Marlin_main.cpp 294 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M92 - Set axis_steps_per_unit - same syntax as G92
  169. // M104 - Set extruder target temp
  170. // M105 - Read current temp
  171. // M106 - Fan on
  172. // M107 - Fan off
  173. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  174. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  175. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  176. // M112 - Emergency stop
  177. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  178. // M114 - Output current position to serial port
  179. // M115 - Capabilities string
  180. // M117 - display message
  181. // M119 - Output Endstop status to serial port
  182. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  183. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  184. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M140 - Set bed target temp
  187. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  188. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  189. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  190. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  191. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  192. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  193. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  194. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  195. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  196. // M206 - set additional homing offset
  197. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  198. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  199. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  200. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  201. // M220 S<factor in percent>- set speed factor override percentage
  202. // M221 S<factor in percent>- set extrude factor override percentage
  203. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  204. // M240 - Trigger a camera to take a photograph
  205. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  206. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  207. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  208. // M301 - Set PID parameters P I and D
  209. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  210. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  211. // M304 - Set bed PID parameters P I and D
  212. // M400 - Finish all moves
  213. // M401 - Lower z-probe if present
  214. // M402 - Raise z-probe if present
  215. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  216. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  217. // M406 - Turn off Filament Sensor extrusion control
  218. // M407 - Displays measured filament diameter
  219. // M500 - stores parameters in EEPROM
  220. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. // M503 - print the current settings (from memory not from EEPROM)
  223. // M509 - force language selection on next restart
  224. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. // M860 - Wait for PINDA thermistor to reach target temperature.
  228. // M861 - Set / Read PINDA temperature compensation offsets
  229. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  230. // M907 - Set digital trimpot motor current using axis codes.
  231. // M908 - Control digital trimpot directly.
  232. // M350 - Set microstepping mode.
  233. // M351 - Toggle MS1 MS2 pins directly.
  234. // M928 - Start SD logging (M928 filename.g) - ended by M29
  235. // M999 - Restart after being stopped by error
  236. //Stepper Movement Variables
  237. //===========================================================================
  238. //=============================imported variables============================
  239. //===========================================================================
  240. //===========================================================================
  241. //=============================public variables=============================
  242. //===========================================================================
  243. #ifdef SDSUPPORT
  244. CardReader card;
  245. #endif
  246. unsigned long PingTime = millis();
  247. unsigned long NcTime;
  248. union Data
  249. {
  250. byte b[2];
  251. int value;
  252. };
  253. float homing_feedrate[] = HOMING_FEEDRATE;
  254. // Currently only the extruder axis may be switched to a relative mode.
  255. // Other axes are always absolute or relative based on the common relative_mode flag.
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedmultiply=100; //100->1 200->2
  258. int saved_feedmultiply;
  259. int extrudemultiply=100; //100->1 200->2
  260. int extruder_multiply[EXTRUDERS] = {100
  261. #if EXTRUDERS > 1
  262. , 100
  263. #if EXTRUDERS > 2
  264. , 100
  265. #endif
  266. #endif
  267. };
  268. int bowden_length[4] = {385, 385, 385, 385};
  269. bool is_usb_printing = false;
  270. bool homing_flag = false;
  271. bool temp_cal_active = false;
  272. unsigned long kicktime = millis()+100000;
  273. unsigned int usb_printing_counter;
  274. int lcd_change_fil_state = 0;
  275. int feedmultiplyBckp = 100;
  276. float HotendTempBckp = 0;
  277. int fanSpeedBckp = 0;
  278. float pause_lastpos[4];
  279. unsigned long pause_time = 0;
  280. unsigned long start_pause_print = millis();
  281. unsigned long t_fan_rising_edge = millis();
  282. static LongTimer safetyTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. //unsigned char lang_selected = 0;
  287. int8_t FarmMode = 0;
  288. bool prusa_sd_card_upload = false;
  289. unsigned int status_number = 0;
  290. unsigned long total_filament_used;
  291. unsigned int heating_status;
  292. unsigned int heating_status_counter;
  293. bool custom_message;
  294. bool loading_flag = false;
  295. unsigned int custom_message_type;
  296. unsigned int custom_message_state;
  297. char snmm_filaments_used = 0;
  298. bool fan_state[2];
  299. int fan_edge_counter[2];
  300. int fan_speed[2];
  301. char dir_names[3][9];
  302. bool sortAlpha = false;
  303. bool volumetric_enabled = false;
  304. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  305. #if EXTRUDERS > 1
  306. , DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 2
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #endif
  310. #endif
  311. };
  312. float extruder_multiplier[EXTRUDERS] = {1.0
  313. #if EXTRUDERS > 1
  314. , 1.0
  315. #if EXTRUDERS > 2
  316. , 1.0
  317. #endif
  318. #endif
  319. };
  320. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  321. float add_homing[3]={0,0,0};
  322. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  323. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  324. bool axis_known_position[3] = {false, false, false};
  325. float zprobe_zoffset;
  326. // Extruder offset
  327. #if EXTRUDERS > 1
  328. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  329. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  330. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  331. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  332. #endif
  333. };
  334. #endif
  335. uint8_t active_extruder = 0;
  336. int fanSpeed=0;
  337. #ifdef FWRETRACT
  338. bool autoretract_enabled=false;
  339. bool retracted[EXTRUDERS]={false
  340. #if EXTRUDERS > 1
  341. , false
  342. #if EXTRUDERS > 2
  343. , false
  344. #endif
  345. #endif
  346. };
  347. bool retracted_swap[EXTRUDERS]={false
  348. #if EXTRUDERS > 1
  349. , false
  350. #if EXTRUDERS > 2
  351. , false
  352. #endif
  353. #endif
  354. };
  355. float retract_length = RETRACT_LENGTH;
  356. float retract_length_swap = RETRACT_LENGTH_SWAP;
  357. float retract_feedrate = RETRACT_FEEDRATE;
  358. float retract_zlift = RETRACT_ZLIFT;
  359. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  360. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  361. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  362. #endif
  363. #ifdef ULTIPANEL
  364. #ifdef PS_DEFAULT_OFF
  365. bool powersupply = false;
  366. #else
  367. bool powersupply = true;
  368. #endif
  369. #endif
  370. bool cancel_heatup = false ;
  371. #ifdef HOST_KEEPALIVE_FEATURE
  372. int busy_state = NOT_BUSY;
  373. static long prev_busy_signal_ms = -1;
  374. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  375. #else
  376. #define host_keepalive();
  377. #define KEEPALIVE_STATE(n);
  378. #endif
  379. const char errormagic[] PROGMEM = "Error:";
  380. const char echomagic[] PROGMEM = "echo:";
  381. bool no_response = false;
  382. uint8_t important_status;
  383. uint8_t saved_filament_type;
  384. // save/restore printing
  385. bool saved_printing = false;
  386. //===========================================================================
  387. //=============================Private Variables=============================
  388. //===========================================================================
  389. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  390. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  391. static float delta[3] = {0.0, 0.0, 0.0};
  392. // For tracing an arc
  393. static float offset[3] = {0.0, 0.0, 0.0};
  394. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  395. // Determines Absolute or Relative Coordinates.
  396. // Also there is bool axis_relative_modes[] per axis flag.
  397. static bool relative_mode = false;
  398. #ifndef _DISABLE_M42_M226
  399. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  400. #endif //_DISABLE_M42_M226
  401. //static float tt = 0;
  402. //static float bt = 0;
  403. //Inactivity shutdown variables
  404. static unsigned long previous_millis_cmd = 0;
  405. unsigned long max_inactive_time = 0;
  406. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  407. unsigned long starttime=0;
  408. unsigned long stoptime=0;
  409. unsigned long _usb_timer = 0;
  410. static uint8_t tmp_extruder;
  411. bool extruder_under_pressure = true;
  412. bool Stopped=false;
  413. #if NUM_SERVOS > 0
  414. Servo servos[NUM_SERVOS];
  415. #endif
  416. bool CooldownNoWait = true;
  417. bool target_direction;
  418. //Insert variables if CHDK is defined
  419. #ifdef CHDK
  420. unsigned long chdkHigh = 0;
  421. boolean chdkActive = false;
  422. #endif
  423. // save/restore printing
  424. static uint32_t saved_sdpos = 0;
  425. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  426. static float saved_pos[4] = { 0, 0, 0, 0 };
  427. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  428. static float saved_feedrate2 = 0;
  429. static uint8_t saved_active_extruder = 0;
  430. static bool saved_extruder_under_pressure = false;
  431. //===========================================================================
  432. //=============================Routines======================================
  433. //===========================================================================
  434. void get_arc_coordinates();
  435. bool setTargetedHotend(int code);
  436. void serial_echopair_P(const char *s_P, float v)
  437. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  438. void serial_echopair_P(const char *s_P, double v)
  439. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  440. void serial_echopair_P(const char *s_P, unsigned long v)
  441. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  442. #ifdef SDSUPPORT
  443. #include "SdFatUtil.h"
  444. int freeMemory() { return SdFatUtil::FreeRam(); }
  445. #else
  446. extern "C" {
  447. extern unsigned int __bss_end;
  448. extern unsigned int __heap_start;
  449. extern void *__brkval;
  450. int freeMemory() {
  451. int free_memory;
  452. if ((int)__brkval == 0)
  453. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  454. else
  455. free_memory = ((int)&free_memory) - ((int)__brkval);
  456. return free_memory;
  457. }
  458. }
  459. #endif //!SDSUPPORT
  460. void setup_killpin()
  461. {
  462. #if defined(KILL_PIN) && KILL_PIN > -1
  463. SET_INPUT(KILL_PIN);
  464. WRITE(KILL_PIN,HIGH);
  465. #endif
  466. }
  467. // Set home pin
  468. void setup_homepin(void)
  469. {
  470. #if defined(HOME_PIN) && HOME_PIN > -1
  471. SET_INPUT(HOME_PIN);
  472. WRITE(HOME_PIN,HIGH);
  473. #endif
  474. }
  475. void setup_photpin()
  476. {
  477. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  478. SET_OUTPUT(PHOTOGRAPH_PIN);
  479. WRITE(PHOTOGRAPH_PIN, LOW);
  480. #endif
  481. }
  482. void setup_powerhold()
  483. {
  484. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  485. SET_OUTPUT(SUICIDE_PIN);
  486. WRITE(SUICIDE_PIN, HIGH);
  487. #endif
  488. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  489. SET_OUTPUT(PS_ON_PIN);
  490. #if defined(PS_DEFAULT_OFF)
  491. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  492. #else
  493. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  494. #endif
  495. #endif
  496. }
  497. void suicide()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. SET_OUTPUT(SUICIDE_PIN);
  501. WRITE(SUICIDE_PIN, LOW);
  502. #endif
  503. }
  504. void servo_init()
  505. {
  506. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  507. servos[0].attach(SERVO0_PIN);
  508. #endif
  509. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  510. servos[1].attach(SERVO1_PIN);
  511. #endif
  512. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  513. servos[2].attach(SERVO2_PIN);
  514. #endif
  515. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  516. servos[3].attach(SERVO3_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 5)
  519. #error "TODO: enter initalisation code for more servos"
  520. #endif
  521. }
  522. static void lcd_language_menu();
  523. void stop_and_save_print_to_ram(float z_move, float e_move);
  524. void restore_print_from_ram_and_continue(float e_move);
  525. bool fans_check_enabled = true;
  526. bool filament_autoload_enabled = true;
  527. #ifdef TMC2130
  528. extern int8_t CrashDetectMenu;
  529. void crashdet_enable()
  530. {
  531. // MYSERIAL.println("crashdet_enable");
  532. tmc2130_sg_stop_on_crash = true;
  533. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  534. CrashDetectMenu = 1;
  535. }
  536. void crashdet_disable()
  537. {
  538. // MYSERIAL.println("crashdet_disable");
  539. tmc2130_sg_stop_on_crash = false;
  540. tmc2130_sg_crash = 0;
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  542. CrashDetectMenu = 0;
  543. }
  544. void crashdet_stop_and_save_print()
  545. {
  546. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  547. }
  548. void crashdet_restore_print_and_continue()
  549. {
  550. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  551. // babystep_apply();
  552. }
  553. void crashdet_stop_and_save_print2()
  554. {
  555. cli();
  556. planner_abort_hard(); //abort printing
  557. cmdqueue_reset(); //empty cmdqueue
  558. card.sdprinting = false;
  559. card.closefile();
  560. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  561. st_reset_timer();
  562. sei();
  563. }
  564. void crashdet_detected(uint8_t mask)
  565. {
  566. // printf("CRASH_DETECTED");
  567. /* while (!is_buffer_empty())
  568. {
  569. process_commands();
  570. cmdqueue_pop_front();
  571. }*/
  572. st_synchronize();
  573. lcd_update_enable(true);
  574. lcd_implementation_clear();
  575. lcd_update(2);
  576. if (mask & X_AXIS_MASK)
  577. {
  578. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  579. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  580. }
  581. if (mask & Y_AXIS_MASK)
  582. {
  583. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  584. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  585. }
  586. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  587. bool yesno = true;
  588. #else
  589. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  590. #endif
  591. lcd_update_enable(true);
  592. lcd_update(2);
  593. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  594. if (yesno)
  595. {
  596. enquecommand_P(PSTR("G28 X Y"));
  597. enquecommand_P(PSTR("CRASH_RECOVER"));
  598. }
  599. else
  600. {
  601. enquecommand_P(PSTR("CRASH_CANCEL"));
  602. }
  603. }
  604. void crashdet_recover()
  605. {
  606. crashdet_restore_print_and_continue();
  607. tmc2130_sg_stop_on_crash = true;
  608. }
  609. void crashdet_cancel()
  610. {
  611. card.sdprinting = false;
  612. card.closefile();
  613. tmc2130_sg_stop_on_crash = true;
  614. }
  615. #endif //TMC2130
  616. void failstats_reset_print()
  617. {
  618. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  619. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  620. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  621. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  622. }
  623. #ifdef MESH_BED_LEVELING
  624. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  625. #endif
  626. // Factory reset function
  627. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  628. // Level input parameter sets depth of reset
  629. // Quiet parameter masks all waitings for user interact.
  630. int er_progress = 0;
  631. void factory_reset(char level, bool quiet)
  632. {
  633. lcd_implementation_clear();
  634. int cursor_pos = 0;
  635. switch (level) {
  636. // Level 0: Language reset
  637. case 0:
  638. WRITE(BEEPER, HIGH);
  639. _delay_ms(100);
  640. WRITE(BEEPER, LOW);
  641. lcd_force_language_selection();
  642. break;
  643. //Level 1: Reset statistics
  644. case 1:
  645. WRITE(BEEPER, HIGH);
  646. _delay_ms(100);
  647. WRITE(BEEPER, LOW);
  648. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  649. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  654. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  655. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  656. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  657. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  658. lcd_menu_statistics();
  659. break;
  660. // Level 2: Prepare for shipping
  661. case 2:
  662. //lcd_printPGM(PSTR("Factory RESET"));
  663. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  664. // Force language selection at the next boot up.
  665. lcd_force_language_selection();
  666. // Force the "Follow calibration flow" message at the next boot up.
  667. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  668. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  669. farm_no = 0;
  670. //*** MaR::180501_01
  671. farm_mode = false;
  672. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  673. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  674. WRITE(BEEPER, HIGH);
  675. _delay_ms(100);
  676. WRITE(BEEPER, LOW);
  677. //_delay_ms(2000);
  678. break;
  679. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  680. case 3:
  681. lcd_printPGM(PSTR("Factory RESET"));
  682. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  683. WRITE(BEEPER, HIGH);
  684. _delay_ms(100);
  685. WRITE(BEEPER, LOW);
  686. er_progress = 0;
  687. lcd_print_at_PGM(3, 3, PSTR(" "));
  688. lcd_implementation_print_at(3, 3, er_progress);
  689. // Erase EEPROM
  690. for (int i = 0; i < 4096; i++) {
  691. eeprom_write_byte((uint8_t*)i, 0xFF);
  692. if (i % 41 == 0) {
  693. er_progress++;
  694. lcd_print_at_PGM(3, 3, PSTR(" "));
  695. lcd_implementation_print_at(3, 3, er_progress);
  696. lcd_printPGM(PSTR("%"));
  697. }
  698. }
  699. break;
  700. case 4:
  701. bowden_menu();
  702. break;
  703. default:
  704. break;
  705. }
  706. }
  707. #include "LiquidCrystal_Prusa.h"
  708. extern LiquidCrystal_Prusa lcd;
  709. FILE _lcdout = {0};
  710. int lcd_putchar(char c, FILE *stream)
  711. {
  712. lcd.write(c);
  713. return 0;
  714. }
  715. FILE _uartout = {0};
  716. int uart_putchar(char c, FILE *stream)
  717. {
  718. MYSERIAL.write(c);
  719. return 0;
  720. }
  721. void lcd_splash()
  722. {
  723. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  724. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  725. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  726. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  727. }
  728. void factory_reset()
  729. {
  730. KEEPALIVE_STATE(PAUSED_FOR_USER);
  731. if (!READ(BTN_ENC))
  732. {
  733. _delay_ms(1000);
  734. if (!READ(BTN_ENC))
  735. {
  736. lcd_implementation_clear();
  737. lcd_printPGM(PSTR("Factory RESET"));
  738. SET_OUTPUT(BEEPER);
  739. WRITE(BEEPER, HIGH);
  740. while (!READ(BTN_ENC));
  741. WRITE(BEEPER, LOW);
  742. _delay_ms(2000);
  743. char level = reset_menu();
  744. factory_reset(level, false);
  745. switch (level) {
  746. case 0: _delay_ms(0); break;
  747. case 1: _delay_ms(0); break;
  748. case 2: _delay_ms(0); break;
  749. case 3: _delay_ms(0); break;
  750. }
  751. // _delay_ms(100);
  752. /*
  753. #ifdef MESH_BED_LEVELING
  754. _delay_ms(2000);
  755. if (!READ(BTN_ENC))
  756. {
  757. WRITE(BEEPER, HIGH);
  758. _delay_ms(100);
  759. WRITE(BEEPER, LOW);
  760. _delay_ms(200);
  761. WRITE(BEEPER, HIGH);
  762. _delay_ms(100);
  763. WRITE(BEEPER, LOW);
  764. int _z = 0;
  765. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  766. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  767. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  768. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  769. }
  770. else
  771. {
  772. WRITE(BEEPER, HIGH);
  773. _delay_ms(100);
  774. WRITE(BEEPER, LOW);
  775. }
  776. #endif // mesh */
  777. }
  778. }
  779. else
  780. {
  781. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  782. }
  783. KEEPALIVE_STATE(IN_HANDLER);
  784. }
  785. void show_fw_version_warnings() {
  786. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  787. switch (FW_DEV_VERSION) {
  788. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  789. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  790. case(FW_VERSION_DEVEL):
  791. case(FW_VERSION_DEBUG):
  792. lcd_update_enable(false);
  793. lcd_implementation_clear();
  794. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  795. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  796. #else
  797. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  798. #endif
  799. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  800. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  801. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  802. lcd_wait_for_click();
  803. break;
  804. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  805. }
  806. lcd_update_enable(true);
  807. }
  808. uint8_t check_printer_version()
  809. {
  810. uint8_t version_changed = 0;
  811. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  812. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  813. if (printer_type != PRINTER_TYPE) {
  814. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  815. else version_changed |= 0b10;
  816. }
  817. if (motherboard != MOTHERBOARD) {
  818. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  819. else version_changed |= 0b01;
  820. }
  821. return version_changed;
  822. }
  823. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  824. {
  825. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  826. }
  827. #include "bootapp.h"
  828. void __test()
  829. {
  830. cli();
  831. boot_app_magic = 0x55aa55aa;
  832. boot_app_flags = BOOT_APP_FLG_USER0;
  833. boot_reserved = 0x00;
  834. wdt_enable(WDTO_15MS);
  835. while(1);
  836. }
  837. #ifdef W25X20CL
  838. void upgrade_sec_lang_from_external_flash()
  839. {
  840. if ((boot_app_magic == 0x55aa55aa) && (boot_app_flags & BOOT_APP_FLG_USER0))
  841. {
  842. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,1) "TEST %d"), boot_reserved);
  843. boot_reserved++;
  844. if (boot_reserved < 4)
  845. {
  846. _delay_ms(1000);
  847. cli();
  848. wdt_enable(WDTO_15MS);
  849. while(1);
  850. }
  851. }
  852. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  853. }
  854. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  855. {
  856. lang_table_header_t header;
  857. uint8_t count = 0;
  858. uint32_t addr = 0x00000;
  859. while (1)
  860. {
  861. printf_P(_n("LANGTABLE%d:"), count);
  862. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  863. if (header.magic != LANG_MAGIC)
  864. {
  865. printf_P(_n("NG!\n"));
  866. break;
  867. }
  868. printf_P(_n("OK\n"));
  869. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  870. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  871. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  872. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  873. printf_P(_n(" _lt_code = 0x%04x\n"), header.code);
  874. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  875. addr += header.size;
  876. codes[count] = header.code;
  877. count ++;
  878. }
  879. return count;
  880. }
  881. void list_sec_lang_from_external_flash()
  882. {
  883. uint16_t codes[8];
  884. uint8_t count = lang_xflash_enum_codes(codes);
  885. printf_P(_n("XFlash lang count = %hhd\n"), count);
  886. }
  887. #endif //W25X20CL
  888. // "Setup" function is called by the Arduino framework on startup.
  889. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  890. // are initialized by the main() routine provided by the Arduino framework.
  891. void setup()
  892. {
  893. #ifdef NEW_SPI
  894. spi_init();
  895. #endif //NEW_SPI
  896. lcd_init();
  897. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  898. upgrade_sec_lang_from_external_flash();
  899. lcd_splash();
  900. setup_killpin();
  901. setup_powerhold();
  902. //*** MaR::180501_02b
  903. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  904. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  905. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  906. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  907. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  908. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  909. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  910. if (farm_mode)
  911. {
  912. no_response = true; //we need confirmation by recieving PRUSA thx
  913. important_status = 8;
  914. prusa_statistics(8);
  915. selectedSerialPort = 1;
  916. }
  917. MYSERIAL.begin(BAUDRATE);
  918. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  919. stdout = uartout;
  920. SERIAL_PROTOCOLLNPGM("start");
  921. SERIAL_ECHO_START;
  922. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  923. #if 0
  924. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  925. for (int i = 0; i < 4096; ++i) {
  926. int b = eeprom_read_byte((unsigned char*)i);
  927. if (b != 255) {
  928. SERIAL_ECHO(i);
  929. SERIAL_ECHO(":");
  930. SERIAL_ECHO(b);
  931. SERIAL_ECHOLN("");
  932. }
  933. }
  934. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  935. #endif
  936. // Check startup - does nothing if bootloader sets MCUSR to 0
  937. byte mcu = MCUSR;
  938. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  939. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  940. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  941. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  942. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  943. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  944. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  945. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  946. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  947. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  948. MCUSR = 0;
  949. //SERIAL_ECHORPGM(MSG_MARLIN);
  950. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  951. #ifdef STRING_VERSION_CONFIG_H
  952. #ifdef STRING_CONFIG_H_AUTHOR
  953. SERIAL_ECHO_START;
  954. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  955. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  956. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  957. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  958. SERIAL_ECHOPGM("Compiled: ");
  959. SERIAL_ECHOLNPGM(__DATE__);
  960. #endif
  961. #endif
  962. SERIAL_ECHO_START;
  963. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  964. SERIAL_ECHO(freeMemory());
  965. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  966. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  967. //lcd_update_enable(false); // why do we need this?? - andre
  968. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  969. bool previous_settings_retrieved = false;
  970. uint8_t hw_changed = check_printer_version();
  971. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  972. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  973. }
  974. else { //printer version was changed so use default settings
  975. Config_ResetDefault();
  976. }
  977. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  978. tp_init(); // Initialize temperature loop
  979. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  980. plan_init(); // Initialize planner;
  981. factory_reset();
  982. #ifdef TMC2130
  983. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  984. if (silentMode == 0xff) silentMode = 0;
  985. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  986. tmc2130_mode = TMC2130_MODE_NORMAL;
  987. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  988. if (crashdet && !farm_mode)
  989. {
  990. crashdet_enable();
  991. MYSERIAL.println("CrashDetect ENABLED!");
  992. }
  993. else
  994. {
  995. crashdet_disable();
  996. MYSERIAL.println("CrashDetect DISABLED");
  997. }
  998. #ifdef TMC2130_LINEARITY_CORRECTION
  999. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1000. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1001. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1002. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1003. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1004. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1005. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1006. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1007. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1008. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1009. #endif //TMC2130_LINEARITY_CORRECTION
  1010. #ifdef TMC2130_VARIABLE_RESOLUTION
  1011. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1012. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1013. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1014. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1015. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1016. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1017. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1018. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1019. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1020. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1021. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1022. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1023. #else //TMC2130_VARIABLE_RESOLUTION
  1024. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1025. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1026. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1027. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1028. #endif //TMC2130_VARIABLE_RESOLUTION
  1029. #endif //TMC2130
  1030. st_init(); // Initialize stepper, this enables interrupts!
  1031. #ifdef TMC2130
  1032. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1033. tmc2130_init();
  1034. #endif //TMC2130
  1035. setup_photpin();
  1036. servo_init();
  1037. // Reset the machine correction matrix.
  1038. // It does not make sense to load the correction matrix until the machine is homed.
  1039. world2machine_reset();
  1040. #ifdef PAT9125
  1041. fsensor_init();
  1042. #endif //PAT9125
  1043. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1044. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1045. #endif
  1046. setup_homepin();
  1047. #ifdef TMC2130
  1048. if (1) {
  1049. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1050. // try to run to zero phase before powering the Z motor.
  1051. // Move in negative direction
  1052. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1053. // Round the current micro-micro steps to micro steps.
  1054. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1055. // Until the phase counter is reset to zero.
  1056. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1057. delay(2);
  1058. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1059. delay(2);
  1060. }
  1061. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1062. }
  1063. #endif //TMC2130
  1064. #if defined(Z_AXIS_ALWAYS_ON)
  1065. enable_z();
  1066. #endif
  1067. //*** MaR::180501_02
  1068. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1069. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1070. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1071. if (farm_no == 0xFFFF) farm_no = 0;
  1072. if (farm_mode)
  1073. {
  1074. prusa_statistics(8);
  1075. }
  1076. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1077. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1078. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1079. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1080. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1081. // where all the EEPROM entries are set to 0x0ff.
  1082. // Once a firmware boots up, it forces at least a language selection, which changes
  1083. // EEPROM_LANG to number lower than 0x0ff.
  1084. // 1) Set a high power mode.
  1085. #ifdef TMC2130
  1086. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1087. tmc2130_mode = TMC2130_MODE_NORMAL;
  1088. #endif //TMC2130
  1089. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1090. }
  1091. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1092. // but this times out if a blocking dialog is shown in setup().
  1093. card.initsd();
  1094. #ifdef DEBUG_SD_SPEED_TEST
  1095. if (card.cardOK)
  1096. {
  1097. uint8_t* buff = (uint8_t*)block_buffer;
  1098. uint32_t block = 0;
  1099. uint32_t sumr = 0;
  1100. uint32_t sumw = 0;
  1101. for (int i = 0; i < 1024; i++)
  1102. {
  1103. uint32_t u = micros();
  1104. bool res = card.card.readBlock(i, buff);
  1105. u = micros() - u;
  1106. if (res)
  1107. {
  1108. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1109. sumr += u;
  1110. u = micros();
  1111. res = card.card.writeBlock(i, buff);
  1112. u = micros() - u;
  1113. if (res)
  1114. {
  1115. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1116. sumw += u;
  1117. }
  1118. else
  1119. {
  1120. printf_P(PSTR("writeBlock %4d error\n"), i);
  1121. break;
  1122. }
  1123. }
  1124. else
  1125. {
  1126. printf_P(PSTR("readBlock %4d error\n"), i);
  1127. break;
  1128. }
  1129. }
  1130. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1131. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1132. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1133. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1134. }
  1135. else
  1136. printf_P(PSTR("Card NG!\n"));
  1137. #endif //DEBUG_SD_SPEED_TEST
  1138. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1139. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1140. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1141. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1142. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1143. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1144. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1145. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1146. #ifdef SNMM
  1147. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1148. int _z = BOWDEN_LENGTH;
  1149. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1150. }
  1151. #endif
  1152. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1153. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1154. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1155. spi_setup(TMC2130_SPCR, TMC2130_SPSR);
  1156. puts_P(_n("w25x20cl init: "));
  1157. if (w25x20cl_ini())
  1158. {
  1159. uint8_t uid[8]; // 64bit unique id
  1160. w25x20cl_rd_uid(uid);
  1161. puts_P(_n("OK, UID="));
  1162. for (uint8_t i = 0; i < 8; i ++)
  1163. printf_P(PSTR("%02hhx"), uid[i]);
  1164. putchar('\n');
  1165. list_sec_lang_from_external_flash();
  1166. }
  1167. else
  1168. puts_P(_n("NG!\n"));
  1169. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1170. if (lang_selected >= LANG_NUM)
  1171. {
  1172. // lcd_mylang();
  1173. lang_selected = 0;
  1174. }
  1175. lang_select(lang_selected);
  1176. uint16_t sec_lang_code = lang_get_code(1);
  1177. printf_P(_n("SEC_LANG_CODE=0x%04x (%c%c)\n"), sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1178. #ifdef DEBUG_SEC_LANG
  1179. lang_print_sec_lang(uartout);
  1180. #endif //DEBUG_SEC_LANG
  1181. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1182. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1183. temp_cal_active = false;
  1184. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1185. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1186. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1187. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1188. int16_t z_shift = 0;
  1189. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1190. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1191. temp_cal_active = false;
  1192. }
  1193. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1194. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1195. }
  1196. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1197. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1198. }
  1199. check_babystep(); //checking if Z babystep is in allowed range
  1200. #ifdef UVLO_SUPPORT
  1201. setup_uvlo_interrupt();
  1202. #endif //UVLO_SUPPORT
  1203. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1204. setup_fan_interrupt();
  1205. #endif //DEBUG_DISABLE_FANCHECK
  1206. #ifdef PAT9125
  1207. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1208. fsensor_setup_interrupt();
  1209. #endif //DEBUG_DISABLE_FSENSORCHECK
  1210. #endif //PAT9125
  1211. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1212. #ifndef DEBUG_DISABLE_STARTMSGS
  1213. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1214. show_fw_version_warnings();
  1215. switch (hw_changed) {
  1216. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1217. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1218. case(0b01):
  1219. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1220. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1221. break;
  1222. case(0b10):
  1223. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1224. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1225. break;
  1226. case(0b11):
  1227. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1228. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1229. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1230. break;
  1231. default: break; //no change, show no message
  1232. }
  1233. if (!previous_settings_retrieved) {
  1234. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1235. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1236. }
  1237. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1238. lcd_wizard(0);
  1239. }
  1240. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1241. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1242. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1243. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1244. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1245. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1246. // Show the message.
