Marlin_main.cpp 309 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. float extruder_multiplier[EXTRUDERS] = {1.0
  179. #if EXTRUDERS > 1
  180. , 1.0
  181. #if EXTRUDERS > 2
  182. , 1.0
  183. #endif
  184. #endif
  185. };
  186. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  187. //shortcuts for more readable code
  188. #define _x current_position[X_AXIS]
  189. #define _y current_position[Y_AXIS]
  190. #define _z current_position[Z_AXIS]
  191. #define _e current_position[E_AXIS]
  192. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  193. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  194. bool axis_known_position[3] = {false, false, false};
  195. // Extruder offset
  196. #if EXTRUDERS > 1
  197. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  198. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  199. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  200. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  201. #endif
  202. };
  203. #endif
  204. uint8_t active_extruder = 0;
  205. int fanSpeed=0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. #ifdef HOST_KEEPALIVE_FEATURE
  233. int busy_state = NOT_BUSY;
  234. static long prev_busy_signal_ms = -1;
  235. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  236. #else
  237. #define host_keepalive();
  238. #define KEEPALIVE_STATE(n);
  239. #endif
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED "Some problem encountered, Z-leveling enforced ..."
  257. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  258. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  259. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  260. // For tracing an arc
  261. static float offset[3] = {0.0, 0.0, 0.0};
  262. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  263. // Determines Absolute or Relative Coordinates.
  264. // Also there is bool axis_relative_modes[] per axis flag.
  265. static bool relative_mode = false;
  266. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  267. //static float tt = 0;
  268. //static float bt = 0;
  269. //Inactivity shutdown variables
  270. static unsigned long previous_millis_cmd = 0;
  271. unsigned long max_inactive_time = 0;
  272. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  273. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  274. unsigned long starttime=0;
  275. unsigned long stoptime=0;
  276. unsigned long _usb_timer = 0;
  277. bool extruder_under_pressure = true;
  278. bool Stopped=false;
  279. #if NUM_SERVOS > 0
  280. Servo servos[NUM_SERVOS];
  281. #endif
  282. bool CooldownNoWait = true;
  283. bool target_direction;
  284. //Insert variables if CHDK is defined
  285. #ifdef CHDK
  286. unsigned long chdkHigh = 0;
  287. boolean chdkActive = false;
  288. #endif
  289. //! @name RAM save/restore printing
  290. //! @{
  291. bool saved_printing = false; //!< Print is paused and saved in RAM
  292. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  293. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  294. static float saved_pos[4] = { 0, 0, 0, 0 };
  295. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  296. static float saved_feedrate2 = 0;
  297. static uint8_t saved_active_extruder = 0;
  298. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  299. static bool saved_extruder_under_pressure = false;
  300. static bool saved_extruder_relative_mode = false;
  301. static int saved_fanSpeed = 0; //!< Print fan speed
  302. //! @}
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. tmc2130_sg_stop_on_crash = true;
  496. if (saved_printing_type == PRINTING_TYPE_SD) {
  497. lcd_print_stop();
  498. }else if(saved_printing_type == PRINTING_TYPE_USB){
  499. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  500. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  501. }
  502. }
  503. #endif //TMC2130
  504. void failstats_reset_print()
  505. {
  506. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  510. }
  511. #ifdef MESH_BED_LEVELING
  512. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  513. #endif
  514. // Factory reset function
  515. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  516. // Level input parameter sets depth of reset
  517. int er_progress = 0;
  518. static void factory_reset(char level)
  519. {
  520. lcd_clear();
  521. switch (level) {
  522. // Level 0: Language reset
  523. case 0:
  524. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  525. WRITE(BEEPER, HIGH);
  526. _delay_ms(100);
  527. WRITE(BEEPER, LOW);
  528. lang_reset();
  529. break;
  530. //Level 1: Reset statistics
  531. case 1:
  532. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  533. WRITE(BEEPER, HIGH);
  534. _delay_ms(100);
  535. WRITE(BEEPER, LOW);
  536. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  537. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  546. lcd_menu_statistics();
  547. break;
  548. // Level 2: Prepare for shipping
  549. case 2:
  550. //lcd_puts_P(PSTR("Factory RESET"));
  551. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  552. // Force language selection at the next boot up.
  553. lang_reset();
  554. // Force the "Follow calibration flow" message at the next boot up.
  555. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  556. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  557. farm_no = 0;
  558. farm_mode = false;
  559. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  560. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  561. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  562. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  563. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  564. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  567. #ifdef FILAMENT_SENSOR
  568. fsensor_enable();
  569. fsensor_autoload_set(true);
  570. #endif //FILAMENT_SENSOR
  571. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  572. WRITE(BEEPER, HIGH);
  573. _delay_ms(100);
  574. WRITE(BEEPER, LOW);
  575. //_delay_ms(2000);
  576. break;
  577. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  578. case 3:
  579. lcd_puts_P(PSTR("Factory RESET"));
  580. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  581. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  582. WRITE(BEEPER, HIGH);
  583. _delay_ms(100);
  584. WRITE(BEEPER, LOW);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  619. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  620. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  621. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  622. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  623. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  624. }
  625. void factory_reset()
  626. {
  627. KEEPALIVE_STATE(PAUSED_FOR_USER);
  628. if (!READ(BTN_ENC))
  629. {
  630. _delay_ms(1000);
  631. if (!READ(BTN_ENC))
  632. {
  633. lcd_clear();
  634. lcd_puts_P(PSTR("Factory RESET"));
  635. SET_OUTPUT(BEEPER);
  636. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  637. WRITE(BEEPER, HIGH);
  638. while (!READ(BTN_ENC));
  639. WRITE(BEEPER, LOW);
  640. _delay_ms(2000);
  641. char level = reset_menu();
  642. factory_reset(level);
  643. switch (level) {
  644. case 0: _delay_ms(0); break;
  645. case 1: _delay_ms(0); break;
  646. case 2: _delay_ms(0); break;
  647. case 3: _delay_ms(0); break;
  648. }
  649. }
  650. }
  651. KEEPALIVE_STATE(IN_HANDLER);
  652. }
  653. void show_fw_version_warnings() {
  654. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  655. switch (FW_DEV_VERSION) {
  656. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  657. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  658. case(FW_VERSION_DEVEL):
  659. case(FW_VERSION_DEBUG):
  660. lcd_update_enable(false);
  661. lcd_clear();
  662. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  663. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  664. #else
  665. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  666. #endif
  667. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  668. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  669. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  670. lcd_wait_for_click();
  671. break;
  672. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  673. }
  674. lcd_update_enable(true);
  675. }
  676. uint8_t check_printer_version()
  677. {
  678. uint8_t version_changed = 0;
  679. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  680. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  681. if (printer_type != PRINTER_TYPE) {
  682. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  683. else version_changed |= 0b10;
  684. }
  685. if (motherboard != MOTHERBOARD) {
  686. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  687. else version_changed |= 0b01;
  688. }
  689. return version_changed;
  690. }
  691. #ifdef BOOTAPP
  692. #include "bootapp.h" //bootloader support
  693. #endif //BOOTAPP
  694. #if (LANG_MODE != 0) //secondary language support
  695. #ifdef W25X20CL
  696. // language update from external flash
  697. #define LANGBOOT_BLOCKSIZE 0x1000u
  698. #define LANGBOOT_RAMBUFFER 0x0800
  699. void update_sec_lang_from_external_flash()
  700. {
  701. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  702. {
  703. uint8_t lang = boot_reserved >> 4;
  704. uint8_t state = boot_reserved & 0xf;
  705. lang_table_header_t header;
  706. uint32_t src_addr;
  707. if (lang_get_header(lang, &header, &src_addr))
  708. {
  709. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  710. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  711. delay(100);
  712. boot_reserved = (state + 1) | (lang << 4);
  713. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  714. {
  715. cli();
  716. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  717. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  718. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  719. if (state == 0)
  720. {
  721. //TODO - check header integrity
  722. }
  723. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  724. }
  725. else
  726. {
  727. //TODO - check sec lang data integrity
  728. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  729. }
  730. }
  731. }
  732. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  733. }
  734. #ifdef DEBUG_W25X20CL
  735. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  736. {
  737. lang_table_header_t header;
  738. uint8_t count = 0;
  739. uint32_t addr = 0x00000;
  740. while (1)
  741. {
  742. printf_P(_n("LANGTABLE%d:"), count);
  743. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  744. if (header.magic != LANG_MAGIC)
  745. {
  746. printf_P(_n("NG!\n"));
  747. break;
  748. }
  749. printf_P(_n("OK\n"));
  750. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  751. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  752. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  753. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  754. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  755. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  756. addr += header.size;
  757. codes[count] = header.code;
  758. count ++;
  759. }
  760. return count;
  761. }
  762. void list_sec_lang_from_external_flash()
  763. {
  764. uint16_t codes[8];
  765. uint8_t count = lang_xflash_enum_codes(codes);
  766. printf_P(_n("XFlash lang count = %hhd\n"), count);
  767. }
  768. #endif //DEBUG_W25X20CL
  769. #endif //W25X20CL
  770. #endif //(LANG_MODE != 0)
  771. // "Setup" function is called by the Arduino framework on startup.
  772. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  773. // are initialized by the main() routine provided by the Arduino framework.
  774. void setup()
  775. {
  776. mmu_init();
  777. ultralcd_init();
  778. spi_init();
  779. lcd_splash();
  780. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  781. #ifdef W25X20CL
  782. if (!w25x20cl_init())
  783. kill(_i("External SPI flash W25X20CL not responding."));
  784. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  785. optiboot_w25x20cl_enter();
  786. #endif
  787. #if (LANG_MODE != 0) //secondary language support
  788. #ifdef W25X20CL
  789. if (w25x20cl_init())
  790. update_sec_lang_from_external_flash();
  791. #endif //W25X20CL
  792. #endif //(LANG_MODE != 0)
  793. setup_killpin();
  794. setup_powerhold();
  795. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  796. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  797. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  798. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  799. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  800. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  801. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  802. if (farm_mode)
  803. {
  804. no_response = true; //we need confirmation by recieving PRUSA thx
  805. important_status = 8;
  806. prusa_statistics(8);
  807. selectedSerialPort = 1;
  808. #ifdef TMC2130
  809. //increased extruder current (PFW363)
  810. tmc2130_current_h[E_AXIS] = 36;
  811. tmc2130_current_r[E_AXIS] = 36;
  812. #endif //TMC2130
  813. #ifdef FILAMENT_SENSOR
  814. //disabled filament autoload (PFW360)
  815. fsensor_autoload_set(false);
  816. #endif //FILAMENT_SENSOR
  817. }
  818. MYSERIAL.begin(BAUDRATE);
  819. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  820. #ifndef W25X20CL
  821. SERIAL_PROTOCOLLNPGM("start");
  822. #endif //W25X20CL
  823. stdout = uartout;
  824. SERIAL_ECHO_START;
  825. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  826. #ifdef DEBUG_SEC_LANG
  827. lang_table_header_t header;
  828. uint32_t src_addr = 0x00000;
  829. if (lang_get_header(1, &header, &src_addr))
  830. {
  831. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  832. #define LT_PRINT_TEST 2
  833. // flash usage
  834. // total p.test
  835. //0 252718 t+c text code
  836. //1 253142 424 170 254
  837. //2 253040 322 164 158
  838. //3 253248 530 135 395
  839. #if (LT_PRINT_TEST==1) //not optimized printf
  840. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  841. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  842. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  843. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  844. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  845. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  846. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  847. #elif (LT_PRINT_TEST==2) //optimized printf
  848. printf_P(
  849. _n(
  850. " _src_addr = 0x%08lx\n"
  851. " _lt_magic = 0x%08lx %S\n"
  852. " _lt_size = 0x%04x (%d)\n"
  853. " _lt_count = 0x%04x (%d)\n"
  854. " _lt_chsum = 0x%04x\n"
  855. " _lt_code = 0x%04x (%c%c)\n"
  856. " _lt_resv1 = 0x%08lx\n"
  857. ),
  858. src_addr,
  859. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  860. header.size, header.size,
  861. header.count, header.count,
  862. header.checksum,
  863. header.code, header.code >> 8, header.code & 0xff,
  864. header.signature
  865. );
  866. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  867. MYSERIAL.print(" _src_addr = 0x");
  868. MYSERIAL.println(src_addr, 16);
  869. MYSERIAL.print(" _lt_magic = 0x");
  870. MYSERIAL.print(header.magic, 16);
  871. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  872. MYSERIAL.print(" _lt_size = 0x");
  873. MYSERIAL.print(header.size, 16);
  874. MYSERIAL.print(" (");
  875. MYSERIAL.print(header.size, 10);
  876. MYSERIAL.println(")");
  877. MYSERIAL.print(" _lt_count = 0x");
  878. MYSERIAL.print(header.count, 16);
  879. MYSERIAL.print(" (");
  880. MYSERIAL.print(header.count, 10);
  881. MYSERIAL.println(")");
  882. MYSERIAL.print(" _lt_chsum = 0x");
  883. MYSERIAL.println(header.checksum, 16);
  884. MYSERIAL.print(" _lt_code = 0x");
  885. MYSERIAL.print(header.code, 16);
  886. MYSERIAL.print(" (");
  887. MYSERIAL.print((char)(header.code >> 8), 0);
  888. MYSERIAL.print((char)(header.code & 0xff), 0);
  889. MYSERIAL.println(")");
  890. MYSERIAL.print(" _lt_resv1 = 0x");
  891. MYSERIAL.println(header.signature, 16);
  892. #endif //(LT_PRINT_TEST==)
  893. #undef LT_PRINT_TEST
  894. #if 0
  895. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  896. for (uint16_t i = 0; i < 1024; i++)
  897. {
  898. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  899. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  900. if ((i % 16) == 15) putchar('\n');
  901. }
  902. #endif
  903. uint16_t sum = 0;
  904. for (uint16_t i = 0; i < header.size; i++)
  905. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  906. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  907. sum -= header.checksum; //subtract checksum
  908. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  909. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  910. if (sum == header.checksum)
  911. printf_P(_n("Checksum OK\n"), sum);
  912. else
  913. printf_P(_n("Checksum NG\n"), sum);
  914. }
  915. else
  916. printf_P(_n("lang_get_header failed!\n"));
  917. #if 0
  918. for (uint16_t i = 0; i < 1024*10; i++)
  919. {
  920. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  921. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  922. if ((i % 16) == 15) putchar('\n');
  923. }
  924. #endif
  925. #if 0
  926. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  927. for (int i = 0; i < 4096; ++i) {
  928. int b = eeprom_read_byte((unsigned char*)i);
  929. if (b != 255) {
  930. SERIAL_ECHO(i);
  931. SERIAL_ECHO(":");
  932. SERIAL_ECHO(b);
  933. SERIAL_ECHOLN("");
  934. }
  935. }
  936. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  937. #endif
  938. #endif //DEBUG_SEC_LANG
  939. // Check startup - does nothing if bootloader sets MCUSR to 0
  940. byte mcu = MCUSR;
  941. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  942. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  943. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  944. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  945. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  946. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  947. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  948. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  949. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  950. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  951. MCUSR = 0;
  952. //SERIAL_ECHORPGM(MSG_MARLIN);
  953. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  954. #ifdef STRING_VERSION_CONFIG_H
  955. #ifdef STRING_CONFIG_H_AUTHOR
  956. SERIAL_ECHO_START;
  957. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  958. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  959. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  960. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  961. SERIAL_ECHOPGM("Compiled: ");
  962. SERIAL_ECHOLNPGM(__DATE__);
  963. #endif
  964. #endif
  965. SERIAL_ECHO_START;
  966. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  967. SERIAL_ECHO(freeMemory());
  968. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  969. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  970. //lcd_update_enable(false); // why do we need this?? - andre
  971. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  972. bool previous_settings_retrieved = false;
  973. uint8_t hw_changed = check_printer_version();
  974. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  975. previous_settings_retrieved = Config_RetrieveSettings();
  976. }
  977. else { //printer version was changed so use default settings
  978. Config_ResetDefault();
  979. }
  980. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  981. tp_init(); // Initialize temperature loop
  982. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  983. plan_init(); // Initialize planner;
  984. factory_reset();
  985. lcd_encoder_diff=0;
  986. #ifdef TMC2130
  987. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  988. if (silentMode == 0xff) silentMode = 0;
  989. tmc2130_mode = TMC2130_MODE_NORMAL;
  990. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  991. if (crashdet && !farm_mode)
  992. {
  993. crashdet_enable();
  994. puts_P(_N("CrashDetect ENABLED!"));
  995. }
  996. else
  997. {
  998. crashdet_disable();
  999. puts_P(_N("CrashDetect DISABLED"));
  1000. }
  1001. #ifdef TMC2130_LINEARITY_CORRECTION
  1002. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1003. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1004. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1005. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1006. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1007. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1008. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1009. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1010. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1011. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1012. #endif //TMC2130_LINEARITY_CORRECTION
  1013. #ifdef TMC2130_VARIABLE_RESOLUTION
  1014. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1015. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1016. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1017. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1018. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1019. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1020. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1021. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1022. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1023. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1024. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1025. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1026. #else //TMC2130_VARIABLE_RESOLUTION
  1027. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1028. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1029. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1030. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1031. #endif //TMC2130_VARIABLE_RESOLUTION
  1032. #endif //TMC2130
  1033. st_init(); // Initialize stepper, this enables interrupts!
  1034. #ifdef TMC2130
  1035. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1036. update_mode_profile();
  1037. tmc2130_init();
  1038. #endif //TMC2130
  1039. setup_photpin();
  1040. servo_init();
  1041. // Reset the machine correction matrix.
  1042. // It does not make sense to load the correction matrix until the machine is homed.
  1043. world2machine_reset();
  1044. #ifdef FILAMENT_SENSOR
  1045. fsensor_init();
  1046. #endif //FILAMENT_SENSOR
  1047. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1048. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1049. #endif
  1050. setup_homepin();
  1051. #ifdef TMC2130
  1052. if (1) {
  1053. // try to run to zero phase before powering the Z motor.
  1054. // Move in negative direction
  1055. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1056. // Round the current micro-micro steps to micro steps.
  1057. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1058. // Until the phase counter is reset to zero.
  1059. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1060. delay(2);
  1061. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1062. delay(2);
  1063. }
  1064. }
  1065. #endif //TMC2130
  1066. #if defined(Z_AXIS_ALWAYS_ON)
  1067. enable_z();
  1068. #endif
  1069. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1070. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1071. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1072. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1073. if (farm_mode)
  1074. {
  1075. prusa_statistics(8);
  1076. }
  1077. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1078. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1079. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1080. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1081. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1082. // where all the EEPROM entries are set to 0x0ff.
  1083. // Once a firmware boots up, it forces at least a language selection, which changes
  1084. // EEPROM_LANG to number lower than 0x0ff.
  1085. // 1) Set a high power mode.
  1086. #ifdef TMC2130
  1087. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1088. tmc2130_mode = TMC2130_MODE_NORMAL;
  1089. #endif //TMC2130
  1090. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1091. }
  1092. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1093. // but this times out if a blocking dialog is shown in setup().
  1094. card.initsd();
  1095. #ifdef DEBUG_SD_SPEED_TEST
  1096. if (card.cardOK)
  1097. {
  1098. uint8_t* buff = (uint8_t*)block_buffer;
  1099. uint32_t block = 0;
  1100. uint32_t sumr = 0;
  1101. uint32_t sumw = 0;
  1102. for (int i = 0; i < 1024; i++)
  1103. {
  1104. uint32_t u = micros();
  1105. bool res = card.card.readBlock(i, buff);
  1106. u = micros() - u;
  1107. if (res)
  1108. {
  1109. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1110. sumr += u;
  1111. u = micros();
  1112. res = card.card.writeBlock(i, buff);
  1113. u = micros() - u;
  1114. if (res)
  1115. {
  1116. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1117. sumw += u;
  1118. }
  1119. else
  1120. {
  1121. printf_P(PSTR("writeBlock %4d error\n"), i);
  1122. break;
  1123. }
  1124. }
  1125. else
  1126. {
  1127. printf_P(PSTR("readBlock %4d error\n"), i);
  1128. break;
  1129. }
  1130. }
  1131. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1132. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1133. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1134. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1135. }
  1136. else
  1137. printf_P(PSTR("Card NG!\n"));
  1138. #endif //DEBUG_SD_SPEED_TEST
  1139. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1140. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1141. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1142. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1143. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1144. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1145. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1146. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1147. #ifdef SNMM
  1148. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1149. int _z = BOWDEN_LENGTH;
  1150. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1151. }
  1152. #endif
  1153. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1154. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1155. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1156. #if (LANG_MODE != 0) //secondary language support
  1157. #ifdef DEBUG_W25X20CL
  1158. W25X20CL_SPI_ENTER();
  1159. uint8_t uid[8]; // 64bit unique id
  1160. w25x20cl_rd_uid(uid);
  1161. puts_P(_n("W25X20CL UID="));
  1162. for (uint8_t i = 0; i < 8; i ++)
  1163. printf_P(PSTR("%02hhx"), uid[i]);
  1164. putchar('\n');
  1165. list_sec_lang_from_external_flash();
  1166. #endif //DEBUG_W25X20CL
  1167. // lang_reset();
  1168. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1169. lcd_language();
  1170. #ifdef DEBUG_SEC_LANG
  1171. uint16_t sec_lang_code = lang_get_code(1);
  1172. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1173. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1174. lang_print_sec_lang(uartout);
  1175. #endif //DEBUG_SEC_LANG
  1176. #endif //(LANG_MODE != 0)
  1177. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1178. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1179. temp_cal_active = false;
  1180. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1181. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1182. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1183. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1184. int16_t z_shift = 0;
  1185. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1186. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1187. temp_cal_active = false;
  1188. }
  1189. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1190. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1191. }
  1192. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1193. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1194. }
  1195. check_babystep(); //checking if Z babystep is in allowed range
  1196. #ifdef UVLO_SUPPORT
  1197. setup_uvlo_interrupt();
  1198. #endif //UVLO_SUPPORT
  1199. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1200. setup_fan_interrupt();
  1201. #endif //DEBUG_DISABLE_FANCHECK
  1202. #ifdef FILAMENT_SENSOR
  1203. fsensor_setup_interrupt();
  1204. #endif //FILAMENT_SENSOR
  1205. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1206. #ifndef DEBUG_DISABLE_STARTMSGS
  1207. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1208. show_fw_version_warnings();
  1209. switch (hw_changed) {
  1210. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1211. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1212. case(0b01):
  1213. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1214. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1215. break;
  1216. case(0b10):
  1217. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1218. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1219. break;
  1220. case(0b11):
  1221. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1222. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1223. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1224. break;
  1225. default: break; //no change, show no message
  1226. }
  1227. if (!previous_settings_retrieved) {
  1228. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1229. Config_StoreSettings();
  1230. }
  1231. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1232. lcd_wizard(WizState::Run);
  1233. }
  1234. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1235. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1236. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1237. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1238. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1239. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1240. // Show the message.
  1241. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1242. }
  1243. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1244. // Show the message.
  1245. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1246. lcd_update_enable(true);
  1247. }
  1248. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1249. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1250. lcd_update_enable(true);
  1251. }
  1252. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1253. // Show the message.
  1254. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1255. }
  1256. }
  1257. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1258. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1260. update_current_firmware_version_to_eeprom();
  1261. lcd_selftest();
  1262. }
  1263. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1264. KEEPALIVE_STATE(IN_PROCESS);
  1265. #endif //DEBUG_DISABLE_STARTMSGS
  1266. lcd_update_enable(true);
  1267. lcd_clear();
  1268. lcd_update(2);
  1269. // Store the currently running firmware into an eeprom,
  1270. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1271. update_current_firmware_version_to_eeprom();
  1272. #ifdef TMC2130
  1273. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1274. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1275. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1276. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1277. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1278. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1279. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1280. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1281. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1282. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1283. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1284. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1285. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1286. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1287. #endif //TMC2130
  1288. #ifdef UVLO_SUPPORT
  1289. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1290. /*
  1291. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1292. else {
  1293. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1294. lcd_update_enable(true);
  1295. lcd_update(2);
  1296. lcd_setstatuspgm(_T(WELCOME_MSG));
  1297. }
  1298. */
  1299. manage_heater(); // Update temperatures
  1300. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1301. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1302. #endif
  1303. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1304. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1305. puts_P(_N("Automatic recovery!"));
  1306. #endif
  1307. recover_print(1);
  1308. }
  1309. else{
  1310. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1311. puts_P(_N("Normal recovery!"));
  1312. #endif
  1313. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1314. else {
  1315. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1316. lcd_update_enable(true);
  1317. lcd_update(2);
  1318. lcd_setstatuspgm(_T(WELCOME_MSG));
  1319. }
  1320. }
  1321. }
  1322. #endif //UVLO_SUPPORT
  1323. KEEPALIVE_STATE(NOT_BUSY);
  1324. #ifdef WATCHDOG
  1325. wdt_enable(WDTO_4S);
  1326. #endif //WATCHDOG
  1327. }
  1328. void trace();
  1329. #define CHUNK_SIZE 64 // bytes
  1330. #define SAFETY_MARGIN 1
  1331. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1332. int chunkHead = 0;
  1333. void serial_read_stream() {
  1334. setAllTargetHotends(0);
  1335. setTargetBed(0);
  1336. lcd_clear();
  1337. lcd_puts_P(PSTR(" Upload in progress"));
  1338. // first wait for how many bytes we will receive
  1339. uint32_t bytesToReceive;
  1340. // receive the four bytes
  1341. char bytesToReceiveBuffer[4];
  1342. for (int i=0; i<4; i++) {
  1343. int data;
  1344. while ((data = MYSERIAL.read()) == -1) {};
  1345. bytesToReceiveBuffer[i] = data;
  1346. }
  1347. // make it a uint32
  1348. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1349. // we're ready, notify the sender
  1350. MYSERIAL.write('+');
  1351. // lock in the routine
  1352. uint32_t receivedBytes = 0;
  1353. while (prusa_sd_card_upload) {
  1354. int i;
  1355. for (i=0; i<CHUNK_SIZE; i++) {
  1356. int data;
  1357. // check if we're not done
  1358. if (receivedBytes == bytesToReceive) {
  1359. break;
  1360. }
  1361. // read the next byte
  1362. while ((data = MYSERIAL.read()) == -1) {};
  1363. receivedBytes++;
  1364. // save it to the chunk
  1365. chunk[i] = data;
  1366. }
  1367. // write the chunk to SD
  1368. card.write_command_no_newline(&chunk[0]);
  1369. // notify the sender we're ready for more data
  1370. MYSERIAL.write('+');
  1371. // for safety
  1372. manage_heater();
  1373. // check if we're done
  1374. if(receivedBytes == bytesToReceive) {
  1375. trace(); // beep
  1376. card.closefile();
  1377. prusa_sd_card_upload = false;
  1378. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1379. }
  1380. }
  1381. }
  1382. #ifdef HOST_KEEPALIVE_FEATURE
  1383. /**
  1384. * Output a "busy" message at regular intervals
  1385. * while the machine is not accepting commands.
  1386. */
  1387. void host_keepalive() {
  1388. if (farm_mode) return;
  1389. long ms = millis();
  1390. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1391. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1392. switch (busy_state) {
  1393. case IN_HANDLER:
  1394. case IN_PROCESS:
  1395. SERIAL_ECHO_START;
  1396. SERIAL_ECHOLNPGM("busy: processing");
  1397. break;
  1398. case PAUSED_FOR_USER:
  1399. SERIAL_ECHO_START;
  1400. SERIAL_ECHOLNPGM("busy: paused for user");
  1401. break;
  1402. case PAUSED_FOR_INPUT:
  1403. SERIAL_ECHO_START;
  1404. SERIAL_ECHOLNPGM("busy: paused for input");
  1405. break;
  1406. default:
  1407. break;
  1408. }
  1409. }
  1410. prev_busy_signal_ms = ms;
  1411. }
  1412. #endif
  1413. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1414. // Before loop(), the setup() function is called by the main() routine.
  1415. void loop()
  1416. {
  1417. KEEPALIVE_STATE(NOT_BUSY);
  1418. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1419. {
  1420. is_usb_printing = true;
  1421. usb_printing_counter--;
  1422. _usb_timer = millis();
  1423. }
  1424. if (usb_printing_counter == 0)
  1425. {
  1426. is_usb_printing = false;
  1427. }
  1428. if (prusa_sd_card_upload)
  1429. {
  1430. //we read byte-by byte
  1431. serial_read_stream();
  1432. } else
  1433. {
  1434. get_command();
  1435. #ifdef SDSUPPORT
  1436. card.checkautostart(false);
  1437. #endif
  1438. if(buflen)
  1439. {
  1440. cmdbuffer_front_already_processed = false;
  1441. #ifdef SDSUPPORT
  1442. if(card.saving)
  1443. {
  1444. // Saving a G-code file onto an SD-card is in progress.
  1445. // Saving starts with M28, saving until M29 is seen.
