Marlin_main.cpp 404 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "conv2str.h"
  63. #include "backlight.h"
  64. #include "planner.h"
  65. #include "stepper.h"
  66. #include "temperature.h"
  67. #include "motion_control.h"
  68. #include "cardreader.h"
  69. #include "ConfigurationStore.h"
  70. #include "language.h"
  71. #include "pins_arduino.h"
  72. #include "math.h"
  73. #include "util.h"
  74. #include "Timer.h"
  75. #include <avr/wdt.h>
  76. #include <avr/pgmspace.h>
  77. #include "Dcodes.h"
  78. #include "AutoDeplete.h"
  79. #ifndef LA_NOCOMPAT
  80. #include "la10compat.h"
  81. #endif
  82. #include "spi.h"
  83. #ifdef FILAMENT_SENSOR
  84. #include "fsensor.h"
  85. #ifdef IR_SENSOR
  86. #include "pat9125.h" // for pat9125_probe
  87. #endif
  88. #endif //FILAMENT_SENSOR
  89. #ifdef TMC2130
  90. #include "tmc2130.h"
  91. #endif //TMC2130
  92. #ifdef XFLASH
  93. #include "xflash.h"
  94. #include "optiboot_xflash.h"
  95. #endif //XFLASH
  96. #include "xflash_dump.h"
  97. #ifdef BLINKM
  98. #include "BlinkM.h"
  99. #include "Wire.h"
  100. #endif
  101. #ifdef ULTRALCD
  102. #include "ultralcd.h"
  103. #endif
  104. #if NUM_SERVOS > 0
  105. #include "Servo.h"
  106. #endif
  107. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  108. #include <SPI.h>
  109. #endif
  110. #include "mmu.h"
  111. #define VERSION_STRING "1.0.2"
  112. #include "ultralcd.h"
  113. #include "sound.h"
  114. #include "cmdqueue.h"
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  134. //used for PINDA temp calibration and pause print
  135. #define DEFAULT_RETRACTION 1
  136. #define DEFAULT_RETRACTION_MM 4 //MM
  137. float default_retraction = DEFAULT_RETRACTION;
  138. float homing_feedrate[] = HOMING_FEEDRATE;
  139. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  140. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  141. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  142. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  143. uint8_t axis_relative_modes = 0;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. bool homing_flag = false;
  155. int8_t lcd_change_fil_state = 0;
  156. unsigned long pause_time = 0;
  157. unsigned long start_pause_print = _millis();
  158. unsigned long t_fan_rising_edge = _millis();
  159. LongTimer safetyTimer;
  160. static LongTimer crashDetTimer;
  161. //unsigned long load_filament_time;
  162. bool mesh_bed_leveling_flag = false;
  163. #ifdef PRUSA_M28
  164. bool prusa_sd_card_upload = false;
  165. #endif
  166. uint8_t status_number = 0;
  167. unsigned long total_filament_used;
  168. HeatingStatus heating_status;
  169. uint8_t heating_status_counter;
  170. bool loading_flag = false;
  171. #define XY_NO_RESTORE_FLAG (mesh_bed_leveling_flag || homing_flag)
  172. bool fan_state[2];
  173. int fan_edge_counter[2];
  174. int fan_speed[2];
  175. float extruder_multiplier[EXTRUDERS] = {1.0
  176. #if EXTRUDERS > 1
  177. , 1.0
  178. #if EXTRUDERS > 2
  179. , 1.0
  180. #endif
  181. #endif
  182. };
  183. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  184. //shortcuts for more readable code
  185. #define _x current_position[X_AXIS]
  186. #define _y current_position[Y_AXIS]
  187. #define _z current_position[Z_AXIS]
  188. #define _e current_position[E_AXIS]
  189. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  190. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  191. bool axis_known_position[3] = {false, false, false};
  192. // Extruder offset
  193. #if EXTRUDERS > 1
  194. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. uint8_t newFanSpeed = 0;
  204. #ifdef FWRETRACT
  205. bool retracted[EXTRUDERS]={false
  206. #if EXTRUDERS > 1
  207. , false
  208. #if EXTRUDERS > 2
  209. , false
  210. #endif
  211. #endif
  212. };
  213. bool retracted_swap[EXTRUDERS]={false
  214. #if EXTRUDERS > 1
  215. , false
  216. #if EXTRUDERS > 2
  217. , false
  218. #endif
  219. #endif
  220. };
  221. float retract_length_swap = RETRACT_LENGTH_SWAP;
  222. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  223. #endif
  224. #ifdef PS_DEFAULT_OFF
  225. bool powersupply = false;
  226. #else
  227. bool powersupply = true;
  228. #endif
  229. bool cancel_heatup = false;
  230. int8_t busy_state = NOT_BUSY;
  231. static long prev_busy_signal_ms = -1;
  232. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  233. const char errormagic[] PROGMEM = "Error:";
  234. const char echomagic[] PROGMEM = "echo:";
  235. const char G28W0[] PROGMEM = "G28 W0";
  236. bool no_response = false;
  237. uint8_t important_status;
  238. uint8_t saved_filament_type;
  239. // Define some coordinates outside the clamp limits (making them invalid past the parsing stage) so
  240. // that they can be used later for various logical checks
  241. #define X_COORD_INVALID (X_MIN_POS-1)
  242. #define Y_COORD_INVALID (Y_MIN_POS-1)
  243. #define SAVED_TARGET_UNSET X_COORD_INVALID
  244. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. uint16_t print_time_to_change_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  253. uint16_t print_time_to_change_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  254. uint32_t IP_address = 0;
  255. //===========================================================================
  256. //=============================Private Variables=============================
  257. //===========================================================================
  258. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  259. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  260. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  261. // For tracing an arc
  262. static float offset[3] = {0.0, 0.0, 0.0};
  263. // Current feedrate
  264. float feedrate = 1500.0;
  265. // Feedrate for the next move
  266. static float next_feedrate;
  267. // Original feedrate saved during homing moves
  268. static float saved_feedrate;
  269. const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS; // Sensitive pin list for M42
  270. //static float tt = 0;
  271. //static float bt = 0;
  272. //Inactivity shutdown variables
  273. static LongTimer previous_millis_cmd;
  274. unsigned long max_inactive_time = 0;
  275. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  276. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  277. unsigned long starttime=0;
  278. unsigned long stoptime=0;
  279. ShortTimer usb_timer;
  280. bool Stopped=false;
  281. #if NUM_SERVOS > 0
  282. Servo servos[NUM_SERVOS];
  283. #endif
  284. bool target_direction;
  285. //Insert variables if CHDK is defined
  286. #ifdef CHDK
  287. unsigned long chdkHigh = 0;
  288. bool chdkActive = false;
  289. #endif
  290. //! @name RAM save/restore printing
  291. //! @{
  292. bool saved_printing = false; //!< Print is paused and saved in RAM
  293. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  294. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  295. static float saved_pos[4] = { X_COORD_INVALID, 0, 0, 0 };
  296. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  297. static int saved_feedmultiply2 = 0;
  298. static uint8_t saved_active_extruder = 0;
  299. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  300. static bool saved_extruder_relative_mode = false;
  301. static int saved_fanSpeed = 0; //!< Print fan speed
  302. //! @}
  303. static int saved_feedmultiply_mm = 100;
  304. class AutoReportFeatures {
  305. union {
  306. struct {
  307. uint8_t temp : 1; //Temperature flag
  308. uint8_t fans : 1; //Fans flag
  309. uint8_t pos: 1; //Position flag
  310. uint8_t ar4 : 1; //Unused
  311. uint8_t ar5 : 1; //Unused
  312. uint8_t ar6 : 1; //Unused
  313. uint8_t ar7 : 1; //Unused
  314. } __attribute__((packed)) bits;
  315. uint8_t byte;
  316. } arFunctionsActive;
  317. uint8_t auto_report_period;
  318. public:
  319. LongTimer auto_report_timer;
  320. AutoReportFeatures():auto_report_period(0){
  321. #if defined(AUTO_REPORT)
  322. arFunctionsActive.byte = 0xff;
  323. #else
  324. arFunctionsActive.byte = 0;
  325. #endif //AUTO_REPORT
  326. }
  327. inline bool Temp()const { return arFunctionsActive.bits.temp != 0; }
  328. inline void SetTemp(uint8_t v){ arFunctionsActive.bits.temp = v; }
  329. inline bool Fans()const { return arFunctionsActive.bits.fans != 0; }
  330. inline void SetFans(uint8_t v){ arFunctionsActive.bits.fans = v; }
  331. inline bool Pos()const { return arFunctionsActive.bits.pos != 0; }
  332. inline void SetPos(uint8_t v){ arFunctionsActive.bits.pos = v; }
  333. inline void SetMask(uint8_t mask){ arFunctionsActive.byte = mask; }
  334. /// sets the autoreporting timer's period
  335. /// setting it to zero stops the timer
  336. void SetPeriod(uint8_t p){
  337. auto_report_period = p;
  338. if (auto_report_period != 0){
  339. auto_report_timer.start();
  340. } else{
  341. auto_report_timer.stop();
  342. }
  343. }
