Marlin_main.cpp 173 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. // Number of baby steps applied
  199. int babystepLoadZ = 0;
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  252. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  253. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  254. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed=0;
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled=false;
  262. bool retracted[EXTRUDERS]={false
  263. #if EXTRUDERS > 1
  264. , false
  265. #if EXTRUDERS > 2
  266. , false
  267. #endif
  268. #endif
  269. };
  270. bool retracted_swap[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. bool cancel_heatup = false ;
  294. #ifdef FILAMENT_SENSOR
  295. //Variables for Filament Sensor input
  296. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  297. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  298. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  299. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  300. int delay_index1=0; //index into ring buffer
  301. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  302. float delay_dist=0; //delay distance counter
  303. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  304. #endif
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. //===========================================================================
  308. //=============================Private Variables=============================
  309. //===========================================================================
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  312. static float delta[3] = {0.0, 0.0, 0.0};
  313. // For tracing an arc
  314. static float offset[3] = {0.0, 0.0, 0.0};
  315. static bool home_all_axis = true;
  316. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. // Determines Absolute or Relative Coordinates.
  319. // Also there is bool axis_relative_modes[] per axis flag.
  320. static bool relative_mode = false;
  321. // String circular buffer. Commands may be pushed to the buffer from both sides:
  322. // Chained commands will be pushed to the front, interactive (from LCD menu)
  323. // and printing commands (from serial line or from SD card) are pushed to the tail.
  324. // First character of each entry indicates the type of the entry:
  325. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  326. // Command in cmdbuffer was sent over USB.
  327. #define CMDBUFFER_CURRENT_TYPE_USB 1
  328. // Command in cmdbuffer was read from SDCARD.
  329. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  330. // Command in cmdbuffer was generated by the UI.
  331. #define CMDBUFFER_CURRENT_TYPE_UI 3
  332. // Command in cmdbuffer was generated by another G-code.
  333. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  334. // How much space to reserve for the chained commands
  335. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  336. // which are pushed to the front of the queue?
  337. // Maximum 5 commands of max length 20 + null terminator.
  338. #define CMDBUFFER_RESERVE_FRONT (5*21)
  339. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  340. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  341. // Head of the circular buffer, where to read.
  342. static int bufindr = 0;
  343. // Tail of the buffer, where to write.
  344. static int bufindw = 0;
  345. // Number of lines in cmdbuffer.
  346. static int buflen = 0;
  347. // Flag for processing the current command inside the main Arduino loop().
  348. // If a new command was pushed to the front of a command buffer while
  349. // processing another command, this replaces the command on the top.
  350. // Therefore don't remove the command from the queue in the loop() function.
  351. static bool cmdbuffer_front_already_processed = false;
  352. // Type of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  354. // String of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  356. // Enable debugging of the command buffer.
  357. // Debugging information will be sent to serial line.
  358. // #define CMDBUFFER_DEBUG
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  362. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool Stopped=false;
  374. #if NUM_SERVOS > 0
  375. Servo servos[NUM_SERVOS];
  376. #endif
  377. bool CooldownNoWait = true;
  378. bool target_direction;
  379. //Insert variables if CHDK is defined
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. // Pop the currently processed command from the queue.
  414. // It is expected, that there is at least one command in the queue.
  415. void cmdqueue_pop_front()
  416. {
  417. if (buflen > 0) {
  418. #ifdef CMDBUFFER_DEBUG
  419. SERIAL_ECHOPGM("Dequeing ");
  420. SERIAL_ECHO(cmdbuffer+bufindr+1);
  421. SERIAL_ECHOLNPGM("");
  422. SERIAL_ECHOPGM("Old indices: buflen ");
  423. SERIAL_ECHO(buflen);
  424. SERIAL_ECHOPGM(", bufindr ");
  425. SERIAL_ECHO(bufindr);
  426. SERIAL_ECHOPGM(", bufindw ");
  427. SERIAL_ECHO(bufindw);
  428. SERIAL_ECHOPGM(", serial_count ");
  429. SERIAL_ECHO(serial_count);
  430. SERIAL_ECHOPGM(", bufsize ");
  431. SERIAL_ECHO(sizeof(cmdbuffer));
  432. SERIAL_ECHOLNPGM("");
  433. #endif /* CMDBUFFER_DEBUG */
  434. if (-- buflen == 0) {
  435. // Empty buffer.
  436. if (serial_count == 0)
  437. // No serial communication is pending. Reset both pointers to zero.
  438. bufindw = 0;
  439. bufindr = bufindw;
  440. } else {
  441. // There is at least one ready line in the buffer.
  442. // First skip the current command ID and iterate up to the end of the string.
  443. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  444. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  445. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  446. // If the end of the buffer was empty,
  447. if (bufindr == sizeof(cmdbuffer)) {
  448. // skip to the start and find the nonzero command.
  449. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. }
  451. #ifdef CMDBUFFER_DEBUG
  452. SERIAL_ECHOPGM("New indices: buflen ");
  453. SERIAL_ECHO(buflen);
  454. SERIAL_ECHOPGM(", bufindr ");
  455. SERIAL_ECHO(bufindr);
  456. SERIAL_ECHOPGM(", bufindw ");
  457. SERIAL_ECHO(bufindw);
  458. SERIAL_ECHOPGM(", serial_count ");
  459. SERIAL_ECHO(serial_count);
  460. SERIAL_ECHOPGM(" new command on the top: ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. #endif /* CMDBUFFER_DEBUG */
  464. }
  465. }
  466. }
  467. // How long a string could be pushed to the front of the command queue?
  468. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  469. // len_asked does not contain the zero terminator size.
  470. bool cmdqueue_could_enqueue_front(int len_asked)
  471. {
  472. // MAX_CMD_SIZE has to accommodate the zero terminator.
  473. if (len_asked >= MAX_CMD_SIZE)
  474. return false;
  475. // Remove the currently processed command from the queue.
  476. if (! cmdbuffer_front_already_processed) {
  477. cmdqueue_pop_front();
  478. cmdbuffer_front_already_processed = true;
  479. }
  480. if (bufindr == bufindw && buflen > 0)
  481. // Full buffer.
  482. return false;
  483. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  484. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  485. if (bufindw < bufindr) {
  486. int bufindr_new = bufindr - len_asked - 2;
  487. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  488. if (endw <= bufindr_new) {
  489. bufindr = bufindr_new;
  490. return true;
  491. }
  492. } else {
  493. // Otherwise the free space is split between the start and end.
  494. if (len_asked + 2 <= bufindr) {
  495. // Could fit at the start.
  496. bufindr -= len_asked + 2;
  497. return true;
  498. }
  499. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  500. if (endw <= bufindr_new) {
  501. memset(cmdbuffer, 0, bufindr);
  502. bufindr = bufindr_new;
  503. return true;
  504. }
  505. }
  506. return false;
  507. }
  508. // Could one enqueue a command of lenthg len_asked into the buffer,
  509. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  510. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  511. // len_asked does not contain the zero terminator size.
  512. bool cmdqueue_could_enqueue_back(int len_asked)
  513. {
  514. // MAX_CMD_SIZE has to accommodate the zero terminator.
  515. if (len_asked >= MAX_CMD_SIZE)
  516. return false;
  517. if (bufindr == bufindw && buflen > 0)
  518. // Full buffer.
  519. return false;
  520. if (serial_count > 0) {
  521. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  522. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  523. // serial data.
  524. // How much memory to reserve for the commands pushed to the front?
  525. // End of the queue, when pushing to the end.
  526. int endw = bufindw + len_asked + 2;
  527. if (bufindw < bufindr)
  528. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  529. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  530. // Otherwise the free space is split between the start and end.
  531. if (// Could one fit to the end, including the reserve?
  532. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  533. // Could one fit to the end, and the reserve to the start?
  534. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  535. return true;
  536. // Could one fit both to the start?
  537. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  538. // Mark the rest of the buffer as used.
  539. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  540. // and point to the start.
  541. bufindw = 0;
  542. return true;
  543. }
  544. } else {
  545. // How much memory to reserve for the commands pushed to the front?
  546. // End of the queue, when pushing to the end.
  547. int endw = bufindw + len_asked + 2;
  548. if (bufindw < bufindr)
  549. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  550. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  551. // Otherwise the free space is split between the start and end.
  552. if (// Could one fit to the end, including the reserve?
  553. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  554. // Could one fit to the end, and the reserve to the start?
  555. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  556. return true;
  557. // Could one fit both to the start?
  558. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  559. // Mark the rest of the buffer as used.
  560. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  561. // and point to the start.
  562. bufindw = 0;
  563. return true;
  564. }
  565. }
  566. return false;
  567. }
  568. #ifdef CMDBUFFER_DEBUG
  569. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  570. {
  571. SERIAL_ECHOPGM("Entry nr: ");
  572. SERIAL_ECHO(nr);
  573. SERIAL_ECHOPGM(", type: ");
  574. SERIAL_ECHO(int(*p));
  575. SERIAL_ECHOPGM(", cmd: ");
  576. SERIAL_ECHO(p+1);
  577. SERIAL_ECHOLNPGM("");
  578. }
  579. static void cmdqueue_dump_to_serial()
  580. {
  581. if (buflen == 0) {
  582. SERIAL_ECHOLNPGM("The command buffer is empty.");
  583. } else {
  584. SERIAL_ECHOPGM("Content of the buffer: entries ");
  585. SERIAL_ECHO(buflen);
  586. SERIAL_ECHOPGM(", indr ");
  587. SERIAL_ECHO(bufindr);
  588. SERIAL_ECHOPGM(", indw ");
  589. SERIAL_ECHO(bufindw);
  590. SERIAL_ECHOLNPGM("");
  591. int nr = 0;
  592. if (bufindr < bufindw) {
  593. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  594. cmdqueue_dump_to_serial_single_line(nr, p);
  595. // Skip the command.
  596. for (++p; *p != 0; ++ p);
  597. // Skip the gaps.
  598. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  599. }
  600. } else {
  601. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  602. cmdqueue_dump_to_serial_single_line(nr, p);
  603. // Skip the command.
  604. for (++p; *p != 0; ++ p);
  605. // Skip the gaps.
  606. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  607. }
  608. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  609. cmdqueue_dump_to_serial_single_line(nr, p);
  610. // Skip the command.
  611. for (++p; *p != 0; ++ p);
  612. // Skip the gaps.
  613. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  614. }
  615. }
  616. SERIAL_ECHOLNPGM("End of the buffer.");
  617. }
  618. }
  619. #endif /* CMDBUFFER_DEBUG */
  620. //adds an command to the main command buffer
  621. //thats really done in a non-safe way.
  622. //needs overworking someday
  623. // Currently the maximum length of a command piped through this function is around 20 characters
  624. void enquecommand(const char *cmd, bool from_progmem)
  625. {
  626. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  627. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  628. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  629. if (cmdqueue_could_enqueue_back(len)) {
  630. // This is dangerous if a mixing of serial and this happens
  631. // This may easily be tested: If serial_count > 0, we have a problem.
  632. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  633. if (from_progmem)
  634. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  635. else
  636. strcpy(cmdbuffer + bufindw + 1, cmd);
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHORPGM(MSG_Enqueing);
  639. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  640. SERIAL_ECHOLNPGM("\"");
  641. bufindw += len + 2;
  642. if (bufindw == sizeof(cmdbuffer))
  643. bufindw = 0;
  644. ++ buflen;
  645. #ifdef CMDBUFFER_DEBUG
  646. cmdqueue_dump_to_serial();
  647. #endif /* CMDBUFFER_DEBUG */
  648. } else {
  649. SERIAL_ERROR_START;
  650. SERIAL_ECHORPGM(MSG_Enqueing);
  651. if (from_progmem)
  652. SERIAL_PROTOCOLRPGM(cmd);
  653. else
  654. SERIAL_ECHO(cmd);
  655. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  656. #ifdef CMDBUFFER_DEBUG
  657. cmdqueue_dump_to_serial();
  658. #endif /* CMDBUFFER_DEBUG */
  659. }
  660. }
  661. void enquecommand_front(const char *cmd, bool from_progmem)
  662. {
  663. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  664. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  665. if (cmdqueue_could_enqueue_front(len)) {
  666. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  667. if (from_progmem)
  668. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  669. else
  670. strcpy(cmdbuffer + bufindr + 1, cmd);
  671. ++ buflen;
  672. SERIAL_ECHO_START;
  673. SERIAL_ECHOPGM("Enqueing to the front: \"");
  674. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  675. SERIAL_ECHOLNPGM("\"");
  676. #ifdef CMDBUFFER_DEBUG
  677. cmdqueue_dump_to_serial();
  678. #endif /* CMDBUFFER_DEBUG */
  679. } else {
  680. SERIAL_ERROR_START;
  681. SERIAL_ECHOPGM("Enqueing to the front: \"");
  682. if (from_progmem)
  683. SERIAL_PROTOCOLRPGM(cmd);
  684. else
  685. SERIAL_ECHO(cmd);
  686. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  687. #ifdef CMDBUFFER_DEBUG
  688. cmdqueue_dump_to_serial();
  689. #endif /* CMDBUFFER_DEBUG */
  690. }
  691. }
  692. // Mark the command at the top of the command queue as new.
  693. // Therefore it will not be removed from the queue.
  694. void repeatcommand_front()
  695. {
  696. cmdbuffer_front_already_processed = true;
  697. }
  698. void setup_killpin()
  699. {
  700. #if defined(KILL_PIN) && KILL_PIN > -1
  701. SET_INPUT(KILL_PIN);
  702. WRITE(KILL_PIN,HIGH);
  703. #endif
  704. }
  705. // Set home pin
  706. void setup_homepin(void)
  707. {
  708. #if defined(HOME_PIN) && HOME_PIN > -1
  709. SET_INPUT(HOME_PIN);
  710. WRITE(HOME_PIN,HIGH);
  711. #endif
  712. }
  713. void setup_photpin()
  714. {
  715. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  716. SET_OUTPUT(PHOTOGRAPH_PIN);
  717. WRITE(PHOTOGRAPH_PIN, LOW);
  718. #endif
  719. }
  720. void setup_powerhold()
  721. {
  722. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  723. SET_OUTPUT(SUICIDE_PIN);
  724. WRITE(SUICIDE_PIN, HIGH);
  725. #endif
  726. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  727. SET_OUTPUT(PS_ON_PIN);
  728. #if defined(PS_DEFAULT_OFF)
  729. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  730. #else
  731. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  732. #endif
  733. #endif
  734. }
  735. void suicide()
  736. {
  737. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  738. SET_OUTPUT(SUICIDE_PIN);
  739. WRITE(SUICIDE_PIN, LOW);
  740. #endif
  741. }
  742. void servo_init()
  743. {
  744. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  745. servos[0].attach(SERVO0_PIN);
  746. #endif
  747. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  748. servos[1].attach(SERVO1_PIN);
  749. #endif
  750. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  751. servos[2].attach(SERVO2_PIN);
  752. #endif
  753. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  754. servos[3].attach(SERVO3_PIN);
  755. #endif
  756. #if (NUM_SERVOS >= 5)
  757. #error "TODO: enter initalisation code for more servos"
  758. #endif
  759. }
  760. static void lcd_language_menu();
  761. #ifdef MESH_BED_LEVELING
  762. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  763. #endif
  764. // "Setup" function is called by the Arduino framework on startup.
  765. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  766. // are initialized by the main() routine provided by the Arduino framework.
