Marlin_main.cpp 306 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef ULTIPANEL
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. #endif
  377. bool cancel_heatup = false ;
  378. #ifdef HOST_KEEPALIVE_FEATURE
  379. int busy_state = NOT_BUSY;
  380. static long prev_busy_signal_ms = -1;
  381. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  382. #else
  383. #define host_keepalive();
  384. #define KEEPALIVE_STATE(n);
  385. #endif
  386. const char errormagic[] PROGMEM = "Error:";
  387. const char echomagic[] PROGMEM = "echo:";
  388. bool no_response = false;
  389. uint8_t important_status;
  390. uint8_t saved_filament_type;
  391. // save/restore printing
  392. bool saved_printing = false;
  393. // storing estimated time to end of print counted by slicer
  394. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  397. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  398. //===========================================================================
  399. //=============================Private Variables=============================
  400. //===========================================================================
  401. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  402. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  403. static float delta[3] = {0.0, 0.0, 0.0};
  404. // For tracing an arc
  405. static float offset[3] = {0.0, 0.0, 0.0};
  406. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  407. // Determines Absolute or Relative Coordinates.
  408. // Also there is bool axis_relative_modes[] per axis flag.
  409. static bool relative_mode = false;
  410. #ifndef _DISABLE_M42_M226
  411. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  412. #endif //_DISABLE_M42_M226
  413. //static float tt = 0;
  414. //static float bt = 0;
  415. //Inactivity shutdown variables
  416. static unsigned long previous_millis_cmd = 0;
  417. unsigned long max_inactive_time = 0;
  418. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  419. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  420. unsigned long starttime=0;
  421. unsigned long stoptime=0;
  422. unsigned long _usb_timer = 0;
  423. static uint8_t tmp_extruder;
  424. bool extruder_under_pressure = true;
  425. bool Stopped=false;
  426. #if NUM_SERVOS > 0
  427. Servo servos[NUM_SERVOS];
  428. #endif
  429. bool CooldownNoWait = true;
  430. bool target_direction;
  431. //Insert variables if CHDK is defined
  432. #ifdef CHDK
  433. unsigned long chdkHigh = 0;
  434. boolean chdkActive = false;
  435. #endif
  436. // save/restore printing
  437. static uint32_t saved_sdpos = 0;
  438. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  439. static float saved_pos[4] = { 0, 0, 0, 0 };
  440. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  441. static float saved_feedrate2 = 0;
  442. static uint8_t saved_active_extruder = 0;
  443. static bool saved_extruder_under_pressure = false;
  444. static bool saved_extruder_relative_mode = false;
  445. //===========================================================================
  446. //=============================Routines======================================
  447. //===========================================================================
  448. void get_arc_coordinates();
  449. bool setTargetedHotend(int code);
  450. void serial_echopair_P(const char *s_P, float v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, double v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. void serial_echopair_P(const char *s_P, unsigned long v)
  455. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. #ifdef SDSUPPORT
  457. #include "SdFatUtil.h"
  458. int freeMemory() { return SdFatUtil::FreeRam(); }
  459. #else
  460. extern "C" {
  461. extern unsigned int __bss_end;
  462. extern unsigned int __heap_start;
  463. extern void *__brkval;
  464. int freeMemory() {
  465. int free_memory;
  466. if ((int)__brkval == 0)
  467. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  468. else
  469. free_memory = ((int)&free_memory) - ((int)__brkval);
  470. return free_memory;
  471. }
  472. }
  473. #endif //!SDSUPPORT
  474. void setup_killpin()
  475. {
  476. #if defined(KILL_PIN) && KILL_PIN > -1
  477. SET_INPUT(KILL_PIN);
  478. WRITE(KILL_PIN,HIGH);
  479. #endif
  480. }
  481. // Set home pin
  482. void setup_homepin(void)
  483. {
  484. #if defined(HOME_PIN) && HOME_PIN > -1
  485. SET_INPUT(HOME_PIN);
  486. WRITE(HOME_PIN,HIGH);
  487. #endif
  488. }
  489. void setup_photpin()
  490. {
  491. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  492. SET_OUTPUT(PHOTOGRAPH_PIN);
  493. WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. SET_OUTPUT(SUICIDE_PIN);
  500. WRITE(SUICIDE_PIN, HIGH);
  501. #endif
  502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  503. SET_OUTPUT(PS_ON_PIN);
  504. #if defined(PS_DEFAULT_OFF)
  505. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  506. #else
  507. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  508. #endif
  509. #endif
  510. }
  511. void suicide()
  512. {
  513. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  514. SET_OUTPUT(SUICIDE_PIN);
  515. WRITE(SUICIDE_PIN, LOW);
  516. #endif
  517. }
  518. void servo_init()
  519. {
  520. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  521. servos[0].attach(SERVO0_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  524. servos[1].attach(SERVO1_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  527. servos[2].attach(SERVO2_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  530. servos[3].attach(SERVO3_PIN);
  531. #endif
  532. #if (NUM_SERVOS >= 5)
  533. #error "TODO: enter initalisation code for more servos"
  534. #endif
  535. }
  536. void stop_and_save_print_to_ram(float z_move, float e_move);
  537. void restore_print_from_ram_and_continue(float e_move);
  538. bool fans_check_enabled = true;
  539. bool filament_autoload_enabled = true;
  540. #ifdef TMC2130
  541. extern int8_t CrashDetectMenu;
  542. void crashdet_enable()
  543. {
  544. tmc2130_sg_stop_on_crash = true;
  545. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  546. CrashDetectMenu = 1;
  547. }
  548. void crashdet_disable()
  549. {
  550. tmc2130_sg_stop_on_crash = false;
  551. tmc2130_sg_crash = 0;
  552. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  553. CrashDetectMenu = 0;
  554. }
  555. void crashdet_stop_and_save_print()
  556. {
  557. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  558. }
  559. void crashdet_restore_print_and_continue()
  560. {
  561. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  562. // babystep_apply();
  563. }
  564. void crashdet_stop_and_save_print2()
  565. {
  566. cli();
  567. planner_abort_hard(); //abort printing
  568. cmdqueue_reset(); //empty cmdqueue
  569. card.sdprinting = false;
  570. card.closefile();
  571. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  572. st_reset_timer();
  573. sei();
  574. }
  575. void crashdet_detected(uint8_t mask)
  576. {
  577. // printf("CRASH_DETECTED");
  578. /* while (!is_buffer_empty())
  579. {
  580. process_commands();
  581. cmdqueue_pop_front();
  582. }*/
  583. st_synchronize();
  584. static uint8_t crashDet_counter = 0;
  585. bool automatic_recovery_after_crash = true;
  586. if (crashDet_counter++ == 0) {
  587. crashDetTimer.start();
  588. }
  589. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  590. crashDetTimer.stop();
  591. crashDet_counter = 0;
  592. }
  593. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  594. automatic_recovery_after_crash = false;
  595. crashDetTimer.stop();
  596. crashDet_counter = 0;
  597. }
  598. else {
  599. crashDetTimer.start();
  600. }
  601. lcd_update_enable(true);
  602. lcd_implementation_clear();
  603. lcd_update(2);
  604. if (mask & X_AXIS_MASK)
  605. {
  606. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  607. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  608. }
  609. if (mask & Y_AXIS_MASK)
  610. {
  611. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  612. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  613. }
  614. lcd_update_enable(true);
  615. lcd_update(2);
  616. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  617. gcode_G28(true, true, false); //home X and Y
  618. st_synchronize();
  619. if (automatic_recovery_after_crash) {
  620. enquecommand_P(PSTR("CRASH_RECOVER"));
  621. }else{
  622. HotendTempBckp = degTargetHotend(active_extruder);
  623. setTargetHotend(0, active_extruder);
  624. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  625. lcd_update_enable(true);
  626. if (yesno)
  627. {
  628. char cmd1[10];
  629. strcpy(cmd1, "M109 S");
  630. strcat(cmd1, ftostr3(HotendTempBckp));
  631. enquecommand(cmd1);
  632. enquecommand_P(PSTR("CRASH_RECOVER"));
  633. }
  634. else
  635. {
  636. enquecommand_P(PSTR("CRASH_CANCEL"));
  637. }
  638. }
  639. }
  640. void crashdet_recover()
  641. {
  642. crashdet_restore_print_and_continue();
  643. tmc2130_sg_stop_on_crash = true;
  644. }
  645. void crashdet_cancel()
  646. {
  647. tmc2130_sg_stop_on_crash = true;
  648. if (saved_printing_type == PRINTING_TYPE_SD) {
  649. lcd_print_stop();
  650. }else if(saved_printing_type == PRINTING_TYPE_USB){
  651. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  652. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  653. }
  654. }
  655. #endif //TMC2130
  656. void failstats_reset_print()
  657. {
  658. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  661. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  662. }
  663. #ifdef MESH_BED_LEVELING
  664. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  665. #endif
  666. // Factory reset function
  667. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  668. // Level input parameter sets depth of reset
  669. // Quiet parameter masks all waitings for user interact.
  670. int er_progress = 0;
  671. void factory_reset(char level, bool quiet)
  672. {
  673. lcd_implementation_clear();
  674. int cursor_pos = 0;
  675. switch (level) {
  676. // Level 0: Language reset
  677. case 0:
  678. WRITE(BEEPER, HIGH);
  679. _delay_ms(100);
  680. WRITE(BEEPER, LOW);
  681. lang_reset();
  682. break;
  683. //Level 1: Reset statistics
  684. case 1:
  685. WRITE(BEEPER, HIGH);
  686. _delay_ms(100);
  687. WRITE(BEEPER, LOW);
  688. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  689. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  693. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  697. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  698. lcd_menu_statistics();
  699. break;
  700. // Level 2: Prepare for shipping
  701. case 2:
  702. //lcd_printPGM(PSTR("Factory RESET"));
  703. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  704. // Force language selection at the next boot up.
  705. lang_reset();
  706. // Force the "Follow calibration flow" message at the next boot up.
  707. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  708. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  709. farm_no = 0;
  710. farm_mode = false;
  711. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  712. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  713. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  714. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  717. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  718. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  719. fsensor_enable();
  720. fautoload_set(true);
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. //_delay_ms(2000);
  725. break;
  726. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  727. case 3:
  728. lcd_printPGM(PSTR("Factory RESET"));
  729. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  730. WRITE(BEEPER, HIGH);
  731. _delay_ms(100);
  732. WRITE(BEEPER, LOW);
  733. er_progress = 0;
  734. lcd_print_at_PGM(3, 3, PSTR(" "));
  735. lcd_implementation_print_at(3, 3, er_progress);
  736. // Erase EEPROM
  737. for (int i = 0; i < 4096; i++) {
  738. eeprom_write_byte((uint8_t*)i, 0xFF);
  739. if (i % 41 == 0) {
  740. er_progress++;
  741. lcd_print_at_PGM(3, 3, PSTR(" "));
  742. lcd_implementation_print_at(3, 3, er_progress);
  743. lcd_printPGM(PSTR("%"));
  744. }
  745. }
  746. break;
  747. case 4:
  748. bowden_menu();
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. #include "LiquidCrystal_Prusa.h"
  755. extern LiquidCrystal_Prusa lcd;
  756. FILE _lcdout = {0};
  757. int lcd_putchar(char c, FILE *stream)
  758. {
  759. lcd.write(c);
  760. return 0;
  761. }
  762. FILE _uartout = {0};
  763. int uart_putchar(char c, FILE *stream)
  764. {
  765. MYSERIAL.write(c);
  766. return 0;
  767. }
  768. void lcd_splash()
  769. {
  770. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  771. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  772. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  773. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  774. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  775. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  776. }
  777. void factory_reset()
  778. {
  779. KEEPALIVE_STATE(PAUSED_FOR_USER);
  780. if (!READ(BTN_ENC))
  781. {
  782. _delay_ms(1000);
  783. if (!READ(BTN_ENC))
  784. {
  785. lcd_implementation_clear();
  786. lcd_printPGM(PSTR("Factory RESET"));
  787. SET_OUTPUT(BEEPER);
  788. WRITE(BEEPER, HIGH);
  789. while (!READ(BTN_ENC));
  790. WRITE(BEEPER, LOW);
  791. _delay_ms(2000);
  792. char level = reset_menu();
  793. factory_reset(level, false);
  794. switch (level) {
  795. case 0: _delay_ms(0); break;
  796. case 1: _delay_ms(0); break;
  797. case 2: _delay_ms(0); break;
  798. case 3: _delay_ms(0); break;
  799. }
  800. // _delay_ms(100);
  801. /*
  802. #ifdef MESH_BED_LEVELING
  803. _delay_ms(2000);
  804. if (!READ(BTN_ENC))
  805. {
  806. WRITE(BEEPER, HIGH);
  807. _delay_ms(100);
  808. WRITE(BEEPER, LOW);
  809. _delay_ms(200);
  810. WRITE(BEEPER, HIGH);
  811. _delay_ms(100);
  812. WRITE(BEEPER, LOW);
  813. int _z = 0;
  814. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  815. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  816. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  817. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  818. }
  819. else
  820. {
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. }
  825. #endif // mesh */
  826. }
  827. }
  828. else
  829. {
  830. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  831. }
  832. KEEPALIVE_STATE(IN_HANDLER);
  833. }
  834. void show_fw_version_warnings() {
  835. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  836. switch (FW_DEV_VERSION) {
  837. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  838. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  839. case(FW_VERSION_DEVEL):
  840. case(FW_VERSION_DEBUG):
  841. lcd_update_enable(false);
  842. lcd_implementation_clear();
  843. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  844. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  845. #else
  846. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  847. #endif
  848. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  849. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  850. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  851. lcd_wait_for_click();
  852. break;
  853. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  854. }
  855. lcd_update_enable(true);
  856. }
  857. uint8_t check_printer_version()
  858. {
  859. uint8_t version_changed = 0;
  860. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  861. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  862. if (printer_type != PRINTER_TYPE) {
  863. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  864. else version_changed |= 0b10;
  865. }
  866. if (motherboard != MOTHERBOARD) {
  867. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  868. else version_changed |= 0b01;
  869. }
  870. return version_changed;
  871. }
  872. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  873. {
  874. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  875. }
  876. #if (LANG_MODE != 0) //secondary language support
  877. #ifdef W25X20CL
  878. #include "bootapp.h" //bootloader support
  879. // language update from external flash
  880. #define LANGBOOT_BLOCKSIZE 0x1000
  881. #define LANGBOOT_RAMBUFFER 0x0800
  882. void update_sec_lang_from_external_flash()
  883. {
  884. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  885. {
  886. uint8_t lang = boot_reserved >> 4;
  887. uint8_t state = boot_reserved & 0xf;
  888. lang_table_header_t header;
  889. uint32_t src_addr;
  890. if (lang_get_header(lang, &header, &src_addr))
  891. {
  892. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  893. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  894. delay(100);
  895. boot_reserved = (state + 1) | (lang << 4);
  896. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  897. {
  898. cli();
  899. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  900. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  901. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  902. if (state == 0)
  903. {
  904. //TODO - check header integrity
  905. }
  906. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  907. }
  908. else
  909. {
  910. //TODO - check sec lang data integrity
  911. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  912. }
  913. }
  914. }
  915. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  916. }
  917. #ifdef DEBUG_W25X20CL
  918. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  919. {
  920. lang_table_header_t header;
  921. uint8_t count = 0;
  922. uint32_t addr = 0x00000;
  923. while (1)
  924. {
  925. printf_P(_n("LANGTABLE%d:"), count);
  926. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  927. if (header.magic != LANG_MAGIC)
  928. {
  929. printf_P(_n("NG!\n"));
  930. break;
  931. }
  932. printf_P(_n("OK\n"));
  933. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  934. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  935. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  936. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  937. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  938. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  939. addr += header.size;
  940. codes[count] = header.code;
  941. count ++;
  942. }
  943. return count;
  944. }
  945. void list_sec_lang_from_external_flash()
  946. {
  947. uint16_t codes[8];
  948. uint8_t count = lang_xflash_enum_codes(codes);
  949. printf_P(_n("XFlash lang count = %hhd\n"), count);
  950. }
  951. #endif //DEBUG_W25X20CL
  952. #endif //W25X20CL
  953. #endif //(LANG_MODE != 0)
  954. // "Setup" function is called by the Arduino framework on startup.
  955. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  956. // are initialized by the main() routine provided by the Arduino framework.
  957. void setup()
  958. {
  959. lcd_init();
  960. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  961. spi_init();
  962. lcd_splash();
  963. #ifdef W25X20CL
  964. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  965. optiboot_w25x20cl_enter();
  966. #endif
  967. #if (LANG_MODE != 0) //secondary language support
  968. #ifdef W25X20CL
  969. if (w25x20cl_init())
  970. update_sec_lang_from_external_flash();
  971. else
  972. kill(_i("External SPI flash W25X20CL not responding."));
  973. #endif //W25X20CL
  974. #endif //(LANG_MODE != 0)
  975. setup_killpin();
  976. setup_powerhold();
  977. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  978. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  979. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  980. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  981. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  982. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  983. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  984. if (farm_mode)
  985. {
  986. no_response = true; //we need confirmation by recieving PRUSA thx
  987. important_status = 8;
  988. prusa_statistics(8);
  989. selectedSerialPort = 1;
  990. #ifdef TMC2130
  991. //increased extruder current (PFW363)
  992. tmc2130_current_h[E_AXIS] = 36;
  993. tmc2130_current_r[E_AXIS] = 36;
  994. #endif //TMC2130
  995. //disabled filament autoload (PFW360)
  996. filament_autoload_enabled = false;
  997. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  998. }
  999. MYSERIAL.begin(BAUDRATE);
  1000. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  1001. stdout = uartout;
  1002. SERIAL_PROTOCOLLNPGM("start");
  1003. SERIAL_ECHO_START;
  1004. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  1005. uart2_init();
  1006. #ifdef DEBUG_SEC_LANG
  1007. lang_table_header_t header;
  1008. uint32_t src_addr = 0x00000;
  1009. if (lang_get_header(1, &header, &src_addr))
  1010. {
  1011. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1012. #define LT_PRINT_TEST 2
  1013. // flash usage
  1014. // total p.test
  1015. //0 252718 t+c text code
  1016. //1 253142 424 170 254
  1017. //2 253040 322 164 158
  1018. //3 253248 530 135 395
  1019. #if (LT_PRINT_TEST==1) //not optimized printf
  1020. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1021. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1022. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1023. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1024. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1025. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1026. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1027. #elif (LT_PRINT_TEST==2) //optimized printf
  1028. printf_P(
  1029. _n(
  1030. " _src_addr = 0x%08lx\n"
  1031. " _lt_magic = 0x%08lx %S\n"
  1032. " _lt_size = 0x%04x (%d)\n"
  1033. " _lt_count = 0x%04x (%d)\n"
  1034. " _lt_chsum = 0x%04x\n"
  1035. " _lt_code = 0x%04x (%c%c)\n"
  1036. " _lt_resv1 = 0x%08lx\n"
  1037. ),
  1038. src_addr,
  1039. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1040. header.size, header.size,
  1041. header.count, header.count,
  1042. header.checksum,
  1043. header.code, header.code >> 8, header.code & 0xff,
  1044. header.signature
  1045. );
  1046. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1047. MYSERIAL.print(" _src_addr = 0x");
  1048. MYSERIAL.println(src_addr, 16);
  1049. MYSERIAL.print(" _lt_magic = 0x");
  1050. MYSERIAL.print(header.magic, 16);
  1051. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1052. MYSERIAL.print(" _lt_size = 0x");
  1053. MYSERIAL.print(header.size, 16);
  1054. MYSERIAL.print(" (");
  1055. MYSERIAL.print(header.size, 10);
  1056. MYSERIAL.println(")");
  1057. MYSERIAL.print(" _lt_count = 0x");
  1058. MYSERIAL.print(header.count, 16);
  1059. MYSERIAL.print(" (");
  1060. MYSERIAL.print(header.count, 10);
  1061. MYSERIAL.println(")");
  1062. MYSERIAL.print(" _lt_chsum = 0x");
  1063. MYSERIAL.println(header.checksum, 16);
  1064. MYSERIAL.print(" _lt_code = 0x");
  1065. MYSERIAL.print(header.code, 16);
  1066. MYSERIAL.print(" (");
  1067. MYSERIAL.print((char)(header.code >> 8), 0);
  1068. MYSERIAL.print((char)(header.code & 0xff), 0);
  1069. MYSERIAL.println(")");
  1070. MYSERIAL.print(" _lt_resv1 = 0x");
  1071. MYSERIAL.println(header.signature, 16);
  1072. #endif //(LT_PRINT_TEST==)
  1073. #undef LT_PRINT_TEST
  1074. #if 0
  1075. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1076. for (uint16_t i = 0; i < 1024; i++)
  1077. {
  1078. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1079. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1080. if ((i % 16) == 15) putchar('\n');
  1081. }
  1082. #endif
  1083. uint16_t sum = 0;
  1084. for (uint16_t i = 0; i < header.size; i++)
  1085. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1086. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1087. sum -= header.checksum; //subtract checksum
  1088. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1089. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1090. if (sum == header.checksum)
  1091. printf_P(_n("Checksum OK\n"), sum);
  1092. else
  1093. printf_P(_n("Checksum NG\n"), sum);
  1094. }
  1095. else
  1096. printf_P(_n("lang_get_header failed!\n"));
  1097. #if 0
  1098. for (uint16_t i = 0; i < 1024*10; i++)
  1099. {
  1100. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1101. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1102. if ((i % 16) == 15) putchar('\n');
  1103. }
  1104. #endif
  1105. #if 0
  1106. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1107. for (int i = 0; i < 4096; ++i) {
  1108. int b = eeprom_read_byte((unsigned char*)i);
  1109. if (b != 255) {
  1110. SERIAL_ECHO(i);
  1111. SERIAL_ECHO(":");
  1112. SERIAL_ECHO(b);
  1113. SERIAL_ECHOLN("");
  1114. }
  1115. }
  1116. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1117. #endif
  1118. #endif //DEBUG_SEC_LANG
  1119. // Check startup - does nothing if bootloader sets MCUSR to 0
  1120. byte mcu = MCUSR;
  1121. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1122. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1123. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1124. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1125. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1126. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1127. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1128. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1129. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1130. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1131. MCUSR = 0;
  1132. //SERIAL_ECHORPGM(MSG_MARLIN);
  1133. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1134. #ifdef STRING_VERSION_CONFIG_H
  1135. #ifdef STRING_CONFIG_H_AUTHOR
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1138. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1139. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1140. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1141. SERIAL_ECHOPGM("Compiled: ");
  1142. SERIAL_ECHOLNPGM(__DATE__);
  1143. #endif
  1144. #endif
  1145. SERIAL_ECHO_START;
  1146. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1147. SERIAL_ECHO(freeMemory());
  1148. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1149. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1150. //lcd_update_enable(false); // why do we need this?? - andre
  1151. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1152. bool previous_settings_retrieved = false;
  1153. uint8_t hw_changed = check_printer_version();
  1154. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1155. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1156. }
  1157. else { //printer version was changed so use default settings
  1158. Config_ResetDefault();
  1159. }
  1160. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1161. tp_init(); // Initialize temperature loop
  1162. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1163. plan_init(); // Initialize planner;
  1164. factory_reset();
  1165. #ifdef TMC2130
  1166. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1167. if (silentMode == 0xff) silentMode = 0;
  1168. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1169. tmc2130_mode = TMC2130_MODE_NORMAL;
  1170. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1171. if (crashdet && !farm_mode)
  1172. {
  1173. crashdet_enable();
  1174. puts_P(_N("CrashDetect ENABLED!"));
  1175. }
  1176. else
  1177. {
  1178. crashdet_disable();
  1179. puts_P(_N("CrashDetect DISABLED"));
  1180. }
  1181. #ifdef TMC2130_LINEARITY_CORRECTION
  1182. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1183. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1184. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1185. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1186. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1187. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1188. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1189. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1190. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1191. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1192. #endif //TMC2130_LINEARITY_CORRECTION
  1193. #ifdef TMC2130_VARIABLE_RESOLUTION
  1194. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1195. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1196. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1197. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1198. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1200. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1201. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1202. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1203. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1204. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1205. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1206. #else //TMC2130_VARIABLE_RESOLUTION
  1207. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1208. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1209. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1210. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1211. #endif //TMC2130_VARIABLE_RESOLUTION
  1212. #endif //TMC2130
  1213. st_init(); // Initialize stepper, this enables interrupts!
  1214. #ifdef TMC2130
  1215. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1216. tmc2130_init();
  1217. #endif //TMC2130
  1218. setup_photpin();
  1219. servo_init();
  1220. // Reset the machine correction matrix.
  1221. // It does not make sense to load the correction matrix until the machine is homed.
  1222. world2machine_reset();
  1223. #ifdef PAT9125
  1224. fsensor_init();
  1225. #endif //PAT9125
  1226. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1227. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1228. #endif
  1229. setup_homepin();
  1230. #ifdef TMC2130
  1231. if (1) {
  1232. // try to run to zero phase before powering the Z motor.
  1233. // Move in negative direction
  1234. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1235. // Round the current micro-micro steps to micro steps.
  1236. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1237. // Until the phase counter is reset to zero.
  1238. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1239. delay(2);
  1240. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1241. delay(2);
  1242. }
  1243. }
  1244. #endif //TMC2130
  1245. #if defined(Z_AXIS_ALWAYS_ON)
  1246. enable_z();
  1247. #endif
  1248. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1249. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1250. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1251. if (farm_no == 0xFFFF) farm_no = 0;
  1252. if (farm_mode)
  1253. {
  1254. prusa_statistics(8);
  1255. }
  1256. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1257. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1258. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1259. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1260. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1261. // where all the EEPROM entries are set to 0x0ff.
  1262. // Once a firmware boots up, it forces at least a language selection, which changes
  1263. // EEPROM_LANG to number lower than 0x0ff.
  1264. // 1) Set a high power mode.
  1265. #ifdef TMC2130
  1266. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1267. tmc2130_mode = TMC2130_MODE_NORMAL;
  1268. #endif //TMC2130
  1269. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1270. }
  1271. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1272. // but this times out if a blocking dialog is shown in setup().
  1273. card.initsd();
  1274. #ifdef DEBUG_SD_SPEED_TEST
  1275. if (card.cardOK)
  1276. {
  1277. uint8_t* buff = (uint8_t*)block_buffer;
  1278. uint32_t block = 0;
  1279. uint32_t sumr = 0;
  1280. uint32_t sumw = 0;
  1281. for (int i = 0; i < 1024; i++)
  1282. {
  1283. uint32_t u = micros();
  1284. bool res = card.card.readBlock(i, buff);
  1285. u = micros() - u;
  1286. if (res)
  1287. {
  1288. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1289. sumr += u;
  1290. u = micros();
  1291. res = card.card.writeBlock(i, buff);
  1292. u = micros() - u;
  1293. if (res)
  1294. {
  1295. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1296. sumw += u;
  1297. }
  1298. else
  1299. {
  1300. printf_P(PSTR("writeBlock %4d error\n"), i);
  1301. break;
  1302. }
  1303. }
  1304. else
  1305. {
  1306. printf_P(PSTR("readBlock %4d error\n"), i);
  1307. break;
  1308. }
  1309. }
  1310. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1311. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1312. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1313. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1314. }
  1315. else
  1316. printf_P(PSTR("Card NG!\n"));
  1317. #endif //DEBUG_SD_SPEED_TEST
  1318. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1322. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1323. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1324. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1325. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1326. #ifdef SNMM
  1327. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1328. int _z = BOWDEN_LENGTH;
  1329. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1330. }
  1331. #endif
  1332. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1333. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1334. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1335. #if (LANG_MODE != 0) //secondary language support
  1336. #ifdef DEBUG_W25X20CL
  1337. W25X20CL_SPI_ENTER();
  1338. uint8_t uid[8]; // 64bit unique id
  1339. w25x20cl_rd_uid(uid);
  1340. puts_P(_n("W25X20CL UID="));
  1341. for (uint8_t i = 0; i < 8; i ++)
  1342. printf_P(PSTR("%02hhx"), uid[i]);
  1343. putchar('\n');
  1344. list_sec_lang_from_external_flash();
  1345. #endif //DEBUG_W25X20CL
  1346. // lang_reset();
  1347. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1348. lcd_language();
  1349. #ifdef DEBUG_SEC_LANG
  1350. uint16_t sec_lang_code = lang_get_code(1);
  1351. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1352. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1353. // lang_print_sec_lang(uartout);
  1354. #endif //DEBUG_SEC_LANG
  1355. #endif //(LANG_MODE != 0)
  1356. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1357. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1358. temp_cal_active = false;
  1359. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1360. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1361. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1362. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1363. int16_t z_shift = 0;
  1364. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1365. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1366. temp_cal_active = false;
  1367. }
  1368. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1369. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1370. }
  1371. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1372. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1373. }
  1374. check_babystep(); //checking if Z babystep is in allowed range
  1375. #ifdef UVLO_SUPPORT
  1376. setup_uvlo_interrupt();
  1377. #endif //UVLO_SUPPORT
  1378. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1379. setup_fan_interrupt();
  1380. #endif //DEBUG_DISABLE_FANCHECK
  1381. #ifdef PAT9125
  1382. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1383. fsensor_setup_interrupt();
  1384. #endif //DEBUG_DISABLE_FSENSORCHECK
  1385. #endif //PAT9125
  1386. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1387. #ifndef DEBUG_DISABLE_STARTMSGS
  1388. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1389. show_fw_version_warnings();
  1390. switch (hw_changed) {
  1391. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1392. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1393. case(0b01):
  1394. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1395. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1396. break;
  1397. case(0b10):
  1398. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1399. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1400. break;
  1401. case(0b11):
  1402. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1403. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1404. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1405. break;
  1406. default: break; //no change, show no message
  1407. }
  1408. if (!previous_settings_retrieved) {
  1409. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1410. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1411. }
  1412. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1413. lcd_wizard(0);
  1414. }
  1415. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1416. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1417. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1418. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1419. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1420. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1421. // Show the message.