  344. inline void TimerStart() { auto_report_timer.start(); }
  345. inline bool TimerRunning()const { return auto_report_timer.running(); }
  346. inline bool TimerExpired() { return auto_report_timer.expired(auto_report_period * 1000ul); }
  347. };
  348. AutoReportFeatures autoReportFeatures;
  349. //===========================================================================
  350. //=============================Routines======================================
  351. //===========================================================================
  352. static void get_arc_coordinates();
  353. static bool setTargetedHotend(int code, uint8_t &extruder);
  354. static void print_time_remaining_init();
  355. static void wait_for_heater(long codenum, uint8_t extruder);
  356. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  357. static void gcode_M105(uint8_t extruder);
  358. #ifndef PINDA_THERMISTOR
  359. static void temp_compensation_start();
  360. static void temp_compensation_apply();
  361. #endif
  362. static uint8_t get_PRUSA_SN(char* SN);
  363. uint16_t gcode_in_progress = 0;
  364. uint16_t mcode_in_progress = 0;
  365. void serial_echopair_P(const char *s_P, float v)
  366. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  367. void serial_echopair_P(const char *s_P, double v)
  368. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  369. void serial_echopair_P(const char *s_P, unsigned long v)
  370. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  371. void serialprintPGM(const char *str) {
  372. while(uint8_t ch = pgm_read_byte(str)) {
  373. MYSERIAL.write((char)ch);
  374. ++str;
  375. }
  376. }
  377. void serialprintlnPGM(const char *str) {
  378. serialprintPGM(str);
  379. MYSERIAL.println();
  380. }
  381. #ifdef SDSUPPORT
  382. #include "SdFatUtil.h"
  383. int freeMemory() { return SdFatUtil::FreeRam(); }
  384. #else
  385. extern "C" {
  386. extern unsigned int __bss_end;
  387. extern unsigned int __heap_start;
  388. extern void *__brkval;
  389. int freeMemory() {
  390. int free_memory;
  391. if ((int)__brkval == 0)
  392. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  393. else
  394. free_memory = ((int)&free_memory) - ((int)__brkval);
  395. return free_memory;
  396. }
  397. }
  398. #endif //!SDSUPPORT
  399. void setup_killpin()
  400. {
  401. #if defined(KILL_PIN) && KILL_PIN > -1
  402. SET_INPUT(KILL_PIN);
  403. WRITE(KILL_PIN,HIGH);
  404. #endif
  405. }
  406. // Set home pin
  407. void setup_homepin(void)
  408. {
  409. #if defined(HOME_PIN) && HOME_PIN > -1
  410. SET_INPUT(HOME_PIN);
  411. WRITE(HOME_PIN,HIGH);
  412. #endif
  413. }
  414. void setup_photpin()
  415. {
  416. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  417. SET_OUTPUT(PHOTOGRAPH_PIN);
  418. WRITE(PHOTOGRAPH_PIN, LOW);
  419. #endif
  420. }
  421. void setup_powerhold()
  422. {
  423. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  424. SET_OUTPUT(SUICIDE_PIN);
  425. WRITE(SUICIDE_PIN, HIGH);
  426. #endif
  427. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  428. SET_OUTPUT(PS_ON_PIN);
  429. #if defined(PS_DEFAULT_OFF)
  430. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  431. #else
  432. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  433. #endif
  434. #endif
  435. }
  436. void suicide()
  437. {
  438. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  439. SET_OUTPUT(SUICIDE_PIN);
  440. WRITE(SUICIDE_PIN, LOW);
  441. #endif
  442. }
  443. void servo_init()
  444. {
  445. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  446. servos[0].attach(SERVO0_PIN);
  447. #endif
  448. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  449. servos[1].attach(SERVO1_PIN);
  450. #endif
  451. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  452. servos[2].attach(SERVO2_PIN);
  453. #endif
  454. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  455. servos[3].attach(SERVO3_PIN);
  456. #endif
  457. #if (NUM_SERVOS >= 5)
  458. #error "TODO: enter initalisation code for more servos"
  459. #endif
  460. }
  461. bool fans_check_enabled = true;
  462. #ifdef TMC2130
  463. void crashdet_stop_and_save_print()
  464. {
  465. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  466. }
  467. void crashdet_restore_print_and_continue()
  468. {
  469. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  470. // babystep_apply();
  471. }
  472. void crashdet_fmt_error(char* buf, uint8_t mask)
  473. {
  474. if(mask & X_AXIS_MASK) *buf++ = axis_codes[X_AXIS];
  475. if(mask & Y_AXIS_MASK) *buf++ = axis_codes[Y_AXIS];
  476. *buf++ = ' ';
  477. strcpy_P(buf, _T(MSG_CRASH_DETECTED));
  478. }
  479. void crashdet_detected(uint8_t mask)
  480. {
  481. st_synchronize();
  482. static uint8_t crashDet_counter = 0;
  483. static uint8_t crashDet_axes = 0;
  484. bool automatic_recovery_after_crash = true;
  485. char msg[LCD_WIDTH+1] = "";
  486. if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)) {
  487. crashDet_counter = 0;
  488. }
  489. if(++crashDet_counter >= CRASHDET_COUNTER_MAX) {
  490. automatic_recovery_after_crash = false;
  491. }
  492. crashDetTimer.start();
  493. crashDet_axes |= mask;
  494. lcd_update_enable(true);
  495. lcd_clear();
  496. lcd_update(2);
  497. if (mask & X_AXIS_MASK)
  498. {
  499. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  500. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  501. }
  502. if (mask & Y_AXIS_MASK)
  503. {
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  505. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  506. }
  507. lcd_update_enable(true);
  508. lcd_update(2);
  509. // prepare the status message with the _current_ axes status
  510. crashdet_fmt_error(msg, mask);
  511. lcd_setstatus(msg);
  512. gcode_G28(true, true, false); //home X and Y
  513. st_synchronize();
  514. if (automatic_recovery_after_crash) {
  515. enquecommand_P(PSTR("CRASH_RECOVER"));
  516. }else{
  517. setTargetHotend(0, active_extruder);
  518. // notify the user of *all* the axes previously affected, not just the last one
  519. lcd_update_enable(false);
  520. lcd_clear();
  521. crashdet_fmt_error(msg, crashDet_axes);
  522. crashDet_axes = 0;
  523. lcd_print(msg);
  524. // ask whether to resume printing
  525. lcd_set_cursor(0, 1);
  526. lcd_puts_P(_T(MSG_RESUME_PRINT));
  527. lcd_putc('?');
  528. bool yesno = lcd_show_yes_no_and_wait(false);
  529. lcd_update_enable(true);
  530. if (yesno)
  531. {
  532. enquecommand_P(PSTR("CRASH_RECOVER"));
  533. }
  534. else
  535. {
  536. enquecommand_P(PSTR("CRASH_CANCEL"));
  537. }
  538. }
  539. }
  540. void crashdet_recover()
  541. {
  542. crashdet_restore_print_and_continue();
  543. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  544. }
  545. void crashdet_cancel()
  546. {
  547. saved_printing = false;
  548. tmc2130_sg_stop_on_crash = true;
  549. if (saved_printing_type == PRINTING_TYPE_SD) {
  550. lcd_print_stop();
  551. }else if(saved_printing_type == PRINTING_TYPE_USB){
  552. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  553. cmdqueue_reset();
  554. }
  555. }
  556. #endif //TMC2130
  557. void failstats_reset_print()
  558. {
  559. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  560. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  561. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  562. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  564. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  565. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  566. fsensor_softfail = 0;
  567. #endif
  568. }
  569. void softReset()
  570. {
  571. cli();
  572. wdt_enable(WDTO_15MS);
  573. while(1);
  574. }
  575. #ifdef MESH_BED_LEVELING
  576. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  577. #endif
  578. static void factory_reset_stats(){
  579. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  580. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  588. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  589. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  590. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  593. }
  594. // Factory reset function
  595. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  596. // Level input parameter sets depth of reset
  597. static void factory_reset(char level)
  598. {
  599. lcd_clear();
  600. Sound_MakeCustom(100,0,false);
  601. switch (level) {
  602. case 0: // Level 0: Language reset
  603. lang_reset();
  604. break;
  605. case 1: //Level 1: Reset statistics
  606. factory_reset_stats();
  607. lcd_menu_statistics();
  608. break;
  609. case 2: // Level 2: Prepare for shipping
  610. factory_reset_stats();
  611. // FALLTHRU
  612. case 3: // Level 3: Preparation after being serviced
  613. // Force language selection at the next boot up.
  614. lang_reset();
  615. // Force the "Follow calibration flow" message at the next boot up.
