_software_endstops(float target[3])
  4723. {
  4724. world2machine_clamp(target[0], target[1]);
  4725. // Clamp the Z coordinate.
  4726. if (min_software_endstops) {
  4727. float negative_z_offset = 0;
  4728. #ifdef ENABLE_AUTO_BED_LEVELING
  4729. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4730. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4731. #endif
  4732. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4733. }
  4734. if (max_software_endstops) {
  4735. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4736. }
  4737. }
  4738. #ifdef MESH_BED_LEVELING
  4739. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4740. float dx = x - current_position[X_AXIS];
  4741. float dy = y - current_position[Y_AXIS];
  4742. float dz = z - current_position[Z_AXIS];
  4743. int n_segments = 0;
  4744. if (mbl.active) {
  4745. float len = abs(dx) + abs(dy);
  4746. if (len > 0)
  4747. // Split to 3cm segments or shorter.
  4748. n_segments = int(ceil(len / 30.f));
  4749. }
  4750. if (n_segments > 1) {
  4751. float de = e - current_position[E_AXIS];
  4752. for (int i = 1; i < n_segments; ++ i) {
  4753. float t = float(i) / float(n_segments);
  4754. plan_buffer_line(
  4755. current_position[X_AXIS] + t * dx,
  4756. current_position[Y_AXIS] + t * dy,
  4757. current_position[Z_AXIS] + t * dz,
  4758. current_position[E_AXIS] + t * de,
  4759. feed_rate, extruder);
  4760. }
  4761. }
  4762. // The rest of the path.
  4763. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4764. current_position[X_AXIS] = x;
  4765. current_position[Y_AXIS] = y;
  4766. current_position[Z_AXIS] = z;
  4767. current_position[E_AXIS] = e;
  4768. }
  4769. #endif // MESH_BED_LEVELING
  4770. void prepare_move()
  4771. {
  4772. clamp_to_software_endstops(destination);
  4773. previous_millis_cmd = millis();
  4774. // Do not use feedmultiply for E or Z only moves
  4775. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4776. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4777. }
  4778. else {
  4779. #ifdef MESH_BED_LEVELING
  4780. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4781. #else
  4782. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4783. #endif
  4784. }
  4785. for(int8_t i=0; i < NUM_AXIS; i++) {
  4786. current_position[i] = destination[i];
  4787. }
  4788. }
  4789. void prepare_arc_move(char isclockwise) {
  4790. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4791. // Trace the arc
  4792. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4793. // As far as the parser is concerned, the position is now == target. In reality the
  4794. // motion control system might still be processing the action and the real tool position
  4795. // in any intermediate location.
  4796. for(int8_t i=0; i < NUM_AXIS; i++) {
  4797. current_position[i] = destination[i];
  4798. }
  4799. previous_millis_cmd = millis();
  4800. }
  4801. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4802. #if defined(FAN_PIN)
  4803. #if CONTROLLERFAN_PIN == FAN_PIN
  4804. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4805. #endif
  4806. #endif
  4807. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4808. unsigned long lastMotorCheck = 0;
  4809. void controllerFan()
  4810. {
  4811. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4812. {
  4813. lastMotorCheck = millis();
  4814. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4815. #if EXTRUDERS > 2
  4816. || !READ(E2_ENABLE_PIN)
  4817. #endif
  4818. #if EXTRUDER > 1
  4819. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4820. || !READ(X2_ENABLE_PIN)
  4821. #endif
  4822. || !READ(E1_ENABLE_PIN)
  4823. #endif
  4824. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4825. {
  4826. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4827. }
  4828. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4829. {
  4830. digitalWrite(CONTROLLERFAN_PIN, 0);
  4831. analogWrite(CONTROLLERFAN_PIN, 0);
  4832. }
  4833. else
  4834. {
  4835. // allows digital or PWM fan output to be used (see M42 handling)
  4836. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4837. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4838. }
  4839. }
  4840. }
  4841. #endif
  4842. #ifdef TEMP_STAT_LEDS
  4843. static bool blue_led = false;
  4844. static bool red_led = false;
  4845. static uint32_t stat_update = 0;