  1422. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1423. }
  1424. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1425. // Show the message.
  1426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1427. lcd_update_enable(true);
  1428. }
  1429. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1430. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1431. lcd_update_enable(true);
  1432. }
  1433. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1434. // Show the message.
  1435. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1436. }
  1437. }
  1438. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1439. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1440. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1441. update_current_firmware_version_to_eeprom();
  1442. lcd_selftest();
  1443. }
  1444. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1445. KEEPALIVE_STATE(IN_PROCESS);
  1446. #endif //DEBUG_DISABLE_STARTMSGS
  1447. lcd_update_enable(true);
  1448. lcd_implementation_clear();
  1449. lcd_update(2);
  1450. // Store the currently running firmware into an eeprom,
  1451. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1452. update_current_firmware_version_to_eeprom();
  1453. #ifdef TMC2130
  1454. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1455. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1456. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1457. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1458. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1459. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1460. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1461. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1462. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1463. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1464. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1465. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1466. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1467. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1468. #endif //TMC2130
  1469. #ifdef UVLO_SUPPORT
  1470. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1471. /*
  1472. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1473. else {
  1474. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1475. lcd_update_enable(true);
  1476. lcd_update(2);
  1477. lcd_setstatuspgm(_T(WELCOME_MSG));
  1478. }
  1479. */
  1480. manage_heater(); // Update temperatures
  1481. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1482. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1483. #endif
  1484. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1485. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1486. puts_P(_N("Automatic recovery!"));
  1487. #endif
  1488. recover_print(1);
  1489. }
  1490. else{
  1491. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1492. puts_P(_N("Normal recovery!"));
  1493. #endif
  1494. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1495. else {
  1496. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1497. lcd_update_enable(true);
  1498. lcd_update(2);
  1499. lcd_setstatuspgm(_T(WELCOME_MSG));
  1500. }
  1501. }
  1502. }
  1503. #endif //UVLO_SUPPORT
  1504. KEEPALIVE_STATE(NOT_BUSY);
  1505. #ifdef WATCHDOG
  1506. wdt_enable(WDTO_4S);
  1507. #endif //WATCHDOG
  1508. }
  1509. #ifdef PAT9125
  1510. void fsensor_init() {
  1511. int pat9125 = pat9125_init();
  1512. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1513. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1514. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1515. if (!pat9125)
  1516. {
  1517. fsensor = 0; //disable sensor
  1518. fsensor_not_responding = true;
  1519. }
  1520. else {
  1521. fsensor_not_responding = false;
  1522. }
  1523. puts_P(PSTR("FSensor "));
  1524. if (fsensor)
  1525. {
  1526. puts_P(PSTR("ENABLED\n"));
  1527. fsensor_enable();
  1528. }
  1529. else
  1530. {
  1531. puts_P(PSTR("DISABLED\n"));
  1532. fsensor_disable();
  1533. }
  1534. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1535. filament_autoload_enabled = false;
  1536. fsensor_disable();
  1537. #endif //DEBUG_DISABLE_FSENSORCHECK
  1538. }
  1539. #endif //PAT9125
  1540. void trace();
  1541. #define CHUNK_SIZE 64 // bytes
  1542. #define SAFETY_MARGIN 1
  1543. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1544. int chunkHead = 0;
  1545. int serial_read_stream() {
  1546. setTargetHotend(0, 0);
  1547. setTargetBed(0);
  1548. lcd_implementation_clear();
  1549. lcd_printPGM(PSTR(" Upload in progress"));
  1550. // first wait for how many bytes we will receive
  1551. uint32_t bytesToReceive;
  1552. // receive the four bytes
  1553. char bytesToReceiveBuffer[4];
  1554. for (int i=0; i<4; i++) {
  1555. int data;
  1556. while ((data = MYSERIAL.read()) == -1) {};
  1557. bytesToReceiveBuffer[i] = data;
  1558. }
  1559. // make it a uint32
  1560. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1561. // we're ready, notify the sender
  1562. MYSERIAL.write('+');
  1563. // lock in the routine
  1564. uint32_t receivedBytes = 0;
  1565. while (prusa_sd_card_upload) {
  1566. int i;
  1567. for (i=0; i<CHUNK_SIZE; i++) {
  1568. int data;
  1569. // check if we're not done
  1570. if (receivedBytes == bytesToReceive) {
  1571. break;
  1572. }
  1573. // read the next byte
  1574. while ((data = MYSERIAL.read()) == -1) {};
  1575. receivedBytes++;
  1576. // save it to the chunk
  1577. chunk[i] = data;
  1578. }
  1579. // write the chunk to SD
  1580. card.write_command_no_newline(&chunk[0]);
  1581. // notify the sender we're ready for more data
  1582. MYSERIAL.write('+');
  1583. // for safety
  1584. manage_heater();
  1585. // check if we're done
  1586. if(receivedBytes == bytesToReceive) {
  1587. trace(); // beep
  1588. card.closefile();
  1589. prusa_sd_card_upload = false;
  1590. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1591. return 0;
  1592. }
  1593. }
  1594. }
  1595. #ifdef HOST_KEEPALIVE_FEATURE
  1596. /**
  1597. * Output a "busy" message at regular intervals
  1598. * while the machine is not accepting commands.
  1599. */
  1600. void host_keepalive() {
  1601. if (farm_mode) return;
  1602. long ms = millis();
  1603. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1604. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1605. switch (busy_state) {
  1606. case IN_HANDLER:
  1607. case IN_PROCESS:
  1608. SERIAL_ECHO_START;
  1609. SERIAL_ECHOLNPGM("busy: processing");
  1610. break;
  1611. case PAUSED_FOR_USER:
  1612. SERIAL_ECHO_START;
  1613. SERIAL_ECHOLNPGM("busy: paused for user");
  1614. break;
  1615. case PAUSED_FOR_INPUT:
  1616. SERIAL_ECHO_START;
  1617. SERIAL_ECHOLNPGM("busy: paused for input");
  1618. break;
  1619. default:
  1620. break;
  1621. }
  1622. }
  1623. prev_busy_signal_ms = ms;
  1624. }
  1625. #endif
  1626. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1627. // Before loop(), the setup() function is called by the main() routine.
  1628. void loop()
  1629. {
  1630. KEEPALIVE_STATE(NOT_BUSY);
  1631. bool stack_integrity = true;
  1632. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1633. {
  1634. is_usb_printing = true;
  1635. usb_printing_counter--;
  1636. _usb_timer = millis();
  1637. }
  1638. if (usb_printing_counter == 0)
  1639. {
  1640. is_usb_printing = false;
  1641. }
  1642. if (prusa_sd_card_upload)
  1643. {
  1644. //we read byte-by byte
  1645. serial_read_stream();
  1646. } else
  1647. {
  1648. get_command();
  1649. #ifdef SDSUPPORT
  1650. card.checkautostart(false);
  1651. #endif
  1652. if(buflen)
  1653. {
  1654. cmdbuffer_front_already_processed = false;
  1655. #ifdef SDSUPPORT
  1656. if(card.saving)
  1657. {
  1658. // Saving a G-code file onto an SD-card is in progress.
  1659. // Saving starts with M28, saving until M29 is seen.
  1660. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1661. card.write_command(CMDBUFFER_CURRENT_STRING);
  1662. if(card.logging)
  1663. process_commands();
  1664. else
  1665. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1666. } else {
  1667. card.closefile();
  1668. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1669. }
  1670. } else {
  1671. process_commands();
  1672. }
  1673. #else
  1674. process_commands();
  1675. #endif //SDSUPPORT
  1676. if (! cmdbuffer_front_already_processed && buflen)
  1677. {
  1678. // ptr points to the start of the block currently being processed.
  1679. // The first character in the block is the block type.
  1680. char *ptr = cmdbuffer + bufindr;
  1681. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1682. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1683. union {
  1684. struct {
  1685. char lo;
  1686. char hi;
  1687. } lohi;
  1688. uint16_t value;
  1689. } sdlen;
  1690. sdlen.value = 0;
  1691. {
  1692. // This block locks the interrupts globally for 3.25 us,
  1693. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1694. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1695. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1696. cli();
  1697. // Reset the command to something, which will be ignored by the power panic routine,
  1698. // so this buffer length will not be counted twice.
  1699. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1700. // Extract the current buffer length.
  1701. sdlen.lohi.lo = *ptr ++;
  1702. sdlen.lohi.hi = *ptr;
  1703. // and pass it to the planner queue.
  1704. planner_add_sd_length(sdlen.value);
  1705. sei();
  1706. }
  1707. }
  1708. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1709. cli();
  1710. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1711. // and one for each command to previous block in the planner queue.
  1712. planner_add_sd_length(1);
  1713. sei();
  1714. }
  1715. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1716. // this block's SD card length will not be counted twice as its command type has been replaced
  1717. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1718. cmdqueue_pop_front();
  1719. }
  1720. host_keepalive();
  1721. }
  1722. }
  1723. //check heater every n milliseconds
  1724. manage_heater();
  1725. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1726. checkHitEndstops();
  1727. lcd_update();
  1728. #ifdef PAT9125
  1729. fsensor_update();
  1730. #endif //PAT9125
  1731. #ifdef TMC2130
  1732. tmc2130_check_overtemp();
  1733. if (tmc2130_sg_crash)
  1734. {
  1735. uint8_t crash = tmc2130_sg_crash;
  1736. tmc2130_sg_crash = 0;
  1737. // crashdet_stop_and_save_print();
  1738. switch (crash)
  1739. {
  1740. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1741. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1742. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1743. }
  1744. }
  1745. #endif //TMC2130
  1746. }
  1747. #define DEFINE_PGM_READ_ANY(type, reader) \
  1748. static inline type pgm_read_any(const type *p) \
  1749. { return pgm_read_##reader##_near(p); }
  1750. DEFINE_PGM_READ_ANY(float, float);
  1751. DEFINE_PGM_READ_ANY(signed char, byte);
  1752. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1753. static const PROGMEM type array##_P[3] = \
  1754. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1755. static inline type array(int axis) \
  1756. { return pgm_read_any(&array##_P[axis]); } \
  1757. type array##_ext(int axis) \
  1758. { return pgm_read_any(&array##_P[axis]); }
  1759. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1760. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1761. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1762. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1763. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1764. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1765. static void axis_is_at_home(int axis) {
  1766. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1767. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1768. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1769. }
  1770. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1771. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1772. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1773. saved_feedrate = feedrate;
  1774. saved_feedmultiply = feedmultiply;
  1775. feedmultiply = 100;
  1776. previous_millis_cmd = millis();
  1777. enable_endstops(enable_endstops_now);
  1778. }
  1779. static void clean_up_after_endstop_move() {
  1780. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1781. enable_endstops(false);
  1782. #endif
  1783. feedrate = saved_feedrate;
  1784. feedmultiply = saved_feedmultiply;
  1785. previous_millis_cmd = millis();
  1786. }
  1787. #ifdef ENABLE_AUTO_BED_LEVELING
  1788. #ifdef AUTO_BED_LEVELING_GRID
  1789. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1790. {
  1791. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1792. planeNormal.debug("planeNormal");
  1793. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1794. //bedLevel.debug("bedLevel");
  1795. //plan_bed_level_matrix.debug("bed level before");
  1796. //vector_3 uncorrected_position = plan_get_position_mm();
  1797. //uncorrected_position.debug("position before");
  1798. vector_3 corrected_position = plan_get_position();
  1799. // corrected_position.debug("position after");
  1800. current_position[X_AXIS] = corrected_position.x;
  1801. current_position[Y_AXIS] = corrected_position.y;
  1802. current_position[Z_AXIS] = corrected_position.z;
  1803. // put the bed at 0 so we don't go below it.
  1804. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1805. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1806. }
  1807. #else // not AUTO_BED_LEVELING_GRID
  1808. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1809. plan_bed_level_matrix.set_to_identity();
  1810. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1811. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1812. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1813. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1814. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1815. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1816. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1817. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1818. vector_3 corrected_position = plan_get_position();
  1819. current_position[X_AXIS] = corrected_position.x;
  1820. current_position[Y_AXIS] = corrected_position.y;
  1821. current_position[Z_AXIS] = corrected_position.z;
  1822. // put the bed at 0 so we don't go below it.
  1823. current_position[Z_AXIS] = zprobe_zoffset;
  1824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1825. }
  1826. #endif // AUTO_BED_LEVELING_GRID
  1827. static void run_z_probe() {
  1828. plan_bed_level_matrix.set_to_identity();
  1829. feedrate = homing_feedrate[Z_AXIS];
  1830. // move down until you find the bed
  1831. float zPosition = -10;
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1833. st_synchronize();
  1834. // we have to let the planner know where we are right now as it is not where we said to go.
  1835. zPosition = st_get_position_mm(Z_AXIS);
  1836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1837. // move up the retract distance
  1838. zPosition += home_retract_mm(Z_AXIS);
  1839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1840. st_synchronize();
  1841. // move back down slowly to find bed
  1842. feedrate = homing_feedrate[Z_AXIS]/4;
  1843. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1847. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1848. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1849. }
  1850. static void do_blocking_move_to(float x, float y, float z) {
  1851. float oldFeedRate = feedrate;
  1852. feedrate = homing_feedrate[Z_AXIS];
  1853. current_position[Z_AXIS] = z;
  1854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1855. st_synchronize();
  1856. feedrate = XY_TRAVEL_SPEED;
  1857. current_position[X_AXIS] = x;
  1858. current_position[Y_AXIS] = y;
  1859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. feedrate = oldFeedRate;
  1862. }
  1863. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1864. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1865. }
  1866. /// Probe bed height at position (x,y), returns the measured z value
  1867. static float probe_pt(float x, float y, float z_before) {
  1868. // move to right place
  1869. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1870. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1871. run_z_probe();
  1872. float measured_z = current_position[Z_AXIS];
  1873. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1874. SERIAL_PROTOCOLPGM(" x: ");
  1875. SERIAL_PROTOCOL(x);
  1876. SERIAL_PROTOCOLPGM(" y: ");
  1877. SERIAL_PROTOCOL(y);
  1878. SERIAL_PROTOCOLPGM(" z: ");
  1879. SERIAL_PROTOCOL(measured_z);
  1880. SERIAL_PROTOCOLPGM("\n");
  1881. return measured_z;
  1882. }
  1883. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1884. #ifdef LIN_ADVANCE
  1885. /**
  1886. * M900: Set and/or Get advance K factor and WH/D ratio
  1887. *
  1888. * K<factor> Set advance K factor
  1889. * R<ratio> Set ratio directly (overrides WH/D)
  1890. * W<width> H<height> D<diam> Set ratio from WH/D
  1891. */
  1892. inline void gcode_M900() {
  1893. st_synchronize();
  1894. const float newK = code_seen('K') ? code_value_float() : -1;
  1895. if (newK >= 0) extruder_advance_k = newK;
  1896. float newR = code_seen('R') ? code_value_float() : -1;
  1897. if (newR < 0) {
  1898. const float newD = code_seen('D') ? code_value_float() : -1,
  1899. newW = code_seen('W') ? code_value_float() : -1,
  1900. newH = code_seen('H') ? code_value_float() : -1;
  1901. if (newD >= 0 && newW >= 0 && newH >= 0)
  1902. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1903. }
  1904. if (newR >= 0) advance_ed_ratio = newR;
  1905. SERIAL_ECHO_START;
  1906. SERIAL_ECHOPGM("Advance K=");
  1907. SERIAL_ECHOLN(extruder_advance_k);
  1908. SERIAL_ECHOPGM(" E/D=");
  1909. const float ratio = advance_ed_ratio;
  1910. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1911. }
  1912. #endif // LIN_ADVANCE
  1913. bool check_commands() {
  1914. bool end_command_found = false;
  1915. while (buflen)
  1916. {
  1917. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1918. if (!cmdbuffer_front_already_processed)
  1919. cmdqueue_pop_front();
  1920. cmdbuffer_front_already_processed = false;
  1921. }
  1922. return end_command_found;
  1923. }
  1924. #ifdef TMC2130
  1925. bool calibrate_z_auto()
  1926. {
  1927. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1928. lcd_implementation_clear();
  1929. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1930. bool endstops_enabled = enable_endstops(true);
  1931. int axis_up_dir = -home_dir(Z_AXIS);
  1932. tmc2130_home_enter(Z_AXIS_MASK);
  1933. current_position[Z_AXIS] = 0;
  1934. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1935. set_destination_to_current();
  1936. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1937. feedrate = homing_feedrate[Z_AXIS];
  1938. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1939. st_synchronize();
  1940. // current_position[axis] = 0;
  1941. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1942. tmc2130_home_exit();
  1943. enable_endstops(false);
  1944. current_position[Z_AXIS] = 0;
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. set_destination_to_current();
  1947. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1948. feedrate = homing_feedrate[Z_AXIS] / 2;
  1949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1950. st_synchronize();
  1951. enable_endstops(endstops_enabled);
  1952. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1954. return true;
  1955. }
  1956. #endif //TMC2130
  1957. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1958. {
  1959. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1960. #define HOMEAXIS_DO(LETTER) \
  1961. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1962. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1963. {
  1964. int axis_home_dir = home_dir(axis);
  1965. feedrate = homing_feedrate[axis];
  1966. #ifdef TMC2130
  1967. tmc2130_home_enter(X_AXIS_MASK << axis);
  1968. #endif //TMC2130
  1969. // Move right a bit, so that the print head does not touch the left end position,
  1970. // and the following left movement has a chance to achieve the required velocity
  1971. // for the stall guard to work.
  1972. current_position[axis] = 0;
  1973. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1974. set_destination_to_current();
  1975. // destination[axis] = 11.f;
  1976. destination[axis] = 3.f;
  1977. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1978. st_synchronize();
  1979. // Move left away from the possible collision with the collision detection disabled.
  1980. endstops_hit_on_purpose();
  1981. enable_endstops(false);
  1982. current_position[axis] = 0;
  1983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1984. destination[axis] = - 1.;
  1985. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1986. st_synchronize();
  1987. // Now continue to move up to the left end stop with the collision detection enabled.
  1988. enable_endstops(true);
  1989. destination[axis] = - 1.1 * max_length(axis);
  1990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1991. st_synchronize();
  1992. for (uint8_t i = 0; i < cnt; i++)
  1993. {
  1994. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1995. endstops_hit_on_purpose();
  1996. enable_endstops(false);
  1997. current_position[axis] = 0;
  1998. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1999. destination[axis] = 10.f;
  2000. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2001. st_synchronize();
  2002. endstops_hit_on_purpose();
  2003. // Now move left up to the collision, this time with a repeatable velocity.
  2004. enable_endstops(true);
  2005. destination[axis] = - 11.f;
  2006. #ifdef TMC2130
  2007. feedrate = homing_feedrate[axis];
  2008. #else //TMC2130
  2009. feedrate = homing_feedrate[axis] / 2;
  2010. #endif //TMC2130
  2011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2012. st_synchronize();
  2013. #ifdef TMC2130
  2014. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2015. if (pstep) pstep[i] = mscnt >> 4;
  2016. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2017. #endif //TMC2130
  2018. }
  2019. endstops_hit_on_purpose();
  2020. enable_endstops(false);
  2021. #ifdef TMC2130
  2022. uint8_t orig = tmc2130_home_origin[axis];
  2023. uint8_t back = tmc2130_home_bsteps[axis];
  2024. if (tmc2130_home_enabled && (orig <= 63))
  2025. {
  2026. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2027. if (back > 0)
  2028. tmc2130_do_steps(axis, back, 1, 1000);
  2029. }
  2030. else
  2031. tmc2130_do_steps(axis, 8, 2, 1000);
  2032. tmc2130_home_exit();
  2033. #endif //TMC2130
  2034. axis_is_at_home(axis);
  2035. axis_known_position[axis] = true;
  2036. // Move from minimum
  2037. #ifdef TMC2130
  2038. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2039. #else //TMC2130
  2040. float dist = 0.01f * 64;
  2041. #endif //TMC2130
  2042. current_position[axis] -= dist;
  2043. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2044. current_position[axis] += dist;
  2045. destination[axis] = current_position[axis];
  2046. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2047. st_synchronize();
  2048. feedrate = 0.0;
  2049. }
  2050. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2051. {
  2052. #ifdef TMC2130
  2053. FORCE_HIGH_POWER_START;
  2054. #endif
  2055. int axis_home_dir = home_dir(axis);
  2056. current_position[axis] = 0;
  2057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2058. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2059. feedrate = homing_feedrate[axis];
  2060. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2061. st_synchronize();
  2062. #ifdef TMC2130
  2063. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2064. FORCE_HIGH_POWER_END;
  2065. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2066. return;
  2067. }
  2068. #endif //TMC2130
  2069. current_position[axis] = 0;
  2070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2071. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2072. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2073. st_synchronize();
  2074. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2075. feedrate = homing_feedrate[axis]/2 ;
  2076. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2077. st_synchronize();
  2078. #ifdef TMC2130
  2079. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2080. FORCE_HIGH_POWER_END;
  2081. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2082. return;
  2083. }
  2084. #endif //TMC2130
  2085. axis_is_at_home(axis);
  2086. destination[axis] = current_position[axis];
  2087. feedrate = 0.0;
  2088. endstops_hit_on_purpose();
  2089. axis_known_position[axis] = true;
  2090. #ifdef TMC2130
  2091. FORCE_HIGH_POWER_END;
  2092. #endif
  2093. }
  2094. enable_endstops(endstops_enabled);
  2095. }
  2096. /**/
  2097. void home_xy()
  2098. {
  2099. set_destination_to_current();
  2100. homeaxis(X_AXIS);
  2101. homeaxis(Y_AXIS);
  2102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2103. endstops_hit_on_purpose();
  2104. }
  2105. void refresh_cmd_timeout(void)
  2106. {
  2107. previous_millis_cmd = millis();
  2108. }
  2109. #ifdef FWRETRACT
  2110. void retract(bool retracting, bool swapretract = false) {
  2111. if(retracting && !retracted[active_extruder]) {
  2112. destination[X_AXIS]=current_position[X_AXIS];
  2113. destination[Y_AXIS]=current_position[Y_AXIS];
  2114. destination[Z_AXIS]=current_position[Z_AXIS];
  2115. destination[E_AXIS]=current_position[E_AXIS];
  2116. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2117. plan_set_e_position(current_position[E_AXIS]);
  2118. float oldFeedrate = feedrate;
  2119. feedrate=retract_feedrate*60;
  2120. retracted[active_extruder]=true;
  2121. prepare_move();
  2122. current_position[Z_AXIS]-=retract_zlift;
  2123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2124. prepare_move();
  2125. feedrate = oldFeedrate;
  2126. } else if(!retracting && retracted[active_extruder]) {
  2127. destination[X_AXIS]=current_position[X_AXIS];
  2128. destination[Y_AXIS]=current_position[Y_AXIS];
  2129. destination[Z_AXIS]=current_position[Z_AXIS];
  2130. destination[E_AXIS]=current_position[E_AXIS];
  2131. current_position[Z_AXIS]+=retract_zlift;
  2132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2133. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2134. plan_set_e_position(current_position[E_AXIS]);
  2135. float oldFeedrate = feedrate;
  2136. feedrate=retract_recover_feedrate*60;
  2137. retracted[active_extruder]=false;
  2138. prepare_move();
  2139. feedrate = oldFeedrate;
  2140. }
  2141. } //retract
  2142. #endif //FWRETRACT
  2143. void trace() {
  2144. tone(BEEPER, 440);
  2145. delay(25);
  2146. noTone(BEEPER);
  2147. delay(20);
  2148. }
  2149. /*
  2150. void ramming() {
  2151. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2152. if (current_temperature[0] < 230) {
  2153. //PLA
  2154. max_feedrate[E_AXIS] = 50;
  2155. //current_position[E_AXIS] -= 8;
  2156. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2157. //current_position[E_AXIS] += 8;
  2158. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2159. current_position[E_AXIS] += 5.4;
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2161. current_position[E_AXIS] += 3.2;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2163. current_position[E_AXIS] += 3;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2165. st_synchronize();
  2166. max_feedrate[E_AXIS] = 80;
  2167. current_position[E_AXIS] -= 82;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2169. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2170. current_position[E_AXIS] -= 20;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2172. current_position[E_AXIS] += 5;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2174. current_position[E_AXIS] += 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 10;
  2177. st_synchronize();
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2179. current_position[E_AXIS] += 10;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2181. current_position[E_AXIS] -= 10;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2183. current_position[E_AXIS] += 10;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2185. current_position[E_AXIS] -= 10;
  2186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2187. st_synchronize();
  2188. }
  2189. else {
  2190. //ABS
  2191. max_feedrate[E_AXIS] = 50;
  2192. //current_position[E_AXIS] -= 8;
  2193. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2194. //current_position[E_AXIS] += 8;
  2195. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2196. current_position[E_AXIS] += 3.1;
  2197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2198. current_position[E_AXIS] += 3.1;
  2199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2200. current_position[E_AXIS] += 4;
  2201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2202. st_synchronize();
  2203. //current_position[X_AXIS] += 23; //delay
  2204. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2205. //current_position[X_AXIS] -= 23; //delay
  2206. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2207. delay(4700);
  2208. max_feedrate[E_AXIS] = 80;
  2209. current_position[E_AXIS] -= 92;
  2210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2211. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2212. current_position[E_AXIS] -= 5;
  2213. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2214. current_position[E_AXIS] += 5;
  2215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2216. current_position[E_AXIS] -= 5;
  2217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2218. st_synchronize();
  2219. current_position[E_AXIS] += 5;
  2220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2221. current_position[E_AXIS] -= 5;
  2222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2223. current_position[E_AXIS] += 5;
  2224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2225. current_position[E_AXIS] -= 5;
  2226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2227. st_synchronize();
  2228. }
  2229. }
  2230. */
  2231. #ifdef TMC2130
  2232. void force_high_power_mode(bool start_high_power_section) {
  2233. uint8_t silent;
  2234. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2235. if (silent == 1) {
  2236. //we are in silent mode, set to normal mode to enable crash detection
  2237. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2238. st_synchronize();
  2239. cli();
  2240. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2241. tmc2130_init();
  2242. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2243. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2244. st_reset_timer();
  2245. sei();
  2246. }
  2247. }
  2248. #endif //TMC2130
  2249. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2250. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2251. }
  2252. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2253. st_synchronize();
  2254. #if 0
  2255. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2256. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2257. #endif
  2258. // Flag for the display update routine and to disable the print cancelation during homing.
  2259. homing_flag = true;
  2260. // Which axes should be homed?
  2261. bool home_x = home_x_axis;
  2262. bool home_y = home_y_axis;
  2263. bool home_z = home_z_axis;
  2264. // Either all X,Y,Z codes are present, or none of them.
  2265. bool home_all_axes = home_x == home_y && home_x == home_z;
  2266. if (home_all_axes)
  2267. // No X/Y/Z code provided means to home all axes.
  2268. home_x = home_y = home_z = true;
  2269. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2270. if (home_all_axes) {
  2271. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2272. feedrate = homing_feedrate[Z_AXIS];
  2273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2274. st_synchronize();
  2275. }
  2276. #ifdef ENABLE_AUTO_BED_LEVELING
  2277. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2278. #endif //ENABLE_AUTO_BED_LEVELING
  2279. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2280. // the planner will not perform any adjustments in the XY plane.
  2281. // Wait for the motors to stop and update the current position with the absolute values.
  2282. world2machine_revert_to_uncorrected();
  2283. // For mesh bed leveling deactivate the matrix temporarily.
  2284. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2285. // in a single axis only.
  2286. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2287. #ifdef MESH_BED_LEVELING
  2288. uint8_t mbl_was_active = mbl.active;
  2289. mbl.active = 0;
  2290. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2291. #endif
  2292. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2293. // consumed during the first movements following this statement.