  616. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  617. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 2); //run wizard
  618. farm_mode = false;
  619. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  620. #ifdef FILAMENT_SENSOR
  621. fsensor_enable();
  622. fsensor_autoload_set(true);
  623. #endif //FILAMENT_SENSOR
  624. break;
  625. case 4:
  626. menu_progressbar_init(EEPROM_TOP, PSTR("ERASING all data"));
  627. // Erase EEPROM
  628. for (uint16_t i = 0; i < EEPROM_TOP; i++) {
  629. eeprom_update_byte((uint8_t*)i, 0xFF);
  630. menu_progressbar_update(i);
  631. }
  632. menu_progressbar_finish();
  633. softReset();
  634. break;
  635. default:
  636. break;
  637. }
  638. }
  639. extern "C" {
  640. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  641. }
  642. int uart_putchar(char c, FILE *)
  643. {
  644. MYSERIAL.write(c);
  645. return 0;
  646. }
  647. void lcd_splash()
  648. {
  649. lcd_clear(); // clears display and homes screen
  650. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  651. }
  652. void factory_reset()
  653. {
  654. KEEPALIVE_STATE(PAUSED_FOR_USER);
  655. if (!READ(BTN_ENC))
  656. {
  657. _delay_ms(1000);
  658. if (!READ(BTN_ENC))
  659. {
  660. lcd_clear();
  661. lcd_puts_P(PSTR("Factory RESET"));
  662. SET_OUTPUT(BEEPER);
  663. if(eSoundMode!=e_SOUND_MODE_SILENT)
  664. WRITE(BEEPER, HIGH);
  665. while (!READ(BTN_ENC));
  666. WRITE(BEEPER, LOW);
  667. _delay_ms(2000);
  668. char level = reset_menu();
  669. factory_reset(level);
  670. switch (level) {
  671. case 0:
  672. case 1:
  673. case 2:
  674. case 3:
  675. case 4: _delay_ms(0); break;
  676. }
  677. }
  678. }
  679. KEEPALIVE_STATE(IN_HANDLER);
  680. }
  681. void show_fw_version_warnings() {
  682. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  683. switch (FW_DEV_VERSION) {
  684. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  685. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  686. case(FW_VERSION_DEVEL):
  687. case(FW_VERSION_DEBUG):
  688. lcd_update_enable(false);
  689. lcd_clear();
  690. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  691. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  692. #else
  693. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  694. #endif
  695. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  696. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  697. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  698. lcd_wait_for_click();
  699. break;
  700. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  701. }
  702. lcd_update_enable(true);
  703. }
  704. //! @brief try to check if firmware is on right type of printer
  705. static void check_if_fw_is_on_right_printer(){
  706. #ifdef FILAMENT_SENSOR
  707. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  708. #ifdef IR_SENSOR
  709. if (pat9125_probe()){
  710. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////MSG_MK3S_FIRMWARE_ON_MK3 c=20 r=4
  711. #endif //IR_SENSOR
  712. #ifdef PAT9125
  713. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  714. const uint8_t ir_detected = !READ(IR_SENSOR_PIN);
  715. if (ir_detected){
  716. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////MSG_MK3_FIRMWARE_ON_MK3S c=20 r=4
  717. #endif //PAT9125
  718. }
  719. #endif //FILAMENT_SENSOR
  720. }
  721. uint8_t check_printer_version()
  722. {
  723. uint8_t version_changed = 0;
  724. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  725. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  726. if (printer_type != PRINTER_TYPE) {
  727. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  728. else version_changed |= 0b10;
  729. }
  730. if (motherboard != MOTHERBOARD) {
  731. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  732. else version_changed |= 0b01;
  733. }
  734. return version_changed;
  735. }
  736. #ifdef BOOTAPP
  737. #include "bootapp.h" //bootloader support
  738. #endif //BOOTAPP
  739. #if (LANG_MODE != 0) //secondary language support
  740. #ifdef XFLASH
  741. // language update from external flash
  742. #define LANGBOOT_BLOCKSIZE 0x1000u
  743. #define LANGBOOT_RAMBUFFER 0x0800
  744. void update_sec_lang_from_external_flash()
  745. {
  746. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  747. {
  748. uint8_t lang = boot_reserved >> 4;
  749. uint8_t state = boot_reserved & 0xf;
  750. lang_table_header_t header;
  751. uint32_t src_addr;
  752. if (lang_get_header(lang, &header, &src_addr))
  753. {
  754. lcd_puts_at_P(1,3,PSTR("Language update."));
  755. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  756. _delay(100);
  757. boot_reserved = (state + 1) | (lang << 4);
  758. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  759. {
  760. cli();
  761. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  762. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  763. xflash_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  764. if (state == 0)
  765. {
  766. //TODO - check header integrity
  767. }
  768. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  769. }
  770. else
  771. {
  772. //TODO - check sec lang data integrity
  773. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  774. }
  775. }
  776. }
  777. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  778. }
  779. #ifdef DEBUG_XFLASH
  780. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  781. {
  782. lang_table_header_t header;
  783. uint8_t count = 0;
  784. uint32_t addr = 0x00000;
  785. while (1)
  786. {
  787. printf_P(_n("LANGTABLE%d:"), count);
  788. xflash_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  789. if (header.magic != LANG_MAGIC)
  790. {
  791. puts_P(_n("NG!"));
  792. break;
  793. }
  794. puts_P(_n("OK"));
  795. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  796. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  797. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  798. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  799. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  800. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  801. addr += header.size;
  802. codes[count] = header.code;
  803. count ++;
  804. }
  805. return count;
  806. }
  807. void list_sec_lang_from_external_flash()
  808. {
  809. uint16_t codes[8];
  810. uint8_t count = lang_xflash_enum_codes(codes);
  811. printf_P(_n("XFlash lang count = %hhd\n"), count);
  812. }
  813. #endif //DEBUG_XFLASH
  814. #endif //XFLASH
  815. #endif //(LANG_MODE != 0)
  816. static void fw_crash_init()
  817. {
  818. #ifdef XFLASH_DUMP
  819. dump_crash_reason crash_reason;
  820. if(xfdump_check_state(&crash_reason))
  821. {
  822. // always signal to the host that a dump is available for retrieval
  823. puts_P(_N("// action:dump_available"));
  824. #ifdef EMERGENCY_DUMP
  825. if(crash_reason != dump_crash_reason::manual &&
  826. eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG) != 0xFF)
  827. {
  828. lcd_show_fullscreen_message_and_wait_P(
  829. _i("FW crash detected! "
  830. "You can continue printing. "
  831. "Debug data available for analysis. "
  832. "Contact support to submit details."));
  833. }
  834. #endif
  835. }
  836. #else //XFLASH_DUMP
  837. dump_crash_reason crash_reason = (dump_crash_reason)eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG);
  838. if(crash_reason != dump_crash_reason::manual && (uint8_t)crash_reason != 0xFF)
  839. {
  840. lcd_beeper_quick_feedback();
  841. lcd_clear();
  842. lcd_puts_P(_i("FIRMWARE CRASH!\nCrash reason:\n"));
  843. switch(crash_reason)
  844. {
  845. case dump_crash_reason::stack_error:
  846. lcd_puts_P(_i("Static memory has\nbeen overwritten"));
  847. break;
  848. case dump_crash_reason::watchdog:
  849. lcd_puts_P(_i("Watchdog timeout"));
  850. break;
  851. case dump_crash_reason::bad_isr:
  852. lcd_puts_P(_i("Bad interrupt"));
  853. break;
  854. default:
  855. lcd_print((uint8_t)crash_reason);
  856. break;
  857. }
  858. lcd_wait_for_click();
  859. }
  860. #endif //XFLASH_DUMP
  861. // prevent crash prompts to reappear once acknowledged
  862. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, 0xFF);
  863. }
  864. static void xflash_err_msg()
  865. {
  866. lcd_clear();
  867. lcd_puts_P(_n("External SPI flash\nXFLASH is not res-\nponding. Language\nswitch unavailable."));
  868. }
  869. // "Setup" function is called by the Arduino framework on startup.
  870. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  871. // are initialized by the main() routine provided by the Arduino framework.
  872. void setup()
  873. {
  874. timer2_init(); // enables functional millis
  875. mmu_init();
  876. ultralcd_init();
  877. spi_init();
  878. lcd_splash();
  879. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  880. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  881. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  882. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  883. MYSERIAL.begin(BAUDRATE);
  884. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  885. stdout = uartout;
  886. #ifdef XFLASH
  887. bool xflash_success = xflash_init();
  888. uint8_t optiboot_status = 1;
  889. if (xflash_success)
  890. {
  891. optiboot_status = optiboot_xflash_enter();
  892. #if (LANG_MODE != 0) //secondary language support
  893. update_sec_lang_from_external_flash();
  894. #endif //(LANG_MODE != 0)
  895. }
  896. else
  897. {
  898. xflash_err_msg();
  899. }
  900. #else
  901. const bool xflash_success = true;
  902. #endif //XFLASH
  903. setup_killpin();
  904. setup_powerhold();
  905. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  906. if (farm_mode == 0xFF) {
  907. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  908. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  909. } else if (farm_mode) {
  910. no_response = true; //we need confirmation by recieving PRUSA thx
  911. important_status = 8;
  912. prusa_statistics(8);
  913. #ifdef HAS_SECOND_SERIAL_PORT
  914. selectedSerialPort = 1;
  915. #endif //HAS_SECOND_SERIAL_PORT
  916. MYSERIAL.begin(BAUDRATE);
  917. #ifdef FILAMENT_SENSOR
  918. //disabled filament autoload (PFW360)
  919. fsensor_autoload_set(false);
  920. #endif //FILAMENT_SENSOR
  921. // ~ FanCheck -> on
  922. eeprom_update_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED, true);
  923. }
  924. #ifdef TMC2130
  925. if( FarmOrUserECool() ){
  926. //increased extruder current (PFW363)
  927. tmc2130_current_h[E_AXIS] = TMC2130_CURRENTS_FARM;
  928. tmc2130_current_r[E_AXIS] = TMC2130_CURRENTS_FARM;
  929. }
  930. #endif //TMC2130
  931. //Check for valid SN in EEPROM. Try to retrieve it in case it's invalid.
  932. //SN is valid only if it is NULL terminated and starts with "CZPX".