  1446. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1447. card.write_command(CMDBUFFER_CURRENT_STRING);
  1448. if(card.logging)
  1449. process_commands();
  1450. else
  1451. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1452. } else {
  1453. card.closefile();
  1454. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1455. }
  1456. } else {
  1457. process_commands();
  1458. }
  1459. #else
  1460. process_commands();
  1461. #endif //SDSUPPORT
  1462. if (! cmdbuffer_front_already_processed && buflen)
  1463. {
  1464. // ptr points to the start of the block currently being processed.
  1465. // The first character in the block is the block type.
  1466. char *ptr = cmdbuffer + bufindr;
  1467. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1468. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1469. union {
  1470. struct {
  1471. char lo;
  1472. char hi;
  1473. } lohi;
  1474. uint16_t value;
  1475. } sdlen;
  1476. sdlen.value = 0;
  1477. {
  1478. // This block locks the interrupts globally for 3.25 us,
  1479. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1480. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1481. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1482. cli();
  1483. // Reset the command to something, which will be ignored by the power panic routine,
  1484. // so this buffer length will not be counted twice.
  1485. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1486. // Extract the current buffer length.
  1487. sdlen.lohi.lo = *ptr ++;
  1488. sdlen.lohi.hi = *ptr;
  1489. // and pass it to the planner queue.
  1490. planner_add_sd_length(sdlen.value);
  1491. sei();
  1492. }
  1493. }
  1494. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1495. cli();
  1496. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1497. // and one for each command to previous block in the planner queue.
  1498. planner_add_sd_length(1);
  1499. sei();
  1500. }
  1501. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1502. // this block's SD card length will not be counted twice as its command type has been replaced
  1503. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1504. cmdqueue_pop_front();
  1505. }
  1506. host_keepalive();
  1507. }
  1508. }
  1509. //check heater every n milliseconds
  1510. manage_heater();
  1511. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1512. checkHitEndstops();
  1513. lcd_update(0);
  1514. #ifdef TMC2130
  1515. tmc2130_check_overtemp();
  1516. if (tmc2130_sg_crash)
  1517. {
  1518. uint8_t crash = tmc2130_sg_crash;
  1519. tmc2130_sg_crash = 0;
  1520. // crashdet_stop_and_save_print();
  1521. switch (crash)
  1522. {
  1523. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1524. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1525. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1526. }
  1527. }
  1528. #endif //TMC2130
  1529. mmu_loop();
  1530. }
  1531. #define DEFINE_PGM_READ_ANY(type, reader) \
  1532. static inline type pgm_read_any(const type *p) \
  1533. { return pgm_read_##reader##_near(p); }
  1534. DEFINE_PGM_READ_ANY(float, float);
  1535. DEFINE_PGM_READ_ANY(signed char, byte);
  1536. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1537. static const PROGMEM type array##_P[3] = \
  1538. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1539. static inline type array(int axis) \
  1540. { return pgm_read_any(&array##_P[axis]); } \
  1541. type array##_ext(int axis) \
  1542. { return pgm_read_any(&array##_P[axis]); }
  1543. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1544. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1545. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1546. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1547. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1548. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1549. static void axis_is_at_home(int axis) {
  1550. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1551. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1552. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1553. }
  1554. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1555. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1556. //! @return original feedmultiply
  1557. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1558. saved_feedrate = feedrate;
  1559. int l_feedmultiply = feedmultiply;
  1560. feedmultiply = 100;
  1561. previous_millis_cmd = millis();
  1562. enable_endstops(enable_endstops_now);
  1563. return l_feedmultiply;
  1564. }
  1565. //! @param original_feedmultiply feedmultiply to restore
  1566. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1567. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1568. enable_endstops(false);
  1569. #endif
  1570. feedrate = saved_feedrate;
  1571. feedmultiply = original_feedmultiply;
  1572. previous_millis_cmd = millis();
  1573. }
  1574. #ifdef ENABLE_AUTO_BED_LEVELING
  1575. #ifdef AUTO_BED_LEVELING_GRID
  1576. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1577. {
  1578. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1579. planeNormal.debug("planeNormal");
  1580. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1581. //bedLevel.debug("bedLevel");
  1582. //plan_bed_level_matrix.debug("bed level before");
  1583. //vector_3 uncorrected_position = plan_get_position_mm();
  1584. //uncorrected_position.debug("position before");
  1585. vector_3 corrected_position = plan_get_position();
  1586. // corrected_position.debug("position after");
  1587. current_position[X_AXIS] = corrected_position.x;
  1588. current_position[Y_AXIS] = corrected_position.y;
  1589. current_position[Z_AXIS] = corrected_position.z;
  1590. // put the bed at 0 so we don't go below it.
  1591. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1592. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1593. }
  1594. #else // not AUTO_BED_LEVELING_GRID
  1595. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1596. plan_bed_level_matrix.set_to_identity();
  1597. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1598. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1599. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1600. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1601. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1602. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1603. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1604. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1605. vector_3 corrected_position = plan_get_position();
  1606. current_position[X_AXIS] = corrected_position.x;
  1607. current_position[Y_AXIS] = corrected_position.y;
  1608. current_position[Z_AXIS] = corrected_position.z;
  1609. // put the bed at 0 so we don't go below it.
  1610. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1612. }
  1613. #endif // AUTO_BED_LEVELING_GRID
  1614. static void run_z_probe() {
  1615. plan_bed_level_matrix.set_to_identity();
  1616. feedrate = homing_feedrate[Z_AXIS];
  1617. // move down until you find the bed
  1618. float zPosition = -10;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1620. st_synchronize();
  1621. // we have to let the planner know where we are right now as it is not where we said to go.
  1622. zPosition = st_get_position_mm(Z_AXIS);
  1623. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1624. // move up the retract distance
  1625. zPosition += home_retract_mm(Z_AXIS);
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1627. st_synchronize();
  1628. // move back down slowly to find bed
  1629. feedrate = homing_feedrate[Z_AXIS]/4;
  1630. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1632. st_synchronize();
  1633. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1634. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1635. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1636. }
  1637. static void do_blocking_move_to(float x, float y, float z) {
  1638. float oldFeedRate = feedrate;
  1639. feedrate = homing_feedrate[Z_AXIS];
  1640. current_position[Z_AXIS] = z;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1642. st_synchronize();
  1643. feedrate = XY_TRAVEL_SPEED;
  1644. current_position[X_AXIS] = x;
  1645. current_position[Y_AXIS] = y;
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1647. st_synchronize();
  1648. feedrate = oldFeedRate;
  1649. }
  1650. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1651. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1652. }
  1653. /// Probe bed height at position (x,y), returns the measured z value
  1654. static float probe_pt(float x, float y, float z_before) {
  1655. // move to right place
  1656. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1657. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1658. run_z_probe();
  1659. float measured_z = current_position[Z_AXIS];
  1660. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1661. SERIAL_PROTOCOLPGM(" x: ");
  1662. SERIAL_PROTOCOL(x);
  1663. SERIAL_PROTOCOLPGM(" y: ");
  1664. SERIAL_PROTOCOL(y);
  1665. SERIAL_PROTOCOLPGM(" z: ");
  1666. SERIAL_PROTOCOL(measured_z);
  1667. SERIAL_PROTOCOLPGM("\n");
  1668. return measured_z;
  1669. }
  1670. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1671. #ifdef LIN_ADVANCE
  1672. /**
  1673. * M900: Set and/or Get advance K factor and WH/D ratio
  1674. *
  1675. * K<factor> Set advance K factor
  1676. * R<ratio> Set ratio directly (overrides WH/D)
  1677. * W<width> H<height> D<diam> Set ratio from WH/D
  1678. */
  1679. inline void gcode_M900() {
  1680. st_synchronize();
  1681. const float newK = code_seen('K') ? code_value_float() : -1;
  1682. if (newK >= 0) extruder_advance_k = newK;
  1683. float newR = code_seen('R') ? code_value_float() : -1;
  1684. if (newR < 0) {
  1685. const float newD = code_seen('D') ? code_value_float() : -1,
  1686. newW = code_seen('W') ? code_value_float() : -1,
  1687. newH = code_seen('H') ? code_value_float() : -1;
  1688. if (newD >= 0 && newW >= 0 && newH >= 0)
  1689. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1690. }
  1691. if (newR >= 0) advance_ed_ratio = newR;
  1692. SERIAL_ECHO_START;
  1693. SERIAL_ECHOPGM("Advance K=");
  1694. SERIAL_ECHOLN(extruder_advance_k);
  1695. SERIAL_ECHOPGM(" E/D=");
  1696. const float ratio = advance_ed_ratio;
  1697. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1698. }
  1699. #endif // LIN_ADVANCE
  1700. bool check_commands() {
  1701. bool end_command_found = false;
  1702. while (buflen)
  1703. {
  1704. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1705. if (!cmdbuffer_front_already_processed)
  1706. cmdqueue_pop_front();
  1707. cmdbuffer_front_already_processed = false;
  1708. }
  1709. return end_command_found;
  1710. }
  1711. #ifdef TMC2130
  1712. bool calibrate_z_auto()
  1713. {
  1714. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1715. lcd_clear();
  1716. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1717. bool endstops_enabled = enable_endstops(true);
  1718. int axis_up_dir = -home_dir(Z_AXIS);
  1719. tmc2130_home_enter(Z_AXIS_MASK);
  1720. current_position[Z_AXIS] = 0;
  1721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1722. set_destination_to_current();
  1723. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1724. feedrate = homing_feedrate[Z_AXIS];
  1725. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1726. st_synchronize();
  1727. // current_position[axis] = 0;
  1728. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1729. tmc2130_home_exit();
  1730. enable_endstops(false);
  1731. current_position[Z_AXIS] = 0;
  1732. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1733. set_destination_to_current();
  1734. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1735. feedrate = homing_feedrate[Z_AXIS] / 2;
  1736. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1737. st_synchronize();
  1738. enable_endstops(endstops_enabled);
  1739. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1741. return true;
  1742. }
  1743. #endif //TMC2130
  1744. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1745. {
  1746. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1747. #define HOMEAXIS_DO(LETTER) \
  1748. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1749. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1750. {
  1751. int axis_home_dir = home_dir(axis);
  1752. feedrate = homing_feedrate[axis];
  1753. #ifdef TMC2130
  1754. tmc2130_home_enter(X_AXIS_MASK << axis);
  1755. #endif //TMC2130
  1756. // Move away a bit, so that the print head does not touch the end position,
  1757. // and the following movement to endstop has a chance to achieve the required velocity
  1758. // for the stall guard to work.
  1759. current_position[axis] = 0;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. set_destination_to_current();
  1762. // destination[axis] = 11.f;
  1763. destination[axis] = -3.f * axis_home_dir;
  1764. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1765. st_synchronize();
  1766. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1767. endstops_hit_on_purpose();
  1768. enable_endstops(false);
  1769. current_position[axis] = 0;
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. destination[axis] = 1. * axis_home_dir;
  1772. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1773. st_synchronize();
  1774. // Now continue to move up to the left end stop with the collision detection enabled.
  1775. enable_endstops(true);
  1776. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1778. st_synchronize();
  1779. for (uint8_t i = 0; i < cnt; i++)
  1780. {
  1781. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1782. endstops_hit_on_purpose();
  1783. enable_endstops(false);
  1784. current_position[axis] = 0;
  1785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1786. destination[axis] = -10.f * axis_home_dir;
  1787. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1788. st_synchronize();
  1789. endstops_hit_on_purpose();
  1790. // Now move left up to the collision, this time with a repeatable velocity.
  1791. enable_endstops(true);
  1792. destination[axis] = 11.f * axis_home_dir;
  1793. #ifdef TMC2130
  1794. feedrate = homing_feedrate[axis];
  1795. #else //TMC2130
  1796. feedrate = homing_feedrate[axis] / 2;
  1797. #endif //TMC2130
  1798. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1799. st_synchronize();
  1800. #ifdef TMC2130
  1801. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1802. if (pstep) pstep[i] = mscnt >> 4;
  1803. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1804. #endif //TMC2130
  1805. }
  1806. endstops_hit_on_purpose();
  1807. enable_endstops(false);
  1808. #ifdef TMC2130
  1809. uint8_t orig = tmc2130_home_origin[axis];
  1810. uint8_t back = tmc2130_home_bsteps[axis];
  1811. if (tmc2130_home_enabled && (orig <= 63))
  1812. {
  1813. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1814. if (back > 0)
  1815. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1816. }
  1817. else
  1818. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1819. tmc2130_home_exit();
  1820. #endif //TMC2130
  1821. axis_is_at_home(axis);
  1822. axis_known_position[axis] = true;
  1823. // Move from minimum
  1824. #ifdef TMC2130
  1825. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1826. #else //TMC2130
  1827. float dist = - axis_home_dir * 0.01f * 64;
  1828. #endif //TMC2130
  1829. current_position[axis] -= dist;
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. current_position[axis] += dist;
  1832. destination[axis] = current_position[axis];
  1833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1834. st_synchronize();
  1835. feedrate = 0.0;
  1836. }
  1837. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1838. {
  1839. #ifdef TMC2130
  1840. FORCE_HIGH_POWER_START;
  1841. #endif
  1842. int axis_home_dir = home_dir(axis);
  1843. current_position[axis] = 0;
  1844. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1845. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1846. feedrate = homing_feedrate[axis];
  1847. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1848. st_synchronize();
  1849. #ifdef TMC2130
  1850. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1851. FORCE_HIGH_POWER_END;
  1852. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1853. return;
  1854. }
  1855. #endif //TMC2130
  1856. current_position[axis] = 0;
  1857. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1858. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1862. feedrate = homing_feedrate[axis]/2 ;
  1863. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1864. st_synchronize();
  1865. #ifdef TMC2130
  1866. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1867. FORCE_HIGH_POWER_END;
  1868. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1869. return;
  1870. }
  1871. #endif //TMC2130
  1872. axis_is_at_home(axis);
  1873. destination[axis] = current_position[axis];
  1874. feedrate = 0.0;
  1875. endstops_hit_on_purpose();
  1876. axis_known_position[axis] = true;
  1877. #ifdef TMC2130
  1878. FORCE_HIGH_POWER_END;
  1879. #endif
  1880. }
  1881. enable_endstops(endstops_enabled);
  1882. }
  1883. /**/
  1884. void home_xy()
  1885. {
  1886. set_destination_to_current();
  1887. homeaxis(X_AXIS);
  1888. homeaxis(Y_AXIS);
  1889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1890. endstops_hit_on_purpose();
  1891. }
  1892. void refresh_cmd_timeout(void)
  1893. {
  1894. previous_millis_cmd = millis();
  1895. }
  1896. #ifdef FWRETRACT
  1897. void retract(bool retracting, bool swapretract = false) {
  1898. if(retracting && !retracted[active_extruder]) {
  1899. destination[X_AXIS]=current_position[X_AXIS];
  1900. destination[Y_AXIS]=current_position[Y_AXIS];
  1901. destination[Z_AXIS]=current_position[Z_AXIS];
  1902. destination[E_AXIS]=current_position[E_AXIS];
  1903. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1904. plan_set_e_position(current_position[E_AXIS]);
  1905. float oldFeedrate = feedrate;
  1906. feedrate=cs.retract_feedrate*60;
  1907. retracted[active_extruder]=true;
  1908. prepare_move();
  1909. current_position[Z_AXIS]-=cs.retract_zlift;
  1910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1911. prepare_move();
  1912. feedrate = oldFeedrate;
  1913. } else if(!retracting && retracted[active_extruder]) {
  1914. destination[X_AXIS]=current_position[X_AXIS];
  1915. destination[Y_AXIS]=current_position[Y_AXIS];
  1916. destination[Z_AXIS]=current_position[Z_AXIS];
  1917. destination[E_AXIS]=current_position[E_AXIS];
  1918. current_position[Z_AXIS]+=cs.retract_zlift;
  1919. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1920. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1921. plan_set_e_position(current_position[E_AXIS]);
  1922. float oldFeedrate = feedrate;
  1923. feedrate=cs.retract_recover_feedrate*60;
  1924. retracted[active_extruder]=false;
  1925. prepare_move();
  1926. feedrate = oldFeedrate;
  1927. }
  1928. } //retract
  1929. #endif //FWRETRACT
  1930. void trace() {
  1931. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1932. tone(BEEPER, 440);
  1933. delay(25);
  1934. noTone(BEEPER);
  1935. delay(20);
  1936. }
  1937. /*
  1938. void ramming() {
  1939. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1940. if (current_temperature[0] < 230) {
  1941. //PLA
  1942. max_feedrate[E_AXIS] = 50;
  1943. //current_position[E_AXIS] -= 8;
  1944. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1945. //current_position[E_AXIS] += 8;
  1946. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1947. current_position[E_AXIS] += 5.4;
  1948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1949. current_position[E_AXIS] += 3.2;
  1950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1951. current_position[E_AXIS] += 3;
  1952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1953. st_synchronize();
  1954. max_feedrate[E_AXIS] = 80;
  1955. current_position[E_AXIS] -= 82;
  1956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1957. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1958. current_position[E_AXIS] -= 20;
  1959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1960. current_position[E_AXIS] += 5;
  1961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1962. current_position[E_AXIS] += 5;
  1963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1964. current_position[E_AXIS] -= 10;
  1965. st_synchronize();
  1966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1967. current_position[E_AXIS] += 10;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1969. current_position[E_AXIS] -= 10;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1971. current_position[E_AXIS] += 10;
  1972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1973. current_position[E_AXIS] -= 10;
  1974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1975. st_synchronize();
  1976. }
  1977. else {
  1978. //ABS
  1979. max_feedrate[E_AXIS] = 50;
  1980. //current_position[E_AXIS] -= 8;
  1981. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1982. //current_position[E_AXIS] += 8;
  1983. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1984. current_position[E_AXIS] += 3.1;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1986. current_position[E_AXIS] += 3.1;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1988. current_position[E_AXIS] += 4;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1990. st_synchronize();
  1991. //current_position[X_AXIS] += 23; //delay
  1992. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1993. //current_position[X_AXIS] -= 23; //delay
  1994. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1995. delay(4700);
  1996. max_feedrate[E_AXIS] = 80;
  1997. current_position[E_AXIS] -= 92;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1999. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2000. current_position[E_AXIS] -= 5;
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2002. current_position[E_AXIS] += 5;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2004. current_position[E_AXIS] -= 5;
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2006. st_synchronize();
  2007. current_position[E_AXIS] += 5;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2009. current_position[E_AXIS] -= 5;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2011. current_position[E_AXIS] += 5;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2013. current_position[E_AXIS] -= 5;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2015. st_synchronize();
  2016. }
  2017. }
  2018. */
  2019. #ifdef TMC2130
  2020. void force_high_power_mode(bool start_high_power_section) {
  2021. uint8_t silent;
  2022. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2023. if (silent == 1) {
  2024. //we are in silent mode, set to normal mode to enable crash detection
  2025. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2026. st_synchronize();
  2027. cli();
  2028. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2029. update_mode_profile();
  2030. tmc2130_init();
  2031. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2032. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2033. st_reset_timer();
  2034. sei();
  2035. }
  2036. }
  2037. #endif //TMC2130
  2038. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2039. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2040. }
  2041. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2042. st_synchronize();
  2043. #if 0
  2044. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2045. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2046. #endif
  2047. // Flag for the display update routine and to disable the print cancelation during homing.
  2048. homing_flag = true;
  2049. // Which axes should be homed?
  2050. bool home_x = home_x_axis;
  2051. bool home_y = home_y_axis;
  2052. bool home_z = home_z_axis;
  2053. // Either all X,Y,Z codes are present, or none of them.
  2054. bool home_all_axes = home_x == home_y && home_x == home_z;
  2055. if (home_all_axes)
  2056. // No X/Y/Z code provided means to home all axes.
  2057. home_x = home_y = home_z = true;
  2058. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2059. if (home_all_axes) {
  2060. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2061. feedrate = homing_feedrate[Z_AXIS];
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2063. st_synchronize();
  2064. }
  2065. #ifdef ENABLE_AUTO_BED_LEVELING
  2066. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2067. #endif //ENABLE_AUTO_BED_LEVELING
  2068. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2069. // the planner will not perform any adjustments in the XY plane.
  2070. // Wait for the motors to stop and update the current position with the absolute values.
  2071. world2machine_revert_to_uncorrected();
  2072. // For mesh bed leveling deactivate the matrix temporarily.
  2073. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2074. // in a single axis only.
  2075. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2076. #ifdef MESH_BED_LEVELING
  2077. uint8_t mbl_was_active = mbl.active;
  2078. mbl.active = 0;
  2079. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2080. #endif
  2081. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2082. // consumed during the first movements following this statement.
  2083. if (home_z)
  2084. babystep_undo();
  2085. saved_feedrate = feedrate;
  2086. int l_feedmultiply = feedmultiply;
  2087. feedmultiply = 100;
  2088. previous_millis_cmd = millis();
  2089. enable_endstops(true);
  2090. memcpy(destination, current_position, sizeof(destination));
  2091. feedrate = 0.0;
  2092. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2093. if(home_z)
  2094. homeaxis(Z_AXIS);
  2095. #endif
  2096. #ifdef QUICK_HOME
  2097. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2098. if(home_x && home_y) //first diagonal move
  2099. {
  2100. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2101. int x_axis_home_dir = home_dir(X_AXIS);
  2102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2103. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2104. feedrate = homing_feedrate[X_AXIS];
  2105. if(homing_feedrate[Y_AXIS]<feedrate)
  2106. feedrate = homing_feedrate[Y_AXIS];
  2107. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2108. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2109. } else {
  2110. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2111. }
  2112. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2113. st_synchronize();
  2114. axis_is_at_home(X_AXIS);
  2115. axis_is_at_home(Y_AXIS);
  2116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2117. destination[X_AXIS] = current_position[X_AXIS];
  2118. destination[Y_AXIS] = current_position[Y_AXIS];
  2119. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2120. feedrate = 0.0;
  2121. st_synchronize();
  2122. endstops_hit_on_purpose();
  2123. current_position[X_AXIS] = destination[X_AXIS];
  2124. current_position[Y_AXIS] = destination[Y_AXIS];
  2125. current_position[Z_AXIS] = destination[Z_AXIS];
  2126. }
  2127. #endif /* QUICK_HOME */
  2128. #ifdef TMC2130
  2129. if(home_x)
  2130. {
  2131. if (!calib)
  2132. homeaxis(X_AXIS);
  2133. else
  2134. tmc2130_home_calibrate(X_AXIS);
  2135. }
  2136. if(home_y)
  2137. {
  2138. if (!calib)
  2139. homeaxis(Y_AXIS);
  2140. else
  2141. tmc2130_home_calibrate(Y_AXIS);
  2142. }
  2143. #endif //TMC2130
  2144. if(home_x_axis && home_x_value != 0)
  2145. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2146. if(home_y_axis && home_y_value != 0)
  2147. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2148. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2149. #ifndef Z_SAFE_HOMING
  2150. if(home_z) {
  2151. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2152. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2153. feedrate = max_feedrate[Z_AXIS];
  2154. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2155. st_synchronize();
  2156. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2157. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2158. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2159. {
  2160. homeaxis(X_AXIS);
  2161. homeaxis(Y_AXIS);
  2162. }
  2163. // 1st mesh bed leveling measurement point, corrected.
  2164. world2machine_initialize();
  2165. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2166. world2machine_reset();
  2167. if (destination[Y_AXIS] < Y_MIN_POS)
  2168. destination[Y_AXIS] = Y_MIN_POS;
  2169. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2170. feedrate = homing_feedrate[Z_AXIS]/10;
  2171. current_position[Z_AXIS] = 0;
  2172. enable_endstops(false);
  2173. #ifdef DEBUG_BUILD
  2174. SERIAL_ECHOLNPGM("plan_set_position()");
  2175. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2176. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2177. #endif
  2178. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2179. #ifdef DEBUG_BUILD
  2180. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2181. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2182. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2183. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2184. #endif
  2185. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2186. st_synchronize();
  2187. current_position[X_AXIS] = destination[X_AXIS];
  2188. current_position[Y_AXIS] = destination[Y_AXIS];
  2189. enable_endstops(true);
  2190. endstops_hit_on_purpose();
  2191. homeaxis(Z_AXIS);
  2192. #else // MESH_BED_LEVELING
  2193. homeaxis(Z_AXIS);
  2194. #endif // MESH_BED_LEVELING
  2195. }
  2196. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2197. if(home_all_axes) {
  2198. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2199. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2200. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2201. feedrate = XY_TRAVEL_SPEED/60;
  2202. current_position[Z_AXIS] = 0;
  2203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2204. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2205. st_synchronize();
  2206. current_position[X_AXIS] = destination[X_AXIS];
  2207. current_position[Y_AXIS] = destination[Y_AXIS];
  2208. homeaxis(Z_AXIS);
  2209. }
  2210. // Let's see if X and Y are homed and probe is inside bed area.
  2211. if(home_z) {
  2212. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2213. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2214. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2215. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2216. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2217. current_position[Z_AXIS] = 0;
  2218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2219. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2220. feedrate = max_feedrate[Z_AXIS];
  2221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2222. st_synchronize();
  2223. homeaxis(Z_AXIS);
  2224. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2225. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2226. SERIAL_ECHO_START;
  2227. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2228. } else {
  2229. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2230. SERIAL_ECHO_START;
  2231. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2232. }
  2233. }
  2234. #endif // Z_SAFE_HOMING
  2235. #endif // Z_HOME_DIR < 0
  2236. if(home_z_axis && home_z_value != 0)
  2237. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2238. #ifdef ENABLE_AUTO_BED_LEVELING
  2239. if(home_z)
  2240. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2241. #endif
  2242. // Set the planner and stepper routine positions.
  2243. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2244. // contains the machine coordinates.
  2245. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2246. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2247. enable_endstops(false);
  2248. #endif
  2249. feedrate = saved_feedrate;
  2250. feedmultiply = l_feedmultiply;
  2251. previous_millis_cmd = millis();
  2252. endstops_hit_on_purpose();
  2253. #ifndef MESH_BED_LEVELING
  2254. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2255. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2256. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2257. lcd_adjust_z();
  2258. #endif
  2259. // Load the machine correction matrix
  2260. world2machine_initialize();
  2261. // and correct the current_position XY axes to match the transformed coordinate system.
  2262. world2machine_update_current();
  2263. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2264. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2265. {
  2266. if (! home_z && mbl_was_active) {
  2267. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2268. mbl.active = true;
  2269. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2270. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2271. }
  2272. }
  2273. else
  2274. {
  2275. st_synchronize();
  2276. homing_flag = false;
  2277. }
  2278. #endif
  2279. if (farm_mode) { prusa_statistics(20); };
  2280. homing_flag = false;
  2281. #if 0
  2282. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2283. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2284. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2285. #endif
  2286. }
  2287. void adjust_bed_reset()
  2288. {
  2289. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2290. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2291. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2292. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2293. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2294. }
  2295. //! @brief Calibrate XYZ
  2296. //! @param onlyZ if true, calibrate only Z axis
  2297. //! @param verbosity_level
  2298. //! @retval true Succeeded
  2299. //! @retval false Failed
  2300. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2301. {
  2302. bool final_result = false;
  2303. #ifdef TMC2130
  2304. FORCE_HIGH_POWER_START;
  2305. #endif // TMC2130
  2306. // Only Z calibration?
  2307. if (!onlyZ)
  2308. {
  2309. setTargetBed(0);
  2310. setAllTargetHotends(0);
  2311. adjust_bed_reset(); //reset bed level correction
  2312. }
  2313. // Disable the default update procedure of the display. We will do a modal dialog.
  2314. lcd_update_enable(false);
  2315. // Let the planner use the uncorrected coordinates.
  2316. mbl.reset();
  2317. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2318. // the planner will not perform any adjustments in the XY plane.
  2319. // Wait for the motors to stop and update the current position with the absolute values.
  2320. world2machine_revert_to_uncorrected();
  2321. // Reset the baby step value applied without moving the axes.
  2322. babystep_reset();
  2323. // Mark all axes as in a need for homing.
  2324. memset(axis_known_position, 0, sizeof(axis_known_position));
  2325. // Home in the XY plane.
  2326. //set_destination_to_current();
  2327. int l_feedmultiply = setup_for_endstop_move();
  2328. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2329. home_xy();
  2330. enable_endstops(false);
  2331. current_position[X_AXIS] += 5;
  2332. current_position[Y_AXIS] += 5;
  2333. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2334. st_synchronize();
  2335. // Let the user move the Z axes up to the end stoppers.
  2336. #ifdef TMC2130
  2337. if (calibrate_z_auto())
  2338. {
  2339. #else //TMC2130
  2340. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2341. {
  2342. #endif //TMC2130
  2343. refresh_cmd_timeout();
  2344. #ifndef STEEL_SHEET
  2345. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2346. {
  2347. lcd_wait_for_cool_down();
  2348. }
  2349. #endif //STEEL_SHEET
  2350. if(!onlyZ)
  2351. {
  2352. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2353. #ifdef STEEL_SHEET
  2354. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2355. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2356. #endif //STEEL_SHEET
  2357. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2358. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2359. KEEPALIVE_STATE(IN_HANDLER);
  2360. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2361. lcd_set_cursor(0, 2);
  2362. lcd_print(1);
  2363. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2364. }
  2365. // Move the print head close to the bed.