  1247. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1248. }
  1249. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1250. // Show the message.
  1251. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1252. lcd_update_enable(true);
  1253. }
  1254. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1255. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1256. lcd_update_enable(true);
  1257. }
  1258. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1259. // Show the message.
  1260. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1261. }
  1262. }
  1263. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1264. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1265. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1266. update_current_firmware_version_to_eeprom();
  1267. lcd_selftest();
  1268. }
  1269. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1270. KEEPALIVE_STATE(IN_PROCESS);
  1271. #endif //DEBUG_DISABLE_STARTMSGS
  1272. lcd_update_enable(true);
  1273. lcd_implementation_clear();
  1274. lcd_update(2);
  1275. // Store the currently running firmware into an eeprom,
  1276. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1277. update_current_firmware_version_to_eeprom();
  1278. #ifdef TMC2130
  1279. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1280. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1281. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1282. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1283. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1284. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1285. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1286. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1287. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1288. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1289. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1290. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1291. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1292. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1293. #endif //TMC2130
  1294. #ifdef UVLO_SUPPORT
  1295. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1296. /*
  1297. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1298. else {
  1299. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1300. lcd_update_enable(true);
  1301. lcd_update(2);
  1302. lcd_setstatuspgm(_T(WELCOME_MSG));
  1303. }
  1304. */
  1305. manage_heater(); // Update temperatures
  1306. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1307. MYSERIAL.println("Power panic detected!");
  1308. MYSERIAL.print("Current bed temp:");
  1309. MYSERIAL.println(degBed());
  1310. MYSERIAL.print("Saved bed temp:");
  1311. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1312. #endif
  1313. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1314. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1315. MYSERIAL.println("Automatic recovery!");
  1316. #endif
  1317. recover_print(1);
  1318. }
  1319. else{
  1320. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1321. MYSERIAL.println("Normal recovery!");
  1322. #endif
  1323. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1324. else {
  1325. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1326. lcd_update_enable(true);
  1327. lcd_update(2);
  1328. lcd_setstatuspgm(_T(WELCOME_MSG));
  1329. }
  1330. }
  1331. }
  1332. #endif //UVLO_SUPPORT
  1333. KEEPALIVE_STATE(NOT_BUSY);
  1334. #ifdef WATCHDOG
  1335. wdt_enable(WDTO_4S);
  1336. #endif //WATCHDOG
  1337. }
  1338. #ifdef PAT9125
  1339. void fsensor_init() {
  1340. int pat9125 = pat9125_init();
  1341. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1342. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1343. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1344. if (!pat9125)
  1345. {
  1346. fsensor = 0; //disable sensor
  1347. fsensor_not_responding = true;
  1348. }
  1349. else {
  1350. fsensor_not_responding = false;
  1351. }
  1352. puts_P(PSTR("FSensor "));
  1353. if (fsensor)
  1354. {
  1355. puts_P(PSTR("ENABLED\n"));
  1356. fsensor_enable();
  1357. }
  1358. else
  1359. {
  1360. puts_P(PSTR("DISABLED\n"));
  1361. fsensor_disable();
  1362. }
  1363. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1364. filament_autoload_enabled = false;
  1365. fsensor_disable();
  1366. #endif //DEBUG_DISABLE_FSENSORCHECK
  1367. }
  1368. #endif //PAT9125
  1369. void trace();
  1370. #define CHUNK_SIZE 64 // bytes
  1371. #define SAFETY_MARGIN 1
  1372. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1373. int chunkHead = 0;
  1374. int serial_read_stream() {
  1375. setTargetHotend(0, 0);
  1376. setTargetBed(0);
  1377. lcd_implementation_clear();
  1378. lcd_printPGM(PSTR(" Upload in progress"));
  1379. // first wait for how many bytes we will receive
  1380. uint32_t bytesToReceive;
  1381. // receive the four bytes
  1382. char bytesToReceiveBuffer[4];
  1383. for (int i=0; i<4; i++) {
  1384. int data;
  1385. while ((data = MYSERIAL.read()) == -1) {};
  1386. bytesToReceiveBuffer[i] = data;
  1387. }
  1388. // make it a uint32
  1389. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1390. // we're ready, notify the sender
  1391. MYSERIAL.write('+');
  1392. // lock in the routine
  1393. uint32_t receivedBytes = 0;
  1394. while (prusa_sd_card_upload) {
  1395. int i;
  1396. for (i=0; i<CHUNK_SIZE; i++) {
  1397. int data;
  1398. // check if we're not done
  1399. if (receivedBytes == bytesToReceive) {
  1400. break;
  1401. }
  1402. // read the next byte
  1403. while ((data = MYSERIAL.read()) == -1) {};
  1404. receivedBytes++;
  1405. // save it to the chunk
  1406. chunk[i] = data;
  1407. }
  1408. // write the chunk to SD
  1409. card.write_command_no_newline(&chunk[0]);
  1410. // notify the sender we're ready for more data
  1411. MYSERIAL.write('+');
  1412. // for safety
  1413. manage_heater();
  1414. // check if we're done
  1415. if(receivedBytes == bytesToReceive) {
  1416. trace(); // beep
  1417. card.closefile();
  1418. prusa_sd_card_upload = false;
  1419. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1420. return 0;
  1421. }
  1422. }
  1423. }
  1424. #ifdef HOST_KEEPALIVE_FEATURE
  1425. /**
  1426. * Output a "busy" message at regular intervals
  1427. * while the machine is not accepting commands.
  1428. */
  1429. void host_keepalive() {
  1430. if (farm_mode) return;
  1431. long ms = millis();
  1432. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1433. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1434. switch (busy_state) {
  1435. case IN_HANDLER:
  1436. case IN_PROCESS:
  1437. SERIAL_ECHO_START;
  1438. SERIAL_ECHOLNPGM("busy: processing");
  1439. break;
  1440. case PAUSED_FOR_USER:
  1441. SERIAL_ECHO_START;
  1442. SERIAL_ECHOLNPGM("busy: paused for user");
  1443. break;
  1444. case PAUSED_FOR_INPUT:
  1445. SERIAL_ECHO_START;
  1446. SERIAL_ECHOLNPGM("busy: paused for input");
  1447. break;
  1448. default:
  1449. break;
  1450. }
  1451. }
  1452. prev_busy_signal_ms = ms;
  1453. }
  1454. #endif
  1455. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1456. // Before loop(), the setup() function is called by the main() routine.
  1457. void loop()
  1458. {
  1459. KEEPALIVE_STATE(NOT_BUSY);
  1460. bool stack_integrity = true;
  1461. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1462. {
  1463. is_usb_printing = true;
  1464. usb_printing_counter--;
  1465. _usb_timer = millis();
  1466. }
  1467. if (usb_printing_counter == 0)
  1468. {
  1469. is_usb_printing = false;
  1470. }
  1471. if (prusa_sd_card_upload)
  1472. {
  1473. //we read byte-by byte
  1474. serial_read_stream();
  1475. } else
  1476. {
  1477. get_command();
  1478. #ifdef SDSUPPORT
  1479. card.checkautostart(false);
  1480. #endif
  1481. if(buflen)
  1482. {
  1483. cmdbuffer_front_already_processed = false;
  1484. #ifdef SDSUPPORT
  1485. if(card.saving)
  1486. {
  1487. // Saving a G-code file onto an SD-card is in progress.
  1488. // Saving starts with M28, saving until M29 is seen.
  1489. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1490. card.write_command(CMDBUFFER_CURRENT_STRING);
  1491. if(card.logging)
  1492. process_commands();
  1493. else
  1494. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1495. } else {
  1496. card.closefile();
  1497. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1498. }
  1499. } else {
  1500. process_commands();
  1501. }
  1502. #else
  1503. process_commands();
  1504. #endif //SDSUPPORT
  1505. if (! cmdbuffer_front_already_processed && buflen)
  1506. {
  1507. // ptr points to the start of the block currently being processed.
  1508. // The first character in the block is the block type.
  1509. char *ptr = cmdbuffer + bufindr;
  1510. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1511. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1512. union {
  1513. struct {
  1514. char lo;
  1515. char hi;
  1516. } lohi;
  1517. uint16_t value;
  1518. } sdlen;
  1519. sdlen.value = 0;
  1520. {
  1521. // This block locks the interrupts globally for 3.25 us,
  1522. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1523. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1524. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1525. cli();
  1526. // Reset the command to something, which will be ignored by the power panic routine,
  1527. // so this buffer length will not be counted twice.
  1528. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1529. // Extract the current buffer length.
  1530. sdlen.lohi.lo = *ptr ++;
  1531. sdlen.lohi.hi = *ptr;
  1532. // and pass it to the planner queue.
  1533. planner_add_sd_length(sdlen.value);
  1534. sei();
  1535. }
  1536. }
  1537. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1538. cli();
  1539. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1540. // and one for each command to previous block in the planner queue.
  1541. planner_add_sd_length(1);
  1542. sei();
  1543. }
  1544. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1545. // this block's SD card length will not be counted twice as its command type has been replaced
  1546. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1547. cmdqueue_pop_front();
  1548. }
  1549. host_keepalive();
  1550. }
  1551. }
  1552. //check heater every n milliseconds
  1553. manage_heater();
  1554. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1555. checkHitEndstops();
  1556. lcd_update();
  1557. #ifdef PAT9125
  1558. fsensor_update();
  1559. #endif //PAT9125
  1560. #ifdef TMC2130
  1561. tmc2130_check_overtemp();
  1562. if (tmc2130_sg_crash)
  1563. {
  1564. uint8_t crash = tmc2130_sg_crash;
  1565. tmc2130_sg_crash = 0;
  1566. // crashdet_stop_and_save_print();
  1567. switch (crash)
  1568. {
  1569. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1570. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1571. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1572. }
  1573. }
  1574. #endif //TMC2130
  1575. }
  1576. #define DEFINE_PGM_READ_ANY(type, reader) \
  1577. static inline type pgm_read_any(const type *p) \
  1578. { return pgm_read_##reader##_near(p); }
  1579. DEFINE_PGM_READ_ANY(float, float);
  1580. DEFINE_PGM_READ_ANY(signed char, byte);
  1581. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1582. static const PROGMEM type array##_P[3] = \
  1583. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1584. static inline type array(int axis) \
  1585. { return pgm_read_any(&array##_P[axis]); } \
  1586. type array##_ext(int axis) \
  1587. { return pgm_read_any(&array##_P[axis]); }
  1588. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1589. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1590. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1591. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1592. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1593. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1594. static void axis_is_at_home(int axis) {
  1595. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1596. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1597. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1598. }
  1599. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1600. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1601. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1602. saved_feedrate = feedrate;
  1603. saved_feedmultiply = feedmultiply;
  1604. feedmultiply = 100;
  1605. previous_millis_cmd = millis();
  1606. enable_endstops(enable_endstops_now);
  1607. }
  1608. static void clean_up_after_endstop_move() {
  1609. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1610. enable_endstops(false);
  1611. #endif
  1612. feedrate = saved_feedrate;
  1613. feedmultiply = saved_feedmultiply;
  1614. previous_millis_cmd = millis();
  1615. }
  1616. #ifdef ENABLE_AUTO_BED_LEVELING
  1617. #ifdef AUTO_BED_LEVELING_GRID
  1618. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1619. {
  1620. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1621. planeNormal.debug("planeNormal");
  1622. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1623. //bedLevel.debug("bedLevel");
  1624. //plan_bed_level_matrix.debug("bed level before");
  1625. //vector_3 uncorrected_position = plan_get_position_mm();
  1626. //uncorrected_position.debug("position before");
  1627. vector_3 corrected_position = plan_get_position();
  1628. // corrected_position.debug("position after");
  1629. current_position[X_AXIS] = corrected_position.x;
  1630. current_position[Y_AXIS] = corrected_position.y;
  1631. current_position[Z_AXIS] = corrected_position.z;
  1632. // put the bed at 0 so we don't go below it.
  1633. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1634. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1635. }
  1636. #else // not AUTO_BED_LEVELING_GRID
  1637. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1638. plan_bed_level_matrix.set_to_identity();
  1639. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1640. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1641. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1642. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1643. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1644. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1645. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1646. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1647. vector_3 corrected_position = plan_get_position();
  1648. current_position[X_AXIS] = corrected_position.x;
  1649. current_position[Y_AXIS] = corrected_position.y;
  1650. current_position[Z_AXIS] = corrected_position.z;
  1651. // put the bed at 0 so we don't go below it.
  1652. current_position[Z_AXIS] = zprobe_zoffset;
  1653. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1654. }
  1655. #endif // AUTO_BED_LEVELING_GRID
  1656. static void run_z_probe() {
  1657. plan_bed_level_matrix.set_to_identity();
  1658. feedrate = homing_feedrate[Z_AXIS];
  1659. // move down until you find the bed
  1660. float zPosition = -10;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1662. st_synchronize();
  1663. // we have to let the planner know where we are right now as it is not where we said to go.
  1664. zPosition = st_get_position_mm(Z_AXIS);
  1665. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1666. // move up the retract distance
  1667. zPosition += home_retract_mm(Z_AXIS);
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1669. st_synchronize();
  1670. // move back down slowly to find bed
  1671. feedrate = homing_feedrate[Z_AXIS]/4;
  1672. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1674. st_synchronize();
  1675. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1676. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1678. }
  1679. static void do_blocking_move_to(float x, float y, float z) {
  1680. float oldFeedRate = feedrate;
  1681. feedrate = homing_feedrate[Z_AXIS];
  1682. current_position[Z_AXIS] = z;
  1683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1684. st_synchronize();
  1685. feedrate = XY_TRAVEL_SPEED;
  1686. current_position[X_AXIS] = x;
  1687. current_position[Y_AXIS] = y;
  1688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1689. st_synchronize();
  1690. feedrate = oldFeedRate;
  1691. }
  1692. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1693. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1694. }
  1695. /// Probe bed height at position (x,y), returns the measured z value
  1696. static float probe_pt(float x, float y, float z_before) {
  1697. // move to right place
  1698. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1699. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1700. run_z_probe();
  1701. float measured_z = current_position[Z_AXIS];
  1702. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1703. SERIAL_PROTOCOLPGM(" x: ");
  1704. SERIAL_PROTOCOL(x);
  1705. SERIAL_PROTOCOLPGM(" y: ");
  1706. SERIAL_PROTOCOL(y);
  1707. SERIAL_PROTOCOLPGM(" z: ");
  1708. SERIAL_PROTOCOL(measured_z);
  1709. SERIAL_PROTOCOLPGM("\n");
  1710. return measured_z;
  1711. }
  1712. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1713. #ifdef LIN_ADVANCE
  1714. /**
  1715. * M900: Set and/or Get advance K factor and WH/D ratio
  1716. *
  1717. * K<factor> Set advance K factor
  1718. * R<ratio> Set ratio directly (overrides WH/D)
  1719. * W<width> H<height> D<diam> Set ratio from WH/D
  1720. */
  1721. inline void gcode_M900() {
  1722. st_synchronize();
  1723. const float newK = code_seen('K') ? code_value_float() : -1;
  1724. if (newK >= 0) extruder_advance_k = newK;
  1725. float newR = code_seen('R') ? code_value_float() : -1;
  1726. if (newR < 0) {
  1727. const float newD = code_seen('D') ? code_value_float() : -1,
  1728. newW = code_seen('W') ? code_value_float() : -1,
  1729. newH = code_seen('H') ? code_value_float() : -1;
  1730. if (newD >= 0 && newW >= 0 && newH >= 0)
  1731. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1732. }
  1733. if (newR >= 0) advance_ed_ratio = newR;
  1734. SERIAL_ECHO_START;
  1735. SERIAL_ECHOPGM("Advance K=");
  1736. SERIAL_ECHOLN(extruder_advance_k);
  1737. SERIAL_ECHOPGM(" E/D=");
  1738. const float ratio = advance_ed_ratio;
  1739. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1740. }
  1741. #endif // LIN_ADVANCE
  1742. bool check_commands() {
  1743. bool end_command_found = false;
  1744. while (buflen)
  1745. {
  1746. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1747. if (!cmdbuffer_front_already_processed)
  1748. cmdqueue_pop_front();
  1749. cmdbuffer_front_already_processed = false;
  1750. }
  1751. return end_command_found;
  1752. }
  1753. #ifdef TMC2130
  1754. bool calibrate_z_auto()
  1755. {
  1756. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1757. lcd_implementation_clear();
  1758. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1759. bool endstops_enabled = enable_endstops(true);
  1760. int axis_up_dir = -home_dir(Z_AXIS);
  1761. tmc2130_home_enter(Z_AXIS_MASK);
  1762. current_position[Z_AXIS] = 0;
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. set_destination_to_current();
  1765. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1766. feedrate = homing_feedrate[Z_AXIS];
  1767. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. // current_position[axis] = 0;
  1770. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. tmc2130_home_exit();
  1772. enable_endstops(false);
  1773. current_position[Z_AXIS] = 0;
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. set_destination_to_current();
  1776. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1777. feedrate = homing_feedrate[Z_AXIS] / 2;
  1778. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1779. st_synchronize();
  1780. enable_endstops(endstops_enabled);
  1781. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. return true;
  1784. }
  1785. #endif //TMC2130
  1786. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1787. {
  1788. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1789. #define HOMEAXIS_DO(LETTER) \
  1790. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1791. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1792. {
  1793. int axis_home_dir = home_dir(axis);
  1794. feedrate = homing_feedrate[axis];
  1795. #ifdef TMC2130
  1796. tmc2130_home_enter(X_AXIS_MASK << axis);
  1797. #endif //TMC2130
  1798. // Move right a bit, so that the print head does not touch the left end position,
  1799. // and the following left movement has a chance to achieve the required velocity
  1800. // for the stall guard to work.
  1801. current_position[axis] = 0;
  1802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1803. set_destination_to_current();
  1804. // destination[axis] = 11.f;
  1805. destination[axis] = 3.f;
  1806. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1807. st_synchronize();
  1808. // Move left away from the possible collision with the collision detection disabled.
  1809. endstops_hit_on_purpose();
  1810. enable_endstops(false);
  1811. current_position[axis] = 0;
  1812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1813. destination[axis] = - 1.;
  1814. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1815. st_synchronize();
  1816. // Now continue to move up to the left end stop with the collision detection enabled.
  1817. enable_endstops(true);
  1818. destination[axis] = - 1.1 * max_length(axis);
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1820. st_synchronize();
  1821. for (uint8_t i = 0; i < cnt; i++)
  1822. {
  1823. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1824. endstops_hit_on_purpose();
  1825. enable_endstops(false);
  1826. current_position[axis] = 0;
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1828. destination[axis] = 10.f;
  1829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1830. st_synchronize();
  1831. endstops_hit_on_purpose();
  1832. // Now move left up to the collision, this time with a repeatable velocity.
  1833. enable_endstops(true);
  1834. destination[axis] = - 11.f;
  1835. #ifdef TMC2130
  1836. feedrate = homing_feedrate[axis];
  1837. #else //TMC2130
  1838. feedrate = homing_feedrate[axis] / 2;
  1839. #endif //TMC2130
  1840. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1841. st_synchronize();
  1842. #ifdef TMC2130
  1843. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1844. if (pstep) pstep[i] = mscnt >> 4;
  1845. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1846. #endif //TMC2130
  1847. }
  1848. endstops_hit_on_purpose();
  1849. enable_endstops(false);
  1850. #ifdef TMC2130
  1851. uint8_t orig = tmc2130_home_origin[axis];
  1852. uint8_t back = tmc2130_home_bsteps[axis];
  1853. if (tmc2130_home_enabled && (orig <= 63))
  1854. {
  1855. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1856. if (back > 0)
  1857. tmc2130_do_steps(axis, back, 1, 1000);
  1858. }
  1859. else
  1860. tmc2130_do_steps(axis, 8, 2, 1000);
  1861. tmc2130_home_exit();
  1862. #endif //TMC2130
  1863. axis_is_at_home(axis);
  1864. axis_known_position[axis] = true;
  1865. // Move from minimum
  1866. #ifdef TMC2130
  1867. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1868. #else //TMC2130
  1869. float dist = 0.01f * 64;
  1870. #endif //TMC2130
  1871. current_position[axis] -= dist;
  1872. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1873. current_position[axis] += dist;
  1874. destination[axis] = current_position[axis];
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1876. st_synchronize();
  1877. feedrate = 0.0;
  1878. }
  1879. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1880. {
  1881. #ifdef TMC2130
  1882. FORCE_HIGH_POWER_START;
  1883. #endif
  1884. int axis_home_dir = home_dir(axis);
  1885. current_position[axis] = 0;
  1886. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1887. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1888. feedrate = homing_feedrate[axis];
  1889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1890. st_synchronize();
  1891. #ifdef TMC2130
  1892. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1893. FORCE_HIGH_POWER_END;
  1894. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1895. return;
  1896. }
  1897. #endif //TMC2130
  1898. current_position[axis] = 0;
  1899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1904. feedrate = homing_feedrate[axis]/2 ;
  1905. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1906. st_synchronize();
  1907. #ifdef TMC2130
  1908. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1909. FORCE_HIGH_POWER_END;
  1910. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1911. return;
  1912. }
  1913. #endif //TMC2130
  1914. axis_is_at_home(axis);
  1915. destination[axis] = current_position[axis];
  1916. feedrate = 0.0;
  1917. endstops_hit_on_purpose();
  1918. axis_known_position[axis] = true;
  1919. #ifdef TMC2130
  1920. FORCE_HIGH_POWER_END;
  1921. #endif
  1922. }
  1923. enable_endstops(endstops_enabled);
  1924. }
  1925. /**/
  1926. void home_xy()
  1927. {
  1928. set_destination_to_current();
  1929. homeaxis(X_AXIS);
  1930. homeaxis(Y_AXIS);
  1931. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1932. endstops_hit_on_purpose();
  1933. }
  1934. void refresh_cmd_timeout(void)
  1935. {
  1936. previous_millis_cmd = millis();
  1937. }
  1938. #ifdef FWRETRACT
  1939. void retract(bool retracting, bool swapretract = false) {
  1940. if(retracting && !retracted[active_extruder]) {
  1941. destination[X_AXIS]=current_position[X_AXIS];
  1942. destination[Y_AXIS]=current_position[Y_AXIS];
  1943. destination[Z_AXIS]=current_position[Z_AXIS];
  1944. destination[E_AXIS]=current_position[E_AXIS];
  1945. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1946. plan_set_e_position(current_position[E_AXIS]);
  1947. float oldFeedrate = feedrate;
  1948. feedrate=retract_feedrate*60;
  1949. retracted[active_extruder]=true;
  1950. prepare_move();
  1951. current_position[Z_AXIS]-=retract_zlift;
  1952. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1953. prepare_move();
  1954. feedrate = oldFeedrate;
  1955. } else if(!retracting && retracted[active_extruder]) {
  1956. destination[X_AXIS]=current_position[X_AXIS];
  1957. destination[Y_AXIS]=current_position[Y_AXIS];
  1958. destination[Z_AXIS]=current_position[Z_AXIS];
  1959. destination[E_AXIS]=current_position[E_AXIS];
  1960. current_position[Z_AXIS]+=retract_zlift;
  1961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1962. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1963. plan_set_e_position(current_position[E_AXIS]);
  1964. float oldFeedrate = feedrate;
  1965. feedrate=retract_recover_feedrate*60;
  1966. retracted[active_extruder]=false;
  1967. prepare_move();
  1968. feedrate = oldFeedrate;
  1969. }
  1970. } //retract
  1971. #endif //FWRETRACT
  1972. void trace() {
  1973. tone(BEEPER, 440);
  1974. delay(25);
  1975. noTone(BEEPER);
  1976. delay(20);
  1977. }
  1978. /*
  1979. void ramming() {
  1980. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1981. if (current_temperature[0] < 230) {
  1982. //PLA
  1983. max_feedrate[E_AXIS] = 50;
  1984. //current_position[E_AXIS] -= 8;
  1985. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1986. //current_position[E_AXIS] += 8;
  1987. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1988. current_position[E_AXIS] += 5.4;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1990. current_position[E_AXIS] += 3.2;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1992. current_position[E_AXIS] += 3;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1994. st_synchronize();
  1995. max_feedrate[E_AXIS] = 80;
  1996. current_position[E_AXIS] -= 82;
  1997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1998. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1999. current_position[E_AXIS] -= 20;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2001. current_position[E_AXIS] += 5;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2003. current_position[E_AXIS] += 5;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2005. current_position[E_AXIS] -= 10;
  2006. st_synchronize();
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2008. current_position[E_AXIS] += 10;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2010. current_position[E_AXIS] -= 10;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2012. current_position[E_AXIS] += 10;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2014. current_position[E_AXIS] -= 10;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2016. st_synchronize();
  2017. }
  2018. else {
  2019. //ABS
  2020. max_feedrate[E_AXIS] = 50;
  2021. //current_position[E_AXIS] -= 8;
  2022. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2023. //current_position[E_AXIS] += 8;
  2024. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2025. current_position[E_AXIS] += 3.1;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2027. current_position[E_AXIS] += 3.1;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2029. current_position[E_AXIS] += 4;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2031. st_synchronize();
  2032. //current_position[X_AXIS] += 23; //delay
  2033. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2034. //current_position[X_AXIS] -= 23; //delay
  2035. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2036. delay(4700);
  2037. max_feedrate[E_AXIS] = 80;
  2038. current_position[E_AXIS] -= 92;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2040. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2041. current_position[E_AXIS] -= 5;
  2042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2043. current_position[E_AXIS] += 5;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2045. current_position[E_AXIS] -= 5;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2047. st_synchronize();
  2048. current_position[E_AXIS] += 5;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2050. current_position[E_AXIS] -= 5;
  2051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2052. current_position[E_AXIS] += 5;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2054. current_position[E_AXIS] -= 5;
  2055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2056. st_synchronize();
  2057. }
  2058. }
  2059. */
  2060. #ifdef TMC2130
  2061. void force_high_power_mode(bool start_high_power_section) {
  2062. uint8_t silent;
  2063. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2064. if (silent == 1) {
  2065. //we are in silent mode, set to normal mode to enable crash detection
  2066. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2067. st_synchronize();
  2068. cli();
  2069. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2070. tmc2130_init();
  2071. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2072. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2073. st_reset_timer();
  2074. sei();
  2075. }
  2076. }
  2077. #endif //TMC2130
  2078. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2079. st_synchronize();
  2080. #if 0
  2081. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2082. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2083. #endif
  2084. // Flag for the display update routine and to disable the print cancelation during homing.
  2085. homing_flag = true;
  2086. // Either all X,Y,Z codes are present, or none of them.
  2087. bool home_all_axes = home_x == home_y && home_x == home_z;
  2088. if (home_all_axes)
  2089. // No X/Y/Z code provided means to home all axes.
  2090. home_x = home_y = home_z = true;
  2091. #ifdef ENABLE_AUTO_BED_LEVELING
  2092. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2093. #endif //ENABLE_AUTO_BED_LEVELING
  2094. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2095. // the planner will not perform any adjustments in the XY plane.