  933. {
  934. char SN[20];
  935. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  936. if (SN[19] || strncmp_P(SN, PSTR("CZPX"), 4))
  937. {
  938. if (!get_PRUSA_SN(SN))
  939. {
  940. eeprom_update_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  941. puts_P(PSTR("SN updated"));
  942. }
  943. else
  944. puts_P(PSTR("SN update failed"));
  945. }
  946. }
  947. #ifndef XFLASH
  948. SERIAL_PROTOCOLLNPGM("start");
  949. #else
  950. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  951. SERIAL_PROTOCOLLNPGM("start");
  952. #endif
  953. SERIAL_ECHO_START;
  954. puts_P(PSTR(" " FW_VERSION_FULL));
  955. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  956. #ifdef DEBUG_SEC_LANG
  957. lang_table_header_t header;
  958. uint32_t src_addr = 0x00000;
  959. if (lang_get_header(1, &header, &src_addr))
  960. {
  961. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  962. #define LT_PRINT_TEST 2
  963. // flash usage
  964. // total p.test
  965. //0 252718 t+c text code
  966. //1 253142 424 170 254
  967. //2 253040 322 164 158
  968. //3 253248 530 135 395
  969. #if (LT_PRINT_TEST==1) //not optimized printf
  970. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  971. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  972. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  973. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  974. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  975. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  976. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  977. #elif (LT_PRINT_TEST==2) //optimized printf
  978. printf_P(
  979. _n(
  980. " _src_addr = 0x%08lx\n"
  981. " _lt_magic = 0x%08lx %S\n"
  982. " _lt_size = 0x%04x (%d)\n"
  983. " _lt_count = 0x%04x (%d)\n"
  984. " _lt_chsum = 0x%04x\n"
  985. " _lt_code = 0x%04x (%c%c)\n"
  986. " _lt_resv1 = 0x%08lx\n"
  987. ),
  988. src_addr,
  989. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  990. header.size, header.size,
  991. header.count, header.count,
  992. header.checksum,
  993. header.code, header.code >> 8, header.code & 0xff,
  994. header.signature
  995. );
  996. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  997. MYSERIAL.print(" _src_addr = 0x");
  998. MYSERIAL.println(src_addr, 16);
  999. MYSERIAL.print(" _lt_magic = 0x");
  1000. MYSERIAL.print(header.magic, 16);
  1001. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1002. MYSERIAL.print(" _lt_size = 0x");
  1003. MYSERIAL.print(header.size, 16);
  1004. MYSERIAL.print(" (");
  1005. MYSERIAL.print(header.size, 10);
  1006. MYSERIAL.println(")");
  1007. MYSERIAL.print(" _lt_count = 0x");
  1008. MYSERIAL.print(header.count, 16);
  1009. MYSERIAL.print(" (");
  1010. MYSERIAL.print(header.count, 10);
  1011. MYSERIAL.println(")");
  1012. MYSERIAL.print(" _lt_chsum = 0x");
  1013. MYSERIAL.println(header.checksum, 16);
  1014. MYSERIAL.print(" _lt_code = 0x");
  1015. MYSERIAL.print(header.code, 16);
  1016. MYSERIAL.print(" (");
  1017. MYSERIAL.print((char)(header.code >> 8), 0);
  1018. MYSERIAL.print((char)(header.code & 0xff), 0);
  1019. MYSERIAL.println(")");
  1020. MYSERIAL.print(" _lt_resv1 = 0x");
  1021. MYSERIAL.println(header.signature, 16);
  1022. #endif //(LT_PRINT_TEST==)
  1023. #undef LT_PRINT_TEST
  1024. #if 0
  1025. xflash_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1026. for (uint16_t i = 0; i < 1024; i++)
  1027. {
  1028. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1029. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1030. if ((i % 16) == 15) putchar('\n');
  1031. }
  1032. #endif
  1033. uint16_t sum = 0;
  1034. for (uint16_t i = 0; i < header.size; i++)
  1035. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1036. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1037. sum -= header.checksum; //subtract checksum
  1038. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1039. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1040. if (sum == header.checksum)
  1041. puts_P(_n("Checksum OK"));
  1042. else
  1043. puts_P(_n("Checksum NG"));
  1044. }
  1045. else
  1046. puts_P(_n("lang_get_header failed!"));
  1047. #if 0
  1048. for (uint16_t i = 0; i < 1024*10; i++)
  1049. {
  1050. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1051. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1052. if ((i % 16) == 15) putchar('\n');
  1053. }
  1054. #endif
  1055. #if 0
  1056. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1057. for (int i = 0; i < 4096; ++i) {
  1058. int b = eeprom_read_byte((unsigned char*)i);
  1059. if (b != 255) {
  1060. SERIAL_ECHO(i);
  1061. SERIAL_ECHO(":");
  1062. SERIAL_ECHO(b);
  1063. SERIAL_ECHOLN("");
  1064. }
  1065. }
  1066. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1067. #endif
  1068. #endif //DEBUG_SEC_LANG
  1069. // Check startup - does nothing if bootloader sets MCUSR to 0
  1070. byte mcu = MCUSR;
  1071. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  1072. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1073. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1074. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1075. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1076. if (mcu & 1) puts_P(MSG_POWERUP);
  1077. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1078. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1079. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1080. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1081. MCUSR = 0;
  1082. //SERIAL_ECHORPGM(MSG_MARLIN);
  1083. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1084. #ifdef STRING_VERSION_CONFIG_H
  1085. #ifdef STRING_CONFIG_H_AUTHOR
  1086. SERIAL_ECHO_START;
  1087. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1088. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1089. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1090. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1091. SERIAL_ECHOPGM("Compiled: ");
  1092. SERIAL_ECHOLNPGM(__DATE__);
  1093. #endif
  1094. #endif
  1095. SERIAL_ECHO_START;
  1096. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1097. SERIAL_ECHO(freeMemory());
  1098. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1099. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1100. //lcd_update_enable(false); // why do we need this?? - andre
  1101. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1102. bool previous_settings_retrieved = false;
  1103. uint8_t hw_changed = check_printer_version();
  1104. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1105. previous_settings_retrieved = Config_RetrieveSettings();
  1106. }
  1107. else { //printer version was changed so use default settings
  1108. Config_ResetDefault();
  1109. }
  1110. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1111. tp_init(); // Initialize temperature loop
  1112. if (xflash_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1113. else
  1114. {
  1115. xflash_err_msg();
  1116. puts_P(_n("XFLASH not responding."));
  1117. }
  1118. #ifdef EXTRUDER_ALTFAN_DETECT
  1119. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1120. if (extruder_altfan_detect())
  1121. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1122. else
  1123. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1124. #endif //EXTRUDER_ALTFAN_DETECT
  1125. plan_init(); // Initialize planner;
  1126. factory_reset();
  1127. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1128. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1129. {
  1130. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1131. // where all the EEPROM entries are set to 0x0ff.
  1132. // Once a firmware boots up, it forces at least a language selection, which changes
  1133. // EEPROM_LANG to number lower than 0x0ff.
  1134. // 1) Set a high power mode.
  1135. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1136. #ifdef TMC2130
  1137. tmc2130_mode = TMC2130_MODE_NORMAL;
  1138. #endif //TMC2130
  1139. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1140. }
  1141. lcd_encoder_diff=0;
  1142. #ifdef TMC2130
  1143. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1144. if (silentMode == 0xff) silentMode = 0;
  1145. tmc2130_mode = TMC2130_MODE_NORMAL;
  1146. if (lcd_crash_detect_enabled() && !farm_mode)
  1147. {
  1148. lcd_crash_detect_enable();
  1149. puts_P(_N("CrashDetect ENABLED!"));
  1150. }
  1151. else
  1152. {
  1153. lcd_crash_detect_disable();
  1154. puts_P(_N("CrashDetect DISABLED"));
  1155. }
  1156. #ifdef TMC2130_LINEARITY_CORRECTION
  1157. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1158. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1159. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1160. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1161. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1162. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1163. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1164. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1165. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1166. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1167. #endif //TMC2130_LINEARITY_CORRECTION
  1168. #ifdef TMC2130_VARIABLE_RESOLUTION
  1169. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1170. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1171. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1172. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1173. #else //TMC2130_VARIABLE_RESOLUTION
  1174. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1175. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1176. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1177. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1178. #endif //TMC2130_VARIABLE_RESOLUTION
  1179. #endif //TMC2130
  1180. st_init(); // Initialize stepper, this enables interrupts!
  1181. #ifdef TMC2130
  1182. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1183. update_mode_profile();
  1184. tmc2130_init(TMCInitParams(false, FarmOrUserECool() ));
  1185. #endif //TMC2130
  1186. #ifdef PSU_Delta
  1187. init_force_z(); // ! important for correct Z-axis initialization
  1188. #endif // PSU_Delta
  1189. setup_photpin();
  1190. servo_init();
  1191. // Reset the machine correction matrix.
  1192. // It does not make sense to load the correction matrix until the machine is homed.
  1193. world2machine_reset();
  1194. // Initialize current_position accounting for software endstops to
  1195. // avoid unexpected initial shifts on the first move
  1196. clamp_to_software_endstops(current_position);
  1197. plan_set_position_curposXYZE();
  1198. #ifdef FILAMENT_SENSOR
  1199. fsensor_init();
  1200. #endif //FILAMENT_SENSOR
  1201. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1202. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1203. #endif
  1204. setup_homepin();
  1205. #if defined(Z_AXIS_ALWAYS_ON)
  1206. enable_z();
  1207. #endif
  1208. if (farm_mode) {
  1209. // The farm monitoring SW may accidentally expect
  1210. // 2 messages of "printer started" to consider a printer working.
  1211. prusa_statistics(8);
  1212. }
  1213. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1214. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1215. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1216. // but this times out if a blocking dialog is shown in setup().