  2294. if (home_z)
  2295. babystep_undo();
  2296. saved_feedrate = feedrate;
  2297. saved_feedmultiply = feedmultiply;
  2298. feedmultiply = 100;
  2299. previous_millis_cmd = millis();
  2300. enable_endstops(true);
  2301. memcpy(destination, current_position, sizeof(destination));
  2302. feedrate = 0.0;
  2303. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2304. if(home_z)
  2305. homeaxis(Z_AXIS);
  2306. #endif
  2307. #ifdef QUICK_HOME
  2308. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2309. if(home_x && home_y) //first diagonal move
  2310. {
  2311. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2312. int x_axis_home_dir = home_dir(X_AXIS);
  2313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2314. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2315. feedrate = homing_feedrate[X_AXIS];
  2316. if(homing_feedrate[Y_AXIS]<feedrate)
  2317. feedrate = homing_feedrate[Y_AXIS];
  2318. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2319. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2320. } else {
  2321. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2322. }
  2323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2324. st_synchronize();
  2325. axis_is_at_home(X_AXIS);
  2326. axis_is_at_home(Y_AXIS);
  2327. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2328. destination[X_AXIS] = current_position[X_AXIS];
  2329. destination[Y_AXIS] = current_position[Y_AXIS];
  2330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2331. feedrate = 0.0;
  2332. st_synchronize();
  2333. endstops_hit_on_purpose();
  2334. current_position[X_AXIS] = destination[X_AXIS];
  2335. current_position[Y_AXIS] = destination[Y_AXIS];
  2336. current_position[Z_AXIS] = destination[Z_AXIS];
  2337. }
  2338. #endif /* QUICK_HOME */
  2339. #ifdef TMC2130
  2340. if(home_x)
  2341. {
  2342. if (!calib)
  2343. homeaxis(X_AXIS);
  2344. else
  2345. tmc2130_home_calibrate(X_AXIS);
  2346. }
  2347. if(home_y)
  2348. {
  2349. if (!calib)
  2350. homeaxis(Y_AXIS);
  2351. else
  2352. tmc2130_home_calibrate(Y_AXIS);
  2353. }
  2354. #endif //TMC2130
  2355. if(home_x_axis && home_x_value != 0)
  2356. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2357. if(home_y_axis && home_y_value != 0)
  2358. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2359. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2360. #ifndef Z_SAFE_HOMING
  2361. if(home_z) {
  2362. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2363. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2364. feedrate = max_feedrate[Z_AXIS];
  2365. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2366. st_synchronize();
  2367. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2368. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2369. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2370. {
  2371. homeaxis(X_AXIS);
  2372. homeaxis(Y_AXIS);
  2373. }
  2374. // 1st mesh bed leveling measurement point, corrected.
  2375. world2machine_initialize();
  2376. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2377. world2machine_reset();
  2378. if (destination[Y_AXIS] < Y_MIN_POS)
  2379. destination[Y_AXIS] = Y_MIN_POS;
  2380. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2381. feedrate = homing_feedrate[Z_AXIS]/10;
  2382. current_position[Z_AXIS] = 0;
  2383. enable_endstops(false);
  2384. #ifdef DEBUG_BUILD
  2385. SERIAL_ECHOLNPGM("plan_set_position()");
  2386. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2387. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2388. #endif
  2389. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2390. #ifdef DEBUG_BUILD
  2391. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2392. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2393. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2394. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2395. #endif
  2396. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2397. st_synchronize();
  2398. current_position[X_AXIS] = destination[X_AXIS];
  2399. current_position[Y_AXIS] = destination[Y_AXIS];
  2400. enable_endstops(true);
  2401. endstops_hit_on_purpose();
  2402. homeaxis(Z_AXIS);
  2403. #else // MESH_BED_LEVELING
  2404. homeaxis(Z_AXIS);
  2405. #endif // MESH_BED_LEVELING
  2406. }
  2407. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2408. if(home_all_axes) {
  2409. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2410. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2411. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2412. feedrate = XY_TRAVEL_SPEED/60;
  2413. current_position[Z_AXIS] = 0;
  2414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2415. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2416. st_synchronize();
  2417. current_position[X_AXIS] = destination[X_AXIS];
  2418. current_position[Y_AXIS] = destination[Y_AXIS];
  2419. homeaxis(Z_AXIS);
  2420. }
  2421. // Let's see if X and Y are homed and probe is inside bed area.
  2422. if(home_z) {
  2423. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2424. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2425. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2426. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2427. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2428. current_position[Z_AXIS] = 0;
  2429. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2430. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2431. feedrate = max_feedrate[Z_AXIS];
  2432. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2433. st_synchronize();
  2434. homeaxis(Z_AXIS);
  2435. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2436. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2437. SERIAL_ECHO_START;
  2438. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2439. } else {
  2440. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2441. SERIAL_ECHO_START;
  2442. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2443. }
  2444. }
  2445. #endif // Z_SAFE_HOMING
  2446. #endif // Z_HOME_DIR < 0
  2447. if(home_z_axis && home_z_value != 0)
  2448. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2449. #ifdef ENABLE_AUTO_BED_LEVELING
  2450. if(home_z)
  2451. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2452. #endif
  2453. // Set the planner and stepper routine positions.
  2454. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2455. // contains the machine coordinates.
  2456. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2457. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2458. enable_endstops(false);
  2459. #endif
  2460. feedrate = saved_feedrate;
  2461. feedmultiply = saved_feedmultiply;
  2462. previous_millis_cmd = millis();
  2463. endstops_hit_on_purpose();
  2464. #ifndef MESH_BED_LEVELING
  2465. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2466. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2467. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2468. lcd_adjust_z();
  2469. #endif
  2470. // Load the machine correction matrix
  2471. world2machine_initialize();
  2472. // and correct the current_position XY axes to match the transformed coordinate system.
  2473. world2machine_update_current();
  2474. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2475. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2476. {
  2477. if (! home_z && mbl_was_active) {
  2478. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2479. mbl.active = true;
  2480. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2481. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2482. }
  2483. }
  2484. else
  2485. {
  2486. st_synchronize();
  2487. homing_flag = false;
  2488. }
  2489. #endif
  2490. if (farm_mode) { prusa_statistics(20); };
  2491. homing_flag = false;
  2492. #if 0
  2493. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2494. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2495. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2496. #endif
  2497. }
  2498. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2499. {
  2500. bool final_result = false;
  2501. #ifdef TMC2130
  2502. FORCE_HIGH_POWER_START;
  2503. #endif // TMC2130
  2504. // Only Z calibration?
  2505. if (!onlyZ)
  2506. {
  2507. setTargetBed(0);
  2508. setTargetHotend(0, 0);
  2509. setTargetHotend(0, 1);
  2510. setTargetHotend(0, 2);
  2511. adjust_bed_reset(); //reset bed level correction
  2512. }
  2513. // Disable the default update procedure of the display. We will do a modal dialog.
  2514. lcd_update_enable(false);
  2515. // Let the planner use the uncorrected coordinates.
  2516. mbl.reset();
  2517. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2518. // the planner will not perform any adjustments in the XY plane.
  2519. // Wait for the motors to stop and update the current position with the absolute values.
  2520. world2machine_revert_to_uncorrected();
  2521. // Reset the baby step value applied without moving the axes.
  2522. babystep_reset();
  2523. // Mark all axes as in a need for homing.
  2524. memset(axis_known_position, 0, sizeof(axis_known_position));
  2525. // Home in the XY plane.
  2526. //set_destination_to_current();
  2527. setup_for_endstop_move();
  2528. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2529. home_xy();
  2530. enable_endstops(false);
  2531. current_position[X_AXIS] += 5;
  2532. current_position[Y_AXIS] += 5;
  2533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2534. st_synchronize();
  2535. // Let the user move the Z axes up to the end stoppers.
  2536. #ifdef TMC2130
  2537. if (calibrate_z_auto())
  2538. {
  2539. #else //TMC2130
  2540. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2541. {
  2542. #endif //TMC2130
  2543. refresh_cmd_timeout();
  2544. #ifndef STEEL_SHEET
  2545. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2546. {
  2547. lcd_wait_for_cool_down();
  2548. }
  2549. #endif //STEEL_SHEET
  2550. if(!onlyZ)
  2551. {
  2552. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2553. #ifdef STEEL_SHEET
  2554. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2555. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2556. #endif //STEEL_SHEET
  2557. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2558. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2559. KEEPALIVE_STATE(IN_HANDLER);
  2560. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2561. lcd_implementation_print_at(0, 2, 1);
  2562. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2563. }
  2564. // Move the print head close to the bed.
  2565. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2566. bool endstops_enabled = enable_endstops(true);
  2567. #ifdef TMC2130
  2568. tmc2130_home_enter(Z_AXIS_MASK);
  2569. #endif //TMC2130
  2570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2571. st_synchronize();
  2572. #ifdef TMC2130
  2573. tmc2130_home_exit();
  2574. #endif //TMC2130
  2575. enable_endstops(endstops_enabled);
  2576. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2577. {
  2578. int8_t verbosity_level = 0;
  2579. if (code_seen('V'))
  2580. {
  2581. // Just 'V' without a number counts as V1.
  2582. char c = strchr_pointer[1];
  2583. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2584. }
  2585. if (onlyZ)
  2586. {
  2587. clean_up_after_endstop_move();
  2588. // Z only calibration.
  2589. // Load the machine correction matrix
  2590. world2machine_initialize();
  2591. // and correct the current_position to match the transformed coordinate system.
  2592. world2machine_update_current();
  2593. //FIXME
  2594. bool result = sample_mesh_and_store_reference();
  2595. if (result)
  2596. {
  2597. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2598. // Shipped, the nozzle height has been set already. The user can start printing now.
  2599. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2600. final_result = true;
  2601. // babystep_apply();
  2602. }
  2603. }
  2604. else
  2605. {
  2606. // Reset the baby step value and the baby step applied flag.
  2607. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2608. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2609. // Complete XYZ calibration.
  2610. uint8_t point_too_far_mask = 0;
  2611. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2612. clean_up_after_endstop_move();
  2613. // Print head up.
  2614. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2616. st_synchronize();
  2617. //#ifndef NEW_XYZCAL
  2618. if (result >= 0)
  2619. {
  2620. #ifdef HEATBED_V2
  2621. sample_z();
  2622. #else //HEATBED_V2
  2623. point_too_far_mask = 0;
  2624. // Second half: The fine adjustment.
  2625. // Let the planner use the uncorrected coordinates.
  2626. mbl.reset();
  2627. world2machine_reset();
  2628. // Home in the XY plane.
  2629. setup_for_endstop_move();
  2630. home_xy();
  2631. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2632. clean_up_after_endstop_move();
  2633. // Print head up.
  2634. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2636. st_synchronize();
  2637. // if (result >= 0) babystep_apply();
  2638. #endif //HEATBED_V2
  2639. }
  2640. //#endif //NEW_XYZCAL
  2641. lcd_update_enable(true);
  2642. lcd_update(2);
  2643. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2644. if (result >= 0)
  2645. {
  2646. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2647. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2648. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2649. final_result = true;
  2650. }
  2651. }
  2652. #ifdef TMC2130
  2653. tmc2130_home_exit();
  2654. #endif
  2655. }
  2656. else
  2657. {
  2658. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2659. final_result = false;
  2660. }
  2661. }
  2662. else
  2663. {
  2664. // Timeouted.
  2665. }
  2666. lcd_update_enable(true);
  2667. #ifdef TMC2130
  2668. FORCE_HIGH_POWER_END;
  2669. #endif // TMC2130
  2670. return final_result;
  2671. }
  2672. void gcode_M114()
  2673. {
  2674. SERIAL_PROTOCOLPGM("X:");
  2675. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2676. SERIAL_PROTOCOLPGM(" Y:");
  2677. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2678. SERIAL_PROTOCOLPGM(" Z:");
  2679. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2680. SERIAL_PROTOCOLPGM(" E:");
  2681. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2682. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2683. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2684. SERIAL_PROTOCOLPGM(" Y:");
  2685. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2686. SERIAL_PROTOCOLPGM(" Z:");
  2687. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2688. SERIAL_PROTOCOLPGM(" E:");
  2689. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2690. SERIAL_PROTOCOLLN("");
  2691. }
  2692. void gcode_M701()
  2693. {
  2694. #ifdef SNMM
  2695. extr_adj(snmm_extruder);//loads current extruder
  2696. #else
  2697. enable_z();
  2698. custom_message = true;
  2699. custom_message_type = 2;
  2700. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2701. current_position[E_AXIS] += 40;
  2702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2703. st_synchronize();
  2704. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2705. current_position[E_AXIS] += 30;
  2706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2707. st_synchronize();
  2708. current_position[E_AXIS] += 25;
  2709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2710. st_synchronize();
  2711. tone(BEEPER, 500);
  2712. delay_keep_alive(50);
  2713. noTone(BEEPER);
  2714. if (!farm_mode && loading_flag) {
  2715. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2716. while (!clean) {
  2717. lcd_update_enable(true);
  2718. lcd_update(2);
  2719. current_position[E_AXIS] += 25;
  2720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2721. st_synchronize();
  2722. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2723. }
  2724. }
  2725. lcd_update_enable(true);
  2726. lcd_update(2);
  2727. lcd_setstatuspgm(_T(WELCOME_MSG));
  2728. disable_z();
  2729. loading_flag = false;
  2730. custom_message = false;
  2731. custom_message_type = 0;
  2732. #endif
  2733. }
  2734. /**
  2735. * @brief Get serial number from 32U2 processor
  2736. *
  2737. * Typical format of S/N is:CZPX0917X003XC13518
  2738. *
  2739. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2740. *
  2741. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2742. * reply is transmitted to serial port 1 character by character.
  2743. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2744. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2745. * in any case.
  2746. */
  2747. static void gcode_PRUSA_SN()
  2748. {
  2749. if (farm_mode) {
  2750. selectedSerialPort = 0;
  2751. putchar(';');
  2752. putchar('S');
  2753. int numbersRead = 0;
  2754. ShortTimer timeout;
  2755. timeout.start();
  2756. while (numbersRead < 19) {
  2757. while (MSerial.available() > 0) {
  2758. uint8_t serial_char = MSerial.read();
  2759. selectedSerialPort = 1;
  2760. putchar(serial_char);
  2761. numbersRead++;
  2762. selectedSerialPort = 0;
  2763. }
  2764. if (timeout.expired(100u)) break;
  2765. }
  2766. selectedSerialPort = 1;
  2767. putchar('\n');
  2768. #if 0
  2769. for (int b = 0; b < 3; b++) {
  2770. tone(BEEPER, 110);
  2771. delay(50);
  2772. noTone(BEEPER);
  2773. delay(50);
  2774. }
  2775. #endif
  2776. } else {
  2777. puts_P(_N("Not in farm mode."));
  2778. }
  2779. }
  2780. void process_commands()
  2781. {
  2782. if (!buflen) return; //empty command
  2783. #ifdef FILAMENT_RUNOUT_SUPPORT
  2784. SET_INPUT(FR_SENS);
  2785. #endif
  2786. #ifdef CMDBUFFER_DEBUG
  2787. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2788. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2789. SERIAL_ECHOLNPGM("");
  2790. SERIAL_ECHOPGM("In cmdqueue: ");
  2791. SERIAL_ECHO(buflen);
  2792. SERIAL_ECHOLNPGM("");
  2793. #endif /* CMDBUFFER_DEBUG */
  2794. unsigned long codenum; //throw away variable
  2795. char *starpos = NULL;
  2796. #ifdef ENABLE_AUTO_BED_LEVELING
  2797. float x_tmp, y_tmp, z_tmp, real_z;
  2798. #endif
  2799. // PRUSA GCODES
  2800. KEEPALIVE_STATE(IN_HANDLER);
  2801. #ifdef SNMM
  2802. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2803. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2804. int8_t SilentMode;
  2805. #endif
  2806. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2807. starpos = (strchr(strchr_pointer + 5, '*'));
  2808. if (starpos != NULL)
  2809. *(starpos) = '\0';
  2810. lcd_setstatus(strchr_pointer + 5);
  2811. }
  2812. #ifdef TMC2130
  2813. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2814. {
  2815. if(code_seen("CRASH_DETECTED"))
  2816. {
  2817. uint8_t mask = 0;
  2818. if (code_seen("X")) mask |= X_AXIS_MASK;
  2819. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2820. crashdet_detected(mask);
  2821. }
  2822. else if(code_seen("CRASH_RECOVER"))
  2823. crashdet_recover();
  2824. else if(code_seen("CRASH_CANCEL"))
  2825. crashdet_cancel();
  2826. }
  2827. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2828. {
  2829. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2830. {
  2831. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2832. axis = (axis == 'E')?3:(axis - 'X');
  2833. if (axis < 4)
  2834. {
  2835. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2836. tmc2130_set_wave(axis, 247, fac);
  2837. }
  2838. }
  2839. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2840. {
  2841. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2842. axis = (axis == 'E')?3:(axis - 'X');
  2843. if (axis < 4)
  2844. {
  2845. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2846. uint16_t res = tmc2130_get_res(axis);
  2847. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2848. }
  2849. }
  2850. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2851. {
  2852. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2853. axis = (axis == 'E')?3:(axis - 'X');
  2854. if (axis < 4)
  2855. {
  2856. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2857. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2858. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2859. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2860. char* str_end = 0;
  2861. if (CMDBUFFER_CURRENT_STRING[14])
  2862. {
  2863. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2864. if (str_end && *str_end)
  2865. {
  2866. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2867. if (str_end && *str_end)
  2868. {
  2869. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2870. if (str_end && *str_end)
  2871. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2872. }
  2873. }
  2874. }
  2875. tmc2130_chopper_config[axis].toff = chop0;
  2876. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2877. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2878. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2879. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2880. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2881. }
  2882. }
  2883. }
  2884. #endif //TMC2130
  2885. else if(code_seen("PRUSA")){
  2886. if (code_seen("Ping")) { //PRUSA Ping
  2887. if (farm_mode) {
  2888. PingTime = millis();
  2889. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2890. }
  2891. }
  2892. else if (code_seen("PRN")) {
  2893. printf_P(_N("%d"), status_number);
  2894. }else if (code_seen("FAN")) {
  2895. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2896. }else if (code_seen("fn")) {
  2897. if (farm_mode) {
  2898. printf_P(_N("%d"), farm_no);
  2899. }
  2900. else {
  2901. puts_P(_N("Not in farm mode."));
  2902. }
  2903. }
  2904. else if (code_seen("thx")) {
  2905. no_response = false;
  2906. } else if (code_seen("RESET")) {
  2907. // careful!
  2908. if (farm_mode) {
  2909. #ifdef WATCHDOG
  2910. boot_app_magic = BOOT_APP_MAGIC;
  2911. boot_app_flags = BOOT_APP_FLG_RUN;
  2912. wdt_enable(WDTO_15MS);
  2913. cli();
  2914. while(1);
  2915. #else //WATCHDOG
  2916. asm volatile("jmp 0x3E000");
  2917. #endif //WATCHDOG
  2918. }
  2919. else {
  2920. MYSERIAL.println("Not in farm mode.");
  2921. }
  2922. }else if (code_seen("fv")) {
  2923. // get file version
  2924. #ifdef SDSUPPORT
  2925. card.openFile(strchr_pointer + 3,true);
  2926. while (true) {
  2927. uint16_t readByte = card.get();
  2928. MYSERIAL.write(readByte);
  2929. if (readByte=='\n') {
  2930. break;
  2931. }
  2932. }
  2933. card.closefile();
  2934. #endif // SDSUPPORT
  2935. } else if (code_seen("M28")) {
  2936. trace();
  2937. prusa_sd_card_upload = true;
  2938. card.openFile(strchr_pointer+4,false);
  2939. } else if (code_seen("SN")) {
  2940. gcode_PRUSA_SN();
  2941. } else if(code_seen("Fir")){
  2942. SERIAL_PROTOCOLLN(FW_VERSION);
  2943. } else if(code_seen("Rev")){
  2944. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2945. } else if(code_seen("Lang")) {
  2946. lang_reset();
  2947. } else if(code_seen("Lz")) {
  2948. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2949. } else if(code_seen("Beat")) {
  2950. // Kick farm link timer
  2951. kicktime = millis();
  2952. } else if(code_seen("FR")) {
  2953. // Factory full reset
  2954. factory_reset(0,true);
  2955. }
  2956. //else if (code_seen('Cal')) {
  2957. // lcd_calibration();
  2958. // }
  2959. }
  2960. else if (code_seen('^')) {
  2961. // nothing, this is a version line
  2962. } else if(code_seen('G'))
  2963. {
  2964. switch((int)code_value())
  2965. {
  2966. case 0: // G0 -> G1
  2967. case 1: // G1
  2968. if(Stopped == false) {
  2969. #ifdef FILAMENT_RUNOUT_SUPPORT
  2970. if(READ(FR_SENS)){
  2971. feedmultiplyBckp=feedmultiply;
  2972. float target[4];
  2973. float lastpos[4];
  2974. target[X_AXIS]=current_position[X_AXIS];
  2975. target[Y_AXIS]=current_position[Y_AXIS];
  2976. target[Z_AXIS]=current_position[Z_AXIS];
  2977. target[E_AXIS]=current_position[E_AXIS];
  2978. lastpos[X_AXIS]=current_position[X_AXIS];
  2979. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2980. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2981. lastpos[E_AXIS]=current_position[E_AXIS];
  2982. //retract by E
  2983. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2984. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2985. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2986. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2987. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2988. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2990. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2992. //finish moves
  2993. st_synchronize();
  2994. //disable extruder steppers so filament can be removed
  2995. disable_e0();
  2996. disable_e1();
  2997. disable_e2();
  2998. delay(100);
  2999. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3000. uint8_t cnt=0;
  3001. int counterBeep = 0;
  3002. lcd_wait_interact();
  3003. while(!lcd_clicked()){
  3004. cnt++;
  3005. manage_heater();
  3006. manage_inactivity(true);
  3007. //lcd_update();
  3008. if(cnt==0)
  3009. {
  3010. #if BEEPER > 0
  3011. if (counterBeep== 500){
  3012. counterBeep = 0;
  3013. }
  3014. SET_OUTPUT(BEEPER);
  3015. if (counterBeep== 0){
  3016. WRITE(BEEPER,HIGH);
  3017. }
  3018. if (counterBeep== 20){
  3019. WRITE(BEEPER,LOW);
  3020. }
  3021. counterBeep++;
  3022. #else
  3023. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3024. lcd_buzz(1000/6,100);
  3025. #else
  3026. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3027. #endif
  3028. #endif
  3029. }
  3030. }
  3031. WRITE(BEEPER,LOW);
  3032. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3033. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3034. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3036. lcd_change_fil_state = 0;
  3037. lcd_loading_filament();
  3038. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3039. lcd_change_fil_state = 0;
  3040. lcd_alright();
  3041. switch(lcd_change_fil_state){
  3042. case 2:
  3043. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3044. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3045. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3047. lcd_loading_filament();
  3048. break;
  3049. case 3:
  3050. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3052. lcd_loading_color();
  3053. break;
  3054. default:
  3055. lcd_change_success();
  3056. break;
  3057. }
  3058. }
  3059. target[E_AXIS]+= 5;
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3061. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3062. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3063. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3064. //plan_set_e_position(current_position[E_AXIS]);
  3065. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3066. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3067. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3068. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3069. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3070. plan_set_e_position(lastpos[E_AXIS]);
  3071. feedmultiply=feedmultiplyBckp;
  3072. char cmd[9];
  3073. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3074. enquecommand(cmd);
  3075. }
  3076. #endif
  3077. get_coordinates(); // For X Y Z E F
  3078. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3079. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3080. }
  3081. #ifdef FWRETRACT
  3082. if(autoretract_enabled)
  3083. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3084. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3085. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3086. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3087. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3088. retract(!retracted[active_extruder]);
  3089. return;
  3090. }
  3091. }
  3092. #endif //FWRETRACT
  3093. prepare_move();
  3094. //ClearToSend();
  3095. }
  3096. break;
  3097. case 2: // G2 - CW ARC
  3098. if(Stopped == false) {
  3099. get_arc_coordinates();
  3100. prepare_arc_move(true);
  3101. }
  3102. break;
  3103. case 3: // G3 - CCW ARC
  3104. if(Stopped == false) {
  3105. get_arc_coordinates();
  3106. prepare_arc_move(false);
  3107. }
  3108. break;
  3109. case 4: // G4 dwell
  3110. codenum = 0;
  3111. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3112. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3113. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3114. st_synchronize();
  3115. codenum += millis(); // keep track of when we started waiting
  3116. previous_millis_cmd = millis();
  3117. while(millis() < codenum) {
  3118. manage_heater();
  3119. manage_inactivity();
  3120. lcd_update();
  3121. }
  3122. break;
  3123. #ifdef FWRETRACT
  3124. case 10: // G10 retract
  3125. #if EXTRUDERS > 1
  3126. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3127. retract(true,retracted_swap[active_extruder]);
  3128. #else
  3129. retract(true);
  3130. #endif
  3131. break;
  3132. case 11: // G11 retract_recover
  3133. #if EXTRUDERS > 1
  3134. retract(false,retracted_swap[active_extruder]);
  3135. #else
  3136. retract(false);
  3137. #endif
  3138. break;
  3139. #endif //FWRETRACT
  3140. case 28: //G28 Home all Axis one at a time
  3141. {
  3142. long home_x_value = 0;
  3143. long home_y_value = 0;
  3144. long home_z_value = 0;
  3145. // Which axes should be homed?
  3146. bool home_x = code_seen(axis_codes[X_AXIS]);
  3147. home_x_value = code_value_long();
  3148. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3149. home_y_value = code_value_long();
  3150. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3151. home_z_value = code_value_long();
  3152. bool without_mbl = code_seen('W');
  3153. // calibrate?
  3154. bool calib = code_seen('C');
  3155. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3156. if ((home_x || home_y || without_mbl || home_z) == false) {
  3157. // Push the commands to the front of the message queue in the reverse order!
  3158. // There shall be always enough space reserved for these commands.
  3159. goto case_G80;
  3160. }
  3161. break;
  3162. }
  3163. #ifdef ENABLE_AUTO_BED_LEVELING
  3164. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3165. {
  3166. #if Z_MIN_PIN == -1
  3167. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3168. #endif
  3169. // Prevent user from running a G29 without first homing in X and Y
  3170. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3171. {
  3172. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3173. SERIAL_ECHO_START;
  3174. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3175. break; // abort G29, since we don't know where we are
  3176. }
  3177. st_synchronize();
  3178. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3179. //vector_3 corrected_position = plan_get_position_mm();
  3180. //corrected_position.debug("position before G29");
  3181. plan_bed_level_matrix.set_to_identity();
  3182. vector_3 uncorrected_position = plan_get_position();
  3183. //uncorrected_position.debug("position durring G29");
  3184. current_position[X_AXIS] = uncorrected_position.x;
  3185. current_position[Y_AXIS] = uncorrected_position.y;
  3186. current_position[Z_AXIS] = uncorrected_position.z;
  3187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3188. setup_for_endstop_move();
  3189. feedrate = homing_feedrate[Z_AXIS];
  3190. #ifdef AUTO_BED_LEVELING_GRID
  3191. // probe at the points of a lattice grid
  3192. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3193. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3194. // solve the plane equation ax + by + d = z
  3195. // A is the matrix with rows [x y 1] for all the probed points
  3196. // B is the vector of the Z positions
  3197. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3198. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3199. // "A" matrix of the linear system of equations
  3200. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3201. // "B" vector of Z points
  3202. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3203. int probePointCounter = 0;
  3204. bool zig = true;
  3205. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3206. {
  3207. int xProbe, xInc;
  3208. if (zig)
  3209. {
  3210. xProbe = LEFT_PROBE_BED_POSITION;
  3211. //xEnd = RIGHT_PROBE_BED_POSITION;
  3212. xInc = xGridSpacing;
  3213. zig = false;
  3214. } else // zag
  3215. {
  3216. xProbe = RIGHT_PROBE_BED_POSITION;
  3217. //xEnd = LEFT_PROBE_BED_POSITION;
  3218. xInc = -xGridSpacing;
  3219. zig = true;
  3220. }
  3221. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3222. {
  3223. float z_before;
  3224. if (probePointCounter == 0)
  3225. {
  3226. // raise before probing
  3227. z_before = Z_RAISE_BEFORE_PROBING;
  3228. } else
  3229. {
  3230. // raise extruder
  3231. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3232. }
  3233. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3234. eqnBVector[probePointCounter] = measured_z;
  3235. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3236. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3237. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3238. probePointCounter++;
  3239. xProbe += xInc;
  3240. }
  3241. }
  3242. clean_up_after_endstop_move();
  3243. // solve lsq problem
  3244. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3245. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3246. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3247. SERIAL_PROTOCOLPGM(" b: ");
  3248. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3249. SERIAL_PROTOCOLPGM(" d: ");
  3250. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3251. set_bed_level_equation_lsq(plane_equation_coefficients);
  3252. free(plane_equation_coefficients);
  3253. #else // AUTO_BED_LEVELING_GRID not defined
  3254. // Probe at 3 arbitrary points
  3255. // probe 1
  3256. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3257. // probe 2
  3258. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3259. // probe 3
  3260. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3261. clean_up_after_endstop_move();
  3262. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3263. #endif // AUTO_BED_LEVELING_GRID
  3264. st_synchronize();
  3265. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3266. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3267. // When the bed is uneven, this height must be corrected.