  2096. // Wait for the motors to stop and update the current position with the absolute values.
  2097. world2machine_revert_to_uncorrected();
  2098. // For mesh bed leveling deactivate the matrix temporarily.
  2099. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2100. // in a single axis only.
  2101. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2102. #ifdef MESH_BED_LEVELING
  2103. uint8_t mbl_was_active = mbl.active;
  2104. mbl.active = 0;
  2105. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2106. #endif
  2107. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2108. // consumed during the first movements following this statement.
  2109. if (home_z)
  2110. babystep_undo();
  2111. saved_feedrate = feedrate;
  2112. saved_feedmultiply = feedmultiply;
  2113. feedmultiply = 100;
  2114. previous_millis_cmd = millis();
  2115. enable_endstops(true);
  2116. memcpy(destination, current_position, sizeof(destination));
  2117. feedrate = 0.0;
  2118. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2119. if(home_z)
  2120. homeaxis(Z_AXIS);
  2121. #endif
  2122. #ifdef QUICK_HOME
  2123. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2124. if(home_x && home_y) //first diagonal move
  2125. {
  2126. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2127. int x_axis_home_dir = home_dir(X_AXIS);
  2128. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2129. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2130. feedrate = homing_feedrate[X_AXIS];
  2131. if(homing_feedrate[Y_AXIS]<feedrate)
  2132. feedrate = homing_feedrate[Y_AXIS];
  2133. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2134. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2135. } else {
  2136. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2137. }
  2138. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2139. st_synchronize();
  2140. axis_is_at_home(X_AXIS);
  2141. axis_is_at_home(Y_AXIS);
  2142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2143. destination[X_AXIS] = current_position[X_AXIS];
  2144. destination[Y_AXIS] = current_position[Y_AXIS];
  2145. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2146. feedrate = 0.0;
  2147. st_synchronize();
  2148. endstops_hit_on_purpose();
  2149. current_position[X_AXIS] = destination[X_AXIS];
  2150. current_position[Y_AXIS] = destination[Y_AXIS];
  2151. current_position[Z_AXIS] = destination[Z_AXIS];
  2152. }
  2153. #endif /* QUICK_HOME */
  2154. #ifdef TMC2130
  2155. if(home_x)
  2156. {
  2157. if (!calib)
  2158. homeaxis(X_AXIS);
  2159. else
  2160. tmc2130_home_calibrate(X_AXIS);
  2161. }
  2162. if(home_y)
  2163. {
  2164. if (!calib)
  2165. homeaxis(Y_AXIS);
  2166. else
  2167. tmc2130_home_calibrate(Y_AXIS);
  2168. }
  2169. #endif //TMC2130
  2170. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2171. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2172. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2173. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2174. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2175. #ifndef Z_SAFE_HOMING
  2176. if(home_z) {
  2177. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2178. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2179. feedrate = max_feedrate[Z_AXIS];
  2180. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2181. st_synchronize();
  2182. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2183. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2184. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2185. {
  2186. homeaxis(X_AXIS);
  2187. homeaxis(Y_AXIS);
  2188. }
  2189. // 1st mesh bed leveling measurement point, corrected.
  2190. world2machine_initialize();
  2191. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2192. world2machine_reset();
  2193. if (destination[Y_AXIS] < Y_MIN_POS)
  2194. destination[Y_AXIS] = Y_MIN_POS;
  2195. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2196. feedrate = homing_feedrate[Z_AXIS]/10;
  2197. current_position[Z_AXIS] = 0;
  2198. enable_endstops(false);
  2199. #ifdef DEBUG_BUILD
  2200. SERIAL_ECHOLNPGM("plan_set_position()");
  2201. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2202. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2203. #endif
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. #ifdef DEBUG_BUILD
  2206. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2207. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2208. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2209. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2210. #endif
  2211. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2212. st_synchronize();
  2213. current_position[X_AXIS] = destination[X_AXIS];
  2214. current_position[Y_AXIS] = destination[Y_AXIS];
  2215. enable_endstops(true);
  2216. endstops_hit_on_purpose();
  2217. homeaxis(Z_AXIS);
  2218. #else // MESH_BED_LEVELING
  2219. homeaxis(Z_AXIS);
  2220. #endif // MESH_BED_LEVELING
  2221. }
  2222. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2223. if(home_all_axes) {
  2224. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2225. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2226. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2227. feedrate = XY_TRAVEL_SPEED/60;
  2228. current_position[Z_AXIS] = 0;
  2229. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2230. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2231. st_synchronize();
  2232. current_position[X_AXIS] = destination[X_AXIS];
  2233. current_position[Y_AXIS] = destination[Y_AXIS];
  2234. homeaxis(Z_AXIS);
  2235. }
  2236. // Let's see if X and Y are homed and probe is inside bed area.
  2237. if(home_z) {
  2238. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2239. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2240. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2241. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2242. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2243. current_position[Z_AXIS] = 0;
  2244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2245. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2246. feedrate = max_feedrate[Z_AXIS];
  2247. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2248. st_synchronize();
  2249. homeaxis(Z_AXIS);
  2250. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2251. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2252. SERIAL_ECHO_START;
  2253. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2254. } else {
  2255. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2256. SERIAL_ECHO_START;
  2257. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2258. }
  2259. }
  2260. #endif // Z_SAFE_HOMING
  2261. #endif // Z_HOME_DIR < 0
  2262. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2263. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2264. #ifdef ENABLE_AUTO_BED_LEVELING
  2265. if(home_z)
  2266. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2267. #endif
  2268. // Set the planner and stepper routine positions.
  2269. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2270. // contains the machine coordinates.
  2271. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2272. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2273. enable_endstops(false);
  2274. #endif
  2275. feedrate = saved_feedrate;
  2276. feedmultiply = saved_feedmultiply;
  2277. previous_millis_cmd = millis();
  2278. endstops_hit_on_purpose();
  2279. #ifndef MESH_BED_LEVELING
  2280. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2281. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2282. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2283. lcd_adjust_z();
  2284. #endif
  2285. // Load the machine correction matrix
  2286. world2machine_initialize();
  2287. // and correct the current_position XY axes to match the transformed coordinate system.
  2288. world2machine_update_current();
  2289. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2290. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2291. {
  2292. if (! home_z && mbl_was_active) {
  2293. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2294. mbl.active = true;
  2295. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2296. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2297. }
  2298. }
  2299. else
  2300. {
  2301. st_synchronize();
  2302. homing_flag = false;
  2303. // Push the commands to the front of the message queue in the reverse order!
  2304. // There shall be always enough space reserved for these commands.
  2305. enquecommand_front_P((PSTR("G80")));
  2306. //goto case_G80;
  2307. }
  2308. #endif
  2309. if (farm_mode) { prusa_statistics(20); };
  2310. homing_flag = false;
  2311. #if 0
  2312. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2313. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2314. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2315. #endif
  2316. }
  2317. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2318. {
  2319. bool final_result = false;
  2320. #ifdef TMC2130
  2321. FORCE_HIGH_POWER_START;
  2322. #endif // TMC2130
  2323. // Only Z calibration?
  2324. if (!onlyZ)
  2325. {
  2326. setTargetBed(0);
  2327. setTargetHotend(0, 0);
  2328. setTargetHotend(0, 1);
  2329. setTargetHotend(0, 2);
  2330. adjust_bed_reset(); //reset bed level correction
  2331. }
  2332. // Disable the default update procedure of the display. We will do a modal dialog.
  2333. lcd_update_enable(false);
  2334. // Let the planner use the uncorrected coordinates.
  2335. mbl.reset();
  2336. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2337. // the planner will not perform any adjustments in the XY plane.
  2338. // Wait for the motors to stop and update the current position with the absolute values.
  2339. world2machine_revert_to_uncorrected();
  2340. // Reset the baby step value applied without moving the axes.
  2341. babystep_reset();
  2342. // Mark all axes as in a need for homing.
  2343. memset(axis_known_position, 0, sizeof(axis_known_position));
  2344. // Home in the XY plane.
  2345. //set_destination_to_current();
  2346. setup_for_endstop_move();
  2347. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2348. home_xy();
  2349. enable_endstops(false);
  2350. current_position[X_AXIS] += 5;
  2351. current_position[Y_AXIS] += 5;
  2352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2353. st_synchronize();
  2354. // Let the user move the Z axes up to the end stoppers.
  2355. #ifdef TMC2130
  2356. if (calibrate_z_auto())
  2357. {
  2358. #else //TMC2130
  2359. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2360. {
  2361. #endif //TMC2130
  2362. refresh_cmd_timeout();
  2363. #ifndef STEEL_SHEET
  2364. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2365. {
  2366. lcd_wait_for_cool_down();
  2367. }
  2368. #endif //STEEL_SHEET
  2369. if(!onlyZ)
  2370. {
  2371. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2372. #ifdef STEEL_SHEET
  2373. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2374. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2375. #endif //STEEL_SHEET
  2376. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2377. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2378. KEEPALIVE_STATE(IN_HANDLER);
  2379. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2380. lcd_implementation_print_at(0, 2, 1);
  2381. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2382. }
  2383. // Move the print head close to the bed.
  2384. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2385. bool endstops_enabled = enable_endstops(true);
  2386. #ifdef TMC2130
  2387. tmc2130_home_enter(Z_AXIS_MASK);
  2388. #endif //TMC2130
  2389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2390. st_synchronize();
  2391. #ifdef TMC2130
  2392. tmc2130_home_exit();
  2393. #endif //TMC2130
  2394. enable_endstops(endstops_enabled);
  2395. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2396. {
  2397. int8_t verbosity_level = 0;
  2398. if (code_seen('V'))
  2399. {
  2400. // Just 'V' without a number counts as V1.
  2401. char c = strchr_pointer[1];
  2402. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2403. }
  2404. if (onlyZ)
  2405. {
  2406. clean_up_after_endstop_move();
  2407. // Z only calibration.
  2408. // Load the machine correction matrix
  2409. world2machine_initialize();
  2410. // and correct the current_position to match the transformed coordinate system.
  2411. world2machine_update_current();
  2412. //FIXME
  2413. bool result = sample_mesh_and_store_reference();
  2414. if (result)
  2415. {
  2416. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2417. // Shipped, the nozzle height has been set already. The user can start printing now.
  2418. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2419. final_result = true;
  2420. // babystep_apply();
  2421. }
  2422. }
  2423. else
  2424. {
  2425. // Reset the baby step value and the baby step applied flag.
  2426. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2427. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2428. // Complete XYZ calibration.
  2429. uint8_t point_too_far_mask = 0;
  2430. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2431. clean_up_after_endstop_move();
  2432. // Print head up.
  2433. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2435. st_synchronize();
  2436. //#ifndef NEW_XYZCAL
  2437. if (result >= 0)
  2438. {
  2439. #ifdef HEATBED_V2
  2440. sample_z();
  2441. #else //HEATBED_V2
  2442. point_too_far_mask = 0;
  2443. // Second half: The fine adjustment.
  2444. // Let the planner use the uncorrected coordinates.
  2445. mbl.reset();
  2446. world2machine_reset();
  2447. // Home in the XY plane.
  2448. setup_for_endstop_move();
  2449. home_xy();
  2450. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2451. clean_up_after_endstop_move();
  2452. // Print head up.
  2453. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2455. st_synchronize();
  2456. // if (result >= 0) babystep_apply();
  2457. #endif //HEATBED_V2
  2458. }
  2459. //#endif //NEW_XYZCAL
  2460. lcd_update_enable(true);
  2461. lcd_update(2);
  2462. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2463. if (result >= 0)
  2464. {
  2465. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2466. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2467. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2468. final_result = true;
  2469. }
  2470. }
  2471. #ifdef TMC2130
  2472. tmc2130_home_exit();
  2473. #endif
  2474. }
  2475. else
  2476. {
  2477. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2478. final_result = false;
  2479. }
  2480. }
  2481. else
  2482. {
  2483. // Timeouted.
  2484. }
  2485. lcd_update_enable(true);
  2486. #ifdef TMC2130
  2487. FORCE_HIGH_POWER_END;
  2488. #endif // TMC2130
  2489. return final_result;
  2490. }
  2491. void gcode_M114()
  2492. {
  2493. SERIAL_PROTOCOLPGM("X:");
  2494. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2495. SERIAL_PROTOCOLPGM(" Y:");
  2496. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2497. SERIAL_PROTOCOLPGM(" Z:");
  2498. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2499. SERIAL_PROTOCOLPGM(" E:");
  2500. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2501. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2502. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2503. SERIAL_PROTOCOLPGM(" Y:");
  2504. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2505. SERIAL_PROTOCOLPGM(" Z:");
  2506. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2507. SERIAL_PROTOCOLPGM(" E:");
  2508. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2509. SERIAL_PROTOCOLLN("");
  2510. }
  2511. void gcode_M701()
  2512. {
  2513. #ifdef SNMM
  2514. extr_adj(snmm_extruder);//loads current extruder
  2515. #else
  2516. enable_z();
  2517. custom_message = true;
  2518. custom_message_type = 2;
  2519. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2520. current_position[E_AXIS] += 70;
  2521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2522. current_position[E_AXIS] += 25;
  2523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2524. st_synchronize();
  2525. tone(BEEPER, 500);
  2526. delay_keep_alive(50);
  2527. noTone(BEEPER);
  2528. if (!farm_mode && loading_flag) {
  2529. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2530. while (!clean) {
  2531. lcd_update_enable(true);
  2532. lcd_update(2);
  2533. current_position[E_AXIS] += 25;
  2534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2535. st_synchronize();
  2536. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2537. }
  2538. }
  2539. lcd_update_enable(true);
  2540. lcd_update(2);
  2541. lcd_setstatuspgm(_T(WELCOME_MSG));
  2542. disable_z();
  2543. loading_flag = false;
  2544. custom_message = false;
  2545. custom_message_type = 0;
  2546. #endif
  2547. }
  2548. /**
  2549. * @brief Get serial number from 32U2 processor
  2550. *
  2551. * Typical format of S/N is:CZPX0917X003XC13518
  2552. *
  2553. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2554. *
  2555. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2556. * reply is transmitted to serial port 1 character by character.
  2557. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2558. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2559. * in any case.
  2560. */
  2561. static void gcode_PRUSA_SN()
  2562. {
  2563. if (farm_mode) {
  2564. selectedSerialPort = 0;
  2565. MSerial.write(";S");
  2566. int numbersRead = 0;
  2567. ShortTimer timeout;
  2568. timeout.start();
  2569. while (numbersRead < 19) {
  2570. while (MSerial.available() > 0) {
  2571. uint8_t serial_char = MSerial.read();
  2572. selectedSerialPort = 1;
  2573. MSerial.write(serial_char);
  2574. numbersRead++;
  2575. selectedSerialPort = 0;
  2576. }
  2577. if (timeout.expired(100u)) break;
  2578. }
  2579. selectedSerialPort = 1;
  2580. MSerial.write('\n');
  2581. #if 0
  2582. for (int b = 0; b < 3; b++) {
  2583. tone(BEEPER, 110);
  2584. delay(50);
  2585. noTone(BEEPER);
  2586. delay(50);
  2587. }
  2588. #endif
  2589. } else {
  2590. MYSERIAL.println("Not in farm mode.");
  2591. }
  2592. }
  2593. void process_commands()
  2594. {
  2595. if (!buflen) return; //empty command
  2596. #ifdef FILAMENT_RUNOUT_SUPPORT
  2597. SET_INPUT(FR_SENS);
  2598. #endif
  2599. #ifdef CMDBUFFER_DEBUG
  2600. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2601. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2602. SERIAL_ECHOLNPGM("");
  2603. SERIAL_ECHOPGM("In cmdqueue: ");
  2604. SERIAL_ECHO(buflen);
  2605. SERIAL_ECHOLNPGM("");
  2606. #endif /* CMDBUFFER_DEBUG */
  2607. unsigned long codenum; //throw away variable
  2608. char *starpos = NULL;
  2609. #ifdef ENABLE_AUTO_BED_LEVELING
  2610. float x_tmp, y_tmp, z_tmp, real_z;
  2611. #endif
  2612. // PRUSA GCODES
  2613. KEEPALIVE_STATE(IN_HANDLER);
  2614. #ifdef SNMM
  2615. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2616. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2617. int8_t SilentMode;
  2618. #endif
  2619. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2620. starpos = (strchr(strchr_pointer + 5, '*'));
  2621. if (starpos != NULL)
  2622. *(starpos) = '\0';
  2623. lcd_setstatus(strchr_pointer + 5);
  2624. }
  2625. #ifdef TMC2130
  2626. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2627. {
  2628. if(code_seen("CRASH_DETECTED"))
  2629. {
  2630. uint8_t mask = 0;
  2631. if (code_seen("X")) mask |= X_AXIS_MASK;
  2632. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2633. crashdet_detected(mask);
  2634. }
  2635. else if(code_seen("CRASH_RECOVER"))
  2636. crashdet_recover();
  2637. else if(code_seen("CRASH_CANCEL"))
  2638. crashdet_cancel();
  2639. }
  2640. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2641. {
  2642. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2643. {
  2644. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2645. tmc2130_set_wave(E_AXIS, 247, fac);
  2646. }
  2647. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2648. {
  2649. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2650. uint16_t res = tmc2130_get_res(E_AXIS);
  2651. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2652. }
  2653. }
  2654. #endif //TMC2130
  2655. else if(code_seen("PRUSA")){
  2656. if (code_seen("Ping")) { //PRUSA Ping
  2657. if (farm_mode) {
  2658. PingTime = millis();
  2659. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2660. }
  2661. }
  2662. else if (code_seen("PRN")) {
  2663. MYSERIAL.println(status_number);
  2664. }else if (code_seen("FAN")) {
  2665. MYSERIAL.print("E0:");
  2666. MYSERIAL.print(60*fan_speed[0]);
  2667. MYSERIAL.println(" RPM");
  2668. MYSERIAL.print("PRN0:");
  2669. MYSERIAL.print(60*fan_speed[1]);
  2670. MYSERIAL.println(" RPM");
  2671. }else if (code_seen("fn")) {
  2672. if (farm_mode) {
  2673. MYSERIAL.println(farm_no);
  2674. }
  2675. else {
  2676. MYSERIAL.println("Not in farm mode.");
  2677. }
  2678. }
  2679. else if (code_seen("thx")) {
  2680. no_response = false;
  2681. }else if (code_seen("fv")) {
  2682. // get file version
  2683. #ifdef SDSUPPORT
  2684. card.openFile(strchr_pointer + 3,true);
  2685. while (true) {
  2686. uint16_t readByte = card.get();
  2687. MYSERIAL.write(readByte);
  2688. if (readByte=='\n') {
  2689. break;
  2690. }
  2691. }
  2692. card.closefile();
  2693. #endif // SDSUPPORT
  2694. } else if (code_seen("M28")) {
  2695. trace();
  2696. prusa_sd_card_upload = true;
  2697. card.openFile(strchr_pointer+4,false);
  2698. } else if (code_seen("SN")) {
  2699. gcode_PRUSA_SN();
  2700. } else if(code_seen("Fir")){
  2701. SERIAL_PROTOCOLLN(FW_VERSION);
  2702. } else if(code_seen("Rev")){
  2703. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2704. } else if(code_seen("Lang")) {
  2705. lcd_force_language_selection();
  2706. } else if(code_seen("Lz")) {
  2707. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2708. } else if (code_seen("SERIAL LOW")) {
  2709. MYSERIAL.println("SERIAL LOW");
  2710. MYSERIAL.begin(BAUDRATE);
  2711. return;
  2712. } else if (code_seen("SERIAL HIGH")) {
  2713. MYSERIAL.println("SERIAL HIGH");
  2714. MYSERIAL.begin(1152000);
  2715. return;
  2716. } else if(code_seen("Beat")) {
  2717. // Kick farm link timer
  2718. kicktime = millis();
  2719. } else if(code_seen("FR")) {
  2720. // Factory full reset
  2721. factory_reset(0,true);
  2722. }
  2723. //else if (code_seen('Cal')) {
  2724. // lcd_calibration();
  2725. // }
  2726. }
  2727. else if (code_seen('^')) {
  2728. // nothing, this is a version line
  2729. } else if(code_seen('G'))
  2730. {
  2731. switch((int)code_value())
  2732. {
  2733. case 0: // G0 -> G1
  2734. case 1: // G1
  2735. if(Stopped == false) {
  2736. #ifdef FILAMENT_RUNOUT_SUPPORT
  2737. if(READ(FR_SENS)){
  2738. feedmultiplyBckp=feedmultiply;
  2739. float target[4];
  2740. float lastpos[4];
  2741. target[X_AXIS]=current_position[X_AXIS];
  2742. target[Y_AXIS]=current_position[Y_AXIS];
  2743. target[Z_AXIS]=current_position[Z_AXIS];
  2744. target[E_AXIS]=current_position[E_AXIS];
  2745. lastpos[X_AXIS]=current_position[X_AXIS];
  2746. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2747. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2748. lastpos[E_AXIS]=current_position[E_AXIS];
  2749. //retract by E
  2750. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2751. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2752. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2754. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2755. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2756. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2757. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2758. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2759. //finish moves
  2760. st_synchronize();
  2761. //disable extruder steppers so filament can be removed
  2762. disable_e0();
  2763. disable_e1();
  2764. disable_e2();
  2765. delay(100);
  2766. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2767. uint8_t cnt=0;
  2768. int counterBeep = 0;
  2769. lcd_wait_interact();
  2770. while(!lcd_clicked()){
  2771. cnt++;
  2772. manage_heater();
  2773. manage_inactivity(true);
  2774. //lcd_update();
  2775. if(cnt==0)
  2776. {
  2777. #if BEEPER > 0
  2778. if (counterBeep== 500){
  2779. counterBeep = 0;
  2780. }
  2781. SET_OUTPUT(BEEPER);
  2782. if (counterBeep== 0){
  2783. WRITE(BEEPER,HIGH);
  2784. }
  2785. if (counterBeep== 20){
  2786. WRITE(BEEPER,LOW);
  2787. }
  2788. counterBeep++;
  2789. #else
  2790. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2791. lcd_buzz(1000/6,100);
  2792. #else
  2793. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2794. #endif
  2795. #endif
  2796. }
  2797. }
  2798. WRITE(BEEPER,LOW);
  2799. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2800. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2801. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2802. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2803. lcd_change_fil_state = 0;
  2804. lcd_loading_filament();
  2805. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2806. lcd_change_fil_state = 0;
  2807. lcd_alright();
  2808. switch(lcd_change_fil_state){
  2809. case 2:
  2810. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2811. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2812. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2813. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2814. lcd_loading_filament();
  2815. break;
  2816. case 3:
  2817. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2818. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2819. lcd_loading_color();
  2820. break;
  2821. default:
  2822. lcd_change_success();
  2823. break;
  2824. }
  2825. }
  2826. target[E_AXIS]+= 5;
  2827. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2828. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2830. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2831. //plan_set_e_position(current_position[E_AXIS]);
  2832. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2833. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2834. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2835. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2836. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2837. plan_set_e_position(lastpos[E_AXIS]);
  2838. feedmultiply=feedmultiplyBckp;
  2839. char cmd[9];
  2840. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2841. enquecommand(cmd);
  2842. }
  2843. #endif
  2844. get_coordinates(); // For X Y Z E F
  2845. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2846. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2847. }
  2848. #ifdef FWRETRACT
  2849. if(autoretract_enabled)
  2850. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2851. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2852. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2853. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2854. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2855. retract(!retracted[active_extruder]);
  2856. return;
  2857. }
  2858. }
  2859. #endif //FWRETRACT
  2860. prepare_move();
  2861. //ClearToSend();
  2862. }
  2863. break;
  2864. case 2: // G2 - CW ARC
  2865. if(Stopped == false) {
  2866. get_arc_coordinates();
  2867. prepare_arc_move(true);
  2868. }
  2869. break;
  2870. case 3: // G3 - CCW ARC
  2871. if(Stopped == false) {
  2872. get_arc_coordinates();
  2873. prepare_arc_move(false);
  2874. }
  2875. break;
  2876. case 4: // G4 dwell
  2877. codenum = 0;
  2878. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2879. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2880. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2881. st_synchronize();
  2882. codenum += millis(); // keep track of when we started waiting
  2883. previous_millis_cmd = millis();
  2884. while(millis() < codenum) {
  2885. manage_heater();
  2886. manage_inactivity();
  2887. lcd_update();
  2888. }
  2889. break;
  2890. #ifdef FWRETRACT
  2891. case 10: // G10 retract
  2892. #if EXTRUDERS > 1
  2893. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2894. retract(true,retracted_swap[active_extruder]);
  2895. #else
  2896. retract(true);
  2897. #endif
  2898. break;
  2899. case 11: // G11 retract_recover
  2900. #if EXTRUDERS > 1
  2901. retract(false,retracted_swap[active_extruder]);
  2902. #else
  2903. retract(false);
  2904. #endif
  2905. break;
  2906. #endif //FWRETRACT
  2907. case 28: //G28 Home all Axis one at a time
  2908. {
  2909. // Which axes should be homed?
  2910. bool home_x = code_seen(axis_codes[X_AXIS]);
  2911. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2912. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2913. // calibrate?
  2914. bool calib = code_seen('C');
  2915. gcode_G28(home_x, home_y, home_z, calib);
  2916. break;
  2917. }
  2918. #ifdef ENABLE_AUTO_BED_LEVELING
  2919. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2920. {
  2921. #if Z_MIN_PIN == -1
  2922. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2923. #endif
  2924. // Prevent user from running a G29 without first homing in X and Y
  2925. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2926. {
  2927. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2928. SERIAL_ECHO_START;
  2929. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2930. break; // abort G29, since we don't know where we are
  2931. }
  2932. st_synchronize();
  2933. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2934. //vector_3 corrected_position = plan_get_position_mm();
  2935. //corrected_position.debug("position before G29");
  2936. plan_bed_level_matrix.set_to_identity();
  2937. vector_3 uncorrected_position = plan_get_position();
  2938. //uncorrected_position.debug("position durring G29");
  2939. current_position[X_AXIS] = uncorrected_position.x;
  2940. current_position[Y_AXIS] = uncorrected_position.y;
  2941. current_position[Z_AXIS] = uncorrected_position.z;
  2942. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2943. setup_for_endstop_move();
  2944. feedrate = homing_feedrate[Z_AXIS];
  2945. #ifdef AUTO_BED_LEVELING_GRID
  2946. // probe at the points of a lattice grid
  2947. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2948. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2949. // solve the plane equation ax + by + d = z
  2950. // A is the matrix with rows [x y 1] for all the probed points
  2951. // B is the vector of the Z positions
  2952. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2953. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2954. // "A" matrix of the linear system of equations
  2955. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2956. // "B" vector of Z points
  2957. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2958. int probePointCounter = 0;
  2959. bool zig = true;
  2960. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2961. {
  2962. int xProbe, xInc;
  2963. if (zig)
  2964. {
  2965. xProbe = LEFT_PROBE_BED_POSITION;
  2966. //xEnd = RIGHT_PROBE_BED_POSITION;
  2967. xInc = xGridSpacing;
  2968. zig = false;
  2969. } else // zag
  2970. {
  2971. xProbe = RIGHT_PROBE_BED_POSITION;
  2972. //xEnd = LEFT_PROBE_BED_POSITION;
  2973. xInc = -xGridSpacing;
  2974. zig = true;
  2975. }
  2976. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2977. {
  2978. float z_before;
  2979. if (probePointCounter == 0)
  2980. {
  2981. // raise before probing
  2982. z_before = Z_RAISE_BEFORE_PROBING;
  2983. } else
  2984. {
  2985. // raise extruder
  2986. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2987. }
  2988. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2989. eqnBVector[probePointCounter] = measured_z;
  2990. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2991. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2992. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2993. probePointCounter++;
  2994. xProbe += xInc;
  2995. }
  2996. }
  2997. clean_up_after_endstop_move();
  2998. // solve lsq problem
  2999. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3000. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3001. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3002. SERIAL_PROTOCOLPGM(" b: ");
  3003. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3004. SERIAL_PROTOCOLPGM(" d: ");
  3005. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3006. set_bed_level_equation_lsq(plane_equation_coefficients);
  3007. free(plane_equation_coefficients);
  3008. #else // AUTO_BED_LEVELING_GRID not defined
  3009. // Probe at 3 arbitrary points
  3010. // probe 1
  3011. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3012. // probe 2
  3013. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3014. // probe 3
  3015. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3016. clean_up_after_endstop_move();
  3017. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3018. #endif // AUTO_BED_LEVELING_GRID
  3019. st_synchronize();
  3020. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3021. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3022. // When the bed is uneven, this height must be corrected.