  2366. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2367. bool endstops_enabled = enable_endstops(true);
  2368. #ifdef TMC2130
  2369. tmc2130_home_enter(Z_AXIS_MASK);
  2370. #endif //TMC2130
  2371. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2372. st_synchronize();
  2373. #ifdef TMC2130
  2374. tmc2130_home_exit();
  2375. #endif //TMC2130
  2376. enable_endstops(endstops_enabled);
  2377. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2378. {
  2379. if (onlyZ)
  2380. {
  2381. clean_up_after_endstop_move(l_feedmultiply);
  2382. // Z only calibration.
  2383. // Load the machine correction matrix
  2384. world2machine_initialize();
  2385. // and correct the current_position to match the transformed coordinate system.
  2386. world2machine_update_current();
  2387. //FIXME
  2388. bool result = sample_mesh_and_store_reference();
  2389. if (result)
  2390. {
  2391. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2392. // Shipped, the nozzle height has been set already. The user can start printing now.
  2393. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2394. final_result = true;
  2395. // babystep_apply();
  2396. }
  2397. }
  2398. else
  2399. {
  2400. // Reset the baby step value and the baby step applied flag.
  2401. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2402. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2403. // Complete XYZ calibration.
  2404. uint8_t point_too_far_mask = 0;
  2405. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2406. clean_up_after_endstop_move(l_feedmultiply);
  2407. // Print head up.
  2408. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2410. st_synchronize();
  2411. //#ifndef NEW_XYZCAL
  2412. if (result >= 0)
  2413. {
  2414. #ifdef HEATBED_V2
  2415. sample_z();
  2416. #else //HEATBED_V2
  2417. point_too_far_mask = 0;
  2418. // Second half: The fine adjustment.
  2419. // Let the planner use the uncorrected coordinates.
  2420. mbl.reset();
  2421. world2machine_reset();
  2422. // Home in the XY plane.
  2423. int l_feedmultiply = setup_for_endstop_move();
  2424. home_xy();
  2425. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2426. clean_up_after_endstop_move(l_feedmultiply);
  2427. // Print head up.
  2428. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2429. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2430. st_synchronize();
  2431. // if (result >= 0) babystep_apply();
  2432. #endif //HEATBED_V2
  2433. }
  2434. //#endif //NEW_XYZCAL
  2435. lcd_update_enable(true);
  2436. lcd_update(2);
  2437. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2438. if (result >= 0)
  2439. {
  2440. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2441. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2442. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2443. final_result = true;
  2444. }
  2445. }
  2446. #ifdef TMC2130
  2447. tmc2130_home_exit();
  2448. #endif
  2449. }
  2450. else
  2451. {
  2452. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2453. final_result = false;
  2454. }
  2455. }
  2456. else
  2457. {
  2458. // Timeouted.
  2459. }
  2460. lcd_update_enable(true);
  2461. #ifdef TMC2130
  2462. FORCE_HIGH_POWER_END;
  2463. #endif // TMC2130
  2464. return final_result;
  2465. }
  2466. void gcode_M114()
  2467. {
  2468. SERIAL_PROTOCOLPGM("X:");
  2469. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2470. SERIAL_PROTOCOLPGM(" Y:");
  2471. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2472. SERIAL_PROTOCOLPGM(" Z:");
  2473. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2474. SERIAL_PROTOCOLPGM(" E:");
  2475. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2476. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2477. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2478. SERIAL_PROTOCOLPGM(" Y:");
  2479. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2480. SERIAL_PROTOCOLPGM(" Z:");
  2481. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2482. SERIAL_PROTOCOLPGM(" E:");
  2483. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2484. SERIAL_PROTOCOLLN("");
  2485. }
  2486. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2487. {
  2488. st_synchronize();
  2489. float lastpos[4];
  2490. if (farm_mode)
  2491. {
  2492. prusa_statistics(22);
  2493. }
  2494. //First backup current position and settings
  2495. int feedmultiplyBckp = feedmultiply;
  2496. float HotendTempBckp = degTargetHotend(active_extruder);
  2497. int fanSpeedBckp = fanSpeed;
  2498. lastpos[X_AXIS] = current_position[X_AXIS];
  2499. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2500. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2501. lastpos[E_AXIS] = current_position[E_AXIS];
  2502. //Retract E
  2503. current_position[E_AXIS] += e_shift;
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2505. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2506. st_synchronize();
  2507. //Lift Z
  2508. current_position[Z_AXIS] += z_shift;
  2509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2510. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2511. st_synchronize();
  2512. //Move XY to side
  2513. current_position[X_AXIS] = x_position;
  2514. current_position[Y_AXIS] = y_position;
  2515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2516. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2517. st_synchronize();
  2518. //Beep, manage nozzle heater and wait for user to start unload filament
  2519. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2520. lcd_change_fil_state = 0;
  2521. // Unload filament
  2522. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2523. else unload_filament(); //unload filament for single material (used also in M702)
  2524. //finish moves
  2525. st_synchronize();
  2526. if (!mmu_enabled)
  2527. {
  2528. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2529. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2530. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2531. if (lcd_change_fil_state == 0)
  2532. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2533. lcd_update_enable(true);
  2534. }
  2535. if (mmu_enabled)
  2536. {
  2537. if (!automatic) {
  2538. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2539. mmu_M600_wait_and_beep();
  2540. if (saved_printing) {
  2541. lcd_clear();
  2542. lcd_set_cursor(0, 2);
  2543. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2544. mmu_command(MMU_CMD_R0);
  2545. manage_response(false, false);
  2546. }
  2547. }
  2548. mmu_M600_load_filament(automatic);
  2549. }
  2550. else
  2551. M600_load_filament();
  2552. if (!automatic) M600_check_state();
  2553. lcd_update_enable(true);
  2554. //Not let's go back to print
  2555. fanSpeed = fanSpeedBckp;
  2556. //Feed a little of filament to stabilize pressure
  2557. if (!automatic)
  2558. {
  2559. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2561. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2562. }
  2563. //Move XY back
  2564. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2565. FILAMENTCHANGE_XYFEED, active_extruder);
  2566. st_synchronize();
  2567. //Move Z back
  2568. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2569. FILAMENTCHANGE_ZFEED, active_extruder);
  2570. st_synchronize();
  2571. //Set E position to original
  2572. plan_set_e_position(lastpos[E_AXIS]);
  2573. memcpy(current_position, lastpos, sizeof(lastpos));
  2574. memcpy(destination, current_position, sizeof(current_position));
  2575. //Recover feed rate
  2576. feedmultiply = feedmultiplyBckp;
  2577. char cmd[9];
  2578. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2579. enquecommand(cmd);
  2580. lcd_setstatuspgm(_T(WELCOME_MSG));
  2581. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2582. }
  2583. void gcode_M701()
  2584. {
  2585. printf_P(PSTR("gcode_M701 begin\n"));
  2586. if (mmu_enabled)
  2587. {
  2588. extr_adj(tmp_extruder);//loads current extruder
  2589. mmu_extruder = tmp_extruder;
  2590. }
  2591. else
  2592. {
  2593. enable_z();
  2594. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2595. #ifdef FSENSOR_QUALITY
  2596. fsensor_oq_meassure_start(40);
  2597. #endif //FSENSOR_QUALITY
  2598. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2599. current_position[E_AXIS] += 40;
  2600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2601. st_synchronize();
  2602. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2603. current_position[E_AXIS] += 30;
  2604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2605. st_synchronize();
  2606. current_position[E_AXIS] += 25;
  2607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2608. st_synchronize();
  2609. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2610. delay_keep_alive(50);
  2611. noTone(BEEPER);
  2612. if (!farm_mode && loading_flag) {
  2613. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2614. while (!clean) {
  2615. lcd_update_enable(true);
  2616. lcd_update(2);
  2617. current_position[E_AXIS] += 25;
  2618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2619. st_synchronize();
  2620. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2621. }
  2622. }
  2623. lcd_update_enable(true);
  2624. lcd_update(2);
  2625. lcd_setstatuspgm(_T(WELCOME_MSG));
  2626. disable_z();
  2627. loading_flag = false;
  2628. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2629. #ifdef FSENSOR_QUALITY
  2630. fsensor_oq_meassure_stop();
  2631. if (!fsensor_oq_result())
  2632. {
  2633. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2634. lcd_update_enable(true);
  2635. lcd_update(2);
  2636. if (disable)
  2637. fsensor_disable();
  2638. }
  2639. #endif //FSENSOR_QUALITY
  2640. }
  2641. }
  2642. /**
  2643. * @brief Get serial number from 32U2 processor
  2644. *
  2645. * Typical format of S/N is:CZPX0917X003XC13518
  2646. *
  2647. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2648. *
  2649. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2650. * reply is transmitted to serial port 1 character by character.
  2651. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2652. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2653. * in any case.
  2654. */
  2655. static void gcode_PRUSA_SN()
  2656. {
  2657. if (farm_mode) {
  2658. selectedSerialPort = 0;
  2659. putchar(';');
  2660. putchar('S');
  2661. int numbersRead = 0;
  2662. ShortTimer timeout;
  2663. timeout.start();
  2664. while (numbersRead < 19) {
  2665. while (MSerial.available() > 0) {
  2666. uint8_t serial_char = MSerial.read();
  2667. selectedSerialPort = 1;
  2668. putchar(serial_char);
  2669. numbersRead++;
  2670. selectedSerialPort = 0;
  2671. }
  2672. if (timeout.expired(100u)) break;
  2673. }
  2674. selectedSerialPort = 1;
  2675. putchar('\n');
  2676. #if 0
  2677. for (int b = 0; b < 3; b++) {
  2678. tone(BEEPER, 110);
  2679. delay(50);
  2680. noTone(BEEPER);
  2681. delay(50);
  2682. }
  2683. #endif
  2684. } else {
  2685. puts_P(_N("Not in farm mode."));
  2686. }
  2687. }
  2688. #ifdef BACKLASH_X
  2689. extern uint8_t st_backlash_x;
  2690. #endif //BACKLASH_X
  2691. #ifdef BACKLASH_Y
  2692. extern uint8_t st_backlash_y;
  2693. #endif //BACKLASH_Y
  2694. //! @brief Parse and process commands
  2695. //!
  2696. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2697. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2698. //!
  2699. //! Implemented Codes
  2700. //! -------------------
  2701. //!
  2702. //!@n PRUSA CODES
  2703. //!@n P F - Returns FW versions
  2704. //!@n P R - Returns revision of printer
  2705. //!
  2706. //!@n G0 -> G1
  2707. //!@n G1 - Coordinated Movement X Y Z E
  2708. //!@n G2 - CW ARC
  2709. //!@n G3 - CCW ARC
  2710. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2711. //!@n G10 - retract filament according to settings of M207
  2712. //!@n G11 - retract recover filament according to settings of M208
  2713. //!@n G28 - Home all Axis
  2714. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2715. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2716. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2717. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2718. //!@n G80 - Automatic mesh bed leveling
  2719. //!@n G81 - Print bed profile
  2720. //!@n G90 - Use Absolute Coordinates
  2721. //!@n G91 - Use Relative Coordinates
  2722. //!@n G92 - Set current position to coordinates given
  2723. //!
  2724. //!@n M Codes
  2725. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2726. //!@n M1 - Same as M0
  2727. //!@n M17 - Enable/Power all stepper motors
  2728. //!@n M18 - Disable all stepper motors; same as M84
  2729. //!@n M20 - List SD card
  2730. //!@n M21 - Init SD card
  2731. //!@n M22 - Release SD card
  2732. //!@n M23 - Select SD file (M23 filename.g)
  2733. //!@n M24 - Start/resume SD print
  2734. //!@n M25 - Pause SD print
  2735. //!@n M26 - Set SD position in bytes (M26 S12345)
  2736. //!@n M27 - Report SD print status
  2737. //!@n M28 - Start SD write (M28 filename.g)
  2738. //!@n M29 - Stop SD write
  2739. //!@n M30 - Delete file from SD (M30 filename.g)
  2740. //!@n M31 - Output time since last M109 or SD card start to serial
  2741. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2742. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2743. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2744. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2745. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2746. //!@n M73 - Show percent done and print time remaining
  2747. //!@n M80 - Turn on Power Supply
  2748. //!@n M81 - Turn off Power Supply
  2749. //!@n M82 - Set E codes absolute (default)
  2750. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2751. //!@n M84 - Disable steppers until next move,
  2752. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2753. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2754. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2755. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2756. //!@n M104 - Set extruder target temp
  2757. //!@n M105 - Read current temp
  2758. //!@n M106 - Fan on
  2759. //!@n M107 - Fan off
  2760. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2761. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2762. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2763. //!@n M112 - Emergency stop
  2764. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2765. //!@n M114 - Output current position to serial port
  2766. //!@n M115 - Capabilities string
  2767. //!@n M117 - display message
  2768. //!@n M119 - Output Endstop status to serial port
  2769. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2770. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2771. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2772. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2773. //!@n M140 - Set bed target temp
  2774. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2775. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2776. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2777. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2778. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2779. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2780. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2781. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2782. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2783. //!@n M206 - set additional homing offset
  2784. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2785. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2786. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2787. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2788. //!@n M220 S<factor in percent>- set speed factor override percentage
  2789. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2790. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2791. //!@n M240 - Trigger a camera to take a photograph
  2792. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2793. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2794. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2795. //!@n M301 - Set PID parameters P I and D
  2796. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2797. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2798. //!@n M304 - Set bed PID parameters P I and D
  2799. //!@n M400 - Finish all moves
  2800. //!@n M401 - Lower z-probe if present
  2801. //!@n M402 - Raise z-probe if present
  2802. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2803. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2804. //!@n M406 - Turn off Filament Sensor extrusion control
  2805. //!@n M407 - Displays measured filament diameter
  2806. //!@n M500 - stores parameters in EEPROM
  2807. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2808. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2809. //!@n M503 - print the current settings (from memory not from EEPROM)
  2810. //!@n M509 - force language selection on next restart
  2811. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2812. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2813. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2814. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2815. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2816. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2817. //!@n M907 - Set digital trimpot motor current using axis codes.
  2818. //!@n M908 - Control digital trimpot directly.
  2819. //!@n M350 - Set microstepping mode.
  2820. //!@n M351 - Toggle MS1 MS2 pins directly.
  2821. //!
  2822. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2823. //!@n M999 - Restart after being stopped by error
  2824. void process_commands()
  2825. {
  2826. if (!buflen) return; //empty command
  2827. #ifdef FILAMENT_RUNOUT_SUPPORT
  2828. SET_INPUT(FR_SENS);
  2829. #endif
  2830. #ifdef CMDBUFFER_DEBUG
  2831. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2832. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2833. SERIAL_ECHOLNPGM("");
  2834. SERIAL_ECHOPGM("In cmdqueue: ");
  2835. SERIAL_ECHO(buflen);
  2836. SERIAL_ECHOLNPGM("");
  2837. #endif /* CMDBUFFER_DEBUG */
  2838. unsigned long codenum; //throw away variable
  2839. char *starpos = NULL;
  2840. #ifdef ENABLE_AUTO_BED_LEVELING
  2841. float x_tmp, y_tmp, z_tmp, real_z;
  2842. #endif
  2843. // PRUSA GCODES
  2844. KEEPALIVE_STATE(IN_HANDLER);
  2845. #ifdef SNMM
  2846. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2847. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2848. int8_t SilentMode;
  2849. #endif
  2850. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2851. starpos = (strchr(strchr_pointer + 5, '*'));
  2852. if (starpos != NULL)
  2853. *(starpos) = '\0';
  2854. lcd_setstatus(strchr_pointer + 5);
  2855. }
  2856. #ifdef TMC2130
  2857. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2858. {
  2859. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2860. {
  2861. uint8_t mask = 0;
  2862. if (code_seen('X')) mask |= X_AXIS_MASK;
  2863. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2864. crashdet_detected(mask);
  2865. }
  2866. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2867. crashdet_recover();
  2868. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2869. crashdet_cancel();
  2870. }
  2871. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2872. {
  2873. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2874. {
  2875. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2876. axis = (axis == 'E')?3:(axis - 'X');
  2877. if (axis < 4)
  2878. {
  2879. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2880. tmc2130_set_wave(axis, 247, fac);
  2881. }
  2882. }
  2883. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2884. {
  2885. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2886. axis = (axis == 'E')?3:(axis - 'X');
  2887. if (axis < 4)
  2888. {
  2889. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2890. uint16_t res = tmc2130_get_res(axis);
  2891. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2892. }
  2893. }
  2894. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2895. {
  2896. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2897. axis = (axis == 'E')?3:(axis - 'X');
  2898. if (axis < 4)
  2899. {
  2900. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2901. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2902. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2903. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2904. char* str_end = 0;
  2905. if (CMDBUFFER_CURRENT_STRING[14])
  2906. {
  2907. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2908. if (str_end && *str_end)
  2909. {
  2910. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2911. if (str_end && *str_end)
  2912. {
  2913. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2914. if (str_end && *str_end)
  2915. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2916. }
  2917. }
  2918. }
  2919. tmc2130_chopper_config[axis].toff = chop0;
  2920. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2921. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2922. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2923. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2924. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2925. }
  2926. }
  2927. }
  2928. #ifdef BACKLASH_X
  2929. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2930. {
  2931. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2932. st_backlash_x = bl;
  2933. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2934. }
  2935. #endif //BACKLASH_X
  2936. #ifdef BACKLASH_Y
  2937. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2938. {
  2939. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2940. st_backlash_y = bl;
  2941. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2942. }
  2943. #endif //BACKLASH_Y
  2944. #endif //TMC2130
  2945. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2946. fsensor_restore_print_and_continue();
  2947. }
  2948. else if(code_seen("PRUSA")){
  2949. if (code_seen("Ping")) { //! PRUSA Ping
  2950. if (farm_mode) {
  2951. PingTime = millis();
  2952. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2953. }
  2954. }
  2955. else if (code_seen("PRN")) { //! PRUSA PRN
  2956. printf_P(_N("%d"), status_number);
  2957. }else if (code_seen("FAN")) { //! PRUSA FAN
  2958. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2959. }else if (code_seen("fn")) { //! PRUSA fn
  2960. if (farm_mode) {
  2961. printf_P(_N("%d"), farm_no);
  2962. }
  2963. else {
  2964. puts_P(_N("Not in farm mode."));
  2965. }
  2966. }
  2967. else if (code_seen("thx")) //! PRUSA thx
  2968. {
  2969. no_response = false;
  2970. }
  2971. else if (code_seen("uvlo")) //! PRUSA uvlo
  2972. {
  2973. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2974. enquecommand_P(PSTR("M24"));
  2975. }
  2976. else if (code_seen("MMURES")) //! PRUSA MMURES
  2977. {
  2978. mmu_reset();
  2979. }
  2980. else if (code_seen("RESET")) { //! PRUSA RESET
  2981. // careful!
  2982. if (farm_mode) {
  2983. #ifdef WATCHDOG
  2984. boot_app_magic = BOOT_APP_MAGIC;
  2985. boot_app_flags = BOOT_APP_FLG_RUN;
  2986. wdt_enable(WDTO_15MS);
  2987. cli();
  2988. while(1);
  2989. #else //WATCHDOG
  2990. asm volatile("jmp 0x3E000");
  2991. #endif //WATCHDOG
  2992. }
  2993. else {
  2994. MYSERIAL.println("Not in farm mode.");
  2995. }
  2996. }else if (code_seen("fv")) { //! PRUSA fv
  2997. // get file version
  2998. #ifdef SDSUPPORT
  2999. card.openFile(strchr_pointer + 3,true);
  3000. while (true) {
  3001. uint16_t readByte = card.get();
  3002. MYSERIAL.write(readByte);
  3003. if (readByte=='\n') {
  3004. break;
  3005. }
  3006. }
  3007. card.closefile();
  3008. #endif // SDSUPPORT
  3009. } else if (code_seen("M28")) { //! PRUSA M28
  3010. trace();
  3011. prusa_sd_card_upload = true;
  3012. card.openFile(strchr_pointer+4,false);
  3013. } else if (code_seen("SN")) { //! PRUSA SN
  3014. gcode_PRUSA_SN();
  3015. } else if(code_seen("Fir")){ //! PRUSA Fir
  3016. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3017. } else if(code_seen("Rev")){ //! PRUSA Rev
  3018. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3019. } else if(code_seen("Lang")) { //! PRUSA Lang
  3020. lang_reset();
  3021. } else if(code_seen("Lz")) { //! PRUSA Lz
  3022. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3023. } else if(code_seen("Beat")) { //! PRUSA Beat
  3024. // Kick farm link timer
  3025. kicktime = millis();
  3026. } else if(code_seen("FR")) { //! PRUSA FR
  3027. // Factory full reset
  3028. factory_reset(0);
  3029. }
  3030. //else if (code_seen('Cal')) {
  3031. // lcd_calibration();
  3032. // }
  3033. }
  3034. else if (code_seen('^')) {
  3035. // nothing, this is a version line
  3036. } else if(code_seen('G'))
  3037. {
  3038. gcode_in_progress = (int)code_value();
  3039. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3040. switch (gcode_in_progress)
  3041. {
  3042. case 0: // G0 -> G1
  3043. case 1: // G1
  3044. if(Stopped == false) {
  3045. #ifdef FILAMENT_RUNOUT_SUPPORT
  3046. if(READ(FR_SENS)){
  3047. int feedmultiplyBckp=feedmultiply;
  3048. float target[4];
  3049. float lastpos[4];
  3050. target[X_AXIS]=current_position[X_AXIS];
  3051. target[Y_AXIS]=current_position[Y_AXIS];
  3052. target[Z_AXIS]=current_position[Z_AXIS];
  3053. target[E_AXIS]=current_position[E_AXIS];
  3054. lastpos[X_AXIS]=current_position[X_AXIS];
  3055. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3056. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3057. lastpos[E_AXIS]=current_position[E_AXIS];
  3058. //retract by E
  3059. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3061. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3062. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3063. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3064. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3065. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3066. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3068. //finish moves
  3069. st_synchronize();
  3070. //disable extruder steppers so filament can be removed
  3071. disable_e0();
  3072. disable_e1();
  3073. disable_e2();
  3074. delay(100);
  3075. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3076. uint8_t cnt=0;
  3077. int counterBeep = 0;
  3078. lcd_wait_interact();
  3079. while(!lcd_clicked()){
  3080. cnt++;
  3081. manage_heater();
  3082. manage_inactivity(true);
  3083. //lcd_update(0);
  3084. if(cnt==0)
  3085. {
  3086. #if BEEPER > 0
  3087. if (counterBeep== 500){
  3088. counterBeep = 0;
  3089. }
  3090. SET_OUTPUT(BEEPER);
  3091. if (counterBeep== 0){
  3092. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3093. WRITE(BEEPER,HIGH);
  3094. }
  3095. if (counterBeep== 20){
  3096. WRITE(BEEPER,LOW);
  3097. }
  3098. counterBeep++;
  3099. #else
  3100. #endif
  3101. }
  3102. }
  3103. WRITE(BEEPER,LOW);
  3104. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3105. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3106. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3107. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3108. lcd_change_fil_state = 0;
  3109. lcd_loading_filament();
  3110. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3111. lcd_change_fil_state = 0;
  3112. lcd_alright();
  3113. switch(lcd_change_fil_state){
  3114. case 2:
  3115. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3117. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3119. lcd_loading_filament();
  3120. break;
  3121. case 3:
  3122. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3124. lcd_loading_color();
  3125. break;
  3126. default:
  3127. lcd_change_success();
  3128. break;
  3129. }
  3130. }
  3131. target[E_AXIS]+= 5;
  3132. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3133. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3135. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3136. //plan_set_e_position(current_position[E_AXIS]);
  3137. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3138. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3139. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3140. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3141. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3142. plan_set_e_position(lastpos[E_AXIS]);
  3143. feedmultiply=feedmultiplyBckp;
  3144. char cmd[9];
  3145. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3146. enquecommand(cmd);
  3147. }
  3148. #endif
  3149. get_coordinates(); // For X Y Z E F
  3150. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3151. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3152. }
  3153. #ifdef FWRETRACT
  3154. if(cs.autoretract_enabled)
  3155. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3156. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3157. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3158. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3159. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3160. retract(!retracted[active_extruder]);
  3161. return;
  3162. }
  3163. }
  3164. #endif //FWRETRACT
  3165. prepare_move();
  3166. //ClearToSend();
  3167. }
  3168. break;
  3169. case 2: // G2 - CW ARC
  3170. if(Stopped == false) {
  3171. get_arc_coordinates();
  3172. prepare_arc_move(true);
  3173. }
  3174. break;
  3175. case 3: // G3 - CCW ARC
  3176. if(Stopped == false) {
  3177. get_arc_coordinates();
  3178. prepare_arc_move(false);
  3179. }
  3180. break;
  3181. case 4: // G4 dwell
  3182. codenum = 0;
  3183. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3184. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3185. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3186. st_synchronize();
  3187. codenum += millis(); // keep track of when we started waiting
  3188. previous_millis_cmd = millis();
  3189. while(millis() < codenum) {
  3190. manage_heater();
  3191. manage_inactivity();
  3192. lcd_update(0);
  3193. }
  3194. break;
  3195. #ifdef FWRETRACT
  3196. case 10: // G10 retract
  3197. #if EXTRUDERS > 1
  3198. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3199. retract(true,retracted_swap[active_extruder]);
  3200. #else
  3201. retract(true);
  3202. #endif
  3203. break;
  3204. case 11: // G11 retract_recover
  3205. #if EXTRUDERS > 1
  3206. retract(false,retracted_swap[active_extruder]);
  3207. #else
  3208. retract(false);
  3209. #endif
  3210. break;
  3211. #endif //FWRETRACT
  3212. case 28: //G28 Home all Axis one at a time
  3213. {
  3214. long home_x_value = 0;
  3215. long home_y_value = 0;
  3216. long home_z_value = 0;
  3217. // Which axes should be homed?
  3218. bool home_x = code_seen(axis_codes[X_AXIS]);
  3219. home_x_value = code_value_long();
  3220. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3221. home_y_value = code_value_long();
  3222. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3223. home_z_value = code_value_long();
  3224. bool without_mbl = code_seen('W');
  3225. // calibrate?
  3226. bool calib = code_seen('C');
  3227. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3228. if ((home_x || home_y || without_mbl || home_z) == false) {
  3229. // Push the commands to the front of the message queue in the reverse order!
  3230. // There shall be always enough space reserved for these commands.
  3231. goto case_G80;
  3232. }
  3233. break;
  3234. }
  3235. #ifdef ENABLE_AUTO_BED_LEVELING
  3236. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3237. {
  3238. #if Z_MIN_PIN == -1
  3239. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3240. #endif
  3241. // Prevent user from running a G29 without first homing in X and Y
  3242. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3243. {
  3244. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3245. SERIAL_ECHO_START;
  3246. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3247. break; // abort G29, since we don't know where we are
  3248. }
  3249. st_synchronize();
  3250. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3251. //vector_3 corrected_position = plan_get_position_mm();
  3252. //corrected_position.debug("position before G29");
  3253. plan_bed_level_matrix.set_to_identity();
  3254. vector_3 uncorrected_position = plan_get_position();
  3255. //uncorrected_position.debug("position durring G29");
  3256. current_position[X_AXIS] = uncorrected_position.x;
  3257. current_position[Y_AXIS] = uncorrected_position.y;
  3258. current_position[Z_AXIS] = uncorrected_position.z;
  3259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3260. int l_feedmultiply = setup_for_endstop_move();
  3261. feedrate = homing_feedrate[Z_AXIS];
  3262. #ifdef AUTO_BED_LEVELING_GRID
  3263. // probe at the points of a lattice grid
  3264. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3265. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3266. // solve the plane equation ax + by + d = z
  3267. // A is the matrix with rows [x y 1] for all the probed points
  3268. // B is the vector of the Z positions
  3269. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3270. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3271. // "A" matrix of the linear system of equations
  3272. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3273. // "B" vector of Z points
  3274. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3275. int probePointCounter = 0;
  3276. bool zig = true;
  3277. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3278. {
  3279. int xProbe, xInc;
  3280. if (zig)
  3281. {
  3282. xProbe = LEFT_PROBE_BED_POSITION;
  3283. //xEnd = RIGHT_PROBE_BED_POSITION;
  3284. xInc = xGridSpacing;
  3285. zig = false;
  3286. } else // zag
  3287. {
  3288. xProbe = RIGHT_PROBE_BED_POSITION;
  3289. //xEnd = LEFT_PROBE_BED_POSITION;
  3290. xInc = -xGridSpacing;
  3291. zig = true;
  3292. }
  3293. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3294. {
  3295. float z_before;
  3296. if (probePointCounter == 0)
  3297. {
  3298. // raise before probing
  3299. z_before = Z_RAISE_BEFORE_PROBING;
  3300. } else
  3301. {
  3302. // raise extruder
  3303. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3304. }
  3305. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3306. eqnBVector[probePointCounter] = measured_z;
  3307. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3308. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3309. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3310. probePointCounter++;
  3311. xProbe += xInc;
  3312. }
  3313. }
  3314. clean_up_after_endstop_move(l_feedmultiply);
  3315. // solve lsq problem
  3316. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3317. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3318. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3319. SERIAL_PROTOCOLPGM(" b: ");
  3320. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3321. SERIAL_PROTOCOLPGM(" d: ");
  3322. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3323. set_bed_level_equation_lsq(plane_equation_coefficients);
  3324. free(plane_equation_coefficients);
  3325. #else // AUTO_BED_LEVELING_GRID not defined
  3326. // Probe at 3 arbitrary points
  3327. // probe 1
  3328. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3329. // probe 2
  3330. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3331. // probe 3
  3332. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3333. clean_up_after_endstop_move(l_feedmultiply);
  3334. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3335. #endif // AUTO_BED_LEVELING_GRID
  3336. st_synchronize();
  3337. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3338. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3339. // When the bed is uneven, this height must be corrected.