  3268. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3269. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3270. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3271. z_tmp = current_position[Z_AXIS];
  3272. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3273. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3275. }
  3276. break;
  3277. #ifndef Z_PROBE_SLED
  3278. case 30: // G30 Single Z Probe
  3279. {
  3280. st_synchronize();
  3281. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3282. setup_for_endstop_move();
  3283. feedrate = homing_feedrate[Z_AXIS];
  3284. run_z_probe();
  3285. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3286. SERIAL_PROTOCOLPGM(" X: ");
  3287. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3288. SERIAL_PROTOCOLPGM(" Y: ");
  3289. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3290. SERIAL_PROTOCOLPGM(" Z: ");
  3291. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3292. SERIAL_PROTOCOLPGM("\n");
  3293. clean_up_after_endstop_move();
  3294. }
  3295. break;
  3296. #else
  3297. case 31: // dock the sled
  3298. dock_sled(true);
  3299. break;
  3300. case 32: // undock the sled
  3301. dock_sled(false);
  3302. break;
  3303. #endif // Z_PROBE_SLED
  3304. #endif // ENABLE_AUTO_BED_LEVELING
  3305. #ifdef MESH_BED_LEVELING
  3306. case 30: // G30 Single Z Probe
  3307. {
  3308. st_synchronize();
  3309. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3310. setup_for_endstop_move();
  3311. feedrate = homing_feedrate[Z_AXIS];
  3312. find_bed_induction_sensor_point_z(-10.f, 3);
  3313. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3314. clean_up_after_endstop_move();
  3315. }
  3316. break;
  3317. case 75:
  3318. {
  3319. for (int i = 40; i <= 110; i++)
  3320. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3321. }
  3322. break;
  3323. case 76: //PINDA probe temperature calibration
  3324. {
  3325. #ifdef PINDA_THERMISTOR
  3326. if (true)
  3327. {
  3328. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3329. //we need to know accurate position of first calibration point
  3330. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3331. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3332. break;
  3333. }
  3334. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3335. {
  3336. // We don't know where we are! HOME!
  3337. // Push the commands to the front of the message queue in the reverse order!
  3338. // There shall be always enough space reserved for these commands.
  3339. repeatcommand_front(); // repeat G76 with all its parameters
  3340. enquecommand_front_P((PSTR("G28 W0")));
  3341. break;
  3342. }
  3343. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3344. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3345. if (result)
  3346. {
  3347. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3348. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3349. current_position[Z_AXIS] = 50;
  3350. current_position[Y_AXIS] = 180;
  3351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3352. st_synchronize();
  3353. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3354. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3355. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3357. st_synchronize();
  3358. gcode_G28(false, false, true);
  3359. }
  3360. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3361. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3362. current_position[Z_AXIS] = 100;
  3363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3364. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3365. lcd_temp_cal_show_result(false);
  3366. break;
  3367. }
  3368. }
  3369. lcd_update_enable(true);
  3370. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3371. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3372. float zero_z;
  3373. int z_shift = 0; //unit: steps
  3374. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3375. if (start_temp < 35) start_temp = 35;
  3376. if (start_temp < current_temperature_pinda) start_temp += 5;
  3377. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3378. // setTargetHotend(200, 0);
  3379. setTargetBed(70 + (start_temp - 30));
  3380. custom_message = true;
  3381. custom_message_type = 4;
  3382. custom_message_state = 1;
  3383. custom_message = _T(MSG_TEMP_CALIBRATION);
  3384. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3386. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3387. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3389. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3391. st_synchronize();
  3392. while (current_temperature_pinda < start_temp)
  3393. {
  3394. delay_keep_alive(1000);
  3395. serialecho_temperatures();
  3396. }
  3397. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3398. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3400. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3401. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3403. st_synchronize();
  3404. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3405. if (find_z_result == false) {
  3406. lcd_temp_cal_show_result(find_z_result);
  3407. break;
  3408. }
  3409. zero_z = current_position[Z_AXIS];
  3410. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3411. int i = -1; for (; i < 5; i++)
  3412. {
  3413. float temp = (40 + i * 5);
  3414. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3415. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3416. if (start_temp <= temp) break;
  3417. }
  3418. for (i++; i < 5; i++)
  3419. {
  3420. float temp = (40 + i * 5);
  3421. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3422. custom_message_state = i + 2;
  3423. setTargetBed(50 + 10 * (temp - 30) / 5);
  3424. // setTargetHotend(255, 0);
  3425. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3427. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3428. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3429. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3430. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3432. st_synchronize();
  3433. while (current_temperature_pinda < temp)
  3434. {
  3435. delay_keep_alive(1000);
  3436. serialecho_temperatures();
  3437. }
  3438. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3440. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3441. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3443. st_synchronize();
  3444. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3445. if (find_z_result == false) {
  3446. lcd_temp_cal_show_result(find_z_result);
  3447. break;
  3448. }
  3449. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3450. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3451. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3452. }
  3453. lcd_temp_cal_show_result(true);
  3454. break;
  3455. }
  3456. #endif //PINDA_THERMISTOR
  3457. setTargetBed(PINDA_MIN_T);
  3458. float zero_z;
  3459. int z_shift = 0; //unit: steps
  3460. int t_c; // temperature
  3461. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3462. // We don't know where we are! HOME!
  3463. // Push the commands to the front of the message queue in the reverse order!
  3464. // There shall be always enough space reserved for these commands.
  3465. repeatcommand_front(); // repeat G76 with all its parameters
  3466. enquecommand_front_P((PSTR("G28 W0")));
  3467. break;
  3468. }
  3469. puts_P(_N("PINDA probe calibration start"));
  3470. custom_message = true;
  3471. custom_message_type = 4;
  3472. custom_message_state = 1;
  3473. custom_message = _T(MSG_TEMP_CALIBRATION);
  3474. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3475. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3476. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3478. st_synchronize();
  3479. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3480. delay_keep_alive(1000);
  3481. serialecho_temperatures();
  3482. }
  3483. //enquecommand_P(PSTR("M190 S50"));
  3484. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3485. delay_keep_alive(1000);
  3486. serialecho_temperatures();
  3487. }
  3488. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3489. current_position[Z_AXIS] = 5;
  3490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3491. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3492. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3494. st_synchronize();
  3495. find_bed_induction_sensor_point_z(-1.f);
  3496. zero_z = current_position[Z_AXIS];
  3497. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3498. for (int i = 0; i<5; i++) {
  3499. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3500. custom_message_state = i + 2;
  3501. t_c = 60 + i * 10;
  3502. setTargetBed(t_c);
  3503. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3504. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3505. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3507. st_synchronize();
  3508. while (degBed() < t_c) {
  3509. delay_keep_alive(1000);
  3510. serialecho_temperatures();
  3511. }
  3512. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3513. delay_keep_alive(1000);
  3514. serialecho_temperatures();
  3515. }
  3516. current_position[Z_AXIS] = 5;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3519. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3521. st_synchronize();
  3522. find_bed_induction_sensor_point_z(-1.f);
  3523. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3524. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3525. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3526. }
  3527. custom_message_type = 0;
  3528. custom_message = false;
  3529. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3530. puts_P(_N("Temperature calibration done."));
  3531. disable_x();
  3532. disable_y();
  3533. disable_z();
  3534. disable_e0();
  3535. disable_e1();
  3536. disable_e2();
  3537. setTargetBed(0); //set bed target temperature back to 0
  3538. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3539. temp_cal_active = true;
  3540. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3541. lcd_update_enable(true);
  3542. lcd_update(2);
  3543. }
  3544. break;
  3545. #ifdef DIS
  3546. case 77:
  3547. {
  3548. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3549. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3550. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3551. float dimension_x = 40;
  3552. float dimension_y = 40;
  3553. int points_x = 40;
  3554. int points_y = 40;
  3555. float offset_x = 74;
  3556. float offset_y = 33;
  3557. if (code_seen('X')) dimension_x = code_value();
  3558. if (code_seen('Y')) dimension_y = code_value();
  3559. if (code_seen('XP')) points_x = code_value();
  3560. if (code_seen('YP')) points_y = code_value();
  3561. if (code_seen('XO')) offset_x = code_value();
  3562. if (code_seen('YO')) offset_y = code_value();
  3563. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3564. } break;
  3565. #endif
  3566. case 79: {
  3567. for (int i = 255; i > 0; i = i - 5) {
  3568. fanSpeed = i;
  3569. //delay_keep_alive(2000);
  3570. for (int j = 0; j < 100; j++) {
  3571. delay_keep_alive(100);
  3572. }
  3573. fan_speed[1];
  3574. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3575. }
  3576. }break;
  3577. /**
  3578. * G80: Mesh-based Z probe, probes a grid and produces a
  3579. * mesh to compensate for variable bed height
  3580. *
  3581. * The S0 report the points as below
  3582. *
  3583. * +----> X-axis
  3584. * |
  3585. * |
  3586. * v Y-axis
  3587. *
  3588. */
  3589. case 80:
  3590. #ifdef MK1BP
  3591. break;
  3592. #endif //MK1BP
  3593. case_G80:
  3594. {
  3595. mesh_bed_leveling_flag = true;
  3596. int8_t verbosity_level = 0;
  3597. static bool run = false;
  3598. if (code_seen('V')) {
  3599. // Just 'V' without a number counts as V1.
  3600. char c = strchr_pointer[1];
  3601. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3602. }
  3603. // Firstly check if we know where we are
  3604. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3605. // We don't know where we are! HOME!
  3606. // Push the commands to the front of the message queue in the reverse order!
  3607. // There shall be always enough space reserved for these commands.
  3608. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3609. repeatcommand_front(); // repeat G80 with all its parameters
  3610. enquecommand_front_P((PSTR("G28 W0")));
  3611. }
  3612. else {
  3613. mesh_bed_leveling_flag = false;
  3614. }
  3615. break;
  3616. }
  3617. bool temp_comp_start = true;
  3618. #ifdef PINDA_THERMISTOR
  3619. temp_comp_start = false;
  3620. #endif //PINDA_THERMISTOR
  3621. if (temp_comp_start)
  3622. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3623. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3624. temp_compensation_start();
  3625. run = true;
  3626. repeatcommand_front(); // repeat G80 with all its parameters
  3627. enquecommand_front_P((PSTR("G28 W0")));
  3628. }
  3629. else {
  3630. mesh_bed_leveling_flag = false;
  3631. }
  3632. break;
  3633. }
  3634. run = false;
  3635. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3636. mesh_bed_leveling_flag = false;
  3637. break;
  3638. }
  3639. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3640. bool custom_message_old = custom_message;
  3641. unsigned int custom_message_type_old = custom_message_type;
  3642. unsigned int custom_message_state_old = custom_message_state;
  3643. custom_message = true;
  3644. custom_message_type = 1;
  3645. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3646. lcd_update(1);
  3647. mbl.reset(); //reset mesh bed leveling
  3648. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3649. // consumed during the first movements following this statement.
  3650. babystep_undo();
  3651. // Cycle through all points and probe them
  3652. // First move up. During this first movement, the babystepping will be reverted.
  3653. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3655. // The move to the first calibration point.
  3656. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3657. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3658. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3659. #ifdef SUPPORT_VERBOSITY
  3660. if (verbosity_level >= 1) {
  3661. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3662. }
  3663. #endif //SUPPORT_VERBOSITY
  3664. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3666. // Wait until the move is finished.
  3667. st_synchronize();
  3668. int mesh_point = 0; //index number of calibration point
  3669. int ix = 0;
  3670. int iy = 0;
  3671. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3672. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3673. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3674. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3675. #ifdef SUPPORT_VERBOSITY
  3676. if (verbosity_level >= 1) {
  3677. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3678. }
  3679. #endif // SUPPORT_VERBOSITY
  3680. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3681. const char *kill_message = NULL;
  3682. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3683. // Get coords of a measuring point.
  3684. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3685. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3686. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3687. float z0 = 0.f;
  3688. if (has_z && mesh_point > 0) {
  3689. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3690. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3691. //#if 0
  3692. #ifdef SUPPORT_VERBOSITY
  3693. if (verbosity_level >= 1) {
  3694. SERIAL_ECHOLNPGM("");
  3695. SERIAL_ECHOPGM("Bed leveling, point: ");
  3696. MYSERIAL.print(mesh_point);
  3697. SERIAL_ECHOPGM(", calibration z: ");
  3698. MYSERIAL.print(z0, 5);
  3699. SERIAL_ECHOLNPGM("");
  3700. }
  3701. #endif // SUPPORT_VERBOSITY
  3702. //#endif
  3703. }
  3704. // Move Z up to MESH_HOME_Z_SEARCH.
  3705. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3707. st_synchronize();
  3708. // Move to XY position of the sensor point.
  3709. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3710. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3711. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3712. #ifdef SUPPORT_VERBOSITY
  3713. if (verbosity_level >= 1) {
  3714. SERIAL_PROTOCOL(mesh_point);
  3715. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3716. }
  3717. #endif // SUPPORT_VERBOSITY
  3718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3719. st_synchronize();
  3720. // Go down until endstop is hit
  3721. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3722. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3723. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3724. break;
  3725. }
  3726. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3727. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3728. break;
  3729. }
  3730. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3731. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3732. break;
  3733. }
  3734. #ifdef SUPPORT_VERBOSITY
  3735. if (verbosity_level >= 10) {
  3736. SERIAL_ECHOPGM("X: ");
  3737. MYSERIAL.print(current_position[X_AXIS], 5);
  3738. SERIAL_ECHOLNPGM("");
  3739. SERIAL_ECHOPGM("Y: ");
  3740. MYSERIAL.print(current_position[Y_AXIS], 5);
  3741. SERIAL_PROTOCOLPGM("\n");
  3742. }
  3743. #endif // SUPPORT_VERBOSITY
  3744. float offset_z = 0;
  3745. #ifdef PINDA_THERMISTOR
  3746. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3747. #endif //PINDA_THERMISTOR
  3748. // #ifdef SUPPORT_VERBOSITY
  3749. /* if (verbosity_level >= 1)
  3750. {
  3751. SERIAL_ECHOPGM("mesh bed leveling: ");
  3752. MYSERIAL.print(current_position[Z_AXIS], 5);
  3753. SERIAL_ECHOPGM(" offset: ");
  3754. MYSERIAL.print(offset_z, 5);
  3755. SERIAL_ECHOLNPGM("");
  3756. }*/
  3757. // #endif // SUPPORT_VERBOSITY
  3758. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3759. custom_message_state--;
  3760. mesh_point++;
  3761. lcd_update(1);
  3762. }
  3763. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3764. #ifdef SUPPORT_VERBOSITY
  3765. if (verbosity_level >= 20) {
  3766. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3767. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3768. MYSERIAL.print(current_position[Z_AXIS], 5);
  3769. }
  3770. #endif // SUPPORT_VERBOSITY
  3771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3772. st_synchronize();
  3773. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3774. kill(kill_message);
  3775. SERIAL_ECHOLNPGM("killed");
  3776. }
  3777. clean_up_after_endstop_move();
  3778. // SERIAL_ECHOLNPGM("clean up finished ");
  3779. bool apply_temp_comp = true;
  3780. #ifdef PINDA_THERMISTOR
  3781. apply_temp_comp = false;
  3782. #endif
  3783. if (apply_temp_comp)
  3784. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3785. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3786. // SERIAL_ECHOLNPGM("babystep applied");
  3787. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3788. #ifdef SUPPORT_VERBOSITY
  3789. if (verbosity_level >= 1) {
  3790. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3791. }
  3792. #endif // SUPPORT_VERBOSITY
  3793. for (uint8_t i = 0; i < 4; ++i) {
  3794. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3795. long correction = 0;
  3796. if (code_seen(codes[i]))
  3797. correction = code_value_long();
  3798. else if (eeprom_bed_correction_valid) {
  3799. unsigned char *addr = (i < 2) ?
  3800. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3801. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3802. correction = eeprom_read_int8(addr);
  3803. }
  3804. if (correction == 0)
  3805. continue;
  3806. float offset = float(correction) * 0.001f;
  3807. if (fabs(offset) > 0.101f) {
  3808. SERIAL_ERROR_START;
  3809. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3810. SERIAL_ECHO(offset);
  3811. SERIAL_ECHOLNPGM(" microns");
  3812. }
  3813. else {
  3814. switch (i) {
  3815. case 0:
  3816. for (uint8_t row = 0; row < 3; ++row) {
  3817. mbl.z_values[row][1] += 0.5f * offset;
  3818. mbl.z_values[row][0] += offset;
  3819. }
  3820. break;
  3821. case 1:
  3822. for (uint8_t row = 0; row < 3; ++row) {
  3823. mbl.z_values[row][1] += 0.5f * offset;
  3824. mbl.z_values[row][2] += offset;
  3825. }
  3826. break;
  3827. case 2:
  3828. for (uint8_t col = 0; col < 3; ++col) {
  3829. mbl.z_values[1][col] += 0.5f * offset;
  3830. mbl.z_values[0][col] += offset;
  3831. }
  3832. break;
  3833. case 3:
  3834. for (uint8_t col = 0; col < 3; ++col) {
  3835. mbl.z_values[1][col] += 0.5f * offset;
  3836. mbl.z_values[2][col] += offset;
  3837. }
  3838. break;
  3839. }
  3840. }
  3841. }
  3842. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3843. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3844. // SERIAL_ECHOLNPGM("Upsample finished");
  3845. mbl.active = 1; //activate mesh bed leveling
  3846. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3847. go_home_with_z_lift();
  3848. // SERIAL_ECHOLNPGM("Go home finished");
  3849. //unretract (after PINDA preheat retraction)
  3850. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3851. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3853. }
  3854. KEEPALIVE_STATE(NOT_BUSY);
  3855. // Restore custom message state
  3856. lcd_setstatuspgm(_T(WELCOME_MSG));
  3857. custom_message = custom_message_old;
  3858. custom_message_type = custom_message_type_old;
  3859. custom_message_state = custom_message_state_old;
  3860. mesh_bed_leveling_flag = false;
  3861. mesh_bed_run_from_menu = false;
  3862. lcd_update(2);
  3863. }
  3864. break;
  3865. /**
  3866. * G81: Print mesh bed leveling status and bed profile if activated
  3867. */
  3868. case 81:
  3869. if (mbl.active) {
  3870. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3871. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3872. SERIAL_PROTOCOLPGM(",");
  3873. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3874. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3875. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3876. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3877. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3878. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3879. SERIAL_PROTOCOLPGM(" ");
  3880. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3881. }
  3882. SERIAL_PROTOCOLPGM("\n");
  3883. }
  3884. }
  3885. else
  3886. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3887. break;
  3888. #if 0
  3889. /**
  3890. * G82: Single Z probe at current location
  3891. *
  3892. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3893. *
  3894. */
  3895. case 82:
  3896. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3897. setup_for_endstop_move();
  3898. find_bed_induction_sensor_point_z();
  3899. clean_up_after_endstop_move();
  3900. SERIAL_PROTOCOLPGM("Bed found at: ");
  3901. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3902. SERIAL_PROTOCOLPGM("\n");
  3903. break;
  3904. /**
  3905. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3906. */
  3907. case 83:
  3908. {
  3909. int babystepz = code_seen('S') ? code_value() : 0;
  3910. int BabyPosition = code_seen('P') ? code_value() : 0;
  3911. if (babystepz != 0) {
  3912. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3913. // Is the axis indexed starting with zero or one?
  3914. if (BabyPosition > 4) {
  3915. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3916. }else{
  3917. // Save it to the eeprom
  3918. babystepLoadZ = babystepz;
  3919. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3920. // adjust the Z
  3921. babystepsTodoZadd(babystepLoadZ);
  3922. }
  3923. }
  3924. }
  3925. break;
  3926. /**
  3927. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3928. */
  3929. case 84:
  3930. babystepsTodoZsubtract(babystepLoadZ);
  3931. // babystepLoadZ = 0;
  3932. break;
  3933. /**
  3934. * G85: Prusa3D specific: Pick best babystep
  3935. */
  3936. case 85:
  3937. lcd_pick_babystep();
  3938. break;
  3939. #endif
  3940. /**
  3941. * G86: Prusa3D specific: Disable babystep correction after home.
  3942. * This G-code will be performed at the start of a calibration script.
  3943. */
  3944. case 86:
  3945. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3946. break;
  3947. /**
  3948. * G87: Prusa3D specific: Enable babystep correction after home
  3949. * This G-code will be performed at the end of a calibration script.
  3950. */
  3951. case 87:
  3952. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3953. break;
  3954. /**
  3955. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3956. */
  3957. case 88:
  3958. break;
  3959. #endif // ENABLE_MESH_BED_LEVELING
  3960. case 90: // G90
  3961. relative_mode = false;
  3962. break;
  3963. case 91: // G91
  3964. relative_mode = true;
  3965. break;
  3966. case 92: // G92
  3967. if(!code_seen(axis_codes[E_AXIS]))
  3968. st_synchronize();
  3969. for(int8_t i=0; i < NUM_AXIS; i++) {
  3970. if(code_seen(axis_codes[i])) {
  3971. if(i == E_AXIS) {
  3972. current_position[i] = code_value();
  3973. plan_set_e_position(current_position[E_AXIS]);
  3974. }
  3975. else {
  3976. current_position[i] = code_value()+add_homing[i];
  3977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3978. }
  3979. }
  3980. }
  3981. break;
  3982. case 98: // G98 (activate farm mode)
  3983. farm_mode = 1;
  3984. PingTime = millis();
  3985. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3986. SilentModeMenu = SILENT_MODE_OFF;
  3987. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3988. break;
  3989. case 99: // G99 (deactivate farm mode)
  3990. farm_mode = 0;
  3991. lcd_printer_connected();
  3992. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3993. lcd_update(2);
  3994. break;
  3995. default:
  3996. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3997. }
  3998. } // end if(code_seen('G'))
  3999. else if(code_seen('M'))
  4000. {
  4001. int index;
  4002. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4003. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4004. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4005. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4006. } else
  4007. switch((int)code_value())
  4008. {
  4009. #ifdef ULTIPANEL
  4010. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4011. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4012. {
  4013. char *src = strchr_pointer + 2;
  4014. codenum = 0;
  4015. bool hasP = false, hasS = false;
  4016. if (code_seen('P')) {
  4017. codenum = code_value(); // milliseconds to wait
  4018. hasP = codenum > 0;
  4019. }
  4020. if (code_seen('S')) {
  4021. codenum = code_value() * 1000; // seconds to wait
  4022. hasS = codenum > 0;
  4023. }
  4024. starpos = strchr(src, '*');
  4025. if (starpos != NULL) *(starpos) = '\0';
  4026. while (*src == ' ') ++src;
  4027. if (!hasP && !hasS && *src != '\0') {
  4028. lcd_setstatus(src);
  4029. } else {
  4030. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4031. }
  4032. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4033. st_synchronize();
  4034. previous_millis_cmd = millis();
  4035. if (codenum > 0){
  4036. codenum += millis(); // keep track of when we started waiting
  4037. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4038. while(millis() < codenum && !lcd_clicked()){
  4039. manage_heater();
  4040. manage_inactivity(true);
  4041. lcd_update();
  4042. }
  4043. KEEPALIVE_STATE(IN_HANDLER);
  4044. lcd_ignore_click(false);
  4045. }else{
  4046. if (!lcd_detected())
  4047. break;
  4048. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4049. while(!lcd_clicked()){
  4050. manage_heater();
  4051. manage_inactivity(true);
  4052. lcd_update();
  4053. }
  4054. KEEPALIVE_STATE(IN_HANDLER);
  4055. }
  4056. if (IS_SD_PRINTING)
  4057. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4058. else
  4059. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4060. }
  4061. break;
  4062. #endif
  4063. case 17:
  4064. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4065. enable_x();
  4066. enable_y();
  4067. enable_z();
  4068. enable_e0();
  4069. enable_e1();
  4070. enable_e2();
  4071. break;
  4072. #ifdef SDSUPPORT
  4073. case 20: // M20 - list SD card
  4074. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4075. card.ls();
  4076. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4077. break;
  4078. case 21: // M21 - init SD card
  4079. card.initsd();
  4080. break;
  4081. case 22: //M22 - release SD card
  4082. card.release();
  4083. break;
  4084. case 23: //M23 - Select file
  4085. starpos = (strchr(strchr_pointer + 4,'*'));
  4086. if(starpos!=NULL)
  4087. *(starpos)='\0';
  4088. card.openFile(strchr_pointer + 4,true);
  4089. break;
  4090. case 24: //M24 - Start SD print
  4091. if (!card.paused)
  4092. failstats_reset_print();
  4093. card.startFileprint();
  4094. starttime=millis();
  4095. break;
  4096. case 25: //M25 - Pause SD print
  4097. card.pauseSDPrint();
  4098. break;
  4099. case 26: //M26 - Set SD index
  4100. if(card.cardOK && code_seen('S')) {
  4101. card.setIndex(code_value_long());
  4102. }
  4103. break;
  4104. case 27: //M27 - Get SD status
  4105. card.getStatus();
  4106. break;
  4107. case 28: //M28 - Start SD write
  4108. starpos = (strchr(strchr_pointer + 4,'*'));
  4109. if(starpos != NULL){
  4110. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4111. strchr_pointer = strchr(npos,' ') + 1;
  4112. *(starpos) = '\0';
  4113. }
  4114. card.openFile(strchr_pointer+4,false);
  4115. break;
  4116. case 29: //M29 - Stop SD write
  4117. //processed in write to file routine above
  4118. //card,saving = false;
  4119. break;
  4120. case 30: //M30 <filename> Delete File
  4121. if (card.cardOK){
  4122. card.closefile();
  4123. starpos = (strchr(strchr_pointer + 4,'*'));
  4124. if(starpos != NULL){
  4125. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4126. strchr_pointer = strchr(npos,' ') + 1;
  4127. *(starpos) = '\0';
  4128. }
  4129. card.removeFile(strchr_pointer + 4);
  4130. }
  4131. break;
  4132. case 32: //M32 - Select file and start SD print
  4133. {
  4134. if(card.sdprinting) {
  4135. st_synchronize();
  4136. }
  4137. starpos = (strchr(strchr_pointer + 4,'*'));
  4138. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4139. if(namestartpos==NULL)
  4140. {
  4141. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4142. }
  4143. else
  4144. namestartpos++; //to skip the '!'
  4145. if(starpos!=NULL)
  4146. *(starpos)='\0';
  4147. bool call_procedure=(code_seen('P'));
  4148. if(strchr_pointer>namestartpos)
  4149. call_procedure=false; //false alert, 'P' found within filename
  4150. if( card.cardOK )
  4151. {
  4152. card.openFile(namestartpos,true,!call_procedure);
  4153. if(code_seen('S'))
  4154. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4155. card.setIndex(code_value_long());
  4156. card.startFileprint();
  4157. if(!call_procedure)
  4158. starttime=millis(); //procedure calls count as normal print time.
  4159. }
  4160. } break;
  4161. case 928: //M928 - Start SD write
  4162. starpos = (strchr(strchr_pointer + 5,'*'));
  4163. if(starpos != NULL){
  4164. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4165. strchr_pointer = strchr(npos,' ') + 1;
  4166. *(starpos) = '\0';
  4167. }
  4168. card.openLogFile(strchr_pointer+5);
  4169. break;
  4170. #endif //SDSUPPORT
  4171. case 31: //M31 take time since the start of the SD print or an M109 command
  4172. {
  4173. stoptime=millis();
  4174. char time[30];
  4175. unsigned long t=(stoptime-starttime)/1000;
  4176. int sec,min;
  4177. min=t/60;
  4178. sec=t%60;
  4179. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4180. SERIAL_ECHO_START;
  4181. SERIAL_ECHOLN(time);
  4182. lcd_setstatus(time);
  4183. autotempShutdown();
  4184. }
  4185. break;
  4186. #ifndef _DISABLE_M42_M226
  4187. case 42: //M42 -Change pin status via gcode
  4188. if (code_seen('S'))
  4189. {
  4190. int pin_status = code_value();
  4191. int pin_number = LED_PIN;
  4192. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4193. pin_number = code_value();
  4194. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4195. {
  4196. if (sensitive_pins[i] == pin_number)
  4197. {
  4198. pin_number = -1;
  4199. break;
  4200. }
  4201. }
  4202. #if defined(FAN_PIN) && FAN_PIN > -1
  4203. if (pin_number == FAN_PIN)
  4204. fanSpeed = pin_status;
  4205. #endif
  4206. if (pin_number > -1)
  4207. {
  4208. pinMode(pin_number, OUTPUT);
  4209. digitalWrite(pin_number, pin_status);
  4210. analogWrite(pin_number, pin_status);
  4211. }
  4212. }
  4213. break;
  4214. #endif //_DISABLE_M42_M226
  4215. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4216. // Reset the baby step value and the baby step applied flag.