  3023. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3024. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3025. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3026. z_tmp = current_position[Z_AXIS];
  3027. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3028. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3029. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3030. }
  3031. break;
  3032. #ifndef Z_PROBE_SLED
  3033. case 30: // G30 Single Z Probe
  3034. {
  3035. st_synchronize();
  3036. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3037. setup_for_endstop_move();
  3038. feedrate = homing_feedrate[Z_AXIS];
  3039. run_z_probe();
  3040. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3041. SERIAL_PROTOCOLPGM(" X: ");
  3042. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3043. SERIAL_PROTOCOLPGM(" Y: ");
  3044. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3045. SERIAL_PROTOCOLPGM(" Z: ");
  3046. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3047. SERIAL_PROTOCOLPGM("\n");
  3048. clean_up_after_endstop_move();
  3049. }
  3050. break;
  3051. #else
  3052. case 31: // dock the sled
  3053. dock_sled(true);
  3054. break;
  3055. case 32: // undock the sled
  3056. dock_sled(false);
  3057. break;
  3058. #endif // Z_PROBE_SLED
  3059. #endif // ENABLE_AUTO_BED_LEVELING
  3060. #ifdef MESH_BED_LEVELING
  3061. case 30: // G30 Single Z Probe
  3062. {
  3063. st_synchronize();
  3064. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3065. setup_for_endstop_move();
  3066. feedrate = homing_feedrate[Z_AXIS];
  3067. find_bed_induction_sensor_point_z(-10.f, 3);
  3068. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3069. SERIAL_PROTOCOLPGM(" X: ");
  3070. MYSERIAL.print(current_position[X_AXIS], 5);
  3071. SERIAL_PROTOCOLPGM(" Y: ");
  3072. MYSERIAL.print(current_position[Y_AXIS], 5);
  3073. SERIAL_PROTOCOLPGM(" Z: ");
  3074. MYSERIAL.print(current_position[Z_AXIS], 5);
  3075. SERIAL_PROTOCOLPGM("\n");
  3076. clean_up_after_endstop_move();
  3077. }
  3078. break;
  3079. case 75:
  3080. {
  3081. for (int i = 40; i <= 110; i++) {
  3082. MYSERIAL.print(i);
  3083. MYSERIAL.print(" ");
  3084. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3085. }
  3086. }
  3087. break;
  3088. case 76: //PINDA probe temperature calibration
  3089. {
  3090. #ifdef PINDA_THERMISTOR
  3091. if (true)
  3092. {
  3093. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3094. //we need to know accurate position of first calibration point
  3095. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3096. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3097. break;
  3098. }
  3099. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3100. {
  3101. // We don't know where we are! HOME!
  3102. // Push the commands to the front of the message queue in the reverse order!
  3103. // There shall be always enough space reserved for these commands.
  3104. repeatcommand_front(); // repeat G76 with all its parameters
  3105. enquecommand_front_P((PSTR("G28 W0")));
  3106. break;
  3107. }
  3108. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3109. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3110. if (result)
  3111. {
  3112. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3114. current_position[Z_AXIS] = 50;
  3115. current_position[Y_AXIS] = 180;
  3116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3117. st_synchronize();
  3118. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3119. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3120. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3122. st_synchronize();
  3123. gcode_G28(false, false, true, false);
  3124. }
  3125. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3126. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3127. current_position[Z_AXIS] = 100;
  3128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3129. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3130. lcd_temp_cal_show_result(false);
  3131. break;
  3132. }
  3133. }
  3134. lcd_update_enable(true);
  3135. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3136. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3137. float zero_z;
  3138. int z_shift = 0; //unit: steps
  3139. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3140. if (start_temp < 35) start_temp = 35;
  3141. if (start_temp < current_temperature_pinda) start_temp += 5;
  3142. SERIAL_ECHOPGM("start temperature: ");
  3143. MYSERIAL.println(start_temp);
  3144. // setTargetHotend(200, 0);
  3145. setTargetBed(70 + (start_temp - 30));
  3146. custom_message = true;
  3147. custom_message_type = 4;
  3148. custom_message_state = 1;
  3149. custom_message = _T(MSG_TEMP_CALIBRATION);
  3150. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3152. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3153. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3155. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3157. st_synchronize();
  3158. while (current_temperature_pinda < start_temp)
  3159. {
  3160. delay_keep_alive(1000);
  3161. serialecho_temperatures();
  3162. }
  3163. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3164. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3166. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3167. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3169. st_synchronize();
  3170. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3171. if (find_z_result == false) {
  3172. lcd_temp_cal_show_result(find_z_result);
  3173. break;
  3174. }
  3175. zero_z = current_position[Z_AXIS];
  3176. //current_position[Z_AXIS]
  3177. SERIAL_ECHOLNPGM("");
  3178. SERIAL_ECHOPGM("ZERO: ");
  3179. MYSERIAL.print(current_position[Z_AXIS]);
  3180. SERIAL_ECHOLNPGM("");
  3181. int i = -1; for (; i < 5; i++)
  3182. {
  3183. float temp = (40 + i * 5);
  3184. SERIAL_ECHOPGM("Step: ");
  3185. MYSERIAL.print(i + 2);
  3186. SERIAL_ECHOLNPGM("/6 (skipped)");
  3187. SERIAL_ECHOPGM("PINDA temperature: ");
  3188. MYSERIAL.print((40 + i*5));
  3189. SERIAL_ECHOPGM(" Z shift (mm):");
  3190. MYSERIAL.print(0);
  3191. SERIAL_ECHOLNPGM("");
  3192. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3193. if (start_temp <= temp) break;
  3194. }
  3195. for (i++; i < 5; i++)
  3196. {
  3197. float temp = (40 + i * 5);
  3198. SERIAL_ECHOPGM("Step: ");
  3199. MYSERIAL.print(i + 2);
  3200. SERIAL_ECHOLNPGM("/6");
  3201. custom_message_state = i + 2;
  3202. setTargetBed(50 + 10 * (temp - 30) / 5);
  3203. // setTargetHotend(255, 0);
  3204. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3206. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3207. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3209. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3211. st_synchronize();
  3212. while (current_temperature_pinda < temp)
  3213. {
  3214. delay_keep_alive(1000);
  3215. serialecho_temperatures();
  3216. }
  3217. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3219. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3220. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3221. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3222. st_synchronize();
  3223. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3224. if (find_z_result == false) {
  3225. lcd_temp_cal_show_result(find_z_result);
  3226. break;
  3227. }
  3228. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3229. SERIAL_ECHOLNPGM("");
  3230. SERIAL_ECHOPGM("PINDA temperature: ");
  3231. MYSERIAL.print(current_temperature_pinda);
  3232. SERIAL_ECHOPGM(" Z shift (mm):");
  3233. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3234. SERIAL_ECHOLNPGM("");
  3235. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3236. }
  3237. lcd_temp_cal_show_result(true);
  3238. break;
  3239. }
  3240. #endif //PINDA_THERMISTOR
  3241. setTargetBed(PINDA_MIN_T);
  3242. float zero_z;
  3243. int z_shift = 0; //unit: steps
  3244. int t_c; // temperature
  3245. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3246. // We don't know where we are! HOME!
  3247. // Push the commands to the front of the message queue in the reverse order!
  3248. // There shall be always enough space reserved for these commands.
  3249. repeatcommand_front(); // repeat G76 with all its parameters
  3250. enquecommand_front_P((PSTR("G28 W0")));
  3251. break;
  3252. }
  3253. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3254. custom_message = true;
  3255. custom_message_type = 4;
  3256. custom_message_state = 1;
  3257. custom_message = _T(MSG_TEMP_CALIBRATION);
  3258. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3259. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3260. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3262. st_synchronize();
  3263. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3264. delay_keep_alive(1000);
  3265. serialecho_temperatures();
  3266. }
  3267. //enquecommand_P(PSTR("M190 S50"));
  3268. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3269. delay_keep_alive(1000);
  3270. serialecho_temperatures();
  3271. }
  3272. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3273. current_position[Z_AXIS] = 5;
  3274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3275. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3276. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3278. st_synchronize();
  3279. find_bed_induction_sensor_point_z(-1.f);
  3280. zero_z = current_position[Z_AXIS];
  3281. //current_position[Z_AXIS]
  3282. SERIAL_ECHOLNPGM("");
  3283. SERIAL_ECHOPGM("ZERO: ");
  3284. MYSERIAL.print(current_position[Z_AXIS]);
  3285. SERIAL_ECHOLNPGM("");
  3286. for (int i = 0; i<5; i++) {
  3287. SERIAL_ECHOPGM("Step: ");
  3288. MYSERIAL.print(i+2);
  3289. SERIAL_ECHOLNPGM("/6");
  3290. custom_message_state = i + 2;
  3291. t_c = 60 + i * 10;
  3292. setTargetBed(t_c);
  3293. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3294. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3295. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3296. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3297. st_synchronize();
  3298. while (degBed() < t_c) {
  3299. delay_keep_alive(1000);
  3300. serialecho_temperatures();
  3301. }
  3302. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3303. delay_keep_alive(1000);
  3304. serialecho_temperatures();
  3305. }
  3306. current_position[Z_AXIS] = 5;
  3307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3308. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3309. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3311. st_synchronize();
  3312. find_bed_induction_sensor_point_z(-1.f);
  3313. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3314. SERIAL_ECHOLNPGM("");
  3315. SERIAL_ECHOPGM("Temperature: ");
  3316. MYSERIAL.print(t_c);
  3317. SERIAL_ECHOPGM(" Z shift (mm):");
  3318. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3319. SERIAL_ECHOLNPGM("");
  3320. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3321. }
  3322. custom_message_type = 0;
  3323. custom_message = false;
  3324. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3325. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3326. disable_x();
  3327. disable_y();
  3328. disable_z();
  3329. disable_e0();
  3330. disable_e1();
  3331. disable_e2();
  3332. setTargetBed(0); //set bed target temperature back to 0
  3333. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3334. temp_cal_active = true;
  3335. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3336. lcd_update_enable(true);
  3337. lcd_update(2);
  3338. }
  3339. break;
  3340. #ifdef DIS
  3341. case 77:
  3342. {
  3343. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3344. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3345. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3346. float dimension_x = 40;
  3347. float dimension_y = 40;
  3348. int points_x = 40;
  3349. int points_y = 40;
  3350. float offset_x = 74;
  3351. float offset_y = 33;
  3352. if (code_seen('X')) dimension_x = code_value();
  3353. if (code_seen('Y')) dimension_y = code_value();
  3354. if (code_seen('XP')) points_x = code_value();
  3355. if (code_seen('YP')) points_y = code_value();
  3356. if (code_seen('XO')) offset_x = code_value();
  3357. if (code_seen('YO')) offset_y = code_value();
  3358. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3359. } break;
  3360. #endif
  3361. case 79: {
  3362. for (int i = 255; i > 0; i = i - 5) {
  3363. fanSpeed = i;
  3364. //delay_keep_alive(2000);
  3365. for (int j = 0; j < 100; j++) {
  3366. delay_keep_alive(100);
  3367. }
  3368. fan_speed[1];
  3369. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3370. }
  3371. }break;
  3372. /**
  3373. * G80: Mesh-based Z probe, probes a grid and produces a
  3374. * mesh to compensate for variable bed height
  3375. *
  3376. * The S0 report the points as below
  3377. *
  3378. * +----> X-axis
  3379. * |
  3380. * |
  3381. * v Y-axis
  3382. *
  3383. */
  3384. case 80:
  3385. #ifdef MK1BP
  3386. break;
  3387. #endif //MK1BP
  3388. case_G80:
  3389. {
  3390. mesh_bed_leveling_flag = true;
  3391. int8_t verbosity_level = 0;
  3392. static bool run = false;
  3393. if (code_seen('V')) {
  3394. // Just 'V' without a number counts as V1.
  3395. char c = strchr_pointer[1];
  3396. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3397. }
  3398. // Firstly check if we know where we are
  3399. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3400. // We don't know where we are! HOME!
  3401. // Push the commands to the front of the message queue in the reverse order!
  3402. // There shall be always enough space reserved for these commands.
  3403. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3404. repeatcommand_front(); // repeat G80 with all its parameters
  3405. enquecommand_front_P((PSTR("G28 W0")));
  3406. }
  3407. else {
  3408. mesh_bed_leveling_flag = false;
  3409. }
  3410. break;
  3411. }
  3412. bool temp_comp_start = true;
  3413. #ifdef PINDA_THERMISTOR
  3414. temp_comp_start = false;
  3415. #endif //PINDA_THERMISTOR
  3416. if (temp_comp_start)
  3417. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3418. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3419. temp_compensation_start();
  3420. run = true;
  3421. repeatcommand_front(); // repeat G80 with all its parameters
  3422. enquecommand_front_P((PSTR("G28 W0")));
  3423. }
  3424. else {
  3425. mesh_bed_leveling_flag = false;
  3426. }
  3427. break;
  3428. }
  3429. run = false;
  3430. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3431. mesh_bed_leveling_flag = false;
  3432. break;
  3433. }
  3434. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3435. bool custom_message_old = custom_message;
  3436. unsigned int custom_message_type_old = custom_message_type;
  3437. unsigned int custom_message_state_old = custom_message_state;
  3438. custom_message = true;
  3439. custom_message_type = 1;
  3440. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3441. lcd_update(1);
  3442. mbl.reset(); //reset mesh bed leveling
  3443. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3444. // consumed during the first movements following this statement.
  3445. babystep_undo();
  3446. // Cycle through all points and probe them
  3447. // First move up. During this first movement, the babystepping will be reverted.
  3448. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3450. // The move to the first calibration point.
  3451. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3452. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3453. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3454. #ifdef SUPPORT_VERBOSITY
  3455. if (verbosity_level >= 1) {
  3456. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3457. }
  3458. #endif //SUPPORT_VERBOSITY
  3459. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3461. // Wait until the move is finished.
  3462. st_synchronize();
  3463. int mesh_point = 0; //index number of calibration point
  3464. int ix = 0;
  3465. int iy = 0;
  3466. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3467. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3468. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3469. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3470. #ifdef SUPPORT_VERBOSITY
  3471. if (verbosity_level >= 1) {
  3472. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3473. }
  3474. #endif // SUPPORT_VERBOSITY
  3475. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3476. const char *kill_message = NULL;
  3477. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3478. // Get coords of a measuring point.
  3479. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3480. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3481. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3482. float z0 = 0.f;
  3483. if (has_z && mesh_point > 0) {
  3484. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3485. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3486. //#if 0
  3487. #ifdef SUPPORT_VERBOSITY
  3488. if (verbosity_level >= 1) {
  3489. SERIAL_ECHOLNPGM("");
  3490. SERIAL_ECHOPGM("Bed leveling, point: ");
  3491. MYSERIAL.print(mesh_point);
  3492. SERIAL_ECHOPGM(", calibration z: ");
  3493. MYSERIAL.print(z0, 5);
  3494. SERIAL_ECHOLNPGM("");
  3495. }
  3496. #endif // SUPPORT_VERBOSITY
  3497. //#endif
  3498. }
  3499. // Move Z up to MESH_HOME_Z_SEARCH.
  3500. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3502. st_synchronize();
  3503. // Move to XY position of the sensor point.
  3504. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3505. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3506. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3507. #ifdef SUPPORT_VERBOSITY
  3508. if (verbosity_level >= 1) {
  3509. SERIAL_PROTOCOL(mesh_point);
  3510. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3511. }
  3512. #endif // SUPPORT_VERBOSITY
  3513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3514. st_synchronize();
  3515. // Go down until endstop is hit
  3516. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3517. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3518. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3519. break;
  3520. }
  3521. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3522. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3523. break;
  3524. }
  3525. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3526. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3527. break;
  3528. }
  3529. #ifdef SUPPORT_VERBOSITY
  3530. if (verbosity_level >= 10) {
  3531. SERIAL_ECHOPGM("X: ");
  3532. MYSERIAL.print(current_position[X_AXIS], 5);
  3533. SERIAL_ECHOLNPGM("");
  3534. SERIAL_ECHOPGM("Y: ");
  3535. MYSERIAL.print(current_position[Y_AXIS], 5);
  3536. SERIAL_PROTOCOLPGM("\n");
  3537. }
  3538. #endif // SUPPORT_VERBOSITY
  3539. float offset_z = 0;
  3540. #ifdef PINDA_THERMISTOR
  3541. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3542. #endif //PINDA_THERMISTOR
  3543. // #ifdef SUPPORT_VERBOSITY
  3544. /* if (verbosity_level >= 1)
  3545. {
  3546. SERIAL_ECHOPGM("mesh bed leveling: ");
  3547. MYSERIAL.print(current_position[Z_AXIS], 5);
  3548. SERIAL_ECHOPGM(" offset: ");
  3549. MYSERIAL.print(offset_z, 5);
  3550. SERIAL_ECHOLNPGM("");
  3551. }*/
  3552. // #endif // SUPPORT_VERBOSITY
  3553. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3554. custom_message_state--;
  3555. mesh_point++;
  3556. lcd_update(1);
  3557. }
  3558. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3559. #ifdef SUPPORT_VERBOSITY
  3560. if (verbosity_level >= 20) {
  3561. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3562. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3563. MYSERIAL.print(current_position[Z_AXIS], 5);
  3564. }
  3565. #endif // SUPPORT_VERBOSITY
  3566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3567. st_synchronize();
  3568. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3569. kill(kill_message);
  3570. SERIAL_ECHOLNPGM("killed");
  3571. }
  3572. clean_up_after_endstop_move();
  3573. // SERIAL_ECHOLNPGM("clean up finished ");
  3574. bool apply_temp_comp = true;
  3575. #ifdef PINDA_THERMISTOR
  3576. apply_temp_comp = false;
  3577. #endif
  3578. if (apply_temp_comp)
  3579. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3580. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3581. // SERIAL_ECHOLNPGM("babystep applied");
  3582. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3583. #ifdef SUPPORT_VERBOSITY
  3584. if (verbosity_level >= 1) {
  3585. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3586. }
  3587. #endif // SUPPORT_VERBOSITY
  3588. for (uint8_t i = 0; i < 4; ++i) {
  3589. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3590. long correction = 0;
  3591. if (code_seen(codes[i]))
  3592. correction = code_value_long();
  3593. else if (eeprom_bed_correction_valid) {
  3594. unsigned char *addr = (i < 2) ?
  3595. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3596. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3597. correction = eeprom_read_int8(addr);
  3598. }
  3599. if (correction == 0)
  3600. continue;
  3601. float offset = float(correction) * 0.001f;
  3602. if (fabs(offset) > 0.101f) {
  3603. SERIAL_ERROR_START;
  3604. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3605. SERIAL_ECHO(offset);
  3606. SERIAL_ECHOLNPGM(" microns");
  3607. }
  3608. else {
  3609. switch (i) {
  3610. case 0:
  3611. for (uint8_t row = 0; row < 3; ++row) {
  3612. mbl.z_values[row][1] += 0.5f * offset;
  3613. mbl.z_values[row][0] += offset;
  3614. }
  3615. break;
  3616. case 1:
  3617. for (uint8_t row = 0; row < 3; ++row) {
  3618. mbl.z_values[row][1] += 0.5f * offset;
  3619. mbl.z_values[row][2] += offset;
  3620. }
  3621. break;
  3622. case 2:
  3623. for (uint8_t col = 0; col < 3; ++col) {
  3624. mbl.z_values[1][col] += 0.5f * offset;
  3625. mbl.z_values[0][col] += offset;
  3626. }
  3627. break;
  3628. case 3:
  3629. for (uint8_t col = 0; col < 3; ++col) {
  3630. mbl.z_values[1][col] += 0.5f * offset;
  3631. mbl.z_values[2][col] += offset;
  3632. }
  3633. break;
  3634. }
  3635. }
  3636. }
  3637. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3638. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3639. // SERIAL_ECHOLNPGM("Upsample finished");
  3640. mbl.active = 1; //activate mesh bed leveling
  3641. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3642. go_home_with_z_lift();
  3643. // SERIAL_ECHOLNPGM("Go home finished");
  3644. //unretract (after PINDA preheat retraction)
  3645. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3646. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3648. }
  3649. KEEPALIVE_STATE(NOT_BUSY);
  3650. // Restore custom message state
  3651. custom_message = custom_message_old;
  3652. custom_message_type = custom_message_type_old;
  3653. custom_message_state = custom_message_state_old;
  3654. mesh_bed_leveling_flag = false;
  3655. mesh_bed_run_from_menu = false;
  3656. lcd_update(2);
  3657. }
  3658. break;
  3659. /**
  3660. * G81: Print mesh bed leveling status and bed profile if activated
  3661. */
  3662. case 81:
  3663. if (mbl.active) {
  3664. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3665. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3666. SERIAL_PROTOCOLPGM(",");
  3667. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3668. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3669. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3670. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3671. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3672. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3673. SERIAL_PROTOCOLPGM(" ");
  3674. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3675. }
  3676. SERIAL_PROTOCOLPGM("\n");
  3677. }
  3678. }
  3679. else
  3680. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3681. break;
  3682. #if 0
  3683. /**
  3684. * G82: Single Z probe at current location
  3685. *
  3686. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3687. *
  3688. */
  3689. case 82:
  3690. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3691. setup_for_endstop_move();
  3692. find_bed_induction_sensor_point_z();
  3693. clean_up_after_endstop_move();
  3694. SERIAL_PROTOCOLPGM("Bed found at: ");
  3695. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3696. SERIAL_PROTOCOLPGM("\n");
  3697. break;
  3698. /**
  3699. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3700. */
  3701. case 83:
  3702. {
  3703. int babystepz = code_seen('S') ? code_value() : 0;
  3704. int BabyPosition = code_seen('P') ? code_value() : 0;
  3705. if (babystepz != 0) {
  3706. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3707. // Is the axis indexed starting with zero or one?
  3708. if (BabyPosition > 4) {
  3709. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3710. }else{
  3711. // Save it to the eeprom
  3712. babystepLoadZ = babystepz;
  3713. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3714. // adjust the Z
  3715. babystepsTodoZadd(babystepLoadZ);
  3716. }
  3717. }
  3718. }
  3719. break;
  3720. /**
  3721. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3722. */
  3723. case 84:
  3724. babystepsTodoZsubtract(babystepLoadZ);
  3725. // babystepLoadZ = 0;
  3726. break;
  3727. /**
  3728. * G85: Prusa3D specific: Pick best babystep
  3729. */
  3730. case 85:
  3731. lcd_pick_babystep();
  3732. break;
  3733. #endif
  3734. /**
  3735. * G86: Prusa3D specific: Disable babystep correction after home.
  3736. * This G-code will be performed at the start of a calibration script.
  3737. */
  3738. case 86:
  3739. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3740. break;
  3741. /**
  3742. * G87: Prusa3D specific: Enable babystep correction after home
  3743. * This G-code will be performed at the end of a calibration script.
  3744. */
  3745. case 87:
  3746. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3747. break;
  3748. /**
  3749. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3750. */
  3751. case 88:
  3752. break;
  3753. #endif // ENABLE_MESH_BED_LEVELING
  3754. case 90: // G90
  3755. relative_mode = false;
  3756. break;
  3757. case 91: // G91
  3758. relative_mode = true;
  3759. break;
  3760. case 92: // G92
  3761. if(!code_seen(axis_codes[E_AXIS]))
  3762. st_synchronize();
  3763. for(int8_t i=0; i < NUM_AXIS; i++) {
  3764. if(code_seen(axis_codes[i])) {
  3765. if(i == E_AXIS) {
  3766. current_position[i] = code_value();
  3767. plan_set_e_position(current_position[E_AXIS]);
  3768. }
  3769. else {
  3770. current_position[i] = code_value()+add_homing[i];
  3771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3772. }
  3773. }
  3774. }
  3775. break;
  3776. case 98: // G98 (activate farm mode)
  3777. farm_mode = 1;
  3778. PingTime = millis();
  3779. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3780. SilentModeMenu = SILENT_MODE_OFF;
  3781. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3782. break;
  3783. case 99: // G99 (deactivate farm mode)
  3784. farm_mode = 0;
  3785. lcd_printer_connected();
  3786. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3787. lcd_update(2);
  3788. break;
  3789. default:
  3790. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3791. }
  3792. } // end if(code_seen('G'))
  3793. else if(code_seen('M'))
  3794. {
  3795. int index;
  3796. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3797. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3798. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3799. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3800. } else
  3801. switch((int)code_value())
  3802. {
  3803. #ifdef ULTIPANEL
  3804. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3805. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3806. {
  3807. char *src = strchr_pointer + 2;
  3808. codenum = 0;
  3809. bool hasP = false, hasS = false;
  3810. if (code_seen('P')) {
  3811. codenum = code_value(); // milliseconds to wait
  3812. hasP = codenum > 0;
  3813. }
  3814. if (code_seen('S')) {
  3815. codenum = code_value() * 1000; // seconds to wait
  3816. hasS = codenum > 0;
  3817. }
  3818. starpos = strchr(src, '*');
  3819. if (starpos != NULL) *(starpos) = '\0';
  3820. while (*src == ' ') ++src;
  3821. if (!hasP && !hasS && *src != '\0') {
  3822. lcd_setstatus(src);
  3823. } else {
  3824. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3825. }
  3826. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3827. st_synchronize();
  3828. previous_millis_cmd = millis();
  3829. if (codenum > 0){
  3830. codenum += millis(); // keep track of when we started waiting
  3831. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3832. while(millis() < codenum && !lcd_clicked()){
  3833. manage_heater();
  3834. manage_inactivity(true);
  3835. lcd_update();
  3836. }
  3837. KEEPALIVE_STATE(IN_HANDLER);
  3838. lcd_ignore_click(false);
  3839. }else{
  3840. if (!lcd_detected())
  3841. break;
  3842. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3843. while(!lcd_clicked()){
  3844. manage_heater();
  3845. manage_inactivity(true);
  3846. lcd_update();
  3847. }
  3848. KEEPALIVE_STATE(IN_HANDLER);
  3849. }
  3850. if (IS_SD_PRINTING)
  3851. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3852. else
  3853. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3854. }
  3855. break;
  3856. #endif
  3857. case 17:
  3858. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3859. enable_x();
  3860. enable_y();
  3861. enable_z();
  3862. enable_e0();
  3863. enable_e1();
  3864. enable_e2();
  3865. break;
  3866. #ifdef SDSUPPORT
  3867. case 20: // M20 - list SD card
  3868. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3869. card.ls();
  3870. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3871. break;
  3872. case 21: // M21 - init SD card
  3873. card.initsd();
  3874. break;
  3875. case 22: //M22 - release SD card
  3876. card.release();
  3877. break;
  3878. case 23: //M23 - Select file
  3879. starpos = (strchr(strchr_pointer + 4,'*'));
  3880. if(starpos!=NULL)
  3881. *(starpos)='\0';
  3882. card.openFile(strchr_pointer + 4,true);
  3883. break;
  3884. case 24: //M24 - Start SD print
  3885. if (!card.paused)
  3886. failstats_reset_print();
  3887. card.startFileprint();
  3888. starttime=millis();
  3889. break;
  3890. case 25: //M25 - Pause SD print
  3891. card.pauseSDPrint();
  3892. break;
  3893. case 26: //M26 - Set SD index
  3894. if(card.cardOK && code_seen('S')) {
  3895. card.setIndex(code_value_long());
  3896. }
  3897. break;
  3898. case 27: //M27 - Get SD status
  3899. card.getStatus();
  3900. break;
  3901. case 28: //M28 - Start SD write
  3902. starpos = (strchr(strchr_pointer + 4,'*'));
  3903. if(starpos != NULL){
  3904. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3905. strchr_pointer = strchr(npos,' ') + 1;
  3906. *(starpos) = '\0';
  3907. }
  3908. card.openFile(strchr_pointer+4,false);
  3909. break;
  3910. case 29: //M29 - Stop SD write
  3911. //processed in write to file routine above
  3912. //card,saving = false;
  3913. break;
  3914. case 30: //M30 <filename> Delete File
  3915. if (card.cardOK){
  3916. card.closefile();
  3917. starpos = (strchr(strchr_pointer + 4,'*'));
  3918. if(starpos != NULL){
  3919. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3920. strchr_pointer = strchr(npos,' ') + 1;
  3921. *(starpos) = '\0';
  3922. }
  3923. card.removeFile(strchr_pointer + 4);
  3924. }
  3925. break;
  3926. case 32: //M32 - Select file and start SD print
  3927. {
  3928. if(card.sdprinting) {
  3929. st_synchronize();
  3930. }
  3931. starpos = (strchr(strchr_pointer + 4,'*'));
  3932. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3933. if(namestartpos==NULL)
  3934. {
  3935. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3936. }
  3937. else
  3938. namestartpos++; //to skip the '!'
  3939. if(starpos!=NULL)
  3940. *(starpos)='\0';
  3941. bool call_procedure=(code_seen('P'));
  3942. if(strchr_pointer>namestartpos)
  3943. call_procedure=false; //false alert, 'P' found within filename
  3944. if( card.cardOK )
  3945. {
  3946. card.openFile(namestartpos,true,!call_procedure);
  3947. if(code_seen('S'))
  3948. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3949. card.setIndex(code_value_long());
  3950. card.startFileprint();
  3951. if(!call_procedure)
  3952. starttime=millis(); //procedure calls count as normal print time.