  3340. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3341. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3342. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3343. z_tmp = current_position[Z_AXIS];
  3344. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3345. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3346. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3347. }
  3348. break;
  3349. #ifndef Z_PROBE_SLED
  3350. case 30: // G30 Single Z Probe
  3351. {
  3352. st_synchronize();
  3353. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3354. int l_feedmultiply = setup_for_endstop_move();
  3355. feedrate = homing_feedrate[Z_AXIS];
  3356. run_z_probe();
  3357. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3358. SERIAL_PROTOCOLPGM(" X: ");
  3359. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3360. SERIAL_PROTOCOLPGM(" Y: ");
  3361. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3362. SERIAL_PROTOCOLPGM(" Z: ");
  3363. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3364. SERIAL_PROTOCOLPGM("\n");
  3365. clean_up_after_endstop_move(l_feedmultiply);
  3366. }
  3367. break;
  3368. #else
  3369. case 31: // dock the sled
  3370. dock_sled(true);
  3371. break;
  3372. case 32: // undock the sled
  3373. dock_sled(false);
  3374. break;
  3375. #endif // Z_PROBE_SLED
  3376. #endif // ENABLE_AUTO_BED_LEVELING
  3377. #ifdef MESH_BED_LEVELING
  3378. case 30: // G30 Single Z Probe
  3379. {
  3380. st_synchronize();
  3381. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3382. int l_feedmultiply = setup_for_endstop_move();
  3383. feedrate = homing_feedrate[Z_AXIS];
  3384. find_bed_induction_sensor_point_z(-10.f, 3);
  3385. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3386. clean_up_after_endstop_move(l_feedmultiply);
  3387. }
  3388. break;
  3389. case 75:
  3390. {
  3391. for (int i = 40; i <= 110; i++)
  3392. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3393. }
  3394. break;
  3395. case 76: //! G76 - PINDA probe temperature calibration
  3396. {
  3397. #ifdef PINDA_THERMISTOR
  3398. if (true)
  3399. {
  3400. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3401. //we need to know accurate position of first calibration point
  3402. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3403. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3404. break;
  3405. }
  3406. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3407. {
  3408. // We don't know where we are! HOME!
  3409. // Push the commands to the front of the message queue in the reverse order!
  3410. // There shall be always enough space reserved for these commands.
  3411. repeatcommand_front(); // repeat G76 with all its parameters
  3412. enquecommand_front_P((PSTR("G28 W0")));
  3413. break;
  3414. }
  3415. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3416. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3417. if (result)
  3418. {
  3419. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3421. current_position[Z_AXIS] = 50;
  3422. current_position[Y_AXIS] = 180;
  3423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3424. st_synchronize();
  3425. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3426. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3427. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3429. st_synchronize();
  3430. gcode_G28(false, false, true);
  3431. }
  3432. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3433. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3434. current_position[Z_AXIS] = 100;
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3437. lcd_temp_cal_show_result(false);
  3438. break;
  3439. }
  3440. }
  3441. lcd_update_enable(true);
  3442. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3443. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3444. float zero_z;
  3445. int z_shift = 0; //unit: steps
  3446. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3447. if (start_temp < 35) start_temp = 35;
  3448. if (start_temp < current_temperature_pinda) start_temp += 5;
  3449. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3450. // setTargetHotend(200, 0);
  3451. setTargetBed(70 + (start_temp - 30));
  3452. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3453. custom_message_state = 1;
  3454. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3455. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3457. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3458. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3460. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3461. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3462. st_synchronize();
  3463. while (current_temperature_pinda < start_temp)
  3464. {
  3465. delay_keep_alive(1000);
  3466. serialecho_temperatures();
  3467. }
  3468. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3469. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3471. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3472. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3474. st_synchronize();
  3475. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3476. if (find_z_result == false) {
  3477. lcd_temp_cal_show_result(find_z_result);
  3478. break;
  3479. }
  3480. zero_z = current_position[Z_AXIS];
  3481. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3482. int i = -1; for (; i < 5; i++)
  3483. {
  3484. float temp = (40 + i * 5);
  3485. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3486. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3487. if (start_temp <= temp) break;
  3488. }
  3489. for (i++; i < 5; i++)
  3490. {
  3491. float temp = (40 + i * 5);
  3492. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3493. custom_message_state = i + 2;
  3494. setTargetBed(50 + 10 * (temp - 30) / 5);
  3495. // setTargetHotend(255, 0);
  3496. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3498. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3499. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3503. st_synchronize();
  3504. while (current_temperature_pinda < temp)
  3505. {
  3506. delay_keep_alive(1000);
  3507. serialecho_temperatures();
  3508. }
  3509. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3511. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3512. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3514. st_synchronize();
  3515. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3516. if (find_z_result == false) {
  3517. lcd_temp_cal_show_result(find_z_result);
  3518. break;
  3519. }
  3520. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3521. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3522. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3523. }
  3524. lcd_temp_cal_show_result(true);
  3525. break;
  3526. }
  3527. #endif //PINDA_THERMISTOR
  3528. setTargetBed(PINDA_MIN_T);
  3529. float zero_z;
  3530. int z_shift = 0; //unit: steps
  3531. int t_c; // temperature
  3532. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3533. // We don't know where we are! HOME!
  3534. // Push the commands to the front of the message queue in the reverse order!
  3535. // There shall be always enough space reserved for these commands.
  3536. repeatcommand_front(); // repeat G76 with all its parameters
  3537. enquecommand_front_P((PSTR("G28 W0")));
  3538. break;
  3539. }
  3540. puts_P(_N("PINDA probe calibration start"));
  3541. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3542. custom_message_state = 1;
  3543. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3544. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3545. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3546. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3548. st_synchronize();
  3549. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3550. delay_keep_alive(1000);
  3551. serialecho_temperatures();
  3552. }
  3553. //enquecommand_P(PSTR("M190 S50"));
  3554. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3555. delay_keep_alive(1000);
  3556. serialecho_temperatures();
  3557. }
  3558. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3559. current_position[Z_AXIS] = 5;
  3560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3561. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3562. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3564. st_synchronize();
  3565. find_bed_induction_sensor_point_z(-1.f);
  3566. zero_z = current_position[Z_AXIS];
  3567. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3568. for (int i = 0; i<5; i++) {
  3569. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3570. custom_message_state = i + 2;
  3571. t_c = 60 + i * 10;
  3572. setTargetBed(t_c);
  3573. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3574. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3575. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3577. st_synchronize();
  3578. while (degBed() < t_c) {
  3579. delay_keep_alive(1000);
  3580. serialecho_temperatures();
  3581. }
  3582. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3583. delay_keep_alive(1000);
  3584. serialecho_temperatures();
  3585. }
  3586. current_position[Z_AXIS] = 5;
  3587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3588. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3589. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3591. st_synchronize();
  3592. find_bed_induction_sensor_point_z(-1.f);
  3593. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3594. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3595. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3596. }
  3597. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3598. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3599. puts_P(_N("Temperature calibration done."));
  3600. disable_x();
  3601. disable_y();
  3602. disable_z();
  3603. disable_e0();
  3604. disable_e1();
  3605. disable_e2();
  3606. setTargetBed(0); //set bed target temperature back to 0
  3607. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3608. temp_cal_active = true;
  3609. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3610. lcd_update_enable(true);
  3611. lcd_update(2);
  3612. }
  3613. break;
  3614. #ifdef DIS
  3615. case 77:
  3616. {
  3617. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3618. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3619. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3620. float dimension_x = 40;
  3621. float dimension_y = 40;
  3622. int points_x = 40;
  3623. int points_y = 40;
  3624. float offset_x = 74;
  3625. float offset_y = 33;
  3626. if (code_seen('X')) dimension_x = code_value();
  3627. if (code_seen('Y')) dimension_y = code_value();
  3628. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3629. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3630. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3631. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3632. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3633. } break;
  3634. #endif
  3635. case 79: {
  3636. for (int i = 255; i > 0; i = i - 5) {
  3637. fanSpeed = i;
  3638. //delay_keep_alive(2000);
  3639. for (int j = 0; j < 100; j++) {
  3640. delay_keep_alive(100);
  3641. }
  3642. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3643. }
  3644. }break;
  3645. /**
  3646. * G80: Mesh-based Z probe, probes a grid and produces a
  3647. * mesh to compensate for variable bed height
  3648. *
  3649. * The S0 report the points as below
  3650. * @code{.unparsed}
  3651. * +----> X-axis
  3652. * |
  3653. * |
  3654. * v Y-axis
  3655. * @endcode
  3656. */
  3657. case 80:
  3658. #ifdef MK1BP
  3659. break;
  3660. #endif //MK1BP
  3661. case_G80:
  3662. {
  3663. mesh_bed_leveling_flag = true;
  3664. static bool run = false;
  3665. #ifdef SUPPORT_VERBOSITY
  3666. int8_t verbosity_level = 0;
  3667. if (code_seen('V')) {
  3668. // Just 'V' without a number counts as V1.
  3669. char c = strchr_pointer[1];
  3670. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3671. }
  3672. #endif //SUPPORT_VERBOSITY
  3673. // Firstly check if we know where we are
  3674. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3675. // We don't know where we are! HOME!
  3676. // Push the commands to the front of the message queue in the reverse order!
  3677. // There shall be always enough space reserved for these commands.
  3678. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3679. repeatcommand_front(); // repeat G80 with all its parameters
  3680. enquecommand_front_P((PSTR("G28 W0")));
  3681. }
  3682. else {
  3683. mesh_bed_leveling_flag = false;
  3684. }
  3685. break;
  3686. }
  3687. bool temp_comp_start = true;
  3688. #ifdef PINDA_THERMISTOR
  3689. temp_comp_start = false;
  3690. #endif //PINDA_THERMISTOR
  3691. if (temp_comp_start)
  3692. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3693. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3694. temp_compensation_start();
  3695. run = true;
  3696. repeatcommand_front(); // repeat G80 with all its parameters
  3697. enquecommand_front_P((PSTR("G28 W0")));
  3698. }
  3699. else {
  3700. mesh_bed_leveling_flag = false;
  3701. }
  3702. break;
  3703. }
  3704. run = false;
  3705. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3706. mesh_bed_leveling_flag = false;
  3707. break;
  3708. }
  3709. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3710. unsigned int custom_message_type_old = custom_message_type;
  3711. unsigned int custom_message_state_old = custom_message_state;
  3712. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3713. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3714. lcd_update(1);
  3715. mbl.reset(); //reset mesh bed leveling
  3716. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3717. // consumed during the first movements following this statement.
  3718. babystep_undo();
  3719. // Cycle through all points and probe them
  3720. // First move up. During this first movement, the babystepping will be reverted.
  3721. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3723. // The move to the first calibration point.
  3724. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3725. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3726. #ifdef SUPPORT_VERBOSITY
  3727. if (verbosity_level >= 1)
  3728. {
  3729. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3730. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3731. }
  3732. #endif //SUPPORT_VERBOSITY
  3733. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3735. // Wait until the move is finished.
  3736. st_synchronize();
  3737. int mesh_point = 0; //index number of calibration point
  3738. int ix = 0;
  3739. int iy = 0;
  3740. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3741. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3742. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3743. #ifdef SUPPORT_VERBOSITY
  3744. if (verbosity_level >= 1) {
  3745. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3746. }
  3747. #endif // SUPPORT_VERBOSITY
  3748. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3749. const char *kill_message = NULL;
  3750. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3751. // Get coords of a measuring point.
  3752. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3753. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3754. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3755. float z0 = 0.f;
  3756. if (has_z && mesh_point > 0) {
  3757. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3758. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3759. //#if 0
  3760. #ifdef SUPPORT_VERBOSITY
  3761. if (verbosity_level >= 1) {
  3762. SERIAL_ECHOLNPGM("");
  3763. SERIAL_ECHOPGM("Bed leveling, point: ");
  3764. MYSERIAL.print(mesh_point);
  3765. SERIAL_ECHOPGM(", calibration z: ");
  3766. MYSERIAL.print(z0, 5);
  3767. SERIAL_ECHOLNPGM("");
  3768. }
  3769. #endif // SUPPORT_VERBOSITY
  3770. //#endif
  3771. }
  3772. // Move Z up to MESH_HOME_Z_SEARCH.
  3773. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3775. st_synchronize();
  3776. // Move to XY position of the sensor point.
  3777. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3778. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3779. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3780. #ifdef SUPPORT_VERBOSITY
  3781. if (verbosity_level >= 1) {
  3782. SERIAL_PROTOCOL(mesh_point);
  3783. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3784. }
  3785. #endif // SUPPORT_VERBOSITY
  3786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3787. st_synchronize();
  3788. // Go down until endstop is hit
  3789. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3790. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3791. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3792. break;
  3793. }
  3794. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3795. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3796. break;
  3797. }
  3798. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3799. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3800. break;
  3801. }
  3802. #ifdef SUPPORT_VERBOSITY
  3803. if (verbosity_level >= 10) {
  3804. SERIAL_ECHOPGM("X: ");
  3805. MYSERIAL.print(current_position[X_AXIS], 5);
  3806. SERIAL_ECHOLNPGM("");
  3807. SERIAL_ECHOPGM("Y: ");
  3808. MYSERIAL.print(current_position[Y_AXIS], 5);
  3809. SERIAL_PROTOCOLPGM("\n");
  3810. }
  3811. #endif // SUPPORT_VERBOSITY
  3812. float offset_z = 0;
  3813. #ifdef PINDA_THERMISTOR
  3814. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3815. #endif //PINDA_THERMISTOR
  3816. // #ifdef SUPPORT_VERBOSITY
  3817. /* if (verbosity_level >= 1)
  3818. {
  3819. SERIAL_ECHOPGM("mesh bed leveling: ");
  3820. MYSERIAL.print(current_position[Z_AXIS], 5);
  3821. SERIAL_ECHOPGM(" offset: ");
  3822. MYSERIAL.print(offset_z, 5);
  3823. SERIAL_ECHOLNPGM("");
  3824. }*/
  3825. // #endif // SUPPORT_VERBOSITY
  3826. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3827. custom_message_state--;
  3828. mesh_point++;
  3829. lcd_update(1);
  3830. }
  3831. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3832. #ifdef SUPPORT_VERBOSITY
  3833. if (verbosity_level >= 20) {
  3834. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3835. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3836. MYSERIAL.print(current_position[Z_AXIS], 5);
  3837. }
  3838. #endif // SUPPORT_VERBOSITY
  3839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3840. st_synchronize();
  3841. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3842. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3843. lcd_display_message_fullscreen_P(_i(MSG_BED_LEVELING_FAILED));
  3844. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3845. #ifdef TMC2130
  3846. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3847. #else // TMC2130
  3848. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3849. #endif // TMC2130
  3850. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3851. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3853. st_synchronize();
  3854. //
  3855. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3856. lcd_update_enable(true); // display / status-line recovery
  3857. gcode_G28(true, true, false); // X & Y-homing (must be after Z-homing (problem with spool-holder)!)
  3858. repeatcommand_front(); // re-run (i.e. of "G80")
  3859. break;
  3860. }
  3861. clean_up_after_endstop_move(l_feedmultiply);
  3862. // SERIAL_ECHOLNPGM("clean up finished ");
  3863. bool apply_temp_comp = true;
  3864. #ifdef PINDA_THERMISTOR
  3865. apply_temp_comp = false;
  3866. #endif
  3867. if (apply_temp_comp)
  3868. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3869. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3870. // SERIAL_ECHOLNPGM("babystep applied");
  3871. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3872. #ifdef SUPPORT_VERBOSITY
  3873. if (verbosity_level >= 1) {
  3874. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3875. }
  3876. #endif // SUPPORT_VERBOSITY
  3877. for (uint8_t i = 0; i < 4; ++i) {
  3878. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3879. long correction = 0;
  3880. if (code_seen(codes[i]))
  3881. correction = code_value_long();
  3882. else if (eeprom_bed_correction_valid) {
  3883. unsigned char *addr = (i < 2) ?
  3884. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3885. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3886. correction = eeprom_read_int8(addr);
  3887. }
  3888. if (correction == 0)
  3889. continue;
  3890. float offset = float(correction) * 0.001f;
  3891. if (fabs(offset) > 0.101f) {
  3892. SERIAL_ERROR_START;
  3893. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3894. SERIAL_ECHO(offset);
  3895. SERIAL_ECHOLNPGM(" microns");
  3896. }
  3897. else {
  3898. switch (i) {
  3899. case 0:
  3900. for (uint8_t row = 0; row < 3; ++row) {
  3901. mbl.z_values[row][1] += 0.5f * offset;
  3902. mbl.z_values[row][0] += offset;
  3903. }
  3904. break;
  3905. case 1:
  3906. for (uint8_t row = 0; row < 3; ++row) {
  3907. mbl.z_values[row][1] += 0.5f * offset;
  3908. mbl.z_values[row][2] += offset;
  3909. }
  3910. break;
  3911. case 2:
  3912. for (uint8_t col = 0; col < 3; ++col) {
  3913. mbl.z_values[1][col] += 0.5f * offset;
  3914. mbl.z_values[0][col] += offset;
  3915. }
  3916. break;
  3917. case 3:
  3918. for (uint8_t col = 0; col < 3; ++col) {
  3919. mbl.z_values[1][col] += 0.5f * offset;
  3920. mbl.z_values[2][col] += offset;
  3921. }
  3922. break;
  3923. }
  3924. }
  3925. }
  3926. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3927. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3928. // SERIAL_ECHOLNPGM("Upsample finished");
  3929. mbl.active = 1; //activate mesh bed leveling
  3930. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3931. go_home_with_z_lift();
  3932. // SERIAL_ECHOLNPGM("Go home finished");
  3933. //unretract (after PINDA preheat retraction)
  3934. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3935. current_position[E_AXIS] += default_retraction;
  3936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3937. }
  3938. KEEPALIVE_STATE(NOT_BUSY);
  3939. // Restore custom message state
  3940. lcd_setstatuspgm(_T(WELCOME_MSG));
  3941. custom_message_type = custom_message_type_old;
  3942. custom_message_state = custom_message_state_old;
  3943. mesh_bed_leveling_flag = false;
  3944. mesh_bed_run_from_menu = false;
  3945. lcd_update(2);
  3946. }
  3947. break;
  3948. /**
  3949. * G81: Print mesh bed leveling status and bed profile if activated
  3950. */
  3951. case 81:
  3952. if (mbl.active) {
  3953. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3954. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3955. SERIAL_PROTOCOLPGM(",");
  3956. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3957. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3958. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3959. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3960. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3961. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3962. SERIAL_PROTOCOLPGM(" ");
  3963. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3964. }
  3965. SERIAL_PROTOCOLPGM("\n");
  3966. }
  3967. }
  3968. else
  3969. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3970. break;
  3971. #if 0
  3972. /**
  3973. * G82: Single Z probe at current location
  3974. *
  3975. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3976. *
  3977. */
  3978. case 82:
  3979. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3980. int l_feedmultiply = setup_for_endstop_move();
  3981. find_bed_induction_sensor_point_z();
  3982. clean_up_after_endstop_move(l_feedmultiply);
  3983. SERIAL_PROTOCOLPGM("Bed found at: ");
  3984. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3985. SERIAL_PROTOCOLPGM("\n");
  3986. break;
  3987. /**
  3988. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3989. */
  3990. case 83:
  3991. {
  3992. int babystepz = code_seen('S') ? code_value() : 0;
  3993. int BabyPosition = code_seen('P') ? code_value() : 0;
  3994. if (babystepz != 0) {
  3995. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3996. // Is the axis indexed starting with zero or one?
  3997. if (BabyPosition > 4) {
  3998. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3999. }else{
  4000. // Save it to the eeprom
  4001. babystepLoadZ = babystepz;
  4002. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4003. // adjust the Z
  4004. babystepsTodoZadd(babystepLoadZ);
  4005. }
  4006. }
  4007. }
  4008. break;
  4009. /**
  4010. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4011. */
  4012. case 84:
  4013. babystepsTodoZsubtract(babystepLoadZ);
  4014. // babystepLoadZ = 0;
  4015. break;
  4016. /**
  4017. * G85: Prusa3D specific: Pick best babystep
  4018. */
  4019. case 85:
  4020. lcd_pick_babystep();
  4021. break;
  4022. #endif
  4023. /**
  4024. * G86: Prusa3D specific: Disable babystep correction after home.
  4025. * This G-code will be performed at the start of a calibration script.
  4026. */
  4027. case 86:
  4028. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4029. break;
  4030. /**
  4031. * G87: Prusa3D specific: Enable babystep correction after home
  4032. * This G-code will be performed at the end of a calibration script.
  4033. */
  4034. case 87:
  4035. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4036. break;
  4037. /**
  4038. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4039. */
  4040. case 88:
  4041. break;
  4042. #endif // ENABLE_MESH_BED_LEVELING
  4043. case 90: // G90
  4044. relative_mode = false;
  4045. break;
  4046. case 91: // G91
  4047. relative_mode = true;
  4048. break;
  4049. case 92: // G92
  4050. if(!code_seen(axis_codes[E_AXIS]))
  4051. st_synchronize();
  4052. for(int8_t i=0; i < NUM_AXIS; i++) {
  4053. if(code_seen(axis_codes[i])) {
  4054. if(i == E_AXIS) {
  4055. current_position[i] = code_value();
  4056. plan_set_e_position(current_position[E_AXIS]);
  4057. }
  4058. else {
  4059. current_position[i] = code_value()+cs.add_homing[i];
  4060. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4061. }
  4062. }
  4063. }
  4064. break;
  4065. case 98: //! G98 (activate farm mode)
  4066. farm_mode = 1;
  4067. PingTime = millis();
  4068. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4069. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4070. SilentModeMenu = SILENT_MODE_OFF;
  4071. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4072. break;
  4073. case 99: //! G99 (deactivate farm mode)
  4074. farm_mode = 0;
  4075. lcd_printer_connected();
  4076. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4077. lcd_update(2);
  4078. break;
  4079. default:
  4080. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4081. }
  4082. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4083. gcode_in_progress = 0;
  4084. } // end if(code_seen('G'))
  4085. else if(code_seen('M'))
  4086. {
  4087. int index;
  4088. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4089. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4090. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4091. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4092. } else
  4093. {
  4094. mcode_in_progress = (int)code_value();
  4095. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4096. switch(mcode_in_progress)
  4097. {
  4098. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4099. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4100. {
  4101. char *src = strchr_pointer + 2;
  4102. codenum = 0;
  4103. bool hasP = false, hasS = false;
  4104. if (code_seen('P')) {
  4105. codenum = code_value(); // milliseconds to wait
  4106. hasP = codenum > 0;
  4107. }
  4108. if (code_seen('S')) {
  4109. codenum = code_value() * 1000; // seconds to wait
  4110. hasS = codenum > 0;
  4111. }
  4112. starpos = strchr(src, '*');
  4113. if (starpos != NULL) *(starpos) = '\0';
  4114. while (*src == ' ') ++src;
  4115. if (!hasP && !hasS && *src != '\0') {
  4116. lcd_setstatus(src);
  4117. } else {
  4118. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4119. }
  4120. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4121. st_synchronize();
  4122. previous_millis_cmd = millis();
  4123. if (codenum > 0){
  4124. codenum += millis(); // keep track of when we started waiting
  4125. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4126. while(millis() < codenum && !lcd_clicked()){
  4127. manage_heater();
  4128. manage_inactivity(true);
  4129. lcd_update(0);
  4130. }
  4131. KEEPALIVE_STATE(IN_HANDLER);
  4132. lcd_ignore_click(false);
  4133. }else{
  4134. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4135. while(!lcd_clicked()){
  4136. manage_heater();
  4137. manage_inactivity(true);
  4138. lcd_update(0);
  4139. }
  4140. KEEPALIVE_STATE(IN_HANDLER);
  4141. }
  4142. if (IS_SD_PRINTING)
  4143. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4144. else
  4145. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4146. }
  4147. break;
  4148. case 17:
  4149. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4150. enable_x();
  4151. enable_y();
  4152. enable_z();
  4153. enable_e0();
  4154. enable_e1();
  4155. enable_e2();
  4156. break;
  4157. #ifdef SDSUPPORT
  4158. case 20: // M20 - list SD card
  4159. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4160. card.ls();
  4161. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4162. break;
  4163. case 21: // M21 - init SD card
  4164. card.initsd();
  4165. break;
  4166. case 22: //M22 - release SD card
  4167. card.release();
  4168. break;
  4169. case 23: //M23 - Select file
  4170. starpos = (strchr(strchr_pointer + 4,'*'));
  4171. if(starpos!=NULL)
  4172. *(starpos)='\0';
  4173. card.openFile(strchr_pointer + 4,true);
  4174. break;
  4175. case 24: //M24 - Start SD print
  4176. if (!card.paused)
  4177. failstats_reset_print();
  4178. card.startFileprint();
  4179. starttime=millis();
  4180. break;
  4181. case 25: //M25 - Pause SD print
  4182. card.pauseSDPrint();
  4183. break;
  4184. case 26: //M26 - Set SD index
  4185. if(card.cardOK && code_seen('S')) {
  4186. card.setIndex(code_value_long());
  4187. }
  4188. break;
  4189. case 27: //M27 - Get SD status
  4190. card.getStatus();
  4191. break;
  4192. case 28: //M28 - Start SD write
  4193. starpos = (strchr(strchr_pointer + 4,'*'));
  4194. if(starpos != NULL){
  4195. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4196. strchr_pointer = strchr(npos,' ') + 1;
  4197. *(starpos) = '\0';
  4198. }
  4199. card.openFile(strchr_pointer+4,false);
  4200. break;
  4201. case 29: //M29 - Stop SD write
  4202. //processed in write to file routine above
  4203. //card,saving = false;
  4204. break;
  4205. case 30: //M30 <filename> Delete File
  4206. if (card.cardOK){
  4207. card.closefile();
  4208. starpos = (strchr(strchr_pointer + 4,'*'));
  4209. if(starpos != NULL){
  4210. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4211. strchr_pointer = strchr(npos,' ') + 1;
  4212. *(starpos) = '\0';
  4213. }
  4214. card.removeFile(strchr_pointer + 4);
  4215. }
  4216. break;
  4217. case 32: //M32 - Select file and start SD print
  4218. {
  4219. if(card.sdprinting) {
  4220. st_synchronize();
  4221. }
  4222. starpos = (strchr(strchr_pointer + 4,'*'));
  4223. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4224. if(namestartpos==NULL)
  4225. {
  4226. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4227. }
  4228. else
  4229. namestartpos++; //to skip the '!'
  4230. if(starpos!=NULL)
  4231. *(starpos)='\0';
  4232. bool call_procedure=(code_seen('P'));
  4233. if(strchr_pointer>namestartpos)
  4234. call_procedure=false; //false alert, 'P' found within filename
  4235. if( card.cardOK )
  4236. {
  4237. card.openFile(namestartpos,true,!call_procedure);
  4238. if(code_seen('S'))
  4239. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4240. card.setIndex(code_value_long());
  4241. card.startFileprint();
  4242. if(!call_procedure)
  4243. starttime=millis(); //procedure calls count as normal print time.