  4217. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4218. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4219. // Reset the skew and offset in both RAM and EEPROM.
  4220. reset_bed_offset_and_skew();
  4221. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4222. // the planner will not perform any adjustments in the XY plane.
  4223. // Wait for the motors to stop and update the current position with the absolute values.
  4224. world2machine_revert_to_uncorrected();
  4225. break;
  4226. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4227. {
  4228. int8_t verbosity_level = 0;
  4229. bool only_Z = code_seen('Z');
  4230. #ifdef SUPPORT_VERBOSITY
  4231. if (code_seen('V'))
  4232. {
  4233. // Just 'V' without a number counts as V1.
  4234. char c = strchr_pointer[1];
  4235. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4236. }
  4237. #endif //SUPPORT_VERBOSITY
  4238. gcode_M45(only_Z, verbosity_level);
  4239. }
  4240. break;
  4241. /*
  4242. case 46:
  4243. {
  4244. // M46: Prusa3D: Show the assigned IP address.
  4245. uint8_t ip[4];
  4246. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4247. if (hasIP) {
  4248. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4249. SERIAL_ECHO(int(ip[0]));
  4250. SERIAL_ECHOPGM(".");
  4251. SERIAL_ECHO(int(ip[1]));
  4252. SERIAL_ECHOPGM(".");
  4253. SERIAL_ECHO(int(ip[2]));
  4254. SERIAL_ECHOPGM(".");
  4255. SERIAL_ECHO(int(ip[3]));
  4256. SERIAL_ECHOLNPGM("");
  4257. } else {
  4258. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4259. }
  4260. break;
  4261. }
  4262. */
  4263. case 47:
  4264. // M47: Prusa3D: Show end stops dialog on the display.
  4265. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4266. lcd_diag_show_end_stops();
  4267. KEEPALIVE_STATE(IN_HANDLER);
  4268. break;
  4269. #if 0
  4270. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4271. {
  4272. // Disable the default update procedure of the display. We will do a modal dialog.
  4273. lcd_update_enable(false);
  4274. // Let the planner use the uncorrected coordinates.
  4275. mbl.reset();
  4276. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4277. // the planner will not perform any adjustments in the XY plane.
  4278. // Wait for the motors to stop and update the current position with the absolute values.
  4279. world2machine_revert_to_uncorrected();
  4280. // Move the print head close to the bed.
  4281. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4283. st_synchronize();
  4284. // Home in the XY plane.
  4285. set_destination_to_current();
  4286. setup_for_endstop_move();
  4287. home_xy();
  4288. int8_t verbosity_level = 0;
  4289. if (code_seen('V')) {
  4290. // Just 'V' without a number counts as V1.
  4291. char c = strchr_pointer[1];
  4292. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4293. }
  4294. bool success = scan_bed_induction_points(verbosity_level);
  4295. clean_up_after_endstop_move();
  4296. // Print head up.
  4297. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4299. st_synchronize();
  4300. lcd_update_enable(true);
  4301. break;
  4302. }
  4303. #endif
  4304. // M48 Z-Probe repeatability measurement function.
  4305. //
  4306. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4307. //
  4308. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4309. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4310. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4311. // regenerated.
  4312. //
  4313. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4314. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4315. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4316. //
  4317. #ifdef ENABLE_AUTO_BED_LEVELING
  4318. #ifdef Z_PROBE_REPEATABILITY_TEST
  4319. case 48: // M48 Z-Probe repeatability
  4320. {
  4321. #if Z_MIN_PIN == -1
  4322. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4323. #endif
  4324. double sum=0.0;
  4325. double mean=0.0;
  4326. double sigma=0.0;
  4327. double sample_set[50];
  4328. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4329. double X_current, Y_current, Z_current;
  4330. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4331. if (code_seen('V') || code_seen('v')) {
  4332. verbose_level = code_value();
  4333. if (verbose_level<0 || verbose_level>4 ) {
  4334. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4335. goto Sigma_Exit;
  4336. }
  4337. }
  4338. if (verbose_level > 0) {
  4339. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4340. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4341. }
  4342. if (code_seen('n')) {
  4343. n_samples = code_value();
  4344. if (n_samples<4 || n_samples>50 ) {
  4345. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4346. goto Sigma_Exit;
  4347. }
  4348. }
  4349. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4350. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4351. Z_current = st_get_position_mm(Z_AXIS);
  4352. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4353. ext_position = st_get_position_mm(E_AXIS);
  4354. if (code_seen('X') || code_seen('x') ) {
  4355. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4356. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4357. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4358. goto Sigma_Exit;
  4359. }
  4360. }
  4361. if (code_seen('Y') || code_seen('y') ) {
  4362. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4363. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4364. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4365. goto Sigma_Exit;
  4366. }
  4367. }
  4368. if (code_seen('L') || code_seen('l') ) {
  4369. n_legs = code_value();
  4370. if ( n_legs==1 )
  4371. n_legs = 2;
  4372. if ( n_legs<0 || n_legs>15 ) {
  4373. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4374. goto Sigma_Exit;
  4375. }
  4376. }
  4377. //
  4378. // Do all the preliminary setup work. First raise the probe.
  4379. //
  4380. st_synchronize();
  4381. plan_bed_level_matrix.set_to_identity();
  4382. plan_buffer_line( X_current, Y_current, Z_start_location,
  4383. ext_position,
  4384. homing_feedrate[Z_AXIS]/60,
  4385. active_extruder);
  4386. st_synchronize();
  4387. //
  4388. // Now get everything to the specified probe point So we can safely do a probe to
  4389. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4390. // use that as a starting point for each probe.
  4391. //
  4392. if (verbose_level > 2)
  4393. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4394. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4395. ext_position,
  4396. homing_feedrate[X_AXIS]/60,
  4397. active_extruder);
  4398. st_synchronize();
  4399. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4400. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4401. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4402. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4403. //
  4404. // OK, do the inital probe to get us close to the bed.
  4405. // Then retrace the right amount and use that in subsequent probes
  4406. //
  4407. setup_for_endstop_move();
  4408. run_z_probe();
  4409. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4410. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4411. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4412. ext_position,
  4413. homing_feedrate[X_AXIS]/60,
  4414. active_extruder);
  4415. st_synchronize();
  4416. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4417. for( n=0; n<n_samples; n++) {
  4418. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4419. if ( n_legs) {
  4420. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4421. int rotational_direction, l;
  4422. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4423. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4424. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4425. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4426. //SERIAL_ECHOPAIR(" theta: ",theta);
  4427. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4428. //SERIAL_PROTOCOLLNPGM("");
  4429. for( l=0; l<n_legs-1; l++) {
  4430. if (rotational_direction==1)
  4431. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4432. else
  4433. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4434. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4435. if ( radius<0.0 )
  4436. radius = -radius;
  4437. X_current = X_probe_location + cos(theta) * radius;
  4438. Y_current = Y_probe_location + sin(theta) * radius;
  4439. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4440. X_current = X_MIN_POS;
  4441. if ( X_current>X_MAX_POS)
  4442. X_current = X_MAX_POS;
  4443. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4444. Y_current = Y_MIN_POS;
  4445. if ( Y_current>Y_MAX_POS)
  4446. Y_current = Y_MAX_POS;
  4447. if (verbose_level>3 ) {
  4448. SERIAL_ECHOPAIR("x: ", X_current);
  4449. SERIAL_ECHOPAIR("y: ", Y_current);
  4450. SERIAL_PROTOCOLLNPGM("");
  4451. }
  4452. do_blocking_move_to( X_current, Y_current, Z_current );
  4453. }
  4454. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4455. }
  4456. setup_for_endstop_move();
  4457. run_z_probe();
  4458. sample_set[n] = current_position[Z_AXIS];
  4459. //
  4460. // Get the current mean for the data points we have so far
  4461. //
  4462. sum=0.0;
  4463. for( j=0; j<=n; j++) {
  4464. sum = sum + sample_set[j];
  4465. }
  4466. mean = sum / (double (n+1));
  4467. //
  4468. // Now, use that mean to calculate the standard deviation for the
  4469. // data points we have so far
  4470. //
  4471. sum=0.0;
  4472. for( j=0; j<=n; j++) {
  4473. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4474. }
  4475. sigma = sqrt( sum / (double (n+1)) );
  4476. if (verbose_level > 1) {
  4477. SERIAL_PROTOCOL(n+1);
  4478. SERIAL_PROTOCOL(" of ");
  4479. SERIAL_PROTOCOL(n_samples);
  4480. SERIAL_PROTOCOLPGM(" z: ");
  4481. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4482. }
  4483. if (verbose_level > 2) {
  4484. SERIAL_PROTOCOL(" mean: ");
  4485. SERIAL_PROTOCOL_F(mean,6);
  4486. SERIAL_PROTOCOL(" sigma: ");
  4487. SERIAL_PROTOCOL_F(sigma,6);
  4488. }
  4489. if (verbose_level > 0)
  4490. SERIAL_PROTOCOLPGM("\n");
  4491. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4492. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4493. st_synchronize();
  4494. }
  4495. delay(1000);
  4496. clean_up_after_endstop_move();
  4497. // enable_endstops(true);
  4498. if (verbose_level > 0) {
  4499. SERIAL_PROTOCOLPGM("Mean: ");
  4500. SERIAL_PROTOCOL_F(mean, 6);
  4501. SERIAL_PROTOCOLPGM("\n");
  4502. }
  4503. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4504. SERIAL_PROTOCOL_F(sigma, 6);
  4505. SERIAL_PROTOCOLPGM("\n\n");
  4506. Sigma_Exit:
  4507. break;
  4508. }
  4509. #endif // Z_PROBE_REPEATABILITY_TEST
  4510. #endif // ENABLE_AUTO_BED_LEVELING
  4511. case 73: //M73 show percent done and time remaining
  4512. if(code_seen('P')) print_percent_done_normal = code_value();
  4513. if(code_seen('R')) print_time_remaining_normal = code_value();
  4514. if(code_seen('Q')) print_percent_done_silent = code_value();
  4515. if(code_seen('S')) print_time_remaining_silent = code_value();
  4516. {
  4517. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4518. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4519. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4520. }
  4521. break;
  4522. case 104: // M104
  4523. if(setTargetedHotend(104)){
  4524. break;
  4525. }
  4526. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4527. setWatch();
  4528. break;
  4529. case 112: // M112 -Emergency Stop
  4530. kill(_n(""), 3);
  4531. break;
  4532. case 140: // M140 set bed temp
  4533. if (code_seen('S')) setTargetBed(code_value());
  4534. break;
  4535. case 105 : // M105
  4536. if(setTargetedHotend(105)){
  4537. break;
  4538. }
  4539. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4540. SERIAL_PROTOCOLPGM("ok T:");
  4541. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4542. SERIAL_PROTOCOLPGM(" /");
  4543. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4544. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4545. SERIAL_PROTOCOLPGM(" B:");
  4546. SERIAL_PROTOCOL_F(degBed(),1);
  4547. SERIAL_PROTOCOLPGM(" /");
  4548. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4549. #endif //TEMP_BED_PIN
  4550. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4551. SERIAL_PROTOCOLPGM(" T");
  4552. SERIAL_PROTOCOL(cur_extruder);
  4553. SERIAL_PROTOCOLPGM(":");
  4554. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4555. SERIAL_PROTOCOLPGM(" /");
  4556. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4557. }
  4558. #else
  4559. SERIAL_ERROR_START;
  4560. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4561. #endif
  4562. SERIAL_PROTOCOLPGM(" @:");
  4563. #ifdef EXTRUDER_WATTS
  4564. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4565. SERIAL_PROTOCOLPGM("W");
  4566. #else
  4567. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4568. #endif
  4569. SERIAL_PROTOCOLPGM(" B@:");
  4570. #ifdef BED_WATTS
  4571. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4572. SERIAL_PROTOCOLPGM("W");
  4573. #else
  4574. SERIAL_PROTOCOL(getHeaterPower(-1));
  4575. #endif
  4576. #ifdef PINDA_THERMISTOR
  4577. SERIAL_PROTOCOLPGM(" P:");
  4578. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4579. #endif //PINDA_THERMISTOR
  4580. #ifdef AMBIENT_THERMISTOR
  4581. SERIAL_PROTOCOLPGM(" A:");
  4582. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4583. #endif //AMBIENT_THERMISTOR
  4584. #ifdef SHOW_TEMP_ADC_VALUES
  4585. {float raw = 0.0;
  4586. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4587. SERIAL_PROTOCOLPGM(" ADC B:");
  4588. SERIAL_PROTOCOL_F(degBed(),1);
  4589. SERIAL_PROTOCOLPGM("C->");
  4590. raw = rawBedTemp();
  4591. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4592. SERIAL_PROTOCOLPGM(" Rb->");
  4593. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4594. SERIAL_PROTOCOLPGM(" Rxb->");
  4595. SERIAL_PROTOCOL_F(raw, 5);
  4596. #endif
  4597. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4598. SERIAL_PROTOCOLPGM(" T");
  4599. SERIAL_PROTOCOL(cur_extruder);
  4600. SERIAL_PROTOCOLPGM(":");
  4601. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4602. SERIAL_PROTOCOLPGM("C->");
  4603. raw = rawHotendTemp(cur_extruder);
  4604. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4605. SERIAL_PROTOCOLPGM(" Rt");
  4606. SERIAL_PROTOCOL(cur_extruder);
  4607. SERIAL_PROTOCOLPGM("->");
  4608. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4609. SERIAL_PROTOCOLPGM(" Rx");
  4610. SERIAL_PROTOCOL(cur_extruder);
  4611. SERIAL_PROTOCOLPGM("->");
  4612. SERIAL_PROTOCOL_F(raw, 5);
  4613. }}
  4614. #endif
  4615. SERIAL_PROTOCOLLN("");
  4616. KEEPALIVE_STATE(NOT_BUSY);
  4617. return;
  4618. break;
  4619. case 109:
  4620. {// M109 - Wait for extruder heater to reach target.
  4621. if(setTargetedHotend(109)){
  4622. break;
  4623. }
  4624. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4625. heating_status = 1;
  4626. if (farm_mode) { prusa_statistics(1); };
  4627. #ifdef AUTOTEMP
  4628. autotemp_enabled=false;
  4629. #endif
  4630. if (code_seen('S')) {
  4631. setTargetHotend(code_value(), tmp_extruder);
  4632. CooldownNoWait = true;
  4633. } else if (code_seen('R')) {
  4634. setTargetHotend(code_value(), tmp_extruder);
  4635. CooldownNoWait = false;
  4636. }
  4637. #ifdef AUTOTEMP
  4638. if (code_seen('S')) autotemp_min=code_value();
  4639. if (code_seen('B')) autotemp_max=code_value();
  4640. if (code_seen('F'))
  4641. {
  4642. autotemp_factor=code_value();
  4643. autotemp_enabled=true;
  4644. }
  4645. #endif
  4646. setWatch();
  4647. codenum = millis();
  4648. /* See if we are heating up or cooling down */
  4649. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4650. KEEPALIVE_STATE(NOT_BUSY);
  4651. cancel_heatup = false;
  4652. wait_for_heater(codenum); //loops until target temperature is reached
  4653. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4654. KEEPALIVE_STATE(IN_HANDLER);
  4655. heating_status = 2;
  4656. if (farm_mode) { prusa_statistics(2); };
  4657. //starttime=millis();
  4658. previous_millis_cmd = millis();
  4659. }
  4660. break;
  4661. case 190: // M190 - Wait for bed heater to reach target.
  4662. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4663. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4664. heating_status = 3;
  4665. if (farm_mode) { prusa_statistics(1); };
  4666. if (code_seen('S'))
  4667. {
  4668. setTargetBed(code_value());
  4669. CooldownNoWait = true;
  4670. }
  4671. else if (code_seen('R'))
  4672. {
  4673. setTargetBed(code_value());
  4674. CooldownNoWait = false;
  4675. }
  4676. codenum = millis();
  4677. cancel_heatup = false;
  4678. target_direction = isHeatingBed(); // true if heating, false if cooling
  4679. KEEPALIVE_STATE(NOT_BUSY);
  4680. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4681. {
  4682. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4683. {
  4684. if (!farm_mode) {
  4685. float tt = degHotend(active_extruder);
  4686. SERIAL_PROTOCOLPGM("T:");
  4687. SERIAL_PROTOCOL(tt);
  4688. SERIAL_PROTOCOLPGM(" E:");
  4689. SERIAL_PROTOCOL((int)active_extruder);
  4690. SERIAL_PROTOCOLPGM(" B:");
  4691. SERIAL_PROTOCOL_F(degBed(), 1);
  4692. SERIAL_PROTOCOLLN("");
  4693. }
  4694. codenum = millis();
  4695. }
  4696. manage_heater();
  4697. manage_inactivity();
  4698. lcd_update();
  4699. }
  4700. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4701. KEEPALIVE_STATE(IN_HANDLER);
  4702. heating_status = 4;
  4703. previous_millis_cmd = millis();
  4704. #endif
  4705. break;
  4706. #if defined(FAN_PIN) && FAN_PIN > -1
  4707. case 106: //M106 Fan On
  4708. if (code_seen('S')){
  4709. fanSpeed=constrain(code_value(),0,255);
  4710. }
  4711. else {
  4712. fanSpeed=255;
  4713. }
  4714. break;
  4715. case 107: //M107 Fan Off
  4716. fanSpeed = 0;
  4717. break;
  4718. #endif //FAN_PIN
  4719. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4720. case 80: // M80 - Turn on Power Supply
  4721. SET_OUTPUT(PS_ON_PIN); //GND
  4722. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4723. // If you have a switch on suicide pin, this is useful
  4724. // if you want to start another print with suicide feature after
  4725. // a print without suicide...
  4726. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4727. SET_OUTPUT(SUICIDE_PIN);
  4728. WRITE(SUICIDE_PIN, HIGH);
  4729. #endif
  4730. #ifdef ULTIPANEL
  4731. powersupply = true;
  4732. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4733. lcd_update();
  4734. #endif
  4735. break;
  4736. #endif
  4737. case 81: // M81 - Turn off Power Supply
  4738. disable_heater();
  4739. st_synchronize();
  4740. disable_e0();
  4741. disable_e1();
  4742. disable_e2();
  4743. finishAndDisableSteppers();
  4744. fanSpeed = 0;
  4745. delay(1000); // Wait a little before to switch off
  4746. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4747. st_synchronize();
  4748. suicide();
  4749. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4750. SET_OUTPUT(PS_ON_PIN);
  4751. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4752. #endif
  4753. #ifdef ULTIPANEL
  4754. powersupply = false;
  4755. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4756. lcd_update();
  4757. #endif
  4758. break;
  4759. case 82:
  4760. axis_relative_modes[3] = false;
  4761. break;
  4762. case 83:
  4763. axis_relative_modes[3] = true;
  4764. break;
  4765. case 18: //compatibility
  4766. case 84: // M84
  4767. if(code_seen('S')){
  4768. stepper_inactive_time = code_value() * 1000;
  4769. }
  4770. else
  4771. {
  4772. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4773. if(all_axis)
  4774. {
  4775. st_synchronize();
  4776. disable_e0();
  4777. disable_e1();
  4778. disable_e2();
  4779. finishAndDisableSteppers();
  4780. }
  4781. else
  4782. {
  4783. st_synchronize();
  4784. if (code_seen('X')) disable_x();
  4785. if (code_seen('Y')) disable_y();
  4786. if (code_seen('Z')) disable_z();
  4787. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4788. if (code_seen('E')) {
  4789. disable_e0();
  4790. disable_e1();
  4791. disable_e2();
  4792. }
  4793. #endif
  4794. }
  4795. }
  4796. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4797. print_time_remaining_init();
  4798. snmm_filaments_used = 0;
  4799. break;
  4800. case 85: // M85
  4801. if(code_seen('S')) {
  4802. max_inactive_time = code_value() * 1000;
  4803. }
  4804. break;
  4805. #ifdef SAFETYTIMER
  4806. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4807. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4808. if (code_seen('S')) {
  4809. safetytimer_inactive_time = code_value() * 1000;
  4810. safetyTimer.start();
  4811. }
  4812. break;
  4813. #endif
  4814. case 92: // M92
  4815. for(int8_t i=0; i < NUM_AXIS; i++)
  4816. {
  4817. if(code_seen(axis_codes[i]))
  4818. {
  4819. if(i == 3) { // E
  4820. float value = code_value();
  4821. if(value < 20.0) {
  4822. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4823. max_jerk[E_AXIS] *= factor;
  4824. max_feedrate[i] *= factor;
  4825. axis_steps_per_sqr_second[i] *= factor;
  4826. }
  4827. axis_steps_per_unit[i] = value;
  4828. }
  4829. else {
  4830. axis_steps_per_unit[i] = code_value();
  4831. }
  4832. }
  4833. }
  4834. break;
  4835. case 110: // M110 - reset line pos
  4836. if (code_seen('N'))
  4837. gcode_LastN = code_value_long();
  4838. break;
  4839. #ifdef HOST_KEEPALIVE_FEATURE
  4840. case 113: // M113 - Get or set Host Keepalive interval
  4841. if (code_seen('S')) {
  4842. host_keepalive_interval = (uint8_t)code_value_short();
  4843. // NOMORE(host_keepalive_interval, 60);
  4844. }
  4845. else {
  4846. SERIAL_ECHO_START;
  4847. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4848. SERIAL_PROTOCOLLN("");
  4849. }
  4850. break;
  4851. #endif
  4852. case 115: // M115
  4853. if (code_seen('V')) {
  4854. // Report the Prusa version number.
  4855. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4856. } else if (code_seen('U')) {
  4857. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4858. // pause the print and ask the user to upgrade the firmware.