  3953. }
  3954. } break;
  3955. case 928: //M928 - Start SD write
  3956. starpos = (strchr(strchr_pointer + 5,'*'));
  3957. if(starpos != NULL){
  3958. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3959. strchr_pointer = strchr(npos,' ') + 1;
  3960. *(starpos) = '\0';
  3961. }
  3962. card.openLogFile(strchr_pointer+5);
  3963. break;
  3964. #endif //SDSUPPORT
  3965. case 31: //M31 take time since the start of the SD print or an M109 command
  3966. {
  3967. stoptime=millis();
  3968. char time[30];
  3969. unsigned long t=(stoptime-starttime)/1000;
  3970. int sec,min;
  3971. min=t/60;
  3972. sec=t%60;
  3973. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3974. SERIAL_ECHO_START;
  3975. SERIAL_ECHOLN(time);
  3976. lcd_setstatus(time);
  3977. autotempShutdown();
  3978. }
  3979. break;
  3980. #ifndef _DISABLE_M42_M226
  3981. case 42: //M42 -Change pin status via gcode
  3982. if (code_seen('S'))
  3983. {
  3984. int pin_status = code_value();
  3985. int pin_number = LED_PIN;
  3986. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3987. pin_number = code_value();
  3988. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3989. {
  3990. if (sensitive_pins[i] == pin_number)
  3991. {
  3992. pin_number = -1;
  3993. break;
  3994. }
  3995. }
  3996. #if defined(FAN_PIN) && FAN_PIN > -1
  3997. if (pin_number == FAN_PIN)
  3998. fanSpeed = pin_status;
  3999. #endif
  4000. if (pin_number > -1)
  4001. {
  4002. pinMode(pin_number, OUTPUT);
  4003. digitalWrite(pin_number, pin_status);
  4004. analogWrite(pin_number, pin_status);
  4005. }
  4006. }
  4007. break;
  4008. #endif //_DISABLE_M42_M226
  4009. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4010. // Reset the baby step value and the baby step applied flag.
  4011. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4012. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4013. // Reset the skew and offset in both RAM and EEPROM.
  4014. reset_bed_offset_and_skew();
  4015. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4016. // the planner will not perform any adjustments in the XY plane.
  4017. // Wait for the motors to stop and update the current position with the absolute values.
  4018. world2machine_revert_to_uncorrected();
  4019. break;
  4020. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4021. {
  4022. int8_t verbosity_level = 0;
  4023. bool only_Z = code_seen('Z');
  4024. #ifdef SUPPORT_VERBOSITY
  4025. if (code_seen('V'))
  4026. {
  4027. // Just 'V' without a number counts as V1.
  4028. char c = strchr_pointer[1];
  4029. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4030. }
  4031. #endif //SUPPORT_VERBOSITY
  4032. gcode_M45(only_Z, verbosity_level);
  4033. }
  4034. break;
  4035. /*
  4036. case 46:
  4037. {
  4038. // M46: Prusa3D: Show the assigned IP address.
  4039. uint8_t ip[4];
  4040. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4041. if (hasIP) {
  4042. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4043. SERIAL_ECHO(int(ip[0]));
  4044. SERIAL_ECHOPGM(".");
  4045. SERIAL_ECHO(int(ip[1]));
  4046. SERIAL_ECHOPGM(".");
  4047. SERIAL_ECHO(int(ip[2]));
  4048. SERIAL_ECHOPGM(".");
  4049. SERIAL_ECHO(int(ip[3]));
  4050. SERIAL_ECHOLNPGM("");
  4051. } else {
  4052. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4053. }
  4054. break;
  4055. }
  4056. */
  4057. case 47:
  4058. // M47: Prusa3D: Show end stops dialog on the display.
  4059. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4060. lcd_diag_show_end_stops();
  4061. KEEPALIVE_STATE(IN_HANDLER);
  4062. break;
  4063. #if 0
  4064. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4065. {
  4066. // Disable the default update procedure of the display. We will do a modal dialog.
  4067. lcd_update_enable(false);
  4068. // Let the planner use the uncorrected coordinates.
  4069. mbl.reset();
  4070. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4071. // the planner will not perform any adjustments in the XY plane.
  4072. // Wait for the motors to stop and update the current position with the absolute values.
  4073. world2machine_revert_to_uncorrected();
  4074. // Move the print head close to the bed.
  4075. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4077. st_synchronize();
  4078. // Home in the XY plane.
  4079. set_destination_to_current();
  4080. setup_for_endstop_move();
  4081. home_xy();
  4082. int8_t verbosity_level = 0;
  4083. if (code_seen('V')) {
  4084. // Just 'V' without a number counts as V1.
  4085. char c = strchr_pointer[1];
  4086. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4087. }
  4088. bool success = scan_bed_induction_points(verbosity_level);
  4089. clean_up_after_endstop_move();
  4090. // Print head up.
  4091. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4093. st_synchronize();
  4094. lcd_update_enable(true);
  4095. break;
  4096. }
  4097. #endif
  4098. // M48 Z-Probe repeatability measurement function.
  4099. //
  4100. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4101. //
  4102. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4103. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4104. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4105. // regenerated.
  4106. //
  4107. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4108. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4109. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4110. //
  4111. #ifdef ENABLE_AUTO_BED_LEVELING
  4112. #ifdef Z_PROBE_REPEATABILITY_TEST
  4113. case 48: // M48 Z-Probe repeatability
  4114. {
  4115. #if Z_MIN_PIN == -1
  4116. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4117. #endif
  4118. double sum=0.0;
  4119. double mean=0.0;
  4120. double sigma=0.0;
  4121. double sample_set[50];
  4122. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4123. double X_current, Y_current, Z_current;
  4124. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4125. if (code_seen('V') || code_seen('v')) {
  4126. verbose_level = code_value();
  4127. if (verbose_level<0 || verbose_level>4 ) {
  4128. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4129. goto Sigma_Exit;
  4130. }
  4131. }
  4132. if (verbose_level > 0) {
  4133. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4134. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4135. }
  4136. if (code_seen('n')) {
  4137. n_samples = code_value();
  4138. if (n_samples<4 || n_samples>50 ) {
  4139. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4140. goto Sigma_Exit;
  4141. }
  4142. }
  4143. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4144. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4145. Z_current = st_get_position_mm(Z_AXIS);
  4146. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4147. ext_position = st_get_position_mm(E_AXIS);
  4148. if (code_seen('X') || code_seen('x') ) {
  4149. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4150. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4151. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4152. goto Sigma_Exit;
  4153. }
  4154. }
  4155. if (code_seen('Y') || code_seen('y') ) {
  4156. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4157. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4158. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4159. goto Sigma_Exit;
  4160. }
  4161. }
  4162. if (code_seen('L') || code_seen('l') ) {
  4163. n_legs = code_value();
  4164. if ( n_legs==1 )
  4165. n_legs = 2;
  4166. if ( n_legs<0 || n_legs>15 ) {
  4167. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4168. goto Sigma_Exit;
  4169. }
  4170. }
  4171. //
  4172. // Do all the preliminary setup work. First raise the probe.
  4173. //
  4174. st_synchronize();
  4175. plan_bed_level_matrix.set_to_identity();
  4176. plan_buffer_line( X_current, Y_current, Z_start_location,
  4177. ext_position,
  4178. homing_feedrate[Z_AXIS]/60,
  4179. active_extruder);
  4180. st_synchronize();
  4181. //
  4182. // Now get everything to the specified probe point So we can safely do a probe to
  4183. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4184. // use that as a starting point for each probe.
  4185. //
  4186. if (verbose_level > 2)
  4187. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4188. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4189. ext_position,
  4190. homing_feedrate[X_AXIS]/60,
  4191. active_extruder);
  4192. st_synchronize();
  4193. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4194. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4195. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4196. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4197. //
  4198. // OK, do the inital probe to get us close to the bed.
  4199. // Then retrace the right amount and use that in subsequent probes
  4200. //
  4201. setup_for_endstop_move();
  4202. run_z_probe();
  4203. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4204. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4205. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4206. ext_position,
  4207. homing_feedrate[X_AXIS]/60,
  4208. active_extruder);
  4209. st_synchronize();
  4210. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4211. for( n=0; n<n_samples; n++) {
  4212. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4213. if ( n_legs) {
  4214. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4215. int rotational_direction, l;
  4216. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4217. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4218. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4219. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4220. //SERIAL_ECHOPAIR(" theta: ",theta);
  4221. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4222. //SERIAL_PROTOCOLLNPGM("");
  4223. for( l=0; l<n_legs-1; l++) {
  4224. if (rotational_direction==1)
  4225. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4226. else
  4227. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4228. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4229. if ( radius<0.0 )
  4230. radius = -radius;
  4231. X_current = X_probe_location + cos(theta) * radius;
  4232. Y_current = Y_probe_location + sin(theta) * radius;
  4233. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4234. X_current = X_MIN_POS;
  4235. if ( X_current>X_MAX_POS)
  4236. X_current = X_MAX_POS;
  4237. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4238. Y_current = Y_MIN_POS;
  4239. if ( Y_current>Y_MAX_POS)
  4240. Y_current = Y_MAX_POS;
  4241. if (verbose_level>3 ) {
  4242. SERIAL_ECHOPAIR("x: ", X_current);
  4243. SERIAL_ECHOPAIR("y: ", Y_current);
  4244. SERIAL_PROTOCOLLNPGM("");
  4245. }
  4246. do_blocking_move_to( X_current, Y_current, Z_current );
  4247. }
  4248. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4249. }
  4250. setup_for_endstop_move();
  4251. run_z_probe();
  4252. sample_set[n] = current_position[Z_AXIS];
  4253. //
  4254. // Get the current mean for the data points we have so far
  4255. //
  4256. sum=0.0;
  4257. for( j=0; j<=n; j++) {
  4258. sum = sum + sample_set[j];
  4259. }
  4260. mean = sum / (double (n+1));
  4261. //
  4262. // Now, use that mean to calculate the standard deviation for the
  4263. // data points we have so far
  4264. //
  4265. sum=0.0;
  4266. for( j=0; j<=n; j++) {
  4267. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4268. }
  4269. sigma = sqrt( sum / (double (n+1)) );
  4270. if (verbose_level > 1) {
  4271. SERIAL_PROTOCOL(n+1);
  4272. SERIAL_PROTOCOL(" of ");
  4273. SERIAL_PROTOCOL(n_samples);
  4274. SERIAL_PROTOCOLPGM(" z: ");
  4275. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4276. }
  4277. if (verbose_level > 2) {
  4278. SERIAL_PROTOCOL(" mean: ");
  4279. SERIAL_PROTOCOL_F(mean,6);
  4280. SERIAL_PROTOCOL(" sigma: ");
  4281. SERIAL_PROTOCOL_F(sigma,6);
  4282. }
  4283. if (verbose_level > 0)
  4284. SERIAL_PROTOCOLPGM("\n");
  4285. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4286. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4287. st_synchronize();
  4288. }
  4289. delay(1000);
  4290. clean_up_after_endstop_move();
  4291. // enable_endstops(true);
  4292. if (verbose_level > 0) {
  4293. SERIAL_PROTOCOLPGM("Mean: ");
  4294. SERIAL_PROTOCOL_F(mean, 6);
  4295. SERIAL_PROTOCOLPGM("\n");
  4296. }
  4297. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4298. SERIAL_PROTOCOL_F(sigma, 6);
  4299. SERIAL_PROTOCOLPGM("\n\n");
  4300. Sigma_Exit:
  4301. break;
  4302. }
  4303. #endif // Z_PROBE_REPEATABILITY_TEST
  4304. #endif // ENABLE_AUTO_BED_LEVELING
  4305. case 104: // M104
  4306. if(setTargetedHotend(104)){
  4307. break;
  4308. }
  4309. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4310. setWatch();
  4311. break;
  4312. case 112: // M112 -Emergency Stop
  4313. kill("", 3);
  4314. break;
  4315. case 140: // M140 set bed temp
  4316. if (code_seen('S')) setTargetBed(code_value());
  4317. break;
  4318. case 105 : // M105
  4319. if(setTargetedHotend(105)){
  4320. break;
  4321. }
  4322. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4323. SERIAL_PROTOCOLPGM("ok T:");
  4324. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4325. SERIAL_PROTOCOLPGM(" /");
  4326. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4327. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4328. SERIAL_PROTOCOLPGM(" B:");
  4329. SERIAL_PROTOCOL_F(degBed(),1);
  4330. SERIAL_PROTOCOLPGM(" /");
  4331. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4332. #endif //TEMP_BED_PIN
  4333. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4334. SERIAL_PROTOCOLPGM(" T");
  4335. SERIAL_PROTOCOL(cur_extruder);
  4336. SERIAL_PROTOCOLPGM(":");
  4337. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4338. SERIAL_PROTOCOLPGM(" /");
  4339. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4340. }
  4341. #else
  4342. SERIAL_ERROR_START;
  4343. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4344. #endif
  4345. SERIAL_PROTOCOLPGM(" @:");
  4346. #ifdef EXTRUDER_WATTS
  4347. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4348. SERIAL_PROTOCOLPGM("W");
  4349. #else
  4350. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4351. #endif
  4352. SERIAL_PROTOCOLPGM(" B@:");
  4353. #ifdef BED_WATTS
  4354. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4355. SERIAL_PROTOCOLPGM("W");
  4356. #else
  4357. SERIAL_PROTOCOL(getHeaterPower(-1));
  4358. #endif
  4359. #ifdef PINDA_THERMISTOR
  4360. SERIAL_PROTOCOLPGM(" P:");
  4361. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4362. #endif //PINDA_THERMISTOR
  4363. #ifdef AMBIENT_THERMISTOR
  4364. SERIAL_PROTOCOLPGM(" A:");
  4365. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4366. #endif //AMBIENT_THERMISTOR
  4367. #ifdef SHOW_TEMP_ADC_VALUES
  4368. {float raw = 0.0;
  4369. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4370. SERIAL_PROTOCOLPGM(" ADC B:");
  4371. SERIAL_PROTOCOL_F(degBed(),1);
  4372. SERIAL_PROTOCOLPGM("C->");
  4373. raw = rawBedTemp();
  4374. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4375. SERIAL_PROTOCOLPGM(" Rb->");
  4376. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4377. SERIAL_PROTOCOLPGM(" Rxb->");
  4378. SERIAL_PROTOCOL_F(raw, 5);
  4379. #endif
  4380. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4381. SERIAL_PROTOCOLPGM(" T");
  4382. SERIAL_PROTOCOL(cur_extruder);
  4383. SERIAL_PROTOCOLPGM(":");
  4384. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4385. SERIAL_PROTOCOLPGM("C->");
  4386. raw = rawHotendTemp(cur_extruder);
  4387. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4388. SERIAL_PROTOCOLPGM(" Rt");
  4389. SERIAL_PROTOCOL(cur_extruder);
  4390. SERIAL_PROTOCOLPGM("->");
  4391. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4392. SERIAL_PROTOCOLPGM(" Rx");
  4393. SERIAL_PROTOCOL(cur_extruder);
  4394. SERIAL_PROTOCOLPGM("->");
  4395. SERIAL_PROTOCOL_F(raw, 5);
  4396. }}
  4397. #endif
  4398. SERIAL_PROTOCOLLN("");
  4399. KEEPALIVE_STATE(NOT_BUSY);
  4400. return;
  4401. break;
  4402. case 109:
  4403. {// M109 - Wait for extruder heater to reach target.
  4404. if(setTargetedHotend(109)){
  4405. break;
  4406. }
  4407. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4408. heating_status = 1;
  4409. if (farm_mode) { prusa_statistics(1); };
  4410. #ifdef AUTOTEMP
  4411. autotemp_enabled=false;
  4412. #endif
  4413. if (code_seen('S')) {
  4414. setTargetHotend(code_value(), tmp_extruder);
  4415. CooldownNoWait = true;
  4416. } else if (code_seen('R')) {
  4417. setTargetHotend(code_value(), tmp_extruder);
  4418. CooldownNoWait = false;
  4419. }
  4420. #ifdef AUTOTEMP
  4421. if (code_seen('S')) autotemp_min=code_value();
  4422. if (code_seen('B')) autotemp_max=code_value();
  4423. if (code_seen('F'))
  4424. {
  4425. autotemp_factor=code_value();
  4426. autotemp_enabled=true;
  4427. }
  4428. #endif
  4429. setWatch();
  4430. codenum = millis();
  4431. /* See if we are heating up or cooling down */
  4432. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4433. KEEPALIVE_STATE(NOT_BUSY);
  4434. cancel_heatup = false;
  4435. wait_for_heater(codenum); //loops until target temperature is reached
  4436. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4437. KEEPALIVE_STATE(IN_HANDLER);
  4438. heating_status = 2;
  4439. if (farm_mode) { prusa_statistics(2); };
  4440. //starttime=millis();
  4441. previous_millis_cmd = millis();
  4442. }
  4443. break;
  4444. case 190: // M190 - Wait for bed heater to reach target.
  4445. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4446. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4447. heating_status = 3;
  4448. if (farm_mode) { prusa_statistics(1); };
  4449. if (code_seen('S'))
  4450. {
  4451. setTargetBed(code_value());
  4452. CooldownNoWait = true;
  4453. }
  4454. else if (code_seen('R'))
  4455. {
  4456. setTargetBed(code_value());
  4457. CooldownNoWait = false;
  4458. }
  4459. codenum = millis();
  4460. cancel_heatup = false;
  4461. target_direction = isHeatingBed(); // true if heating, false if cooling
  4462. KEEPALIVE_STATE(NOT_BUSY);
  4463. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4464. {
  4465. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4466. {
  4467. if (!farm_mode) {
  4468. float tt = degHotend(active_extruder);
  4469. SERIAL_PROTOCOLPGM("T:");
  4470. SERIAL_PROTOCOL(tt);
  4471. SERIAL_PROTOCOLPGM(" E:");
  4472. SERIAL_PROTOCOL((int)active_extruder);
  4473. SERIAL_PROTOCOLPGM(" B:");
  4474. SERIAL_PROTOCOL_F(degBed(), 1);
  4475. SERIAL_PROTOCOLLN("");
  4476. }
  4477. codenum = millis();
  4478. }
  4479. manage_heater();
  4480. manage_inactivity();
  4481. lcd_update();
  4482. }
  4483. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4484. KEEPALIVE_STATE(IN_HANDLER);
  4485. heating_status = 4;
  4486. previous_millis_cmd = millis();
  4487. #endif
  4488. break;
  4489. #if defined(FAN_PIN) && FAN_PIN > -1
  4490. case 106: //M106 Fan On
  4491. if (code_seen('S')){
  4492. fanSpeed=constrain(code_value(),0,255);
  4493. }
  4494. else {
  4495. fanSpeed=255;
  4496. }
  4497. break;
  4498. case 107: //M107 Fan Off
  4499. fanSpeed = 0;
  4500. break;
  4501. #endif //FAN_PIN
  4502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4503. case 80: // M80 - Turn on Power Supply
  4504. SET_OUTPUT(PS_ON_PIN); //GND
  4505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4506. // If you have a switch on suicide pin, this is useful
  4507. // if you want to start another print with suicide feature after
  4508. // a print without suicide...
  4509. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4510. SET_OUTPUT(SUICIDE_PIN);
  4511. WRITE(SUICIDE_PIN, HIGH);
  4512. #endif
  4513. #ifdef ULTIPANEL
  4514. powersupply = true;
  4515. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4516. lcd_update();
  4517. #endif
  4518. break;
  4519. #endif
  4520. case 81: // M81 - Turn off Power Supply
  4521. disable_heater();
  4522. st_synchronize();
  4523. disable_e0();
  4524. disable_e1();
  4525. disable_e2();
  4526. finishAndDisableSteppers();
  4527. fanSpeed = 0;
  4528. delay(1000); // Wait a little before to switch off
  4529. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4530. st_synchronize();
  4531. suicide();
  4532. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4533. SET_OUTPUT(PS_ON_PIN);
  4534. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4535. #endif
  4536. #ifdef ULTIPANEL
  4537. powersupply = false;
  4538. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4539. /*
  4540. MACHNAME = "Prusa i3"
  4541. MSGOFF = "Vypnuto"
  4542. "Prusai3"" ""vypnuto""."
  4543. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4544. */
  4545. lcd_update();
  4546. #endif
  4547. break;
  4548. case 82:
  4549. axis_relative_modes[3] = false;
  4550. break;
  4551. case 83:
  4552. axis_relative_modes[3] = true;
  4553. break;
  4554. case 18: //compatibility
  4555. case 84: // M84
  4556. if(code_seen('S')){
  4557. stepper_inactive_time = code_value() * 1000;
  4558. }
  4559. else
  4560. {
  4561. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4562. if(all_axis)
  4563. {
  4564. st_synchronize();
  4565. disable_e0();
  4566. disable_e1();
  4567. disable_e2();
  4568. finishAndDisableSteppers();
  4569. }
  4570. else
  4571. {
  4572. st_synchronize();
  4573. if (code_seen('X')) disable_x();
  4574. if (code_seen('Y')) disable_y();
  4575. if (code_seen('Z')) disable_z();
  4576. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4577. if (code_seen('E')) {
  4578. disable_e0();
  4579. disable_e1();
  4580. disable_e2();
  4581. }
  4582. #endif
  4583. }
  4584. }
  4585. snmm_filaments_used = 0;
  4586. break;
  4587. case 85: // M85
  4588. if(code_seen('S')) {
  4589. max_inactive_time = code_value() * 1000;
  4590. }
  4591. break;
  4592. case 92: // M92
  4593. for(int8_t i=0; i < NUM_AXIS; i++)
  4594. {
  4595. if(code_seen(axis_codes[i]))
  4596. {
  4597. if(i == 3) { // E
  4598. float value = code_value();
  4599. if(value < 20.0) {
  4600. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4601. max_jerk[E_AXIS] *= factor;
  4602. max_feedrate[i] *= factor;
  4603. axis_steps_per_sqr_second[i] *= factor;
  4604. }
  4605. axis_steps_per_unit[i] = value;
  4606. }
  4607. else {
  4608. axis_steps_per_unit[i] = code_value();
  4609. }
  4610. }
  4611. }
  4612. break;
  4613. case 110: // M110 - reset line pos
  4614. if (code_seen('N'))
  4615. gcode_LastN = code_value_long();
  4616. break;
  4617. #ifdef HOST_KEEPALIVE_FEATURE
  4618. case 113: // M113 - Get or set Host Keepalive interval
  4619. if (code_seen('S')) {
  4620. host_keepalive_interval = (uint8_t)code_value_short();
  4621. // NOMORE(host_keepalive_interval, 60);
  4622. }
  4623. else {
  4624. SERIAL_ECHO_START;
  4625. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4626. SERIAL_PROTOCOLLN("");
  4627. }
  4628. break;
  4629. #endif
  4630. case 115: // M115
  4631. if (code_seen('V')) {
  4632. // Report the Prusa version number.
  4633. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4634. } else if (code_seen('U')) {
  4635. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4636. // pause the print and ask the user to upgrade the firmware.