  1217. card.initsd();
  1218. #ifdef DEBUG_SD_SPEED_TEST
  1219. if (card.cardOK)
  1220. {
  1221. uint8_t* buff = (uint8_t*)block_buffer;
  1222. uint32_t block = 0;
  1223. uint32_t sumr = 0;
  1224. uint32_t sumw = 0;
  1225. for (int i = 0; i < 1024; i++)
  1226. {
  1227. uint32_t u = _micros();
  1228. bool res = card.card.readBlock(i, buff);
  1229. u = _micros() - u;
  1230. if (res)
  1231. {
  1232. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1233. sumr += u;
  1234. u = _micros();
  1235. res = card.card.writeBlock(i, buff);
  1236. u = _micros() - u;
  1237. if (res)
  1238. {
  1239. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1240. sumw += u;
  1241. }
  1242. else
  1243. {
  1244. printf_P(PSTR("writeBlock %4d error\n"), i);
  1245. break;
  1246. }
  1247. }
  1248. else
  1249. {
  1250. printf_P(PSTR("readBlock %4d error\n"), i);
  1251. break;
  1252. }
  1253. }
  1254. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1255. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1256. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1257. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1258. }
  1259. else
  1260. printf_P(PSTR("Card NG!\n"));
  1261. #endif //DEBUG_SD_SPEED_TEST
  1262. eeprom_init();
  1263. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1264. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1265. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1266. #if (LANG_MODE != 0) //secondary language support
  1267. #ifdef DEBUG_XFLASH
  1268. XFLASH_SPI_ENTER();
  1269. uint8_t uid[8]; // 64bit unique id
  1270. xflash_rd_uid(uid);
  1271. puts_P(_n("XFLASH UID="));
  1272. for (uint8_t i = 0; i < 8; i ++)
  1273. printf_P(PSTR("%02x"), uid[i]);
  1274. putchar('\n');
  1275. list_sec_lang_from_external_flash();
  1276. #endif //DEBUG_XFLASH
  1277. // lang_reset();
  1278. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1279. lcd_language();
  1280. #ifdef DEBUG_SEC_LANG
  1281. uint16_t sec_lang_code = lang_get_code(1);
  1282. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1283. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1284. lang_print_sec_lang(uartout);
  1285. #endif //DEBUG_SEC_LANG
  1286. #endif //(LANG_MODE != 0)
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1288. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1289. }
  1290. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1291. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1292. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1293. int16_t z_shift = 0;
  1294. for (uint8_t i = 0; i < 5; i++) {
  1295. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  1296. }
  1297. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1298. }
  1299. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1300. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1301. }
  1302. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1303. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1304. }
  1305. //mbl_mode_init();
  1306. mbl_settings_init();
  1307. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1308. if (SilentModeMenu_MMU == 255) {
  1309. SilentModeMenu_MMU = 1;
  1310. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1311. }
  1312. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1313. setup_fan_interrupt();
  1314. #endif //DEBUG_DISABLE_FANCHECK
  1315. #ifdef PAT9125
  1316. fsensor_setup_interrupt();
  1317. #endif //PAT9125
  1318. #ifndef DEBUG_DISABLE_STARTMSGS
  1319. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1320. if (!farm_mode) {
  1321. check_if_fw_is_on_right_printer();
  1322. show_fw_version_warnings();
  1323. }
  1324. switch (hw_changed) {
  1325. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1326. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1327. case(0b01):
  1328. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1329. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1330. break;
  1331. case(0b10):
  1332. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1333. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1334. break;
  1335. case(0b11):
  1336. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1337. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1338. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1339. break;
  1340. default: break; //no change, show no message
  1341. }
  1342. if (!previous_settings_retrieved) {
  1343. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=6
  1344. Config_StoreSettings();
  1345. }
  1346. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) >= 1) {
  1347. lcd_wizard(WizState::Run);
  1348. }
  1349. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1350. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1351. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1352. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1353. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1354. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1355. // Show the message.
  1356. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1357. }
  1358. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1359. // Show the message.
  1360. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1361. lcd_update_enable(true);
  1362. }
  1363. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1364. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1365. lcd_update_enable(true);
  1366. }
  1367. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1368. // Show the message.
  1369. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1370. }
  1371. }
  1372. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1373. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1374. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1375. update_current_firmware_version_to_eeprom();
  1376. lcd_selftest();
  1377. }
  1378. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1379. KEEPALIVE_STATE(IN_PROCESS);
  1380. #endif //DEBUG_DISABLE_STARTMSGS
  1381. lcd_update_enable(true);
  1382. lcd_clear();
  1383. lcd_update(2);
  1384. // Store the currently running firmware into an eeprom,
  1385. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1386. update_current_firmware_version_to_eeprom();
  1387. #ifdef TMC2130
  1388. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1389. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1390. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1391. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1392. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1393. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1394. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1395. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1396. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1397. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1398. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1399. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1400. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1401. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1402. #endif //TMC2130
  1403. // report crash failures
  1404. fw_crash_init();
  1405. #ifdef UVLO_SUPPORT
  1406. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1407. /*
  1408. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1409. else {
  1410. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1411. lcd_update_enable(true);
  1412. lcd_update(2);
  1413. lcd_setstatuspgm(MSG_WELCOME);
  1414. }
  1415. */
  1416. manage_heater(); // Update temperatures
  1417. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1418. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1419. #endif
  1420. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1421. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1422. puts_P(_N("Automatic recovery!"));
  1423. #endif
  1424. recover_print(1);
  1425. }
  1426. else{
  1427. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1428. puts_P(_N("Normal recovery!"));
  1429. #endif
  1430. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1431. else {
  1432. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1433. lcd_update_enable(true);
  1434. lcd_update(2);
  1435. lcd_setstatuspgm(MSG_WELCOME);
  1436. }
  1437. }
  1438. }
  1439. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1440. // the entire state machine initialized.
  1441. setup_uvlo_interrupt();
  1442. #endif //UVLO_SUPPORT
  1443. fCheckModeInit();
  1444. fSetMmuMode(mmu_enabled);
  1445. KEEPALIVE_STATE(NOT_BUSY);
  1446. #ifdef WATCHDOG
  1447. wdt_enable(WDTO_4S);
  1448. #ifdef EMERGENCY_HANDLERS
  1449. WDTCSR |= (1 << WDIE);
  1450. #endif //EMERGENCY_HANDLERS
  1451. #endif //WATCHDOG
  1452. }
  1453. static inline void crash_and_burn(dump_crash_reason reason)
  1454. {
  1455. WRITE(BEEPER, HIGH);
  1456. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, (uint8_t)reason);
  1457. #ifdef EMERGENCY_DUMP
  1458. xfdump_full_dump_and_reset(reason);
  1459. #elif defined(EMERGENCY_SERIAL_DUMP)
  1460. if(emergency_serial_dump)
  1461. serial_dump_and_reset(reason);
  1462. #endif
  1463. softReset();
  1464. }
  1465. #ifdef EMERGENCY_HANDLERS
  1466. #ifdef WATCHDOG
  1467. ISR(WDT_vect)
  1468. {
  1469. crash_and_burn(dump_crash_reason::watchdog);
  1470. }
  1471. #endif
  1472. ISR(BADISR_vect)
  1473. {
  1474. crash_and_burn(dump_crash_reason::bad_isr);
  1475. }
  1476. #endif //EMERGENCY_HANDLERS
  1477. void stack_error() {
  1478. crash_and_burn(dump_crash_reason::stack_error);
  1479. }
  1480. #ifdef PRUSA_M28
  1481. void trace();
  1482. #define CHUNK_SIZE 64 // bytes
  1483. #define SAFETY_MARGIN 1
  1484. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1485. void serial_read_stream() {
  1486. setAllTargetHotends(0);
  1487. setTargetBed(0);
  1488. lcd_clear();
  1489. lcd_puts_P(PSTR(" Upload in progress"));
  1490. // first wait for how many bytes we will receive
  1491. uint32_t bytesToReceive;
  1492. // receive the four bytes
  1493. char bytesToReceiveBuffer[4];
  1494. for (int i=0; i<4; i++) {
  1495. int data;
  1496. while ((data = MYSERIAL.read()) == -1) {};
  1497. bytesToReceiveBuffer[i] = data;
  1498. }
  1499. // make it a uint32
  1500. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1501. // we're ready, notify the sender
  1502. MYSERIAL.write('+');
  1503. // lock in the routine
  1504. uint32_t receivedBytes = 0;
  1505. while (prusa_sd_card_upload) {
  1506. int i;
  1507. for (i=0; i<CHUNK_SIZE; i++) {
  1508. int data;
  1509. // check if we're not done
  1510. if (receivedBytes == bytesToReceive) {
  1511. break;
  1512. }
  1513. // read the next byte
  1514. while ((data = MYSERIAL.read()) == -1) {};
  1515. receivedBytes++;
  1516. // save it to the chunk
  1517. chunk[i] = data;
  1518. }
  1519. // write the chunk to SD
  1520. card.write_command_no_newline(&chunk[0]);
  1521. // notify the sender we're ready for more data
  1522. MYSERIAL.write('+');
  1523. // for safety
  1524. manage_heater();
  1525. // check if we're done
  1526. if(receivedBytes == bytesToReceive) {
  1527. trace(); // beep
  1528. card.closefile();
  1529. prusa_sd_card_upload = false;
  1530. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1531. }
  1532. }
  1533. }
  1534. #endif //PRUSA_M28
  1535. /**
  1536. * Output autoreport values according to features requested in M155
  1537. */
  1538. #if defined(AUTO_REPORT)
  1539. static void host_autoreport()
  1540. {
  1541. if (autoReportFeatures.TimerExpired())
  1542. {
  1543. if(autoReportFeatures.Temp()){
  1544. gcode_M105(active_extruder);
  1545. }
  1546. if(autoReportFeatures.Pos()){
  1547. gcode_M114();
  1548. }
  1549. #if defined(AUTO_REPORT) && (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  1550. if(autoReportFeatures.Fans()){
  1551. gcode_M123();
  1552. }
  1553. #endif //AUTO_REPORT and (FANCHECK and TACH_0 or TACH_1)
  1554. autoReportFeatures.TimerStart();
  1555. }
  1556. }
  1557. #endif //AUTO_REPORT
  1558. /**
  1559. * Output a "busy" message at regular intervals
  1560. * while the machine is not accepting commands.
  1561. */
  1562. void host_keepalive() {
  1563. #ifndef HOST_KEEPALIVE_FEATURE
  1564. return;
  1565. #endif //HOST_KEEPALIVE_FEATURE
  1566. if (farm_mode) return;
  1567. long ms = _millis();
  1568. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1569. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1570. switch (busy_state) {
  1571. case IN_HANDLER:
  1572. case IN_PROCESS:
  1573. SERIAL_ECHO_START;
  1574. SERIAL_ECHOLNPGM("busy: processing");
  1575. break;
  1576. case PAUSED_FOR_USER:
  1577. SERIAL_ECHO_START;
  1578. SERIAL_ECHOLNPGM("busy: paused for user");
  1579. break;
  1580. case PAUSED_FOR_INPUT:
  1581. SERIAL_ECHO_START;
  1582. SERIAL_ECHOLNPGM("busy: paused for input");
  1583. break;
  1584. default:
  1585. break;
  1586. }
  1587. }
  1588. prev_busy_signal_ms = ms;
  1589. }
  1590. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1591. // Before loop(), the setup() function is called by the main() routine.