  767. void setup()
  768. {
  769. setup_killpin();
  770. setup_powerhold();
  771. MYSERIAL.begin(BAUDRATE);
  772. SERIAL_PROTOCOLLNPGM("start");
  773. SERIAL_ECHO_START;
  774. #if 0
  775. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  776. for (int i = 0; i < 4096; ++ i) {
  777. int b = eeprom_read_byte((unsigned char*)i);
  778. if (b != 255) {
  779. SERIAL_ECHO(i);
  780. SERIAL_ECHO(":");
  781. SERIAL_ECHO(b);
  782. SERIAL_ECHOLN("");
  783. }
  784. }
  785. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  786. #endif
  787. // Check startup - does nothing if bootloader sets MCUSR to 0
  788. byte mcu = MCUSR;
  789. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  790. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  791. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  792. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  793. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  794. MCUSR=0;
  795. //SERIAL_ECHORPGM(MSG_MARLIN);
  796. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  797. #ifdef STRING_VERSION_CONFIG_H
  798. #ifdef STRING_CONFIG_H_AUTHOR
  799. SERIAL_ECHO_START;
  800. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  801. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  802. SERIAL_ECHORPGM(MSG_AUTHOR);
  803. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  804. SERIAL_ECHOPGM("Compiled: ");
  805. SERIAL_ECHOLNPGM(__DATE__);
  806. #endif
  807. #endif
  808. SERIAL_ECHO_START;
  809. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  810. SERIAL_ECHO(freeMemory());
  811. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  812. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  813. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  814. Config_RetrieveSettings();
  815. tp_init(); // Initialize temperature loop
  816. plan_init(); // Initialize planner;
  817. watchdog_init();
  818. st_init(); // Initialize stepper, this enables interrupts!
  819. setup_photpin();
  820. servo_init();
  821. // Reset the machine correction matrix.
  822. // It does not make sense to load the correction matrix until the machine is homed.
  823. world2machine_reset();
  824. lcd_init();
  825. if (!READ(BTN_ENC))
  826. {
  827. _delay_ms(1000);
  828. if (!READ(BTN_ENC))
  829. {
  830. SET_OUTPUT(BEEPER);
  831. WRITE(BEEPER, HIGH);
  832. lcd_force_language_selection();
  833. farm_no = 0;
  834. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  835. farm_mode = false;
  836. while (!READ(BTN_ENC));
  837. WRITE(BEEPER, LOW);
  838. #ifdef MESH_BED_LEVELING
  839. _delay_ms(2000);
  840. if (!READ(BTN_ENC))
  841. {
  842. WRITE(BEEPER, HIGH);
  843. _delay_ms(100);
  844. WRITE(BEEPER, LOW);
  845. _delay_ms(200);
  846. WRITE(BEEPER, HIGH);
  847. _delay_ms(100);
  848. WRITE(BEEPER, LOW);
  849. int _z = 0;
  850. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  851. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  852. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  853. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  854. }
  855. else
  856. {
  857. WRITE(BEEPER, HIGH);
  858. _delay_ms(100);
  859. WRITE(BEEPER, LOW);
  860. }
  861. #endif // mesh
  862. }
  863. }
  864. else
  865. {
  866. _delay_ms(1000); // wait 1sec to display the splash screen
  867. }
  868. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  869. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  870. #endif
  871. #ifdef DIGIPOT_I2C
  872. digipot_i2c_init();
  873. #endif
  874. setup_homepin();
  875. #if defined(Z_AXIS_ALWAYS_ON)
  876. enable_z();
  877. #endif
  878. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  879. if (farm_no > 0)
  880. {
  881. farm_mode = true;
  882. farm_no = farm_no;
  883. prusa_statistics(8);
  884. }
  885. else
  886. {
  887. farm_mode = false;
  888. farm_no = 0;
  889. }
  890. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  891. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  892. // is being written into the EEPROM, so the update procedure will be triggered only once.
  893. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  894. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  895. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  896. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  897. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  898. // Get the selected laugnage index before display update.
  899. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  900. if (lang_selected >= LANG_NUM)
  901. lang_selected = 1;
  902. // Show the message.
  903. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  904. lcd_update_enable(true);
  905. lcd_implementation_clear();
  906. }
  907. // Store the currently running firmware into an eeprom,
  908. // so the next time the firmware gets updated, it will know from which version it has been updated.
  909. update_current_firmware_version_to_eeprom();
  910. }
  911. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  912. // Before loop(), the setup() function is called by the main() routine.
  913. void loop()
  914. {
  915. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  916. {
  917. is_usb_printing = true;
  918. usb_printing_counter--;
  919. _usb_timer = millis();
  920. }
  921. if (usb_printing_counter == 0)
  922. {
  923. is_usb_printing = false;
  924. }
  925. get_command();
  926. #ifdef SDSUPPORT
  927. card.checkautostart(false);
  928. #endif
  929. if(buflen)
  930. {
  931. #ifdef SDSUPPORT
  932. if(card.saving)
  933. {
  934. // Saving a G-code file onto an SD-card is in progress.
  935. // Saving starts with M28, saving until M29 is seen.
  936. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  937. card.write_command(CMDBUFFER_CURRENT_STRING);
  938. if(card.logging)
  939. process_commands();
  940. else
  941. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  942. } else {
  943. card.closefile();
  944. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  945. }
  946. } else {
  947. process_commands();
  948. }
  949. #else
  950. process_commands();
  951. #endif //SDSUPPORT
  952. if (! cmdbuffer_front_already_processed)
  953. cmdqueue_pop_front();
  954. cmdbuffer_front_already_processed = false;
  955. }
  956. //check heater every n milliseconds
  957. manage_heater();
  958. manage_inactivity();
  959. checkHitEndstops();
  960. lcd_update();
  961. }
  962. void get_command()
  963. {
  964. // Test and reserve space for the new command string.
  965. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  966. return;
  967. while (MYSERIAL.available() > 0) {
  968. char serial_char = MYSERIAL.read();
  969. if (serial_char < 0)
  970. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  971. // and Marlin does not support such file names anyway.
  972. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  973. // to a hang-up of the print process from an SD card.
  974. continue;
  975. if(serial_char == '\n' ||
  976. serial_char == '\r' ||
  977. (serial_char == ':' && comment_mode == false) ||
  978. serial_count >= (MAX_CMD_SIZE - 1) )
  979. {
  980. if(!serial_count) { //if empty line
  981. comment_mode = false; //for new command
  982. return;
  983. }
  984. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  985. if(!comment_mode){
  986. comment_mode = false; //for new command
  987. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  988. {
  989. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  990. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  991. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  992. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  993. // M110 - set current line number.
  994. // Line numbers not sent in succession.
  995. SERIAL_ERROR_START;
  996. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  997. SERIAL_ERRORLN(gcode_LastN);
  998. //Serial.println(gcode_N);
  999. FlushSerialRequestResend();
  1000. serial_count = 0;
  1001. return;
  1002. }
  1003. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1004. {
  1005. byte checksum = 0;
  1006. char *p = cmdbuffer+bufindw+1;
  1007. while (p != strchr_pointer)
  1008. checksum = checksum^(*p++);
  1009. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1010. SERIAL_ERROR_START;
  1011. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1012. SERIAL_ERRORLN(gcode_LastN);
  1013. FlushSerialRequestResend();
  1014. serial_count = 0;
  1015. return;
  1016. }
  1017. // If no errors, remove the checksum and continue parsing.
  1018. *strchr_pointer = 0;
  1019. }
  1020. else
  1021. {
  1022. SERIAL_ERROR_START;
  1023. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1024. SERIAL_ERRORLN(gcode_LastN);
  1025. FlushSerialRequestResend();
  1026. serial_count = 0;
  1027. return;
  1028. }
  1029. gcode_LastN = gcode_N;
  1030. //if no errors, continue parsing
  1031. } // end of 'N' command
  1032. else // if we don't receive 'N' but still see '*'
  1033. {
  1034. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1035. {
  1036. SERIAL_ERROR_START;
  1037. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1038. SERIAL_ERRORLN(gcode_LastN);
  1039. serial_count = 0;
  1040. return;
  1041. }
  1042. } // end of '*' command
  1043. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1044. if (! IS_SD_PRINTING) {
  1045. usb_printing_counter = 10;
  1046. is_usb_printing = true;
  1047. }
  1048. if (Stopped == true) {
  1049. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1050. if (gcode >= 0 && gcode <= 3) {
  1051. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1052. LCD_MESSAGERPGM(MSG_STOPPED);
  1053. }
  1054. }
  1055. } // end of 'G' command
  1056. //If command was e-stop process now
  1057. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1058. kill();
  1059. // Store the current line into buffer, move to the next line.
  1060. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1061. #ifdef CMDBUFFER_DEBUG
  1062. SERIAL_ECHO_START;
  1063. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1064. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1065. SERIAL_ECHOLNPGM("");
  1066. #endif /* CMDBUFFER_DEBUG */
  1067. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1068. if (bufindw == sizeof(cmdbuffer))
  1069. bufindw = 0;
  1070. ++ buflen;
  1071. #ifdef CMDBUFFER_DEBUG
  1072. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1073. SERIAL_ECHO(buflen);
  1074. SERIAL_ECHOLNPGM("");
  1075. #endif /* CMDBUFFER_DEBUG */
  1076. } // end of 'not comment mode'
  1077. serial_count = 0; //clear buffer
  1078. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1079. // in the queue, as this function will reserve the memory.
  1080. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1081. return;
  1082. } // end of "end of line" processing
  1083. else {
  1084. // Not an "end of line" symbol. Store the new character into a buffer.
  1085. if(serial_char == ';') comment_mode = true;
  1086. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1087. }
  1088. } // end of serial line processing loop
  1089. #ifdef SDSUPPORT
  1090. if(!card.sdprinting || serial_count!=0){
  1091. // If there is a half filled buffer from serial line, wait until return before
  1092. // continuing with the serial line.
  1093. return;
  1094. }
  1095. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1096. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1097. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1098. static bool stop_buffering=false;
  1099. if(buflen==0) stop_buffering=false;
  1100. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1101. while( !card.eof() && !stop_buffering) {
  1102. int16_t n=card.get();
  1103. char serial_char = (char)n;
  1104. if(serial_char == '\n' ||
  1105. serial_char == '\r' ||
  1106. (serial_char == '#' && comment_mode == false) ||
  1107. (serial_char == ':' && comment_mode == false) ||
  1108. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1109. {
  1110. if(card.eof()){
  1111. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1112. stoptime=millis();
  1113. char time[30];
  1114. unsigned long t=(stoptime-starttime)/1000;
  1115. int hours, minutes;
  1116. minutes=(t/60)%60;
  1117. hours=t/60/60;
  1118. save_statistics(total_filament_used, t);
  1119. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHOLN(time);
  1122. lcd_setstatus(time);
  1123. card.printingHasFinished();
  1124. card.checkautostart(true);
  1125. if (farm_mode)
  1126. {
  1127. prusa_statistics(6);
  1128. lcd_commands_type = 4;
  1129. }
  1130. }
  1131. if(serial_char=='#')
  1132. stop_buffering=true;
  1133. if(!serial_count)
  1134. {
  1135. comment_mode = false; //for new command
  1136. return; //if empty line
  1137. }
  1138. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1139. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1140. ++ buflen;
  1141. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1142. if (bufindw == sizeof(cmdbuffer))
  1143. bufindw = 0;
  1144. comment_mode = false; //for new command
  1145. serial_count = 0; //clear buffer
  1146. // The following line will reserve buffer space if available.
  1147. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1148. return;
  1149. }
  1150. else
  1151. {
  1152. if(serial_char == ';') comment_mode = true;
  1153. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1154. }
  1155. }
  1156. #endif //SDSUPPORT
  1157. }
  1158. // Return True if a character was found
  1159. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1160. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1161. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1162. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1163. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1164. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1165. #define DEFINE_PGM_READ_ANY(type, reader) \
  1166. static inline type pgm_read_any(const type *p) \
  1167. { return pgm_read_##reader##_near(p); }
  1168. DEFINE_PGM_READ_ANY(float, float);
  1169. DEFINE_PGM_READ_ANY(signed char, byte);
  1170. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1171. static const PROGMEM type array##_P[3] = \
  1172. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1173. static inline type array(int axis) \
  1174. { return pgm_read_any(&array##_P[axis]); } \
  1175. type array##_ext(int axis) \
  1176. { return pgm_read_any(&array##_P[axis]); }
  1177. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1178. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1179. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1180. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1181. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1182. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1183. static void axis_is_at_home(int axis) {
  1184. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1185. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1186. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1187. }
  1188. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1189. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1190. static void setup_for_endstop_move() {
  1191. saved_feedrate = feedrate;
  1192. saved_feedmultiply = feedmultiply;
  1193. feedmultiply = 100;
  1194. previous_millis_cmd = millis();
  1195. enable_endstops(true);
  1196. }
  1197. static void clean_up_after_endstop_move() {
  1198. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1199. enable_endstops(false);
  1200. #endif
  1201. feedrate = saved_feedrate;
  1202. feedmultiply = saved_feedmultiply;
  1203. previous_millis_cmd = millis();
  1204. }
  1205. #ifdef ENABLE_AUTO_BED_LEVELING
  1206. #ifdef AUTO_BED_LEVELING_GRID
  1207. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1208. {
  1209. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1210. planeNormal.debug("planeNormal");
  1211. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1212. //bedLevel.debug("bedLevel");
  1213. //plan_bed_level_matrix.debug("bed level before");
  1214. //vector_3 uncorrected_position = plan_get_position_mm();
  1215. //uncorrected_position.debug("position before");
  1216. vector_3 corrected_position = plan_get_position();
  1217. // corrected_position.debug("position after");
  1218. current_position[X_AXIS] = corrected_position.x;
  1219. current_position[Y_AXIS] = corrected_position.y;
  1220. current_position[Z_AXIS] = corrected_position.z;
  1221. // put the bed at 0 so we don't go below it.
  1222. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1223. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1224. }
  1225. #else // not AUTO_BED_LEVELING_GRID
  1226. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1227. plan_bed_level_matrix.set_to_identity();
  1228. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1229. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1230. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1231. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1232. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1233. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1234. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1235. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1236. vector_3 corrected_position = plan_get_position();
  1237. current_position[X_AXIS] = corrected_position.x;
  1238. current_position[Y_AXIS] = corrected_position.y;
  1239. current_position[Z_AXIS] = corrected_position.z;
  1240. // put the bed at 0 so we don't go below it.
  1241. current_position[Z_AXIS] = zprobe_zoffset;
  1242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1243. }
  1244. #endif // AUTO_BED_LEVELING_GRID
  1245. static void run_z_probe() {
  1246. plan_bed_level_matrix.set_to_identity();
  1247. feedrate = homing_feedrate[Z_AXIS];
  1248. // move down until you find the bed
  1249. float zPosition = -10;
  1250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1251. st_synchronize();
  1252. // we have to let the planner know where we are right now as it is not where we said to go.