  4859. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4860. } else {
  4861. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4862. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4863. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4864. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4865. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4866. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4867. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4868. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4869. SERIAL_ECHOPGM(" UUID:");
  4870. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4871. }
  4872. break;
  4873. /* case 117: // M117 display message
  4874. starpos = (strchr(strchr_pointer + 5,'*'));
  4875. if(starpos!=NULL)
  4876. *(starpos)='\0';
  4877. lcd_setstatus(strchr_pointer + 5);
  4878. break;*/
  4879. case 114: // M114
  4880. gcode_M114();
  4881. break;
  4882. case 120: // M120
  4883. enable_endstops(false) ;
  4884. break;
  4885. case 121: // M121
  4886. enable_endstops(true) ;
  4887. break;
  4888. case 119: // M119
  4889. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4890. SERIAL_PROTOCOLLN("");
  4891. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4892. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4893. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4894. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4895. }else{
  4896. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4897. }
  4898. SERIAL_PROTOCOLLN("");
  4899. #endif
  4900. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4901. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4902. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4903. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4904. }else{
  4905. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4906. }
  4907. SERIAL_PROTOCOLLN("");
  4908. #endif
  4909. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4910. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4911. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4912. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4913. }else{
  4914. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4915. }
  4916. SERIAL_PROTOCOLLN("");
  4917. #endif
  4918. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4919. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4920. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4921. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4922. }else{
  4923. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4924. }
  4925. SERIAL_PROTOCOLLN("");
  4926. #endif
  4927. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4928. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4929. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4930. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4931. }else{
  4932. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4933. }
  4934. SERIAL_PROTOCOLLN("");
  4935. #endif
  4936. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4937. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4938. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4939. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4940. }else{
  4941. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4942. }
  4943. SERIAL_PROTOCOLLN("");
  4944. #endif
  4945. break;
  4946. //TODO: update for all axis, use for loop
  4947. #ifdef BLINKM
  4948. case 150: // M150
  4949. {
  4950. byte red;
  4951. byte grn;
  4952. byte blu;
  4953. if(code_seen('R')) red = code_value();
  4954. if(code_seen('U')) grn = code_value();
  4955. if(code_seen('B')) blu = code_value();
  4956. SendColors(red,grn,blu);
  4957. }
  4958. break;
  4959. #endif //BLINKM
  4960. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4961. {
  4962. tmp_extruder = active_extruder;
  4963. if(code_seen('T')) {
  4964. tmp_extruder = code_value();
  4965. if(tmp_extruder >= EXTRUDERS) {
  4966. SERIAL_ECHO_START;
  4967. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4968. break;
  4969. }
  4970. }
  4971. float area = .0;
  4972. if(code_seen('D')) {
  4973. float diameter = (float)code_value();
  4974. if (diameter == 0.0) {
  4975. // setting any extruder filament size disables volumetric on the assumption that
  4976. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4977. // for all extruders
  4978. volumetric_enabled = false;
  4979. } else {
  4980. filament_size[tmp_extruder] = (float)code_value();
  4981. // make sure all extruders have some sane value for the filament size
  4982. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4983. #if EXTRUDERS > 1
  4984. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4985. #if EXTRUDERS > 2
  4986. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4987. #endif
  4988. #endif
  4989. volumetric_enabled = true;
  4990. }
  4991. } else {
  4992. //reserved for setting filament diameter via UFID or filament measuring device
  4993. break;
  4994. }
  4995. calculate_extruder_multipliers();
  4996. }
  4997. break;
  4998. case 201: // M201
  4999. for(int8_t i=0; i < NUM_AXIS; i++)
  5000. {
  5001. if(code_seen(axis_codes[i]))
  5002. {
  5003. max_acceleration_units_per_sq_second[i] = code_value();
  5004. }
  5005. }
  5006. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5007. reset_acceleration_rates();
  5008. break;
  5009. #if 0 // Not used for Sprinter/grbl gen6
  5010. case 202: // M202
  5011. for(int8_t i=0; i < NUM_AXIS; i++) {
  5012. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5013. }
  5014. break;
  5015. #endif
  5016. case 203: // M203 max feedrate mm/sec
  5017. for(int8_t i=0; i < NUM_AXIS; i++) {
  5018. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  5019. }
  5020. break;
  5021. case 204: // M204 acclereration S normal moves T filmanent only moves
  5022. {
  5023. if(code_seen('S')) acceleration = code_value() ;
  5024. if(code_seen('T')) retract_acceleration = code_value() ;
  5025. }
  5026. break;
  5027. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5028. {
  5029. if(code_seen('S')) minimumfeedrate = code_value();
  5030. if(code_seen('T')) mintravelfeedrate = code_value();
  5031. if(code_seen('B')) minsegmenttime = code_value() ;
  5032. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5033. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5034. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5035. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5036. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5037. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5038. }
  5039. break;
  5040. case 206: // M206 additional homing offset
  5041. for(int8_t i=0; i < 3; i++)
  5042. {
  5043. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5044. }
  5045. break;
  5046. #ifdef FWRETRACT
  5047. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5048. {
  5049. if(code_seen('S'))
  5050. {
  5051. retract_length = code_value() ;
  5052. }
  5053. if(code_seen('F'))
  5054. {
  5055. retract_feedrate = code_value()/60 ;
  5056. }
  5057. if(code_seen('Z'))
  5058. {
  5059. retract_zlift = code_value() ;
  5060. }
  5061. }break;
  5062. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5063. {
  5064. if(code_seen('S'))
  5065. {
  5066. retract_recover_length = code_value() ;
  5067. }
  5068. if(code_seen('F'))
  5069. {
  5070. retract_recover_feedrate = code_value()/60 ;
  5071. }
  5072. }break;
  5073. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5074. {
  5075. if(code_seen('S'))
  5076. {
  5077. int t= code_value() ;
  5078. switch(t)
  5079. {
  5080. case 0:
  5081. {
  5082. autoretract_enabled=false;
  5083. retracted[0]=false;
  5084. #if EXTRUDERS > 1
  5085. retracted[1]=false;
  5086. #endif
  5087. #if EXTRUDERS > 2
  5088. retracted[2]=false;
  5089. #endif
  5090. }break;
  5091. case 1:
  5092. {
  5093. autoretract_enabled=true;
  5094. retracted[0]=false;
  5095. #if EXTRUDERS > 1
  5096. retracted[1]=false;
  5097. #endif
  5098. #if EXTRUDERS > 2
  5099. retracted[2]=false;
  5100. #endif
  5101. }break;
  5102. default:
  5103. SERIAL_ECHO_START;
  5104. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5105. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5106. SERIAL_ECHOLNPGM("\"(1)");
  5107. }
  5108. }
  5109. }break;
  5110. #endif // FWRETRACT
  5111. #if EXTRUDERS > 1
  5112. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5113. {
  5114. if(setTargetedHotend(218)){
  5115. break;
  5116. }
  5117. if(code_seen('X'))
  5118. {
  5119. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5120. }
  5121. if(code_seen('Y'))
  5122. {
  5123. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5124. }
  5125. SERIAL_ECHO_START;
  5126. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5127. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5128. {
  5129. SERIAL_ECHO(" ");
  5130. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5131. SERIAL_ECHO(",");
  5132. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5133. }
  5134. SERIAL_ECHOLN("");
  5135. }break;
  5136. #endif
  5137. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5138. {
  5139. if(code_seen('S'))
  5140. {
  5141. feedmultiply = code_value() ;
  5142. }
  5143. }
  5144. break;
  5145. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5146. {
  5147. if(code_seen('S'))
  5148. {
  5149. int tmp_code = code_value();
  5150. if (code_seen('T'))
  5151. {
  5152. if(setTargetedHotend(221)){
  5153. break;
  5154. }
  5155. extruder_multiply[tmp_extruder] = tmp_code;
  5156. }
  5157. else
  5158. {
  5159. extrudemultiply = tmp_code ;
  5160. }
  5161. }
  5162. calculate_extruder_multipliers();
  5163. }
  5164. break;
  5165. #ifndef _DISABLE_M42_M226
  5166. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5167. {
  5168. if(code_seen('P')){
  5169. int pin_number = code_value(); // pin number
  5170. int pin_state = -1; // required pin state - default is inverted
  5171. if(code_seen('S')) pin_state = code_value(); // required pin state
  5172. if(pin_state >= -1 && pin_state <= 1){
  5173. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5174. {
  5175. if (sensitive_pins[i] == pin_number)
  5176. {
  5177. pin_number = -1;
  5178. break;
  5179. }
  5180. }
  5181. if (pin_number > -1)
  5182. {
  5183. int target = LOW;
  5184. st_synchronize();
  5185. pinMode(pin_number, INPUT);
  5186. switch(pin_state){
  5187. case 1:
  5188. target = HIGH;
  5189. break;
  5190. case 0:
  5191. target = LOW;
  5192. break;
  5193. case -1:
  5194. target = !digitalRead(pin_number);
  5195. break;
  5196. }
  5197. while(digitalRead(pin_number) != target){
  5198. manage_heater();
  5199. manage_inactivity();
  5200. lcd_update();
  5201. }
  5202. }
  5203. }
  5204. }
  5205. }
  5206. break;
  5207. #endif //_DISABLE_M42_M226
  5208. #if NUM_SERVOS > 0
  5209. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5210. {
  5211. int servo_index = -1;
  5212. int servo_position = 0;
  5213. if (code_seen('P'))
  5214. servo_index = code_value();
  5215. if (code_seen('S')) {
  5216. servo_position = code_value();
  5217. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5218. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5219. servos[servo_index].attach(0);
  5220. #endif
  5221. servos[servo_index].write(servo_position);
  5222. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5223. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5224. servos[servo_index].detach();
  5225. #endif
  5226. }
  5227. else {
  5228. SERIAL_ECHO_START;
  5229. SERIAL_ECHO("Servo ");
  5230. SERIAL_ECHO(servo_index);
  5231. SERIAL_ECHOLN(" out of range");
  5232. }
  5233. }
  5234. else if (servo_index >= 0) {
  5235. SERIAL_PROTOCOL(_T(MSG_OK));
  5236. SERIAL_PROTOCOL(" Servo ");
  5237. SERIAL_PROTOCOL(servo_index);
  5238. SERIAL_PROTOCOL(": ");
  5239. SERIAL_PROTOCOL(servos[servo_index].read());
  5240. SERIAL_PROTOCOLLN("");
  5241. }
  5242. }
  5243. break;
  5244. #endif // NUM_SERVOS > 0
  5245. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5246. case 300: // M300
  5247. {
  5248. int beepS = code_seen('S') ? code_value() : 110;
  5249. int beepP = code_seen('P') ? code_value() : 1000;
  5250. if (beepS > 0)
  5251. {
  5252. #if BEEPER > 0
  5253. tone(BEEPER, beepS);
  5254. delay(beepP);
  5255. noTone(BEEPER);
  5256. #elif defined(ULTRALCD)
  5257. lcd_buzz(beepS, beepP);
  5258. #elif defined(LCD_USE_I2C_BUZZER)
  5259. lcd_buzz(beepP, beepS);
  5260. #endif
  5261. }
  5262. else
  5263. {
  5264. delay(beepP);
  5265. }
  5266. }
  5267. break;
  5268. #endif // M300
  5269. #ifdef PIDTEMP
  5270. case 301: // M301
  5271. {
  5272. if(code_seen('P')) Kp = code_value();
  5273. if(code_seen('I')) Ki = scalePID_i(code_value());
  5274. if(code_seen('D')) Kd = scalePID_d(code_value());
  5275. #ifdef PID_ADD_EXTRUSION_RATE
  5276. if(code_seen('C')) Kc = code_value();
  5277. #endif
  5278. updatePID();
  5279. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5280. SERIAL_PROTOCOL(" p:");
  5281. SERIAL_PROTOCOL(Kp);
  5282. SERIAL_PROTOCOL(" i:");
  5283. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5284. SERIAL_PROTOCOL(" d:");
  5285. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5286. #ifdef PID_ADD_EXTRUSION_RATE
  5287. SERIAL_PROTOCOL(" c:");
  5288. //Kc does not have scaling applied above, or in resetting defaults
  5289. SERIAL_PROTOCOL(Kc);
  5290. #endif
  5291. SERIAL_PROTOCOLLN("");
  5292. }
  5293. break;
  5294. #endif //PIDTEMP
  5295. #ifdef PIDTEMPBED
  5296. case 304: // M304
  5297. {
  5298. if(code_seen('P')) bedKp = code_value();
  5299. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5300. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5301. updatePID();
  5302. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5303. SERIAL_PROTOCOL(" p:");
  5304. SERIAL_PROTOCOL(bedKp);
  5305. SERIAL_PROTOCOL(" i:");
  5306. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5307. SERIAL_PROTOCOL(" d:");
  5308. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5309. SERIAL_PROTOCOLLN("");
  5310. }
  5311. break;
  5312. #endif //PIDTEMP
  5313. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5314. {
  5315. #ifdef CHDK
  5316. SET_OUTPUT(CHDK);
  5317. WRITE(CHDK, HIGH);
  5318. chdkHigh = millis();
  5319. chdkActive = true;
  5320. #else
  5321. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5322. const uint8_t NUM_PULSES=16;
  5323. const float PULSE_LENGTH=0.01524;
  5324. for(int i=0; i < NUM_PULSES; i++) {
  5325. WRITE(PHOTOGRAPH_PIN, HIGH);
  5326. _delay_ms(PULSE_LENGTH);
  5327. WRITE(PHOTOGRAPH_PIN, LOW);
  5328. _delay_ms(PULSE_LENGTH);
  5329. }
  5330. delay(7.33);
  5331. for(int i=0; i < NUM_PULSES; i++) {
  5332. WRITE(PHOTOGRAPH_PIN, HIGH);
  5333. _delay_ms(PULSE_LENGTH);
  5334. WRITE(PHOTOGRAPH_PIN, LOW);
  5335. _delay_ms(PULSE_LENGTH);
  5336. }
  5337. #endif
  5338. #endif //chdk end if
  5339. }
  5340. break;
  5341. #ifdef DOGLCD
  5342. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5343. {
  5344. if (code_seen('C')) {
  5345. lcd_setcontrast( ((int)code_value())&63 );
  5346. }
  5347. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5348. SERIAL_PROTOCOL(lcd_contrast);
  5349. SERIAL_PROTOCOLLN("");
  5350. }
  5351. break;
  5352. #endif
  5353. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5354. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5355. {
  5356. float temp = .0;
  5357. if (code_seen('S')) temp=code_value();
  5358. set_extrude_min_temp(temp);
  5359. }
  5360. break;
  5361. #endif
  5362. case 303: // M303 PID autotune
  5363. {
  5364. float temp = 150.0;
  5365. int e=0;
  5366. int c=5;
  5367. if (code_seen('E')) e=code_value();
  5368. if (e<0)
  5369. temp=70;
  5370. if (code_seen('S')) temp=code_value();
  5371. if (code_seen('C')) c=code_value();
  5372. PID_autotune(temp, e, c);
  5373. }
  5374. break;
  5375. case 400: // M400 finish all moves
  5376. {
  5377. st_synchronize();
  5378. }
  5379. break;
  5380. case 500: // M500 Store settings in EEPROM
  5381. {
  5382. Config_StoreSettings(EEPROM_OFFSET);
  5383. }
  5384. break;
  5385. case 501: // M501 Read settings from EEPROM
  5386. {
  5387. Config_RetrieveSettings(EEPROM_OFFSET);
  5388. }
  5389. break;
  5390. case 502: // M502 Revert to default settings
  5391. {
  5392. Config_ResetDefault();
  5393. }
  5394. break;
  5395. case 503: // M503 print settings currently in memory
  5396. {
  5397. Config_PrintSettings();
  5398. }
  5399. break;
  5400. case 509: //M509 Force language selection
  5401. {
  5402. lang_reset();
  5403. SERIAL_ECHO_START;
  5404. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5405. }
  5406. break;
  5407. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5408. case 540:
  5409. {
  5410. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5411. }
  5412. break;
  5413. #endif
  5414. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5415. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5416. {
  5417. float value;
  5418. if (code_seen('Z'))
  5419. {
  5420. value = code_value();
  5421. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5422. {
  5423. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5424. SERIAL_ECHO_START;
  5425. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5426. SERIAL_PROTOCOLLN("");
  5427. }
  5428. else
  5429. {
  5430. SERIAL_ECHO_START;
  5431. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5432. SERIAL_ECHORPGM(MSG_Z_MIN);
  5433. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5434. SERIAL_ECHORPGM(MSG_Z_MAX);
  5435. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5436. SERIAL_PROTOCOLLN("");
  5437. }
  5438. }
  5439. else
  5440. {
  5441. SERIAL_ECHO_START;
  5442. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5443. SERIAL_ECHO(-zprobe_zoffset);
  5444. SERIAL_PROTOCOLLN("");
  5445. }
  5446. break;
  5447. }
  5448. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5449. #ifdef FILAMENTCHANGEENABLE
  5450. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5451. {
  5452. #ifdef PAT9125
  5453. bool old_fsensor_enabled = fsensor_enabled;
  5454. fsensor_enabled = false; //temporary solution for unexpected restarting
  5455. #endif //PAT9125
  5456. st_synchronize();
  5457. float target[4];
  5458. float lastpos[4];
  5459. if (farm_mode)
  5460. {
  5461. prusa_statistics(22);
  5462. }
  5463. feedmultiplyBckp=feedmultiply;
  5464. int8_t TooLowZ = 0;
  5465. float HotendTempBckp = degTargetHotend(active_extruder);
  5466. int fanSpeedBckp = fanSpeed;
  5467. target[X_AXIS]=current_position[X_AXIS];
  5468. target[Y_AXIS]=current_position[Y_AXIS];
  5469. target[Z_AXIS]=current_position[Z_AXIS];
  5470. target[E_AXIS]=current_position[E_AXIS];
  5471. lastpos[X_AXIS]=current_position[X_AXIS];
  5472. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5473. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5474. lastpos[E_AXIS]=current_position[E_AXIS];
  5475. //Restract extruder
  5476. if(code_seen('E'))
  5477. {
  5478. target[E_AXIS]+= code_value();
  5479. }
  5480. else
  5481. {
  5482. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5483. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5484. #endif
  5485. }
  5486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5487. //Lift Z
  5488. if(code_seen('Z'))
  5489. {
  5490. target[Z_AXIS]+= code_value();
  5491. }
  5492. else
  5493. {
  5494. #ifdef FILAMENTCHANGE_ZADD
  5495. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5496. if(target[Z_AXIS] < 10){
  5497. target[Z_AXIS]+= 10 ;
  5498. TooLowZ = 1;
  5499. }else{
  5500. TooLowZ = 0;
  5501. }
  5502. #endif
  5503. }
  5504. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5505. //Move XY to side
  5506. if(code_seen('X'))
  5507. {
  5508. target[X_AXIS]+= code_value();
  5509. }
  5510. else
  5511. {
  5512. #ifdef FILAMENTCHANGE_XPOS
  5513. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5514. #endif
  5515. }
  5516. if(code_seen('Y'))
  5517. {
  5518. target[Y_AXIS]= code_value();
  5519. }
  5520. else
  5521. {
  5522. #ifdef FILAMENTCHANGE_YPOS
  5523. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5524. #endif
  5525. }
  5526. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5527. st_synchronize();
  5528. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5529. uint8_t cnt = 0;
  5530. int counterBeep = 0;
  5531. fanSpeed = 0;
  5532. unsigned long waiting_start_time = millis();
  5533. uint8_t wait_for_user_state = 0;
  5534. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5535. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5536. //cnt++;
  5537. manage_heater();
  5538. manage_inactivity(true);
  5539. /*#ifdef SNMM
  5540. target[E_AXIS] += 0.002;
  5541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5542. #endif // SNMM*/
  5543. //if (cnt == 0)
  5544. {
  5545. #if BEEPER > 0
  5546. if (counterBeep == 500) {
  5547. counterBeep = 0;
  5548. }
  5549. SET_OUTPUT(BEEPER);
  5550. if (counterBeep == 0) {
  5551. WRITE(BEEPER, HIGH);
  5552. }
  5553. if (counterBeep == 20) {
  5554. WRITE(BEEPER, LOW);
  5555. }
  5556. counterBeep++;
  5557. #else
  5558. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5559. lcd_buzz(1000 / 6, 100);
  5560. #else
  5561. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5562. #endif
  5563. #endif
  5564. }
  5565. switch (wait_for_user_state) {
  5566. case 0:
  5567. delay_keep_alive(4);
  5568. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5569. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5570. wait_for_user_state = 1;
  5571. setTargetHotend(0, 0);
  5572. setTargetHotend(0, 1);
  5573. setTargetHotend(0, 2);
  5574. st_synchronize();
  5575. disable_e0();
  5576. disable_e1();
  5577. disable_e2();
  5578. }
  5579. break;
  5580. case 1:
  5581. delay_keep_alive(4);
  5582. if (lcd_clicked()) {
  5583. setTargetHotend(HotendTempBckp, active_extruder);
  5584. lcd_wait_for_heater();
  5585. wait_for_user_state = 2;
  5586. }
  5587. break;
  5588. case 2:
  5589. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5590. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5591. waiting_start_time = millis();
  5592. wait_for_user_state = 0;
  5593. }
  5594. else {
  5595. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5596. lcd.setCursor(1, 4);
  5597. lcd.print(ftostr3(degHotend(active_extruder)));
  5598. }
  5599. break;
  5600. }
  5601. }
  5602. WRITE(BEEPER, LOW);
  5603. lcd_change_fil_state = 0;
  5604. // Unload filament
  5605. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5606. KEEPALIVE_STATE(IN_HANDLER);
  5607. custom_message = true;
  5608. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5609. if (code_seen('L'))
  5610. {
  5611. target[E_AXIS] += code_value();
  5612. }
  5613. else
  5614. {
  5615. #ifdef SNMM
  5616. #else
  5617. #ifdef FILAMENTCHANGE_FINALRETRACT
  5618. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5619. #endif
  5620. #endif // SNMM
  5621. }
  5622. #ifdef SNMM
  5623. target[E_AXIS] += 12;
  5624. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5625. target[E_AXIS] += 6;
  5626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5627. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5629. st_synchronize();
  5630. target[E_AXIS] += (FIL_COOLING);
  5631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5632. target[E_AXIS] += (FIL_COOLING*-1);
  5633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5634. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5636. st_synchronize();
  5637. #else
  5638. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5639. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5640. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5641. st_synchronize();
  5642. #ifdef TMC2130
  5643. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5644. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5645. #else
  5646. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5647. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5648. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5649. #endif //TMC2130
  5650. target[E_AXIS] -= 45;
  5651. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5652. st_synchronize();
  5653. target[E_AXIS] -= 15;
  5654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5655. st_synchronize();
  5656. target[E_AXIS] -= 20;
  5657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5658. st_synchronize();
  5659. #ifdef TMC2130
  5660. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5661. #else
  5662. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5663. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5664. else st_current_set(2, tmp_motor_loud[2]);
  5665. #endif //TMC2130
  5666. #endif // SNMM
  5667. //finish moves
  5668. st_synchronize();
  5669. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5670. //disable extruder steppers so filament can be removed
  5671. disable_e0();
  5672. disable_e1();
  5673. disable_e2();
  5674. delay(100);
  5675. WRITE(BEEPER, HIGH);
  5676. counterBeep = 0;
  5677. while(!lcd_clicked() && (counterBeep < 50)) {
  5678. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5679. delay_keep_alive(100);
  5680. counterBeep++;
  5681. }
  5682. WRITE(BEEPER, LOW);
  5683. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5684. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5685. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5686. //lcd_return_to_status();
  5687. lcd_update_enable(true);
  5688. //Wait for user to insert filament
  5689. lcd_wait_interact();
  5690. //load_filament_time = millis();
  5691. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5692. #ifdef PAT9125
  5693. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5694. #endif //PAT9125
  5695. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5696. while(!lcd_clicked())
  5697. {
  5698. manage_heater();
  5699. manage_inactivity(true);
  5700. #ifdef PAT9125
  5701. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5702. {
  5703. tone(BEEPER, 1000);
  5704. delay_keep_alive(50);
  5705. noTone(BEEPER);
  5706. break;
  5707. }
  5708. #endif //PAT9125
  5709. /*#ifdef SNMM
  5710. target[E_AXIS] += 0.002;
  5711. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5712. #endif // SNMM*/
  5713. }
  5714. #ifdef PAT9125
  5715. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5716. #endif //PAT9125
  5717. //WRITE(BEEPER, LOW);
  5718. KEEPALIVE_STATE(IN_HANDLER);
  5719. #ifdef SNMM
  5720. display_loading();
  5721. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5722. do {
  5723. target[E_AXIS] += 0.002;
  5724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5725. delay_keep_alive(2);
  5726. } while (!lcd_clicked());
  5727. KEEPALIVE_STATE(IN_HANDLER);
  5728. /*if (millis() - load_filament_time > 2) {
  5729. load_filament_time = millis();
  5730. target[E_AXIS] += 0.001;
  5731. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5732. }*/
  5733. //Filament inserted
  5734. //Feed the filament to the end of nozzle quickly
  5735. st_synchronize();
  5736. target[E_AXIS] += bowden_length[snmm_extruder];
  5737. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5738. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5739. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5740. target[E_AXIS] += 40;
  5741. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5742. target[E_AXIS] += 10;
  5743. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5744. #else
  5745. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5747. #endif // SNMM
  5748. //Extrude some filament
  5749. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5750. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5751. //Wait for user to check the state
  5752. lcd_change_fil_state = 0;
  5753. lcd_loading_filament();
  5754. tone(BEEPER, 500);
  5755. delay_keep_alive(50);
  5756. noTone(BEEPER);
  5757. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5758. lcd_change_fil_state = 0;
  5759. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5760. lcd_alright();
  5761. KEEPALIVE_STATE(IN_HANDLER);
  5762. switch(lcd_change_fil_state){
  5763. // Filament failed to load so load it again
  5764. case 2:
  5765. #ifdef SNMM
  5766. display_loading();
  5767. do {
  5768. target[E_AXIS] += 0.002;
  5769. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5770. delay_keep_alive(2);
  5771. } while (!lcd_clicked());
  5772. st_synchronize();
  5773. target[E_AXIS] += bowden_length[snmm_extruder];
  5774. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5775. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5777. target[E_AXIS] += 40;
  5778. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5779. target[E_AXIS] += 10;
  5780. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5781. #else
  5782. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5783. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5784. #endif
  5785. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5786. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5787. lcd_loading_filament();
  5788. break;
  5789. // Filament loaded properly but color is not clear
  5790. case 3:
  5791. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5792. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5793. lcd_loading_color();
  5794. break;
  5795. // Everything good
  5796. default:
  5797. lcd_change_success();
  5798. lcd_update_enable(true);
  5799. break;
  5800. }
  5801. }
  5802. //Not let's go back to print
  5803. fanSpeed = fanSpeedBckp;
  5804. //Feed a little of filament to stabilize pressure
  5805. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5806. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5807. //Retract
  5808. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5809. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5810. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5811. //Move XY back
  5812. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5813. //Move Z back
  5814. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5815. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5816. //Unretract
  5817. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5818. //Set E position to original
  5819. plan_set_e_position(lastpos[E_AXIS]);
  5820. //Recover feed rate
  5821. feedmultiply=feedmultiplyBckp;
  5822. char cmd[9];
  5823. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5824. enquecommand(cmd);
  5825. lcd_setstatuspgm(_T(WELCOME_MSG));
  5826. custom_message = false;
  5827. custom_message_type = 0;
  5828. #ifdef PAT9125
  5829. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5830. if (fsensor_M600)
  5831. {
  5832. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5833. st_synchronize();
  5834. while (!is_buffer_empty())
  5835. {
  5836. process_commands();
  5837. cmdqueue_pop_front();
  5838. }
  5839. KEEPALIVE_STATE(IN_HANDLER);
  5840. fsensor_enable();
  5841. fsensor_restore_print_and_continue();
  5842. }
  5843. #endif //PAT9125
  5844. }
  5845. break;
  5846. #endif //FILAMENTCHANGEENABLE
  5847. case 601: {
  5848. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5849. }
  5850. break;
  5851. case 602: {
  5852. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5853. }
  5854. break;
  5855. #ifdef PINDA_THERMISTOR
  5856. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5857. {
  5858. int set_target_pinda = 0;
  5859. if (code_seen('S')) {
  5860. set_target_pinda = code_value();
  5861. }
  5862. else {
  5863. break;
  5864. }
  5865. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5866. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5867. SERIAL_PROTOCOL(set_target_pinda);
  5868. SERIAL_PROTOCOLLN("");
  5869. codenum = millis();
  5870. cancel_heatup = false;
  5871. bool is_pinda_cooling = false;
  5872. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5873. is_pinda_cooling = true;
  5874. }
  5875. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5876. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5877. {
  5878. SERIAL_PROTOCOLPGM("P:");
  5879. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5880. SERIAL_PROTOCOLPGM("/");
  5881. SERIAL_PROTOCOL(set_target_pinda);
  5882. SERIAL_PROTOCOLLN("");
  5883. codenum = millis();
  5884. }
  5885. manage_heater();
  5886. manage_inactivity();
  5887. lcd_update();
  5888. }
  5889. LCD_MESSAGERPGM(_T(MSG_OK));
  5890. break;
  5891. }
  5892. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5893. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5894. uint8_t cal_status = calibration_status_pinda();
  5895. int16_t usteps = 0;
  5896. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5897. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5898. for (uint8_t i = 0; i < 6; i++)
  5899. {
  5900. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5901. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5902. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5903. SERIAL_PROTOCOLPGM(", ");
  5904. SERIAL_PROTOCOL(35 + (i * 5));
  5905. SERIAL_PROTOCOLPGM(", ");
  5906. SERIAL_PROTOCOL(usteps);
  5907. SERIAL_PROTOCOLPGM(", ");
  5908. SERIAL_PROTOCOL(mm * 1000);
  5909. SERIAL_PROTOCOLLN("");
  5910. }
  5911. }
  5912. else if (code_seen('!')) { // ! - Set factory default values
  5913. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5914. int16_t z_shift = 8; //40C - 20um - 8usteps
  5915. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5916. z_shift = 24; //45C - 60um - 24usteps
  5917. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5918. z_shift = 48; //50C - 120um - 48usteps
  5919. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5920. z_shift = 80; //55C - 200um - 80usteps
  5921. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5922. z_shift = 120; //60C - 300um - 120usteps
  5923. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5924. SERIAL_PROTOCOLLN("factory restored");
  5925. }
  5926. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5927. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5928. int16_t z_shift = 0;
  5929. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5930. SERIAL_PROTOCOLLN("zerorized");
  5931. }
  5932. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5933. int16_t usteps = code_value();
  5934. if (code_seen('I')) {
  5935. byte index = code_value();
  5936. if ((index >= 0) && (index < 5)) {
  5937. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5938. SERIAL_PROTOCOLLN("OK");
  5939. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5940. for (uint8_t i = 0; i < 6; i++)
  5941. {
  5942. usteps = 0;
  5943. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5944. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5945. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5946. SERIAL_PROTOCOLPGM(", ");
  5947. SERIAL_PROTOCOL(35 + (i * 5));
  5948. SERIAL_PROTOCOLPGM(", ");
  5949. SERIAL_PROTOCOL(usteps);
  5950. SERIAL_PROTOCOLPGM(", ");
  5951. SERIAL_PROTOCOL(mm * 1000);
  5952. SERIAL_PROTOCOLLN("");
  5953. }
  5954. }
  5955. }
  5956. }
  5957. else {
  5958. SERIAL_PROTOCOLPGM("no valid command");
  5959. }
  5960. break;
  5961. #endif //PINDA_THERMISTOR
  5962. #ifdef LIN_ADVANCE
  5963. case 900: // M900: Set LIN_ADVANCE options.
  5964. gcode_M900();
  5965. break;
  5966. #endif
  5967. case 907: // M907 Set digital trimpot motor current using axis codes.
  5968. {
  5969. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5970. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5971. if(code_seen('B')) st_current_set(4,code_value());
  5972. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5973. #endif
  5974. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5975. if(code_seen('X')) st_current_set(0, code_value());
  5976. #endif
  5977. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5978. if(code_seen('Z')) st_current_set(1, code_value());
  5979. #endif
  5980. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5981. if(code_seen('E')) st_current_set(2, code_value());
  5982. #endif
  5983. }
  5984. break;
  5985. case 908: // M908 Control digital trimpot directly.