  1592. void loop()
  1593. {
  1594. KEEPALIVE_STATE(NOT_BUSY);
  1595. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) { //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1596. usb_timer.start();
  1597. }
  1598. else if (usb_timer.expired(10000)) { //just need to check if it expired. Nothing else is needed to be done.
  1599. ;
  1600. }
  1601. #ifdef FANCHECK
  1602. if (fan_check_error && isPrintPaused && !IS_SD_PRINTING) {
  1603. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1604. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1605. }
  1606. #endif
  1607. #ifdef PRUSA_M28
  1608. if (prusa_sd_card_upload)
  1609. {
  1610. //we read byte-by byte
  1611. serial_read_stream();
  1612. }
  1613. else
  1614. #endif
  1615. {
  1616. get_command();
  1617. #ifdef SDSUPPORT
  1618. card.checkautostart(false);
  1619. #endif
  1620. if(buflen)
  1621. {
  1622. cmdbuffer_front_already_processed = false;
  1623. #ifdef SDSUPPORT
  1624. if(card.saving)
  1625. {
  1626. // Saving a G-code file onto an SD-card is in progress.
  1627. // Saving starts with M28, saving until M29 is seen.
  1628. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1629. card.write_command(CMDBUFFER_CURRENT_STRING);
  1630. if(card.logging)
  1631. process_commands();
  1632. else
  1633. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1634. } else {
  1635. card.closefile();
  1636. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1637. }
  1638. } else {
  1639. process_commands();
  1640. }
  1641. #else
  1642. process_commands();
  1643. #endif //SDSUPPORT
  1644. if (! cmdbuffer_front_already_processed && buflen)
  1645. {
  1646. // ptr points to the start of the block currently being processed.
  1647. // The first character in the block is the block type.
  1648. char *ptr = cmdbuffer + bufindr;
  1649. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1650. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1651. union {
  1652. struct {
  1653. char lo;
  1654. char hi;
  1655. } lohi;
  1656. uint16_t value;
  1657. } sdlen;
  1658. sdlen.value = 0;
  1659. {
  1660. // This block locks the interrupts globally for 3.25 us,
  1661. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1662. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1663. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1664. cli();
  1665. // Reset the command to something, which will be ignored by the power panic routine,
  1666. // so this buffer length will not be counted twice.
  1667. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1668. // Extract the current buffer length.
  1669. sdlen.lohi.lo = *ptr ++;
  1670. sdlen.lohi.hi = *ptr;
  1671. // and pass it to the planner queue.
  1672. planner_add_sd_length(sdlen.value);
  1673. sei();
  1674. }
  1675. }
  1676. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1677. cli();
  1678. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1679. // and one for each command to previous block in the planner queue.
  1680. planner_add_sd_length(1);
  1681. sei();
  1682. }
  1683. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1684. // this block's SD card length will not be counted twice as its command type has been replaced
  1685. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1686. cmdqueue_pop_front();
  1687. }
  1688. host_keepalive();
  1689. }
  1690. }
  1691. //check heater every n milliseconds
  1692. manage_heater();
  1693. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1694. checkHitEndstops();
  1695. lcd_update(0);
  1696. #ifdef TMC2130
  1697. tmc2130_check_overtemp();
  1698. if (tmc2130_sg_crash)
  1699. {
  1700. uint8_t crash = tmc2130_sg_crash;
  1701. tmc2130_sg_crash = 0;
  1702. // crashdet_stop_and_save_print();
  1703. switch (crash)
  1704. {
  1705. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1706. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1707. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1708. }
  1709. }
  1710. #endif //TMC2130
  1711. mmu_loop();
  1712. }
  1713. #define DEFINE_PGM_READ_ANY(type, reader) \
  1714. static inline type pgm_read_any(const type *p) \
  1715. { return pgm_read_##reader##_near(p); }
  1716. DEFINE_PGM_READ_ANY(float, float);
  1717. DEFINE_PGM_READ_ANY(signed char, byte);
  1718. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1719. static const PROGMEM type array##_P[3] = \
  1720. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1721. static inline type array(uint8_t axis) \
  1722. { return pgm_read_any(&array##_P[axis]); } \
  1723. type array##_ext(uint8_t axis) \
  1724. { return pgm_read_any(&array##_P[axis]); }
  1725. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1726. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1727. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1728. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1729. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1730. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1731. static void axis_is_at_home(uint8_t axis) {
  1732. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1733. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1734. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1735. }
  1736. //! @return original feedmultiply
  1737. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1738. saved_feedrate = feedrate;
  1739. int l_feedmultiply = feedmultiply;
  1740. feedmultiply = 100;
  1741. previous_millis_cmd.start();
  1742. enable_endstops(enable_endstops_now);
  1743. return l_feedmultiply;
  1744. }
  1745. //! @param original_feedmultiply feedmultiply to restore
  1746. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1747. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1748. enable_endstops(false);
  1749. #endif
  1750. feedrate = saved_feedrate;
  1751. feedmultiply = original_feedmultiply;
  1752. previous_millis_cmd.start();
  1753. }
  1754. #ifdef ENABLE_AUTO_BED_LEVELING
  1755. #ifdef AUTO_BED_LEVELING_GRID
  1756. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1757. {
  1758. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1759. planeNormal.debug("planeNormal");
  1760. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1761. //bedLevel.debug("bedLevel");
  1762. //plan_bed_level_matrix.debug("bed level before");
  1763. //vector_3 uncorrected_position = plan_get_position_mm();
  1764. //uncorrected_position.debug("position before");
  1765. vector_3 corrected_position = plan_get_position();
  1766. // corrected_position.debug("position after");
  1767. current_position[X_AXIS] = corrected_position.x;
  1768. current_position[Y_AXIS] = corrected_position.y;
  1769. current_position[Z_AXIS] = corrected_position.z;
  1770. // put the bed at 0 so we don't go below it.
  1771. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1772. plan_set_position_curposXYZE();
  1773. }
  1774. #else // not AUTO_BED_LEVELING_GRID
  1775. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1776. plan_bed_level_matrix.set_to_identity();
  1777. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1778. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1779. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1780. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1781. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1782. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1783. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1784. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1785. vector_3 corrected_position = plan_get_position();
  1786. current_position[X_AXIS] = corrected_position.x;
  1787. current_position[Y_AXIS] = corrected_position.y;
  1788. current_position[Z_AXIS] = corrected_position.z;
  1789. // put the bed at 0 so we don't go below it.
  1790. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1791. plan_set_position_curposXYZE();
  1792. }
  1793. #endif // AUTO_BED_LEVELING_GRID
  1794. static void run_z_probe() {
  1795. plan_bed_level_matrix.set_to_identity();
  1796. feedrate = homing_feedrate[Z_AXIS];
  1797. // move down until you find the bed
  1798. float zPosition = -10;
  1799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. // we have to let the planner know where we are right now as it is not where we said to go.
  1802. zPosition = st_get_position_mm(Z_AXIS);
  1803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1804. // move up the retract distance
  1805. zPosition += home_retract_mm(Z_AXIS);
  1806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1807. st_synchronize();
  1808. // move back down slowly to find bed
  1809. feedrate = homing_feedrate[Z_AXIS]/4;
  1810. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1812. st_synchronize();
  1813. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1814. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1815. plan_set_position_curposXYZE();
  1816. }
  1817. static void do_blocking_move_to(float x, float y, float z) {
  1818. float oldFeedRate = feedrate;
  1819. feedrate = homing_feedrate[Z_AXIS];
  1820. current_position[Z_AXIS] = z;
  1821. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. feedrate = XY_TRAVEL_SPEED;
  1824. current_position[X_AXIS] = x;
  1825. current_position[Y_AXIS] = y;
  1826. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1827. st_synchronize();
  1828. feedrate = oldFeedRate;
  1829. }
  1830. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1831. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1832. }
  1833. /// Probe bed height at position (x,y), returns the measured z value
  1834. static float probe_pt(float x, float y, float z_before) {
  1835. // move to right place
  1836. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1837. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1838. run_z_probe();
  1839. float measured_z = current_position[Z_AXIS];
  1840. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1841. SERIAL_PROTOCOLPGM(" x: ");
  1842. SERIAL_PROTOCOL(x);
  1843. SERIAL_PROTOCOLPGM(" y: ");
  1844. SERIAL_PROTOCOL(y);
  1845. SERIAL_PROTOCOLPGM(" z: ");
  1846. SERIAL_PROTOCOL(measured_z);
  1847. SERIAL_PROTOCOLPGM("\n");
  1848. return measured_z;
  1849. }
  1850. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1851. #ifdef LIN_ADVANCE
  1852. /**
  1853. * M900: Set and/or Get advance K factor
  1854. *
  1855. * K<factor> Set advance K factor
  1856. */
  1857. inline void gcode_M900() {
  1858. float newK = code_seen('K') ? code_value_float() : -2;
  1859. #ifdef LA_NOCOMPAT
  1860. if (newK >= 0 && newK < LA_K_MAX)
  1861. extruder_advance_K = newK;
  1862. else