  1253. zPosition = st_get_position_mm(Z_AXIS);
  1254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1255. // move up the retract distance
  1256. zPosition += home_retract_mm(Z_AXIS);
  1257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1258. st_synchronize();
  1259. // move back down slowly to find bed
  1260. feedrate = homing_feedrate[Z_AXIS]/4;
  1261. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1263. st_synchronize();
  1264. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1265. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1267. }
  1268. static void do_blocking_move_to(float x, float y, float z) {
  1269. float oldFeedRate = feedrate;
  1270. feedrate = homing_feedrate[Z_AXIS];
  1271. current_position[Z_AXIS] = z;
  1272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1273. st_synchronize();
  1274. feedrate = XY_TRAVEL_SPEED;
  1275. current_position[X_AXIS] = x;
  1276. current_position[Y_AXIS] = y;
  1277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1278. st_synchronize();
  1279. feedrate = oldFeedRate;
  1280. }
  1281. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1282. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1283. }
  1284. /// Probe bed height at position (x,y), returns the measured z value
  1285. static float probe_pt(float x, float y, float z_before) {
  1286. // move to right place
  1287. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1288. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1289. run_z_probe();
  1290. float measured_z = current_position[Z_AXIS];
  1291. SERIAL_PROTOCOLRPGM(MSG_BED);
  1292. SERIAL_PROTOCOLPGM(" x: ");
  1293. SERIAL_PROTOCOL(x);
  1294. SERIAL_PROTOCOLPGM(" y: ");
  1295. SERIAL_PROTOCOL(y);
  1296. SERIAL_PROTOCOLPGM(" z: ");
  1297. SERIAL_PROTOCOL(measured_z);
  1298. SERIAL_PROTOCOLPGM("\n");
  1299. return measured_z;
  1300. }
  1301. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1302. void homeaxis(int axis) {
  1303. #define HOMEAXIS_DO(LETTER) \
  1304. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1305. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1306. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1307. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1308. 0) {
  1309. int axis_home_dir = home_dir(axis);
  1310. current_position[axis] = 0;
  1311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1312. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1313. feedrate = homing_feedrate[axis];
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1315. st_synchronize();
  1316. current_position[axis] = 0;
  1317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1318. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1319. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1320. st_synchronize();
  1321. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1322. feedrate = homing_feedrate[axis]/2 ;
  1323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1324. st_synchronize();
  1325. axis_is_at_home(axis);
  1326. destination[axis] = current_position[axis];
  1327. feedrate = 0.0;
  1328. endstops_hit_on_purpose();
  1329. axis_known_position[axis] = true;
  1330. }
  1331. }
  1332. void home_xy()
  1333. {
  1334. set_destination_to_current();
  1335. homeaxis(X_AXIS);
  1336. homeaxis(Y_AXIS);
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. endstops_hit_on_purpose();
  1339. }
  1340. void refresh_cmd_timeout(void)
  1341. {
  1342. previous_millis_cmd = millis();
  1343. }
  1344. #ifdef FWRETRACT
  1345. void retract(bool retracting, bool swapretract = false) {
  1346. if(retracting && !retracted[active_extruder]) {
  1347. destination[X_AXIS]=current_position[X_AXIS];
  1348. destination[Y_AXIS]=current_position[Y_AXIS];
  1349. destination[Z_AXIS]=current_position[Z_AXIS];
  1350. destination[E_AXIS]=current_position[E_AXIS];
  1351. if (swapretract) {
  1352. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1353. } else {
  1354. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1355. }
  1356. plan_set_e_position(current_position[E_AXIS]);
  1357. float oldFeedrate = feedrate;
  1358. feedrate=retract_feedrate*60;
  1359. retracted[active_extruder]=true;
  1360. prepare_move();
  1361. current_position[Z_AXIS]-=retract_zlift;
  1362. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1363. prepare_move();
  1364. feedrate = oldFeedrate;
  1365. } else if(!retracting && retracted[active_extruder]) {
  1366. destination[X_AXIS]=current_position[X_AXIS];
  1367. destination[Y_AXIS]=current_position[Y_AXIS];
  1368. destination[Z_AXIS]=current_position[Z_AXIS];
  1369. destination[E_AXIS]=current_position[E_AXIS];
  1370. current_position[Z_AXIS]+=retract_zlift;
  1371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. //prepare_move();
  1373. if (swapretract) {
  1374. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1375. } else {
  1376. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1377. }
  1378. plan_set_e_position(current_position[E_AXIS]);
  1379. float oldFeedrate = feedrate;
  1380. feedrate=retract_recover_feedrate*60;
  1381. retracted[active_extruder]=false;
  1382. prepare_move();
  1383. feedrate = oldFeedrate;
  1384. }
  1385. } //retract
  1386. #endif //FWRETRACT
  1387. void process_commands()
  1388. {
  1389. #ifdef FILAMENT_RUNOUT_SUPPORT
  1390. SET_INPUT(FR_SENS);
  1391. #endif
  1392. #ifdef CMDBUFFER_DEBUG
  1393. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1394. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1395. SERIAL_ECHOLNPGM("");
  1396. SERIAL_ECHOPGM("In cmdqueue: ");
  1397. SERIAL_ECHO(buflen);
  1398. SERIAL_ECHOLNPGM("");
  1399. #endif /* CMDBUFFER_DEBUG */
  1400. unsigned long codenum; //throw away variable
  1401. char *starpos = NULL;
  1402. #ifdef ENABLE_AUTO_BED_LEVELING
  1403. float x_tmp, y_tmp, z_tmp, real_z;
  1404. #endif
  1405. // PRUSA GCODES
  1406. if(code_seen("PRUSA")){
  1407. if(code_seen("Fir")){
  1408. SERIAL_PROTOCOLLN(FW_version);
  1409. } else if(code_seen("Rev")){
  1410. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1411. } else if(code_seen("Lang")) {
  1412. lcd_force_language_selection();
  1413. } else if(code_seen("Lz")) {
  1414. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1415. }
  1416. //else if (code_seen('Cal')) {
  1417. // lcd_calibration();
  1418. // }
  1419. }
  1420. else
  1421. if(code_seen('G'))
  1422. {
  1423. switch((int)code_value())
  1424. {
  1425. case 0: // G0 -> G1
  1426. case 1: // G1
  1427. if(Stopped == false) {
  1428. #ifdef FILAMENT_RUNOUT_SUPPORT
  1429. if(READ(FR_SENS)){
  1430. feedmultiplyBckp=feedmultiply;
  1431. float target[4];
  1432. float lastpos[4];
  1433. target[X_AXIS]=current_position[X_AXIS];
  1434. target[Y_AXIS]=current_position[Y_AXIS];
  1435. target[Z_AXIS]=current_position[Z_AXIS];
  1436. target[E_AXIS]=current_position[E_AXIS];
  1437. lastpos[X_AXIS]=current_position[X_AXIS];
  1438. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1439. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1440. lastpos[E_AXIS]=current_position[E_AXIS];
  1441. //retract by E
  1442. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1444. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1446. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1447. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1449. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1451. //finish moves
  1452. st_synchronize();
  1453. //disable extruder steppers so filament can be removed
  1454. disable_e0();
  1455. disable_e1();
  1456. disable_e2();
  1457. delay(100);
  1458. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1459. uint8_t cnt=0;
  1460. int counterBeep = 0;
  1461. lcd_wait_interact();
  1462. while(!lcd_clicked()){
  1463. cnt++;
  1464. manage_heater();
  1465. manage_inactivity(true);
  1466. //lcd_update();
  1467. if(cnt==0)
  1468. {
  1469. #if BEEPER > 0
  1470. if (counterBeep== 500){
  1471. counterBeep = 0;
  1472. }
  1473. SET_OUTPUT(BEEPER);
  1474. if (counterBeep== 0){
  1475. WRITE(BEEPER,HIGH);
  1476. }
  1477. if (counterBeep== 20){
  1478. WRITE(BEEPER,LOW);
  1479. }
  1480. counterBeep++;
  1481. #else
  1482. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1483. lcd_buzz(1000/6,100);
  1484. #else
  1485. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1486. #endif
  1487. #endif
  1488. }
  1489. }
  1490. WRITE(BEEPER,LOW);
  1491. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1493. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1495. lcd_change_fil_state = 0;
  1496. lcd_loading_filament();
  1497. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1498. lcd_change_fil_state = 0;
  1499. lcd_alright();
  1500. switch(lcd_change_fil_state){
  1501. case 2:
  1502. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1504. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1506. lcd_loading_filament();
  1507. break;
  1508. case 3:
  1509. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1511. lcd_loading_color();
  1512. break;
  1513. default:
  1514. lcd_change_success();
  1515. break;
  1516. }
  1517. }
  1518. target[E_AXIS]+= 5;
  1519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1520. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1522. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1523. //plan_set_e_position(current_position[E_AXIS]);
  1524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1525. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1526. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1527. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1528. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1529. plan_set_e_position(lastpos[E_AXIS]);
  1530. feedmultiply=feedmultiplyBckp;
  1531. char cmd[9];
  1532. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1533. enquecommand(cmd);
  1534. }
  1535. #endif
  1536. get_coordinates(); // For X Y Z E F
  1537. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1538. #ifdef FWRETRACT
  1539. if(autoretract_enabled)
  1540. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1541. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1542. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1543. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1544. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1545. retract(!retracted);
  1546. return;
  1547. }
  1548. }
  1549. #endif //FWRETRACT
  1550. prepare_move();
  1551. //ClearToSend();
  1552. }
  1553. break;
  1554. case 2: // G2 - CW ARC
  1555. if(Stopped == false) {
  1556. get_arc_coordinates();
  1557. prepare_arc_move(true);
  1558. }
  1559. break;
  1560. case 3: // G3 - CCW ARC
  1561. if(Stopped == false) {
  1562. get_arc_coordinates();
  1563. prepare_arc_move(false);
  1564. }
  1565. break;
  1566. case 4: // G4 dwell
  1567. LCD_MESSAGERPGM(MSG_DWELL);
  1568. codenum = 0;
  1569. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1570. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1571. st_synchronize();
  1572. codenum += millis(); // keep track of when we started waiting
  1573. previous_millis_cmd = millis();
  1574. while(millis() < codenum) {
  1575. manage_heater();
  1576. manage_inactivity();
  1577. lcd_update();
  1578. }
  1579. break;
  1580. #ifdef FWRETRACT
  1581. case 10: // G10 retract
  1582. #if EXTRUDERS > 1
  1583. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1584. retract(true,retracted_swap[active_extruder]);
  1585. #else
  1586. retract(true);
  1587. #endif
  1588. break;
  1589. case 11: // G11 retract_recover
  1590. #if EXTRUDERS > 1
  1591. retract(false,retracted_swap[active_extruder]);
  1592. #else
  1593. retract(false);
  1594. #endif
  1595. break;
  1596. #endif //FWRETRACT
  1597. case 28: //G28 Home all Axis one at a time
  1598. #ifdef ENABLE_AUTO_BED_LEVELING
  1599. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1600. #endif //ENABLE_AUTO_BED_LEVELING
  1601. // For mesh bed leveling deactivate the matrix temporarily
  1602. #ifdef MESH_BED_LEVELING
  1603. mbl.active = 0;
  1604. #endif
  1605. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1606. // the planner will not perform any adjustments in the XY plane.
  1607. // Wait for the motors to stop and update the current position with the absolute values.
  1608. world2machine_revert_to_uncorrected();
  1609. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1610. // consumed during the first movements following this statement.
  1611. babystepsTodoZsubtract(babystepLoadZ);
  1612. babystepLoadZ = 0;
  1613. saved_feedrate = feedrate;
  1614. saved_feedmultiply = feedmultiply;
  1615. feedmultiply = 100;
  1616. previous_millis_cmd = millis();
  1617. enable_endstops(true);
  1618. for(int8_t i=0; i < NUM_AXIS; i++)
  1619. destination[i] = current_position[i];
  1620. feedrate = 0.0;
  1621. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1622. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1623. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1624. homeaxis(Z_AXIS);
  1625. }
  1626. #endif
  1627. #ifdef QUICK_HOME
  1628. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1629. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1630. {
  1631. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1632. int x_axis_home_dir = home_dir(X_AXIS);
  1633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1634. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1635. feedrate = homing_feedrate[X_AXIS];
  1636. if(homing_feedrate[Y_AXIS]<feedrate)
  1637. feedrate = homing_feedrate[Y_AXIS];
  1638. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1639. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1640. } else {
  1641. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1642. }
  1643. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1644. st_synchronize();
  1645. axis_is_at_home(X_AXIS);
  1646. axis_is_at_home(Y_AXIS);
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. destination[X_AXIS] = current_position[X_AXIS];
  1649. destination[Y_AXIS] = current_position[Y_AXIS];
  1650. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1651. feedrate = 0.0;
  1652. st_synchronize();
  1653. endstops_hit_on_purpose();
  1654. current_position[X_AXIS] = destination[X_AXIS];
  1655. current_position[Y_AXIS] = destination[Y_AXIS];
  1656. current_position[Z_AXIS] = destination[Z_AXIS];
  1657. }
  1658. #endif /* QUICK_HOME */
  1659. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1660. homeaxis(X_AXIS);
  1661. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1662. homeaxis(Y_AXIS);
  1663. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1664. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1665. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1666. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1667. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1668. #ifndef Z_SAFE_HOMING
  1669. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1670. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1671. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1672. feedrate = max_feedrate[Z_AXIS];
  1673. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1674. st_synchronize();
  1675. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1676. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1677. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1678. {
  1679. homeaxis(X_AXIS);
  1680. homeaxis(Y_AXIS);
  1681. }
  1682. // 1st mesh bed leveling measurement point, corrected.
  1683. world2machine_initialize();
  1684. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1685. world2machine_reset();
  1686. if (destination[Y_AXIS] < Y_MIN_POS)
  1687. destination[Y_AXIS] = Y_MIN_POS;
  1688. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1689. feedrate = homing_feedrate[Z_AXIS]/10;
  1690. current_position[Z_AXIS] = 0;
  1691. enable_endstops(false);
  1692. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1693. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1694. st_synchronize();
  1695. current_position[X_AXIS] = destination[X_AXIS];
  1696. current_position[Y_AXIS] = destination[Y_AXIS];
  1697. enable_endstops(true);
  1698. endstops_hit_on_purpose();
  1699. homeaxis(Z_AXIS);
  1700. #else // MESH_BED_LEVELING
  1701. homeaxis(Z_AXIS);
  1702. #endif // MESH_BED_LEVELING
  1703. }
  1704. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1705. if(home_all_axis) {
  1706. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1707. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1708. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1709. feedrate = XY_TRAVEL_SPEED/60;
  1710. current_position[Z_AXIS] = 0;
  1711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1712. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1713. st_synchronize();
  1714. current_position[X_AXIS] = destination[X_AXIS];
  1715. current_position[Y_AXIS] = destination[Y_AXIS];
  1716. homeaxis(Z_AXIS);
  1717. }
  1718. // Let's see if X and Y are homed and probe is inside bed area.
  1719. if(code_seen(axis_codes[Z_AXIS])) {
  1720. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1721. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1722. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1723. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1724. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1725. current_position[Z_AXIS] = 0;
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1728. feedrate = max_feedrate[Z_AXIS];
  1729. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1730. st_synchronize();
  1731. homeaxis(Z_AXIS);
  1732. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1733. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1734. SERIAL_ECHO_START;
  1735. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1736. } else {
  1737. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1738. SERIAL_ECHO_START;
  1739. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1740. }
  1741. }
  1742. #endif // Z_SAFE_HOMING
  1743. #endif // Z_HOME_DIR < 0
  1744. if(code_seen(axis_codes[Z_AXIS])) {
  1745. if(code_value_long() != 0) {
  1746. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1747. }
  1748. }
  1749. #ifdef ENABLE_AUTO_BED_LEVELING
  1750. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1751. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1752. }
  1753. #endif
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1756. enable_endstops(false);
  1757. #endif
  1758. feedrate = saved_feedrate;
  1759. feedmultiply = saved_feedmultiply;
  1760. previous_millis_cmd = millis();
  1761. endstops_hit_on_purpose();
  1762. #ifndef MESH_BED_LEVELING
  1763. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1764. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1765. if(card.sdprinting) {
  1766. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  1767. if(babystepLoadZ != 0)
  1768. lcd_adjust_z();
  1769. }
  1770. #endif
  1771. // Load the machine correction matrix
  1772. world2machine_initialize();
  1773. // and correct the current_position to match the transformed coordinate system.
  1774. world2machine_update_current();
  1775. #ifdef MESH_BED_LEVELING
  1776. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1777. {
  1778. }
  1779. else
  1780. {
  1781. st_synchronize();
  1782. // Push the commands to the front of the message queue in the reverse order!
  1783. // There shall be always enough space reserved for these commands.