  4637. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4638. } else {
  4639. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4640. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4641. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4642. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4643. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4644. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4645. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4646. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4647. SERIAL_ECHOPGM(" UUID:");
  4648. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4649. }
  4650. break;
  4651. /* case 117: // M117 display message
  4652. starpos = (strchr(strchr_pointer + 5,'*'));
  4653. if(starpos!=NULL)
  4654. *(starpos)='\0';
  4655. lcd_setstatus(strchr_pointer + 5);
  4656. break;*/
  4657. case 114: // M114
  4658. gcode_M114();
  4659. break;
  4660. case 120: // M120
  4661. enable_endstops(false) ;
  4662. break;
  4663. case 121: // M121
  4664. enable_endstops(true) ;
  4665. break;
  4666. case 119: // M119
  4667. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4668. SERIAL_PROTOCOLLN("");
  4669. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4670. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4671. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4672. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4673. }else{
  4674. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4675. }
  4676. SERIAL_PROTOCOLLN("");
  4677. #endif
  4678. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4679. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4680. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4681. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4682. }else{
  4683. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4684. }
  4685. SERIAL_PROTOCOLLN("");
  4686. #endif
  4687. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4688. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4689. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4690. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4691. }else{
  4692. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4693. }
  4694. SERIAL_PROTOCOLLN("");
  4695. #endif
  4696. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4697. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4698. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4699. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4700. }else{
  4701. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4702. }
  4703. SERIAL_PROTOCOLLN("");
  4704. #endif
  4705. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4706. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4707. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4708. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4709. }else{
  4710. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4711. }
  4712. SERIAL_PROTOCOLLN("");
  4713. #endif
  4714. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4715. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4716. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4717. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4718. }else{
  4719. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4720. }
  4721. SERIAL_PROTOCOLLN("");
  4722. #endif
  4723. break;
  4724. //TODO: update for all axis, use for loop
  4725. #ifdef BLINKM
  4726. case 150: // M150
  4727. {
  4728. byte red;
  4729. byte grn;
  4730. byte blu;
  4731. if(code_seen('R')) red = code_value();
  4732. if(code_seen('U')) grn = code_value();
  4733. if(code_seen('B')) blu = code_value();
  4734. SendColors(red,grn,blu);
  4735. }
  4736. break;
  4737. #endif //BLINKM
  4738. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4739. {
  4740. tmp_extruder = active_extruder;
  4741. if(code_seen('T')) {
  4742. tmp_extruder = code_value();
  4743. if(tmp_extruder >= EXTRUDERS) {
  4744. SERIAL_ECHO_START;
  4745. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4746. break;
  4747. }
  4748. }
  4749. float area = .0;
  4750. if(code_seen('D')) {
  4751. float diameter = (float)code_value();
  4752. if (diameter == 0.0) {
  4753. // setting any extruder filament size disables volumetric on the assumption that
  4754. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4755. // for all extruders
  4756. volumetric_enabled = false;
  4757. } else {
  4758. filament_size[tmp_extruder] = (float)code_value();
  4759. // make sure all extruders have some sane value for the filament size
  4760. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4761. #if EXTRUDERS > 1
  4762. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4763. #if EXTRUDERS > 2
  4764. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4765. #endif
  4766. #endif
  4767. volumetric_enabled = true;
  4768. }
  4769. } else {
  4770. //reserved for setting filament diameter via UFID or filament measuring device
  4771. break;
  4772. }
  4773. calculate_extruder_multipliers();
  4774. }
  4775. break;
  4776. case 201: // M201
  4777. for(int8_t i=0; i < NUM_AXIS; i++)
  4778. {
  4779. if(code_seen(axis_codes[i]))
  4780. {
  4781. max_acceleration_units_per_sq_second[i] = code_value();
  4782. }
  4783. }
  4784. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4785. reset_acceleration_rates();
  4786. break;
  4787. #if 0 // Not used for Sprinter/grbl gen6
  4788. case 202: // M202
  4789. for(int8_t i=0; i < NUM_AXIS; i++) {
  4790. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4791. }
  4792. break;
  4793. #endif
  4794. case 203: // M203 max feedrate mm/sec
  4795. for(int8_t i=0; i < NUM_AXIS; i++) {
  4796. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4797. }
  4798. break;
  4799. case 204: // M204 acclereration S normal moves T filmanent only moves
  4800. {
  4801. if(code_seen('S')) acceleration = code_value() ;
  4802. if(code_seen('T')) retract_acceleration = code_value() ;
  4803. }
  4804. break;
  4805. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4806. {
  4807. if(code_seen('S')) minimumfeedrate = code_value();
  4808. if(code_seen('T')) mintravelfeedrate = code_value();
  4809. if(code_seen('B')) minsegmenttime = code_value() ;
  4810. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4811. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4812. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4813. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4814. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4815. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4816. }
  4817. break;
  4818. case 206: // M206 additional homing offset
  4819. for(int8_t i=0; i < 3; i++)
  4820. {
  4821. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4822. }
  4823. break;
  4824. #ifdef FWRETRACT
  4825. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4826. {
  4827. if(code_seen('S'))
  4828. {
  4829. retract_length = code_value() ;
  4830. }
  4831. if(code_seen('F'))
  4832. {
  4833. retract_feedrate = code_value()/60 ;
  4834. }
  4835. if(code_seen('Z'))
  4836. {
  4837. retract_zlift = code_value() ;
  4838. }
  4839. }break;
  4840. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4841. {
  4842. if(code_seen('S'))
  4843. {
  4844. retract_recover_length = code_value() ;
  4845. }
  4846. if(code_seen('F'))
  4847. {
  4848. retract_recover_feedrate = code_value()/60 ;
  4849. }
  4850. }break;
  4851. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4852. {
  4853. if(code_seen('S'))
  4854. {
  4855. int t= code_value() ;
  4856. switch(t)
  4857. {
  4858. case 0:
  4859. {
  4860. autoretract_enabled=false;
  4861. retracted[0]=false;
  4862. #if EXTRUDERS > 1
  4863. retracted[1]=false;
  4864. #endif
  4865. #if EXTRUDERS > 2
  4866. retracted[2]=false;
  4867. #endif
  4868. }break;
  4869. case 1:
  4870. {
  4871. autoretract_enabled=true;
  4872. retracted[0]=false;
  4873. #if EXTRUDERS > 1
  4874. retracted[1]=false;
  4875. #endif
  4876. #if EXTRUDERS > 2
  4877. retracted[2]=false;
  4878. #endif
  4879. }break;
  4880. default:
  4881. SERIAL_ECHO_START;
  4882. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4883. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4884. SERIAL_ECHOLNPGM("\"(1)");
  4885. }
  4886. }
  4887. }break;
  4888. #endif // FWRETRACT
  4889. #if EXTRUDERS > 1
  4890. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4891. {
  4892. if(setTargetedHotend(218)){
  4893. break;
  4894. }
  4895. if(code_seen('X'))
  4896. {
  4897. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4898. }
  4899. if(code_seen('Y'))
  4900. {
  4901. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4902. }
  4903. SERIAL_ECHO_START;
  4904. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4905. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4906. {
  4907. SERIAL_ECHO(" ");
  4908. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4909. SERIAL_ECHO(",");
  4910. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4911. }
  4912. SERIAL_ECHOLN("");
  4913. }break;
  4914. #endif
  4915. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4916. {
  4917. if(code_seen('S'))
  4918. {
  4919. feedmultiply = code_value() ;
  4920. }
  4921. }
  4922. break;
  4923. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4924. {
  4925. if(code_seen('S'))
  4926. {
  4927. int tmp_code = code_value();
  4928. if (code_seen('T'))
  4929. {
  4930. if(setTargetedHotend(221)){
  4931. break;
  4932. }
  4933. extruder_multiply[tmp_extruder] = tmp_code;
  4934. }
  4935. else
  4936. {
  4937. extrudemultiply = tmp_code ;
  4938. }
  4939. }
  4940. calculate_extruder_multipliers();
  4941. }
  4942. break;
  4943. #ifndef _DISABLE_M42_M226
  4944. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4945. {
  4946. if(code_seen('P')){
  4947. int pin_number = code_value(); // pin number
  4948. int pin_state = -1; // required pin state - default is inverted
  4949. if(code_seen('S')) pin_state = code_value(); // required pin state
  4950. if(pin_state >= -1 && pin_state <= 1){
  4951. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4952. {
  4953. if (sensitive_pins[i] == pin_number)
  4954. {
  4955. pin_number = -1;
  4956. break;
  4957. }
  4958. }
  4959. if (pin_number > -1)
  4960. {
  4961. int target = LOW;
  4962. st_synchronize();
  4963. pinMode(pin_number, INPUT);
  4964. switch(pin_state){
  4965. case 1:
  4966. target = HIGH;
  4967. break;
  4968. case 0:
  4969. target = LOW;
  4970. break;
  4971. case -1:
  4972. target = !digitalRead(pin_number);
  4973. break;
  4974. }
  4975. while(digitalRead(pin_number) != target){
  4976. manage_heater();
  4977. manage_inactivity();
  4978. lcd_update();
  4979. }
  4980. }
  4981. }
  4982. }
  4983. }
  4984. break;
  4985. #endif //_DISABLE_M42_M226
  4986. #if NUM_SERVOS > 0
  4987. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4988. {
  4989. int servo_index = -1;
  4990. int servo_position = 0;
  4991. if (code_seen('P'))
  4992. servo_index = code_value();
  4993. if (code_seen('S')) {
  4994. servo_position = code_value();
  4995. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4996. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4997. servos[servo_index].attach(0);
  4998. #endif
  4999. servos[servo_index].write(servo_position);
  5000. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5001. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5002. servos[servo_index].detach();
  5003. #endif
  5004. }
  5005. else {
  5006. SERIAL_ECHO_START;
  5007. SERIAL_ECHO("Servo ");
  5008. SERIAL_ECHO(servo_index);
  5009. SERIAL_ECHOLN(" out of range");
  5010. }
  5011. }
  5012. else if (servo_index >= 0) {
  5013. SERIAL_PROTOCOL(_T(MSG_OK));
  5014. SERIAL_PROTOCOL(" Servo ");
  5015. SERIAL_PROTOCOL(servo_index);
  5016. SERIAL_PROTOCOL(": ");
  5017. SERIAL_PROTOCOL(servos[servo_index].read());
  5018. SERIAL_PROTOCOLLN("");
  5019. }
  5020. }
  5021. break;
  5022. #endif // NUM_SERVOS > 0
  5023. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5024. case 300: // M300
  5025. {
  5026. int beepS = code_seen('S') ? code_value() : 110;
  5027. int beepP = code_seen('P') ? code_value() : 1000;
  5028. if (beepS > 0)
  5029. {
  5030. #if BEEPER > 0
  5031. tone(BEEPER, beepS);
  5032. delay(beepP);
  5033. noTone(BEEPER);
  5034. #elif defined(ULTRALCD)
  5035. lcd_buzz(beepS, beepP);
  5036. #elif defined(LCD_USE_I2C_BUZZER)
  5037. lcd_buzz(beepP, beepS);
  5038. #endif
  5039. }
  5040. else
  5041. {
  5042. delay(beepP);
  5043. }
  5044. }
  5045. break;
  5046. #endif // M300
  5047. #ifdef PIDTEMP
  5048. case 301: // M301
  5049. {
  5050. if(code_seen('P')) Kp = code_value();
  5051. if(code_seen('I')) Ki = scalePID_i(code_value());
  5052. if(code_seen('D')) Kd = scalePID_d(code_value());
  5053. #ifdef PID_ADD_EXTRUSION_RATE
  5054. if(code_seen('C')) Kc = code_value();
  5055. #endif
  5056. updatePID();
  5057. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5058. SERIAL_PROTOCOL(" p:");
  5059. SERIAL_PROTOCOL(Kp);
  5060. SERIAL_PROTOCOL(" i:");
  5061. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5062. SERIAL_PROTOCOL(" d:");
  5063. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5064. #ifdef PID_ADD_EXTRUSION_RATE
  5065. SERIAL_PROTOCOL(" c:");
  5066. //Kc does not have scaling applied above, or in resetting defaults
  5067. SERIAL_PROTOCOL(Kc);
  5068. #endif
  5069. SERIAL_PROTOCOLLN("");
  5070. }
  5071. break;
  5072. #endif //PIDTEMP
  5073. #ifdef PIDTEMPBED
  5074. case 304: // M304
  5075. {
  5076. if(code_seen('P')) bedKp = code_value();
  5077. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5078. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5079. updatePID();
  5080. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5081. SERIAL_PROTOCOL(" p:");
  5082. SERIAL_PROTOCOL(bedKp);
  5083. SERIAL_PROTOCOL(" i:");
  5084. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5085. SERIAL_PROTOCOL(" d:");
  5086. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5087. SERIAL_PROTOCOLLN("");
  5088. }
  5089. break;
  5090. #endif //PIDTEMP
  5091. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5092. {
  5093. #ifdef CHDK
  5094. SET_OUTPUT(CHDK);
  5095. WRITE(CHDK, HIGH);
  5096. chdkHigh = millis();
  5097. chdkActive = true;
  5098. #else
  5099. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5100. const uint8_t NUM_PULSES=16;
  5101. const float PULSE_LENGTH=0.01524;
  5102. for(int i=0; i < NUM_PULSES; i++) {
  5103. WRITE(PHOTOGRAPH_PIN, HIGH);
  5104. _delay_ms(PULSE_LENGTH);
  5105. WRITE(PHOTOGRAPH_PIN, LOW);
  5106. _delay_ms(PULSE_LENGTH);
  5107. }
  5108. delay(7.33);
  5109. for(int i=0; i < NUM_PULSES; i++) {
  5110. WRITE(PHOTOGRAPH_PIN, HIGH);
  5111. _delay_ms(PULSE_LENGTH);
  5112. WRITE(PHOTOGRAPH_PIN, LOW);
  5113. _delay_ms(PULSE_LENGTH);
  5114. }
  5115. #endif
  5116. #endif //chdk end if
  5117. }
  5118. break;
  5119. #ifdef DOGLCD
  5120. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5121. {
  5122. if (code_seen('C')) {
  5123. lcd_setcontrast( ((int)code_value())&63 );
  5124. }
  5125. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5126. SERIAL_PROTOCOL(lcd_contrast);
  5127. SERIAL_PROTOCOLLN("");
  5128. }
  5129. break;
  5130. #endif
  5131. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5132. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5133. {
  5134. float temp = .0;
  5135. if (code_seen('S')) temp=code_value();
  5136. set_extrude_min_temp(temp);
  5137. }
  5138. break;
  5139. #endif
  5140. case 303: // M303 PID autotune
  5141. {
  5142. float temp = 150.0;
  5143. int e=0;
  5144. int c=5;
  5145. if (code_seen('E')) e=code_value();
  5146. if (e<0)
  5147. temp=70;
  5148. if (code_seen('S')) temp=code_value();
  5149. if (code_seen('C')) c=code_value();
  5150. PID_autotune(temp, e, c);
  5151. }
  5152. break;
  5153. case 400: // M400 finish all moves
  5154. {
  5155. st_synchronize();
  5156. }
  5157. break;
  5158. case 500: // M500 Store settings in EEPROM
  5159. {
  5160. Config_StoreSettings(EEPROM_OFFSET);
  5161. }
  5162. break;
  5163. case 501: // M501 Read settings from EEPROM
  5164. {
  5165. Config_RetrieveSettings(EEPROM_OFFSET);
  5166. }
  5167. break;
  5168. case 502: // M502 Revert to default settings
  5169. {
  5170. Config_ResetDefault();
  5171. }
  5172. break;
  5173. case 503: // M503 print settings currently in memory
  5174. {
  5175. Config_PrintSettings();
  5176. }
  5177. break;
  5178. case 509: //M509 Force language selection
  5179. {
  5180. lcd_force_language_selection();
  5181. SERIAL_ECHO_START;
  5182. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5183. }
  5184. break;
  5185. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5186. case 540:
  5187. {
  5188. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5189. }
  5190. break;
  5191. #endif
  5192. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5193. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5194. {
  5195. float value;
  5196. if (code_seen('Z'))
  5197. {
  5198. value = code_value();
  5199. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5200. {
  5201. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5202. SERIAL_ECHO_START;
  5203. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5204. SERIAL_PROTOCOLLN("");
  5205. }
  5206. else
  5207. {
  5208. SERIAL_ECHO_START;
  5209. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5210. SERIAL_ECHORPGM(MSG_Z_MIN);
  5211. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5212. SERIAL_ECHORPGM(MSG_Z_MAX);
  5213. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5214. SERIAL_PROTOCOLLN("");
  5215. }
  5216. }
  5217. else
  5218. {
  5219. SERIAL_ECHO_START;
  5220. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5221. SERIAL_ECHO(-zprobe_zoffset);
  5222. SERIAL_PROTOCOLLN("");
  5223. }
  5224. break;
  5225. }
  5226. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5227. #ifdef FILAMENTCHANGEENABLE
  5228. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5229. {
  5230. #ifdef PAT9125
  5231. bool old_fsensor_enabled = fsensor_enabled;
  5232. fsensor_enabled = false; //temporary solution for unexpected restarting
  5233. #endif //PAT9125
  5234. st_synchronize();
  5235. float target[4];
  5236. float lastpos[4];
  5237. if (farm_mode)
  5238. {
  5239. prusa_statistics(22);
  5240. }
  5241. feedmultiplyBckp=feedmultiply;
  5242. int8_t TooLowZ = 0;
  5243. float HotendTempBckp = degTargetHotend(active_extruder);
  5244. int fanSpeedBckp = fanSpeed;
  5245. target[X_AXIS]=current_position[X_AXIS];
  5246. target[Y_AXIS]=current_position[Y_AXIS];
  5247. target[Z_AXIS]=current_position[Z_AXIS];
  5248. target[E_AXIS]=current_position[E_AXIS];
  5249. lastpos[X_AXIS]=current_position[X_AXIS];
  5250. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5251. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5252. lastpos[E_AXIS]=current_position[E_AXIS];
  5253. //Restract extruder
  5254. if(code_seen('E'))
  5255. {
  5256. target[E_AXIS]+= code_value();
  5257. }
  5258. else
  5259. {
  5260. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5261. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5262. #endif
  5263. }
  5264. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5265. //Lift Z
  5266. if(code_seen('Z'))
  5267. {
  5268. target[Z_AXIS]+= code_value();
  5269. }
  5270. else
  5271. {
  5272. #ifdef FILAMENTCHANGE_ZADD
  5273. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5274. if(target[Z_AXIS] < 10){
  5275. target[Z_AXIS]+= 10 ;
  5276. TooLowZ = 1;
  5277. }else{
  5278. TooLowZ = 0;
  5279. }
  5280. #endif
  5281. }
  5282. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5283. //Move XY to side
  5284. if(code_seen('X'))
  5285. {
  5286. target[X_AXIS]+= code_value();
  5287. }
  5288. else
  5289. {
  5290. #ifdef FILAMENTCHANGE_XPOS
  5291. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5292. #endif
  5293. }
  5294. if(code_seen('Y'))
  5295. {
  5296. target[Y_AXIS]= code_value();
  5297. }
  5298. else
  5299. {
  5300. #ifdef FILAMENTCHANGE_YPOS
  5301. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5302. #endif
  5303. }
  5304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5305. st_synchronize();
  5306. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5307. uint8_t cnt = 0;
  5308. int counterBeep = 0;
  5309. fanSpeed = 0;
  5310. unsigned long waiting_start_time = millis();
  5311. uint8_t wait_for_user_state = 0;
  5312. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5313. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5314. //cnt++;
  5315. manage_heater();
  5316. manage_inactivity(true);
  5317. /*#ifdef SNMM
  5318. target[E_AXIS] += 0.002;
  5319. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5320. #endif // SNMM*/
  5321. //if (cnt == 0)
  5322. {
  5323. #if BEEPER > 0
  5324. if (counterBeep == 500) {
  5325. counterBeep = 0;
  5326. }
  5327. SET_OUTPUT(BEEPER);
  5328. if (counterBeep == 0) {
  5329. WRITE(BEEPER, HIGH);
  5330. }
  5331. if (counterBeep == 20) {
  5332. WRITE(BEEPER, LOW);
  5333. }
  5334. counterBeep++;
  5335. #else
  5336. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5337. lcd_buzz(1000 / 6, 100);
  5338. #else
  5339. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5340. #endif
  5341. #endif
  5342. }
  5343. switch (wait_for_user_state) {
  5344. case 0:
  5345. delay_keep_alive(4);
  5346. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5347. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5348. wait_for_user_state = 1;
  5349. setTargetHotend(0, 0);
  5350. setTargetHotend(0, 1);
  5351. setTargetHotend(0, 2);
  5352. st_synchronize();
  5353. disable_e0();
  5354. disable_e1();
  5355. disable_e2();
  5356. }
  5357. break;
  5358. case 1:
  5359. delay_keep_alive(4);
  5360. if (lcd_clicked()) {
  5361. setTargetHotend(HotendTempBckp, active_extruder);
  5362. lcd_wait_for_heater();
  5363. wait_for_user_state = 2;
  5364. }
  5365. break;
  5366. case 2:
  5367. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5368. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5369. waiting_start_time = millis();
  5370. wait_for_user_state = 0;
  5371. }
  5372. else {
  5373. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5374. lcd.setCursor(1, 4);
  5375. lcd.print(ftostr3(degHotend(active_extruder)));
  5376. }
  5377. break;
  5378. }
  5379. }
  5380. WRITE(BEEPER, LOW);
  5381. lcd_change_fil_state = 0;
  5382. // Unload filament
  5383. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5384. KEEPALIVE_STATE(IN_HANDLER);
  5385. custom_message = true;
  5386. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5387. if (code_seen('L'))
  5388. {
  5389. target[E_AXIS] += code_value();
  5390. }
  5391. else
  5392. {
  5393. #ifdef SNMM
  5394. #else
  5395. #ifdef FILAMENTCHANGE_FINALRETRACT
  5396. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5397. #endif
  5398. #endif // SNMM
  5399. }
  5400. #ifdef SNMM
  5401. target[E_AXIS] += 12;
  5402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5403. target[E_AXIS] += 6;
  5404. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5405. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5406. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5407. st_synchronize();
  5408. target[E_AXIS] += (FIL_COOLING);
  5409. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5410. target[E_AXIS] += (FIL_COOLING*-1);
  5411. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5412. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5414. st_synchronize();
  5415. #else
  5416. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5417. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5418. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5419. st_synchronize();
  5420. #ifdef TMC2130
  5421. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5422. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5423. #else
  5424. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5425. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5426. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5427. #endif //TMC2130
  5428. target[E_AXIS] -= 45;
  5429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5430. st_synchronize();
  5431. target[E_AXIS] -= 15;
  5432. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5433. st_synchronize();
  5434. target[E_AXIS] -= 20;
  5435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5436. st_synchronize();
  5437. #ifdef TMC2130
  5438. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5439. #else
  5440. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5441. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5442. else st_current_set(2, tmp_motor_loud[2]);
  5443. #endif //TMC2130
  5444. #endif // SNMM
  5445. //finish moves
  5446. st_synchronize();
  5447. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5448. //disable extruder steppers so filament can be removed
  5449. disable_e0();
  5450. disable_e1();
  5451. disable_e2();
  5452. delay(100);
  5453. WRITE(BEEPER, HIGH);
  5454. counterBeep = 0;
  5455. while(!lcd_clicked() && (counterBeep < 50)) {
  5456. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5457. delay_keep_alive(100);
  5458. counterBeep++;
  5459. }
  5460. WRITE(BEEPER, LOW);
  5461. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5462. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5463. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5464. //lcd_return_to_status();
  5465. lcd_update_enable(true);
  5466. //Wait for user to insert filament
  5467. lcd_wait_interact();
  5468. //load_filament_time = millis();
  5469. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5470. #ifdef PAT9125
  5471. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5472. #endif //PAT9125
  5473. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5474. while(!lcd_clicked())
  5475. {
  5476. manage_heater();
  5477. manage_inactivity(true);
  5478. #ifdef PAT9125
  5479. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5480. {
  5481. tone(BEEPER, 1000);
  5482. delay_keep_alive(50);
  5483. noTone(BEEPER);
  5484. break;
  5485. }
  5486. #endif //PAT9125
  5487. /*#ifdef SNMM
  5488. target[E_AXIS] += 0.002;
  5489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5490. #endif // SNMM*/
  5491. }
  5492. #ifdef PAT9125
  5493. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5494. #endif //PAT9125
  5495. //WRITE(BEEPER, LOW);
  5496. KEEPALIVE_STATE(IN_HANDLER);
  5497. #ifdef SNMM
  5498. display_loading();
  5499. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5500. do {
  5501. target[E_AXIS] += 0.002;
  5502. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5503. delay_keep_alive(2);
  5504. } while (!lcd_clicked());
  5505. KEEPALIVE_STATE(IN_HANDLER);
  5506. /*if (millis() - load_filament_time > 2) {
  5507. load_filament_time = millis();
  5508. target[E_AXIS] += 0.001;
  5509. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5510. }*/
  5511. //Filament inserted
  5512. //Feed the filament to the end of nozzle quickly
  5513. st_synchronize();
  5514. target[E_AXIS] += bowden_length[snmm_extruder];
  5515. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5516. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5517. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5518. target[E_AXIS] += 40;
  5519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5520. target[E_AXIS] += 10;
  5521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5522. #else
  5523. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5525. #endif // SNMM
  5526. //Extrude some filament
  5527. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5529. //Wait for user to check the state
  5530. lcd_change_fil_state = 0;
  5531. lcd_loading_filament();
  5532. tone(BEEPER, 500);
  5533. delay_keep_alive(50);
  5534. noTone(BEEPER);
  5535. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5536. lcd_change_fil_state = 0;
  5537. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5538. lcd_alright();
  5539. KEEPALIVE_STATE(IN_HANDLER);
  5540. switch(lcd_change_fil_state){
  5541. // Filament failed to load so load it again
  5542. case 2:
  5543. #ifdef SNMM
  5544. display_loading();
  5545. do {
  5546. target[E_AXIS] += 0.002;
  5547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5548. delay_keep_alive(2);
  5549. } while (!lcd_clicked());
  5550. st_synchronize();
  5551. target[E_AXIS] += bowden_length[snmm_extruder];
  5552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5553. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5554. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5555. target[E_AXIS] += 40;
  5556. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5557. target[E_AXIS] += 10;
  5558. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5559. #else
  5560. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5561. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5562. #endif
  5563. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5564. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5565. lcd_loading_filament();
  5566. break;
  5567. // Filament loaded properly but color is not clear
  5568. case 3:
  5569. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5571. lcd_loading_color();
  5572. break;
  5573. // Everything good
  5574. default:
  5575. lcd_change_success();
  5576. lcd_update_enable(true);
  5577. break;
  5578. }
  5579. }
  5580. //Not let's go back to print
  5581. fanSpeed = fanSpeedBckp;
  5582. //Feed a little of filament to stabilize pressure
  5583. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5584. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5585. //Retract
  5586. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5587. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5588. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5589. //Move XY back
  5590. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5591. //Move Z back
  5592. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5593. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5594. //Unretract
  5595. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5596. //Set E position to original
  5597. plan_set_e_position(lastpos[E_AXIS]);
  5598. //Recover feed rate
  5599. feedmultiply=feedmultiplyBckp;
  5600. char cmd[9];
  5601. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5602. enquecommand(cmd);
  5603. lcd_setstatuspgm(_T(WELCOME_MSG));
  5604. custom_message = false;
  5605. custom_message_type = 0;
  5606. #ifdef PAT9125
  5607. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5608. if (fsensor_M600)
  5609. {
  5610. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5611. st_synchronize();
  5612. while (!is_buffer_empty())
  5613. {
  5614. process_commands();
  5615. cmdqueue_pop_front();
  5616. }
  5617. fsensor_enable();
  5618. fsensor_restore_print_and_continue();
  5619. }
  5620. #endif //PAT9125
  5621. }
  5622. break;
  5623. #endif //FILAMENTCHANGEENABLE
  5624. case 601: {
  5625. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5626. }
  5627. break;
  5628. case 602: {
  5629. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5630. }
  5631. break;
  5632. #ifdef PINDA_THERMISTOR
  5633. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5634. {
  5635. int set_target_pinda = 0;
  5636. if (code_seen('S')) {
  5637. set_target_pinda = code_value();
  5638. }
  5639. else {
  5640. break;
  5641. }
  5642. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5643. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5644. SERIAL_PROTOCOL(set_target_pinda);
  5645. SERIAL_PROTOCOLLN("");
  5646. codenum = millis();
  5647. cancel_heatup = false;
  5648. bool is_pinda_cooling = false;
  5649. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5650. is_pinda_cooling = true;
  5651. }
  5652. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5653. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5654. {
  5655. SERIAL_PROTOCOLPGM("P:");
  5656. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5657. SERIAL_PROTOCOLPGM("/");
  5658. SERIAL_PROTOCOL(set_target_pinda);
  5659. SERIAL_PROTOCOLLN("");
  5660. codenum = millis();
  5661. }
  5662. manage_heater();
  5663. manage_inactivity();
  5664. lcd_update();
  5665. }
  5666. LCD_MESSAGERPGM(_T(MSG_OK));
  5667. break;
  5668. }
  5669. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5670. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5671. uint8_t cal_status = calibration_status_pinda();
  5672. int16_t usteps = 0;
  5673. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5674. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5675. for (uint8_t i = 0; i < 6; i++)
  5676. {
  5677. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5678. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5679. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5680. SERIAL_PROTOCOLPGM(", ");
  5681. SERIAL_PROTOCOL(35 + (i * 5));
  5682. SERIAL_PROTOCOLPGM(", ");
  5683. SERIAL_PROTOCOL(usteps);
  5684. SERIAL_PROTOCOLPGM(", ");
  5685. SERIAL_PROTOCOL(mm * 1000);
  5686. SERIAL_PROTOCOLLN("");
  5687. }
  5688. }
  5689. else if (code_seen('!')) { // ! - Set factory default values
  5690. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5691. int16_t z_shift = 8; //40C - 20um - 8usteps
  5692. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5693. z_shift = 24; //45C - 60um - 24usteps
  5694. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5695. z_shift = 48; //50C - 120um - 48usteps
  5696. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5697. z_shift = 80; //55C - 200um - 80usteps
  5698. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5699. z_shift = 120; //60C - 300um - 120usteps
  5700. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5701. SERIAL_PROTOCOLLN("factory restored");
  5702. }
  5703. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5704. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5705. int16_t z_shift = 0;
  5706. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5707. SERIAL_PROTOCOLLN("zerorized");
  5708. }
  5709. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5710. int16_t usteps = code_value();
  5711. if (code_seen('I')) {
  5712. byte index = code_value();
  5713. if ((index >= 0) && (index < 5)) {
  5714. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5715. SERIAL_PROTOCOLLN("OK");
  5716. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5717. for (uint8_t i = 0; i < 6; i++)
  5718. {
  5719. usteps = 0;
  5720. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5721. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5722. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5723. SERIAL_PROTOCOLPGM(", ");
  5724. SERIAL_PROTOCOL(35 + (i * 5));
  5725. SERIAL_PROTOCOLPGM(", ");
  5726. SERIAL_PROTOCOL(usteps);
  5727. SERIAL_PROTOCOLPGM(", ");
  5728. SERIAL_PROTOCOL(mm * 1000);
  5729. SERIAL_PROTOCOLLN("");
  5730. }
  5731. }
  5732. }
  5733. }
  5734. else {
  5735. SERIAL_PROTOCOLPGM("no valid command");
  5736. }
  5737. break;
  5738. #endif //PINDA_THERMISTOR
  5739. #ifdef LIN_ADVANCE
  5740. case 900: // M900: Set LIN_ADVANCE options.
  5741. gcode_M900();
  5742. break;
  5743. #endif
  5744. case 907: // M907 Set digital trimpot motor current using axis codes.
  5745. {
  5746. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5747. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5748. if(code_seen('B')) st_current_set(4,code_value());
  5749. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5750. #endif
  5751. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5752. if(code_seen('X')) st_current_set(0, code_value());
  5753. #endif
  5754. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5755. if(code_seen('Z')) st_current_set(1, code_value());
  5756. #endif
  5757. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5758. if(code_seen('E')) st_current_set(2, code_value());
  5759. #endif
  5760. }
  5761. break;
  5762. case 908: // M908 Control digital trimpot directly.