  1863. SERIAL_ECHOLNPGM("K out of allowed range!");
  1864. #else
  1865. if (newK == 0)
  1866. {
  1867. extruder_advance_K = 0;
  1868. la10c_reset();
  1869. }
  1870. else
  1871. {
  1872. newK = la10c_value(newK);
  1873. if (newK < 0)
  1874. SERIAL_ECHOLNPGM("K out of allowed range!");
  1875. else
  1876. extruder_advance_K = newK;
  1877. }
  1878. #endif
  1879. SERIAL_ECHO_START;
  1880. SERIAL_ECHOPGM("Advance K=");
  1881. SERIAL_ECHOLN(extruder_advance_K);
  1882. }
  1883. #endif // LIN_ADVANCE
  1884. bool check_commands() {
  1885. bool end_command_found = false;
  1886. while (buflen)
  1887. {
  1888. if ((code_seen_P(PSTR("M84"))) || (code_seen_P(PSTR("M 84")))) end_command_found = true;
  1889. if (!cmdbuffer_front_already_processed)
  1890. cmdqueue_pop_front();
  1891. cmdbuffer_front_already_processed = false;
  1892. }
  1893. return end_command_found;
  1894. }
  1895. // raise_z_above: slowly raise Z to the requested height
  1896. //
  1897. // contrarily to a simple move, this function will carefully plan a move
  1898. // when the current Z position is unknown. In such cases, stallguard is
  1899. // enabled and will prevent prolonged pushing against the Z tops
  1900. void raise_z_above(float target, bool plan)
  1901. {
  1902. if (current_position[Z_AXIS] >= target)
  1903. return;
  1904. // Z needs raising
  1905. current_position[Z_AXIS] = target;
  1906. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1907. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1908. #else
  1909. bool z_min_endstop = false;
  1910. #endif
  1911. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1912. {
  1913. // current position is known or very low, it's safe to raise Z
  1914. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1915. return;
  1916. }
  1917. // ensure Z is powered in normal mode to overcome initial load
  1918. enable_z();
  1919. st_synchronize();
  1920. // rely on crashguard to limit damage
  1921. bool z_endstop_enabled = enable_z_endstop(true);
  1922. #ifdef TMC2130
  1923. tmc2130_home_enter(Z_AXIS_MASK);
  1924. #endif //TMC2130
  1925. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1926. st_synchronize();
  1927. #ifdef TMC2130
  1928. if (endstop_z_hit_on_purpose())
  1929. {
  1930. // not necessarily exact, but will avoid further vertical moves
  1931. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1932. plan_set_position_curposXYZE();
  1933. }
  1934. tmc2130_home_exit();
  1935. #endif //TMC2130
  1936. enable_z_endstop(z_endstop_enabled);
  1937. }
  1938. #ifdef TMC2130
  1939. bool calibrate_z_auto()
  1940. {
  1941. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1942. lcd_clear();
  1943. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1944. bool endstops_enabled = enable_endstops(true);
  1945. int axis_up_dir = -home_dir(Z_AXIS);
  1946. tmc2130_home_enter(Z_AXIS_MASK);
  1947. current_position[Z_AXIS] = 0;
  1948. plan_set_position_curposXYZE();
  1949. set_destination_to_current();
  1950. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1951. feedrate = homing_feedrate[Z_AXIS];
  1952. plan_buffer_line_destinationXYZE(feedrate / 60);
  1953. st_synchronize();
  1954. // current_position[axis] = 0;
  1955. // plan_set_position_curposXYZE();
  1956. tmc2130_home_exit();
  1957. enable_endstops(false);
  1958. current_position[Z_AXIS] = 0;
  1959. plan_set_position_curposXYZE();
  1960. set_destination_to_current();
  1961. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1962. feedrate = homing_feedrate[Z_AXIS] / 2;
  1963. plan_buffer_line_destinationXYZE(feedrate / 60);
  1964. st_synchronize();
  1965. enable_endstops(endstops_enabled);
  1966. current_position[Z_AXIS] = Z_MAX_POS + 3.0;
  1967. plan_set_position_curposXYZE();
  1968. return true;
  1969. }
  1970. #endif //TMC2130
  1971. #ifdef TMC2130
  1972. static void check_Z_crash(void)
  1973. {
  1974. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1975. FORCE_HIGH_POWER_END;
  1976. current_position[Z_AXIS] = 0;
  1977. plan_set_position_curposXYZE();
  1978. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1979. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1980. st_synchronize();
  1981. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1982. }
  1983. }
  1984. #endif //TMC2130
  1985. #ifdef TMC2130
  1986. void homeaxis(uint8_t axis, uint8_t cnt, uint8_t* pstep)
  1987. #else
  1988. void homeaxis(uint8_t axis, uint8_t cnt)
  1989. #endif //TMC2130
  1990. {
  1991. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1992. #define HOMEAXIS_DO(LETTER) \
  1993. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1994. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1995. {
  1996. int axis_home_dir = home_dir(axis);
  1997. feedrate = homing_feedrate[axis];
  1998. #ifdef TMC2130
  1999. tmc2130_home_enter(X_AXIS_MASK << axis);
  2000. #endif //TMC2130
  2001. // Move away a bit, so that the print head does not touch the end position,
  2002. // and the following movement to endstop has a chance to achieve the required velocity
  2003. // for the stall guard to work.
  2004. current_position[axis] = 0;
  2005. plan_set_position_curposXYZE();
  2006. set_destination_to_current();
  2007. // destination[axis] = 11.f;
  2008. destination[axis] = -3.f * axis_home_dir;
  2009. plan_buffer_line_destinationXYZE(feedrate/60);
  2010. st_synchronize();
  2011. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  2012. endstops_hit_on_purpose();
  2013. enable_endstops(false);
  2014. current_position[axis] = 0;
  2015. plan_set_position_curposXYZE();
  2016. destination[axis] = 1. * axis_home_dir;
  2017. plan_buffer_line_destinationXYZE(feedrate/60);
  2018. st_synchronize();
  2019. // Now continue to move up to the left end stop with the collision detection enabled.
  2020. enable_endstops(true);
  2021. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  2022. plan_buffer_line_destinationXYZE(feedrate/60);
  2023. st_synchronize();
  2024. for (uint8_t i = 0; i < cnt; i++)
  2025. {
  2026. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  2027. endstops_hit_on_purpose();
  2028. enable_endstops(false);
  2029. current_position[axis] = 0;
  2030. plan_set_position_curposXYZE();
  2031. destination[axis] = -10.f * axis_home_dir;
  2032. plan_buffer_line_destinationXYZE(feedrate/60);
  2033. st_synchronize();
  2034. endstops_hit_on_purpose();
  2035. // Now move left up to the collision, this time with a repeatable velocity.
  2036. enable_endstops(true);
  2037. destination[axis] = 11.f * axis_home_dir;
  2038. #ifdef TMC2130
  2039. feedrate = homing_feedrate[axis];
  2040. #else //TMC2130
  2041. feedrate = homing_feedrate[axis] / 2;
  2042. #endif //TMC2130
  2043. plan_buffer_line_destinationXYZE(feedrate/60);
  2044. st_synchronize();
  2045. #ifdef TMC2130
  2046. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2047. if (pstep) pstep[i] = mscnt >> 4;
  2048. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2049. #endif //TMC2130
  2050. }
  2051. endstops_hit_on_purpose();
  2052. enable_endstops(false);
  2053. #ifdef TMC2130
  2054. uint8_t orig = tmc2130_home_origin[axis];
  2055. uint8_t back = tmc2130_home_bsteps[axis];
  2056. if (tmc2130_home_enabled && (orig <= 63))
  2057. {
  2058. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2059. if (back > 0)
  2060. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  2061. }
  2062. else
  2063. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  2064. tmc2130_home_exit();
  2065. #endif //TMC2130
  2066. axis_is_at_home(axis);
  2067. axis_known_position[axis] = true;
  2068. // Move from minimum
  2069. #ifdef TMC2130
  2070. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  2071. #else //TMC2130
  2072. float dist = - axis_home_dir * 0.01f * 64;
  2073. #endif //TMC2130
  2074. current_position[axis] -= dist;
  2075. plan_set_position_curposXYZE();
  2076. current_position[axis] += dist;
  2077. destination[axis] = current_position[axis];
  2078. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  2079. st_synchronize();
  2080. feedrate = 0.0;
  2081. }
  2082. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2083. {
  2084. #ifdef TMC2130
  2085. FORCE_HIGH_POWER_START;
  2086. #endif
  2087. int axis_home_dir = home_dir(axis);
  2088. current_position[axis] = 0;
  2089. plan_set_position_curposXYZE();
  2090. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2091. feedrate = homing_feedrate[axis];
  2092. plan_buffer_line_destinationXYZE(feedrate/60);
  2093. st_synchronize();
  2094. #ifdef TMC2130
  2095. check_Z_crash();
  2096. #endif //TMC2130
  2097. current_position[axis] = 0;
  2098. plan_set_position_curposXYZE();
  2099. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2100. plan_buffer_line_destinationXYZE(feedrate/60);
  2101. st_synchronize();
  2102. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2103. feedrate = homing_feedrate[axis]/2 ;
  2104. plan_buffer_line_destinationXYZE(feedrate/60);
  2105. st_synchronize();
  2106. #ifdef TMC2130
  2107. check_Z_crash();
  2108. #endif //TMC2130
  2109. axis_is_at_home(axis);
  2110. destination[axis] = current_position[axis];
  2111. feedrate = 0.0;
  2112. endstops_hit_on_purpose();
  2113. axis_known_position[axis] = true;
  2114. #ifdef TMC2130
  2115. FORCE_HIGH_POWER_END;
  2116. #endif
  2117. }
  2118. enable_endstops(endstops_enabled);
  2119. }
  2120. /**/
  2121. void home_xy()
  2122. {
  2123. set_destination_to_current();
  2124. homeaxis(X_AXIS);
  2125. homeaxis(Y_AXIS);
  2126. plan_set_position_curposXYZE();
  2127. endstops_hit_on_purpose();
  2128. }
  2129. void refresh_cmd_timeout(void)
  2130. {
  2131. previous_millis_cmd.start();
  2132. }
  2133. #ifdef FWRETRACT
  2134. void retract(bool retracting, bool swapretract = false) {
  2135. // Perform FW retraction, just if needed, but behave as if the move has never took place in
  2136. // order to keep E/Z coordinates unchanged. This is done by manipulating the internal planner
  2137. // position, which requires a sync
  2138. if(retracting && !retracted[active_extruder]) {
  2139. st_synchronize();
  2140. set_destination_to_current();
  2141. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2142. plan_set_e_position(current_position[E_AXIS]);
  2143. float oldFeedrate = feedrate;
  2144. feedrate=cs.retract_feedrate*60;
  2145. retracted[active_extruder]=true;
  2146. prepare_move();
  2147. if(cs.retract_zlift) {
  2148. st_synchronize();
  2149. current_position[Z_AXIS]-=cs.retract_zlift;
  2150. plan_set_position_curposXYZE();
  2151. prepare_move();
  2152. }