  1784. // enquecommand_front_P((PSTR("G80")));
  1785. goto case_G80;
  1786. }
  1787. #endif
  1788. if (farm_mode) { prusa_statistics(20); };
  1789. break;
  1790. #ifdef ENABLE_AUTO_BED_LEVELING
  1791. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1792. {
  1793. #if Z_MIN_PIN == -1
  1794. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1795. #endif
  1796. // Prevent user from running a G29 without first homing in X and Y
  1797. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1798. {
  1799. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1800. SERIAL_ECHO_START;
  1801. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1802. break; // abort G29, since we don't know where we are
  1803. }
  1804. st_synchronize();
  1805. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1806. //vector_3 corrected_position = plan_get_position_mm();
  1807. //corrected_position.debug("position before G29");
  1808. plan_bed_level_matrix.set_to_identity();
  1809. vector_3 uncorrected_position = plan_get_position();
  1810. //uncorrected_position.debug("position durring G29");
  1811. current_position[X_AXIS] = uncorrected_position.x;
  1812. current_position[Y_AXIS] = uncorrected_position.y;
  1813. current_position[Z_AXIS] = uncorrected_position.z;
  1814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1815. setup_for_endstop_move();
  1816. feedrate = homing_feedrate[Z_AXIS];
  1817. #ifdef AUTO_BED_LEVELING_GRID
  1818. // probe at the points of a lattice grid
  1819. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1820. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1821. // solve the plane equation ax + by + d = z
  1822. // A is the matrix with rows [x y 1] for all the probed points
  1823. // B is the vector of the Z positions
  1824. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1825. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1826. // "A" matrix of the linear system of equations
  1827. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1828. // "B" vector of Z points
  1829. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1830. int probePointCounter = 0;
  1831. bool zig = true;
  1832. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1833. {
  1834. int xProbe, xInc;
  1835. if (zig)
  1836. {
  1837. xProbe = LEFT_PROBE_BED_POSITION;
  1838. //xEnd = RIGHT_PROBE_BED_POSITION;
  1839. xInc = xGridSpacing;
  1840. zig = false;
  1841. } else // zag
  1842. {
  1843. xProbe = RIGHT_PROBE_BED_POSITION;
  1844. //xEnd = LEFT_PROBE_BED_POSITION;
  1845. xInc = -xGridSpacing;
  1846. zig = true;
  1847. }
  1848. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1849. {
  1850. float z_before;
  1851. if (probePointCounter == 0)
  1852. {
  1853. // raise before probing
  1854. z_before = Z_RAISE_BEFORE_PROBING;
  1855. } else
  1856. {
  1857. // raise extruder
  1858. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1859. }
  1860. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1861. eqnBVector[probePointCounter] = measured_z;
  1862. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1863. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1864. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1865. probePointCounter++;
  1866. xProbe += xInc;
  1867. }
  1868. }
  1869. clean_up_after_endstop_move();
  1870. // solve lsq problem
  1871. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1872. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1873. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1874. SERIAL_PROTOCOLPGM(" b: ");
  1875. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1876. SERIAL_PROTOCOLPGM(" d: ");
  1877. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1878. set_bed_level_equation_lsq(plane_equation_coefficients);
  1879. free(plane_equation_coefficients);
  1880. #else // AUTO_BED_LEVELING_GRID not defined
  1881. // Probe at 3 arbitrary points
  1882. // probe 1
  1883. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1884. // probe 2
  1885. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1886. // probe 3
  1887. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1888. clean_up_after_endstop_move();
  1889. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1890. #endif // AUTO_BED_LEVELING_GRID
  1891. st_synchronize();
  1892. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1893. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1894. // When the bed is uneven, this height must be corrected.
  1895. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1896. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1897. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1898. z_tmp = current_position[Z_AXIS];
  1899. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1900. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. }
  1903. break;
  1904. #ifndef Z_PROBE_SLED
  1905. case 30: // G30 Single Z Probe
  1906. {
  1907. st_synchronize();
  1908. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1909. setup_for_endstop_move();
  1910. feedrate = homing_feedrate[Z_AXIS];
  1911. run_z_probe();
  1912. SERIAL_PROTOCOLPGM(MSG_BED);
  1913. SERIAL_PROTOCOLPGM(" X: ");
  1914. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1915. SERIAL_PROTOCOLPGM(" Y: ");
  1916. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1917. SERIAL_PROTOCOLPGM(" Z: ");
  1918. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1919. SERIAL_PROTOCOLPGM("\n");
  1920. clean_up_after_endstop_move();
  1921. }
  1922. break;
  1923. #else
  1924. case 31: // dock the sled
  1925. dock_sled(true);
  1926. break;
  1927. case 32: // undock the sled
  1928. dock_sled(false);
  1929. break;
  1930. #endif // Z_PROBE_SLED
  1931. #endif // ENABLE_AUTO_BED_LEVELING
  1932. #ifdef MESH_BED_LEVELING
  1933. /**
  1934. * G80: Mesh-based Z probe, probes a grid and produces a
  1935. * mesh to compensate for variable bed height
  1936. *
  1937. * The S0 report the points as below
  1938. *
  1939. * +----> X-axis
  1940. * |
  1941. * |
  1942. * v Y-axis
  1943. *
  1944. */
  1945. case 80:
  1946. case_G80:
  1947. {
  1948. if (!IS_SD_PRINTING)
  1949. {
  1950. custom_message = true;
  1951. custom_message_type = 1;
  1952. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1953. }
  1954. // Firstly check if we know where we are
  1955. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1956. // We don't know where we are! HOME!
  1957. // Push the commands to the front of the message queue in the reverse order!
  1958. // There shall be always enough space reserved for these commands.
  1959. repeatcommand_front(); // repeat G80 with all its parameters
  1960. enquecommand_front_P((PSTR("G28 W0")));
  1961. break;
  1962. }
  1963. mbl.reset();
  1964. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1965. // consumed during the first movements following this statement.
  1966. babystepsTodoZsubtract(babystepLoadZ);
  1967. babystepLoadZ = 0;
  1968. // Cycle through all points and probe them
  1969. // First move up. During this first movement, the babystepping will be reverted.
  1970. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1972. // The move to the first calibration point.
  1973. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1974. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  1975. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1976. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  1977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1978. // Wait until the move is finished.
  1979. st_synchronize();
  1980. int mesh_point = 0;
  1981. int ix = 0;
  1982. int iy = 0;
  1983. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1984. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1985. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1986. bool has_z = is_bed_z_jitter_data_valid();
  1987. setup_for_endstop_move();
  1988. const char *kill_message = NULL;
  1989. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  1990. // Get coords of a measuring point.
  1991. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1992. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1993. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1994. float z0 = 0.f;
  1995. if (has_z && mesh_point > 0) {
  1996. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  1997. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  1998. #if 0
  1999. SERIAL_ECHOPGM("Bed leveling, point: ");
  2000. MYSERIAL.print(mesh_point);
  2001. SERIAL_ECHOPGM(", calibration z: ");
  2002. MYSERIAL.print(z0, 5);
  2003. SERIAL_ECHOLNPGM("");
  2004. #endif
  2005. }
  2006. // Move Z to proper distance
  2007. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2009. st_synchronize();
  2010. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2011. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2012. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2013. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2014. enable_endstops(false);
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2016. st_synchronize();
  2017. // Go down until endstop is hit
  2018. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2019. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2020. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2021. break;
  2022. }
  2023. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2024. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2025. break;
  2026. }
  2027. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2028. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2029. break;
  2030. }
  2031. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2032. if (!IS_SD_PRINTING)
  2033. {
  2034. custom_message_state--;
  2035. }
  2036. mesh_point++;
  2037. }
  2038. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2040. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2041. st_synchronize();
  2042. kill(kill_message);
  2043. }
  2044. clean_up_after_endstop_move();
  2045. mbl.upsample_3x3();
  2046. mbl.active = 1;
  2047. current_position[X_AXIS] = X_MIN_POS+0.2;
  2048. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2049. current_position[Z_AXIS] = Z_MIN_POS;
  2050. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2051. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2052. st_synchronize();
  2053. if(card.sdprinting || is_usb_printing )
  2054. {
  2055. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  2056. {
  2057. // End of G80: Apply the baby stepping value.
  2058. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  2059. babystepsTodoZadd(babystepLoadZ);
  2060. }
  2061. }
  2062. }
  2063. break;
  2064. /**
  2065. * G81: Print mesh bed leveling status and bed profile if activated
  2066. */
  2067. case 81:
  2068. if (mbl.active) {
  2069. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2070. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2071. SERIAL_PROTOCOLPGM(",");
  2072. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2073. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2074. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2075. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2076. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2077. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2078. SERIAL_PROTOCOLPGM(" ");
  2079. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2080. }
  2081. SERIAL_PROTOCOLPGM("\n");
  2082. }
  2083. }
  2084. else
  2085. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2086. break;
  2087. /**
  2088. * G82: Single Z probe at current location
  2089. *
  2090. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2091. *
  2092. */
  2093. case 82:
  2094. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2095. setup_for_endstop_move();
  2096. find_bed_induction_sensor_point_z();
  2097. clean_up_after_endstop_move();
  2098. SERIAL_PROTOCOLPGM("Bed found at: ");
  2099. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2100. SERIAL_PROTOCOLPGM("\n");
  2101. break;
  2102. /**
  2103. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2104. */
  2105. case 83:
  2106. {
  2107. int babystepz = code_seen('S') ? code_value() : 0;
  2108. int BabyPosition = code_seen('P') ? code_value() : 0;
  2109. if (babystepz != 0) {
  2110. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2111. // Is the axis indexed starting with zero or one?
  2112. if (BabyPosition > 4) {
  2113. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2114. }else{
  2115. // Save it to the eeprom
  2116. babystepLoadZ = babystepz;
  2117. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2118. // adjust the Z
  2119. babystepsTodoZadd(babystepLoadZ);
  2120. }
  2121. }
  2122. }
  2123. break;
  2124. /**
  2125. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2126. */
  2127. case 84:
  2128. babystepsTodoZsubtract(babystepLoadZ);
  2129. // babystepLoadZ = 0;
  2130. break;
  2131. /**
  2132. * G85: Prusa3D specific: Pick best babystep
  2133. */
  2134. case 85:
  2135. lcd_pick_babystep();
  2136. break;
  2137. /**
  2138. * G86: Prusa3D specific: Disable babystep correction after home.
  2139. * This G-code will be performed at the start of a calibration script.
  2140. */
  2141. case 86:
  2142. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2143. break;
  2144. /**
  2145. * G87: Prusa3D specific: Enable babystep correction after home
  2146. * This G-code will be performed at the end of a calibration script.
  2147. */
  2148. case 87:
  2149. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2150. break;
  2151. case 88:
  2152. break;
  2153. #endif // ENABLE_MESH_BED_LEVELING
  2154. case 90: // G90
  2155. relative_mode = false;
  2156. break;
  2157. case 91: // G91
  2158. relative_mode = true;
  2159. break;
  2160. case 92: // G92
  2161. if(!code_seen(axis_codes[E_AXIS]))
  2162. st_synchronize();
  2163. for(int8_t i=0; i < NUM_AXIS; i++) {
  2164. if(code_seen(axis_codes[i])) {
  2165. if(i == E_AXIS) {
  2166. current_position[i] = code_value();
  2167. plan_set_e_position(current_position[E_AXIS]);
  2168. }
  2169. else {
  2170. current_position[i] = code_value()+add_homing[i];
  2171. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2172. }
  2173. }
  2174. }
  2175. break;
  2176. case 98:
  2177. farm_no = 21;
  2178. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2179. farm_mode = true;
  2180. break;
  2181. case 99:
  2182. farm_no = 0;
  2183. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2184. farm_mode = false;
  2185. break;
  2186. }
  2187. } // end if(code_seen('G'))
  2188. else if(code_seen('M'))
  2189. {
  2190. switch( (int)code_value() )
  2191. {
  2192. #ifdef ULTIPANEL
  2193. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2194. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2195. {
  2196. char *src = strchr_pointer + 2;
  2197. codenum = 0;
  2198. bool hasP = false, hasS = false;
  2199. if (code_seen('P')) {
  2200. codenum = code_value(); // milliseconds to wait
  2201. hasP = codenum > 0;
  2202. }
  2203. if (code_seen('S')) {
  2204. codenum = code_value() * 1000; // seconds to wait
  2205. hasS = codenum > 0;
  2206. }
  2207. starpos = strchr(src, '*');
  2208. if (starpos != NULL) *(starpos) = '\0';
  2209. while (*src == ' ') ++src;
  2210. if (!hasP && !hasS && *src != '\0') {
  2211. lcd_setstatus(src);
  2212. } else {
  2213. LCD_MESSAGERPGM(MSG_USERWAIT);
  2214. }
  2215. lcd_ignore_click();
  2216. st_synchronize();
  2217. previous_millis_cmd = millis();
  2218. if (codenum > 0){
  2219. codenum += millis(); // keep track of when we started waiting
  2220. while(millis() < codenum && !lcd_clicked()){
  2221. manage_heater();
  2222. manage_inactivity();
  2223. lcd_update();
  2224. }
  2225. lcd_ignore_click(false);
  2226. }else{
  2227. if (!lcd_detected())
  2228. break;
  2229. while(!lcd_clicked()){
  2230. manage_heater();
  2231. manage_inactivity();
  2232. lcd_update();
  2233. }
  2234. }
  2235. if (IS_SD_PRINTING)
  2236. LCD_MESSAGERPGM(MSG_RESUMING);
  2237. else
  2238. LCD_MESSAGERPGM(WELCOME_MSG);
  2239. }
  2240. break;
  2241. #endif
  2242. case 17:
  2243. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2244. enable_x();
  2245. enable_y();
  2246. enable_z();
  2247. enable_e0();
  2248. enable_e1();
  2249. enable_e2();
  2250. break;
  2251. #ifdef SDSUPPORT
  2252. case 20: // M20 - list SD card
  2253. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2254. card.ls();
  2255. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2256. break;
  2257. case 21: // M21 - init SD card
  2258. card.initsd();
  2259. break;
  2260. case 22: //M22 - release SD card
  2261. card.release();
  2262. break;
  2263. case 23: //M23 - Select file
  2264. starpos = (strchr(strchr_pointer + 4,'*'));
  2265. if(starpos!=NULL)
  2266. *(starpos)='\0';
  2267. card.openFile(strchr_pointer + 4,true);
  2268. break;
  2269. case 24: //M24 - Start SD print
  2270. card.startFileprint();
  2271. starttime=millis();
  2272. break;
  2273. case 25: //M25 - Pause SD print
  2274. card.pauseSDPrint();
  2275. break;
  2276. case 26: //M26 - Set SD index
  2277. if(card.cardOK && code_seen('S')) {
  2278. card.setIndex(code_value_long());
  2279. }
  2280. break;
  2281. case 27: //M27 - Get SD status
  2282. card.getStatus();
  2283. break;
  2284. case 28: //M28 - Start SD write
  2285. starpos = (strchr(strchr_pointer + 4,'*'));
  2286. if(starpos != NULL){
  2287. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2288. strchr_pointer = strchr(npos,' ') + 1;
  2289. *(starpos) = '\0';
  2290. }
  2291. card.openFile(strchr_pointer+4,false);
  2292. break;
  2293. case 29: //M29 - Stop SD write
  2294. //processed in write to file routine above
  2295. //card,saving = false;
  2296. break;
  2297. case 30: //M30 <filename> Delete File
  2298. if (card.cardOK){
  2299. card.closefile();
  2300. starpos = (strchr(strchr_pointer + 4,'*'));
  2301. if(starpos != NULL){
  2302. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2303. strchr_pointer = strchr(npos,' ') + 1;
  2304. *(starpos) = '\0';
  2305. }
  2306. card.removeFile(strchr_pointer + 4);
  2307. }
  2308. break;
  2309. case 32: //M32 - Select file and start SD print
  2310. {
  2311. if(card.sdprinting) {
  2312. st_synchronize();
  2313. }
  2314. starpos = (strchr(strchr_pointer + 4,'*'));
  2315. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2316. if(namestartpos==NULL)
  2317. {
  2318. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2319. }
  2320. else
  2321. namestartpos++; //to skip the '!'
  2322. if(starpos!=NULL)
  2323. *(starpos)='\0';
  2324. bool call_procedure=(code_seen('P'));
  2325. if(strchr_pointer>namestartpos)
  2326. call_procedure=false; //false alert, 'P' found within filename
  2327. if( card.cardOK )
  2328. {
  2329. card.openFile(namestartpos,true,!call_procedure);
  2330. if(code_seen('S'))
  2331. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2332. card.setIndex(code_value_long());
  2333. card.startFileprint();
  2334. if(!call_procedure)
  2335. starttime=millis(); //procedure calls count as normal print time.