  5763. {
  5764. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5765. uint8_t channel,current;
  5766. if(code_seen('P')) channel=code_value();
  5767. if(code_seen('S')) current=code_value();
  5768. digitalPotWrite(channel, current);
  5769. #endif
  5770. }
  5771. break;
  5772. #ifdef TMC2130
  5773. case 910: // M910 TMC2130 init
  5774. {
  5775. tmc2130_init();
  5776. }
  5777. break;
  5778. case 911: // M911 Set TMC2130 holding currents
  5779. {
  5780. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5781. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5782. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5783. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5784. }
  5785. break;
  5786. case 912: // M912 Set TMC2130 running currents
  5787. {
  5788. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5789. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5790. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5791. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5792. }
  5793. break;
  5794. case 913: // M913 Print TMC2130 currents
  5795. {
  5796. tmc2130_print_currents();
  5797. }
  5798. break;
  5799. case 914: // M914 Set normal mode
  5800. {
  5801. tmc2130_mode = TMC2130_MODE_NORMAL;
  5802. tmc2130_init();
  5803. }
  5804. break;
  5805. case 915: // M915 Set silent mode
  5806. {
  5807. tmc2130_mode = TMC2130_MODE_SILENT;
  5808. tmc2130_init();
  5809. }
  5810. break;
  5811. case 916: // M916 Set sg_thrs
  5812. {
  5813. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5814. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5815. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5816. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5817. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5818. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5819. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5820. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5821. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5822. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5823. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5824. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5825. }
  5826. break;
  5827. case 917: // M917 Set TMC2130 pwm_ampl
  5828. {
  5829. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5830. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5831. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5832. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5833. }
  5834. break;
  5835. case 918: // M918 Set TMC2130 pwm_grad
  5836. {
  5837. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5838. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5839. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5840. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5841. }
  5842. break;
  5843. #endif //TMC2130
  5844. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5845. {
  5846. #ifdef TMC2130
  5847. if(code_seen('E'))
  5848. {
  5849. uint16_t res_new = code_value();
  5850. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5851. {
  5852. st_synchronize();
  5853. uint8_t axis = E_AXIS;
  5854. uint16_t res = tmc2130_get_res(axis);
  5855. tmc2130_set_res(axis, res_new);
  5856. if (res_new > res)
  5857. {
  5858. uint16_t fac = (res_new / res);
  5859. axis_steps_per_unit[axis] *= fac;
  5860. position[E_AXIS] *= fac;
  5861. }
  5862. else
  5863. {
  5864. uint16_t fac = (res / res_new);
  5865. axis_steps_per_unit[axis] /= fac;
  5866. position[E_AXIS] /= fac;
  5867. }
  5868. }
  5869. }
  5870. #else //TMC2130
  5871. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5872. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5873. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5874. if(code_seen('B')) microstep_mode(4,code_value());
  5875. microstep_readings();
  5876. #endif
  5877. #endif //TMC2130
  5878. }
  5879. break;
  5880. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5881. {
  5882. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5883. if(code_seen('S')) switch((int)code_value())
  5884. {
  5885. case 1:
  5886. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5887. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5888. break;
  5889. case 2:
  5890. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5891. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5892. break;
  5893. }
  5894. microstep_readings();
  5895. #endif
  5896. }
  5897. break;
  5898. case 701: //M701: load filament
  5899. {
  5900. gcode_M701();
  5901. }
  5902. break;
  5903. case 702:
  5904. {
  5905. #ifdef SNMM
  5906. if (code_seen('U')) {
  5907. extr_unload_used(); //unload all filaments which were used in current print
  5908. }
  5909. else if (code_seen('C')) {
  5910. extr_unload(); //unload just current filament
  5911. }
  5912. else {
  5913. extr_unload_all(); //unload all filaments
  5914. }
  5915. #else
  5916. #ifdef PAT9125
  5917. bool old_fsensor_enabled = fsensor_enabled;
  5918. fsensor_enabled = false;
  5919. #endif //PAT9125
  5920. custom_message = true;
  5921. custom_message_type = 2;
  5922. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5923. // extr_unload2();
  5924. current_position[E_AXIS] -= 45;
  5925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5926. st_synchronize();
  5927. current_position[E_AXIS] -= 15;
  5928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5929. st_synchronize();
  5930. current_position[E_AXIS] -= 20;
  5931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5932. st_synchronize();
  5933. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5934. //disable extruder steppers so filament can be removed
  5935. disable_e0();
  5936. disable_e1();
  5937. disable_e2();
  5938. delay(100);
  5939. WRITE(BEEPER, HIGH);
  5940. uint8_t counterBeep = 0;
  5941. while (!lcd_clicked() && (counterBeep < 50)) {
  5942. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5943. delay_keep_alive(100);
  5944. counterBeep++;
  5945. }
  5946. WRITE(BEEPER, LOW);
  5947. st_synchronize();
  5948. while (lcd_clicked()) delay_keep_alive(100);
  5949. lcd_update_enable(true);
  5950. lcd_setstatuspgm(_T(WELCOME_MSG));
  5951. custom_message = false;
  5952. custom_message_type = 0;
  5953. #ifdef PAT9125
  5954. fsensor_enabled = old_fsensor_enabled;
  5955. #endif //PAT9125
  5956. #endif
  5957. }
  5958. break;
  5959. case 999: // M999: Restart after being stopped
  5960. Stopped = false;
  5961. lcd_reset_alert_level();
  5962. gcode_LastN = Stopped_gcode_LastN;
  5963. FlushSerialRequestResend();
  5964. break;
  5965. default:
  5966. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5967. }
  5968. } // end if(code_seen('M')) (end of M codes)
  5969. else if(code_seen('T'))
  5970. {
  5971. int index;
  5972. st_synchronize();
  5973. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5974. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5975. SERIAL_ECHOLNPGM("Invalid T code.");
  5976. }
  5977. else {
  5978. if (*(strchr_pointer + index) == '?') {
  5979. tmp_extruder = choose_extruder_menu();
  5980. }
  5981. else {
  5982. tmp_extruder = code_value();
  5983. }
  5984. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5985. #ifdef SNMM
  5986. #ifdef LIN_ADVANCE
  5987. if (snmm_extruder != tmp_extruder)
  5988. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5989. #endif
  5990. snmm_extruder = tmp_extruder;
  5991. delay(100);
  5992. disable_e0();
  5993. disable_e1();
  5994. disable_e2();
  5995. pinMode(E_MUX0_PIN, OUTPUT);
  5996. pinMode(E_MUX1_PIN, OUTPUT);
  5997. delay(100);
  5998. SERIAL_ECHO_START;
  5999. SERIAL_ECHO("T:");
  6000. SERIAL_ECHOLN((int)tmp_extruder);
  6001. switch (tmp_extruder) {
  6002. case 1:
  6003. WRITE(E_MUX0_PIN, HIGH);
  6004. WRITE(E_MUX1_PIN, LOW);
  6005. break;
  6006. case 2:
  6007. WRITE(E_MUX0_PIN, LOW);
  6008. WRITE(E_MUX1_PIN, HIGH);
  6009. break;
  6010. case 3:
  6011. WRITE(E_MUX0_PIN, HIGH);
  6012. WRITE(E_MUX1_PIN, HIGH);
  6013. break;
  6014. default:
  6015. WRITE(E_MUX0_PIN, LOW);
  6016. WRITE(E_MUX1_PIN, LOW);
  6017. break;
  6018. }
  6019. delay(100);
  6020. #else
  6021. if (tmp_extruder >= EXTRUDERS) {
  6022. SERIAL_ECHO_START;
  6023. SERIAL_ECHOPGM("T");
  6024. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6025. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6026. }
  6027. else {
  6028. boolean make_move = false;
  6029. if (code_seen('F')) {
  6030. make_move = true;
  6031. next_feedrate = code_value();
  6032. if (next_feedrate > 0.0) {
  6033. feedrate = next_feedrate;
  6034. }
  6035. }
  6036. #if EXTRUDERS > 1
  6037. if (tmp_extruder != active_extruder) {
  6038. // Save current position to return to after applying extruder offset
  6039. memcpy(destination, current_position, sizeof(destination));
  6040. // Offset extruder (only by XY)
  6041. int i;
  6042. for (i = 0; i < 2; i++) {
  6043. current_position[i] = current_position[i] -
  6044. extruder_offset[i][active_extruder] +
  6045. extruder_offset[i][tmp_extruder];
  6046. }
  6047. // Set the new active extruder and position
  6048. active_extruder = tmp_extruder;
  6049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6050. // Move to the old position if 'F' was in the parameters
  6051. if (make_move && Stopped == false) {
  6052. prepare_move();
  6053. }
  6054. }
  6055. #endif
  6056. SERIAL_ECHO_START;
  6057. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6058. SERIAL_PROTOCOLLN((int)active_extruder);
  6059. }
  6060. #endif
  6061. }
  6062. } // end if(code_seen('T')) (end of T codes)
  6063. #ifdef DEBUG_DCODES
  6064. else if (code_seen('D')) // D codes (debug)
  6065. {
  6066. switch((int)code_value())
  6067. {
  6068. case -1: // D-1 - Endless loop
  6069. dcode__1(); break;
  6070. case 0: // D0 - Reset
  6071. dcode_0(); break;
  6072. case 1: // D1 - Clear EEPROM
  6073. dcode_1(); break;
  6074. case 2: // D2 - Read/Write RAM
  6075. dcode_2(); break;
  6076. case 3: // D3 - Read/Write EEPROM
  6077. dcode_3(); break;
  6078. case 4: // D4 - Read/Write PIN
  6079. dcode_4(); break;
  6080. case 5: // D5 - Read/Write FLASH
  6081. // dcode_5(); break;
  6082. break;
  6083. case 6: // D6 - Read/Write external FLASH
  6084. dcode_6(); break;
  6085. case 7: // D7 - Read/Write Bootloader
  6086. dcode_7(); break;
  6087. case 8: // D8 - Read/Write PINDA
  6088. dcode_8(); break;
  6089. case 9: // D9 - Read/Write ADC
  6090. dcode_9(); break;
  6091. case 10: // D10 - XYZ calibration = OK
  6092. dcode_10(); break;
  6093. #ifdef TMC2130
  6094. case 2130: // D9125 - TMC2130
  6095. dcode_2130(); break;
  6096. #endif //TMC2130
  6097. #ifdef PAT9125
  6098. case 9125: // D9125 - PAT9125
  6099. dcode_9125(); break;
  6100. #endif //PAT9125
  6101. }
  6102. }
  6103. #endif //DEBUG_DCODES
  6104. else
  6105. {
  6106. SERIAL_ECHO_START;
  6107. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6108. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6109. SERIAL_ECHOLNPGM("\"(2)");
  6110. }
  6111. KEEPALIVE_STATE(NOT_BUSY);
  6112. ClearToSend();
  6113. }
  6114. void FlushSerialRequestResend()
  6115. {
  6116. //char cmdbuffer[bufindr][100]="Resend:";
  6117. MYSERIAL.flush();
  6118. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6119. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6120. previous_millis_cmd = millis();
  6121. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6122. }
  6123. // Confirm the execution of a command, if sent from a serial line.
  6124. // Execution of a command from a SD card will not be confirmed.
  6125. void ClearToSend()
  6126. {
  6127. previous_millis_cmd = millis();
  6128. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6129. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6130. }
  6131. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6132. void update_currents() {
  6133. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6134. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6135. float tmp_motor[3];
  6136. //SERIAL_ECHOLNPGM("Currents updated: ");
  6137. if (destination[Z_AXIS] < Z_SILENT) {
  6138. //SERIAL_ECHOLNPGM("LOW");
  6139. for (uint8_t i = 0; i < 3; i++) {
  6140. st_current_set(i, current_low[i]);
  6141. /*MYSERIAL.print(int(i));
  6142. SERIAL_ECHOPGM(": ");
  6143. MYSERIAL.println(current_low[i]);*/
  6144. }
  6145. }
  6146. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6147. //SERIAL_ECHOLNPGM("HIGH");
  6148. for (uint8_t i = 0; i < 3; i++) {
  6149. st_current_set(i, current_high[i]);
  6150. /*MYSERIAL.print(int(i));
  6151. SERIAL_ECHOPGM(": ");
  6152. MYSERIAL.println(current_high[i]);*/
  6153. }
  6154. }
  6155. else {
  6156. for (uint8_t i = 0; i < 3; i++) {
  6157. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6158. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6159. st_current_set(i, tmp_motor[i]);
  6160. /*MYSERIAL.print(int(i));
  6161. SERIAL_ECHOPGM(": ");
  6162. MYSERIAL.println(tmp_motor[i]);*/
  6163. }
  6164. }
  6165. }
  6166. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6167. void get_coordinates()
  6168. {
  6169. bool seen[4]={false,false,false,false};
  6170. for(int8_t i=0; i < NUM_AXIS; i++) {
  6171. if(code_seen(axis_codes[i]))
  6172. {
  6173. bool relative = axis_relative_modes[i] || relative_mode;
  6174. destination[i] = (float)code_value();
  6175. if (i == E_AXIS) {
  6176. float emult = extruder_multiplier[active_extruder];
  6177. if (emult != 1.) {
  6178. if (! relative) {
  6179. destination[i] -= current_position[i];
  6180. relative = true;
  6181. }
  6182. destination[i] *= emult;
  6183. }
  6184. }
  6185. if (relative)
  6186. destination[i] += current_position[i];
  6187. seen[i]=true;
  6188. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6189. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6190. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6191. }
  6192. else destination[i] = current_position[i]; //Are these else lines really needed?
  6193. }
  6194. if(code_seen('F')) {
  6195. next_feedrate = code_value();
  6196. #ifdef MAX_SILENT_FEEDRATE
  6197. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6198. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6199. #endif //MAX_SILENT_FEEDRATE
  6200. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6201. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6202. {
  6203. // float e_max_speed =
  6204. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6205. }
  6206. }
  6207. }
  6208. void get_arc_coordinates()
  6209. {
  6210. #ifdef SF_ARC_FIX
  6211. bool relative_mode_backup = relative_mode;
  6212. relative_mode = true;
  6213. #endif
  6214. get_coordinates();
  6215. #ifdef SF_ARC_FIX
  6216. relative_mode=relative_mode_backup;
  6217. #endif
  6218. if(code_seen('I')) {
  6219. offset[0] = code_value();
  6220. }
  6221. else {
  6222. offset[0] = 0.0;
  6223. }
  6224. if(code_seen('J')) {
  6225. offset[1] = code_value();
  6226. }
  6227. else {
  6228. offset[1] = 0.0;
  6229. }
  6230. }
  6231. void clamp_to_software_endstops(float target[3])
  6232. {
  6233. #ifdef DEBUG_DISABLE_SWLIMITS
  6234. return;
  6235. #endif //DEBUG_DISABLE_SWLIMITS
  6236. world2machine_clamp(target[0], target[1]);
  6237. // Clamp the Z coordinate.
  6238. if (min_software_endstops) {
  6239. float negative_z_offset = 0;
  6240. #ifdef ENABLE_AUTO_BED_LEVELING
  6241. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6242. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6243. #endif
  6244. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6245. }
  6246. if (max_software_endstops) {
  6247. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6248. }
  6249. }
  6250. #ifdef MESH_BED_LEVELING
  6251. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6252. float dx = x - current_position[X_AXIS];
  6253. float dy = y - current_position[Y_AXIS];
  6254. float dz = z - current_position[Z_AXIS];
  6255. int n_segments = 0;
  6256. if (mbl.active) {
  6257. float len = abs(dx) + abs(dy);
  6258. if (len > 0)
  6259. // Split to 3cm segments or shorter.
  6260. n_segments = int(ceil(len / 30.f));
  6261. }
  6262. if (n_segments > 1) {
  6263. float de = e - current_position[E_AXIS];
  6264. for (int i = 1; i < n_segments; ++ i) {
  6265. float t = float(i) / float(n_segments);
  6266. plan_buffer_line(
  6267. current_position[X_AXIS] + t * dx,
  6268. current_position[Y_AXIS] + t * dy,
  6269. current_position[Z_AXIS] + t * dz,
  6270. current_position[E_AXIS] + t * de,
  6271. feed_rate, extruder);
  6272. }
  6273. }
  6274. // The rest of the path.
  6275. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6276. current_position[X_AXIS] = x;
  6277. current_position[Y_AXIS] = y;
  6278. current_position[Z_AXIS] = z;
  6279. current_position[E_AXIS] = e;
  6280. }
  6281. #endif // MESH_BED_LEVELING
  6282. void prepare_move()
  6283. {
  6284. clamp_to_software_endstops(destination);
  6285. previous_millis_cmd = millis();
  6286. // Do not use feedmultiply for E or Z only moves
  6287. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6288. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6289. }
  6290. else {
  6291. #ifdef MESH_BED_LEVELING
  6292. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6293. #else
  6294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6295. #endif
  6296. }
  6297. for(int8_t i=0; i < NUM_AXIS; i++) {
  6298. current_position[i] = destination[i];
  6299. }
  6300. }
  6301. void prepare_arc_move(char isclockwise) {
  6302. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6303. // Trace the arc
  6304. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6305. // As far as the parser is concerned, the position is now == target. In reality the
  6306. // motion control system might still be processing the action and the real tool position
  6307. // in any intermediate location.
  6308. for(int8_t i=0; i < NUM_AXIS; i++) {
  6309. current_position[i] = destination[i];
  6310. }
  6311. previous_millis_cmd = millis();
  6312. }
  6313. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6314. #if defined(FAN_PIN)
  6315. #if CONTROLLERFAN_PIN == FAN_PIN
  6316. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6317. #endif
  6318. #endif
  6319. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6320. unsigned long lastMotorCheck = 0;
  6321. void controllerFan()
  6322. {
  6323. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6324. {
  6325. lastMotorCheck = millis();
  6326. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6327. #if EXTRUDERS > 2
  6328. || !READ(E2_ENABLE_PIN)
  6329. #endif
  6330. #if EXTRUDER > 1
  6331. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6332. || !READ(X2_ENABLE_PIN)
  6333. #endif
  6334. || !READ(E1_ENABLE_PIN)
  6335. #endif
  6336. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6337. {
  6338. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6339. }
  6340. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6341. {
  6342. digitalWrite(CONTROLLERFAN_PIN, 0);
  6343. analogWrite(CONTROLLERFAN_PIN, 0);
  6344. }
  6345. else
  6346. {
  6347. // allows digital or PWM fan output to be used (see M42 handling)
  6348. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6349. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6350. }
  6351. }
  6352. }
  6353. #endif
  6354. #ifdef TEMP_STAT_LEDS
  6355. static bool blue_led = false;
  6356. static bool red_led = false;
  6357. static uint32_t stat_update = 0;
  6358. void handle_status_leds(void) {
  6359. float max_temp = 0.0;
  6360. if(millis() > stat_update) {
  6361. stat_update += 500; // Update every 0.5s
  6362. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6363. max_temp = max(max_temp, degHotend(cur_extruder));
  6364. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6365. }
  6366. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6367. max_temp = max(max_temp, degTargetBed());
  6368. max_temp = max(max_temp, degBed());
  6369. #endif
  6370. if((max_temp > 55.0) && (red_led == false)) {
  6371. digitalWrite(STAT_LED_RED, 1);
  6372. digitalWrite(STAT_LED_BLUE, 0);
  6373. red_led = true;
  6374. blue_led = false;
  6375. }
  6376. if((max_temp < 54.0) && (blue_led == false)) {
  6377. digitalWrite(STAT_LED_RED, 0);
  6378. digitalWrite(STAT_LED_BLUE, 1);
  6379. red_led = false;
  6380. blue_led = true;
  6381. }
  6382. }
  6383. }
  6384. #endif
  6385. #ifdef SAFETYTIMER
  6386. /**
  6387. * @brief Turn off heating after 30 minutes of inactivity
  6388. *
  6389. * Full screen blocking notification message is shown after heater turning off.
  6390. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6391. * damage print.
  6392. */
  6393. static void handleSafetyTimer()
  6394. {
  6395. #if (EXTRUDERS > 1)
  6396. #error Implemented only for one extruder.
  6397. #endif //(EXTRUDERS > 1)
  6398. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6399. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6400. {
  6401. safetyTimer.stop();
  6402. }
  6403. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6404. {
  6405. safetyTimer.start();
  6406. }
  6407. else if (safetyTimer.expired(1800000ul)) //30 min
  6408. {
  6409. setTargetBed(0);
  6410. setTargetHotend(0, 0);
  6411. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6412. }
  6413. }
  6414. #endif //SAFETYTIMER
  6415. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6416. {
  6417. #ifdef PAT9125
  6418. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6419. {
  6420. if (fsensor_autoload_enabled)
  6421. {
  6422. if (fsensor_check_autoload())
  6423. {
  6424. if (degHotend0() > EXTRUDE_MINTEMP)
  6425. {
  6426. fsensor_autoload_check_stop();
  6427. tone(BEEPER, 1000);
  6428. delay_keep_alive(50);
  6429. noTone(BEEPER);
  6430. loading_flag = true;
  6431. enquecommand_front_P((PSTR("M701")));
  6432. }
  6433. else
  6434. {
  6435. lcd_update_enable(false);
  6436. lcd_implementation_clear();
  6437. lcd.setCursor(0, 0);
  6438. lcd_printPGM(_T(MSG_ERROR));
  6439. lcd.setCursor(0, 2);
  6440. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6441. delay(2000);
  6442. lcd_implementation_clear();
  6443. lcd_update_enable(true);
  6444. }
  6445. }
  6446. }
  6447. else
  6448. fsensor_autoload_check_start();
  6449. }
  6450. else
  6451. if (fsensor_autoload_enabled)
  6452. fsensor_autoload_check_stop();
  6453. #endif //PAT9125
  6454. #ifdef SAFETYTIMER
  6455. handleSafetyTimer();
  6456. #endif //SAFETYTIMER
  6457. #if defined(KILL_PIN) && KILL_PIN > -1
  6458. static int killCount = 0; // make the inactivity button a bit less responsive
  6459. const int KILL_DELAY = 10000;
  6460. #endif
  6461. if(buflen < (BUFSIZE-1)){
  6462. get_command();
  6463. }
  6464. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6465. if(max_inactive_time)
  6466. kill("", 4);
  6467. if(stepper_inactive_time) {
  6468. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6469. {
  6470. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6471. disable_x();
  6472. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6473. disable_y();
  6474. disable_z();
  6475. disable_e0();
  6476. disable_e1();
  6477. disable_e2();
  6478. }
  6479. }
  6480. }
  6481. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6482. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6483. {
  6484. chdkActive = false;
  6485. WRITE(CHDK, LOW);
  6486. }
  6487. #endif
  6488. #if defined(KILL_PIN) && KILL_PIN > -1
  6489. // Check if the kill button was pressed and wait just in case it was an accidental
  6490. // key kill key press
  6491. // -------------------------------------------------------------------------------
  6492. if( 0 == READ(KILL_PIN) )
  6493. {
  6494. killCount++;
  6495. }
  6496. else if (killCount > 0)
  6497. {
  6498. killCount--;
  6499. }
  6500. // Exceeded threshold and we can confirm that it was not accidental
  6501. // KILL the machine
  6502. // ----------------------------------------------------------------
  6503. if ( killCount >= KILL_DELAY)
  6504. {
  6505. kill("", 5);
  6506. }
  6507. #endif
  6508. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6509. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6510. #endif
  6511. #ifdef EXTRUDER_RUNOUT_PREVENT
  6512. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6513. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6514. {
  6515. bool oldstatus=READ(E0_ENABLE_PIN);
  6516. enable_e0();
  6517. float oldepos=current_position[E_AXIS];
  6518. float oldedes=destination[E_AXIS];
  6519. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6520. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6521. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6522. current_position[E_AXIS]=oldepos;
  6523. destination[E_AXIS]=oldedes;
  6524. plan_set_e_position(oldepos);
  6525. previous_millis_cmd=millis();
  6526. st_synchronize();
  6527. WRITE(E0_ENABLE_PIN,oldstatus);
  6528. }
  6529. #endif
  6530. #ifdef TEMP_STAT_LEDS
  6531. handle_status_leds();
  6532. #endif
  6533. check_axes_activity();
  6534. }
  6535. void kill(const char *full_screen_message, unsigned char id)
  6536. {
  6537. SERIAL_ECHOPGM("KILL: ");
  6538. MYSERIAL.println(int(id));
  6539. //return;
  6540. cli(); // Stop interrupts
  6541. disable_heater();
  6542. disable_x();
  6543. // SERIAL_ECHOLNPGM("kill - disable Y");
  6544. disable_y();
  6545. disable_z();
  6546. disable_e0();
  6547. disable_e1();
  6548. disable_e2();
  6549. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6550. pinMode(PS_ON_PIN,INPUT);
  6551. #endif
  6552. SERIAL_ERROR_START;
  6553. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6554. if (full_screen_message != NULL) {
  6555. SERIAL_ERRORLNRPGM(full_screen_message);
  6556. lcd_display_message_fullscreen_P(full_screen_message);
  6557. } else {
  6558. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6559. }
  6560. // FMC small patch to update the LCD before ending
  6561. sei(); // enable interrupts
  6562. for ( int i=5; i--; lcd_update())
  6563. {
  6564. delay(200);
  6565. }
  6566. cli(); // disable interrupts
  6567. suicide();
  6568. while(1)
  6569. {
  6570. #ifdef WATCHDOG
  6571. wdt_reset();
  6572. #endif //WATCHDOG
  6573. /* Intentionally left empty */
  6574. } // Wait for reset
  6575. }
  6576. void Stop()
  6577. {
  6578. disable_heater();
  6579. if(Stopped == false) {
  6580. Stopped = true;
  6581. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6582. SERIAL_ERROR_START;
  6583. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6584. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6585. }
  6586. }
  6587. bool IsStopped() { return Stopped; };
  6588. #ifdef FAST_PWM_FAN
  6589. void setPwmFrequency(uint8_t pin, int val)
  6590. {
  6591. val &= 0x07;
  6592. switch(digitalPinToTimer(pin))
  6593. {
  6594. #if defined(TCCR0A)
  6595. case TIMER0A:
  6596. case TIMER0B:
  6597. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6598. // TCCR0B |= val;
  6599. break;
  6600. #endif
  6601. #if defined(TCCR1A)
  6602. case TIMER1A:
  6603. case TIMER1B:
  6604. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6605. // TCCR1B |= val;
  6606. break;
  6607. #endif
  6608. #if defined(TCCR2)
  6609. case TIMER2:
  6610. case TIMER2:
  6611. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6612. TCCR2 |= val;
  6613. break;
  6614. #endif
  6615. #if defined(TCCR2A)
  6616. case TIMER2A:
  6617. case TIMER2B:
  6618. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6619. TCCR2B |= val;
  6620. break;
  6621. #endif
  6622. #if defined(TCCR3A)
  6623. case TIMER3A:
  6624. case TIMER3B:
  6625. case TIMER3C:
  6626. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6627. TCCR3B |= val;
  6628. break;
  6629. #endif
  6630. #if defined(TCCR4A)
  6631. case TIMER4A:
  6632. case TIMER4B:
  6633. case TIMER4C:
  6634. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6635. TCCR4B |= val;
  6636. break;
  6637. #endif
  6638. #if defined(TCCR5A)
  6639. case TIMER5A:
  6640. case TIMER5B:
  6641. case TIMER5C:
  6642. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6643. TCCR5B |= val;
  6644. break;
  6645. #endif
  6646. }
  6647. }
  6648. #endif //FAST_PWM_FAN
  6649. bool setTargetedHotend(int code){
  6650. tmp_extruder = active_extruder;
  6651. if(code_seen('T')) {
  6652. tmp_extruder = code_value();
  6653. if(tmp_extruder >= EXTRUDERS) {
  6654. SERIAL_ECHO_START;
  6655. switch(code){
  6656. case 104:
  6657. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6658. break;
  6659. case 105:
  6660. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6661. break;
  6662. case 109:
  6663. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6664. break;
  6665. case 218:
  6666. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6667. break;
  6668. case 221:
  6669. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6670. break;
  6671. }
  6672. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6673. return true;
  6674. }
  6675. }
  6676. return false;
  6677. }
  6678. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6679. {
  6680. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6681. {
  6682. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6683. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6684. }
  6685. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6686. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6687. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6688. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6689. total_filament_used = 0;
  6690. }
  6691. float calculate_extruder_multiplier(float diameter) {
  6692. float out = 1.f;
  6693. if (volumetric_enabled && diameter > 0.f) {
  6694. float area = M_PI * diameter * diameter * 0.25;
  6695. out = 1.f / area;
  6696. }
  6697. if (extrudemultiply != 100)
  6698. out *= float(extrudemultiply) * 0.01f;
  6699. return out;
  6700. }
  6701. void calculate_extruder_multipliers() {
  6702. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6703. #if EXTRUDERS > 1
  6704. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6705. #if EXTRUDERS > 2
  6706. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6707. #endif
  6708. #endif
  6709. }
  6710. void delay_keep_alive(unsigned int ms)
  6711. {
  6712. for (;;) {
  6713. manage_heater();
  6714. // Manage inactivity, but don't disable steppers on timeout.
  6715. manage_inactivity(true);
  6716. lcd_update();
  6717. if (ms == 0)
  6718. break;
  6719. else if (ms >= 50) {
  6720. delay(50);
  6721. ms -= 50;
  6722. } else {
  6723. delay(ms);
  6724. ms = 0;
  6725. }
  6726. }
  6727. }
  6728. void wait_for_heater(long codenum) {
  6729. #ifdef TEMP_RESIDENCY_TIME
  6730. long residencyStart;
  6731. residencyStart = -1;
  6732. /* continue to loop until we have reached the target temp
  6733. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6734. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6735. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6736. #else
  6737. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6738. #endif //TEMP_RESIDENCY_TIME
  6739. if ((millis() - codenum) > 1000UL)
  6740. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6741. if (!farm_mode) {
  6742. SERIAL_PROTOCOLPGM("T:");
  6743. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6744. SERIAL_PROTOCOLPGM(" E:");
  6745. SERIAL_PROTOCOL((int)tmp_extruder);
  6746. #ifdef TEMP_RESIDENCY_TIME
  6747. SERIAL_PROTOCOLPGM(" W:");
  6748. if (residencyStart > -1)
  6749. {
  6750. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6751. SERIAL_PROTOCOLLN(codenum);
  6752. }
  6753. else
  6754. {
  6755. SERIAL_PROTOCOLLN("?");
  6756. }
  6757. }
  6758. #else
  6759. SERIAL_PROTOCOLLN("");
  6760. #endif
  6761. codenum = millis();
  6762. }
  6763. manage_heater();
  6764. manage_inactivity();
  6765. lcd_update();
  6766. #ifdef TEMP_RESIDENCY_TIME
  6767. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6768. or when current temp falls outside the hysteresis after target temp was reached */
  6769. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6770. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6771. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6772. {
  6773. residencyStart = millis();
  6774. }
  6775. #endif //TEMP_RESIDENCY_TIME
  6776. }
  6777. }
  6778. void check_babystep() {
  6779. int babystep_z;
  6780. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6781. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6782. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6783. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6784. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6785. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6786. lcd_update_enable(true);
  6787. }
  6788. }
  6789. #ifdef DIS
  6790. void d_setup()
  6791. {
  6792. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6793. pinMode(D_DATA, INPUT_PULLUP);
  6794. pinMode(D_REQUIRE, OUTPUT);
  6795. digitalWrite(D_REQUIRE, HIGH);
  6796. }
  6797. float d_ReadData()
  6798. {
  6799. int digit[13];
  6800. String mergeOutput;
  6801. float output;
  6802. digitalWrite(D_REQUIRE, HIGH);
  6803. for (int i = 0; i<13; i++)
  6804. {
  6805. for (int j = 0; j < 4; j++)
  6806. {
  6807. while (digitalRead(D_DATACLOCK) == LOW) {}
  6808. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6809. bitWrite(digit[i], j, digitalRead(D_DATA));
  6810. }
  6811. }
  6812. digitalWrite(D_REQUIRE, LOW);
  6813. mergeOutput = "";
  6814. output = 0;
  6815. for (int r = 5; r <= 10; r++) //Merge digits
  6816. {
  6817. mergeOutput += digit[r];
  6818. }
  6819. output = mergeOutput.toFloat();
  6820. if (digit[4] == 8) //Handle sign
  6821. {
  6822. output *= -1;
  6823. }
  6824. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6825. {
  6826. output /= 10;
  6827. }
  6828. return output;
  6829. }
  6830. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6831. int t1 = 0;
  6832. int t_delay = 0;
  6833. int digit[13];
  6834. int m;
  6835. char str[3];
  6836. //String mergeOutput;
  6837. char mergeOutput[15];
  6838. float output;
  6839. int mesh_point = 0; //index number of calibration point
  6840. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6841. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6842. float mesh_home_z_search = 4;
  6843. float row[x_points_num];
  6844. int ix = 0;
  6845. int iy = 0;
  6846. char* filename_wldsd = "wldsd.txt";
  6847. char data_wldsd[70];
  6848. char numb_wldsd[10];
  6849. d_setup();
  6850. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6851. // We don't know where we are! HOME!