  4846. void handle_status_leds(void) {
  4847. float max_temp = 0.0;
  4848. if(millis() > stat_update) {
  4849. stat_update += 500; // Update every 0.5s
  4850. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4851. max_temp = max(max_temp, degHotend(cur_extruder));
  4852. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4853. }
  4854. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4855. max_temp = max(max_temp, degTargetBed());
  4856. max_temp = max(max_temp, degBed());
  4857. #endif
  4858. if((max_temp > 55.0) && (red_led == false)) {
  4859. digitalWrite(STAT_LED_RED, 1);
  4860. digitalWrite(STAT_LED_BLUE, 0);
  4861. red_led = true;
  4862. blue_led = false;
  4863. }
  4864. if((max_temp < 54.0) && (blue_led == false)) {
  4865. digitalWrite(STAT_LED_RED, 0);
  4866. digitalWrite(STAT_LED_BLUE, 1);
  4867. red_led = false;
  4868. blue_led = true;
  4869. }
  4870. }
  4871. }
  4872. #endif
  4873. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4874. {
  4875. #if defined(KILL_PIN) && KILL_PIN > -1
  4876. static int killCount = 0; // make the inactivity button a bit less responsive
  4877. const int KILL_DELAY = 10000;
  4878. #endif
  4879. if(buflen < (BUFSIZE-1)){
  4880. get_command();
  4881. }
  4882. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4883. if(max_inactive_time)
  4884. kill();
  4885. if(stepper_inactive_time) {
  4886. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4887. {
  4888. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4889. disable_x();
  4890. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4891. disable_y();
  4892. disable_z();
  4893. disable_e0();
  4894. disable_e1();
  4895. disable_e2();
  4896. }
  4897. }
  4898. }
  4899. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4900. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4901. {
  4902. chdkActive = false;
  4903. WRITE(CHDK, LOW);
  4904. }
  4905. #endif
  4906. #if defined(KILL_PIN) && KILL_PIN > -1
  4907. // Check if the kill button was pressed and wait just in case it was an accidental
  4908. // key kill key press
  4909. // -------------------------------------------------------------------------------
  4910. if( 0 == READ(KILL_PIN) )
  4911. {
  4912. killCount++;
  4913. }
  4914. else if (killCount > 0)
  4915. {
  4916. killCount--;
  4917. }
  4918. // Exceeded threshold and we can confirm that it was not accidental
  4919. // KILL the machine
  4920. // ----------------------------------------------------------------
  4921. if ( killCount >= KILL_DELAY)
  4922. {
  4923. kill();
  4924. }
  4925. #endif
  4926. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4927. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4928. #endif
  4929. #ifdef EXTRUDER_RUNOUT_PREVENT
  4930. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4931. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4932. {
  4933. bool oldstatus=READ(E0_ENABLE_PIN);
  4934. enable_e0();
  4935. float oldepos=current_position[E_AXIS];
  4936. float oldedes=destination[E_AXIS];
  4937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4938. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4939. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4940. current_position[E_AXIS]=oldepos;
  4941. destination[E_AXIS]=oldedes;
  4942. plan_set_e_position(oldepos);
  4943. previous_millis_cmd=millis();
  4944. st_synchronize();
  4945. WRITE(E0_ENABLE_PIN,oldstatus);
  4946. }
  4947. #endif
  4948. #ifdef TEMP_STAT_LEDS
  4949. handle_status_leds();
  4950. #endif
  4951. check_axes_activity();
  4952. }
  4953. void kill(const char *full_screen_message)
  4954. {
  4955. cli(); // Stop interrupts
  4956. disable_heater();
  4957. disable_x();
  4958. // SERIAL_ECHOLNPGM("kill - disable Y");
  4959. disable_y();
  4960. disable_z();
  4961. disable_e0();
  4962. disable_e1();
  4963. disable_e2();
  4964. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4965. pinMode(PS_ON_PIN,INPUT);
  4966. #endif
  4967. SERIAL_ERROR_START;
  4968. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4969. if (full_screen_message != NULL) {
  4970. SERIAL_ERRORLNRPGM(full_screen_message);
  4971. lcd_display_message_fullscreen_P(full_screen_message);
  4972. } else {
  4973. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4974. }