  5986. {
  5987. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5988. uint8_t channel,current;
  5989. if(code_seen('P')) channel=code_value();
  5990. if(code_seen('S')) current=code_value();
  5991. digitalPotWrite(channel, current);
  5992. #endif
  5993. }
  5994. break;
  5995. #ifdef TMC2130
  5996. case 910: // M910 TMC2130 init
  5997. {
  5998. tmc2130_init();
  5999. }
  6000. break;
  6001. case 911: // M911 Set TMC2130 holding currents
  6002. {
  6003. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6004. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6005. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6006. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6007. }
  6008. break;
  6009. case 912: // M912 Set TMC2130 running currents
  6010. {
  6011. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6012. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6013. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6014. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6015. }
  6016. break;
  6017. case 913: // M913 Print TMC2130 currents
  6018. {
  6019. tmc2130_print_currents();
  6020. }
  6021. break;
  6022. case 914: // M914 Set normal mode
  6023. {
  6024. tmc2130_mode = TMC2130_MODE_NORMAL;
  6025. tmc2130_init();
  6026. }
  6027. break;
  6028. case 915: // M915 Set silent mode
  6029. {
  6030. tmc2130_mode = TMC2130_MODE_SILENT;
  6031. tmc2130_init();
  6032. }
  6033. break;
  6034. case 916: // M916 Set sg_thrs
  6035. {
  6036. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6037. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6038. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6039. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6040. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6041. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6042. }
  6043. break;
  6044. case 917: // M917 Set TMC2130 pwm_ampl
  6045. {
  6046. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6047. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6048. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6049. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6050. }
  6051. break;
  6052. case 918: // M918 Set TMC2130 pwm_grad
  6053. {
  6054. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6055. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6056. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6057. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6058. }
  6059. break;
  6060. #endif //TMC2130
  6061. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6062. {
  6063. #ifdef TMC2130
  6064. if(code_seen('E'))
  6065. {
  6066. uint16_t res_new = code_value();
  6067. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6068. {
  6069. st_synchronize();
  6070. uint8_t axis = E_AXIS;
  6071. uint16_t res = tmc2130_get_res(axis);
  6072. tmc2130_set_res(axis, res_new);
  6073. if (res_new > res)
  6074. {
  6075. uint16_t fac = (res_new / res);
  6076. axis_steps_per_unit[axis] *= fac;
  6077. position[E_AXIS] *= fac;
  6078. }
  6079. else
  6080. {
  6081. uint16_t fac = (res / res_new);
  6082. axis_steps_per_unit[axis] /= fac;
  6083. position[E_AXIS] /= fac;
  6084. }
  6085. }
  6086. }
  6087. #else //TMC2130
  6088. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6089. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6090. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6091. if(code_seen('B')) microstep_mode(4,code_value());
  6092. microstep_readings();
  6093. #endif
  6094. #endif //TMC2130
  6095. }
  6096. break;
  6097. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6098. {
  6099. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6100. if(code_seen('S')) switch((int)code_value())
  6101. {
  6102. case 1:
  6103. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6104. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6105. break;
  6106. case 2:
  6107. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6108. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6109. break;
  6110. }
  6111. microstep_readings();
  6112. #endif
  6113. }
  6114. break;
  6115. case 701: //M701: load filament
  6116. {
  6117. gcode_M701();
  6118. }
  6119. break;
  6120. case 702:
  6121. {
  6122. #ifdef SNMM
  6123. if (code_seen('U')) {
  6124. extr_unload_used(); //unload all filaments which were used in current print
  6125. }
  6126. else if (code_seen('C')) {
  6127. extr_unload(); //unload just current filament
  6128. }
  6129. else {
  6130. extr_unload_all(); //unload all filaments
  6131. }
  6132. #else
  6133. #ifdef PAT9125
  6134. bool old_fsensor_enabled = fsensor_enabled;
  6135. fsensor_enabled = false;
  6136. #endif //PAT9125
  6137. custom_message = true;
  6138. custom_message_type = 2;
  6139. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6140. // extr_unload2();
  6141. current_position[E_AXIS] -= 45;
  6142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6143. st_synchronize();
  6144. current_position[E_AXIS] -= 15;
  6145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6146. st_synchronize();
  6147. current_position[E_AXIS] -= 20;
  6148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6149. st_synchronize();
  6150. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6151. //disable extruder steppers so filament can be removed
  6152. disable_e0();
  6153. disable_e1();
  6154. disable_e2();
  6155. delay(100);
  6156. WRITE(BEEPER, HIGH);
  6157. uint8_t counterBeep = 0;
  6158. while (!lcd_clicked() && (counterBeep < 50)) {
  6159. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6160. delay_keep_alive(100);
  6161. counterBeep++;
  6162. }
  6163. WRITE(BEEPER, LOW);
  6164. st_synchronize();
  6165. while (lcd_clicked()) delay_keep_alive(100);
  6166. lcd_update_enable(true);
  6167. lcd_setstatuspgm(_T(WELCOME_MSG));
  6168. custom_message = false;
  6169. custom_message_type = 0;
  6170. #ifdef PAT9125
  6171. fsensor_enabled = old_fsensor_enabled;
  6172. #endif //PAT9125
  6173. #endif
  6174. }
  6175. break;
  6176. case 999: // M999: Restart after being stopped
  6177. Stopped = false;
  6178. lcd_reset_alert_level();
  6179. gcode_LastN = Stopped_gcode_LastN;
  6180. FlushSerialRequestResend();
  6181. break;
  6182. default:
  6183. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6184. }
  6185. } // end if(code_seen('M')) (end of M codes)
  6186. else if(code_seen('T'))
  6187. {
  6188. int index;
  6189. st_synchronize();
  6190. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6191. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6192. SERIAL_ECHOLNPGM("Invalid T code.");
  6193. }
  6194. else {
  6195. if (*(strchr_pointer + index) == '?') {
  6196. tmp_extruder = choose_extruder_menu();
  6197. }
  6198. else {
  6199. tmp_extruder = code_value();
  6200. }
  6201. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6202. #ifdef SNMM_V2
  6203. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6204. switch (tmp_extruder)
  6205. {
  6206. case 1:
  6207. fprintf_P(uart2io, PSTR("T1\n"));
  6208. break;
  6209. case 2:
  6210. fprintf_P(uart2io, PSTR("T2\n"));
  6211. break;
  6212. case 3:
  6213. fprintf_P(uart2io, PSTR("T3\n"));
  6214. break;
  6215. case 4:
  6216. fprintf_P(uart2io, PSTR("T4\n"));
  6217. break;
  6218. default:
  6219. fprintf_P(uart2io, PSTR("T0\n"));
  6220. break;
  6221. }
  6222. // get response
  6223. uart2_rx_clr();
  6224. while (!uart2_rx_ok())
  6225. {
  6226. //printf_P(PSTR("waiting..\n"));
  6227. delay_keep_alive(100);
  6228. }
  6229. #endif
  6230. #ifdef SNMM
  6231. #ifdef LIN_ADVANCE
  6232. if (snmm_extruder != tmp_extruder)
  6233. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6234. #endif
  6235. snmm_extruder = tmp_extruder;
  6236. delay(100);
  6237. disable_e0();
  6238. disable_e1();
  6239. disable_e2();
  6240. pinMode(E_MUX0_PIN, OUTPUT);
  6241. pinMode(E_MUX1_PIN, OUTPUT);
  6242. delay(100);
  6243. SERIAL_ECHO_START;
  6244. SERIAL_ECHO("T:");
  6245. SERIAL_ECHOLN((int)tmp_extruder);
  6246. switch (tmp_extruder) {
  6247. case 1:
  6248. WRITE(E_MUX0_PIN, HIGH);
  6249. WRITE(E_MUX1_PIN, LOW);
  6250. break;
  6251. case 2:
  6252. WRITE(E_MUX0_PIN, LOW);
  6253. WRITE(E_MUX1_PIN, HIGH);
  6254. break;
  6255. case 3:
  6256. WRITE(E_MUX0_PIN, HIGH);
  6257. WRITE(E_MUX1_PIN, HIGH);
  6258. break;
  6259. default:
  6260. WRITE(E_MUX0_PIN, LOW);
  6261. WRITE(E_MUX1_PIN, LOW);
  6262. break;
  6263. }
  6264. delay(100);
  6265. #else
  6266. if (tmp_extruder >= EXTRUDERS) {
  6267. SERIAL_ECHO_START;
  6268. SERIAL_ECHOPGM("T");
  6269. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6270. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6271. }
  6272. else {
  6273. boolean make_move = false;
  6274. if (code_seen('F')) {
  6275. make_move = true;
  6276. next_feedrate = code_value();
  6277. if (next_feedrate > 0.0) {
  6278. feedrate = next_feedrate;
  6279. }
  6280. }
  6281. #if EXTRUDERS > 1
  6282. if (tmp_extruder != active_extruder) {
  6283. // Save current position to return to after applying extruder offset
  6284. memcpy(destination, current_position, sizeof(destination));
  6285. // Offset extruder (only by XY)
  6286. int i;
  6287. for (i = 0; i < 2; i++) {
  6288. current_position[i] = current_position[i] -
  6289. extruder_offset[i][active_extruder] +
  6290. extruder_offset[i][tmp_extruder];
  6291. }
  6292. // Set the new active extruder and position
  6293. active_extruder = tmp_extruder;
  6294. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6295. // Move to the old position if 'F' was in the parameters
  6296. if (make_move && Stopped == false) {
  6297. prepare_move();
  6298. }
  6299. }
  6300. #endif
  6301. SERIAL_ECHO_START;
  6302. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6303. SERIAL_PROTOCOLLN((int)active_extruder);
  6304. }
  6305. #endif
  6306. }
  6307. } // end if(code_seen('T')) (end of T codes)
  6308. #ifdef DEBUG_DCODES
  6309. else if (code_seen('D')) // D codes (debug)
  6310. {
  6311. switch((int)code_value())
  6312. {
  6313. case -1: // D-1 - Endless loop
  6314. dcode__1(); break;
  6315. case 0: // D0 - Reset
  6316. dcode_0(); break;
  6317. case 1: // D1 - Clear EEPROM
  6318. dcode_1(); break;
  6319. case 2: // D2 - Read/Write RAM
  6320. dcode_2(); break;
  6321. case 3: // D3 - Read/Write EEPROM
  6322. dcode_3(); break;
  6323. case 4: // D4 - Read/Write PIN
  6324. dcode_4(); break;
  6325. case 5: // D5 - Read/Write FLASH
  6326. // dcode_5(); break;
  6327. break;
  6328. case 6: // D6 - Read/Write external FLASH
  6329. dcode_6(); break;
  6330. case 7: // D7 - Read/Write Bootloader
  6331. dcode_7(); break;
  6332. case 8: // D8 - Read/Write PINDA
  6333. dcode_8(); break;
  6334. case 9: // D9 - Read/Write ADC
  6335. dcode_9(); break;
  6336. case 10: // D10 - XYZ calibration = OK
  6337. dcode_10(); break;
  6338. #ifdef TMC2130
  6339. case 2130: // D9125 - TMC2130
  6340. dcode_2130(); break;
  6341. #endif //TMC2130
  6342. #ifdef PAT9125
  6343. case 9125: // D9125 - PAT9125
  6344. dcode_9125(); break;
  6345. #endif //PAT9125
  6346. }
  6347. }
  6348. #endif //DEBUG_DCODES
  6349. else
  6350. {
  6351. SERIAL_ECHO_START;
  6352. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6353. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6354. SERIAL_ECHOLNPGM("\"(2)");
  6355. }
  6356. KEEPALIVE_STATE(NOT_BUSY);
  6357. ClearToSend();
  6358. }
  6359. void FlushSerialRequestResend()
  6360. {
  6361. //char cmdbuffer[bufindr][100]="Resend:";
  6362. MYSERIAL.flush();
  6363. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6364. }
  6365. // Confirm the execution of a command, if sent from a serial line.
  6366. // Execution of a command from a SD card will not be confirmed.
  6367. void ClearToSend()
  6368. {
  6369. previous_millis_cmd = millis();
  6370. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6371. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6372. }
  6373. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6374. void update_currents() {
  6375. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6376. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6377. float tmp_motor[3];
  6378. //SERIAL_ECHOLNPGM("Currents updated: ");
  6379. if (destination[Z_AXIS] < Z_SILENT) {
  6380. //SERIAL_ECHOLNPGM("LOW");
  6381. for (uint8_t i = 0; i < 3; i++) {
  6382. st_current_set(i, current_low[i]);
  6383. /*MYSERIAL.print(int(i));
  6384. SERIAL_ECHOPGM(": ");
  6385. MYSERIAL.println(current_low[i]);*/
  6386. }
  6387. }
  6388. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6389. //SERIAL_ECHOLNPGM("HIGH");
  6390. for (uint8_t i = 0; i < 3; i++) {
  6391. st_current_set(i, current_high[i]);
  6392. /*MYSERIAL.print(int(i));
  6393. SERIAL_ECHOPGM(": ");
  6394. MYSERIAL.println(current_high[i]);*/
  6395. }
  6396. }
  6397. else {
  6398. for (uint8_t i = 0; i < 3; i++) {
  6399. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6400. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6401. st_current_set(i, tmp_motor[i]);
  6402. /*MYSERIAL.print(int(i));
  6403. SERIAL_ECHOPGM(": ");
  6404. MYSERIAL.println(tmp_motor[i]);*/
  6405. }
  6406. }
  6407. }
  6408. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6409. void get_coordinates()
  6410. {
  6411. bool seen[4]={false,false,false,false};
  6412. for(int8_t i=0; i < NUM_AXIS; i++) {
  6413. if(code_seen(axis_codes[i]))
  6414. {
  6415. bool relative = axis_relative_modes[i] || relative_mode;
  6416. destination[i] = (float)code_value();
  6417. if (i == E_AXIS) {
  6418. float emult = extruder_multiplier[active_extruder];
  6419. if (emult != 1.) {
  6420. if (! relative) {
  6421. destination[i] -= current_position[i];
  6422. relative = true;
  6423. }
  6424. destination[i] *= emult;
  6425. }
  6426. }
  6427. if (relative)
  6428. destination[i] += current_position[i];
  6429. seen[i]=true;
  6430. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6431. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6432. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6433. }
  6434. else destination[i] = current_position[i]; //Are these else lines really needed?
  6435. }
  6436. if(code_seen('F')) {
  6437. next_feedrate = code_value();
  6438. #ifdef MAX_SILENT_FEEDRATE
  6439. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6440. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6441. #endif //MAX_SILENT_FEEDRATE
  6442. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6443. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6444. {
  6445. // float e_max_speed =
  6446. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6447. }
  6448. }
  6449. }
  6450. void get_arc_coordinates()
  6451. {
  6452. #ifdef SF_ARC_FIX
  6453. bool relative_mode_backup = relative_mode;
  6454. relative_mode = true;
  6455. #endif
  6456. get_coordinates();
  6457. #ifdef SF_ARC_FIX
  6458. relative_mode=relative_mode_backup;
  6459. #endif
  6460. if(code_seen('I')) {
  6461. offset[0] = code_value();
  6462. }
  6463. else {
  6464. offset[0] = 0.0;
  6465. }
  6466. if(code_seen('J')) {
  6467. offset[1] = code_value();
  6468. }
  6469. else {
  6470. offset[1] = 0.0;
  6471. }
  6472. }
  6473. void clamp_to_software_endstops(float target[3])
  6474. {
  6475. #ifdef DEBUG_DISABLE_SWLIMITS
  6476. return;
  6477. #endif //DEBUG_DISABLE_SWLIMITS
  6478. world2machine_clamp(target[0], target[1]);
  6479. // Clamp the Z coordinate.
  6480. if (min_software_endstops) {
  6481. float negative_z_offset = 0;
  6482. #ifdef ENABLE_AUTO_BED_LEVELING
  6483. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6484. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6485. #endif
  6486. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6487. }
  6488. if (max_software_endstops) {
  6489. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6490. }
  6491. }
  6492. #ifdef MESH_BED_LEVELING
  6493. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6494. float dx = x - current_position[X_AXIS];
  6495. float dy = y - current_position[Y_AXIS];
  6496. float dz = z - current_position[Z_AXIS];
  6497. int n_segments = 0;
  6498. if (mbl.active) {
  6499. float len = abs(dx) + abs(dy);
  6500. if (len > 0)
  6501. // Split to 3cm segments or shorter.
  6502. n_segments = int(ceil(len / 30.f));
  6503. }
  6504. if (n_segments > 1) {
  6505. float de = e - current_position[E_AXIS];
  6506. for (int i = 1; i < n_segments; ++ i) {
  6507. float t = float(i) / float(n_segments);
  6508. if (saved_printing || (mbl.active == false)) return;
  6509. plan_buffer_line(
  6510. current_position[X_AXIS] + t * dx,
  6511. current_position[Y_AXIS] + t * dy,
  6512. current_position[Z_AXIS] + t * dz,
  6513. current_position[E_AXIS] + t * de,
  6514. feed_rate, extruder);
  6515. }
  6516. }
  6517. // The rest of the path.
  6518. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6519. current_position[X_AXIS] = x;
  6520. current_position[Y_AXIS] = y;
  6521. current_position[Z_AXIS] = z;
  6522. current_position[E_AXIS] = e;
  6523. }
  6524. #endif // MESH_BED_LEVELING
  6525. void prepare_move()
  6526. {
  6527. clamp_to_software_endstops(destination);
  6528. previous_millis_cmd = millis();
  6529. // Do not use feedmultiply for E or Z only moves
  6530. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6531. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6532. }
  6533. else {
  6534. #ifdef MESH_BED_LEVELING
  6535. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6536. #else
  6537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6538. #endif
  6539. }
  6540. for(int8_t i=0; i < NUM_AXIS; i++) {
  6541. current_position[i] = destination[i];
  6542. }
  6543. }
  6544. void prepare_arc_move(char isclockwise) {
  6545. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6546. // Trace the arc
  6547. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6548. // As far as the parser is concerned, the position is now == target. In reality the
  6549. // motion control system might still be processing the action and the real tool position
  6550. // in any intermediate location.
  6551. for(int8_t i=0; i < NUM_AXIS; i++) {
  6552. current_position[i] = destination[i];
  6553. }
  6554. previous_millis_cmd = millis();
  6555. }
  6556. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6557. #if defined(FAN_PIN)
  6558. #if CONTROLLERFAN_PIN == FAN_PIN
  6559. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6560. #endif
  6561. #endif
  6562. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6563. unsigned long lastMotorCheck = 0;
  6564. void controllerFan()
  6565. {
  6566. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6567. {
  6568. lastMotorCheck = millis();
  6569. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6570. #if EXTRUDERS > 2
  6571. || !READ(E2_ENABLE_PIN)
  6572. #endif
  6573. #if EXTRUDER > 1
  6574. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6575. || !READ(X2_ENABLE_PIN)
  6576. #endif
  6577. || !READ(E1_ENABLE_PIN)
  6578. #endif
  6579. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6580. {
  6581. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6582. }
  6583. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6584. {
  6585. digitalWrite(CONTROLLERFAN_PIN, 0);
  6586. analogWrite(CONTROLLERFAN_PIN, 0);
  6587. }
  6588. else
  6589. {
  6590. // allows digital or PWM fan output to be used (see M42 handling)
  6591. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6592. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6593. }
  6594. }
  6595. }
  6596. #endif
  6597. #ifdef TEMP_STAT_LEDS
  6598. static bool blue_led = false;
  6599. static bool red_led = false;
  6600. static uint32_t stat_update = 0;
  6601. void handle_status_leds(void) {
  6602. float max_temp = 0.0;
  6603. if(millis() > stat_update) {
  6604. stat_update += 500; // Update every 0.5s
  6605. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6606. max_temp = max(max_temp, degHotend(cur_extruder));
  6607. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6608. }
  6609. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6610. max_temp = max(max_temp, degTargetBed());
  6611. max_temp = max(max_temp, degBed());
  6612. #endif
  6613. if((max_temp > 55.0) && (red_led == false)) {
  6614. digitalWrite(STAT_LED_RED, 1);
  6615. digitalWrite(STAT_LED_BLUE, 0);
  6616. red_led = true;
  6617. blue_led = false;
  6618. }
  6619. if((max_temp < 54.0) && (blue_led == false)) {
  6620. digitalWrite(STAT_LED_RED, 0);
  6621. digitalWrite(STAT_LED_BLUE, 1);
  6622. red_led = false;
  6623. blue_led = true;
  6624. }
  6625. }
  6626. }
  6627. #endif
  6628. #ifdef SAFETYTIMER
  6629. /**
  6630. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6631. *
  6632. * Full screen blocking notification message is shown after heater turning off.
  6633. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6634. * damage print.
  6635. *
  6636. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6637. */
  6638. static void handleSafetyTimer()
  6639. {
  6640. #if (EXTRUDERS > 1)
  6641. #error Implemented only for one extruder.
  6642. #endif //(EXTRUDERS > 1)
  6643. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6644. {
  6645. safetyTimer.stop();
  6646. }
  6647. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6648. {
  6649. safetyTimer.start();
  6650. }
  6651. else if (safetyTimer.expired(safetytimer_inactive_time))
  6652. {
  6653. setTargetBed(0);
  6654. setTargetHotend(0, 0);
  6655. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6656. }
  6657. }
  6658. #endif //SAFETYTIMER
  6659. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6660. {
  6661. #ifdef PAT9125
  6662. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6663. {
  6664. if (fsensor_autoload_enabled)
  6665. {
  6666. if (fsensor_check_autoload())
  6667. {
  6668. if (degHotend0() > EXTRUDE_MINTEMP)
  6669. {
  6670. fsensor_autoload_check_stop();
  6671. tone(BEEPER, 1000);
  6672. delay_keep_alive(50);
  6673. noTone(BEEPER);
  6674. loading_flag = true;
  6675. enquecommand_front_P((PSTR("M701")));
  6676. }
  6677. else
  6678. {
  6679. lcd_update_enable(false);
  6680. lcd_implementation_clear();
  6681. lcd.setCursor(0, 0);
  6682. lcd_printPGM(_T(MSG_ERROR));
  6683. lcd.setCursor(0, 2);
  6684. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6685. delay(2000);
  6686. lcd_implementation_clear();
  6687. lcd_update_enable(true);
  6688. }
  6689. }
  6690. }
  6691. else
  6692. fsensor_autoload_check_start();
  6693. }
  6694. else
  6695. if (fsensor_autoload_enabled)
  6696. fsensor_autoload_check_stop();
  6697. #endif //PAT9125
  6698. #ifdef SAFETYTIMER
  6699. handleSafetyTimer();
  6700. #endif //SAFETYTIMER
  6701. #if defined(KILL_PIN) && KILL_PIN > -1
  6702. static int killCount = 0; // make the inactivity button a bit less responsive
  6703. const int KILL_DELAY = 10000;
  6704. #endif
  6705. if(buflen < (BUFSIZE-1)){
  6706. get_command();
  6707. }
  6708. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6709. if(max_inactive_time)
  6710. kill(_n(""), 4);
  6711. if(stepper_inactive_time) {
  6712. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6713. {
  6714. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6715. disable_x();
  6716. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6717. disable_y();
  6718. disable_z();
  6719. disable_e0();
  6720. disable_e1();
  6721. disable_e2();
  6722. }
  6723. }
  6724. }
  6725. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6726. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6727. {
  6728. chdkActive = false;
  6729. WRITE(CHDK, LOW);
  6730. }
  6731. #endif
  6732. #if defined(KILL_PIN) && KILL_PIN > -1
  6733. // Check if the kill button was pressed and wait just in case it was an accidental
  6734. // key kill key press
  6735. // -------------------------------------------------------------------------------
  6736. if( 0 == READ(KILL_PIN) )
  6737. {
  6738. killCount++;
  6739. }
  6740. else if (killCount > 0)
  6741. {
  6742. killCount--;
  6743. }
  6744. // Exceeded threshold and we can confirm that it was not accidental
  6745. // KILL the machine
  6746. // ----------------------------------------------------------------
  6747. if ( killCount >= KILL_DELAY)
  6748. {
  6749. kill("", 5);
  6750. }
  6751. #endif
  6752. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6753. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6754. #endif
  6755. #ifdef EXTRUDER_RUNOUT_PREVENT
  6756. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6757. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6758. {
  6759. bool oldstatus=READ(E0_ENABLE_PIN);
  6760. enable_e0();
  6761. float oldepos=current_position[E_AXIS];
  6762. float oldedes=destination[E_AXIS];
  6763. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6764. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6765. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6766. current_position[E_AXIS]=oldepos;
  6767. destination[E_AXIS]=oldedes;
  6768. plan_set_e_position(oldepos);
  6769. previous_millis_cmd=millis();
  6770. st_synchronize();
  6771. WRITE(E0_ENABLE_PIN,oldstatus);
  6772. }
  6773. #endif
  6774. #ifdef TEMP_STAT_LEDS
  6775. handle_status_leds();
  6776. #endif
  6777. check_axes_activity();
  6778. }
  6779. void kill(const char *full_screen_message, unsigned char id)
  6780. {
  6781. printf_P(_N("KILL: %d\n"), id);
  6782. //return;
  6783. cli(); // Stop interrupts
  6784. disable_heater();
  6785. disable_x();
  6786. // SERIAL_ECHOLNPGM("kill - disable Y");
  6787. disable_y();
  6788. disable_z();
  6789. disable_e0();
  6790. disable_e1();
  6791. disable_e2();
  6792. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6793. pinMode(PS_ON_PIN,INPUT);
  6794. #endif
  6795. SERIAL_ERROR_START;
  6796. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6797. if (full_screen_message != NULL) {
  6798. SERIAL_ERRORLNRPGM(full_screen_message);
  6799. lcd_display_message_fullscreen_P(full_screen_message);
  6800. } else {
  6801. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6802. }
  6803. // FMC small patch to update the LCD before ending
  6804. sei(); // enable interrupts
  6805. for ( int i=5; i--; lcd_update())
  6806. {
  6807. delay(200);
  6808. }
  6809. cli(); // disable interrupts
  6810. suicide();
  6811. while(1)
  6812. {
  6813. #ifdef WATCHDOG
  6814. wdt_reset();
  6815. #endif //WATCHDOG
  6816. /* Intentionally left empty */
  6817. } // Wait for reset
  6818. }
  6819. void Stop()
  6820. {
  6821. disable_heater();
  6822. if(Stopped == false) {
  6823. Stopped = true;
  6824. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6825. SERIAL_ERROR_START;
  6826. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6827. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6828. }
  6829. }
  6830. bool IsStopped() { return Stopped; };
  6831. #ifdef FAST_PWM_FAN
  6832. void setPwmFrequency(uint8_t pin, int val)
  6833. {
  6834. val &= 0x07;
  6835. switch(digitalPinToTimer(pin))
  6836. {
  6837. #if defined(TCCR0A)
  6838. case TIMER0A:
  6839. case TIMER0B:
  6840. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6841. // TCCR0B |= val;
  6842. break;
  6843. #endif
  6844. #if defined(TCCR1A)
  6845. case TIMER1A:
  6846. case TIMER1B:
  6847. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6848. // TCCR1B |= val;
  6849. break;
  6850. #endif
  6851. #if defined(TCCR2)
  6852. case TIMER2:
  6853. case TIMER2:
  6854. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6855. TCCR2 |= val;
  6856. break;
  6857. #endif
  6858. #if defined(TCCR2A)
  6859. case TIMER2A:
  6860. case TIMER2B:
  6861. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6862. TCCR2B |= val;
  6863. break;
  6864. #endif
  6865. #if defined(TCCR3A)
  6866. case TIMER3A:
  6867. case TIMER3B:
  6868. case TIMER3C:
  6869. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6870. TCCR3B |= val;
  6871. break;
  6872. #endif
  6873. #if defined(TCCR4A)
  6874. case TIMER4A:
  6875. case TIMER4B:
  6876. case TIMER4C:
  6877. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6878. TCCR4B |= val;
  6879. break;
  6880. #endif
  6881. #if defined(TCCR5A)
  6882. case TIMER5A:
  6883. case TIMER5B:
  6884. case TIMER5C:
  6885. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6886. TCCR5B |= val;
  6887. break;
  6888. #endif
  6889. }
  6890. }
  6891. #endif //FAST_PWM_FAN
  6892. bool setTargetedHotend(int code){
  6893. tmp_extruder = active_extruder;
  6894. if(code_seen('T')) {
  6895. tmp_extruder = code_value();
  6896. if(tmp_extruder >= EXTRUDERS) {
  6897. SERIAL_ECHO_START;
  6898. switch(code){
  6899. case 104:
  6900. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6901. break;
  6902. case 105:
  6903. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6904. break;
  6905. case 109:
  6906. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6907. break;
  6908. case 218:
  6909. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6910. break;
  6911. case 221:
  6912. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6913. break;
  6914. }
  6915. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6916. return true;
  6917. }
  6918. }
  6919. return false;
  6920. }
  6921. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6922. {
  6923. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6924. {
  6925. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6926. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6927. }
  6928. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6929. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6930. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6931. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6932. total_filament_used = 0;
  6933. }
  6934. float calculate_extruder_multiplier(float diameter) {
  6935. float out = 1.f;
  6936. if (volumetric_enabled && diameter > 0.f) {
  6937. float area = M_PI * diameter * diameter * 0.25;
  6938. out = 1.f / area;
  6939. }
  6940. if (extrudemultiply != 100)
  6941. out *= float(extrudemultiply) * 0.01f;
  6942. return out;
  6943. }
  6944. void calculate_extruder_multipliers() {
  6945. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6946. #if EXTRUDERS > 1
  6947. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6948. #if EXTRUDERS > 2
  6949. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6950. #endif
  6951. #endif
  6952. }
  6953. void delay_keep_alive(unsigned int ms)
  6954. {
  6955. for (;;) {
  6956. manage_heater();
  6957. // Manage inactivity, but don't disable steppers on timeout.
  6958. manage_inactivity(true);
  6959. lcd_update();
  6960. if (ms == 0)
  6961. break;
  6962. else if (ms >= 50) {
  6963. delay(50);
  6964. ms -= 50;
  6965. } else {
  6966. delay(ms);
  6967. ms = 0;
  6968. }
  6969. }
  6970. }
  6971. void wait_for_heater(long codenum) {
  6972. #ifdef TEMP_RESIDENCY_TIME
  6973. long residencyStart;
  6974. residencyStart = -1;
  6975. /* continue to loop until we have reached the target temp
  6976. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6977. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6978. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6979. #else
  6980. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6981. #endif //TEMP_RESIDENCY_TIME
  6982. if ((millis() - codenum) > 1000UL)
  6983. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6984. if (!farm_mode) {
  6985. SERIAL_PROTOCOLPGM("T:");
  6986. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6987. SERIAL_PROTOCOLPGM(" E:");
  6988. SERIAL_PROTOCOL((int)tmp_extruder);
  6989. #ifdef TEMP_RESIDENCY_TIME
  6990. SERIAL_PROTOCOLPGM(" W:");
  6991. if (residencyStart > -1)
  6992. {
  6993. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6994. SERIAL_PROTOCOLLN(codenum);
  6995. }
  6996. else
  6997. {
  6998. SERIAL_PROTOCOLLN("?");
  6999. }
  7000. }
  7001. #else
  7002. SERIAL_PROTOCOLLN("");
  7003. #endif
  7004. codenum = millis();
  7005. }
  7006. manage_heater();
  7007. manage_inactivity();
  7008. lcd_update();
  7009. #ifdef TEMP_RESIDENCY_TIME
  7010. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7011. or when current temp falls outside the hysteresis after target temp was reached */
  7012. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  7013. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  7014. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  7015. {
  7016. residencyStart = millis();
  7017. }
  7018. #endif //TEMP_RESIDENCY_TIME
  7019. }
  7020. }
  7021. void check_babystep() {
  7022. int babystep_z;
  7023. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7024. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7025. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7026. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7027. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7028. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7029. lcd_update_enable(true);
  7030. }
  7031. }
  7032. #ifdef DIS
  7033. void d_setup()
  7034. {
  7035. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7036. pinMode(D_DATA, INPUT_PULLUP);
  7037. pinMode(D_REQUIRE, OUTPUT);
  7038. digitalWrite(D_REQUIRE, HIGH);
  7039. }
  7040. float d_ReadData()
  7041. {
  7042. int digit[13];
  7043. String mergeOutput;
  7044. float output;
  7045. digitalWrite(D_REQUIRE, HIGH);
  7046. for (int i = 0; i<13; i++)
  7047. {
  7048. for (int j = 0; j < 4; j++)
  7049. {
  7050. while (digitalRead(D_DATACLOCK) == LOW) {}
  7051. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7052. bitWrite(digit[i], j, digitalRead(D_DATA));
  7053. }
  7054. }
  7055. digitalWrite(D_REQUIRE, LOW);
  7056. mergeOutput = "";
  7057. output = 0;
  7058. for (int r = 5; r <= 10; r++) //Merge digits
  7059. {
  7060. mergeOutput += digit[r];
  7061. }
  7062. output = mergeOutput.toFloat();
  7063. if (digit[4] == 8) //Handle sign
  7064. {
  7065. output *= -1;
  7066. }
  7067. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7068. {
  7069. output /= 10;
  7070. }
  7071. return output;
  7072. }
  7073. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7074. int t1 = 0;
  7075. int t_delay = 0;
  7076. int digit[13];
  7077. int m;
  7078. char str[3];
  7079. //String mergeOutput;
  7080. char mergeOutput[15];
  7081. float output;
  7082. int mesh_point = 0; //index number of calibration point
  7083. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7084. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7085. float mesh_home_z_search = 4;
  7086. float row[x_points_num];
  7087. int ix = 0;
  7088. int iy = 0;
  7089. char* filename_wldsd = "wldsd.txt";
  7090. char data_wldsd[70];
  7091. char numb_wldsd[10];
  7092. d_setup();
  7093. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7094. // We don't know where we are! HOME!