  2336. }
  2337. } break;
  2338. case 928: //M928 - Start SD write
  2339. starpos = (strchr(strchr_pointer + 5,'*'));
  2340. if(starpos != NULL){
  2341. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2342. strchr_pointer = strchr(npos,' ') + 1;
  2343. *(starpos) = '\0';
  2344. }
  2345. card.openLogFile(strchr_pointer+5);
  2346. break;
  2347. #endif //SDSUPPORT
  2348. case 31: //M31 take time since the start of the SD print or an M109 command
  2349. {
  2350. stoptime=millis();
  2351. char time[30];
  2352. unsigned long t=(stoptime-starttime)/1000;
  2353. int sec,min;
  2354. min=t/60;
  2355. sec=t%60;
  2356. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2357. SERIAL_ECHO_START;
  2358. SERIAL_ECHOLN(time);
  2359. lcd_setstatus(time);
  2360. autotempShutdown();
  2361. }
  2362. break;
  2363. case 42: //M42 -Change pin status via gcode
  2364. if (code_seen('S'))
  2365. {
  2366. int pin_status = code_value();
  2367. int pin_number = LED_PIN;
  2368. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2369. pin_number = code_value();
  2370. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2371. {
  2372. if (sensitive_pins[i] == pin_number)
  2373. {
  2374. pin_number = -1;
  2375. break;
  2376. }
  2377. }
  2378. #if defined(FAN_PIN) && FAN_PIN > -1
  2379. if (pin_number == FAN_PIN)
  2380. fanSpeed = pin_status;
  2381. #endif
  2382. if (pin_number > -1)
  2383. {
  2384. pinMode(pin_number, OUTPUT);
  2385. digitalWrite(pin_number, pin_status);
  2386. analogWrite(pin_number, pin_status);
  2387. }
  2388. }
  2389. break;
  2390. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2391. // Reset the skew and offset in both RAM and EEPROM.
  2392. reset_bed_offset_and_skew();
  2393. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2394. // the planner will not perform any adjustments in the XY plane.
  2395. // Wait for the motors to stop and update the current position with the absolute values.
  2396. world2machine_revert_to_uncorrected();
  2397. break;
  2398. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2399. {
  2400. // Disable the default update procedure of the display. We will do a modal dialog.
  2401. lcd_update_enable(false);
  2402. // Let the planner use the uncorrected coordinates.
  2403. mbl.reset();
  2404. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2405. // the planner will not perform any adjustments in the XY plane.
  2406. // Wait for the motors to stop and update the current position with the absolute values.
  2407. world2machine_revert_to_uncorrected();
  2408. // Let the user move the Z axes up to the end stoppers.
  2409. if (lcd_calibrate_z_end_stop_manual()) {
  2410. refresh_cmd_timeout();
  2411. // Move the print head close to the bed.
  2412. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2414. st_synchronize();
  2415. // Home in the XY plane.
  2416. set_destination_to_current();
  2417. setup_for_endstop_move();
  2418. home_xy();
  2419. int8_t verbosity_level = 0;
  2420. if (code_seen('V')) {
  2421. // Just 'V' without a number counts as V1.
  2422. char c = strchr_pointer[1];
  2423. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2424. }
  2425. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2426. uint8_t point_too_far_mask = 0;
  2427. clean_up_after_endstop_move();
  2428. // Print head up.
  2429. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2431. st_synchronize();
  2432. if (result >= 0) {
  2433. // Second half: The fine adjustment.
  2434. // Let the planner use the uncorrected coordinates.
  2435. mbl.reset();
  2436. world2machine_reset();
  2437. // Home in the XY plane.
  2438. setup_for_endstop_move();
  2439. home_xy();
  2440. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2441. clean_up_after_endstop_move();
  2442. // Print head up.
  2443. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2445. st_synchronize();
  2446. }
  2447. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2448. } else {
  2449. // Timeouted.
  2450. }
  2451. lcd_update_enable(true);
  2452. lcd_implementation_clear();
  2453. // lcd_return_to_status();
  2454. lcd_update();
  2455. break;
  2456. }
  2457. /*
  2458. case 46:
  2459. {
  2460. // M46: Prusa3D: Show the assigned IP address.
  2461. uint8_t ip[4];
  2462. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2463. if (hasIP) {
  2464. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2465. SERIAL_ECHO(int(ip[0]));
  2466. SERIAL_ECHOPGM(".");
  2467. SERIAL_ECHO(int(ip[1]));
  2468. SERIAL_ECHOPGM(".");
  2469. SERIAL_ECHO(int(ip[2]));
  2470. SERIAL_ECHOPGM(".");
  2471. SERIAL_ECHO(int(ip[3]));
  2472. SERIAL_ECHOLNPGM("");
  2473. } else {
  2474. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2475. }
  2476. break;
  2477. }
  2478. */
  2479. case 47:
  2480. // M47: Prusa3D: Show end stops dialog on the display.
  2481. lcd_diag_show_end_stops();
  2482. break;
  2483. #if 0
  2484. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2485. {
  2486. // Disable the default update procedure of the display. We will do a modal dialog.
  2487. lcd_update_enable(false);
  2488. // Let the planner use the uncorrected coordinates.
  2489. mbl.reset();
  2490. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2491. // the planner will not perform any adjustments in the XY plane.
  2492. // Wait for the motors to stop and update the current position with the absolute values.
  2493. world2machine_revert_to_uncorrected();
  2494. // Move the print head close to the bed.
  2495. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2497. st_synchronize();
  2498. // Home in the XY plane.
  2499. set_destination_to_current();
  2500. setup_for_endstop_move();
  2501. home_xy();
  2502. int8_t verbosity_level = 0;
  2503. if (code_seen('V')) {
  2504. // Just 'V' without a number counts as V1.
  2505. char c = strchr_pointer[1];
  2506. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2507. }
  2508. bool success = scan_bed_induction_points(verbosity_level);
  2509. clean_up_after_endstop_move();
  2510. // Print head up.
  2511. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2513. st_synchronize();
  2514. lcd_update_enable(true);
  2515. lcd_implementation_clear();
  2516. // lcd_return_to_status();
  2517. lcd_update();
  2518. break;
  2519. }
  2520. #endif
  2521. // M48 Z-Probe repeatability measurement function.
  2522. //
  2523. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2524. //
  2525. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2526. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2527. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2528. // regenerated.
  2529. //
  2530. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2531. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2532. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2533. //
  2534. #ifdef ENABLE_AUTO_BED_LEVELING
  2535. #ifdef Z_PROBE_REPEATABILITY_TEST
  2536. case 48: // M48 Z-Probe repeatability
  2537. {
  2538. #if Z_MIN_PIN == -1
  2539. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2540. #endif
  2541. double sum=0.0;
  2542. double mean=0.0;
  2543. double sigma=0.0;
  2544. double sample_set[50];
  2545. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2546. double X_current, Y_current, Z_current;
  2547. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2548. if (code_seen('V') || code_seen('v')) {
  2549. verbose_level = code_value();
  2550. if (verbose_level<0 || verbose_level>4 ) {
  2551. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2552. goto Sigma_Exit;
  2553. }
  2554. }
  2555. if (verbose_level > 0) {
  2556. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2557. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2558. }
  2559. if (code_seen('n')) {
  2560. n_samples = code_value();
  2561. if (n_samples<4 || n_samples>50 ) {
  2562. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2563. goto Sigma_Exit;
  2564. }
  2565. }
  2566. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2567. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2568. Z_current = st_get_position_mm(Z_AXIS);
  2569. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2570. ext_position = st_get_position_mm(E_AXIS);
  2571. if (code_seen('X') || code_seen('x') ) {
  2572. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2573. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2574. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2575. goto Sigma_Exit;
  2576. }
  2577. }
  2578. if (code_seen('Y') || code_seen('y') ) {
  2579. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2580. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2581. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2582. goto Sigma_Exit;
  2583. }
  2584. }
  2585. if (code_seen('L') || code_seen('l') ) {
  2586. n_legs = code_value();
  2587. if ( n_legs==1 )
  2588. n_legs = 2;
  2589. if ( n_legs<0 || n_legs>15 ) {
  2590. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2591. goto Sigma_Exit;
  2592. }
  2593. }
  2594. //
  2595. // Do all the preliminary setup work. First raise the probe.
  2596. //
  2597. st_synchronize();
  2598. plan_bed_level_matrix.set_to_identity();
  2599. plan_buffer_line( X_current, Y_current, Z_start_location,
  2600. ext_position,
  2601. homing_feedrate[Z_AXIS]/60,
  2602. active_extruder);
  2603. st_synchronize();
  2604. //
  2605. // Now get everything to the specified probe point So we can safely do a probe to
  2606. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2607. // use that as a starting point for each probe.
  2608. //
  2609. if (verbose_level > 2)
  2610. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2611. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2612. ext_position,
  2613. homing_feedrate[X_AXIS]/60,
  2614. active_extruder);
  2615. st_synchronize();
  2616. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2617. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2618. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2619. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2620. //
  2621. // OK, do the inital probe to get us close to the bed.
  2622. // Then retrace the right amount and use that in subsequent probes
  2623. //
  2624. setup_for_endstop_move();
  2625. run_z_probe();
  2626. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2627. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2628. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2629. ext_position,
  2630. homing_feedrate[X_AXIS]/60,
  2631. active_extruder);
  2632. st_synchronize();
  2633. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2634. for( n=0; n<n_samples; n++) {
  2635. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2636. if ( n_legs) {
  2637. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2638. int rotational_direction, l;
  2639. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2640. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2641. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2642. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2643. //SERIAL_ECHOPAIR(" theta: ",theta);
  2644. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2645. //SERIAL_PROTOCOLLNPGM("");
  2646. for( l=0; l<n_legs-1; l++) {
  2647. if (rotational_direction==1)
  2648. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2649. else
  2650. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2651. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2652. if ( radius<0.0 )
  2653. radius = -radius;
  2654. X_current = X_probe_location + cos(theta) * radius;
  2655. Y_current = Y_probe_location + sin(theta) * radius;
  2656. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2657. X_current = X_MIN_POS;
  2658. if ( X_current>X_MAX_POS)
  2659. X_current = X_MAX_POS;
  2660. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2661. Y_current = Y_MIN_POS;
  2662. if ( Y_current>Y_MAX_POS)
  2663. Y_current = Y_MAX_POS;
  2664. if (verbose_level>3 ) {
  2665. SERIAL_ECHOPAIR("x: ", X_current);
  2666. SERIAL_ECHOPAIR("y: ", Y_current);
  2667. SERIAL_PROTOCOLLNPGM("");
  2668. }
  2669. do_blocking_move_to( X_current, Y_current, Z_current );
  2670. }
  2671. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2672. }
  2673. setup_for_endstop_move();
  2674. run_z_probe();
  2675. sample_set[n] = current_position[Z_AXIS];
  2676. //
  2677. // Get the current mean for the data points we have so far
  2678. //
  2679. sum=0.0;
  2680. for( j=0; j<=n; j++) {
  2681. sum = sum + sample_set[j];
  2682. }
  2683. mean = sum / (double (n+1));
  2684. //
  2685. // Now, use that mean to calculate the standard deviation for the
  2686. // data points we have so far
  2687. //
  2688. sum=0.0;
  2689. for( j=0; j<=n; j++) {
  2690. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2691. }
  2692. sigma = sqrt( sum / (double (n+1)) );
  2693. if (verbose_level > 1) {
  2694. SERIAL_PROTOCOL(n+1);
  2695. SERIAL_PROTOCOL(" of ");
  2696. SERIAL_PROTOCOL(n_samples);
  2697. SERIAL_PROTOCOLPGM(" z: ");
  2698. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2699. }
  2700. if (verbose_level > 2) {
  2701. SERIAL_PROTOCOL(" mean: ");
  2702. SERIAL_PROTOCOL_F(mean,6);
  2703. SERIAL_PROTOCOL(" sigma: ");
  2704. SERIAL_PROTOCOL_F(sigma,6);
  2705. }
  2706. if (verbose_level > 0)
  2707. SERIAL_PROTOCOLPGM("\n");
  2708. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2709. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2710. st_synchronize();
  2711. }
  2712. delay(1000);
  2713. clean_up_after_endstop_move();
  2714. // enable_endstops(true);
  2715. if (verbose_level > 0) {
  2716. SERIAL_PROTOCOLPGM("Mean: ");
  2717. SERIAL_PROTOCOL_F(mean, 6);
  2718. SERIAL_PROTOCOLPGM("\n");
  2719. }
  2720. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2721. SERIAL_PROTOCOL_F(sigma, 6);
  2722. SERIAL_PROTOCOLPGM("\n\n");
  2723. Sigma_Exit:
  2724. break;
  2725. }
  2726. #endif // Z_PROBE_REPEATABILITY_TEST
  2727. #endif // ENABLE_AUTO_BED_LEVELING
  2728. case 104: // M104
  2729. if(setTargetedHotend(104)){
  2730. break;
  2731. }
  2732. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2733. setWatch();
  2734. break;
  2735. case 112: // M112 -Emergency Stop
  2736. kill();
  2737. break;
  2738. case 140: // M140 set bed temp
  2739. if (code_seen('S')) setTargetBed(code_value());
  2740. break;
  2741. case 105 : // M105
  2742. if(setTargetedHotend(105)){
  2743. break;
  2744. }
  2745. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2746. SERIAL_PROTOCOLPGM("ok T:");
  2747. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2748. SERIAL_PROTOCOLPGM(" /");
  2749. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2750. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2751. SERIAL_PROTOCOLPGM(" B:");
  2752. SERIAL_PROTOCOL_F(degBed(),1);
  2753. SERIAL_PROTOCOLPGM(" /");
  2754. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2755. #endif //TEMP_BED_PIN
  2756. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2757. SERIAL_PROTOCOLPGM(" T");
  2758. SERIAL_PROTOCOL(cur_extruder);
  2759. SERIAL_PROTOCOLPGM(":");
  2760. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2761. SERIAL_PROTOCOLPGM(" /");
  2762. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2763. }
  2764. #else
  2765. SERIAL_ERROR_START;
  2766. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2767. #endif
  2768. SERIAL_PROTOCOLPGM(" @:");
  2769. #ifdef EXTRUDER_WATTS
  2770. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2771. SERIAL_PROTOCOLPGM("W");
  2772. #else
  2773. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2774. #endif
  2775. SERIAL_PROTOCOLPGM(" B@:");
  2776. #ifdef BED_WATTS
  2777. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2778. SERIAL_PROTOCOLPGM("W");
  2779. #else
  2780. SERIAL_PROTOCOL(getHeaterPower(-1));
  2781. #endif
  2782. #ifdef SHOW_TEMP_ADC_VALUES
  2783. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2784. SERIAL_PROTOCOLPGM(" ADC B:");
  2785. SERIAL_PROTOCOL_F(degBed(),1);
  2786. SERIAL_PROTOCOLPGM("C->");
  2787. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2788. #endif
  2789. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2790. SERIAL_PROTOCOLPGM(" T");
  2791. SERIAL_PROTOCOL(cur_extruder);
  2792. SERIAL_PROTOCOLPGM(":");
  2793. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2794. SERIAL_PROTOCOLPGM("C->");
  2795. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2796. }
  2797. #endif
  2798. SERIAL_PROTOCOLLN("");
  2799. return;
  2800. break;
  2801. case 109:
  2802. {// M109 - Wait for extruder heater to reach target.