  4975. // FMC small patch to update the LCD before ending
  4976. sei(); // enable interrupts
  4977. for ( int i=5; i--; lcd_update())
  4978. {
  4979. delay(200);
  4980. }
  4981. cli(); // disable interrupts
  4982. suicide();
  4983. while(1) { /* Intentionally left empty */ } // Wait for reset
  4984. }
  4985. void Stop()
  4986. {
  4987. disable_heater();
  4988. if(Stopped == false) {
  4989. Stopped = true;
  4990. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4991. SERIAL_ERROR_START;
  4992. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4993. LCD_MESSAGERPGM(MSG_STOPPED);
  4994. }
  4995. }
  4996. bool IsStopped() { return Stopped; };
  4997. #ifdef FAST_PWM_FAN
  4998. void setPwmFrequency(uint8_t pin, int val)
  4999. {
  5000. val &= 0x07;
  5001. switch(digitalPinToTimer(pin))
  5002. {
  5003. #if defined(TCCR0A)
  5004. case TIMER0A:
  5005. case TIMER0B:
  5006. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5007. // TCCR0B |= val;
  5008. break;
  5009. #endif
  5010. #if defined(TCCR1A)
  5011. case TIMER1A:
  5012. case TIMER1B:
  5013. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5014. // TCCR1B |= val;
  5015. break;
  5016. #endif
  5017. #if defined(TCCR2)
  5018. case TIMER2:
  5019. case TIMER2:
  5020. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5021. TCCR2 |= val;
  5022. break;
  5023. #endif
  5024. #if defined(TCCR2A)
  5025. case TIMER2A:
  5026. case TIMER2B:
  5027. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5028. TCCR2B |= val;
  5029. break;
  5030. #endif
  5031. #if defined(TCCR3A)
  5032. case TIMER3A:
  5033. case TIMER3B:
  5034. case TIMER3C:
  5035. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5036. TCCR3B |= val;
  5037. break;
  5038. #endif
  5039. #if defined(TCCR4A)
  5040. case TIMER4A:
  5041. case TIMER4B:
  5042. case TIMER4C:
  5043. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5044. TCCR4B |= val;
  5045. break;
  5046. #endif
  5047. #if defined(TCCR5A)
  5048. case TIMER5A:
  5049. case TIMER5B:
  5050. case TIMER5C:
  5051. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5052. TCCR5B |= val;
  5053. break;
  5054. #endif
  5055. }
  5056. }
  5057. #endif //FAST_PWM_FAN
  5058. bool setTargetedHotend(int code){
  5059. tmp_extruder = active_extruder;
  5060. if(code_seen('T')) {
  5061. tmp_extruder = code_value();
  5062. if(tmp_extruder >= EXTRUDERS) {
  5063. SERIAL_ECHO_START;
  5064. switch(code){
  5065. case 104:
  5066. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5067. break;
  5068. case 105:
  5069. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5070. break;
  5071. case 109:
  5072. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5073. break;
  5074. case 218:
  5075. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5076. break;
  5077. case 221:
  5078. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5079. break;
  5080. }
  5081. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5082. return true;
  5083. }
  5084. }
  5085. return false;
  5086. }
  5087. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5088. {
  5089. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5090. {
  5091. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5092. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5093. }
  5094. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5095. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5096. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5097. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5098. total_filament_used = 0;
  5099. }
  5100. float calculate_volumetric_multiplier(float diameter) {
  5101. float area = .0;
  5102. float radius = .0;
  5103. radius = diameter * .5;
  5104. if (! volumetric_enabled || radius == 0) {
  5105. area = 1;
  5106. }
  5107. else {
  5108. area = M_PI * pow(radius, 2);
  5109. }
  5110. return 1.0 / area;
  5111. }
  5112. void calculate_volumetric_multipliers() {
  5113. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5114. #if EXTRUDERS > 1
  5115. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5116. #if EXTRUDERS > 2
  5117. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5118. #endif
  5119. #endif
  5120. }
  5121. void delay_keep_alive(int ms)
  5122. {
  5123. for (;;) {
  5124. manage_heater();
  5125. // Manage inactivity, but don't disable steppers on timeout.