  4244. }
  4245. } break;
  4246. case 928: //M928 - Start SD write
  4247. starpos = (strchr(strchr_pointer + 5,'*'));
  4248. if(starpos != NULL){
  4249. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4250. strchr_pointer = strchr(npos,' ') + 1;
  4251. *(starpos) = '\0';
  4252. }
  4253. card.openLogFile(strchr_pointer+5);
  4254. break;
  4255. #endif //SDSUPPORT
  4256. case 31: //M31 take time since the start of the SD print or an M109 command
  4257. {
  4258. stoptime=millis();
  4259. char time[30];
  4260. unsigned long t=(stoptime-starttime)/1000;
  4261. int sec,min;
  4262. min=t/60;
  4263. sec=t%60;
  4264. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4265. SERIAL_ECHO_START;
  4266. SERIAL_ECHOLN(time);
  4267. lcd_setstatus(time);
  4268. autotempShutdown();
  4269. }
  4270. break;
  4271. case 42: //M42 -Change pin status via gcode
  4272. if (code_seen('S'))
  4273. {
  4274. int pin_status = code_value();
  4275. int pin_number = LED_PIN;
  4276. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4277. pin_number = code_value();
  4278. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4279. {
  4280. if (sensitive_pins[i] == pin_number)
  4281. {
  4282. pin_number = -1;
  4283. break;
  4284. }
  4285. }
  4286. #if defined(FAN_PIN) && FAN_PIN > -1
  4287. if (pin_number == FAN_PIN)
  4288. fanSpeed = pin_status;
  4289. #endif
  4290. if (pin_number > -1)
  4291. {
  4292. pinMode(pin_number, OUTPUT);
  4293. digitalWrite(pin_number, pin_status);
  4294. analogWrite(pin_number, pin_status);
  4295. }
  4296. }
  4297. break;
  4298. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4299. // Reset the baby step value and the baby step applied flag.
  4300. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4301. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4302. // Reset the skew and offset in both RAM and EEPROM.
  4303. reset_bed_offset_and_skew();
  4304. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4305. // the planner will not perform any adjustments in the XY plane.
  4306. // Wait for the motors to stop and update the current position with the absolute values.
  4307. world2machine_revert_to_uncorrected();
  4308. break;
  4309. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4310. {
  4311. int8_t verbosity_level = 0;
  4312. bool only_Z = code_seen('Z');
  4313. #ifdef SUPPORT_VERBOSITY
  4314. if (code_seen('V'))
  4315. {
  4316. // Just 'V' without a number counts as V1.
  4317. char c = strchr_pointer[1];
  4318. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4319. }
  4320. #endif //SUPPORT_VERBOSITY
  4321. gcode_M45(only_Z, verbosity_level);
  4322. }
  4323. break;
  4324. /*
  4325. case 46:
  4326. {
  4327. // M46: Prusa3D: Show the assigned IP address.
  4328. uint8_t ip[4];
  4329. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4330. if (hasIP) {
  4331. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4332. SERIAL_ECHO(int(ip[0]));
  4333. SERIAL_ECHOPGM(".");
  4334. SERIAL_ECHO(int(ip[1]));
  4335. SERIAL_ECHOPGM(".");
  4336. SERIAL_ECHO(int(ip[2]));
  4337. SERIAL_ECHOPGM(".");
  4338. SERIAL_ECHO(int(ip[3]));
  4339. SERIAL_ECHOLNPGM("");
  4340. } else {
  4341. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4342. }
  4343. break;
  4344. }
  4345. */
  4346. case 47:
  4347. //! M47: Prusa3D: Show end stops dialog on the display.
  4348. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4349. lcd_diag_show_end_stops();
  4350. KEEPALIVE_STATE(IN_HANDLER);
  4351. break;
  4352. #if 0
  4353. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4354. {
  4355. // Disable the default update procedure of the display. We will do a modal dialog.
  4356. lcd_update_enable(false);
  4357. // Let the planner use the uncorrected coordinates.
  4358. mbl.reset();
  4359. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4360. // the planner will not perform any adjustments in the XY plane.
  4361. // Wait for the motors to stop and update the current position with the absolute values.
  4362. world2machine_revert_to_uncorrected();
  4363. // Move the print head close to the bed.
  4364. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4366. st_synchronize();
  4367. // Home in the XY plane.
  4368. set_destination_to_current();
  4369. int l_feedmultiply = setup_for_endstop_move();
  4370. home_xy();
  4371. int8_t verbosity_level = 0;
  4372. if (code_seen('V')) {
  4373. // Just 'V' without a number counts as V1.
  4374. char c = strchr_pointer[1];
  4375. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4376. }
  4377. bool success = scan_bed_induction_points(verbosity_level);
  4378. clean_up_after_endstop_move(l_feedmultiply);
  4379. // Print head up.
  4380. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4382. st_synchronize();
  4383. lcd_update_enable(true);
  4384. break;
  4385. }
  4386. #endif
  4387. #ifdef ENABLE_AUTO_BED_LEVELING
  4388. #ifdef Z_PROBE_REPEATABILITY_TEST
  4389. //! M48 Z-Probe repeatability measurement function.
  4390. //!
  4391. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4392. //!
  4393. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4394. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4395. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4396. //! regenerated.
  4397. //!
  4398. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4399. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4400. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4401. //!
  4402. case 48: // M48 Z-Probe repeatability
  4403. {
  4404. #if Z_MIN_PIN == -1
  4405. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4406. #endif
  4407. double sum=0.0;
  4408. double mean=0.0;
  4409. double sigma=0.0;
  4410. double sample_set[50];
  4411. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4412. double X_current, Y_current, Z_current;
  4413. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4414. if (code_seen('V') || code_seen('v')) {
  4415. verbose_level = code_value();
  4416. if (verbose_level<0 || verbose_level>4 ) {
  4417. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4418. goto Sigma_Exit;
  4419. }
  4420. }
  4421. if (verbose_level > 0) {
  4422. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4423. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4424. }
  4425. if (code_seen('n')) {
  4426. n_samples = code_value();
  4427. if (n_samples<4 || n_samples>50 ) {
  4428. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4429. goto Sigma_Exit;
  4430. }
  4431. }
  4432. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4433. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4434. Z_current = st_get_position_mm(Z_AXIS);
  4435. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4436. ext_position = st_get_position_mm(E_AXIS);
  4437. if (code_seen('X') || code_seen('x') ) {
  4438. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4439. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4440. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4441. goto Sigma_Exit;
  4442. }
  4443. }
  4444. if (code_seen('Y') || code_seen('y') ) {
  4445. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4446. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4447. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4448. goto Sigma_Exit;
  4449. }
  4450. }
  4451. if (code_seen('L') || code_seen('l') ) {
  4452. n_legs = code_value();
  4453. if ( n_legs==1 )
  4454. n_legs = 2;
  4455. if ( n_legs<0 || n_legs>15 ) {
  4456. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4457. goto Sigma_Exit;
  4458. }
  4459. }
  4460. //
  4461. // Do all the preliminary setup work. First raise the probe.
  4462. //
  4463. st_synchronize();
  4464. plan_bed_level_matrix.set_to_identity();
  4465. plan_buffer_line( X_current, Y_current, Z_start_location,
  4466. ext_position,
  4467. homing_feedrate[Z_AXIS]/60,
  4468. active_extruder);
  4469. st_synchronize();
  4470. //
  4471. // Now get everything to the specified probe point So we can safely do a probe to
  4472. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4473. // use that as a starting point for each probe.
  4474. //
  4475. if (verbose_level > 2)
  4476. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4477. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4478. ext_position,
  4479. homing_feedrate[X_AXIS]/60,
  4480. active_extruder);
  4481. st_synchronize();
  4482. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4483. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4484. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4485. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4486. //
  4487. // OK, do the inital probe to get us close to the bed.
  4488. // Then retrace the right amount and use that in subsequent probes
  4489. //
  4490. int l_feedmultiply = setup_for_endstop_move();
  4491. run_z_probe();
  4492. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4493. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4494. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4495. ext_position,
  4496. homing_feedrate[X_AXIS]/60,
  4497. active_extruder);
  4498. st_synchronize();
  4499. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4500. for( n=0; n<n_samples; n++) {
  4501. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4502. if ( n_legs) {
  4503. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4504. int rotational_direction, l;
  4505. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4506. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4507. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4508. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4509. //SERIAL_ECHOPAIR(" theta: ",theta);
  4510. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4511. //SERIAL_PROTOCOLLNPGM("");
  4512. for( l=0; l<n_legs-1; l++) {
  4513. if (rotational_direction==1)
  4514. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4515. else
  4516. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4517. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4518. if ( radius<0.0 )
  4519. radius = -radius;
  4520. X_current = X_probe_location + cos(theta) * radius;
  4521. Y_current = Y_probe_location + sin(theta) * radius;
  4522. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4523. X_current = X_MIN_POS;
  4524. if ( X_current>X_MAX_POS)
  4525. X_current = X_MAX_POS;
  4526. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4527. Y_current = Y_MIN_POS;
  4528. if ( Y_current>Y_MAX_POS)
  4529. Y_current = Y_MAX_POS;
  4530. if (verbose_level>3 ) {
  4531. SERIAL_ECHOPAIR("x: ", X_current);
  4532. SERIAL_ECHOPAIR("y: ", Y_current);
  4533. SERIAL_PROTOCOLLNPGM("");
  4534. }
  4535. do_blocking_move_to( X_current, Y_current, Z_current );
  4536. }
  4537. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4538. }
  4539. int l_feedmultiply = setup_for_endstop_move();
  4540. run_z_probe();
  4541. sample_set[n] = current_position[Z_AXIS];
  4542. //
  4543. // Get the current mean for the data points we have so far
  4544. //
  4545. sum=0.0;
  4546. for( j=0; j<=n; j++) {
  4547. sum = sum + sample_set[j];
  4548. }
  4549. mean = sum / (double (n+1));
  4550. //
  4551. // Now, use that mean to calculate the standard deviation for the
  4552. // data points we have so far
  4553. //
  4554. sum=0.0;
  4555. for( j=0; j<=n; j++) {
  4556. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4557. }
  4558. sigma = sqrt( sum / (double (n+1)) );
  4559. if (verbose_level > 1) {
  4560. SERIAL_PROTOCOL(n+1);
  4561. SERIAL_PROTOCOL(" of ");
  4562. SERIAL_PROTOCOL(n_samples);
  4563. SERIAL_PROTOCOLPGM(" z: ");
  4564. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4565. }
  4566. if (verbose_level > 2) {
  4567. SERIAL_PROTOCOL(" mean: ");
  4568. SERIAL_PROTOCOL_F(mean,6);
  4569. SERIAL_PROTOCOL(" sigma: ");
  4570. SERIAL_PROTOCOL_F(sigma,6);
  4571. }
  4572. if (verbose_level > 0)
  4573. SERIAL_PROTOCOLPGM("\n");
  4574. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4575. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4576. st_synchronize();
  4577. }
  4578. delay(1000);
  4579. clean_up_after_endstop_move(l_feedmultiply);
  4580. // enable_endstops(true);
  4581. if (verbose_level > 0) {
  4582. SERIAL_PROTOCOLPGM("Mean: ");
  4583. SERIAL_PROTOCOL_F(mean, 6);
  4584. SERIAL_PROTOCOLPGM("\n");
  4585. }
  4586. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4587. SERIAL_PROTOCOL_F(sigma, 6);
  4588. SERIAL_PROTOCOLPGM("\n\n");
  4589. Sigma_Exit:
  4590. break;
  4591. }
  4592. #endif // Z_PROBE_REPEATABILITY_TEST
  4593. #endif // ENABLE_AUTO_BED_LEVELING
  4594. case 73: //M73 show percent done and time remaining
  4595. if(code_seen('P')) print_percent_done_normal = code_value();
  4596. if(code_seen('R')) print_time_remaining_normal = code_value();
  4597. if(code_seen('Q')) print_percent_done_silent = code_value();
  4598. if(code_seen('S')) print_time_remaining_silent = code_value();
  4599. {
  4600. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4601. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4602. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4603. }
  4604. break;
  4605. case 104: // M104
  4606. {
  4607. uint8_t extruder;
  4608. if(setTargetedHotend(104,extruder)){
  4609. break;
  4610. }
  4611. if (code_seen('S'))
  4612. {
  4613. setTargetHotendSafe(code_value(), extruder);
  4614. }
  4615. setWatch();
  4616. break;
  4617. }
  4618. case 112: // M112 -Emergency Stop
  4619. kill(_n(""), 3);
  4620. break;
  4621. case 140: // M140 set bed temp
  4622. if (code_seen('S')) setTargetBed(code_value());
  4623. break;
  4624. case 105 : // M105
  4625. {
  4626. uint8_t extruder;
  4627. if(setTargetedHotend(105, extruder)){
  4628. break;
  4629. }
  4630. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4631. SERIAL_PROTOCOLPGM("ok T:");
  4632. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4633. SERIAL_PROTOCOLPGM(" /");
  4634. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4635. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4636. SERIAL_PROTOCOLPGM(" B:");
  4637. SERIAL_PROTOCOL_F(degBed(),1);
  4638. SERIAL_PROTOCOLPGM(" /");
  4639. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4640. #endif //TEMP_BED_PIN
  4641. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4642. SERIAL_PROTOCOLPGM(" T");
  4643. SERIAL_PROTOCOL(cur_extruder);
  4644. SERIAL_PROTOCOLPGM(":");
  4645. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4646. SERIAL_PROTOCOLPGM(" /");
  4647. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4648. }
  4649. #else
  4650. SERIAL_ERROR_START;
  4651. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4652. #endif
  4653. SERIAL_PROTOCOLPGM(" @:");
  4654. #ifdef EXTRUDER_WATTS
  4655. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4656. SERIAL_PROTOCOLPGM("W");
  4657. #else
  4658. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4659. #endif
  4660. SERIAL_PROTOCOLPGM(" B@:");
  4661. #ifdef BED_WATTS
  4662. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4663. SERIAL_PROTOCOLPGM("W");
  4664. #else
  4665. SERIAL_PROTOCOL(getHeaterPower(-1));
  4666. #endif
  4667. #ifdef PINDA_THERMISTOR
  4668. SERIAL_PROTOCOLPGM(" P:");
  4669. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4670. #endif //PINDA_THERMISTOR
  4671. #ifdef AMBIENT_THERMISTOR
  4672. SERIAL_PROTOCOLPGM(" A:");
  4673. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4674. #endif //AMBIENT_THERMISTOR
  4675. #ifdef SHOW_TEMP_ADC_VALUES
  4676. {float raw = 0.0;
  4677. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4678. SERIAL_PROTOCOLPGM(" ADC B:");
  4679. SERIAL_PROTOCOL_F(degBed(),1);
  4680. SERIAL_PROTOCOLPGM("C->");
  4681. raw = rawBedTemp();
  4682. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4683. SERIAL_PROTOCOLPGM(" Rb->");
  4684. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4685. SERIAL_PROTOCOLPGM(" Rxb->");
  4686. SERIAL_PROTOCOL_F(raw, 5);
  4687. #endif
  4688. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4689. SERIAL_PROTOCOLPGM(" T");
  4690. SERIAL_PROTOCOL(cur_extruder);
  4691. SERIAL_PROTOCOLPGM(":");
  4692. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4693. SERIAL_PROTOCOLPGM("C->");
  4694. raw = rawHotendTemp(cur_extruder);
  4695. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4696. SERIAL_PROTOCOLPGM(" Rt");
  4697. SERIAL_PROTOCOL(cur_extruder);
  4698. SERIAL_PROTOCOLPGM("->");
  4699. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4700. SERIAL_PROTOCOLPGM(" Rx");
  4701. SERIAL_PROTOCOL(cur_extruder);
  4702. SERIAL_PROTOCOLPGM("->");
  4703. SERIAL_PROTOCOL_F(raw, 5);
  4704. }}
  4705. #endif
  4706. SERIAL_PROTOCOLLN("");
  4707. KEEPALIVE_STATE(NOT_BUSY);
  4708. return;
  4709. break;
  4710. }
  4711. case 109:
  4712. {// M109 - Wait for extruder heater to reach target.
  4713. uint8_t extruder;
  4714. if(setTargetedHotend(109, extruder)){
  4715. break;
  4716. }
  4717. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4718. heating_status = 1;
  4719. if (farm_mode) { prusa_statistics(1); };
  4720. #ifdef AUTOTEMP
  4721. autotemp_enabled=false;
  4722. #endif
  4723. if (code_seen('S')) {
  4724. setTargetHotendSafe(code_value(), extruder);
  4725. CooldownNoWait = true;
  4726. } else if (code_seen('R')) {
  4727. setTargetHotendSafe(code_value(), extruder);
  4728. CooldownNoWait = false;
  4729. }
  4730. #ifdef AUTOTEMP
  4731. if (code_seen('S')) autotemp_min=code_value();
  4732. if (code_seen('B')) autotemp_max=code_value();
  4733. if (code_seen('F'))
  4734. {
  4735. autotemp_factor=code_value();
  4736. autotemp_enabled=true;
  4737. }
  4738. #endif
  4739. setWatch();
  4740. codenum = millis();
  4741. /* See if we are heating up or cooling down */
  4742. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4743. KEEPALIVE_STATE(NOT_BUSY);
  4744. cancel_heatup = false;
  4745. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4746. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4747. KEEPALIVE_STATE(IN_HANDLER);
  4748. heating_status = 2;
  4749. if (farm_mode) { prusa_statistics(2); };
  4750. //starttime=millis();
  4751. previous_millis_cmd = millis();
  4752. }
  4753. break;
  4754. case 190: // M190 - Wait for bed heater to reach target.
  4755. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4756. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4757. heating_status = 3;
  4758. if (farm_mode) { prusa_statistics(1); };
  4759. if (code_seen('S'))
  4760. {
  4761. setTargetBed(code_value());
  4762. CooldownNoWait = true;
  4763. }
  4764. else if (code_seen('R'))
  4765. {
  4766. setTargetBed(code_value());
  4767. CooldownNoWait = false;
  4768. }
  4769. codenum = millis();
  4770. cancel_heatup = false;
  4771. target_direction = isHeatingBed(); // true if heating, false if cooling
  4772. KEEPALIVE_STATE(NOT_BUSY);
  4773. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4774. {
  4775. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4776. {
  4777. if (!farm_mode) {
  4778. float tt = degHotend(active_extruder);
  4779. SERIAL_PROTOCOLPGM("T:");
  4780. SERIAL_PROTOCOL(tt);
  4781. SERIAL_PROTOCOLPGM(" E:");
  4782. SERIAL_PROTOCOL((int)active_extruder);
  4783. SERIAL_PROTOCOLPGM(" B:");
  4784. SERIAL_PROTOCOL_F(degBed(), 1);
  4785. SERIAL_PROTOCOLLN("");
  4786. }
  4787. codenum = millis();
  4788. }
  4789. manage_heater();
  4790. manage_inactivity();
  4791. lcd_update(0);
  4792. }
  4793. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4794. KEEPALIVE_STATE(IN_HANDLER);
  4795. heating_status = 4;
  4796. previous_millis_cmd = millis();
  4797. #endif
  4798. break;
  4799. #if defined(FAN_PIN) && FAN_PIN > -1
  4800. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4801. if (code_seen('S')){
  4802. fanSpeed=constrain(code_value(),0,255);
  4803. }
  4804. else {
  4805. fanSpeed=255;
  4806. }
  4807. break;
  4808. case 107: //M107 Fan Off
  4809. fanSpeed = 0;
  4810. break;
  4811. #endif //FAN_PIN
  4812. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4813. case 80: // M80 - Turn on Power Supply
  4814. SET_OUTPUT(PS_ON_PIN); //GND
  4815. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4816. // If you have a switch on suicide pin, this is useful
  4817. // if you want to start another print with suicide feature after
  4818. // a print without suicide...
  4819. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4820. SET_OUTPUT(SUICIDE_PIN);
  4821. WRITE(SUICIDE_PIN, HIGH);
  4822. #endif
  4823. powersupply = true;
  4824. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4825. lcd_update(0);
  4826. break;
  4827. #endif
  4828. case 81: // M81 - Turn off Power Supply
  4829. disable_heater();
  4830. st_synchronize();
  4831. disable_e0();
  4832. disable_e1();
  4833. disable_e2();
  4834. finishAndDisableSteppers();
  4835. fanSpeed = 0;
  4836. delay(1000); // Wait a little before to switch off
  4837. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4838. st_synchronize();
  4839. suicide();
  4840. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4841. SET_OUTPUT(PS_ON_PIN);
  4842. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4843. #endif
  4844. powersupply = false;
  4845. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4846. lcd_update(0);
  4847. break;
  4848. case 82:
  4849. axis_relative_modes[3] = false;
  4850. break;
  4851. case 83:
  4852. axis_relative_modes[3] = true;
  4853. break;
  4854. case 18: //compatibility
  4855. case 84: // M84
  4856. if(code_seen('S')){
  4857. stepper_inactive_time = code_value() * 1000;
  4858. }
  4859. else
  4860. {
  4861. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4862. if(all_axis)
  4863. {
  4864. st_synchronize();
  4865. disable_e0();
  4866. disable_e1();
  4867. disable_e2();
  4868. finishAndDisableSteppers();
  4869. }
  4870. else
  4871. {
  4872. st_synchronize();
  4873. if (code_seen('X')) disable_x();
  4874. if (code_seen('Y')) disable_y();
  4875. if (code_seen('Z')) disable_z();
  4876. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4877. if (code_seen('E')) {
  4878. disable_e0();
  4879. disable_e1();
  4880. disable_e2();
  4881. }
  4882. #endif
  4883. }
  4884. }
  4885. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4886. print_time_remaining_init();
  4887. snmm_filaments_used = 0;
  4888. break;
  4889. case 85: // M85
  4890. if(code_seen('S')) {
  4891. max_inactive_time = code_value() * 1000;
  4892. }
  4893. break;
  4894. #ifdef SAFETYTIMER
  4895. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4896. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4897. if (code_seen('S')) {
  4898. safetytimer_inactive_time = code_value() * 1000;
  4899. safetyTimer.start();
  4900. }
  4901. break;
  4902. #endif
  4903. case 92: // M92
  4904. for(int8_t i=0; i < NUM_AXIS; i++)
  4905. {
  4906. if(code_seen(axis_codes[i]))
  4907. {
  4908. if(i == 3) { // E
  4909. float value = code_value();
  4910. if(value < 20.0) {
  4911. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4912. cs.max_jerk[E_AXIS] *= factor;
  4913. max_feedrate[i] *= factor;
  4914. axis_steps_per_sqr_second[i] *= factor;
  4915. }
  4916. cs.axis_steps_per_unit[i] = value;
  4917. }
  4918. else {
  4919. cs.axis_steps_per_unit[i] = code_value();
  4920. }
  4921. }
  4922. }
  4923. break;
  4924. case 110: //! M110 N<line number> - reset line pos
  4925. if (code_seen('N'))
  4926. gcode_LastN = code_value_long();
  4927. break;
  4928. #ifdef HOST_KEEPALIVE_FEATURE
  4929. case 113: // M113 - Get or set Host Keepalive interval
  4930. if (code_seen('S')) {
  4931. host_keepalive_interval = (uint8_t)code_value_short();
  4932. // NOMORE(host_keepalive_interval, 60);
  4933. }
  4934. else {
  4935. SERIAL_ECHO_START;
  4936. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4937. SERIAL_PROTOCOLLN("");
  4938. }
  4939. break;
  4940. #endif
  4941. case 115: // M115
  4942. if (code_seen('V')) {
  4943. // Report the Prusa version number.
  4944. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4945. } else if (code_seen('U')) {
  4946. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4947. // pause the print and ask the user to upgrade the firmware.
  4948. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4949. } else {
  4950. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4951. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4952. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4953. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4954. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4955. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4956. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4957. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4958. SERIAL_ECHOPGM(" UUID:");
  4959. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4960. }
  4961. break;
  4962. /* case 117: // M117 display message
  4963. starpos = (strchr(strchr_pointer + 5,'*'));
  4964. if(starpos!=NULL)
  4965. *(starpos)='\0';
  4966. lcd_setstatus(strchr_pointer + 5);
  4967. break;*/
  4968. case 114: // M114
  4969. gcode_M114();
  4970. break;
  4971. case 120: //! M120 - Disable endstops
  4972. enable_endstops(false) ;
  4973. break;
  4974. case 121: //! M121 - Enable endstops
  4975. enable_endstops(true) ;
  4976. break;
  4977. case 119: // M119
  4978. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4979. SERIAL_PROTOCOLLN("");
  4980. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4981. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4982. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4983. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4984. }else{
  4985. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4986. }
  4987. SERIAL_PROTOCOLLN("");
  4988. #endif
  4989. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4990. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4991. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4992. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4993. }else{
  4994. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4995. }
  4996. SERIAL_PROTOCOLLN("");
  4997. #endif
  4998. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4999. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5000. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5001. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5002. }else{
  5003. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5004. }
  5005. SERIAL_PROTOCOLLN("");
  5006. #endif
  5007. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5008. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5009. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5010. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5011. }else{
  5012. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5013. }
  5014. SERIAL_PROTOCOLLN("");
  5015. #endif
  5016. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5017. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5018. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5019. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5020. }else{
  5021. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5022. }
  5023. SERIAL_PROTOCOLLN("");
  5024. #endif
  5025. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5026. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5027. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5028. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5029. }else{
  5030. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5031. }
  5032. SERIAL_PROTOCOLLN("");
  5033. #endif
  5034. break;
  5035. //TODO: update for all axis, use for loop
  5036. #ifdef BLINKM
  5037. case 150: // M150
  5038. {
  5039. byte red;
  5040. byte grn;
  5041. byte blu;
  5042. if(code_seen('R')) red = code_value();
  5043. if(code_seen('U')) grn = code_value();
  5044. if(code_seen('B')) blu = code_value();
  5045. SendColors(red,grn,blu);
  5046. }
  5047. break;
  5048. #endif //BLINKM
  5049. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5050. {
  5051. uint8_t extruder = active_extruder;
  5052. if(code_seen('T')) {
  5053. extruder = code_value();
  5054. if(extruder >= EXTRUDERS) {
  5055. SERIAL_ECHO_START;
  5056. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5057. break;
  5058. }
  5059. }
  5060. if(code_seen('D')) {
  5061. float diameter = (float)code_value();
  5062. if (diameter == 0.0) {
  5063. // setting any extruder filament size disables volumetric on the assumption that
  5064. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5065. // for all extruders
  5066. cs.volumetric_enabled = false;
  5067. } else {
  5068. cs.filament_size[extruder] = (float)code_value();
  5069. // make sure all extruders have some sane value for the filament size
  5070. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5071. #if EXTRUDERS > 1
  5072. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5073. #if EXTRUDERS > 2
  5074. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5075. #endif
  5076. #endif
  5077. cs.volumetric_enabled = true;
  5078. }
  5079. } else {
  5080. //reserved for setting filament diameter via UFID or filament measuring device
  5081. break;
  5082. }
  5083. calculate_extruder_multipliers();
  5084. }
  5085. break;
  5086. case 201: // M201
  5087. for (int8_t i = 0; i < NUM_AXIS; i++)
  5088. {
  5089. if (code_seen(axis_codes[i]))
  5090. {
  5091. unsigned long val = code_value();
  5092. #ifdef TMC2130
  5093. unsigned long val_silent = val;
  5094. if ((i == X_AXIS) || (i == Y_AXIS))
  5095. {
  5096. if (val > NORMAL_MAX_ACCEL_XY)
  5097. val = NORMAL_MAX_ACCEL_XY;
  5098. if (val_silent > SILENT_MAX_ACCEL_XY)
  5099. val_silent = SILENT_MAX_ACCEL_XY;
  5100. }
  5101. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5102. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5103. #else //TMC2130
  5104. max_acceleration_units_per_sq_second[i] = val;
  5105. #endif //TMC2130
  5106. }
  5107. }
  5108. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5109. reset_acceleration_rates();
  5110. break;
  5111. #if 0 // Not used for Sprinter/grbl gen6
  5112. case 202: // M202
  5113. for(int8_t i=0; i < NUM_AXIS; i++) {
  5114. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5115. }
  5116. break;
  5117. #endif
  5118. case 203: // M203 max feedrate mm/sec
  5119. for (int8_t i = 0; i < NUM_AXIS; i++)
  5120. {
  5121. if (code_seen(axis_codes[i]))
  5122. {
  5123. float val = code_value();
  5124. #ifdef TMC2130
  5125. float val_silent = val;
  5126. if ((i == X_AXIS) || (i == Y_AXIS))
  5127. {
  5128. if (val > NORMAL_MAX_FEEDRATE_XY)
  5129. val = NORMAL_MAX_FEEDRATE_XY;
  5130. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5131. val_silent = SILENT_MAX_FEEDRATE_XY;
  5132. }
  5133. cs.max_feedrate_normal[i] = val;
  5134. cs.max_feedrate_silent[i] = val_silent;
  5135. #else //TMC2130
  5136. max_feedrate[i] = val;
  5137. #endif //TMC2130
  5138. }
  5139. }
  5140. break;
  5141. case 204:
  5142. //! M204 acclereration settings.
  5143. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5144. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5145. {
  5146. if(code_seen('S')) {
  5147. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5148. // and it is also generated by Slic3r to control acceleration per extrusion type
  5149. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5150. cs.acceleration = code_value();
  5151. // Interpret the T value as retract acceleration in the old Marlin format.
  5152. if(code_seen('T'))
  5153. cs.retract_acceleration = code_value();
  5154. } else {
  5155. // New acceleration format, compatible with the upstream Marlin.