  2803. if(setTargetedHotend(109)){
  2804. break;
  2805. }
  2806. LCD_MESSAGERPGM(MSG_HEATING);
  2807. heating_status = 1;
  2808. if (farm_mode) { prusa_statistics(1); };
  2809. #ifdef AUTOTEMP
  2810. autotemp_enabled=false;
  2811. #endif
  2812. if (code_seen('S')) {
  2813. setTargetHotend(code_value(), tmp_extruder);
  2814. CooldownNoWait = true;
  2815. } else if (code_seen('R')) {
  2816. setTargetHotend(code_value(), tmp_extruder);
  2817. CooldownNoWait = false;
  2818. }
  2819. #ifdef AUTOTEMP
  2820. if (code_seen('S')) autotemp_min=code_value();
  2821. if (code_seen('B')) autotemp_max=code_value();
  2822. if (code_seen('F'))
  2823. {
  2824. autotemp_factor=code_value();
  2825. autotemp_enabled=true;
  2826. }
  2827. #endif
  2828. setWatch();
  2829. codenum = millis();
  2830. /* See if we are heating up or cooling down */
  2831. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2832. cancel_heatup = false;
  2833. #ifdef TEMP_RESIDENCY_TIME
  2834. long residencyStart;
  2835. residencyStart = -1;
  2836. /* continue to loop until we have reached the target temp
  2837. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2838. while((!cancel_heatup)&&((residencyStart == -1) ||
  2839. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2840. #else
  2841. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2842. #endif //TEMP_RESIDENCY_TIME
  2843. if( (millis() - codenum) > 1000UL )
  2844. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2845. SERIAL_PROTOCOLPGM("T:");
  2846. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2847. SERIAL_PROTOCOLPGM(" E:");
  2848. SERIAL_PROTOCOL((int)tmp_extruder);
  2849. #ifdef TEMP_RESIDENCY_TIME
  2850. SERIAL_PROTOCOLPGM(" W:");
  2851. if(residencyStart > -1)
  2852. {
  2853. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2854. SERIAL_PROTOCOLLN( codenum );
  2855. }
  2856. else
  2857. {
  2858. SERIAL_PROTOCOLLN( "?" );
  2859. }
  2860. #else
  2861. SERIAL_PROTOCOLLN("");
  2862. #endif
  2863. codenum = millis();
  2864. }
  2865. manage_heater();
  2866. manage_inactivity();
  2867. lcd_update();
  2868. #ifdef TEMP_RESIDENCY_TIME
  2869. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2870. or when current temp falls outside the hysteresis after target temp was reached */
  2871. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2872. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2873. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2874. {
  2875. residencyStart = millis();
  2876. }
  2877. #endif //TEMP_RESIDENCY_TIME
  2878. }
  2879. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2880. heating_status = 2;
  2881. if (farm_mode) { prusa_statistics(2); };
  2882. starttime=millis();
  2883. previous_millis_cmd = millis();
  2884. }
  2885. break;
  2886. case 190: // M190 - Wait for bed heater to reach target.
  2887. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2888. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2889. heating_status = 3;
  2890. if (farm_mode) { prusa_statistics(1); };
  2891. if (code_seen('S'))
  2892. {
  2893. setTargetBed(code_value());
  2894. CooldownNoWait = true;
  2895. }
  2896. else if (code_seen('R'))
  2897. {
  2898. setTargetBed(code_value());
  2899. CooldownNoWait = false;
  2900. }
  2901. codenum = millis();
  2902. cancel_heatup = false;
  2903. target_direction = isHeatingBed(); // true if heating, false if cooling
  2904. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2905. {
  2906. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2907. {
  2908. float tt=degHotend(active_extruder);
  2909. SERIAL_PROTOCOLPGM("T:");
  2910. SERIAL_PROTOCOL(tt);
  2911. SERIAL_PROTOCOLPGM(" E:");
  2912. SERIAL_PROTOCOL((int)active_extruder);
  2913. SERIAL_PROTOCOLPGM(" B:");
  2914. SERIAL_PROTOCOL_F(degBed(),1);
  2915. SERIAL_PROTOCOLLN("");
  2916. codenum = millis();
  2917. }
  2918. manage_heater();
  2919. manage_inactivity();
  2920. lcd_update();
  2921. }
  2922. LCD_MESSAGERPGM(MSG_BED_DONE);
  2923. heating_status = 4;
  2924. previous_millis_cmd = millis();
  2925. #endif
  2926. break;
  2927. #if defined(FAN_PIN) && FAN_PIN > -1
  2928. case 106: //M106 Fan On
  2929. if (code_seen('S')){
  2930. fanSpeed=constrain(code_value(),0,255);
  2931. }
  2932. else {
  2933. fanSpeed=255;
  2934. }
  2935. break;
  2936. case 107: //M107 Fan Off
  2937. fanSpeed = 0;
  2938. break;
  2939. #endif //FAN_PIN
  2940. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2941. case 80: // M80 - Turn on Power Supply
  2942. SET_OUTPUT(PS_ON_PIN); //GND
  2943. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2944. // If you have a switch on suicide pin, this is useful
  2945. // if you want to start another print with suicide feature after
  2946. // a print without suicide...
  2947. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2948. SET_OUTPUT(SUICIDE_PIN);
  2949. WRITE(SUICIDE_PIN, HIGH);
  2950. #endif
  2951. #ifdef ULTIPANEL
  2952. powersupply = true;
  2953. LCD_MESSAGERPGM(WELCOME_MSG);
  2954. lcd_update();
  2955. #endif
  2956. break;
  2957. #endif
  2958. case 81: // M81 - Turn off Power Supply
  2959. disable_heater();
  2960. st_synchronize();
  2961. disable_e0();
  2962. disable_e1();
  2963. disable_e2();
  2964. finishAndDisableSteppers();
  2965. fanSpeed = 0;
  2966. delay(1000); // Wait a little before to switch off
  2967. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2968. st_synchronize();
  2969. suicide();
  2970. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2971. SET_OUTPUT(PS_ON_PIN);
  2972. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2973. #endif
  2974. #ifdef ULTIPANEL
  2975. powersupply = false;
  2976. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  2977. /*
  2978. MACHNAME = "Prusa i3"
  2979. MSGOFF = "Vypnuto"
  2980. "Prusai3"" ""vypnuto""."
  2981. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2982. */
  2983. lcd_update();
  2984. #endif
  2985. break;
  2986. case 82:
  2987. axis_relative_modes[3] = false;
  2988. break;
  2989. case 83:
  2990. axis_relative_modes[3] = true;
  2991. break;
  2992. case 18: //compatibility
  2993. case 84: // M84
  2994. if(code_seen('S')){
  2995. stepper_inactive_time = code_value() * 1000;
  2996. }
  2997. else
  2998. {
  2999. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3000. if(all_axis)
  3001. {
  3002. st_synchronize();
  3003. disable_e0();
  3004. disable_e1();
  3005. disable_e2();
  3006. finishAndDisableSteppers();
  3007. }
  3008. else
  3009. {
  3010. st_synchronize();
  3011. if(code_seen('X')) disable_x();
  3012. if(code_seen('Y')) disable_y();
  3013. if(code_seen('Z')) disable_z();
  3014. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3015. if(code_seen('E')) {
  3016. disable_e0();
  3017. disable_e1();
  3018. disable_e2();
  3019. }
  3020. #endif
  3021. }
  3022. }
  3023. break;
  3024. case 85: // M85
  3025. if(code_seen('S')) {
  3026. max_inactive_time = code_value() * 1000;
  3027. }
  3028. break;
  3029. case 92: // M92
  3030. for(int8_t i=0; i < NUM_AXIS; i++)
  3031. {
  3032. if(code_seen(axis_codes[i]))
  3033. {
  3034. if(i == 3) { // E
  3035. float value = code_value();
  3036. if(value < 20.0) {
  3037. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3038. max_jerk[E_AXIS] *= factor;
  3039. max_feedrate[i] *= factor;
  3040. axis_steps_per_sqr_second[i] *= factor;
  3041. }
  3042. axis_steps_per_unit[i] = value;
  3043. }
  3044. else {
  3045. axis_steps_per_unit[i] = code_value();
  3046. }
  3047. }
  3048. }
  3049. break;
  3050. case 115: // M115
  3051. if (code_seen('V')) {
  3052. // Report the Prusa version number.
  3053. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3054. } else if (code_seen('U')) {
  3055. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3056. // pause the print and ask the user to upgrade the firmware.
  3057. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3058. } else {
  3059. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3060. }
  3061. break;
  3062. case 117: // M117 display message
  3063. starpos = (strchr(strchr_pointer + 5,'*'));
  3064. if(starpos!=NULL)
  3065. *(starpos)='\0';
  3066. lcd_setstatus(strchr_pointer + 5);
  3067. break;
  3068. case 114: // M114
  3069. SERIAL_PROTOCOLPGM("X:");
  3070. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3071. SERIAL_PROTOCOLPGM(" Y:");
  3072. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3073. SERIAL_PROTOCOLPGM(" Z:");
  3074. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3075. SERIAL_PROTOCOLPGM(" E:");
  3076. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3077. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3078. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3079. SERIAL_PROTOCOLPGM(" Y:");
  3080. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3081. SERIAL_PROTOCOLPGM(" Z:");
  3082. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3083. SERIAL_PROTOCOLLN("");
  3084. break;
  3085. case 120: // M120
  3086. enable_endstops(false) ;
  3087. break;
  3088. case 121: // M121
  3089. enable_endstops(true) ;
  3090. break;
  3091. case 119: // M119
  3092. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3093. SERIAL_PROTOCOLLN("");
  3094. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3095. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3096. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3097. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3098. }else{
  3099. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3100. }
  3101. SERIAL_PROTOCOLLN("");
  3102. #endif
  3103. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3104. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3105. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3106. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3107. }else{
  3108. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3109. }
  3110. SERIAL_PROTOCOLLN("");
  3111. #endif
  3112. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3113. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3114. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3115. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3116. }else{
  3117. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3118. }
  3119. SERIAL_PROTOCOLLN("");
  3120. #endif
  3121. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3122. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3123. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3124. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3125. }else{
  3126. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3127. }
  3128. SERIAL_PROTOCOLLN("");
  3129. #endif
  3130. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3131. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3132. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3133. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3134. }else{
  3135. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3136. }
  3137. SERIAL_PROTOCOLLN("");
  3138. #endif
  3139. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3140. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3141. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3142. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3143. }else{
  3144. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3145. }
  3146. SERIAL_PROTOCOLLN("");
  3147. #endif
  3148. break;
  3149. //TODO: update for all axis, use for loop
  3150. #ifdef BLINKM
  3151. case 150: // M150
  3152. {
  3153. byte red;
  3154. byte grn;
  3155. byte blu;
  3156. if(code_seen('R')) red = code_value();
  3157. if(code_seen('U')) grn = code_value();
  3158. if(code_seen('B')) blu = code_value();
  3159. SendColors(red,grn,blu);
  3160. }
  3161. break;
  3162. #endif //BLINKM
  3163. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3164. {
  3165. tmp_extruder = active_extruder;
  3166. if(code_seen('T')) {
  3167. tmp_extruder = code_value();
  3168. if(tmp_extruder >= EXTRUDERS) {
  3169. SERIAL_ECHO_START;
  3170. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3171. break;
  3172. }
  3173. }
  3174. float area = .0;
  3175. if(code_seen('D')) {
  3176. float diameter = (float)code_value();
  3177. if (diameter == 0.0) {
  3178. // setting any extruder filament size disables volumetric on the assumption that
  3179. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3180. // for all extruders
  3181. volumetric_enabled = false;
  3182. } else {
  3183. filament_size[tmp_extruder] = (float)code_value();
  3184. // make sure all extruders have some sane value for the filament size
  3185. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3186. #if EXTRUDERS > 1
  3187. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3188. #if EXTRUDERS > 2
  3189. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3190. #endif
  3191. #endif
  3192. volumetric_enabled = true;
  3193. }
  3194. } else {
  3195. //reserved for setting filament diameter via UFID or filament measuring device
  3196. break;
  3197. }
  3198. calculate_volumetric_multipliers();
  3199. }
  3200. break;
  3201. case 201: // M201
  3202. for(int8_t i=0; i < NUM_AXIS; i++)
  3203. {
  3204. if(code_seen(axis_codes[i]))
  3205. {
  3206. max_acceleration_units_per_sq_second[i] = code_value();
  3207. }
  3208. }
  3209. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3210. reset_acceleration_rates();
  3211. break;
  3212. #if 0 // Not used for Sprinter/grbl gen6
  3213. case 202: // M202
  3214. for(int8_t i=0; i < NUM_AXIS; i++) {
  3215. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3216. }
  3217. break;
  3218. #endif
  3219. case 203: // M203 max feedrate mm/sec
  3220. for(int8_t i=0; i < NUM_AXIS; i++) {
  3221. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3222. }
  3223. break;
  3224. case 204: // M204 acclereration S normal moves T filmanent only moves
  3225. {
  3226. if(code_seen('S')) acceleration = code_value() ;
  3227. if(code_seen('T')) retract_acceleration = code_value() ;
  3228. }
  3229. break;
  3230. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3231. {
  3232. if(code_seen('S')) minimumfeedrate = code_value();
  3233. if(code_seen('T')) mintravelfeedrate = code_value();
  3234. if(code_seen('B')) minsegmenttime = code_value() ;
  3235. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3236. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3237. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3238. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3239. }
  3240. break;
  3241. case 206: // M206 additional homing offset
  3242. for(int8_t i=0; i < 3; i++)
  3243. {
  3244. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3245. }
  3246. break;
  3247. #ifdef FWRETRACT
  3248. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3249. {
  3250. if(code_seen('S'))
  3251. {
  3252. retract_length = code_value() ;
  3253. }
  3254. if(code_seen('F'))
  3255. {
  3256. retract_feedrate = code_value()/60 ;
  3257. }
  3258. if(code_seen('Z'))
  3259. {
  3260. retract_zlift = code_value() ;
  3261. }
  3262. }break;
  3263. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3264. {
  3265. if(code_seen('S'))
  3266. {
  3267. retract_recover_length = code_value() ;
  3268. }
  3269. if(code_seen('F'))
  3270. {
  3271. retract_recover_feedrate = code_value()/60 ;
  3272. }
  3273. }break;
  3274. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3275. {
  3276. if(code_seen('S'))
  3277. {
  3278. int t= code_value() ;
  3279. switch(t)
  3280. {
  3281. case 0:
  3282. {
  3283. autoretract_enabled=false;
  3284. retracted[0]=false;
  3285. #if EXTRUDERS > 1
  3286. retracted[1]=false;
  3287. #endif
  3288. #if EXTRUDERS > 2
  3289. retracted[2]=false;
  3290. #endif
  3291. }break;
  3292. case 1:
  3293. {
  3294. autoretract_enabled=true;
  3295. retracted[0]=false;
  3296. #if EXTRUDERS > 1
  3297. retracted[1]=false;
  3298. #endif
  3299. #if EXTRUDERS > 2
  3300. retracted[2]=false;
  3301. #endif
  3302. }break;
  3303. default:
  3304. SERIAL_ECHO_START;
  3305. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3306. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3307. SERIAL_ECHOLNPGM("\"");
  3308. }
  3309. }
  3310. }break;
  3311. #endif // FWRETRACT
  3312. #if EXTRUDERS > 1
  3313. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3314. {
  3315. if(setTargetedHotend(218)){
  3316. break;
  3317. }
  3318. if(code_seen('X'))
  3319. {
  3320. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3321. }
  3322. if(code_seen('Y'))
  3323. {
  3324. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3325. }
  3326. SERIAL_ECHO_START;
  3327. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3328. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3329. {
  3330. SERIAL_ECHO(" ");
  3331. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3332. SERIAL_ECHO(",");