  5126. manage_inactivity(true);
  5127. lcd_update();
  5128. if (ms == 0)
  5129. break;
  5130. else if (ms >= 50) {
  5131. delay(50);
  5132. ms -= 50;
  5133. } else {
  5134. delay(ms);
  5135. ms = 0;
  5136. }
  5137. }
  5138. }
  5139. void check_babystep() {
  5140. int babystep_z;
  5141. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5142. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5143. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5144. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5145. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5146. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5147. lcd_update_enable(true);
  5148. }
  5149. }
  5150. #ifdef DIS
  5151. void d_setup()
  5152. {
  5153. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5154. pinMode(D_DATA, INPUT_PULLUP);
  5155. pinMode(D_REQUIRE, OUTPUT);
  5156. digitalWrite(D_REQUIRE, HIGH);
  5157. }
  5158. float d_ReadData()
  5159. {
  5160. int digit[13];
  5161. String mergeOutput;
  5162. float output;
  5163. digitalWrite(D_REQUIRE, HIGH);
  5164. for (int i = 0; i<13; i++)
  5165. {
  5166. for (int j = 0; j < 4; j++)
  5167. {
  5168. while (digitalRead(D_DATACLOCK) == LOW) {}
  5169. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5170. bitWrite(digit[i], j, digitalRead(D_DATA));
  5171. }
  5172. }
  5173. digitalWrite(D_REQUIRE, LOW);
  5174. mergeOutput = "";
  5175. output = 0;
  5176. for (int r = 5; r <= 10; r++) //Merge digits
  5177. {
  5178. mergeOutput += digit[r];
  5179. }
  5180. output = mergeOutput.toFloat();
  5181. if (digit[4] == 8) //Handle sign
  5182. {
  5183. output *= -1;
  5184. }
  5185. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5186. {
  5187. output /= 10;
  5188. }
  5189. return output;
  5190. }
  5191. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5192. int t1 = 0;
  5193. int t_delay = 0;
  5194. int digit[13];
  5195. int m;
  5196. char str[3];
  5197. //String mergeOutput;
  5198. char mergeOutput[15];
  5199. float output;
  5200. int mesh_point = 0; //index number of calibration point
  5201. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5202. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5203. float mesh_home_z_search = 4;
  5204. float row[x_points_num];
  5205. int ix = 0;
  5206. int iy = 0;
  5207. char* filename_wldsd = "wldsd.txt";
  5208. char data_wldsd[70];
  5209. char numb_wldsd[10];
  5210. d_setup();
  5211. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5212. // We don't know where we are! HOME!
  5213. // Push the commands to the front of the message queue in the reverse order!
  5214. // There shall be always enough space reserved for these commands.