  5156. if(code_seen('P'))
  5157. cs.acceleration = code_value();
  5158. if(code_seen('R'))
  5159. cs.retract_acceleration = code_value();
  5160. if(code_seen('T')) {
  5161. // Interpret the T value as the travel acceleration in the new Marlin format.
  5162. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5163. // travel_acceleration = code_value();
  5164. }
  5165. }
  5166. }
  5167. break;
  5168. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5169. {
  5170. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5171. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5172. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5173. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5174. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5175. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5176. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5177. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5178. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5179. }
  5180. break;
  5181. case 206: // M206 additional homing offset
  5182. for(int8_t i=0; i < 3; i++)
  5183. {
  5184. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5185. }
  5186. break;
  5187. #ifdef FWRETRACT
  5188. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5189. {
  5190. if(code_seen('S'))
  5191. {
  5192. cs.retract_length = code_value() ;
  5193. }
  5194. if(code_seen('F'))
  5195. {
  5196. cs.retract_feedrate = code_value()/60 ;
  5197. }
  5198. if(code_seen('Z'))
  5199. {
  5200. cs.retract_zlift = code_value() ;
  5201. }
  5202. }break;
  5203. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5204. {
  5205. if(code_seen('S'))
  5206. {
  5207. cs.retract_recover_length = code_value() ;
  5208. }
  5209. if(code_seen('F'))
  5210. {
  5211. cs.retract_recover_feedrate = code_value()/60 ;
  5212. }
  5213. }break;
  5214. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5215. {
  5216. if(code_seen('S'))
  5217. {
  5218. int t= code_value() ;
  5219. switch(t)
  5220. {
  5221. case 0:
  5222. {
  5223. cs.autoretract_enabled=false;
  5224. retracted[0]=false;
  5225. #if EXTRUDERS > 1
  5226. retracted[1]=false;
  5227. #endif
  5228. #if EXTRUDERS > 2
  5229. retracted[2]=false;
  5230. #endif
  5231. }break;
  5232. case 1:
  5233. {
  5234. cs.autoretract_enabled=true;
  5235. retracted[0]=false;
  5236. #if EXTRUDERS > 1
  5237. retracted[1]=false;
  5238. #endif
  5239. #if EXTRUDERS > 2
  5240. retracted[2]=false;
  5241. #endif
  5242. }break;
  5243. default:
  5244. SERIAL_ECHO_START;
  5245. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5246. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5247. SERIAL_ECHOLNPGM("\"(1)");
  5248. }
  5249. }
  5250. }break;
  5251. #endif // FWRETRACT
  5252. #if EXTRUDERS > 1
  5253. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5254. {
  5255. uint8_t extruder;
  5256. if(setTargetedHotend(218, extruder)){
  5257. break;
  5258. }
  5259. if(code_seen('X'))
  5260. {
  5261. extruder_offset[X_AXIS][extruder] = code_value();
  5262. }
  5263. if(code_seen('Y'))
  5264. {
  5265. extruder_offset[Y_AXIS][extruder] = code_value();
  5266. }
  5267. SERIAL_ECHO_START;
  5268. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5269. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5270. {
  5271. SERIAL_ECHO(" ");
  5272. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5273. SERIAL_ECHO(",");
  5274. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5275. }
  5276. SERIAL_ECHOLN("");
  5277. }break;
  5278. #endif
  5279. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5280. {
  5281. if(code_seen('S'))
  5282. {
  5283. feedmultiply = code_value() ;
  5284. }
  5285. }
  5286. break;
  5287. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5288. {
  5289. if(code_seen('S'))
  5290. {
  5291. int tmp_code = code_value();
  5292. if (code_seen('T'))
  5293. {
  5294. uint8_t extruder;
  5295. if(setTargetedHotend(221, extruder)){
  5296. break;
  5297. }
  5298. extruder_multiply[extruder] = tmp_code;
  5299. }
  5300. else
  5301. {
  5302. extrudemultiply = tmp_code ;
  5303. }
  5304. }
  5305. calculate_extruder_multipliers();
  5306. }
  5307. break;
  5308. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5309. {
  5310. if(code_seen('P')){
  5311. int pin_number = code_value(); // pin number
  5312. int pin_state = -1; // required pin state - default is inverted
  5313. if(code_seen('S')) pin_state = code_value(); // required pin state
  5314. if(pin_state >= -1 && pin_state <= 1){
  5315. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5316. {
  5317. if (sensitive_pins[i] == pin_number)
  5318. {
  5319. pin_number = -1;
  5320. break;
  5321. }
  5322. }
  5323. if (pin_number > -1)
  5324. {
  5325. int target = LOW;
  5326. st_synchronize();
  5327. pinMode(pin_number, INPUT);
  5328. switch(pin_state){
  5329. case 1:
  5330. target = HIGH;
  5331. break;
  5332. case 0:
  5333. target = LOW;
  5334. break;
  5335. case -1:
  5336. target = !digitalRead(pin_number);
  5337. break;
  5338. }
  5339. while(digitalRead(pin_number) != target){
  5340. manage_heater();
  5341. manage_inactivity();
  5342. lcd_update(0);
  5343. }
  5344. }
  5345. }
  5346. }
  5347. }
  5348. break;
  5349. #if NUM_SERVOS > 0
  5350. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5351. {
  5352. int servo_index = -1;
  5353. int servo_position = 0;
  5354. if (code_seen('P'))
  5355. servo_index = code_value();
  5356. if (code_seen('S')) {
  5357. servo_position = code_value();
  5358. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5359. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5360. servos[servo_index].attach(0);
  5361. #endif
  5362. servos[servo_index].write(servo_position);
  5363. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5364. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5365. servos[servo_index].detach();
  5366. #endif
  5367. }
  5368. else {
  5369. SERIAL_ECHO_START;
  5370. SERIAL_ECHO("Servo ");
  5371. SERIAL_ECHO(servo_index);
  5372. SERIAL_ECHOLN(" out of range");
  5373. }
  5374. }
  5375. else if (servo_index >= 0) {
  5376. SERIAL_PROTOCOL(_T(MSG_OK));
  5377. SERIAL_PROTOCOL(" Servo ");
  5378. SERIAL_PROTOCOL(servo_index);
  5379. SERIAL_PROTOCOL(": ");
  5380. SERIAL_PROTOCOL(servos[servo_index].read());
  5381. SERIAL_PROTOCOLLN("");
  5382. }
  5383. }
  5384. break;
  5385. #endif // NUM_SERVOS > 0
  5386. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5387. case 300: // M300
  5388. {
  5389. int beepS = code_seen('S') ? code_value() : 110;
  5390. int beepP = code_seen('P') ? code_value() : 1000;
  5391. if (beepS > 0)
  5392. {
  5393. #if BEEPER > 0
  5394. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5395. tone(BEEPER, beepS);
  5396. delay(beepP);
  5397. noTone(BEEPER);
  5398. #endif
  5399. }
  5400. else
  5401. {
  5402. delay(beepP);
  5403. }
  5404. }
  5405. break;
  5406. #endif // M300
  5407. #ifdef PIDTEMP
  5408. case 301: // M301
  5409. {
  5410. if(code_seen('P')) cs.Kp = code_value();
  5411. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5412. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5413. #ifdef PID_ADD_EXTRUSION_RATE
  5414. if(code_seen('C')) Kc = code_value();
  5415. #endif
  5416. updatePID();
  5417. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5418. SERIAL_PROTOCOL(" p:");
  5419. SERIAL_PROTOCOL(cs.Kp);
  5420. SERIAL_PROTOCOL(" i:");
  5421. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5422. SERIAL_PROTOCOL(" d:");
  5423. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5424. #ifdef PID_ADD_EXTRUSION_RATE
  5425. SERIAL_PROTOCOL(" c:");
  5426. //Kc does not have scaling applied above, or in resetting defaults
  5427. SERIAL_PROTOCOL(Kc);
  5428. #endif
  5429. SERIAL_PROTOCOLLN("");
  5430. }
  5431. break;
  5432. #endif //PIDTEMP
  5433. #ifdef PIDTEMPBED
  5434. case 304: // M304
  5435. {
  5436. if(code_seen('P')) cs.bedKp = code_value();
  5437. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5438. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5439. updatePID();
  5440. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5441. SERIAL_PROTOCOL(" p:");
  5442. SERIAL_PROTOCOL(cs.bedKp);
  5443. SERIAL_PROTOCOL(" i:");
  5444. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5445. SERIAL_PROTOCOL(" d:");
  5446. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5447. SERIAL_PROTOCOLLN("");
  5448. }
  5449. break;
  5450. #endif //PIDTEMP
  5451. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5452. {
  5453. #ifdef CHDK
  5454. SET_OUTPUT(CHDK);
  5455. WRITE(CHDK, HIGH);
  5456. chdkHigh = millis();
  5457. chdkActive = true;
  5458. #else
  5459. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5460. const uint8_t NUM_PULSES=16;
  5461. const float PULSE_LENGTH=0.01524;
  5462. for(int i=0; i < NUM_PULSES; i++) {
  5463. WRITE(PHOTOGRAPH_PIN, HIGH);
  5464. _delay_ms(PULSE_LENGTH);
  5465. WRITE(PHOTOGRAPH_PIN, LOW);
  5466. _delay_ms(PULSE_LENGTH);
  5467. }
  5468. delay(7.33);
  5469. for(int i=0; i < NUM_PULSES; i++) {
  5470. WRITE(PHOTOGRAPH_PIN, HIGH);
  5471. _delay_ms(PULSE_LENGTH);
  5472. WRITE(PHOTOGRAPH_PIN, LOW);
  5473. _delay_ms(PULSE_LENGTH);
  5474. }
  5475. #endif
  5476. #endif //chdk end if
  5477. }
  5478. break;
  5479. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5480. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5481. {
  5482. float temp = .0;
  5483. if (code_seen('S')) temp=code_value();
  5484. set_extrude_min_temp(temp);
  5485. }
  5486. break;
  5487. #endif
  5488. case 303: // M303 PID autotune
  5489. {
  5490. float temp = 150.0;
  5491. int e=0;
  5492. int c=5;
  5493. if (code_seen('E')) e=code_value();
  5494. if (e<0)
  5495. temp=70;
  5496. if (code_seen('S')) temp=code_value();
  5497. if (code_seen('C')) c=code_value();
  5498. PID_autotune(temp, e, c);
  5499. }
  5500. break;
  5501. case 400: // M400 finish all moves
  5502. {
  5503. st_synchronize();
  5504. }
  5505. break;
  5506. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5507. {
  5508. //! currently three different materials are needed (default, flex and PVA)
  5509. //! add storing this information for different load/unload profiles etc. in the future
  5510. //!firmware does not wait for "ok" from mmu
  5511. if (mmu_enabled)
  5512. {
  5513. uint8_t extruder = 255;
  5514. uint8_t filament = FILAMENT_UNDEFINED;
  5515. if(code_seen('E')) extruder = code_value();
  5516. if(code_seen('F')) filament = code_value();
  5517. mmu_set_filament_type(extruder, filament);
  5518. }
  5519. }
  5520. break;
  5521. case 500: // M500 Store settings in EEPROM
  5522. {
  5523. Config_StoreSettings();
  5524. }
  5525. break;
  5526. case 501: // M501 Read settings from EEPROM
  5527. {
  5528. Config_RetrieveSettings();
  5529. }
  5530. break;
  5531. case 502: // M502 Revert to default settings
  5532. {
  5533. Config_ResetDefault();
  5534. }
  5535. break;
  5536. case 503: // M503 print settings currently in memory
  5537. {
  5538. Config_PrintSettings();
  5539. }
  5540. break;
  5541. case 509: //M509 Force language selection
  5542. {
  5543. lang_reset();
  5544. SERIAL_ECHO_START;
  5545. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5546. }
  5547. break;
  5548. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5549. case 540:
  5550. {
  5551. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5552. }
  5553. break;
  5554. #endif
  5555. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5556. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5557. {
  5558. float value;
  5559. if (code_seen('Z'))
  5560. {
  5561. value = code_value();
  5562. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5563. {
  5564. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5565. SERIAL_ECHO_START;
  5566. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5567. SERIAL_PROTOCOLLN("");
  5568. }
  5569. else
  5570. {
  5571. SERIAL_ECHO_START;
  5572. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5573. SERIAL_ECHORPGM(MSG_Z_MIN);
  5574. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5575. SERIAL_ECHORPGM(MSG_Z_MAX);
  5576. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5577. SERIAL_PROTOCOLLN("");
  5578. }
  5579. }
  5580. else
  5581. {
  5582. SERIAL_ECHO_START;
  5583. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5584. SERIAL_ECHO(-cs.zprobe_zoffset);
  5585. SERIAL_PROTOCOLLN("");
  5586. }
  5587. break;
  5588. }
  5589. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5590. #ifdef FILAMENTCHANGEENABLE
  5591. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5592. {
  5593. st_synchronize();
  5594. float x_position = current_position[X_AXIS];
  5595. float y_position = current_position[Y_AXIS];
  5596. float z_shift = 0;
  5597. float e_shift_init = 0;
  5598. float e_shift_late = 0;
  5599. bool automatic = false;
  5600. //Retract extruder
  5601. if(code_seen('E'))
  5602. {
  5603. e_shift_init = code_value();
  5604. }
  5605. else
  5606. {
  5607. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5608. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5609. #endif
  5610. }
  5611. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5612. if (code_seen('L'))
  5613. {
  5614. e_shift_late = code_value();
  5615. }
  5616. else
  5617. {
  5618. #ifdef FILAMENTCHANGE_FINALRETRACT
  5619. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5620. #endif
  5621. }
  5622. //Lift Z
  5623. if(code_seen('Z'))
  5624. {
  5625. z_shift = code_value();
  5626. }
  5627. else
  5628. {
  5629. #ifdef FILAMENTCHANGE_ZADD
  5630. z_shift= FILAMENTCHANGE_ZADD ;
  5631. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5632. #endif
  5633. }
  5634. //Move XY to side
  5635. if(code_seen('X'))
  5636. {
  5637. x_position = code_value();
  5638. }
  5639. else
  5640. {
  5641. #ifdef FILAMENTCHANGE_XPOS
  5642. x_position = FILAMENTCHANGE_XPOS;
  5643. #endif
  5644. }
  5645. if(code_seen('Y'))
  5646. {
  5647. y_position = code_value();
  5648. }
  5649. else
  5650. {
  5651. #ifdef FILAMENTCHANGE_YPOS
  5652. y_position = FILAMENTCHANGE_YPOS ;
  5653. #endif
  5654. }
  5655. if (mmu_enabled && code_seen("AUTO"))
  5656. automatic = true;
  5657. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5658. }
  5659. break;
  5660. #endif //FILAMENTCHANGEENABLE
  5661. case 601: //! M601 - Pause print
  5662. {
  5663. lcd_pause_print();
  5664. }
  5665. break;
  5666. case 602: { //! M602 - Resume print
  5667. lcd_resume_print();
  5668. }
  5669. break;
  5670. #ifdef PINDA_THERMISTOR
  5671. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5672. {
  5673. int set_target_pinda = 0;
  5674. if (code_seen('S')) {
  5675. set_target_pinda = code_value();
  5676. }
  5677. else {
  5678. break;
  5679. }
  5680. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5681. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5682. SERIAL_PROTOCOL(set_target_pinda);
  5683. SERIAL_PROTOCOLLN("");
  5684. codenum = millis();
  5685. cancel_heatup = false;
  5686. bool is_pinda_cooling = false;
  5687. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5688. is_pinda_cooling = true;
  5689. }
  5690. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5691. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5692. {
  5693. SERIAL_PROTOCOLPGM("P:");
  5694. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5695. SERIAL_PROTOCOLPGM("/");
  5696. SERIAL_PROTOCOL(set_target_pinda);
  5697. SERIAL_PROTOCOLLN("");
  5698. codenum = millis();
  5699. }
  5700. manage_heater();
  5701. manage_inactivity();
  5702. lcd_update(0);
  5703. }
  5704. LCD_MESSAGERPGM(_T(MSG_OK));
  5705. break;
  5706. }
  5707. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5708. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5709. uint8_t cal_status = calibration_status_pinda();
  5710. int16_t usteps = 0;
  5711. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5712. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5713. for (uint8_t i = 0; i < 6; i++)
  5714. {
  5715. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5716. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5717. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5718. SERIAL_PROTOCOLPGM(", ");
  5719. SERIAL_PROTOCOL(35 + (i * 5));
  5720. SERIAL_PROTOCOLPGM(", ");
  5721. SERIAL_PROTOCOL(usteps);
  5722. SERIAL_PROTOCOLPGM(", ");
  5723. SERIAL_PROTOCOL(mm * 1000);
  5724. SERIAL_PROTOCOLLN("");
  5725. }
  5726. }
  5727. else if (code_seen('!')) { // ! - Set factory default values
  5728. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5729. int16_t z_shift = 8; //40C - 20um - 8usteps
  5730. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5731. z_shift = 24; //45C - 60um - 24usteps
  5732. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5733. z_shift = 48; //50C - 120um - 48usteps
  5734. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5735. z_shift = 80; //55C - 200um - 80usteps
  5736. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5737. z_shift = 120; //60C - 300um - 120usteps
  5738. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5739. SERIAL_PROTOCOLLN("factory restored");
  5740. }
  5741. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5742. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5743. int16_t z_shift = 0;
  5744. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5745. SERIAL_PROTOCOLLN("zerorized");
  5746. }
  5747. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5748. int16_t usteps = code_value();
  5749. if (code_seen('I')) {
  5750. uint8_t index = code_value();
  5751. if (index < 5) {
  5752. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5753. SERIAL_PROTOCOLLN("OK");
  5754. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5755. for (uint8_t i = 0; i < 6; i++)
  5756. {
  5757. usteps = 0;
  5758. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5759. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5760. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5761. SERIAL_PROTOCOLPGM(", ");
  5762. SERIAL_PROTOCOL(35 + (i * 5));
  5763. SERIAL_PROTOCOLPGM(", ");
  5764. SERIAL_PROTOCOL(usteps);
  5765. SERIAL_PROTOCOLPGM(", ");
  5766. SERIAL_PROTOCOL(mm * 1000);
  5767. SERIAL_PROTOCOLLN("");
  5768. }
  5769. }
  5770. }
  5771. }
  5772. else {
  5773. SERIAL_PROTOCOLPGM("no valid command");
  5774. }
  5775. break;
  5776. #endif //PINDA_THERMISTOR
  5777. #ifdef LIN_ADVANCE
  5778. case 900: // M900: Set LIN_ADVANCE options.
  5779. gcode_M900();
  5780. break;
  5781. #endif
  5782. case 907: // M907 Set digital trimpot motor current using axis codes.
  5783. {
  5784. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5785. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5786. if(code_seen('B')) st_current_set(4,code_value());
  5787. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5788. #endif
  5789. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5790. if(code_seen('X')) st_current_set(0, code_value());
  5791. #endif
  5792. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5793. if(code_seen('Z')) st_current_set(1, code_value());
  5794. #endif
  5795. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5796. if(code_seen('E')) st_current_set(2, code_value());
  5797. #endif
  5798. }
  5799. break;
  5800. case 908: // M908 Control digital trimpot directly.
  5801. {
  5802. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5803. uint8_t channel,current;
  5804. if(code_seen('P')) channel=code_value();
  5805. if(code_seen('S')) current=code_value();
  5806. digitalPotWrite(channel, current);
  5807. #endif
  5808. }
  5809. break;
  5810. #ifdef TMC2130
  5811. case 910: //! M910 - TMC2130 init
  5812. {
  5813. tmc2130_init();
  5814. }
  5815. break;
  5816. case 911: //! M911 - Set TMC2130 holding currents
  5817. {
  5818. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5819. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5820. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5821. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5822. }
  5823. break;
  5824. case 912: //! M912 - Set TMC2130 running currents
  5825. {
  5826. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5827. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5828. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5829. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5830. }
  5831. break;
  5832. case 913: //! M913 - Print TMC2130 currents
  5833. {
  5834. tmc2130_print_currents();
  5835. }
  5836. break;
  5837. case 914: //! M914 - Set normal mode
  5838. {
  5839. tmc2130_mode = TMC2130_MODE_NORMAL;
  5840. update_mode_profile();
  5841. tmc2130_init();
  5842. }
  5843. break;
  5844. case 915: //! M915 - Set silent mode
  5845. {
  5846. tmc2130_mode = TMC2130_MODE_SILENT;
  5847. update_mode_profile();
  5848. tmc2130_init();
  5849. }
  5850. break;
  5851. case 916: //! M916 - Set sg_thrs
  5852. {
  5853. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5854. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5855. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5856. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5857. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5858. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5859. }
  5860. break;
  5861. case 917: //! M917 - Set TMC2130 pwm_ampl
  5862. {
  5863. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5864. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5865. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5866. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5867. }
  5868. break;
  5869. case 918: //! M918 - Set TMC2130 pwm_grad
  5870. {
  5871. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5872. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5873. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5874. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5875. }
  5876. break;
  5877. #endif //TMC2130
  5878. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5879. {
  5880. #ifdef TMC2130
  5881. if(code_seen('E'))
  5882. {
  5883. uint16_t res_new = code_value();
  5884. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5885. {
  5886. st_synchronize();
  5887. uint8_t axis = E_AXIS;
  5888. uint16_t res = tmc2130_get_res(axis);
  5889. tmc2130_set_res(axis, res_new);
  5890. if (res_new > res)
  5891. {
  5892. uint16_t fac = (res_new / res);
  5893. cs.axis_steps_per_unit[axis] *= fac;
  5894. position[E_AXIS] *= fac;
  5895. }
  5896. else
  5897. {
  5898. uint16_t fac = (res / res_new);
  5899. cs.axis_steps_per_unit[axis] /= fac;
  5900. position[E_AXIS] /= fac;
  5901. }
  5902. }
  5903. }
  5904. #else //TMC2130
  5905. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5906. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5907. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5908. if(code_seen('B')) microstep_mode(4,code_value());
  5909. microstep_readings();
  5910. #endif
  5911. #endif //TMC2130
  5912. }
  5913. break;
  5914. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5915. {
  5916. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5917. if(code_seen('S')) switch((int)code_value())
  5918. {
  5919. case 1:
  5920. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5921. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5922. break;
  5923. case 2:
  5924. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5925. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5926. break;
  5927. }
  5928. microstep_readings();
  5929. #endif
  5930. }
  5931. break;
  5932. case 701: //! M701 - load filament
  5933. {
  5934. if (mmu_enabled && code_seen('E'))
  5935. tmp_extruder = code_value();
  5936. gcode_M701();
  5937. }
  5938. break;
  5939. case 702: //! M702 [U C] -
  5940. {
  5941. if (mmu_enabled)
  5942. {
  5943. if (code_seen('U'))
  5944. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  5945. else if (code_seen('C'))
  5946. extr_unload(); //! if "C" unload just current filament
  5947. else
  5948. extr_unload_all(); //! otherwise unload all filaments
  5949. }
  5950. else
  5951. unload_filament();
  5952. }
  5953. break;
  5954. case 999: // M999: Restart after being stopped
  5955. Stopped = false;
  5956. lcd_reset_alert_level();
  5957. gcode_LastN = Stopped_gcode_LastN;
  5958. FlushSerialRequestResend();
  5959. break;
  5960. default:
  5961. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5962. }
  5963. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5964. mcode_in_progress = 0;
  5965. }
  5966. } // end if(code_seen('M')) (end of M codes)
  5967. //! T<extruder nr.> - select extruder in case of multi extruder printer
  5968. //! select filament in case of MMU_V2
  5969. //! if extruder is "?", open menu to let the user select extruder/filament
  5970. //!
  5971. //! For MMU_V2:
  5972. //! @n T<n> Gcode to extrude must follow immediately to load to extruder wheels
  5973. //! @n T? Gcode to extrude doesn't have to follow, load to extruder wheels is done automatically
  5974. else if(code_seen('T'))
  5975. {
  5976. int index;
  5977. st_synchronize();
  5978. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5979. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5980. SERIAL_ECHOLNPGM("Invalid T code.");
  5981. }
  5982. else {
  5983. if (*(strchr_pointer + index) == '?')
  5984. {
  5985. if(mmu_enabled)
  5986. {
  5987. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  5988. } else
  5989. {
  5990. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  5991. }
  5992. }
  5993. else {
  5994. tmp_extruder = code_value();
  5995. }
  5996. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5997. if (mmu_enabled)
  5998. {
  5999. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6000. manage_response(true, true);
  6001. mmu_command(MMU_CMD_C0);
  6002. mmu_extruder = tmp_extruder; //filament change is finished
  6003. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  6004. {
  6005. mmu_load_to_nozzle();
  6006. }
  6007. }
  6008. else
  6009. {
  6010. #ifdef SNMM
  6011. #ifdef LIN_ADVANCE
  6012. if (mmu_extruder != tmp_extruder)
  6013. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6014. #endif
  6015. mmu_extruder = tmp_extruder;
  6016. delay(100);
  6017. disable_e0();
  6018. disable_e1();
  6019. disable_e2();
  6020. pinMode(E_MUX0_PIN, OUTPUT);
  6021. pinMode(E_MUX1_PIN, OUTPUT);
  6022. delay(100);
  6023. SERIAL_ECHO_START;
  6024. SERIAL_ECHO("T:");
  6025. SERIAL_ECHOLN((int)tmp_extruder);
  6026. switch (tmp_extruder) {
  6027. case 1:
  6028. WRITE(E_MUX0_PIN, HIGH);
  6029. WRITE(E_MUX1_PIN, LOW);
  6030. break;
  6031. case 2:
  6032. WRITE(E_MUX0_PIN, LOW);
  6033. WRITE(E_MUX1_PIN, HIGH);
  6034. break;
  6035. case 3:
  6036. WRITE(E_MUX0_PIN, HIGH);
  6037. WRITE(E_MUX1_PIN, HIGH);
  6038. break;
  6039. default:
  6040. WRITE(E_MUX0_PIN, LOW);
  6041. WRITE(E_MUX1_PIN, LOW);
  6042. break;
  6043. }
  6044. delay(100);
  6045. #else //SNMM
  6046. if (tmp_extruder >= EXTRUDERS) {
  6047. SERIAL_ECHO_START;
  6048. SERIAL_ECHOPGM("T");
  6049. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6050. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6051. }
  6052. else {
  6053. #if EXTRUDERS > 1
  6054. boolean make_move = false;
  6055. #endif
  6056. if (code_seen('F')) {
  6057. #if EXTRUDERS > 1
  6058. make_move = true;
  6059. #endif
  6060. next_feedrate = code_value();
  6061. if (next_feedrate > 0.0) {
  6062. feedrate = next_feedrate;
  6063. }
  6064. }
  6065. #if EXTRUDERS > 1
  6066. if (tmp_extruder != active_extruder) {
  6067. // Save current position to return to after applying extruder offset
  6068. memcpy(destination, current_position, sizeof(destination));
  6069. // Offset extruder (only by XY)
  6070. int i;
  6071. for (i = 0; i < 2; i++) {
  6072. current_position[i] = current_position[i] -
  6073. extruder_offset[i][active_extruder] +
  6074. extruder_offset[i][tmp_extruder];
  6075. }
  6076. // Set the new active extruder and position
  6077. active_extruder = tmp_extruder;
  6078. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6079. // Move to the old position if 'F' was in the parameters
  6080. if (make_move && Stopped == false) {
  6081. prepare_move();
  6082. }
  6083. }
  6084. #endif
  6085. SERIAL_ECHO_START;
  6086. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6087. SERIAL_PROTOCOLLN((int)active_extruder);
  6088. }
  6089. #endif //SNMM
  6090. }
  6091. }
  6092. } // end if(code_seen('T')) (end of T codes)
  6093. else if (code_seen('D')) // D codes (debug)
  6094. {
  6095. switch((int)code_value())
  6096. {
  6097. #ifdef DEBUG_DCODES
  6098. case -1: //! D-1 - Endless loop
  6099. dcode__1(); break;
  6100. case 0: //! D0 - Reset
  6101. dcode_0(); break;
  6102. case 1: //! D1 - Clear EEPROM
  6103. dcode_1(); break;
  6104. case 2: //! D2 - Read/Write RAM
  6105. dcode_2(); break;
  6106. #endif //DEBUG_DCODES
  6107. #ifdef DEBUG_DCODE3
  6108. case 3: //! D3 - Read/Write EEPROM
  6109. dcode_3(); break;
  6110. #endif //DEBUG_DCODE3
  6111. #ifdef DEBUG_DCODES
  6112. case 4: //! D4 - Read/Write PIN
  6113. dcode_4(); break;
  6114. #endif //DEBUG_DCODES
  6115. #ifdef DEBUG_DCODE5
  6116. case 5: // D5 - Read/Write FLASH
  6117. dcode_5(); break;
  6118. break;
  6119. #endif //DEBUG_DCODE5
  6120. #ifdef DEBUG_DCODES
  6121. case 6: // D6 - Read/Write external FLASH
  6122. dcode_6(); break;
  6123. case 7: //! D7 - Read/Write Bootloader
  6124. dcode_7(); break;
  6125. case 8: //! D8 - Read/Write PINDA
  6126. dcode_8(); break;
  6127. case 9: //! D9 - Read/Write ADC
  6128. dcode_9(); break;
  6129. case 10: //! D10 - XYZ calibration = OK
  6130. dcode_10(); break;
  6131. #ifdef TMC2130
  6132. case 2130: //! D2130 - TMC2130
  6133. dcode_2130(); break;
  6134. #endif //TMC2130
  6135. #ifdef FILAMENT_SENSOR
  6136. case 9125: //! D9125 - FILAMENT_SENSOR
  6137. dcode_9125(); break;
  6138. #endif //FILAMENT_SENSOR
  6139. #endif //DEBUG_DCODES
  6140. }
  6141. }
  6142. else
  6143. {
  6144. SERIAL_ECHO_START;
  6145. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6146. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6147. SERIAL_ECHOLNPGM("\"(2)");
  6148. }
  6149. KEEPALIVE_STATE(NOT_BUSY);
  6150. ClearToSend();
  6151. }
  6152. void FlushSerialRequestResend()
  6153. {
  6154. //char cmdbuffer[bufindr][100]="Resend:";
  6155. MYSERIAL.flush();
  6156. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6157. }
  6158. // Confirm the execution of a command, if sent from a serial line.
