mmu.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_return_to_status();
  11. #define MMU_TIMEOUT 1000
  12. bool mmu_enabled = false;
  13. uint8_t mmu_extruder = 0;
  14. int8_t mmu_finda = -1;
  15. int16_t mmu_version = -1;
  16. //clear rx buffer
  17. void mmu_clr_rx_buf(void)
  18. {
  19. while (fgetc(uart2io) >= 0);
  20. }
  21. //send command - puts
  22. int mmu_puts_P(const char* str)
  23. {
  24. mmu_clr_rx_buf(); //clear rx buffer
  25. return fputs_P(str, uart2io); //send command
  26. }
  27. //send command - printf
  28. int mmu_printf_P(const char* format, ...)
  29. {
  30. va_list args;
  31. va_start(args, format);
  32. mmu_clr_rx_buf(); //clear rx buffer
  33. int r = vfprintf_P(uart2io, format, args); //send command
  34. va_end(args);
  35. return r;
  36. }
  37. //check 'ok' response
  38. int8_t mmu_rx_ok(void)
  39. {
  40. return uart2_rx_str_P(PSTR("ok\n"));
  41. }
  42. //check 'start' response
  43. int8_t mmu_rx_start(void)
  44. {
  45. return uart2_rx_str_P(PSTR("start\n"));
  46. }
  47. //initialize mmu_unit
  48. bool mmu_init(void)
  49. {
  50. uart2_init(); //init uart2
  51. _delay_ms(10); //wait 10ms for sure
  52. if (mmu_reset()) //reset mmu
  53. {
  54. mmu_read_finda();
  55. mmu_read_version();
  56. return true;
  57. }
  58. return false;
  59. }
  60. bool mmu_reset(void)
  61. {
  62. mmu_puts_P(PSTR("X0\n")); //send command
  63. unsigned char timeout = 10; //timeout = 10x100ms
  64. while ((mmu_rx_start() <= 0) && (--timeout))
  65. delay_keep_alive(MMU_TIMEOUT);
  66. mmu_enabled = timeout?true:false;
  67. return mmu_enabled;
  68. }
  69. int8_t mmu_read_finda(void)
  70. {
  71. mmu_puts_P(PSTR("P0\n"));
  72. unsigned char timeout = 10; //10x100ms
  73. while ((mmu_rx_ok() <= 0) && (--timeout))
  74. delay_keep_alive(MMU_TIMEOUT);
  75. mmu_finda = -1;
  76. if (timeout)
  77. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda);
  78. return mmu_finda;
  79. }
  80. int16_t mmu_read_version(void)
  81. {
  82. mmu_puts_P(PSTR("S1\n"));
  83. unsigned char timeout = 10; //10x100ms
  84. while ((mmu_rx_ok() <= 0) && (--timeout))
  85. delay_keep_alive(MMU_TIMEOUT);
  86. if (timeout)
  87. fscanf_P(uart2io, PSTR("%u"), &mmu_version);
  88. return mmu_version;
  89. }
  90. void extr_mov(float shift, float feed_rate)
  91. { //move extruder no matter what the current heater temperature is
  92. set_extrude_min_temp(.0);
  93. current_position[E_AXIS] += shift;
  94. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  95. set_extrude_min_temp(EXTRUDE_MINTEMP);
  96. }
  97. void change_extr(int extr) { //switches multiplexer for extruders
  98. #ifdef SNMM
  99. st_synchronize();
  100. delay(100);
  101. disable_e0();
  102. disable_e1();
  103. disable_e2();
  104. mmu_extruder = extr;
  105. pinMode(E_MUX0_PIN, OUTPUT);
  106. pinMode(E_MUX1_PIN, OUTPUT);
  107. switch (extr) {
  108. case 1:
  109. WRITE(E_MUX0_PIN, HIGH);
  110. WRITE(E_MUX1_PIN, LOW);
  111. break;
  112. case 2:
  113. WRITE(E_MUX0_PIN, LOW);
  114. WRITE(E_MUX1_PIN, HIGH);
  115. break;
  116. case 3:
  117. WRITE(E_MUX0_PIN, HIGH);
  118. WRITE(E_MUX1_PIN, HIGH);
  119. break;
  120. default:
  121. WRITE(E_MUX0_PIN, LOW);
  122. WRITE(E_MUX1_PIN, LOW);
  123. break;
  124. }
  125. delay(100);
  126. #endif
  127. }
  128. int get_ext_nr()
  129. { //reads multiplexer input pins and return current extruder number (counted from 0)
  130. #ifndef SNMM
  131. return(mmu_extruder); //update needed
  132. #else
  133. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  134. #endif
  135. }
  136. void display_loading()
  137. {
  138. switch (mmu_extruder)
  139. {
  140. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  141. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  142. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  143. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  144. }
  145. }
  146. void extr_adj(int extruder) //loading filament for SNMM
  147. {
  148. #ifndef SNMM
  149. printf_P(PSTR("L%d \n"),extruder);
  150. fprintf_P(uart2io, PSTR("L%d\n"), extruder);
  151. //show which filament is currently loaded