  7095. // Push the commands to the front of the message queue in the reverse order!
  7096. // There shall be always enough space reserved for these commands.
  7097. repeatcommand_front(); // repeat G80 with all its parameters
  7098. enquecommand_front_P((PSTR("G28 W0")));
  7099. enquecommand_front_P((PSTR("G1 Z5")));
  7100. return;
  7101. }
  7102. bool custom_message_old = custom_message;
  7103. unsigned int custom_message_type_old = custom_message_type;
  7104. unsigned int custom_message_state_old = custom_message_state;
  7105. custom_message = true;
  7106. custom_message_type = 1;
  7107. custom_message_state = (x_points_num * y_points_num) + 10;
  7108. lcd_update(1);
  7109. mbl.reset();
  7110. babystep_undo();
  7111. card.openFile(filename_wldsd, false);
  7112. current_position[Z_AXIS] = mesh_home_z_search;
  7113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7114. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7115. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7116. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7117. setup_for_endstop_move(false);
  7118. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7119. SERIAL_PROTOCOL(x_points_num);
  7120. SERIAL_PROTOCOLPGM(",");
  7121. SERIAL_PROTOCOL(y_points_num);
  7122. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7123. SERIAL_PROTOCOL(mesh_home_z_search);
  7124. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7125. SERIAL_PROTOCOL(x_dimension);
  7126. SERIAL_PROTOCOLPGM(",");
  7127. SERIAL_PROTOCOL(y_dimension);
  7128. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7129. while (mesh_point != x_points_num * y_points_num) {
  7130. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7131. iy = mesh_point / x_points_num;
  7132. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7133. float z0 = 0.f;
  7134. current_position[Z_AXIS] = mesh_home_z_search;
  7135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7136. st_synchronize();
  7137. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7138. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7140. st_synchronize();
  7141. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7142. break;
  7143. card.closefile();
  7144. }
  7145. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7146. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7147. //strcat(data_wldsd, numb_wldsd);
  7148. //MYSERIAL.println(data_wldsd);
  7149. //delay(1000);
  7150. //delay(3000);
  7151. //t1 = millis();
  7152. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7153. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7154. memset(digit, 0, sizeof(digit));
  7155. //cli();
  7156. digitalWrite(D_REQUIRE, LOW);
  7157. for (int i = 0; i<13; i++)
  7158. {
  7159. //t1 = millis();
  7160. for (int j = 0; j < 4; j++)
  7161. {
  7162. while (digitalRead(D_DATACLOCK) == LOW) {}
  7163. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7164. bitWrite(digit[i], j, digitalRead(D_DATA));
  7165. }
  7166. //t_delay = (millis() - t1);
  7167. //SERIAL_PROTOCOLPGM(" ");
  7168. //SERIAL_PROTOCOL_F(t_delay, 5);
  7169. //SERIAL_PROTOCOLPGM(" ");
  7170. }
  7171. //sei();
  7172. digitalWrite(D_REQUIRE, HIGH);
  7173. mergeOutput[0] = '\0';
  7174. output = 0;
  7175. for (int r = 5; r <= 10; r++) //Merge digits
  7176. {
  7177. sprintf(str, "%d", digit[r]);
  7178. strcat(mergeOutput, str);
  7179. }
  7180. output = atof(mergeOutput);
  7181. if (digit[4] == 8) //Handle sign
  7182. {
  7183. output *= -1;
  7184. }
  7185. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7186. {
  7187. output *= 0.1;
  7188. }
  7189. //output = d_ReadData();
  7190. //row[ix] = current_position[Z_AXIS];
  7191. memset(data_wldsd, 0, sizeof(data_wldsd));
  7192. for (int i = 0; i <3; i++) {
  7193. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7194. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7195. strcat(data_wldsd, numb_wldsd);
  7196. strcat(data_wldsd, ";");
  7197. }
  7198. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7199. dtostrf(output, 8, 5, numb_wldsd);
  7200. strcat(data_wldsd, numb_wldsd);
  7201. //strcat(data_wldsd, ";");
  7202. card.write_command(data_wldsd);
  7203. //row[ix] = d_ReadData();
  7204. row[ix] = output; // current_position[Z_AXIS];
  7205. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7206. for (int i = 0; i < x_points_num; i++) {
  7207. SERIAL_PROTOCOLPGM(" ");
  7208. SERIAL_PROTOCOL_F(row[i], 5);
  7209. }
  7210. SERIAL_PROTOCOLPGM("\n");
  7211. }
  7212. custom_message_state--;
  7213. mesh_point++;
  7214. lcd_update(1);
  7215. }
  7216. card.closefile();
  7217. }
  7218. #endif
  7219. void temp_compensation_start() {
  7220. custom_message = true;
  7221. custom_message_type = 5;
  7222. custom_message_state = PINDA_HEAT_T + 1;
  7223. lcd_update(2);
  7224. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7225. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7226. }
  7227. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7228. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7229. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7230. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7231. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7232. st_synchronize();
  7233. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7234. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7235. delay_keep_alive(1000);
  7236. custom_message_state = PINDA_HEAT_T - i;
  7237. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7238. else lcd_update(1);
  7239. }
  7240. custom_message_type = 0;
  7241. custom_message_state = 0;
  7242. custom_message = false;
  7243. }
  7244. void temp_compensation_apply() {
  7245. int i_add;
  7246. int compensation_value;
  7247. int z_shift = 0;
  7248. float z_shift_mm;
  7249. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7250. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7251. i_add = (target_temperature_bed - 60) / 10;
  7252. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7253. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7254. }else {
  7255. //interpolation
  7256. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7257. }
  7258. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7260. st_synchronize();
  7261. plan_set_z_position(current_position[Z_AXIS]);
  7262. }
  7263. else {
  7264. //we have no temp compensation data
  7265. }
  7266. }
  7267. float temp_comp_interpolation(float inp_temperature) {
  7268. //cubic spline interpolation
  7269. int n, i, j, k;
  7270. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7271. int shift[10];
  7272. int temp_C[10];
  7273. n = 6; //number of measured points
  7274. shift[0] = 0;
  7275. for (i = 0; i < n; i++) {
  7276. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7277. temp_C[i] = 50 + i * 10; //temperature in C
  7278. #ifdef PINDA_THERMISTOR
  7279. temp_C[i] = 35 + i * 5; //temperature in C
  7280. #else
  7281. temp_C[i] = 50 + i * 10; //temperature in C
  7282. #endif
  7283. x[i] = (float)temp_C[i];
  7284. f[i] = (float)shift[i];
  7285. }
  7286. if (inp_temperature < x[0]) return 0;
  7287. for (i = n - 1; i>0; i--) {
  7288. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7289. h[i - 1] = x[i] - x[i - 1];
  7290. }
  7291. //*********** formation of h, s , f matrix **************
  7292. for (i = 1; i<n - 1; i++) {
  7293. m[i][i] = 2 * (h[i - 1] + h[i]);
  7294. if (i != 1) {
  7295. m[i][i - 1] = h[i - 1];
  7296. m[i - 1][i] = h[i - 1];
  7297. }
  7298. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7299. }
  7300. //*********** forward elimination **************
  7301. for (i = 1; i<n - 2; i++) {
  7302. temp = (m[i + 1][i] / m[i][i]);
  7303. for (j = 1; j <= n - 1; j++)
  7304. m[i + 1][j] -= temp*m[i][j];
  7305. }
  7306. //*********** backward substitution *********
  7307. for (i = n - 2; i>0; i--) {
  7308. sum = 0;
  7309. for (j = i; j <= n - 2; j++)
  7310. sum += m[i][j] * s[j];
  7311. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7312. }
  7313. for (i = 0; i<n - 1; i++)
  7314. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7315. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7316. b = s[i] / 2;
  7317. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7318. d = f[i];
  7319. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7320. }
  7321. return sum;
  7322. }
  7323. #ifdef PINDA_THERMISTOR
  7324. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7325. {
  7326. if (!temp_cal_active) return 0;
  7327. if (!calibration_status_pinda()) return 0;
  7328. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7329. }
  7330. #endif //PINDA_THERMISTOR
  7331. void long_pause() //long pause print
  7332. {
  7333. st_synchronize();
  7334. //save currently set parameters to global variables
  7335. saved_feedmultiply = feedmultiply;
  7336. HotendTempBckp = degTargetHotend(active_extruder);
  7337. fanSpeedBckp = fanSpeed;
  7338. start_pause_print = millis();
  7339. //save position
  7340. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7341. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7342. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7343. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7344. //retract
  7345. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7347. //lift z
  7348. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7349. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7351. //set nozzle target temperature to 0
  7352. setTargetHotend(0, 0);
  7353. setTargetHotend(0, 1);
  7354. setTargetHotend(0, 2);
  7355. //Move XY to side
  7356. current_position[X_AXIS] = X_PAUSE_POS;
  7357. current_position[Y_AXIS] = Y_PAUSE_POS;
  7358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7359. // Turn off the print fan
  7360. fanSpeed = 0;
  7361. st_synchronize();
  7362. }
  7363. void serialecho_temperatures() {
  7364. float tt = degHotend(active_extruder);
  7365. SERIAL_PROTOCOLPGM("T:");
  7366. SERIAL_PROTOCOL(tt);
  7367. SERIAL_PROTOCOLPGM(" E:");
  7368. SERIAL_PROTOCOL((int)active_extruder);
  7369. SERIAL_PROTOCOLPGM(" B:");
  7370. SERIAL_PROTOCOL_F(degBed(), 1);
  7371. SERIAL_PROTOCOLLN("");
  7372. }
  7373. extern uint32_t sdpos_atomic;
  7374. #ifdef UVLO_SUPPORT
  7375. void uvlo_()
  7376. {
  7377. unsigned long time_start = millis();
  7378. bool sd_print = card.sdprinting;
  7379. // Conserve power as soon as possible.
  7380. disable_x();
  7381. disable_y();
  7382. #ifdef TMC2130
  7383. tmc2130_set_current_h(Z_AXIS, 20);
  7384. tmc2130_set_current_r(Z_AXIS, 20);
  7385. tmc2130_set_current_h(E_AXIS, 20);
  7386. tmc2130_set_current_r(E_AXIS, 20);
  7387. #endif //TMC2130
  7388. // Indicate that the interrupt has been triggered.
  7389. // SERIAL_ECHOLNPGM("UVLO");
  7390. // Read out the current Z motor microstep counter. This will be later used
  7391. // for reaching the zero full step before powering off.
  7392. uint16_t z_microsteps = 0;
  7393. #ifdef TMC2130
  7394. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7395. #endif //TMC2130
  7396. // Calculate the file position, from which to resume this print.
  7397. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7398. {
  7399. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7400. sd_position -= sdlen_planner;
  7401. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7402. sd_position -= sdlen_cmdqueue;
  7403. if (sd_position < 0) sd_position = 0;
  7404. }
  7405. // Backup the feedrate in mm/min.
  7406. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7407. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7408. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7409. // are in action.
  7410. planner_abort_hard();
  7411. // Store the current extruder position.
  7412. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7413. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7414. // Clean the input command queue.
  7415. cmdqueue_reset();
  7416. card.sdprinting = false;
  7417. // card.closefile();
  7418. // Enable stepper driver interrupt to move Z axis.
  7419. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7420. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7421. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7422. sei();
  7423. plan_buffer_line(
  7424. current_position[X_AXIS],
  7425. current_position[Y_AXIS],
  7426. current_position[Z_AXIS],
  7427. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7428. 95, active_extruder);
  7429. st_synchronize();
  7430. disable_e0();
  7431. plan_buffer_line(
  7432. current_position[X_AXIS],
  7433. current_position[Y_AXIS],
  7434. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7435. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7436. 40, active_extruder);
  7437. st_synchronize();
  7438. disable_e0();
  7439. plan_buffer_line(
  7440. current_position[X_AXIS],
  7441. current_position[Y_AXIS],
  7442. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7443. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7444. 40, active_extruder);
  7445. st_synchronize();
  7446. disable_e0();
  7447. disable_z();
  7448. // Move Z up to the next 0th full step.
  7449. // Write the file position.
  7450. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7451. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7452. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7453. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7454. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7455. // Scale the z value to 1u resolution.
  7456. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7457. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7458. }
  7459. // Read out the current Z motor microstep counter. This will be later used
  7460. // for reaching the zero full step before powering off.
  7461. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7462. // Store the current position.
  7463. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7464. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7465. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7466. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7467. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7468. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7469. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7470. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7471. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7472. #if EXTRUDERS > 1
  7473. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7474. #if EXTRUDERS > 2
  7475. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7476. #endif
  7477. #endif
  7478. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7479. // Finaly store the "power outage" flag.
  7480. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7481. st_synchronize();
  7482. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7483. disable_z();
  7484. // Increment power failure counter
  7485. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7486. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7487. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7488. #if 0
  7489. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7490. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7491. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7492. st_synchronize();
  7493. #endif
  7494. cli();
  7495. volatile unsigned int ppcount = 0;
  7496. SET_OUTPUT(BEEPER);
  7497. WRITE(BEEPER, HIGH);
  7498. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7499. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7500. }
  7501. WRITE(BEEPER, LOW);
  7502. while(1){
  7503. #if 1
  7504. WRITE(BEEPER, LOW);
  7505. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7506. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7507. }
  7508. #endif
  7509. };
  7510. }
  7511. #endif //UVLO_SUPPORT
  7512. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7513. void setup_fan_interrupt() {
  7514. //INT7
  7515. DDRE &= ~(1 << 7); //input pin
  7516. PORTE &= ~(1 << 7); //no internal pull-up
  7517. //start with sensing rising edge
  7518. EICRB &= ~(1 << 6);
  7519. EICRB |= (1 << 7);
  7520. //enable INT7 interrupt
  7521. EIMSK |= (1 << 7);
  7522. }
  7523. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7524. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7525. ISR(INT7_vect) {
  7526. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7527. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7528. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7529. t_fan_rising_edge = millis_nc();
  7530. }
  7531. else { //interrupt was triggered by falling edge
  7532. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7533. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7534. }
  7535. }
  7536. EICRB ^= (1 << 6); //change edge
  7537. }
  7538. #endif
  7539. #ifdef UVLO_SUPPORT
  7540. void setup_uvlo_interrupt() {
  7541. DDRE &= ~(1 << 4); //input pin
  7542. PORTE &= ~(1 << 4); //no internal pull-up
  7543. //sensing falling edge
  7544. EICRB |= (1 << 0);
  7545. EICRB &= ~(1 << 1);
  7546. //enable INT4 interrupt
  7547. EIMSK |= (1 << 4);
  7548. }
  7549. ISR(INT4_vect) {
  7550. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7551. SERIAL_ECHOLNPGM("INT4");
  7552. if (IS_SD_PRINTING) uvlo_();
  7553. }
  7554. void recover_print(uint8_t automatic) {
  7555. char cmd[30];
  7556. lcd_update_enable(true);
  7557. lcd_update(2);
  7558. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7559. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7560. // Lift the print head, so one may remove the excess priming material.
  7561. if (current_position[Z_AXIS] < 25)
  7562. enquecommand_P(PSTR("G1 Z25 F800"));
  7563. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7564. enquecommand_P(PSTR("G28 X Y"));
  7565. // Set the target bed and nozzle temperatures and wait.
  7566. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7567. enquecommand(cmd);
  7568. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7569. enquecommand(cmd);
  7570. enquecommand_P(PSTR("M83")); //E axis relative mode
  7571. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7572. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7573. if(automatic == 0){
  7574. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7575. }
  7576. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7577. // Mark the power panic status as inactive.
  7578. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7579. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7580. delay_keep_alive(1000);
  7581. }*/
  7582. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7583. // Restart the print.
  7584. restore_print_from_eeprom();
  7585. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7586. }
  7587. void recover_machine_state_after_power_panic()
  7588. {
  7589. char cmd[30];
  7590. // 1) Recover the logical cordinates at the time of the power panic.
  7591. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7592. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7593. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7594. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7595. // The current position after power panic is moved to the next closest 0th full step.
  7596. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7597. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7598. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7599. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7600. sprintf_P(cmd, PSTR("G92 E"));
  7601. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7602. enquecommand(cmd);
  7603. }
  7604. memcpy(destination, current_position, sizeof(destination));
  7605. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7606. print_world_coordinates();
  7607. // 2) Initialize the logical to physical coordinate system transformation.
  7608. world2machine_initialize();
  7609. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7610. mbl.active = false;
  7611. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7612. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7613. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7614. // Scale the z value to 10u resolution.
  7615. int16_t v;
  7616. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7617. if (v != 0)
  7618. mbl.active = true;
  7619. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7620. }
  7621. if (mbl.active)
  7622. mbl.upsample_3x3();
  7623. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7624. // print_mesh_bed_leveling_table();
  7625. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7626. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7627. babystep_load();
  7628. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7629. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7630. // 6) Power up the motors, mark their positions as known.
  7631. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7632. axis_known_position[X_AXIS] = true; enable_x();
  7633. axis_known_position[Y_AXIS] = true; enable_y();
  7634. axis_known_position[Z_AXIS] = true; enable_z();
  7635. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7636. print_physical_coordinates();
  7637. // 7) Recover the target temperatures.
  7638. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7639. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7640. // 8) Recover extruder multipilers
  7641. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7642. #if EXTRUDERS > 1
  7643. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7644. #if EXTRUDERS > 2
  7645. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7646. #endif
  7647. #endif
  7648. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7649. }
  7650. void restore_print_from_eeprom() {
  7651. float x_rec, y_rec, z_pos;
  7652. int feedrate_rec;
  7653. uint8_t fan_speed_rec;
  7654. char cmd[30];
  7655. char* c;
  7656. char filename[13];
  7657. uint8_t depth = 0;
  7658. char dir_name[9];
  7659. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7660. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7661. SERIAL_ECHOPGM("Feedrate:");
  7662. MYSERIAL.println(feedrate_rec);
  7663. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7664. MYSERIAL.println(int(depth));
  7665. for (int i = 0; i < depth; i++) {
  7666. for (int j = 0; j < 8; j++) {
  7667. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7668. }
  7669. dir_name[8] = '\0';
  7670. MYSERIAL.println(dir_name);
  7671. strcpy(dir_names[i], dir_name);
  7672. card.chdir(dir_name);
  7673. }
  7674. for (int i = 0; i < 8; i++) {
  7675. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7676. }
  7677. filename[8] = '\0';
  7678. MYSERIAL.print(filename);
  7679. strcat_P(filename, PSTR(".gco"));
  7680. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7681. enquecommand(cmd);
  7682. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7683. SERIAL_ECHOPGM("Position read from eeprom:");
  7684. MYSERIAL.println(position);
  7685. // E axis relative mode.
  7686. enquecommand_P(PSTR("M83"));
  7687. // Move to the XY print position in logical coordinates, where the print has been killed.
  7688. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7689. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7690. strcat_P(cmd, PSTR(" F2000"));
  7691. enquecommand(cmd);
  7692. // Move the Z axis down to the print, in logical coordinates.
  7693. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7694. enquecommand(cmd);
  7695. // Unretract.
  7696. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7697. // Set the feedrate saved at the power panic.
  7698. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7699. enquecommand(cmd);
  7700. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7701. {
  7702. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7703. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7704. }
  7705. // Set the fan speed saved at the power panic.
  7706. strcpy_P(cmd, PSTR("M106 S"));
  7707. strcat(cmd, itostr3(int(fan_speed_rec)));
  7708. enquecommand(cmd);
  7709. // Set a position in the file.
  7710. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7711. enquecommand(cmd);
  7712. // Start SD print.
  7713. enquecommand_P(PSTR("M24"));
  7714. }
  7715. #endif //UVLO_SUPPORT
  7716. ////////////////////////////////////////////////////////////////////////////////
  7717. // save/restore printing
  7718. void stop_and_save_print_to_ram(float z_move, float e_move)
  7719. {
  7720. if (saved_printing) return;
  7721. unsigned char nplanner_blocks;
  7722. unsigned char nlines;
  7723. uint16_t sdlen_planner;
  7724. uint16_t sdlen_cmdqueue;
  7725. cli();
  7726. if (card.sdprinting) {
  7727. nplanner_blocks = number_of_blocks();
  7728. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7729. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7730. saved_sdpos -= sdlen_planner;
  7731. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7732. saved_sdpos -= sdlen_cmdqueue;
  7733. saved_printing_type = PRINTING_TYPE_SD;
  7734. }
  7735. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7736. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7737. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7738. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7739. saved_sdpos -= nlines;
  7740. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7741. saved_printing_type = PRINTING_TYPE_USB;
  7742. }
  7743. else {
  7744. //not sd printing nor usb printing
  7745. }
  7746. #if 0
  7747. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7748. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7749. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7750. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7751. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7752. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7753. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7754. {
  7755. card.setIndex(saved_sdpos);
  7756. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7757. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7758. MYSERIAL.print(char(card.get()));
  7759. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7760. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7761. MYSERIAL.print(char(card.get()));
  7762. SERIAL_ECHOLNPGM("End of command buffer");
  7763. }
  7764. {
  7765. // Print the content of the planner buffer, line by line:
  7766. card.setIndex(saved_sdpos);
  7767. int8_t iline = 0;
  7768. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7769. SERIAL_ECHOPGM("Planner line (from file): ");
  7770. MYSERIAL.print(int(iline), DEC);
  7771. SERIAL_ECHOPGM(", length: ");
  7772. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7773. SERIAL_ECHOPGM(", steps: (");
  7774. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7775. SERIAL_ECHOPGM(",");
  7776. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7777. SERIAL_ECHOPGM(",");
  7778. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7779. SERIAL_ECHOPGM(",");
  7780. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7781. SERIAL_ECHOPGM("), events: ");
  7782. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7783. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7784. MYSERIAL.print(char(card.get()));
  7785. }
  7786. }
  7787. {
  7788. // Print the content of the command buffer, line by line:
  7789. int8_t iline = 0;
  7790. union {
  7791. struct {
  7792. char lo;
  7793. char hi;
  7794. } lohi;
  7795. uint16_t value;
  7796. } sdlen_single;
  7797. int _bufindr = bufindr;
  7798. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7799. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7800. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7801. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7802. }
  7803. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7804. MYSERIAL.print(int(iline), DEC);
  7805. SERIAL_ECHOPGM(", type: ");
  7806. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7807. SERIAL_ECHOPGM(", len: ");
  7808. MYSERIAL.println(sdlen_single.value, DEC);
  7809. // Print the content of the buffer line.
  7810. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7811. SERIAL_ECHOPGM("Buffer line (from file): ");
  7812. MYSERIAL.println(int(iline), DEC);
  7813. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7814. MYSERIAL.print(char(card.get()));
  7815. if (-- _buflen == 0)
  7816. break;
  7817. // First skip the current command ID and iterate up to the end of the string.
  7818. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7819. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7820. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7821. // If the end of the buffer was empty,
  7822. if (_bufindr == sizeof(cmdbuffer)) {
  7823. // skip to the start and find the nonzero command.
  7824. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7825. }
  7826. }
  7827. }
  7828. #endif
  7829. #if 0
  7830. saved_feedrate2 = feedrate; //save feedrate
  7831. #else
  7832. // Try to deduce the feedrate from the first block of the planner.
  7833. // Speed is in mm/min.
  7834. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7835. #endif
  7836. planner_abort_hard(); //abort printing
  7837. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7838. saved_active_extruder = active_extruder; //save active_extruder
  7839. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7840. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7841. cmdqueue_reset(); //empty cmdqueue
  7842. card.sdprinting = false;
  7843. // card.closefile();
  7844. saved_printing = true;
  7845. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7846. st_reset_timer();
  7847. sei();
  7848. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7849. #if 1
  7850. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7851. char buf[48];
  7852. // First unretract (relative extrusion)
  7853. if(!saved_extruder_relative_mode){
  7854. strcpy_P(buf, PSTR("M83"));
  7855. enquecommand(buf, false);
  7856. }
  7857. //retract 45mm/s
  7858. strcpy_P(buf, PSTR("G1 E"));
  7859. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7860. strcat_P(buf, PSTR(" F"));
  7861. dtostrf(2700, 8, 3, buf + strlen(buf));
  7862. enquecommand(buf, false);
  7863. // Then lift Z axis
  7864. strcpy_P(buf, PSTR("G1 Z"));
  7865. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7866. strcat_P(buf, PSTR(" F"));
  7867. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7868. // At this point the command queue is empty.
  7869. enquecommand(buf, false);
  7870. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7871. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7872. repeatcommand_front();
  7873. #else
  7874. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7875. st_synchronize(); //wait moving
  7876. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7877. memcpy(destination, current_position, sizeof(destination));
  7878. #endif
  7879. }
  7880. }
  7881. void restore_print_from_ram_and_continue(float e_move)
  7882. {
  7883. if (!saved_printing) return;
  7884. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7885. // current_position[axis] = st_get_position_mm(axis);
  7886. active_extruder = saved_active_extruder; //restore active_extruder
  7887. feedrate = saved_feedrate2; //restore feedrate
  7888. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7889. float e = saved_pos[E_AXIS] - e_move;
  7890. plan_set_e_position(e);
  7891. //first move print head in XY to the saved position:
  7892. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7893. st_synchronize();
  7894. //then move Z
  7895. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7896. st_synchronize();
  7897. //and finaly unretract (35mm/s)
  7898. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7899. st_synchronize();
  7900. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7901. memcpy(destination, current_position, sizeof(destination));
  7902. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7903. card.setIndex(saved_sdpos);
  7904. sdpos_atomic = saved_sdpos;
  7905. card.sdprinting = true;
  7906. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7907. }
  7908. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7909. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7910. serial_count = 0;
  7911. FlushSerialRequestResend();
  7912. }
  7913. else {
  7914. //not sd printing nor usb printing
  7915. }
  7916. lcd_setstatuspgm(_T(WELCOME_MSG));
  7917. saved_printing = false;
  7918. }
  7919. void print_world_coordinates()
  7920. {
  7921. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7922. }
  7923. void print_physical_coordinates()
  7924. {
  7925. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7926. }
  7927. void print_mesh_bed_leveling_table()
  7928. {
  7929. SERIAL_ECHOPGM("mesh bed leveling: ");
  7930. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7931. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7932. MYSERIAL.print(mbl.z_values[y][x], 3);
  7933. SERIAL_ECHOPGM(" ");
  7934. }
  7935. SERIAL_ECHOLNPGM("");
  7936. }
  7937. uint16_t print_time_remaining() {
  7938. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7939. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7940. else print_t = print_time_remaining_silent;
  7941. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7942. return print_t;
  7943. }
  7944. uint8_t print_percent_done() {
  7945. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7946. uint8_t percent_done = 0;
  7947. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7948. percent_done = print_percent_done_normal;
  7949. }
  7950. else if (print_percent_done_silent <= 100) {
  7951. percent_done = print_percent_done_silent;
  7952. }
  7953. else {
  7954. percent_done = card.percentDone();
  7955. }
  7956. return percent_done;
  7957. }
  7958. static void print_time_remaining_init() {
  7959. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7960. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7961. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7962. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7963. }
  7964. #define FIL_LOAD_LENGTH 60