  5215. repeatcommand_front(); // repeat G80 with all its parameters
  5216. enquecommand_front_P((PSTR("G28 W0")));
  5217. enquecommand_front_P((PSTR("G1 Z5")));
  5218. return;
  5219. }
  5220. bool custom_message_old = custom_message;
  5221. unsigned int custom_message_type_old = custom_message_type;
  5222. unsigned int custom_message_state_old = custom_message_state;
  5223. custom_message = true;
  5224. custom_message_type = 1;
  5225. custom_message_state = (x_points_num * y_points_num) + 10;
  5226. lcd_update(1);
  5227. mbl.reset();
  5228. babystep_undo();
  5229. card.openFile(filename_wldsd, false);
  5230. current_position[Z_AXIS] = mesh_home_z_search;
  5231. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5232. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5233. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5234. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5235. setup_for_endstop_move(false);
  5236. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5237. SERIAL_PROTOCOL(x_points_num);
  5238. SERIAL_PROTOCOLPGM(",");
  5239. SERIAL_PROTOCOL(y_points_num);
  5240. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5241. SERIAL_PROTOCOL(mesh_home_z_search);
  5242. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5243. SERIAL_PROTOCOL(x_dimension);
  5244. SERIAL_PROTOCOLPGM(",");
  5245. SERIAL_PROTOCOL(y_dimension);
  5246. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5247. while (mesh_point != x_points_num * y_points_num) {
  5248. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5249. iy = mesh_point / x_points_num;
  5250. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5251. float z0 = 0.f;
  5252. current_position[Z_AXIS] = mesh_home_z_search;
  5253. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5254. st_synchronize();
  5255. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5256. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5258. st_synchronize();
  5259. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5260. break;
  5261. card.closefile();
  5262. }
  5263. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5264. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5265. //strcat(data_wldsd, numb_wldsd);
  5266. //MYSERIAL.println(data_wldsd);
  5267. //delay(1000);
  5268. //delay(3000);
  5269. //t1 = millis();
  5270. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5271. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5272. memset(digit, 0, sizeof(digit));
  5273. //cli();
  5274. digitalWrite(D_REQUIRE, LOW);
  5275. for (int i = 0; i<13; i++)
  5276. {
  5277. //t1 = millis();
  5278. for (int j = 0; j < 4; j++)
  5279. {
  5280. while (digitalRead(D_DATACLOCK) == LOW) {}
  5281. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5282. bitWrite(digit[i], j, digitalRead(D_DATA));
  5283. }
  5284. //t_delay = (millis() - t1);
  5285. //SERIAL_PROTOCOLPGM(" ");
  5286. //SERIAL_PROTOCOL_F(t_delay, 5);
  5287. //SERIAL_PROTOCOLPGM(" ");
  5288. }
  5289. //sei();
  5290. digitalWrite(D_REQUIRE, HIGH);
  5291. mergeOutput[0] = '\0';
  5292. output = 0;
  5293. for (int r = 5; r <= 10; r++) //Merge digits
  5294. {
  5295. sprintf(str, "%d", digit[r]);
  5296. strcat(mergeOutput, str);
  5297. }
  5298. output = atof(mergeOutput);
  5299. if (digit[4] == 8) //Handle sign
  5300. {
  5301. output *= -1;
  5302. }
  5303. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5304. {
  5305. output *= 0.1;
  5306. }
  5307. //output = d_ReadData();
  5308. //row[ix] = current_position[Z_AXIS];
  5309. memset(data_wldsd, 0, sizeof(data_wldsd));
  5310. for (int i = 0; i <3; i++) {
  5311. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5312. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5313. strcat(data_wldsd, numb_wldsd);
  5314. strcat(data_wldsd, ";");
  5315. }
  5316. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5317. dtostrf(output, 8, 5, numb_wldsd);
  5318. strcat(data_wldsd, numb_wldsd);
  5319. //strcat(data_wldsd, ";");
  5320. card.write_command(data_wldsd);
  5321. //row[ix] = d_ReadData();
  5322. row[ix] = output; // current_position[Z_AXIS];
  5323. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5324. for (int i = 0; i < x_points_num; i++) {
  5325. SERIAL_PROTOCOLPGM(" ");
  5326. SERIAL_PROTOCOL_F(row[i], 5);
  5327. }
  5328. SERIAL_PROTOCOLPGM("\n");
  5329. }
  5330. custom_message_state--;
  5331. mesh_point++;
  5332. lcd_update(1);
  5333. }
  5334. card.closefile();
  5335. }
  5336. #endif