  152. lcd_update_enable(false);
  153. lcd_clear();
  154. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  155. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  156. //else lcd.print(" ");
  157. lcd_print(" ");
  158. lcd_print(mmu_extruder + 1);
  159. // get response
  160. manage_response();
  161. lcd_update_enable(true);
  162. //lcd_return_to_status();
  163. #else
  164. bool correct;
  165. max_feedrate[E_AXIS] =80;
  166. //max_feedrate[E_AXIS] = 50;
  167. START:
  168. lcd_clear();
  169. lcd_set_cursor(0, 0);
  170. switch (extruder) {
  171. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  172. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  173. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  174. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  175. }
  176. KEEPALIVE_STATE(PAUSED_FOR_USER);
  177. do{
  178. extr_mov(0.001,1000);
  179. delay_keep_alive(2);
  180. } while (!lcd_clicked());
  181. //delay_keep_alive(500);
  182. KEEPALIVE_STATE(IN_HANDLER);
  183. st_synchronize();
  184. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  185. //if (!correct) goto START;
  186. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  187. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  188. extr_mov(bowden_length[extruder], 500);
  189. lcd_clear();
  190. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  191. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  192. else lcd_print(" ");
  193. lcd_print(mmu_extruder + 1);
  194. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  195. st_synchronize();
  196. max_feedrate[E_AXIS] = 50;
  197. lcd_update_enable(true);
  198. lcd_return_to_status();
  199. lcdDrawUpdate = 2;
  200. #endif
  201. }
  202. void extr_unload()
  203. { //unload just current filament for multimaterial printers
  204. #ifdef SNMM
  205. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  206. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  207. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  208. #endif
  209. if (degHotend0() > EXTRUDE_MINTEMP)
  210. {
  211. #ifndef SNMM
  212. st_synchronize();
  213. //show which filament is currently unloaded
  214. lcd_update_enable(false);
  215. lcd_clear();
  216. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  217. lcd_print(" ");
  218. lcd_print(mmu_extruder + 1);
  219. current_position[E_AXIS] -= 80;
  220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  221. st_synchronize();
  222. printf_P(PSTR("U0\n"));
  223. fprintf_P(uart2io, PSTR("U0\n"));
  224. // get response
  225. manage_response();
  226. lcd_update_enable(true);
  227. #else //SNMM
  228. lcd_clear();
  229. lcd_display_message_fullscreen_P(PSTR(""));
  230. max_feedrate[E_AXIS] = 50;
  231. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  232. lcd_print(" ");
  233. lcd_print(mmu_extruder + 1);
  234. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  235. if (current_position[Z_AXIS] < 15) {
  236. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  238. }
  239. current_position[E_AXIS] += 10; //extrusion
  240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  241. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  242. if (current_temperature[0] < 230) { //PLA & all other filaments
  243. current_position[E_AXIS] += 5.4;
  244. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  245. current_position[E_AXIS] += 3.2;
  246. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  247. current_position[E_AXIS] += 3;
  248. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  249. }
  250. else { //ABS
  251. current_position[E_AXIS] += 3.1;
  252. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  253. current_position[E_AXIS] += 3.1;
  254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  255. current_position[E_AXIS] += 4;
  256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  257. /*current_position[X_AXIS] += 23; //delay
  258. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  259. current_position[X_AXIS] -= 23; //delay
  260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  261. delay_keep_alive(4700);