  6159. // Execution of a command from a SD card will not be confirmed.
  6160. void ClearToSend()
  6161. {
  6162. previous_millis_cmd = millis();
  6163. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6164. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6165. }
  6166. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6167. void update_currents() {
  6168. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6169. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6170. float tmp_motor[3];
  6171. //SERIAL_ECHOLNPGM("Currents updated: ");
  6172. if (destination[Z_AXIS] < Z_SILENT) {
  6173. //SERIAL_ECHOLNPGM("LOW");
  6174. for (uint8_t i = 0; i < 3; i++) {
  6175. st_current_set(i, current_low[i]);
  6176. /*MYSERIAL.print(int(i));
  6177. SERIAL_ECHOPGM(": ");
  6178. MYSERIAL.println(current_low[i]);*/
  6179. }
  6180. }
  6181. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6182. //SERIAL_ECHOLNPGM("HIGH");
  6183. for (uint8_t i = 0; i < 3; i++) {
  6184. st_current_set(i, current_high[i]);
  6185. /*MYSERIAL.print(int(i));
  6186. SERIAL_ECHOPGM(": ");
  6187. MYSERIAL.println(current_high[i]);*/
  6188. }
  6189. }
  6190. else {
  6191. for (uint8_t i = 0; i < 3; i++) {
  6192. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6193. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6194. st_current_set(i, tmp_motor[i]);
  6195. /*MYSERIAL.print(int(i));
  6196. SERIAL_ECHOPGM(": ");
  6197. MYSERIAL.println(tmp_motor[i]);*/
  6198. }
  6199. }
  6200. }
  6201. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6202. void get_coordinates()
  6203. {
  6204. bool seen[4]={false,false,false,false};
  6205. for(int8_t i=0; i < NUM_AXIS; i++) {
  6206. if(code_seen(axis_codes[i]))
  6207. {
  6208. bool relative = axis_relative_modes[i] || relative_mode;
  6209. destination[i] = (float)code_value();
  6210. if (i == E_AXIS) {
  6211. float emult = extruder_multiplier[active_extruder];
  6212. if (emult != 1.) {
  6213. if (! relative) {
  6214. destination[i] -= current_position[i];
  6215. relative = true;
  6216. }
  6217. destination[i] *= emult;
  6218. }
  6219. }
  6220. if (relative)
  6221. destination[i] += current_position[i];
  6222. seen[i]=true;
  6223. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6224. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6225. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6226. }
  6227. else destination[i] = current_position[i]; //Are these else lines really needed?
  6228. }
  6229. if(code_seen('F')) {
  6230. next_feedrate = code_value();
  6231. #ifdef MAX_SILENT_FEEDRATE
  6232. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6233. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6234. #endif //MAX_SILENT_FEEDRATE
  6235. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6236. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6237. {
  6238. // float e_max_speed =
  6239. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6240. }
  6241. }
  6242. }
  6243. void get_arc_coordinates()
  6244. {
  6245. #ifdef SF_ARC_FIX
  6246. bool relative_mode_backup = relative_mode;
  6247. relative_mode = true;
  6248. #endif
  6249. get_coordinates();
  6250. #ifdef SF_ARC_FIX
  6251. relative_mode=relative_mode_backup;
  6252. #endif
  6253. if(code_seen('I')) {
  6254. offset[0] = code_value();
  6255. }
  6256. else {
  6257. offset[0] = 0.0;
  6258. }
  6259. if(code_seen('J')) {
  6260. offset[1] = code_value();
  6261. }
  6262. else {
  6263. offset[1] = 0.0;
  6264. }
  6265. }
  6266. void clamp_to_software_endstops(float target[3])
  6267. {
  6268. #ifdef DEBUG_DISABLE_SWLIMITS
  6269. return;
  6270. #endif //DEBUG_DISABLE_SWLIMITS
  6271. world2machine_clamp(target[0], target[1]);
  6272. // Clamp the Z coordinate.
  6273. if (min_software_endstops) {
  6274. float negative_z_offset = 0;
  6275. #ifdef ENABLE_AUTO_BED_LEVELING
  6276. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6277. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6278. #endif
  6279. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6280. }
  6281. if (max_software_endstops) {
  6282. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6283. }
  6284. }
  6285. #ifdef MESH_BED_LEVELING
  6286. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6287. float dx = x - current_position[X_AXIS];
  6288. float dy = y - current_position[Y_AXIS];
  6289. float dz = z - current_position[Z_AXIS];
  6290. int n_segments = 0;
  6291. if (mbl.active) {
  6292. float len = abs(dx) + abs(dy);
  6293. if (len > 0)
  6294. // Split to 3cm segments or shorter.
  6295. n_segments = int(ceil(len / 30.f));
  6296. }
  6297. if (n_segments > 1) {
  6298. float de = e - current_position[E_AXIS];
  6299. for (int i = 1; i < n_segments; ++ i) {
  6300. float t = float(i) / float(n_segments);
  6301. if (saved_printing || (mbl.active == false)) return;
  6302. plan_buffer_line(
  6303. current_position[X_AXIS] + t * dx,
  6304. current_position[Y_AXIS] + t * dy,
  6305. current_position[Z_AXIS] + t * dz,
  6306. current_position[E_AXIS] + t * de,
  6307. feed_rate, extruder);
  6308. }
  6309. }
  6310. // The rest of the path.
  6311. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6312. current_position[X_AXIS] = x;
  6313. current_position[Y_AXIS] = y;
  6314. current_position[Z_AXIS] = z;
  6315. current_position[E_AXIS] = e;
  6316. }
  6317. #endif // MESH_BED_LEVELING
  6318. void prepare_move()
  6319. {
  6320. clamp_to_software_endstops(destination);
  6321. previous_millis_cmd = millis();
  6322. // Do not use feedmultiply for E or Z only moves
  6323. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6324. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6325. }
  6326. else {
  6327. #ifdef MESH_BED_LEVELING
  6328. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6329. #else
  6330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6331. #endif
  6332. }
  6333. for(int8_t i=0; i < NUM_AXIS; i++) {
  6334. current_position[i] = destination[i];
  6335. }
  6336. }
  6337. void prepare_arc_move(char isclockwise) {
  6338. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6339. // Trace the arc
  6340. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6341. // As far as the parser is concerned, the position is now == target. In reality the
  6342. // motion control system might still be processing the action and the real tool position
  6343. // in any intermediate location.
  6344. for(int8_t i=0; i < NUM_AXIS; i++) {
  6345. current_position[i] = destination[i];
  6346. }
  6347. previous_millis_cmd = millis();
  6348. }
  6349. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6350. #if defined(FAN_PIN)
  6351. #if CONTROLLERFAN_PIN == FAN_PIN
  6352. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6353. #endif
  6354. #endif
  6355. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6356. unsigned long lastMotorCheck = 0;
  6357. void controllerFan()
  6358. {
  6359. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6360. {
  6361. lastMotorCheck = millis();
  6362. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6363. #if EXTRUDERS > 2
  6364. || !READ(E2_ENABLE_PIN)
  6365. #endif
  6366. #if EXTRUDER > 1
  6367. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6368. || !READ(X2_ENABLE_PIN)
  6369. #endif
  6370. || !READ(E1_ENABLE_PIN)
  6371. #endif
  6372. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6373. {
  6374. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6375. }
  6376. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6377. {
  6378. digitalWrite(CONTROLLERFAN_PIN, 0);
  6379. analogWrite(CONTROLLERFAN_PIN, 0);
  6380. }
  6381. else
  6382. {
  6383. // allows digital or PWM fan output to be used (see M42 handling)
  6384. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6385. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6386. }
  6387. }
  6388. }
  6389. #endif
  6390. #ifdef TEMP_STAT_LEDS
  6391. static bool blue_led = false;
  6392. static bool red_led = false;
  6393. static uint32_t stat_update = 0;
  6394. void handle_status_leds(void) {
  6395. float max_temp = 0.0;
  6396. if(millis() > stat_update) {
  6397. stat_update += 500; // Update every 0.5s
  6398. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6399. max_temp = max(max_temp, degHotend(cur_extruder));
  6400. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6401. }
  6402. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6403. max_temp = max(max_temp, degTargetBed());
  6404. max_temp = max(max_temp, degBed());
  6405. #endif
  6406. if((max_temp > 55.0) && (red_led == false)) {
  6407. digitalWrite(STAT_LED_RED, 1);
  6408. digitalWrite(STAT_LED_BLUE, 0);
  6409. red_led = true;
  6410. blue_led = false;
  6411. }
  6412. if((max_temp < 54.0) && (blue_led == false)) {
  6413. digitalWrite(STAT_LED_RED, 0);
  6414. digitalWrite(STAT_LED_BLUE, 1);
  6415. red_led = false;
  6416. blue_led = true;
  6417. }
  6418. }
  6419. }
  6420. #endif
  6421. #ifdef SAFETYTIMER
  6422. /**
  6423. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6424. *
  6425. * Full screen blocking notification message is shown after heater turning off.
  6426. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6427. * damage print.
  6428. *
  6429. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6430. */
  6431. static void handleSafetyTimer()
  6432. {
  6433. #if (EXTRUDERS > 1)
  6434. #error Implemented only for one extruder.
  6435. #endif //(EXTRUDERS > 1)
  6436. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6437. {
  6438. safetyTimer.stop();
  6439. }
  6440. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6441. {
  6442. safetyTimer.start();
  6443. }
  6444. else if (safetyTimer.expired(safetytimer_inactive_time))
  6445. {
  6446. setTargetBed(0);
  6447. setAllTargetHotends(0);
  6448. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6449. }
  6450. }
  6451. #endif //SAFETYTIMER
  6452. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6453. {
  6454. #ifdef FILAMENT_SENSOR
  6455. if (mmu_enabled == false)
  6456. {
  6457. if (mcode_in_progress != 600) //M600 not in progress
  6458. {
  6459. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6460. {
  6461. if (fsensor_check_autoload())
  6462. {
  6463. fsensor_autoload_check_stop();
  6464. if (degHotend0() > EXTRUDE_MINTEMP)
  6465. {
  6466. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6467. tone(BEEPER, 1000);
  6468. delay_keep_alive(50);
  6469. noTone(BEEPER);
  6470. loading_flag = true;
  6471. enquecommand_front_P((PSTR("M701")));
  6472. }
  6473. else
  6474. {
  6475. lcd_update_enable(false);
  6476. lcd_clear();
  6477. lcd_set_cursor(0, 0);
  6478. lcd_puts_P(_T(MSG_ERROR));
  6479. lcd_set_cursor(0, 2);
  6480. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6481. delay(2000);
  6482. lcd_clear();
  6483. lcd_update_enable(true);
  6484. }
  6485. }
  6486. }
  6487. else
  6488. {
  6489. fsensor_autoload_check_stop();
  6490. fsensor_update();
  6491. }
  6492. }
  6493. }
  6494. #endif //FILAMENT_SENSOR
  6495. #ifdef SAFETYTIMER
  6496. handleSafetyTimer();
  6497. #endif //SAFETYTIMER
  6498. #if defined(KILL_PIN) && KILL_PIN > -1
  6499. static int killCount = 0; // make the inactivity button a bit less responsive
  6500. const int KILL_DELAY = 10000;
  6501. #endif
  6502. if(buflen < (BUFSIZE-1)){
  6503. get_command();
  6504. }
  6505. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6506. if(max_inactive_time)
  6507. kill(_n(""), 4);
  6508. if(stepper_inactive_time) {
  6509. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6510. {
  6511. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6512. disable_x();
  6513. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6514. disable_y();
  6515. disable_z();
  6516. disable_e0();
  6517. disable_e1();
  6518. disable_e2();
  6519. }
  6520. }
  6521. }
  6522. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6523. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6524. {
  6525. chdkActive = false;
  6526. WRITE(CHDK, LOW);
  6527. }
  6528. #endif
  6529. #if defined(KILL_PIN) && KILL_PIN > -1
  6530. // Check if the kill button was pressed and wait just in case it was an accidental
  6531. // key kill key press
  6532. // -------------------------------------------------------------------------------
  6533. if( 0 == READ(KILL_PIN) )
  6534. {
  6535. killCount++;
  6536. }
  6537. else if (killCount > 0)
  6538. {
  6539. killCount--;
  6540. }
  6541. // Exceeded threshold and we can confirm that it was not accidental
  6542. // KILL the machine
  6543. // ----------------------------------------------------------------
  6544. if ( killCount >= KILL_DELAY)
  6545. {
  6546. kill("", 5);
  6547. }
  6548. #endif
  6549. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6550. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6551. #endif
  6552. #ifdef EXTRUDER_RUNOUT_PREVENT
  6553. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6554. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6555. {
  6556. bool oldstatus=READ(E0_ENABLE_PIN);
  6557. enable_e0();
  6558. float oldepos=current_position[E_AXIS];
  6559. float oldedes=destination[E_AXIS];
  6560. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6561. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6562. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6563. current_position[E_AXIS]=oldepos;
  6564. destination[E_AXIS]=oldedes;
  6565. plan_set_e_position(oldepos);
  6566. previous_millis_cmd=millis();
  6567. st_synchronize();
  6568. WRITE(E0_ENABLE_PIN,oldstatus);
  6569. }
  6570. #endif
  6571. #ifdef TEMP_STAT_LEDS
  6572. handle_status_leds();
  6573. #endif
  6574. check_axes_activity();
  6575. mmu_loop();
  6576. }
  6577. void kill(const char *full_screen_message, unsigned char id)
  6578. {
  6579. printf_P(_N("KILL: %d\n"), id);
  6580. //return;
  6581. cli(); // Stop interrupts
  6582. disable_heater();
  6583. disable_x();
  6584. // SERIAL_ECHOLNPGM("kill - disable Y");
  6585. disable_y();
  6586. disable_z();
  6587. disable_e0();
  6588. disable_e1();
  6589. disable_e2();
  6590. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6591. pinMode(PS_ON_PIN,INPUT);
  6592. #endif
  6593. SERIAL_ERROR_START;
  6594. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6595. if (full_screen_message != NULL) {
  6596. SERIAL_ERRORLNRPGM(full_screen_message);
  6597. lcd_display_message_fullscreen_P(full_screen_message);
  6598. } else {
  6599. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6600. }
  6601. // FMC small patch to update the LCD before ending
  6602. sei(); // enable interrupts
  6603. for ( int i=5; i--; lcd_update(0))
  6604. {
  6605. delay(200);
  6606. }
  6607. cli(); // disable interrupts
  6608. suicide();
  6609. while(1)
  6610. {
  6611. #ifdef WATCHDOG
  6612. wdt_reset();
  6613. #endif //WATCHDOG
  6614. /* Intentionally left empty */
  6615. } // Wait for reset
  6616. }
  6617. void Stop()
  6618. {
  6619. disable_heater();
  6620. if(Stopped == false) {
  6621. Stopped = true;
  6622. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6623. SERIAL_ERROR_START;
  6624. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6625. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6626. }
  6627. }
  6628. bool IsStopped() { return Stopped; };
  6629. #ifdef FAST_PWM_FAN
  6630. void setPwmFrequency(uint8_t pin, int val)
  6631. {
  6632. val &= 0x07;
  6633. switch(digitalPinToTimer(pin))
  6634. {
  6635. #if defined(TCCR0A)
  6636. case TIMER0A:
  6637. case TIMER0B:
  6638. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6639. // TCCR0B |= val;
  6640. break;
  6641. #endif
  6642. #if defined(TCCR1A)
  6643. case TIMER1A:
  6644. case TIMER1B:
  6645. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6646. // TCCR1B |= val;
  6647. break;
  6648. #endif
  6649. #if defined(TCCR2)
  6650. case TIMER2:
  6651. case TIMER2:
  6652. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6653. TCCR2 |= val;
  6654. break;
  6655. #endif
  6656. #if defined(TCCR2A)
  6657. case TIMER2A:
  6658. case TIMER2B:
  6659. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6660. TCCR2B |= val;
  6661. break;
  6662. #endif
  6663. #if defined(TCCR3A)
  6664. case TIMER3A:
  6665. case TIMER3B:
  6666. case TIMER3C:
  6667. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6668. TCCR3B |= val;
  6669. break;
  6670. #endif
  6671. #if defined(TCCR4A)
  6672. case TIMER4A:
  6673. case TIMER4B:
  6674. case TIMER4C:
  6675. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6676. TCCR4B |= val;
  6677. break;
  6678. #endif
  6679. #if defined(TCCR5A)
  6680. case TIMER5A:
  6681. case TIMER5B:
  6682. case TIMER5C:
  6683. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6684. TCCR5B |= val;
  6685. break;
  6686. #endif
  6687. }
  6688. }
  6689. #endif //FAST_PWM_FAN
  6690. //! @brief Get and validate extruder number
  6691. //!
  6692. //! If it is not specified, active_extruder is returned in parameter extruder.
  6693. //! @param [in] code M code number
  6694. //! @param [out] extruder
  6695. //! @return error
  6696. //! @retval true Invalid extruder specified in T code
  6697. //! @retval false Valid extruder specified in T code, or not specifiead
  6698. bool setTargetedHotend(int code, uint8_t &extruder)
  6699. {
  6700. extruder = active_extruder;
  6701. if(code_seen('T')) {
  6702. extruder = code_value();
  6703. if(extruder >= EXTRUDERS) {
  6704. SERIAL_ECHO_START;
  6705. switch(code){
  6706. case 104:
  6707. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6708. break;
  6709. case 105:
  6710. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6711. break;
  6712. case 109:
  6713. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6714. break;
  6715. case 218:
  6716. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6717. break;
  6718. case 221:
  6719. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6720. break;
  6721. }
  6722. SERIAL_PROTOCOLLN((int)extruder);
  6723. return true;
  6724. }
  6725. }
  6726. return false;
  6727. }
  6728. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6729. {
  6730. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6731. {
  6732. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6733. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6734. }
  6735. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6736. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6737. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6738. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6739. total_filament_used = 0;
  6740. }
  6741. float calculate_extruder_multiplier(float diameter) {
  6742. float out = 1.f;
  6743. if (cs.volumetric_enabled && diameter > 0.f) {
  6744. float area = M_PI * diameter * diameter * 0.25;
  6745. out = 1.f / area;
  6746. }
  6747. if (extrudemultiply != 100)
  6748. out *= float(extrudemultiply) * 0.01f;
  6749. return out;
  6750. }
  6751. void calculate_extruder_multipliers() {
  6752. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6753. #if EXTRUDERS > 1
  6754. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6755. #if EXTRUDERS > 2
  6756. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6757. #endif
  6758. #endif
  6759. }
  6760. void delay_keep_alive(unsigned int ms)
  6761. {
  6762. for (;;) {
  6763. manage_heater();
  6764. // Manage inactivity, but don't disable steppers on timeout.
  6765. manage_inactivity(true);
  6766. lcd_update(0);
  6767. if (ms == 0)
  6768. break;
  6769. else if (ms >= 50) {
  6770. delay(50);
  6771. ms -= 50;
  6772. } else {
  6773. delay(ms);
  6774. ms = 0;
  6775. }
  6776. }
  6777. }
  6778. static void wait_for_heater(long codenum, uint8_t extruder) {
  6779. #ifdef TEMP_RESIDENCY_TIME
  6780. long residencyStart;
  6781. residencyStart = -1;
  6782. /* continue to loop until we have reached the target temp
  6783. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6784. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6785. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6786. #else
  6787. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6788. #endif //TEMP_RESIDENCY_TIME
  6789. if ((millis() - codenum) > 1000UL)
  6790. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6791. if (!farm_mode) {
  6792. SERIAL_PROTOCOLPGM("T:");
  6793. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6794. SERIAL_PROTOCOLPGM(" E:");
  6795. SERIAL_PROTOCOL((int)extruder);
  6796. #ifdef TEMP_RESIDENCY_TIME
  6797. SERIAL_PROTOCOLPGM(" W:");
  6798. if (residencyStart > -1)
  6799. {
  6800. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6801. SERIAL_PROTOCOLLN(codenum);
  6802. }
  6803. else
  6804. {
  6805. SERIAL_PROTOCOLLN("?");
  6806. }
  6807. }
  6808. #else
  6809. SERIAL_PROTOCOLLN("");
  6810. #endif
  6811. codenum = millis();
  6812. }
  6813. manage_heater();
  6814. manage_inactivity();
  6815. lcd_update(0);
  6816. #ifdef TEMP_RESIDENCY_TIME
  6817. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6818. or when current temp falls outside the hysteresis after target temp was reached */
  6819. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6820. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6821. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6822. {
  6823. residencyStart = millis();
  6824. }
  6825. #endif //TEMP_RESIDENCY_TIME
  6826. }
  6827. }
  6828. void check_babystep()
  6829. {
  6830. int babystep_z;
  6831. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6832. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6833. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6834. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6835. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6836. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6837. lcd_update_enable(true);
  6838. }
  6839. }
  6840. #ifdef DIS
  6841. void d_setup()
  6842. {
  6843. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6844. pinMode(D_DATA, INPUT_PULLUP);
  6845. pinMode(D_REQUIRE, OUTPUT);
  6846. digitalWrite(D_REQUIRE, HIGH);
  6847. }
  6848. float d_ReadData()
  6849. {
  6850. int digit[13];
  6851. String mergeOutput;
  6852. float output;
  6853. digitalWrite(D_REQUIRE, HIGH);
  6854. for (int i = 0; i<13; i++)
  6855. {
  6856. for (int j = 0; j < 4; j++)
  6857. {
  6858. while (digitalRead(D_DATACLOCK) == LOW) {}
  6859. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6860. bitWrite(digit[i], j, digitalRead(D_DATA));
  6861. }
  6862. }
  6863. digitalWrite(D_REQUIRE, LOW);
  6864. mergeOutput = "";
  6865. output = 0;
  6866. for (int r = 5; r <= 10; r++) //Merge digits
  6867. {
  6868. mergeOutput += digit[r];
  6869. }
  6870. output = mergeOutput.toFloat();
  6871. if (digit[4] == 8) //Handle sign
  6872. {
  6873. output *= -1;
  6874. }
  6875. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6876. {
  6877. output /= 10;
  6878. }
  6879. return output;
  6880. }
  6881. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6882. int t1 = 0;
  6883. int t_delay = 0;
  6884. int digit[13];
  6885. int m;
  6886. char str[3];
  6887. //String mergeOutput;
  6888. char mergeOutput[15];
  6889. float output;
  6890. int mesh_point = 0; //index number of calibration point
  6891. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6892. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6893. float mesh_home_z_search = 4;
  6894. float row[x_points_num];
  6895. int ix = 0;
  6896. int iy = 0;
  6897. const char* filename_wldsd = "wldsd.txt";
  6898. char data_wldsd[70];
  6899. char numb_wldsd[10];
  6900. d_setup();
  6901. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6902. // We don't know where we are! HOME!
  6903. // Push the commands to the front of the message queue in the reverse order!
  6904. // There shall be always enough space reserved for these commands.
  6905. repeatcommand_front(); // repeat G80 with all its parameters
  6906. enquecommand_front_P((PSTR("G28 W0")));
  6907. enquecommand_front_P((PSTR("G1 Z5")));
  6908. return;
  6909. }
  6910. unsigned int custom_message_type_old = custom_message_type;
  6911. unsigned int custom_message_state_old = custom_message_state;
  6912. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6913. custom_message_state = (x_points_num * y_points_num) + 10;
  6914. lcd_update(1);
  6915. mbl.reset();
  6916. babystep_undo();
  6917. card.openFile(filename_wldsd, false);
  6918. current_position[Z_AXIS] = mesh_home_z_search;
  6919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6920. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6921. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6922. int l_feedmultiply = setup_for_endstop_move(false);
  6923. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6924. SERIAL_PROTOCOL(x_points_num);
  6925. SERIAL_PROTOCOLPGM(",");
  6926. SERIAL_PROTOCOL(y_points_num);
  6927. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6928. SERIAL_PROTOCOL(mesh_home_z_search);
  6929. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6930. SERIAL_PROTOCOL(x_dimension);
  6931. SERIAL_PROTOCOLPGM(",");
  6932. SERIAL_PROTOCOL(y_dimension);
  6933. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6934. while (mesh_point != x_points_num * y_points_num) {
  6935. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6936. iy = mesh_point / x_points_num;
  6937. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6938. float z0 = 0.f;
  6939. current_position[Z_AXIS] = mesh_home_z_search;
  6940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6941. st_synchronize();
  6942. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6943. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6945. st_synchronize();
  6946. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6947. break;
  6948. card.closefile();
  6949. }
  6950. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6951. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6952. //strcat(data_wldsd, numb_wldsd);
  6953. //MYSERIAL.println(data_wldsd);
  6954. //delay(1000);
  6955. //delay(3000);
  6956. //t1 = millis();
  6957. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6958. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6959. memset(digit, 0, sizeof(digit));
  6960. //cli();
  6961. digitalWrite(D_REQUIRE, LOW);
  6962. for (int i = 0; i<13; i++)
  6963. {
  6964. //t1 = millis();
  6965. for (int j = 0; j < 4; j++)
  6966. {
  6967. while (digitalRead(D_DATACLOCK) == LOW) {}
  6968. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6969. bitWrite(digit[i], j, digitalRead(D_DATA));
  6970. }
  6971. //t_delay = (millis() - t1);
  6972. //SERIAL_PROTOCOLPGM(" ");
  6973. //SERIAL_PROTOCOL_F(t_delay, 5);
  6974. //SERIAL_PROTOCOLPGM(" ");
  6975. }
  6976. //sei();
  6977. digitalWrite(D_REQUIRE, HIGH);
  6978. mergeOutput[0] = '\0';
  6979. output = 0;
  6980. for (int r = 5; r <= 10; r++) //Merge digits
  6981. {
  6982. sprintf(str, "%d", digit[r]);
  6983. strcat(mergeOutput, str);
  6984. }
  6985. output = atof(mergeOutput);
  6986. if (digit[4] == 8) //Handle sign
  6987. {
  6988. output *= -1;
  6989. }
  6990. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6991. {
  6992. output *= 0.1;
  6993. }
  6994. //output = d_ReadData();
  6995. //row[ix] = current_position[Z_AXIS];
  6996. memset(data_wldsd, 0, sizeof(data_wldsd));
  6997. for (int i = 0; i <3; i++) {
  6998. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6999. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7000. strcat(data_wldsd, numb_wldsd);
  7001. strcat(data_wldsd, ";");
  7002. }
  7003. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7004. dtostrf(output, 8, 5, numb_wldsd);
  7005. strcat(data_wldsd, numb_wldsd);
  7006. //strcat(data_wldsd, ";");
  7007. card.write_command(data_wldsd);
  7008. //row[ix] = d_ReadData();
  7009. row[ix] = output; // current_position[Z_AXIS];
  7010. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7011. for (int i = 0; i < x_points_num; i++) {
  7012. SERIAL_PROTOCOLPGM(" ");
  7013. SERIAL_PROTOCOL_F(row[i], 5);
  7014. }
  7015. SERIAL_PROTOCOLPGM("\n");
  7016. }
  7017. custom_message_state--;
  7018. mesh_point++;
  7019. lcd_update(1);
  7020. }
  7021. card.closefile();
  7022. clean_up_after_endstop_move(l_feedmultiply);
  7023. }
  7024. #endif
  7025. void temp_compensation_start() {
  7026. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7027. custom_message_state = PINDA_HEAT_T + 1;
  7028. lcd_update(2);
  7029. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7030. current_position[E_AXIS] -= default_retraction;
  7031. }
  7032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7033. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7034. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7035. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7037. st_synchronize();
  7038. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7039. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7040. delay_keep_alive(1000);
  7041. custom_message_state = PINDA_HEAT_T - i;
  7042. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7043. else lcd_update(1);
  7044. }
  7045. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7046. custom_message_state = 0;
  7047. }
  7048. void temp_compensation_apply() {
  7049. int i_add;
  7050. int z_shift = 0;
  7051. float z_shift_mm;
  7052. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7053. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7054. i_add = (target_temperature_bed - 60) / 10;
  7055. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7056. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7057. }else {
  7058. //interpolation
  7059. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7060. }
  7061. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7063. st_synchronize();
  7064. plan_set_z_position(current_position[Z_AXIS]);
  7065. }
  7066. else {
  7067. //we have no temp compensation data
  7068. }
  7069. }
  7070. float temp_comp_interpolation(float inp_temperature) {
  7071. //cubic spline interpolation
  7072. int n, i, j;
  7073. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7074. int shift[10];
  7075. int temp_C[10];
  7076. n = 6; //number of measured points
  7077. shift[0] = 0;
  7078. for (i = 0; i < n; i++) {
  7079. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7080. temp_C[i] = 50 + i * 10; //temperature in C
  7081. #ifdef PINDA_THERMISTOR
  7082. temp_C[i] = 35 + i * 5; //temperature in C
  7083. #else
  7084. temp_C[i] = 50 + i * 10; //temperature in C
  7085. #endif
  7086. x[i] = (float)temp_C[i];
  7087. f[i] = (float)shift[i];
  7088. }
  7089. if (inp_temperature < x[0]) return 0;
  7090. for (i = n - 1; i>0; i--) {
  7091. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7092. h[i - 1] = x[i] - x[i - 1];
  7093. }
  7094. //*********** formation of h, s , f matrix **************
  7095. for (i = 1; i<n - 1; i++) {
  7096. m[i][i] = 2 * (h[i - 1] + h[i]);
  7097. if (i != 1) {
  7098. m[i][i - 1] = h[i - 1];
  7099. m[i - 1][i] = h[i - 1];
  7100. }
  7101. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7102. }
  7103. //*********** forward elimination **************
  7104. for (i = 1; i<n - 2; i++) {
  7105. temp = (m[i + 1][i] / m[i][i]);
  7106. for (j = 1; j <= n - 1; j++)
  7107. m[i + 1][j] -= temp*m[i][j];
  7108. }
  7109. //*********** backward substitution *********
  7110. for (i = n - 2; i>0; i--) {
  7111. sum = 0;
  7112. for (j = i; j <= n - 2; j++)
  7113. sum += m[i][j] * s[j];
  7114. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7115. }
  7116. for (i = 0; i<n - 1; i++)
  7117. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7118. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7119. b = s[i] / 2;
  7120. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7121. d = f[i];
  7122. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7123. }
  7124. return sum;
  7125. }
  7126. #ifdef PINDA_THERMISTOR
  7127. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7128. {
  7129. if (!temp_cal_active) return 0;
  7130. if (!calibration_status_pinda()) return 0;
  7131. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7132. }
  7133. #endif //PINDA_THERMISTOR
  7134. void long_pause() //long pause print
  7135. {
  7136. st_synchronize();
  7137. start_pause_print = millis();
  7138. //retract
  7139. current_position[E_AXIS] -= default_retraction;
  7140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7141. //lift z
  7142. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7143. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7145. //Move XY to side
  7146. current_position[X_AXIS] = X_PAUSE_POS;
  7147. current_position[Y_AXIS] = Y_PAUSE_POS;
  7148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7149. // Turn off the print fan
  7150. fanSpeed = 0;
  7151. st_synchronize();
  7152. }
  7153. void serialecho_temperatures() {
  7154. float tt = degHotend(active_extruder);
  7155. SERIAL_PROTOCOLPGM("T:");
  7156. SERIAL_PROTOCOL(tt);
  7157. SERIAL_PROTOCOLPGM(" E:");
  7158. SERIAL_PROTOCOL((int)active_extruder);
  7159. SERIAL_PROTOCOLPGM(" B:");
  7160. SERIAL_PROTOCOL_F(degBed(), 1);
  7161. SERIAL_PROTOCOLLN("");
  7162. }
  7163. extern uint32_t sdpos_atomic;
  7164. #ifdef UVLO_SUPPORT
  7165. void uvlo_()
  7166. {
  7167. unsigned long time_start = millis();
  7168. bool sd_print = card.sdprinting;
  7169. // Conserve power as soon as possible.