  6852. // Push the commands to the front of the message queue in the reverse order!
  6853. // There shall be always enough space reserved for these commands.
  6854. repeatcommand_front(); // repeat G80 with all its parameters
  6855. enquecommand_front_P((PSTR("G28 W0")));
  6856. enquecommand_front_P((PSTR("G1 Z5")));
  6857. return;
  6858. }
  6859. bool custom_message_old = custom_message;
  6860. unsigned int custom_message_type_old = custom_message_type;
  6861. unsigned int custom_message_state_old = custom_message_state;
  6862. custom_message = true;
  6863. custom_message_type = 1;
  6864. custom_message_state = (x_points_num * y_points_num) + 10;
  6865. lcd_update(1);
  6866. mbl.reset();
  6867. babystep_undo();
  6868. card.openFile(filename_wldsd, false);
  6869. current_position[Z_AXIS] = mesh_home_z_search;
  6870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6871. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6872. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6873. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6874. setup_for_endstop_move(false);
  6875. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6876. SERIAL_PROTOCOL(x_points_num);
  6877. SERIAL_PROTOCOLPGM(",");
  6878. SERIAL_PROTOCOL(y_points_num);
  6879. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6880. SERIAL_PROTOCOL(mesh_home_z_search);
  6881. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6882. SERIAL_PROTOCOL(x_dimension);
  6883. SERIAL_PROTOCOLPGM(",");
  6884. SERIAL_PROTOCOL(y_dimension);
  6885. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6886. while (mesh_point != x_points_num * y_points_num) {
  6887. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6888. iy = mesh_point / x_points_num;
  6889. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6890. float z0 = 0.f;
  6891. current_position[Z_AXIS] = mesh_home_z_search;
  6892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6893. st_synchronize();
  6894. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6895. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6897. st_synchronize();
  6898. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6899. break;
  6900. card.closefile();
  6901. }
  6902. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6903. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6904. //strcat(data_wldsd, numb_wldsd);
  6905. //MYSERIAL.println(data_wldsd);
  6906. //delay(1000);
  6907. //delay(3000);
  6908. //t1 = millis();
  6909. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6910. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6911. memset(digit, 0, sizeof(digit));
  6912. //cli();
  6913. digitalWrite(D_REQUIRE, LOW);
  6914. for (int i = 0; i<13; i++)
  6915. {
  6916. //t1 = millis();
  6917. for (int j = 0; j < 4; j++)
  6918. {
  6919. while (digitalRead(D_DATACLOCK) == LOW) {}
  6920. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6921. bitWrite(digit[i], j, digitalRead(D_DATA));
  6922. }
  6923. //t_delay = (millis() - t1);
  6924. //SERIAL_PROTOCOLPGM(" ");
  6925. //SERIAL_PROTOCOL_F(t_delay, 5);
  6926. //SERIAL_PROTOCOLPGM(" ");
  6927. }
  6928. //sei();
  6929. digitalWrite(D_REQUIRE, HIGH);
  6930. mergeOutput[0] = '\0';
  6931. output = 0;
  6932. for (int r = 5; r <= 10; r++) //Merge digits
  6933. {
  6934. sprintf(str, "%d", digit[r]);
  6935. strcat(mergeOutput, str);
  6936. }
  6937. output = atof(mergeOutput);
  6938. if (digit[4] == 8) //Handle sign
  6939. {
  6940. output *= -1;
  6941. }
  6942. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6943. {
  6944. output *= 0.1;
  6945. }
  6946. //output = d_ReadData();
  6947. //row[ix] = current_position[Z_AXIS];
  6948. memset(data_wldsd, 0, sizeof(data_wldsd));
  6949. for (int i = 0; i <3; i++) {
  6950. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6951. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6952. strcat(data_wldsd, numb_wldsd);
  6953. strcat(data_wldsd, ";");
  6954. }
  6955. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6956. dtostrf(output, 8, 5, numb_wldsd);
  6957. strcat(data_wldsd, numb_wldsd);
  6958. //strcat(data_wldsd, ";");
  6959. card.write_command(data_wldsd);
  6960. //row[ix] = d_ReadData();
  6961. row[ix] = output; // current_position[Z_AXIS];
  6962. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6963. for (int i = 0; i < x_points_num; i++) {
  6964. SERIAL_PROTOCOLPGM(" ");
  6965. SERIAL_PROTOCOL_F(row[i], 5);
  6966. }
  6967. SERIAL_PROTOCOLPGM("\n");
  6968. }
  6969. custom_message_state--;
  6970. mesh_point++;
  6971. lcd_update(1);
  6972. }
  6973. card.closefile();
  6974. }
  6975. #endif
  6976. void temp_compensation_start() {
  6977. custom_message = true;
  6978. custom_message_type = 5;
  6979. custom_message_state = PINDA_HEAT_T + 1;
  6980. lcd_update(2);
  6981. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6982. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6983. }
  6984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6985. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6986. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6987. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6989. st_synchronize();
  6990. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6991. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6992. delay_keep_alive(1000);
  6993. custom_message_state = PINDA_HEAT_T - i;
  6994. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6995. else lcd_update(1);
  6996. }
  6997. custom_message_type = 0;
  6998. custom_message_state = 0;
  6999. custom_message = false;
  7000. }
  7001. void temp_compensation_apply() {
  7002. int i_add;
  7003. int compensation_value;
  7004. int z_shift = 0;
  7005. float z_shift_mm;
  7006. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7007. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7008. i_add = (target_temperature_bed - 60) / 10;
  7009. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7010. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7011. }else {
  7012. //interpolation
  7013. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7014. }
  7015. SERIAL_PROTOCOLPGM("\n");
  7016. SERIAL_PROTOCOLPGM("Z shift applied:");
  7017. MYSERIAL.print(z_shift_mm);
  7018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7019. st_synchronize();
  7020. plan_set_z_position(current_position[Z_AXIS]);
  7021. }
  7022. else {
  7023. //we have no temp compensation data
  7024. }
  7025. }
  7026. float temp_comp_interpolation(float inp_temperature) {
  7027. //cubic spline interpolation
  7028. int n, i, j, k;
  7029. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7030. int shift[10];
  7031. int temp_C[10];
  7032. n = 6; //number of measured points
  7033. shift[0] = 0;
  7034. for (i = 0; i < n; i++) {
  7035. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7036. temp_C[i] = 50 + i * 10; //temperature in C
  7037. #ifdef PINDA_THERMISTOR
  7038. temp_C[i] = 35 + i * 5; //temperature in C
  7039. #else
  7040. temp_C[i] = 50 + i * 10; //temperature in C
  7041. #endif
  7042. x[i] = (float)temp_C[i];
  7043. f[i] = (float)shift[i];
  7044. }
  7045. if (inp_temperature < x[0]) return 0;
  7046. for (i = n - 1; i>0; i--) {
  7047. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7048. h[i - 1] = x[i] - x[i - 1];
  7049. }
  7050. //*********** formation of h, s , f matrix **************
  7051. for (i = 1; i<n - 1; i++) {
  7052. m[i][i] = 2 * (h[i - 1] + h[i]);
  7053. if (i != 1) {
  7054. m[i][i - 1] = h[i - 1];
  7055. m[i - 1][i] = h[i - 1];
  7056. }
  7057. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7058. }
  7059. //*********** forward elimination **************
  7060. for (i = 1; i<n - 2; i++) {
  7061. temp = (m[i + 1][i] / m[i][i]);
  7062. for (j = 1; j <= n - 1; j++)
  7063. m[i + 1][j] -= temp*m[i][j];
  7064. }
  7065. //*********** backward substitution *********
  7066. for (i = n - 2; i>0; i--) {
  7067. sum = 0;
  7068. for (j = i; j <= n - 2; j++)
  7069. sum += m[i][j] * s[j];
  7070. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7071. }
  7072. for (i = 0; i<n - 1; i++)
  7073. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7074. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7075. b = s[i] / 2;
  7076. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7077. d = f[i];
  7078. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7079. }
  7080. return sum;
  7081. }
  7082. #ifdef PINDA_THERMISTOR
  7083. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7084. {
  7085. if (!temp_cal_active) return 0;
  7086. if (!calibration_status_pinda()) return 0;
  7087. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7088. }
  7089. #endif //PINDA_THERMISTOR
  7090. void long_pause() //long pause print
  7091. {
  7092. st_synchronize();
  7093. //save currently set parameters to global variables
  7094. saved_feedmultiply = feedmultiply;
  7095. HotendTempBckp = degTargetHotend(active_extruder);
  7096. fanSpeedBckp = fanSpeed;
  7097. start_pause_print = millis();
  7098. //save position
  7099. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7100. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7101. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7102. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7103. //retract
  7104. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7106. //lift z
  7107. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7108. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7110. //set nozzle target temperature to 0
  7111. setTargetHotend(0, 0);
  7112. setTargetHotend(0, 1);
  7113. setTargetHotend(0, 2);
  7114. //Move XY to side
  7115. current_position[X_AXIS] = X_PAUSE_POS;
  7116. current_position[Y_AXIS] = Y_PAUSE_POS;
  7117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7118. // Turn off the print fan
  7119. fanSpeed = 0;
  7120. st_synchronize();
  7121. }
  7122. void serialecho_temperatures() {
  7123. float tt = degHotend(active_extruder);
  7124. SERIAL_PROTOCOLPGM("T:");
  7125. SERIAL_PROTOCOL(tt);
  7126. SERIAL_PROTOCOLPGM(" E:");
  7127. SERIAL_PROTOCOL((int)active_extruder);
  7128. SERIAL_PROTOCOLPGM(" B:");
  7129. SERIAL_PROTOCOL_F(degBed(), 1);
  7130. SERIAL_PROTOCOLLN("");
  7131. }
  7132. extern uint32_t sdpos_atomic;
  7133. #ifdef UVLO_SUPPORT
  7134. void uvlo_()
  7135. {
  7136. unsigned long time_start = millis();
  7137. bool sd_print = card.sdprinting;
  7138. // Conserve power as soon as possible.
  7139. disable_x();
  7140. disable_y();
  7141. #ifdef TMC2130
  7142. tmc2130_set_current_h(Z_AXIS, 20);
  7143. tmc2130_set_current_r(Z_AXIS, 20);
  7144. tmc2130_set_current_h(E_AXIS, 20);
  7145. tmc2130_set_current_r(E_AXIS, 20);
  7146. #endif //TMC2130
  7147. // Indicate that the interrupt has been triggered.
  7148. // SERIAL_ECHOLNPGM("UVLO");
  7149. // Read out the current Z motor microstep counter. This will be later used
  7150. // for reaching the zero full step before powering off.
  7151. uint16_t z_microsteps = 0;
  7152. #ifdef TMC2130
  7153. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7154. #endif //TMC2130
  7155. // Calculate the file position, from which to resume this print.
  7156. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7157. {
  7158. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7159. sd_position -= sdlen_planner;
  7160. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7161. sd_position -= sdlen_cmdqueue;
  7162. if (sd_position < 0) sd_position = 0;
  7163. }
  7164. // Backup the feedrate in mm/min.
  7165. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7166. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7167. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7168. // are in action.
  7169. planner_abort_hard();
  7170. // Store the current extruder position.
  7171. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7172. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7173. // Clean the input command queue.
  7174. cmdqueue_reset();
  7175. card.sdprinting = false;
  7176. // card.closefile();
  7177. // Enable stepper driver interrupt to move Z axis.
  7178. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7179. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7180. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7181. sei();
  7182. plan_buffer_line(
  7183. current_position[X_AXIS],
  7184. current_position[Y_AXIS],
  7185. current_position[Z_AXIS],
  7186. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7187. 95, active_extruder);
  7188. st_synchronize();
  7189. disable_e0();
  7190. plan_buffer_line(
  7191. current_position[X_AXIS],
  7192. current_position[Y_AXIS],
  7193. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7194. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7195. 40, active_extruder);
  7196. st_synchronize();
  7197. disable_e0();
  7198. plan_buffer_line(
  7199. current_position[X_AXIS],
  7200. current_position[Y_AXIS],
  7201. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7202. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7203. 40, active_extruder);
  7204. st_synchronize();
  7205. disable_e0();
  7206. disable_z();
  7207. // Move Z up to the next 0th full step.
  7208. // Write the file position.
  7209. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7210. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7211. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7212. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7213. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7214. // Scale the z value to 1u resolution.
  7215. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7216. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7217. }
  7218. // Read out the current Z motor microstep counter. This will be later used
  7219. // for reaching the zero full step before powering off.
  7220. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7221. // Store the current position.
  7222. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7223. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7224. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7225. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7226. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7227. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7228. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7229. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7230. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7231. #if EXTRUDERS > 1
  7232. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7233. #if EXTRUDERS > 2
  7234. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7235. #endif
  7236. #endif
  7237. // Finaly store the "power outage" flag.
  7238. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7239. st_synchronize();
  7240. SERIAL_ECHOPGM("stps");
  7241. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7242. disable_z();
  7243. // Increment power failure counter
  7244. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7245. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7246. SERIAL_ECHOLNPGM("UVLO - end");
  7247. MYSERIAL.println(millis() - time_start);
  7248. #if 0
  7249. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7250. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7251. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7252. st_synchronize();
  7253. #endif
  7254. cli();
  7255. volatile unsigned int ppcount = 0;
  7256. SET_OUTPUT(BEEPER);
  7257. WRITE(BEEPER, HIGH);
  7258. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7259. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7260. }
  7261. WRITE(BEEPER, LOW);
  7262. while(1){
  7263. #if 1
  7264. WRITE(BEEPER, LOW);
  7265. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7266. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7267. }
  7268. #endif
  7269. };
  7270. }
  7271. #endif //UVLO_SUPPORT
  7272. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7273. void setup_fan_interrupt() {
  7274. //INT7
  7275. DDRE &= ~(1 << 7); //input pin
  7276. PORTE &= ~(1 << 7); //no internal pull-up
  7277. //start with sensing rising edge
  7278. EICRB &= ~(1 << 6);
  7279. EICRB |= (1 << 7);
  7280. //enable INT7 interrupt
  7281. EIMSK |= (1 << 7);
  7282. }
  7283. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7284. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7285. ISR(INT7_vect) {
  7286. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7287. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7288. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7289. t_fan_rising_edge = millis_nc();
  7290. }
  7291. else { //interrupt was triggered by falling edge
  7292. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7293. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7294. }
  7295. }
  7296. EICRB ^= (1 << 6); //change edge
  7297. }
  7298. #endif
  7299. #ifdef UVLO_SUPPORT
  7300. void setup_uvlo_interrupt() {
  7301. DDRE &= ~(1 << 4); //input pin
  7302. PORTE &= ~(1 << 4); //no internal pull-up
  7303. //sensing falling edge
  7304. EICRB |= (1 << 0);
  7305. EICRB &= ~(1 << 1);
  7306. //enable INT4 interrupt
  7307. EIMSK |= (1 << 4);
  7308. }
  7309. ISR(INT4_vect) {
  7310. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7311. SERIAL_ECHOLNPGM("INT4");
  7312. if (IS_SD_PRINTING) uvlo_();
  7313. }
  7314. void recover_print(uint8_t automatic) {
  7315. char cmd[30];
  7316. lcd_update_enable(true);
  7317. lcd_update(2);
  7318. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7319. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7320. // Lift the print head, so one may remove the excess priming material.
  7321. if (current_position[Z_AXIS] < 25)
  7322. enquecommand_P(PSTR("G1 Z25 F800"));
  7323. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7324. enquecommand_P(PSTR("G28 X Y"));
  7325. // Set the target bed and nozzle temperatures and wait.
  7326. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7327. enquecommand(cmd);
  7328. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7329. enquecommand(cmd);
  7330. enquecommand_P(PSTR("M83")); //E axis relative mode
  7331. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7332. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7333. if(automatic == 0){
  7334. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7335. }
  7336. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7337. // Mark the power panic status as inactive.
  7338. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7339. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7340. delay_keep_alive(1000);
  7341. }*/
  7342. SERIAL_ECHOPGM("After waiting for temp:");
  7343. SERIAL_ECHOPGM("Current position X_AXIS:");
  7344. MYSERIAL.println(current_position[X_AXIS]);
  7345. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7346. MYSERIAL.println(current_position[Y_AXIS]);
  7347. // Restart the print.
  7348. restore_print_from_eeprom();
  7349. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7350. MYSERIAL.print(current_position[Z_AXIS]);
  7351. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7352. MYSERIAL.print(current_position[E_AXIS]);
  7353. }
  7354. void recover_machine_state_after_power_panic()
  7355. {
  7356. char cmd[30];
  7357. // 1) Recover the logical cordinates at the time of the power panic.
  7358. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7359. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7360. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7361. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7362. // The current position after power panic is moved to the next closest 0th full step.
  7363. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7364. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7365. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7366. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7367. sprintf_P(cmd, PSTR("G92 E"));
  7368. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7369. enquecommand(cmd);
  7370. }
  7371. memcpy(destination, current_position, sizeof(destination));
  7372. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7373. print_world_coordinates();
  7374. // 2) Initialize the logical to physical coordinate system transformation.
  7375. world2machine_initialize();
  7376. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7377. mbl.active = false;
  7378. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7379. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7380. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7381. // Scale the z value to 10u resolution.
  7382. int16_t v;
  7383. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7384. if (v != 0)
  7385. mbl.active = true;
  7386. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7387. }
  7388. if (mbl.active)
  7389. mbl.upsample_3x3();
  7390. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7391. // print_mesh_bed_leveling_table();
  7392. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7393. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7394. babystep_load();
  7395. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7397. // 6) Power up the motors, mark their positions as known.
  7398. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7399. axis_known_position[X_AXIS] = true; enable_x();
  7400. axis_known_position[Y_AXIS] = true; enable_y();
  7401. axis_known_position[Z_AXIS] = true; enable_z();
  7402. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7403. print_physical_coordinates();
  7404. // 7) Recover the target temperatures.
  7405. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7406. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7407. // 8) Recover extruder multipilers
  7408. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7409. #if EXTRUDERS > 1
  7410. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7411. #if EXTRUDERS > 2
  7412. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7413. #endif
  7414. #endif
  7415. }
  7416. void restore_print_from_eeprom() {
  7417. float x_rec, y_rec, z_pos;
  7418. int feedrate_rec;
  7419. uint8_t fan_speed_rec;
  7420. char cmd[30];
  7421. char* c;
  7422. char filename[13];
  7423. uint8_t depth = 0;
  7424. char dir_name[9];
  7425. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7426. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7427. SERIAL_ECHOPGM("Feedrate:");
  7428. MYSERIAL.println(feedrate_rec);
  7429. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7430. MYSERIAL.println(int(depth));
  7431. for (int i = 0; i < depth; i++) {
  7432. for (int j = 0; j < 8; j++) {
  7433. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7434. }
  7435. dir_name[8] = '\0';
  7436. MYSERIAL.println(dir_name);
  7437. card.chdir(dir_name);
  7438. }
  7439. for (int i = 0; i < 8; i++) {
  7440. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7441. }
  7442. filename[8] = '\0';
  7443. MYSERIAL.print(filename);
  7444. strcat_P(filename, PSTR(".gco"));
  7445. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7446. for (c = &cmd[4]; *c; c++)
  7447. *c = tolower(*c);
  7448. enquecommand(cmd);
  7449. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7450. SERIAL_ECHOPGM("Position read from eeprom:");
  7451. MYSERIAL.println(position);
  7452. // E axis relative mode.
  7453. enquecommand_P(PSTR("M83"));
  7454. // Move to the XY print position in logical coordinates, where the print has been killed.
  7455. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7456. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7457. strcat_P(cmd, PSTR(" F2000"));
  7458. enquecommand(cmd);
  7459. // Move the Z axis down to the print, in logical coordinates.
  7460. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7461. enquecommand(cmd);
  7462. // Unretract.
  7463. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7464. // Set the feedrate saved at the power panic.
  7465. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7466. enquecommand(cmd);
  7467. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7468. {
  7469. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7470. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7471. }
  7472. // Set the fan speed saved at the power panic.
  7473. strcpy_P(cmd, PSTR("M106 S"));
  7474. strcat(cmd, itostr3(int(fan_speed_rec)));
  7475. enquecommand(cmd);
  7476. // Set a position in the file.
  7477. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7478. enquecommand(cmd);
  7479. // Start SD print.
  7480. enquecommand_P(PSTR("M24"));
  7481. }
  7482. #endif //UVLO_SUPPORT
  7483. ////////////////////////////////////////////////////////////////////////////////
  7484. // save/restore printing
  7485. void stop_and_save_print_to_ram(float z_move, float e_move)
  7486. {
  7487. if (saved_printing) return;
  7488. unsigned char nplanner_blocks;
  7489. unsigned char nlines;
  7490. uint16_t sdlen_planner;
  7491. uint16_t sdlen_cmdqueue;
  7492. cli();
  7493. if (card.sdprinting) {
  7494. nplanner_blocks = number_of_blocks();
  7495. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7496. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7497. saved_sdpos -= sdlen_planner;
  7498. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7499. saved_sdpos -= sdlen_cmdqueue;
  7500. saved_printing_type = PRINTING_TYPE_SD;
  7501. }
  7502. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7503. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7504. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7505. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7506. saved_sdpos -= nlines;
  7507. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7508. saved_printing_type = PRINTING_TYPE_USB;
  7509. }
  7510. else {
  7511. //not sd printing nor usb printing
  7512. }
  7513. #if 0
  7514. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7515. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7516. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7517. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7518. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7519. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7520. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7521. {
  7522. card.setIndex(saved_sdpos);
  7523. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7524. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7525. MYSERIAL.print(char(card.get()));
  7526. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7527. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7528. MYSERIAL.print(char(card.get()));
  7529. SERIAL_ECHOLNPGM("End of command buffer");
  7530. }
  7531. {
  7532. // Print the content of the planner buffer, line by line:
  7533. card.setIndex(saved_sdpos);
  7534. int8_t iline = 0;
  7535. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7536. SERIAL_ECHOPGM("Planner line (from file): ");
  7537. MYSERIAL.print(int(iline), DEC);
  7538. SERIAL_ECHOPGM(", length: ");
  7539. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7540. SERIAL_ECHOPGM(", steps: (");
  7541. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7542. SERIAL_ECHOPGM(",");
  7543. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7544. SERIAL_ECHOPGM(",");
  7545. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7546. SERIAL_ECHOPGM(",");
  7547. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7548. SERIAL_ECHOPGM("), events: ");
  7549. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7550. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7551. MYSERIAL.print(char(card.get()));
  7552. }
  7553. }
  7554. {
  7555. // Print the content of the command buffer, line by line:
  7556. int8_t iline = 0;
  7557. union {
  7558. struct {
  7559. char lo;
  7560. char hi;
  7561. } lohi;
  7562. uint16_t value;
  7563. } sdlen_single;
  7564. int _bufindr = bufindr;
  7565. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7566. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7567. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7568. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7569. }
  7570. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7571. MYSERIAL.print(int(iline), DEC);
  7572. SERIAL_ECHOPGM(", type: ");
  7573. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7574. SERIAL_ECHOPGM(", len: ");
  7575. MYSERIAL.println(sdlen_single.value, DEC);
  7576. // Print the content of the buffer line.
  7577. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7578. SERIAL_ECHOPGM("Buffer line (from file): ");
  7579. MYSERIAL.print(int(iline), DEC);
  7580. MYSERIAL.println(int(iline), DEC);
  7581. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7582. MYSERIAL.print(char(card.get()));
  7583. if (-- _buflen == 0)
  7584. break;
  7585. // First skip the current command ID and iterate up to the end of the string.
  7586. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7587. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7588. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7589. // If the end of the buffer was empty,
  7590. if (_bufindr == sizeof(cmdbuffer)) {
  7591. // skip to the start and find the nonzero command.
  7592. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7593. }
  7594. }
  7595. }
  7596. #endif
  7597. #if 0
  7598. saved_feedrate2 = feedrate; //save feedrate
  7599. #else
  7600. // Try to deduce the feedrate from the first block of the planner.
  7601. // Speed is in mm/min.
  7602. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7603. #endif
  7604. planner_abort_hard(); //abort printing
  7605. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7606. saved_active_extruder = active_extruder; //save active_extruder
  7607. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7608. cmdqueue_reset(); //empty cmdqueue
  7609. card.sdprinting = false;
  7610. // card.closefile();
  7611. saved_printing = true;
  7612. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7613. st_reset_timer();
  7614. sei();
  7615. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7616. #if 1
  7617. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7618. char buf[48];
  7619. // First unretract (relative extrusion)
  7620. strcpy_P(buf, PSTR("G1 E"));
  7621. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7622. strcat_P(buf, PSTR(" F"));
  7623. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7624. enquecommand(buf, false);
  7625. // Then lift Z axis
  7626. strcpy_P(buf, PSTR("G1 Z"));
  7627. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7628. strcat_P(buf, PSTR(" F"));
  7629. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7630. // At this point the command queue is empty.
  7631. enquecommand(buf, false);
  7632. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7633. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7634. repeatcommand_front();
  7635. #else
  7636. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7637. st_synchronize(); //wait moving
  7638. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7639. memcpy(destination, current_position, sizeof(destination));
  7640. #endif
  7641. }
  7642. }
  7643. void restore_print_from_ram_and_continue(float e_move)
  7644. {
  7645. if (!saved_printing) return;
  7646. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7647. // current_position[axis] = st_get_position_mm(axis);
  7648. active_extruder = saved_active_extruder; //restore active_extruder
  7649. feedrate = saved_feedrate2; //restore feedrate
  7650. float e = saved_pos[E_AXIS] - e_move;
  7651. plan_set_e_position(e);
  7652. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7653. st_synchronize();
  7654. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7655. memcpy(destination, current_position, sizeof(destination));
  7656. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7657. card.setIndex(saved_sdpos);
  7658. sdpos_atomic = saved_sdpos;
  7659. card.sdprinting = true;
  7660. }
  7661. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7662. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7663. FlushSerialRequestResend();
  7664. }
  7665. else {
  7666. //not sd printing nor usb printing
  7667. }
  7668. saved_printing = false;
  7669. }
  7670. void print_world_coordinates()
  7671. {
  7672. SERIAL_ECHOPGM("world coordinates: (");
  7673. MYSERIAL.print(current_position[X_AXIS], 3);
  7674. SERIAL_ECHOPGM(", ");
  7675. MYSERIAL.print(current_position[Y_AXIS], 3);
  7676. SERIAL_ECHOPGM(", ");
  7677. MYSERIAL.print(current_position[Z_AXIS], 3);
  7678. SERIAL_ECHOLNPGM(")");
  7679. }
  7680. void print_physical_coordinates()
  7681. {
  7682. SERIAL_ECHOPGM("physical coordinates: (");
  7683. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7684. SERIAL_ECHOPGM(", ");
  7685. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7686. SERIAL_ECHOPGM(", ");
  7687. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7688. SERIAL_ECHOLNPGM(")");
  7689. }
  7690. void print_mesh_bed_leveling_table()
  7691. {
  7692. SERIAL_ECHOPGM("mesh bed leveling: ");
  7693. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7694. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7695. MYSERIAL.print(mbl.z_values[y][x], 3);
  7696. SERIAL_ECHOPGM(" ");
  7697. }
  7698. SERIAL_ECHOLNPGM("");
  7699. }
  7700. #define FIL_LOAD_LENGTH 60