  262. }
  263. max_feedrate[E_AXIS] = 80;
  264. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  266. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  267. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  268. st_synchronize();
  269. //st_current_init();
  270. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  271. else st_current_set(2, tmp_motor_loud[2]);
  272. lcd_update_enable(true);
  273. lcd_return_to_status();
  274. max_feedrate[E_AXIS] = 50;
  275. #endif //SNMM
  276. }
  277. else
  278. {
  279. lcd_clear();
  280. lcd_set_cursor(0, 0);
  281. lcd_puts_P(_T(MSG_ERROR));
  282. lcd_set_cursor(0, 2);
  283. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  284. delay(2000);
  285. lcd_clear();
  286. }
  287. //lcd_return_to_status();
  288. }
  289. //wrapper functions for loading filament
  290. void extr_adj_0()
  291. {
  292. #ifndef SNMM
  293. enquecommand_P(PSTR("M701 E0"));
  294. #else
  295. change_extr(0);
  296. extr_adj(0);
  297. #endif
  298. }
  299. void extr_adj_1()
  300. {
  301. #ifndef SNMM
  302. enquecommand_P(PSTR("M701 E1"));
  303. #else
  304. change_extr(1);
  305. extr_adj(1);
  306. #endif
  307. }
  308. void extr_adj_2()
  309. {
  310. #ifndef SNMM
  311. enquecommand_P(PSTR("M701 E2"));
  312. #else
  313. change_extr(2);
  314. extr_adj(2);
  315. #endif
  316. }
  317. void extr_adj_3()
  318. {
  319. #ifndef SNMM
  320. enquecommand_P(PSTR("M701 E3"));
  321. #else
  322. change_extr(3);
  323. extr_adj(3);
  324. #endif
  325. }
  326. void extr_adj_4()
  327. {
  328. #ifndef SNMM
  329. enquecommand_P(PSTR("M701 E4"));
  330. #else
  331. change_extr(4);
  332. extr_adj(4);
  333. #endif
  334. }
  335. void load_all()
  336. {
  337. #ifndef SNMM
  338. enquecommand_P(PSTR("M701 E0"));
  339. enquecommand_P(PSTR("M701 E1"));
  340. enquecommand_P(PSTR("M701 E2"));
  341. enquecommand_P(PSTR("M701 E3"));
  342. enquecommand_P(PSTR("M701 E4"));
  343. #else
  344. for (int i = 0; i < 4; i++)
  345. {
  346. change_extr(i);
  347. extr_adj(i);
  348. }
  349. #endif
  350. }
  351. //wrapper functions for changing extruders
  352. void extr_change_0()
  353. {
  354. change_extr(0);
  355. lcd_return_to_status();
  356. }
  357. void extr_change_1()
  358. {
  359. change_extr(1);
  360. lcd_return_to_status();
  361. }
  362. void extr_change_2()
  363. {
  364. change_extr(2);
  365. lcd_return_to_status();
  366. }
  367. void extr_change_3()
  368. {
  369. change_extr(3);
  370. lcd_return_to_status();
  371. }
  372. //wrapper functions for unloading filament
  373. void extr_unload_all()
  374. {
  375. if (degHotend0() > EXTRUDE_MINTEMP)
  376. {
  377. for (int i = 0; i < 4; i++)
  378. {
  379. change_extr(i);
  380. extr_unload();
  381. }
  382. }
  383. else
  384. {
  385. lcd_clear();
  386. lcd_set_cursor(0, 0);
  387. lcd_puts_P(_T(MSG_ERROR));
  388. lcd_set_cursor(0, 2);
  389. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  390. delay(2000);
  391. lcd_clear();
  392. lcd_return_to_status();
  393. }
  394. }
  395. //unloading just used filament (for snmm)
  396. void extr_unload_used()
  397. {
  398. if (degHotend0() > EXTRUDE_MINTEMP) {
  399. for (int i = 0; i < 4; i++) {
  400. if (snmm_filaments_used & (1 << i)) {
  401. change_extr(i);
  402. extr_unload();
  403. }
  404. }
  405. snmm_filaments_used = 0;
  406. }
  407. else {
  408. lcd_clear();
  409. lcd_set_cursor(0, 0);
  410. lcd_puts_P(_T(MSG_ERROR));
  411. lcd_set_cursor(0, 2);
  412. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  413. delay(2000);
  414. lcd_clear();
  415. lcd_return_to_status();
  416. }
  417. }
  418. void extr_unload_0()
  419. {
  420. change_extr(0);
  421. extr_unload();
  422. }
  423. void extr_unload_1()
  424. {
  425. change_extr(1);
  426. extr_unload();
  427. }
  428. void extr_unload_2()
  429. {
  430. change_extr(2);
  431. extr_unload();
  432. }
  433. void extr_unload_3()
  434. {
  435. change_extr(3);
  436. extr_unload();
  437. }
  438. void extr_unload_4()
  439. {
  440. change_extr(4);
  441. extr_unload();
  442. }