  7170. disable_x();
  7171. disable_y();
  7172. #ifdef TMC2130
  7173. tmc2130_set_current_h(Z_AXIS, 20);
  7174. tmc2130_set_current_r(Z_AXIS, 20);
  7175. tmc2130_set_current_h(E_AXIS, 20);
  7176. tmc2130_set_current_r(E_AXIS, 20);
  7177. #endif //TMC2130
  7178. // Indicate that the interrupt has been triggered.
  7179. // SERIAL_ECHOLNPGM("UVLO");
  7180. // Read out the current Z motor microstep counter. This will be later used
  7181. // for reaching the zero full step before powering off.
  7182. uint16_t z_microsteps = 0;
  7183. #ifdef TMC2130
  7184. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7185. #endif //TMC2130
  7186. // Calculate the file position, from which to resume this print.
  7187. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7188. {
  7189. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7190. sd_position -= sdlen_planner;
  7191. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7192. sd_position -= sdlen_cmdqueue;
  7193. if (sd_position < 0) sd_position = 0;
  7194. }
  7195. // Backup the feedrate in mm/min.
  7196. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7197. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7198. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7199. // are in action.
  7200. planner_abort_hard();
  7201. // Store the current extruder position.
  7202. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7203. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7204. // Clean the input command queue.
  7205. cmdqueue_reset();
  7206. card.sdprinting = false;
  7207. // card.closefile();
  7208. // Enable stepper driver interrupt to move Z axis.
  7209. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7210. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7211. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7212. sei();
  7213. plan_buffer_line(
  7214. current_position[X_AXIS],
  7215. current_position[Y_AXIS],
  7216. current_position[Z_AXIS],
  7217. current_position[E_AXIS] - default_retraction,
  7218. 95, active_extruder);
  7219. st_synchronize();
  7220. disable_e0();
  7221. plan_buffer_line(
  7222. current_position[X_AXIS],
  7223. current_position[Y_AXIS],
  7224. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7225. current_position[E_AXIS] - default_retraction,
  7226. 40, active_extruder);
  7227. st_synchronize();
  7228. disable_e0();
  7229. plan_buffer_line(
  7230. current_position[X_AXIS],
  7231. current_position[Y_AXIS],
  7232. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7233. current_position[E_AXIS] - default_retraction,
  7234. 40, active_extruder);
  7235. st_synchronize();
  7236. disable_e0();
  7237. disable_z();
  7238. // Move Z up to the next 0th full step.
  7239. // Write the file position.
  7240. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7241. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7242. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7243. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7244. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7245. // Scale the z value to 1u resolution.
  7246. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7247. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7248. }
  7249. // Read out the current Z motor microstep counter. This will be later used
  7250. // for reaching the zero full step before powering off.
  7251. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7252. // Store the current position.
  7253. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7254. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7255. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7256. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7257. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7258. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7259. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7260. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7261. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7262. #if EXTRUDERS > 1
  7263. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7264. #if EXTRUDERS > 2
  7265. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7266. #endif
  7267. #endif
  7268. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7269. // Finaly store the "power outage" flag.
  7270. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7271. st_synchronize();
  7272. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7273. disable_z();
  7274. // Increment power failure counter
  7275. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7276. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7277. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7278. #if 0
  7279. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7280. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7281. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7282. st_synchronize();
  7283. #endif
  7284. wdt_enable(WDTO_500MS);
  7285. WRITE(BEEPER,HIGH);
  7286. while(1)
  7287. ;
  7288. }
  7289. void uvlo_tiny()
  7290. {
  7291. uint16_t z_microsteps=0;
  7292. // Conserve power as soon as possible.
  7293. disable_x();
  7294. disable_y();
  7295. disable_e0();
  7296. #ifdef TMC2130
  7297. tmc2130_set_current_h(Z_AXIS, 20);
  7298. tmc2130_set_current_r(Z_AXIS, 20);
  7299. #endif //TMC2130
  7300. // Read out the current Z motor microstep counter
  7301. #ifdef TMC2130
  7302. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7303. #endif //TMC2130
  7304. planner_abort_hard();
  7305. sei();
  7306. plan_buffer_line(
  7307. current_position[X_AXIS],
  7308. current_position[Y_AXIS],
  7309. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7310. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7311. current_position[E_AXIS],
  7312. 40, active_extruder);
  7313. st_synchronize();
  7314. disable_z();
  7315. // Finaly store the "power outage" flag.
  7316. //if(sd_print)
  7317. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7318. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7319. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7320. // Increment power failure counter
  7321. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7322. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7323. wdt_enable(WDTO_500MS);
  7324. WRITE(BEEPER,HIGH);
  7325. while(1)
  7326. ;
  7327. }
  7328. #endif //UVLO_SUPPORT
  7329. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7330. void setup_fan_interrupt() {
  7331. //INT7
  7332. DDRE &= ~(1 << 7); //input pin
  7333. PORTE &= ~(1 << 7); //no internal pull-up
  7334. //start with sensing rising edge
  7335. EICRB &= ~(1 << 6);
  7336. EICRB |= (1 << 7);
  7337. //enable INT7 interrupt
  7338. EIMSK |= (1 << 7);
  7339. }
  7340. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7341. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7342. ISR(INT7_vect) {
  7343. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7344. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7345. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7346. t_fan_rising_edge = millis_nc();
  7347. }
  7348. else { //interrupt was triggered by falling edge
  7349. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7350. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7351. }
  7352. }
  7353. EICRB ^= (1 << 6); //change edge
  7354. }
  7355. #endif
  7356. #ifdef UVLO_SUPPORT
  7357. void setup_uvlo_interrupt() {
  7358. DDRE &= ~(1 << 4); //input pin
  7359. PORTE &= ~(1 << 4); //no internal pull-up
  7360. //sensing falling edge
  7361. EICRB |= (1 << 0);
  7362. EICRB &= ~(1 << 1);
  7363. //enable INT4 interrupt
  7364. EIMSK |= (1 << 4);
  7365. }
  7366. ISR(INT4_vect) {
  7367. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7368. SERIAL_ECHOLNPGM("INT4");
  7369. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7370. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7371. }
  7372. void recover_print(uint8_t automatic) {
  7373. char cmd[30];
  7374. lcd_update_enable(true);
  7375. lcd_update(2);
  7376. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7377. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7378. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7379. // Lift the print head, so one may remove the excess priming material.
  7380. if(!bTiny&&(current_position[Z_AXIS]<25))
  7381. enquecommand_P(PSTR("G1 Z25 F800"));
  7382. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7383. enquecommand_P(PSTR("G28 X Y"));
  7384. // Set the target bed and nozzle temperatures and wait.
  7385. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7386. enquecommand(cmd);
  7387. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7388. enquecommand(cmd);
  7389. enquecommand_P(PSTR("M83")); //E axis relative mode
  7390. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7391. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7392. if(automatic == 0){
  7393. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7394. }
  7395. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7396. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7397. // Restart the print.
  7398. restore_print_from_eeprom();
  7399. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7400. }
  7401. void recover_machine_state_after_power_panic(bool bTiny)
  7402. {
  7403. char cmd[30];
  7404. // 1) Recover the logical cordinates at the time of the power panic.
  7405. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7406. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7407. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7408. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7409. // The current position after power panic is moved to the next closest 0th full step.
  7410. if(bTiny)
  7411. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7412. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7413. else
  7414. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7415. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7416. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7417. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7418. sprintf_P(cmd, PSTR("G92 E"));
  7419. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7420. enquecommand(cmd);
  7421. }
  7422. memcpy(destination, current_position, sizeof(destination));
  7423. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7424. print_world_coordinates();
  7425. // 2) Initialize the logical to physical coordinate system transformation.
  7426. world2machine_initialize();
  7427. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7428. mbl.active = false;
  7429. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7430. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7431. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7432. // Scale the z value to 10u resolution.
  7433. int16_t v;
  7434. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7435. if (v != 0)
  7436. mbl.active = true;
  7437. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7438. }
  7439. if (mbl.active)
  7440. mbl.upsample_3x3();
  7441. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7442. // print_mesh_bed_leveling_table();
  7443. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7444. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7445. babystep_load();
  7446. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7448. // 6) Power up the motors, mark their positions as known.
  7449. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7450. axis_known_position[X_AXIS] = true; enable_x();
  7451. axis_known_position[Y_AXIS] = true; enable_y();
  7452. axis_known_position[Z_AXIS] = true; enable_z();
  7453. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7454. print_physical_coordinates();
  7455. // 7) Recover the target temperatures.
  7456. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7457. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7458. // 8) Recover extruder multipilers
  7459. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7460. #if EXTRUDERS > 1
  7461. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7462. #if EXTRUDERS > 2
  7463. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7464. #endif
  7465. #endif
  7466. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7467. }
  7468. void restore_print_from_eeprom() {
  7469. int feedrate_rec;
  7470. uint8_t fan_speed_rec;
  7471. char cmd[30];
  7472. char filename[13];
  7473. uint8_t depth = 0;
  7474. char dir_name[9];
  7475. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7476. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7477. SERIAL_ECHOPGM("Feedrate:");
  7478. MYSERIAL.println(feedrate_rec);
  7479. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7480. MYSERIAL.println(int(depth));
  7481. for (int i = 0; i < depth; i++) {
  7482. for (int j = 0; j < 8; j++) {
  7483. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7484. }
  7485. dir_name[8] = '\0';
  7486. MYSERIAL.println(dir_name);
  7487. strcpy(dir_names[i], dir_name);
  7488. card.chdir(dir_name);
  7489. }
  7490. for (int i = 0; i < 8; i++) {
  7491. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7492. }
  7493. filename[8] = '\0';
  7494. MYSERIAL.print(filename);
  7495. strcat_P(filename, PSTR(".gco"));
  7496. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7497. enquecommand(cmd);
  7498. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7499. SERIAL_ECHOPGM("Position read from eeprom:");
  7500. MYSERIAL.println(position);
  7501. // E axis relative mode.
  7502. enquecommand_P(PSTR("M83"));
  7503. // Move to the XY print position in logical coordinates, where the print has been killed.
  7504. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7505. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7506. strcat_P(cmd, PSTR(" F2000"));
  7507. enquecommand(cmd);
  7508. // Move the Z axis down to the print, in logical coordinates.
  7509. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7510. enquecommand(cmd);
  7511. // Unretract.
  7512. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7513. // Set the feedrate saved at the power panic.
  7514. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7515. enquecommand(cmd);
  7516. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7517. {
  7518. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7519. }
  7520. // Set the fan speed saved at the power panic.
  7521. strcpy_P(cmd, PSTR("M106 S"));
  7522. strcat(cmd, itostr3(int(fan_speed_rec)));
  7523. enquecommand(cmd);
  7524. // Set a position in the file.
  7525. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7526. enquecommand(cmd);
  7527. enquecommand_P(PSTR("G4 S0"));
  7528. enquecommand_P(PSTR("PRUSA uvlo"));
  7529. }
  7530. #endif //UVLO_SUPPORT
  7531. //! @brief Immediately stop print moves
  7532. //!
  7533. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7534. //! If printing from sd card, position in file is saved.
  7535. //! If printing from USB, line number is saved.
  7536. //!
  7537. //! @param z_move
  7538. //! @param e_move
  7539. void stop_and_save_print_to_ram(float z_move, float e_move)
  7540. {
  7541. if (saved_printing) return;
  7542. #if 0
  7543. unsigned char nplanner_blocks;
  7544. #endif
  7545. unsigned char nlines;
  7546. uint16_t sdlen_planner;
  7547. uint16_t sdlen_cmdqueue;
  7548. cli();
  7549. if (card.sdprinting) {
  7550. #if 0
  7551. nplanner_blocks = number_of_blocks();
  7552. #endif
  7553. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7554. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7555. saved_sdpos -= sdlen_planner;
  7556. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7557. saved_sdpos -= sdlen_cmdqueue;
  7558. saved_printing_type = PRINTING_TYPE_SD;
  7559. }
  7560. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7561. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7562. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7563. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7564. saved_sdpos -= nlines;
  7565. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7566. saved_printing_type = PRINTING_TYPE_USB;
  7567. }
  7568. else {
  7569. //not sd printing nor usb printing
  7570. }
  7571. #if 0
  7572. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7573. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7574. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7575. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7576. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7577. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7578. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7579. {
  7580. card.setIndex(saved_sdpos);
  7581. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7582. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7583. MYSERIAL.print(char(card.get()));
  7584. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7585. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7586. MYSERIAL.print(char(card.get()));
  7587. SERIAL_ECHOLNPGM("End of command buffer");
  7588. }
  7589. {
  7590. // Print the content of the planner buffer, line by line:
  7591. card.setIndex(saved_sdpos);
  7592. int8_t iline = 0;
  7593. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7594. SERIAL_ECHOPGM("Planner line (from file): ");
  7595. MYSERIAL.print(int(iline), DEC);
  7596. SERIAL_ECHOPGM(", length: ");
  7597. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7598. SERIAL_ECHOPGM(", steps: (");
  7599. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7600. SERIAL_ECHOPGM(",");
  7601. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7602. SERIAL_ECHOPGM(",");
  7603. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7604. SERIAL_ECHOPGM(",");
  7605. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7606. SERIAL_ECHOPGM("), events: ");
  7607. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7608. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7609. MYSERIAL.print(char(card.get()));
  7610. }
  7611. }
  7612. {
  7613. // Print the content of the command buffer, line by line:
  7614. int8_t iline = 0;
  7615. union {
  7616. struct {
  7617. char lo;
  7618. char hi;
  7619. } lohi;
  7620. uint16_t value;
  7621. } sdlen_single;
  7622. int _bufindr = bufindr;
  7623. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7624. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7625. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7626. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7627. }
  7628. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7629. MYSERIAL.print(int(iline), DEC);
  7630. SERIAL_ECHOPGM(", type: ");
  7631. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7632. SERIAL_ECHOPGM(", len: ");
  7633. MYSERIAL.println(sdlen_single.value, DEC);
  7634. // Print the content of the buffer line.
  7635. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7636. SERIAL_ECHOPGM("Buffer line (from file): ");
  7637. MYSERIAL.println(int(iline), DEC);
  7638. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7639. MYSERIAL.print(char(card.get()));
  7640. if (-- _buflen == 0)
  7641. break;
  7642. // First skip the current command ID and iterate up to the end of the string.
  7643. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7644. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7645. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7646. // If the end of the buffer was empty,
  7647. if (_bufindr == sizeof(cmdbuffer)) {
  7648. // skip to the start and find the nonzero command.
  7649. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7650. }
  7651. }
  7652. }
  7653. #endif
  7654. #if 0
  7655. saved_feedrate2 = feedrate; //save feedrate
  7656. #else
  7657. // Try to deduce the feedrate from the first block of the planner.
  7658. // Speed is in mm/min.
  7659. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7660. #endif
  7661. planner_abort_hard(); //abort printing
  7662. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7663. saved_active_extruder = active_extruder; //save active_extruder
  7664. saved_extruder_temperature = degTargetHotend(active_extruder);
  7665. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7666. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7667. saved_fanSpeed = fanSpeed;
  7668. cmdqueue_reset(); //empty cmdqueue
  7669. card.sdprinting = false;
  7670. // card.closefile();
  7671. saved_printing = true;
  7672. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7673. st_reset_timer();
  7674. sei();
  7675. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7676. #if 1
  7677. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7678. char buf[48];
  7679. // First unretract (relative extrusion)
  7680. if(!saved_extruder_relative_mode){
  7681. strcpy_P(buf, PSTR("M83"));
  7682. enquecommand(buf, false);
  7683. }
  7684. //retract 45mm/s
  7685. strcpy_P(buf, PSTR("G1 E"));
  7686. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7687. strcat_P(buf, PSTR(" F"));
  7688. dtostrf(2700, 8, 3, buf + strlen(buf));
  7689. enquecommand(buf, false);
  7690. // Then lift Z axis
  7691. strcpy_P(buf, PSTR("G1 Z"));
  7692. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7693. strcat_P(buf, PSTR(" F"));
  7694. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7695. // At this point the command queue is empty.
  7696. enquecommand(buf, false);
  7697. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7698. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7699. repeatcommand_front();
  7700. #else
  7701. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7702. st_synchronize(); //wait moving
  7703. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7704. memcpy(destination, current_position, sizeof(destination));
  7705. #endif
  7706. }
  7707. }
  7708. //! @brief Restore print from ram
  7709. //!
  7710. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7711. //! waits for extruder temperature restore, then restores position and continues
  7712. //! print moves.
  7713. //! Internaly lcd_update() is called by wait_for_heater().
  7714. //!
  7715. //! @param e_move
  7716. void restore_print_from_ram_and_continue(float e_move)
  7717. {
  7718. if (!saved_printing) return;
  7719. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7720. // current_position[axis] = st_get_position_mm(axis);
  7721. active_extruder = saved_active_extruder; //restore active_extruder
  7722. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7723. heating_status = 1;
  7724. wait_for_heater(millis(),saved_active_extruder);
  7725. heating_status = 2;
  7726. feedrate = saved_feedrate2; //restore feedrate
  7727. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7728. fanSpeed = saved_fanSpeed;
  7729. float e = saved_pos[E_AXIS] - e_move;
  7730. plan_set_e_position(e);
  7731. //first move print head in XY to the saved position:
  7732. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7733. st_synchronize();
  7734. //then move Z
  7735. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7736. st_synchronize();
  7737. //and finaly unretract (35mm/s)
  7738. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7739. st_synchronize();
  7740. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7741. memcpy(destination, current_position, sizeof(destination));
  7742. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7743. card.setIndex(saved_sdpos);
  7744. sdpos_atomic = saved_sdpos;
  7745. card.sdprinting = true;
  7746. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7747. }
  7748. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7749. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7750. serial_count = 0;
  7751. FlushSerialRequestResend();
  7752. }
  7753. else {
  7754. //not sd printing nor usb printing
  7755. }
  7756. lcd_setstatuspgm(_T(WELCOME_MSG));
  7757. saved_printing = false;
  7758. }
  7759. void print_world_coordinates()
  7760. {
  7761. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7762. }
  7763. void print_physical_coordinates()
  7764. {
  7765. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7766. }
  7767. void print_mesh_bed_leveling_table()
  7768. {
  7769. SERIAL_ECHOPGM("mesh bed leveling: ");
  7770. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7771. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7772. MYSERIAL.print(mbl.z_values[y][x], 3);
  7773. SERIAL_ECHOPGM(" ");
  7774. }
  7775. SERIAL_ECHOLNPGM("");
  7776. }
  7777. uint16_t print_time_remaining() {
  7778. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7779. #ifdef TMC2130
  7780. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7781. else print_t = print_time_remaining_silent;
  7782. #else
  7783. print_t = print_time_remaining_normal;
  7784. #endif //TMC2130
  7785. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7786. return print_t;
  7787. }
  7788. uint8_t calc_percent_done()
  7789. {
  7790. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7791. uint8_t percent_done = 0;
  7792. #ifdef TMC2130
  7793. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7794. percent_done = print_percent_done_normal;
  7795. }
  7796. else if (print_percent_done_silent <= 100) {
  7797. percent_done = print_percent_done_silent;
  7798. }
  7799. #else
  7800. if (print_percent_done_normal <= 100) {
  7801. percent_done = print_percent_done_normal;
  7802. }
  7803. #endif //TMC2130
  7804. else {
  7805. percent_done = card.percentDone();
  7806. }
  7807. return percent_done;
  7808. }
  7809. static void print_time_remaining_init()
  7810. {
  7811. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7812. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7813. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7814. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7815. }
  7816. void M600_check_state()
  7817. {
  7818. //Wait for user to check the state
  7819. lcd_change_fil_state = 0;
  7820. while (lcd_change_fil_state != 1){
  7821. lcd_change_fil_state = 0;
  7822. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7823. lcd_alright();
  7824. KEEPALIVE_STATE(IN_HANDLER);
  7825. switch(lcd_change_fil_state){
  7826. // Filament failed to load so load it again
  7827. case 2:
  7828. if (mmu_enabled)
  7829. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7830. else
  7831. M600_load_filament_movements();
  7832. break;
  7833. // Filament loaded properly but color is not clear
  7834. case 3:
  7835. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7837. lcd_loading_color();
  7838. break;
  7839. // Everything good
  7840. default:
  7841. lcd_change_success();
  7842. break;
  7843. }
  7844. }
  7845. }
  7846. //! @brief Wait for user action
  7847. //!
  7848. //! Beep, manage nozzle heater and wait for user to start unload filament
  7849. //! If times out, active extruder temperature is set to 0.
  7850. //!
  7851. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7852. void M600_wait_for_user(float HotendTempBckp) {
  7853. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7854. int counterBeep = 0;
  7855. unsigned long waiting_start_time = millis();
  7856. uint8_t wait_for_user_state = 0;
  7857. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7858. bool bFirst=true;
  7859. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7860. manage_heater();
  7861. manage_inactivity(true);
  7862. #if BEEPER > 0
  7863. if (counterBeep == 500) {
  7864. counterBeep = 0;
  7865. }
  7866. SET_OUTPUT(BEEPER);
  7867. if (counterBeep == 0) {
  7868. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7869. {
  7870. bFirst=false;
  7871. WRITE(BEEPER, HIGH);
  7872. }
  7873. }
  7874. if (counterBeep == 20) {
  7875. WRITE(BEEPER, LOW);
  7876. }
  7877. counterBeep++;
  7878. #endif //BEEPER > 0
  7879. switch (wait_for_user_state) {
  7880. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7881. delay_keep_alive(4);
  7882. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7883. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7884. wait_for_user_state = 1;
  7885. setAllTargetHotends(0);
  7886. st_synchronize();
  7887. disable_e0();
  7888. disable_e1();
  7889. disable_e2();
  7890. }
  7891. break;
  7892. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7893. delay_keep_alive(4);
  7894. if (lcd_clicked()) {
  7895. setTargetHotend(HotendTempBckp, active_extruder);
  7896. lcd_wait_for_heater();
  7897. wait_for_user_state = 2;
  7898. }
  7899. break;
  7900. case 2: //waiting for nozzle to reach target temperature
  7901. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7902. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7903. waiting_start_time = millis();
  7904. wait_for_user_state = 0;
  7905. }
  7906. else {
  7907. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7908. lcd_set_cursor(1, 4);
  7909. lcd_print(ftostr3(degHotend(active_extruder)));
  7910. }
  7911. break;
  7912. }
  7913. }
  7914. WRITE(BEEPER, LOW);
  7915. }
  7916. void M600_load_filament_movements()
  7917. {
  7918. #ifdef SNMM
  7919. display_loading();
  7920. do
  7921. {
  7922. current_position[E_AXIS] += 0.002;
  7923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7924. delay_keep_alive(2);
  7925. }
  7926. while (!lcd_clicked());
  7927. st_synchronize();
  7928. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7930. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7932. current_position[E_AXIS] += 40;
  7933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7934. current_position[E_AXIS] += 10;
  7935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7936. #else
  7937. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7939. #endif
  7940. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7941. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7942. lcd_loading_filament();
  7943. }
  7944. void M600_load_filament() {
  7945. //load filament for single material and SNMM
  7946. lcd_wait_interact();
  7947. //load_filament_time = millis();
  7948. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7949. #ifdef FILAMENT_SENSOR
  7950. fsensor_autoload_check_start();
  7951. #endif //FILAMENT_SENSOR
  7952. while(!lcd_clicked())
  7953. {
  7954. manage_heater();
  7955. manage_inactivity(true);
  7956. #ifdef FILAMENT_SENSOR
  7957. if (fsensor_check_autoload())
  7958. {
  7959. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7960. tone(BEEPER, 1000);
  7961. delay_keep_alive(50);
  7962. noTone(BEEPER);
  7963. break;
  7964. }
  7965. #endif //FILAMENT_SENSOR
  7966. }
  7967. #ifdef FILAMENT_SENSOR
  7968. fsensor_autoload_check_stop();
  7969. #endif //FILAMENT_SENSOR
  7970. KEEPALIVE_STATE(IN_HANDLER);
  7971. #ifdef FSENSOR_QUALITY
  7972. fsensor_oq_meassure_start(70);
  7973. #endif //FSENSOR_QUALITY
  7974. M600_load_filament_movements();
  7975. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7976. tone(BEEPER, 500);
  7977. delay_keep_alive(50);
  7978. noTone(BEEPER);
  7979. #ifdef FSENSOR_QUALITY
  7980. fsensor_oq_meassure_stop();
  7981. if (!fsensor_oq_result())
  7982. {
  7983. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7984. lcd_update_enable(true);
  7985. lcd_update(2);
  7986. if (disable)
  7987. fsensor_disable();
  7988. }
  7989. #endif //FSENSOR_QUALITY
  7990. lcd_update_enable(false);
  7991. }
  7992. #define FIL_LOAD_LENGTH 60