  3333. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3334. }
  3335. SERIAL_ECHOLN("");
  3336. }break;
  3337. #endif
  3338. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3339. {
  3340. if(code_seen('S'))
  3341. {
  3342. feedmultiply = code_value() ;
  3343. }
  3344. }
  3345. break;
  3346. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3347. {
  3348. if(code_seen('S'))
  3349. {
  3350. int tmp_code = code_value();
  3351. if (code_seen('T'))
  3352. {
  3353. if(setTargetedHotend(221)){
  3354. break;
  3355. }
  3356. extruder_multiply[tmp_extruder] = tmp_code;
  3357. }
  3358. else
  3359. {
  3360. extrudemultiply = tmp_code ;
  3361. }
  3362. }
  3363. }
  3364. break;
  3365. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3366. {
  3367. if(code_seen('P')){
  3368. int pin_number = code_value(); // pin number
  3369. int pin_state = -1; // required pin state - default is inverted
  3370. if(code_seen('S')) pin_state = code_value(); // required pin state
  3371. if(pin_state >= -1 && pin_state <= 1){
  3372. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3373. {
  3374. if (sensitive_pins[i] == pin_number)
  3375. {
  3376. pin_number = -1;
  3377. break;
  3378. }
  3379. }
  3380. if (pin_number > -1)
  3381. {
  3382. int target = LOW;
  3383. st_synchronize();
  3384. pinMode(pin_number, INPUT);
  3385. switch(pin_state){
  3386. case 1:
  3387. target = HIGH;
  3388. break;
  3389. case 0:
  3390. target = LOW;
  3391. break;
  3392. case -1:
  3393. target = !digitalRead(pin_number);
  3394. break;
  3395. }
  3396. while(digitalRead(pin_number) != target){
  3397. manage_heater();
  3398. manage_inactivity();
  3399. lcd_update();
  3400. }
  3401. }
  3402. }
  3403. }
  3404. }
  3405. break;
  3406. #if NUM_SERVOS > 0
  3407. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3408. {
  3409. int servo_index = -1;
  3410. int servo_position = 0;
  3411. if (code_seen('P'))
  3412. servo_index = code_value();
  3413. if (code_seen('S')) {
  3414. servo_position = code_value();
  3415. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3416. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3417. servos[servo_index].attach(0);
  3418. #endif
  3419. servos[servo_index].write(servo_position);
  3420. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3421. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3422. servos[servo_index].detach();
  3423. #endif
  3424. }
  3425. else {
  3426. SERIAL_ECHO_START;
  3427. SERIAL_ECHO("Servo ");
  3428. SERIAL_ECHO(servo_index);
  3429. SERIAL_ECHOLN(" out of range");
  3430. }
  3431. }
  3432. else if (servo_index >= 0) {
  3433. SERIAL_PROTOCOL(MSG_OK);
  3434. SERIAL_PROTOCOL(" Servo ");
  3435. SERIAL_PROTOCOL(servo_index);
  3436. SERIAL_PROTOCOL(": ");
  3437. SERIAL_PROTOCOL(servos[servo_index].read());
  3438. SERIAL_PROTOCOLLN("");
  3439. }
  3440. }
  3441. break;
  3442. #endif // NUM_SERVOS > 0
  3443. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3444. case 300: // M300
  3445. {
  3446. int beepS = code_seen('S') ? code_value() : 110;
  3447. int beepP = code_seen('P') ? code_value() : 1000;
  3448. if (beepS > 0)
  3449. {
  3450. #if BEEPER > 0
  3451. tone(BEEPER, beepS);
  3452. delay(beepP);
  3453. noTone(BEEPER);
  3454. #elif defined(ULTRALCD)
  3455. lcd_buzz(beepS, beepP);
  3456. #elif defined(LCD_USE_I2C_BUZZER)
  3457. lcd_buzz(beepP, beepS);
  3458. #endif
  3459. }
  3460. else
  3461. {
  3462. delay(beepP);
  3463. }
  3464. }
  3465. break;
  3466. #endif // M300
  3467. #ifdef PIDTEMP
  3468. case 301: // M301
  3469. {
  3470. if(code_seen('P')) Kp = code_value();
  3471. if(code_seen('I')) Ki = scalePID_i(code_value());
  3472. if(code_seen('D')) Kd = scalePID_d(code_value());
  3473. #ifdef PID_ADD_EXTRUSION_RATE
  3474. if(code_seen('C')) Kc = code_value();
  3475. #endif
  3476. updatePID();
  3477. SERIAL_PROTOCOL(MSG_OK);
  3478. SERIAL_PROTOCOL(" p:");
  3479. SERIAL_PROTOCOL(Kp);
  3480. SERIAL_PROTOCOL(" i:");
  3481. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3482. SERIAL_PROTOCOL(" d:");
  3483. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3484. #ifdef PID_ADD_EXTRUSION_RATE
  3485. SERIAL_PROTOCOL(" c:");
  3486. //Kc does not have scaling applied above, or in resetting defaults
  3487. SERIAL_PROTOCOL(Kc);
  3488. #endif
  3489. SERIAL_PROTOCOLLN("");
  3490. }
  3491. break;
  3492. #endif //PIDTEMP
  3493. #ifdef PIDTEMPBED
  3494. case 304: // M304
  3495. {
  3496. if(code_seen('P')) bedKp = code_value();
  3497. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3498. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3499. updatePID();
  3500. SERIAL_PROTOCOL(MSG_OK);
  3501. SERIAL_PROTOCOL(" p:");
  3502. SERIAL_PROTOCOL(bedKp);
  3503. SERIAL_PROTOCOL(" i:");
  3504. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3505. SERIAL_PROTOCOL(" d:");
  3506. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3507. SERIAL_PROTOCOLLN("");
  3508. }
  3509. break;
  3510. #endif //PIDTEMP
  3511. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3512. {
  3513. #ifdef CHDK
  3514. SET_OUTPUT(CHDK);
  3515. WRITE(CHDK, HIGH);
  3516. chdkHigh = millis();
  3517. chdkActive = true;
  3518. #else
  3519. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3520. const uint8_t NUM_PULSES=16;
  3521. const float PULSE_LENGTH=0.01524;
  3522. for(int i=0; i < NUM_PULSES; i++) {
  3523. WRITE(PHOTOGRAPH_PIN, HIGH);
  3524. _delay_ms(PULSE_LENGTH);
  3525. WRITE(PHOTOGRAPH_PIN, LOW);
  3526. _delay_ms(PULSE_LENGTH);
  3527. }
  3528. delay(7.33);
  3529. for(int i=0; i < NUM_PULSES; i++) {
  3530. WRITE(PHOTOGRAPH_PIN, HIGH);
  3531. _delay_ms(PULSE_LENGTH);
  3532. WRITE(PHOTOGRAPH_PIN, LOW);
  3533. _delay_ms(PULSE_LENGTH);
  3534. }
  3535. #endif
  3536. #endif //chdk end if
  3537. }
  3538. break;
  3539. #ifdef DOGLCD
  3540. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3541. {
  3542. if (code_seen('C')) {
  3543. lcd_setcontrast( ((int)code_value())&63 );
  3544. }
  3545. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3546. SERIAL_PROTOCOL(lcd_contrast);
  3547. SERIAL_PROTOCOLLN("");
  3548. }
  3549. break;
  3550. #endif
  3551. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3552. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3553. {
  3554. float temp = .0;
  3555. if (code_seen('S')) temp=code_value();
  3556. set_extrude_min_temp(temp);
  3557. }
  3558. break;
  3559. #endif
  3560. case 303: // M303 PID autotune
  3561. {
  3562. float temp = 150.0;
  3563. int e=0;
  3564. int c=5;
  3565. if (code_seen('E')) e=code_value();
  3566. if (e<0)
  3567. temp=70;
  3568. if (code_seen('S')) temp=code_value();
  3569. if (code_seen('C')) c=code_value();
  3570. PID_autotune(temp, e, c);
  3571. }
  3572. break;
  3573. case 400: // M400 finish all moves
  3574. {
  3575. st_synchronize();
  3576. }
  3577. break;
  3578. #ifdef FILAMENT_SENSOR
  3579. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3580. {
  3581. #if (FILWIDTH_PIN > -1)
  3582. if(code_seen('N')) filament_width_nominal=code_value();
  3583. else{
  3584. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3585. SERIAL_PROTOCOLLN(filament_width_nominal);
  3586. }
  3587. #endif
  3588. }
  3589. break;
  3590. case 405: //M405 Turn on filament sensor for control
  3591. {
  3592. if(code_seen('D')) meas_delay_cm=code_value();
  3593. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3594. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3595. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3596. {
  3597. int temp_ratio = widthFil_to_size_ratio();
  3598. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3599. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3600. }
  3601. delay_index1=0;
  3602. delay_index2=0;
  3603. }
  3604. filament_sensor = true ;
  3605. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3606. //SERIAL_PROTOCOL(filament_width_meas);
  3607. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3608. //SERIAL_PROTOCOL(extrudemultiply);
  3609. }
  3610. break;
  3611. case 406: //M406 Turn off filament sensor for control
  3612. {
  3613. filament_sensor = false ;
  3614. }
  3615. break;
  3616. case 407: //M407 Display measured filament diameter
  3617. {
  3618. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3619. SERIAL_PROTOCOLLN(filament_width_meas);
  3620. }
  3621. break;
  3622. #endif
  3623. case 500: // M500 Store settings in EEPROM
  3624. {
  3625. Config_StoreSettings();
  3626. }
  3627. break;
  3628. case 501: // M501 Read settings from EEPROM
  3629. {
  3630. Config_RetrieveSettings();
  3631. }
  3632. break;
  3633. case 502: // M502 Revert to default settings
  3634. {
  3635. Config_ResetDefault();
  3636. }
  3637. break;
  3638. case 503: // M503 print settings currently in memory
  3639. {
  3640. Config_PrintSettings();
  3641. }
  3642. break;
  3643. case 509: //M509 Force language selection
  3644. {
  3645. lcd_force_language_selection();
  3646. SERIAL_ECHO_START;
  3647. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3648. }
  3649. break;
  3650. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3651. case 540:
  3652. {
  3653. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3654. }
  3655. break;
  3656. #endif
  3657. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3658. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3659. {
  3660. float value;
  3661. if (code_seen('Z'))
  3662. {
  3663. value = code_value();
  3664. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3665. {
  3666. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3667. SERIAL_ECHO_START;
  3668. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3669. SERIAL_PROTOCOLLN("");
  3670. }
  3671. else
  3672. {
  3673. SERIAL_ECHO_START;
  3674. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3675. SERIAL_ECHORPGM(MSG_Z_MIN);
  3676. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3677. SERIAL_ECHORPGM(MSG_Z_MAX);
  3678. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3679. SERIAL_PROTOCOLLN("");
  3680. }
  3681. }
  3682. else
  3683. {
  3684. SERIAL_ECHO_START;
  3685. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3686. SERIAL_ECHO(-zprobe_zoffset);
  3687. SERIAL_PROTOCOLLN("");
  3688. }
  3689. break;
  3690. }
  3691. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3692. #ifdef FILAMENTCHANGEENABLE
  3693. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3694. {
  3695. st_synchronize();
  3696. feedmultiplyBckp=feedmultiply;
  3697. int8_t TooLowZ = 0;
  3698. float target[4];
  3699. float lastpos[4];
  3700. target[X_AXIS]=current_position[X_AXIS];
  3701. target[Y_AXIS]=current_position[Y_AXIS];
  3702. target[Z_AXIS]=current_position[Z_AXIS];
  3703. target[E_AXIS]=current_position[E_AXIS];
  3704. lastpos[X_AXIS]=current_position[X_AXIS];
  3705. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3706. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3707. lastpos[E_AXIS]=current_position[E_AXIS];
  3708. //Restract extruder
  3709. if(code_seen('E'))
  3710. {
  3711. target[E_AXIS]+= code_value();
  3712. }
  3713. else
  3714. {
  3715. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3716. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3717. #endif
  3718. }
  3719. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3720. //Lift Z
  3721. if(code_seen('Z'))
  3722. {
  3723. target[Z_AXIS]+= code_value();
  3724. }
  3725. else
  3726. {
  3727. #ifdef FILAMENTCHANGE_ZADD
  3728. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3729. if(target[Z_AXIS] < 10){
  3730. target[Z_AXIS]+= 10 ;
  3731. TooLowZ = 1;
  3732. }else{
  3733. TooLowZ = 0;
  3734. }
  3735. #endif
  3736. }
  3737. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3738. //Move XY to side
  3739. if(code_seen('X'))
  3740. {
  3741. target[X_AXIS]+= code_value();
  3742. }
  3743. else
  3744. {
  3745. #ifdef FILAMENTCHANGE_XPOS
  3746. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3747. #endif
  3748. }
  3749. if(code_seen('Y'))
  3750. {
  3751. target[Y_AXIS]= code_value();
  3752. }
  3753. else
  3754. {
  3755. #ifdef FILAMENTCHANGE_YPOS
  3756. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3757. #endif
  3758. }
  3759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3760. // Unload filament
  3761. if(code_seen('L'))
  3762. {
  3763. target[E_AXIS]+= code_value();
  3764. }
  3765. else
  3766. {
  3767. #ifdef FILAMENTCHANGE_FINALRETRACT
  3768. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3769. #endif
  3770. }
  3771. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3772. //finish moves
  3773. st_synchronize();
  3774. //disable extruder steppers so filament can be removed
  3775. disable_e0();
  3776. disable_e1();
  3777. disable_e2();
  3778. delay(100);
  3779. //Wait for user to insert filament
  3780. uint8_t cnt=0;
  3781. int counterBeep = 0;
  3782. lcd_wait_interact();
  3783. while(!lcd_clicked()){
  3784. cnt++;
  3785. manage_heater();
  3786. manage_inactivity(true);
  3787. if(cnt==0)
  3788. {
  3789. #if BEEPER > 0
  3790. if (counterBeep== 500){
  3791. counterBeep = 0;
  3792. }
  3793. SET_OUTPUT(BEEPER);
  3794. if (counterBeep== 0){
  3795. WRITE(BEEPER,HIGH);
  3796. }
  3797. if (counterBeep== 20){
  3798. WRITE(BEEPER,LOW);
  3799. }
  3800. counterBeep++;
  3801. #else
  3802. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3803. lcd_buzz(1000/6,100);
  3804. #else
  3805. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3806. #endif
  3807. #endif
  3808. }
  3809. }
  3810. //Filament inserted
  3811. WRITE(BEEPER,LOW);
  3812. //Feed the filament to the end of nozzle quickly
  3813. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3814. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3815. //Extrude some filament
  3816. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3817. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3818. //Wait for user to check the state
  3819. lcd_change_fil_state = 0;
  3820. lcd_loading_filament();
  3821. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3822. lcd_change_fil_state = 0;
  3823. lcd_alright();
  3824. switch(lcd_change_fil_state){
  3825. // Filament failed to load so load it again
  3826. case 2:
  3827. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3829. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3831. lcd_loading_filament();
  3832. break;
  3833. // Filament loaded properly but color is not clear
  3834. case 3:
  3835. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3837. lcd_loading_color();
  3838. break;
  3839. // Everything good
  3840. default:
  3841. lcd_change_success();
  3842. break;
  3843. }
  3844. }
  3845. //Not let's go back to print
  3846. //Feed a little of filament to stabilize pressure
  3847. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3848. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3849. //Retract
  3850. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3851. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3852. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3853. //Move XY back
  3854. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3855. //Move Z back
  3856. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3857. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3858. //Unretract
  3859. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3860. //Set E position to original
  3861. plan_set_e_position(lastpos[E_AXIS]);
  3862. //Recover feed rate
  3863. feedmultiply=feedmultiplyBckp;
  3864. char cmd[9];
  3865. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3866. enquecommand(cmd);
  3867. }
  3868. break;
  3869. #endif //FILAMENTCHANGEENABLE
  3870. case 907: // M907 Set digital trimpot motor current using axis codes.
  3871. {
  3872. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3873. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3874. if(code_seen('B')) digipot_current(4,code_value());
  3875. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3876. #endif
  3877. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3878. if(code_seen('X')) digipot_current(0, code_value());
  3879. #endif
  3880. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3881. if(code_seen('Z')) digipot_current(1, code_value());
  3882. #endif
  3883. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3884. if(code_seen('E')) digipot_current(2, code_value());
  3885. #endif
  3886. #ifdef DIGIPOT_I2C
  3887. // this one uses actual amps in floating point
  3888. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3889. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3890. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3891. #endif
  3892. }
  3893. break;
  3894. case 908: // M908 Control digital trimpot directly.
  3895. {
  3896. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3897. uint8_t channel,current;
  3898. if(code_seen('P')) channel=code_value();
  3899. if(code_seen('S')) current=code_value();
  3900. digitalPotWrite(channel, current);
  3901. #endif
  3902. }
  3903. break;
  3904. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3905. {
  3906. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3907. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3908. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3909. if(code_seen('B')) microstep_mode(4,code_value());
  3910. microstep_readings();
  3911. #endif
  3912. }
  3913. break;
  3914. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3915. {
  3916. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3917. if(code_seen('S')) switch((int)code_value())
  3918. {
  3919. case 1:
  3920. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3921. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3922. break;
  3923. case 2:
  3924. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3925. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3926. break;
  3927. }
  3928. microstep_readings();
  3929. #endif
  3930. }
  3931. break;
  3932. case 999: // M999: Restart after being stopped
  3933. Stopped = false;
  3934. lcd_reset_alert_level();
  3935. gcode_LastN = Stopped_gcode_LastN;
  3936. FlushSerialRequestResend();
  3937. break;
  3938. }
  3939. } // end if(code_seen('M')) (end of M codes)
  3940. else if(code_seen('T'))
  3941. {
  3942. tmp_extruder = code_value();
  3943. if(tmp_extruder >= EXTRUDERS) {
  3944. SERIAL_ECHO_START;
  3945. SERIAL_ECHO("T");
  3946. SERIAL_ECHO(tmp_extruder);
  3947. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3948. }
  3949. else {
  3950. boolean make_move = false;
  3951. if(code_seen('F')) {
  3952. make_move = true;
  3953. next_feedrate = code_value();
  3954. if(next_feedrate > 0.0) {
  3955. feedrate = next_feedrate;
  3956. }
  3957. }
  3958. #if EXTRUDERS > 1
  3959. if(tmp_extruder != active_extruder) {
  3960. // Save current position to return to after applying extruder offset
  3961. memcpy(destination, current_position, sizeof(destination));
  3962. // Offset extruder (only by XY)
  3963. int i;
  3964. for(i = 0; i < 2; i++) {
  3965. current_position[i] = current_position[i] -
  3966. extruder_offset[i][active_extruder] +
  3967. extruder_offset[i][tmp_extruder];
  3968. }
  3969. // Set the new active extruder and position
  3970. active_extruder = tmp_extruder;
  3971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3972. // Move to the old position if 'F' was in the parameters
  3973. if(make_move && Stopped == false) {
  3974. prepare_move();
  3975. }
  3976. }
  3977. #endif
  3978. SERIAL_ECHO_START;
  3979. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3980. SERIAL_PROTOCOLLN((int)active_extruder);
  3981. }
  3982. } // end if(code_seen('T')) (end of T codes)
  3983. else
  3984. {
  3985. SERIAL_ECHO_START;
  3986. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3987. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3988. SERIAL_ECHOLNPGM("\"");
  3989. }
  3990. ClearToSend();
  3991. }
  3992. void FlushSerialRequestResend()
  3993. {
  3994. //char cmdbuffer[bufindr][100]="Resend:";
  3995. MYSERIAL.flush();
  3996. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3997. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3998. ClearToSend();
  3999. }
  4000. // Confirm the execution of a command, if sent from a serial line.
  4001. // Execution of a command from a SD card will not be confirmed.
  4002. void ClearToSend()
  4003. {
  4004. previous_millis_cmd = millis();
  4005. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4006. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4007. }
  4008. void get_coordinates()
  4009. {
  4010. bool seen[4]={false,false,false,false};
  4011. for(int8_t i=0; i < NUM_AXIS; i++) {
  4012. if(code_seen(axis_codes[i]))
  4013. {
  4014. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4015. seen[i]=true;
  4016. }
  4017. else destination[i] = current_position[i]; //Are these else lines really needed?
  4018. }
  4019. if(code_seen('F')) {
  4020. next_feedrate = code_value();
  4021. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4022. }
  4023. }
  4024. void get_arc_coordinates()
  4025. {
  4026. #ifdef SF_ARC_FIX
  4027. bool relative_mode_backup = relative_mode;
  4028. relative_mode = true;
  4029. #endif
  4030. get_coordinates();
  4031. #ifdef SF_ARC_FIX
  4032. relative_mode=relative_mode_backup;
  4033. #endif
  4034. if(code_seen('I')) {
  4035. offset[0] = code_value();
  4036. }
  4037. else {
  4038. offset[0] = 0.0;
  4039. }
  4040. if(code_seen('J')) {
  4041. offset[1] = code_value();
  4042. }
  4043. else {
  4044. offset[1] = 0.0;
  4045. }
  4046. }
  4047. void clamp_to_software_endstops(float target[3])
  4048. {
  4049. world2machine_clamp(target[0], target[1]);
  4050. // Clamp the Z coordinate.
  4051. if (min_software_endstops) {
  4052. float negative_z_offset = 0;
  4053. #ifdef ENABLE_AUTO_BED_LEVELING
  4054. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4055. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4056. #endif
  4057. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4058. }
  4059. if (max_software_endstops) {
  4060. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4061. }
  4062. }
  4063. #ifdef MESH_BED_LEVELING
  4064. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4065. float dx = x - current_position[X_AXIS];
  4066. float dy = y - current_position[Y_AXIS];
  4067. float dz = z - current_position[Z_AXIS];
  4068. int n_segments = 0;
  4069. if (mbl.active) {
  4070. float len = abs(dx) + abs(dy) + abs(dz);
  4071. if (len > 0)
  4072. n_segments = int(floor(len / 30.f));
  4073. }
  4074. if (n_segments > 1) {
  4075. float de = e - current_position[E_AXIS];
  4076. for (int i = 1; i < n_segments; ++ i) {
  4077. float t = float(i) / float(n_segments);
  4078. plan_buffer_line(
  4079. current_position[X_AXIS] + t * dx,
  4080. current_position[Y_AXIS] + t * dy,
  4081. current_position[Z_AXIS] + t * dz,
  4082. current_position[E_AXIS] + t * de,
  4083. feed_rate, extruder);
  4084. }
  4085. }
  4086. // The rest of the path.
  4087. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4088. set_current_to_destination();
  4089. }
  4090. #endif // MESH_BED_LEVELING
  4091. void prepare_move()
  4092. {
  4093. clamp_to_software_endstops(destination);
  4094. previous_millis_cmd = millis();
  4095. // Do not use feedmultiply for E or Z only moves
  4096. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4097. #ifdef MESH_BED_LEVELING
  4098. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4099. #else
  4100. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4101. #endif
  4102. }
  4103. else {
  4104. #ifdef MESH_BED_LEVELING
  4105. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4106. #else
  4107. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4108. #endif
  4109. }
  4110. for(int8_t i=0; i < NUM_AXIS; i++) {
  4111. current_position[i] = destination[i];
  4112. }
  4113. }
  4114. void prepare_arc_move(char isclockwise) {
  4115. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4116. // Trace the arc
  4117. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4118. // As far as the parser is concerned, the position is now == target. In reality the
  4119. // motion control system might still be processing the action and the real tool position
  4120. // in any intermediate location.
  4121. for(int8_t i=0; i < NUM_AXIS; i++) {
  4122. current_position[i] = destination[i];
  4123. }
  4124. previous_millis_cmd = millis();
  4125. }
  4126. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4127. #if defined(FAN_PIN)
  4128. #if CONTROLLERFAN_PIN == FAN_PIN
  4129. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4130. #endif
  4131. #endif
  4132. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4133. unsigned long lastMotorCheck = 0;
  4134. void controllerFan()
  4135. {
  4136. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4137. {
  4138. lastMotorCheck = millis();
  4139. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4140. #if EXTRUDERS > 2
  4141. || !READ(E2_ENABLE_PIN)
  4142. #endif
  4143. #if EXTRUDER > 1
  4144. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4145. || !READ(X2_ENABLE_PIN)
  4146. #endif
  4147. || !READ(E1_ENABLE_PIN)
  4148. #endif
  4149. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4150. {
  4151. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4152. }
  4153. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4154. {
  4155. digitalWrite(CONTROLLERFAN_PIN, 0);
  4156. analogWrite(CONTROLLERFAN_PIN, 0);
  4157. }
  4158. else
  4159. {
  4160. // allows digital or PWM fan output to be used (see M42 handling)
  4161. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4162. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4163. }
  4164. }
  4165. }
  4166. #endif
  4167. #ifdef TEMP_STAT_LEDS
  4168. static bool blue_led = false;
  4169. static bool red_led = false;
  4170. static uint32_t stat_update = 0;
  4171. void handle_status_leds(void) {
  4172. float max_temp = 0.0;
  4173. if(millis() > stat_update) {
  4174. stat_update += 500; // Update every 0.5s
  4175. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4176. max_temp = max(max_temp, degHotend(cur_extruder));
  4177. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4178. }
  4179. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4180. max_temp = max(max_temp, degTargetBed());
  4181. max_temp = max(max_temp, degBed());
  4182. #endif
  4183. if((max_temp > 55.0) && (red_led == false)) {
  4184. digitalWrite(STAT_LED_RED, 1);
  4185. digitalWrite(STAT_LED_BLUE, 0);
  4186. red_led = true;
  4187. blue_led = false;
  4188. }
  4189. if((max_temp < 54.0) && (blue_led == false)) {
  4190. digitalWrite(STAT_LED_RED, 0);
  4191. digitalWrite(STAT_LED_BLUE, 1);
  4192. red_led = false;
  4193. blue_led = true;
  4194. }
  4195. }
  4196. }
  4197. #endif
  4198. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4199. {
  4200. #if defined(KILL_PIN) && KILL_PIN > -1
  4201. static int killCount = 0; // make the inactivity button a bit less responsive
  4202. const int KILL_DELAY = 10000;
  4203. #endif
  4204. if(buflen < (BUFSIZE-1))
  4205. get_command();
  4206. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4207. if(max_inactive_time)
  4208. kill();
  4209. if(stepper_inactive_time) {
  4210. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4211. {
  4212. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4213. disable_x();
  4214. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4215. disable_y();
  4216. disable_z();
  4217. disable_e0();
  4218. disable_e1();
  4219. disable_e2();
  4220. }
  4221. }
  4222. }
  4223. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4224. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4225. {
  4226. chdkActive = false;
  4227. WRITE(CHDK, LOW);
  4228. }
  4229. #endif
  4230. #if defined(KILL_PIN) && KILL_PIN > -1
  4231. // Check if the kill button was pressed and wait just in case it was an accidental
  4232. // key kill key press
  4233. // -------------------------------------------------------------------------------
  4234. if( 0 == READ(KILL_PIN) )
  4235. {
  4236. killCount++;
  4237. }
  4238. else if (killCount > 0)
  4239. {
  4240. killCount--;
  4241. }
  4242. // Exceeded threshold and we can confirm that it was not accidental
  4243. // KILL the machine
  4244. // ----------------------------------------------------------------
  4245. if ( killCount >= KILL_DELAY)
  4246. {
  4247. kill();
  4248. }
  4249. #endif
  4250. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4251. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4252. #endif
  4253. #ifdef EXTRUDER_RUNOUT_PREVENT
  4254. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4255. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4256. {
  4257. bool oldstatus=READ(E0_ENABLE_PIN);
  4258. enable_e0();
  4259. float oldepos=current_position[E_AXIS];
  4260. float oldedes=destination[E_AXIS];
  4261. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4262. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4263. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4264. current_position[E_AXIS]=oldepos;
  4265. destination[E_AXIS]=oldedes;
  4266. plan_set_e_position(oldepos);
  4267. previous_millis_cmd=millis();
  4268. st_synchronize();
  4269. WRITE(E0_ENABLE_PIN,oldstatus);
  4270. }
  4271. #endif
  4272. #ifdef TEMP_STAT_LEDS
  4273. handle_status_leds();
  4274. #endif
  4275. check_axes_activity();
  4276. }
  4277. void kill(const char *full_screen_message)
  4278. {
  4279. cli(); // Stop interrupts
  4280. disable_heater();
  4281. disable_x();
  4282. // SERIAL_ECHOLNPGM("kill - disable Y");
  4283. disable_y();
  4284. disable_z();
  4285. disable_e0();
  4286. disable_e1();
  4287. disable_e2();
  4288. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4289. pinMode(PS_ON_PIN,INPUT);
  4290. #endif
  4291. SERIAL_ERROR_START;
  4292. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4293. if (full_screen_message != NULL) {
  4294. SERIAL_ERRORLNRPGM(full_screen_message);
  4295. lcd_display_message_fullscreen_P(full_screen_message);
  4296. } else {
  4297. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4298. }
  4299. // FMC small patch to update the LCD before ending
  4300. sei(); // enable interrupts
  4301. for ( int i=5; i--; lcd_update())
  4302. {
  4303. delay(200);
  4304. }
  4305. cli(); // disable interrupts
  4306. suicide();
  4307. while(1) { /* Intentionally left empty */ } // Wait for reset
  4308. }
  4309. void Stop()
  4310. {
  4311. disable_heater();
  4312. if(Stopped == false) {
  4313. Stopped = true;
  4314. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4315. SERIAL_ERROR_START;
  4316. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4317. LCD_MESSAGERPGM(MSG_STOPPED);
  4318. }
  4319. }
  4320. bool IsStopped() { return Stopped; };
  4321. #ifdef FAST_PWM_FAN
  4322. void setPwmFrequency(uint8_t pin, int val)
  4323. {
  4324. val &= 0x07;
  4325. switch(digitalPinToTimer(pin))
  4326. {
  4327. #if defined(TCCR0A)
  4328. case TIMER0A:
  4329. case TIMER0B:
  4330. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4331. // TCCR0B |= val;
  4332. break;
  4333. #endif
  4334. #if defined(TCCR1A)
  4335. case TIMER1A:
  4336. case TIMER1B:
  4337. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4338. // TCCR1B |= val;
  4339. break;
  4340. #endif
  4341. #if defined(TCCR2)
  4342. case TIMER2:
  4343. case TIMER2:
  4344. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4345. TCCR2 |= val;
  4346. break;
  4347. #endif
  4348. #if defined(TCCR2A)
  4349. case TIMER2A:
  4350. case TIMER2B:
  4351. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4352. TCCR2B |= val;
  4353. break;
  4354. #endif
  4355. #if defined(TCCR3A)
  4356. case TIMER3A:
  4357. case TIMER3B:
  4358. case TIMER3C:
  4359. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4360. TCCR3B |= val;
  4361. break;
  4362. #endif
  4363. #if defined(TCCR4A)
  4364. case TIMER4A:
  4365. case TIMER4B:
  4366. case TIMER4C:
  4367. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4368. TCCR4B |= val;
  4369. break;
  4370. #endif
  4371. #if defined(TCCR5A)
  4372. case TIMER5A:
  4373. case TIMER5B:
  4374. case TIMER5C:
  4375. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4376. TCCR5B |= val;
  4377. break;
  4378. #endif
  4379. }
  4380. }
  4381. #endif //FAST_PWM_FAN
  4382. bool setTargetedHotend(int code){
  4383. tmp_extruder = active_extruder;
  4384. if(code_seen('T')) {
  4385. tmp_extruder = code_value();
  4386. if(tmp_extruder >= EXTRUDERS) {
  4387. SERIAL_ECHO_START;
  4388. switch(code){
  4389. case 104:
  4390. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4391. break;
  4392. case 105:
  4393. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4394. break;
  4395. case 109:
  4396. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4397. break;
  4398. case 218:
  4399. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4400. break;
  4401. case 221:
  4402. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4403. break;
  4404. }
  4405. SERIAL_ECHOLN(tmp_extruder);
  4406. return true;
  4407. }
  4408. }
  4409. return false;
  4410. }
  4411. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4412. {
  4413. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4414. {
  4415. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4416. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4417. }
  4418. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4419. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4420. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4421. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4422. total_filament_used = 0;
  4423. }
  4424. float calculate_volumetric_multiplier(float diameter) {
  4425. float area = .0;
  4426. float radius = .0;
  4427. radius = diameter * .5;
  4428. if (! volumetric_enabled || radius == 0) {
  4429. area = 1;
  4430. }
  4431. else {
  4432. area = M_PI * pow(radius, 2);
  4433. }
  4434. return 1.0 / area;
  4435. }
  4436. void calculate_volumetric_multipliers() {
  4437. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4438. #if EXTRUDERS > 1
  4439. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4440. #if EXTRUDERS > 2
  4441. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4442. #endif
  4443. #endif
  4444. }
  4445. void delay_keep_alive(int ms)
  4446. {
  4447. for (;;) {
  4448. manage_heater();
  4449. // Manage inactivity, but don't disable steppers on timeout.
  4450. manage_inactivity(true);
  4451. lcd_update();
  4452. if (ms == 0)
  4453. break;
  4454. else if (ms >= 50) {
  4455. delay(50);
  4456. ms -= 50;
  4457. } else {
  4458. delay(ms);
  4459. ms = 0;
  4460. }
  4461. }
  4462. }