  2153. feedrate = oldFeedrate;
  2154. } else if(!retracting && retracted[active_extruder]) {
  2155. st_synchronize();
  2156. set_destination_to_current();
  2157. float oldFeedrate = feedrate;
  2158. feedrate=cs.retract_recover_feedrate*60;
  2159. if(cs.retract_zlift) {
  2160. current_position[Z_AXIS]+=cs.retract_zlift;
  2161. plan_set_position_curposXYZE();
  2162. prepare_move();
  2163. st_synchronize();
  2164. }
  2165. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2166. plan_set_e_position(current_position[E_AXIS]);
  2167. retracted[active_extruder]=false;
  2168. prepare_move();
  2169. feedrate = oldFeedrate;
  2170. }
  2171. } //retract
  2172. #endif //FWRETRACT
  2173. #ifdef PRUSA_M28
  2174. void trace() {
  2175. Sound_MakeCustom(25,440,true);
  2176. }
  2177. #endif
  2178. /*
  2179. void ramming() {
  2180. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2181. if (current_temperature[0] < 230) {
  2182. //PLA
  2183. max_feedrate[E_AXIS] = 50;
  2184. //current_position[E_AXIS] -= 8;
  2185. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2186. //current_position[E_AXIS] += 8;
  2187. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2188. current_position[E_AXIS] += 5.4;
  2189. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2190. current_position[E_AXIS] += 3.2;
  2191. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2192. current_position[E_AXIS] += 3;
  2193. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2194. st_synchronize();
  2195. max_feedrate[E_AXIS] = 80;
  2196. current_position[E_AXIS] -= 82;
  2197. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2198. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2199. current_position[E_AXIS] -= 20;
  2200. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2201. current_position[E_AXIS] += 5;
  2202. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2203. current_position[E_AXIS] += 5;
  2204. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2205. current_position[E_AXIS] -= 10;
  2206. st_synchronize();
  2207. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2208. current_position[E_AXIS] += 10;
  2209. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2210. current_position[E_AXIS] -= 10;
  2211. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2212. current_position[E_AXIS] += 10;
  2213. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2214. current_position[E_AXIS] -= 10;
  2215. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2216. st_synchronize();
  2217. }
  2218. else {
  2219. //ABS
  2220. max_feedrate[E_AXIS] = 50;
  2221. //current_position[E_AXIS] -= 8;
  2222. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2223. //current_position[E_AXIS] += 8;
  2224. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2225. current_position[E_AXIS] += 3.1;
  2226. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2227. current_position[E_AXIS] += 3.1;
  2228. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2229. current_position[E_AXIS] += 4;
  2230. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2231. st_synchronize();
  2232. //current_position[X_AXIS] += 23; //delay
  2233. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2234. //current_position[X_AXIS] -= 23; //delay
  2235. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2236. _delay(4700);
  2237. max_feedrate[E_AXIS] = 80;
  2238. current_position[E_AXIS] -= 92;
  2239. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2240. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2241. current_position[E_AXIS] -= 5;
  2242. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2243. current_position[E_AXIS] += 5;
  2244. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2245. current_position[E_AXIS] -= 5;
  2246. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2247. st_synchronize();
  2248. current_position[E_AXIS] += 5;
  2249. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2250. current_position[E_AXIS] -= 5;
  2251. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2252. current_position[E_AXIS] += 5;
  2253. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2254. current_position[E_AXIS] -= 5;
  2255. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2256. st_synchronize();
  2257. }
  2258. }
  2259. */
  2260. #ifdef TMC2130
  2261. void force_high_power_mode(bool start_high_power_section) {
  2262. #ifdef PSU_Delta
  2263. if (start_high_power_section == true) enable_force_z();
  2264. #endif //PSU_Delta
  2265. uint8_t silent;
  2266. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2267. if (silent == 1) {
  2268. //we are in silent mode, set to normal mode to enable crash detection
  2269. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2270. st_synchronize();
  2271. cli();
  2272. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2273. update_mode_profile();
  2274. tmc2130_init(TMCInitParams(FarmOrUserECool()));
  2275. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2276. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2277. st_reset_timer();
  2278. sei();
  2279. }
  2280. }
  2281. #endif //TMC2130
  2282. void gcode_M105(uint8_t extruder)
  2283. {
  2284. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2285. SERIAL_PROTOCOLPGM("T:");
  2286. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2287. SERIAL_PROTOCOLPGM(" /");
  2288. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2289. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2290. SERIAL_PROTOCOLPGM(" B:");
  2291. SERIAL_PROTOCOL_F(degBed(),1);
  2292. SERIAL_PROTOCOLPGM(" /");
  2293. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2294. #endif //TEMP_BED_PIN
  2295. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2296. SERIAL_PROTOCOLPGM(" T");
  2297. SERIAL_PROTOCOL(cur_extruder);
  2298. SERIAL_PROTOCOL(':');
  2299. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2300. SERIAL_PROTOCOLPGM(" /");
  2301. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2302. }
  2303. #else
  2304. SERIAL_ERROR_START;
  2305. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2306. #endif
  2307. SERIAL_PROTOCOLPGM(" @:");
  2308. #ifdef EXTRUDER_WATTS
  2309. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2310. SERIAL_PROTOCOLPGM("W");
  2311. #else
  2312. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2313. #endif
  2314. SERIAL_PROTOCOLPGM(" B@:");
  2315. #ifdef BED_WATTS
  2316. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2317. SERIAL_PROTOCOLPGM("W");
  2318. #else
  2319. SERIAL_PROTOCOL(getHeaterPower(-1));
  2320. #endif
  2321. #ifdef PINDA_THERMISTOR
  2322. SERIAL_PROTOCOLPGM(" P:");
  2323. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2324. #endif //PINDA_THERMISTOR
  2325. #ifdef AMBIENT_THERMISTOR
  2326. SERIAL_PROTOCOLPGM(" A:");
  2327. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2328. #endif //AMBIENT_THERMISTOR
  2329. #ifdef SHOW_TEMP_ADC_VALUES
  2330. {
  2331. float raw = 0.0;
  2332. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2333. SERIAL_PROTOCOLPGM(" ADC B:");
  2334. SERIAL_PROTOCOL_F(degBed(),1);
  2335. SERIAL_PROTOCOLPGM("C->");
  2336. raw = rawBedTemp();
  2337. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2338. SERIAL_PROTOCOLPGM(" Rb->");
  2339. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2340. SERIAL_PROTOCOLPGM(" Rxb->");
  2341. SERIAL_PROTOCOL_F(raw, 5);
  2342. #endif
  2343. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2344. SERIAL_PROTOCOLPGM(" T");
  2345. SERIAL_PROTOCOL(cur_extruder);
  2346. SERIAL_PROTOCOLPGM(":");
  2347. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2348. SERIAL_PROTOCOLPGM("C->");
  2349. raw = rawHotendTemp(cur_extruder);
  2350. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2351. SERIAL_PROTOCOLPGM(" Rt");
  2352. SERIAL_PROTOCOL(cur_extruder);
  2353. SERIAL_PROTOCOLPGM("->");
  2354. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2355. SERIAL_PROTOCOLPGM(" Rx");
  2356. SERIAL_PROTOCOL(cur_extruder);
  2357. SERIAL_PROTOCOLPGM("->");
  2358. SERIAL_PROTOCOL_F(raw, 5);
  2359. }
  2360. }
  2361. #endif
  2362. SERIAL_PROTOCOLLN();
  2363. }
  2364. #ifdef TMC2130
  2365. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2366. #else
  2367. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2368. #endif //TMC2130
  2369. {
  2370. // Flag for the display update routine and to disable the print cancelation during homing.
  2371. st_synchronize();
  2372. homing_flag = true;
  2373. #if 0
  2374. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2375. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2376. #endif
  2377. // Which axes should be homed?
  2378. bool home_x = home_x_axis;
  2379. bool home_y = home_y_axis;
  2380. bool home_z = home_z_axis;
  2381. // Either all X,Y,Z codes are present, or none of them.
  2382. bool home_all_axes = home_x == home_y && home_x == home_z;
  2383. if (home_all_axes)
  2384. // No X/Y/Z code provided means to home all axes.
  2385. home_x = home_y = home_z = true;
  2386. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2387. if (home_all_axes) {
  2388. raise_z_above(MESH_HOME_Z_SEARCH);
  2389. st_synchronize();
  2390. }
  2391. #ifdef ENABLE_AUTO_BED_LEVELING
  2392. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2393. #endif //ENABLE_AUTO_BED_LEVELING
  2394. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2395. // the planner will not perform any adjustments in the XY plane.
  2396. // Wait for the motors to stop and update the current position with the absolute values.
  2397. world2machine_revert_to_uncorrected();
  2398. // For mesh bed leveling deactivate the matrix temporarily.
  2399. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2400. // in a single axis only.
  2401. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2402. #ifdef MESH_BED_LEVELING
  2403. uint8_t mbl_was_active = mbl.active;
  2404. mbl.active = 0;
  2405. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2406. #endif
  2407. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2408. if (home_z)
  2409. babystep_undo();
  2410. int l_feedmultiply = setup_for_endstop_move();
  2411. set_destination_to_current();
  2412. feedrate = 0.0;
  2413. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2414. if(home_z)
  2415. homeaxis(Z_AXIS);
  2416. #endif
  2417. #ifdef QUICK_HOME
  2418. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2419. if(home_x && home_y) //first diagonal move
  2420. {
  2421. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2422. uint8_t x_axis_home_dir = home_dir(X_AXIS);
  2423. plan_set_position_curposXYZE();
  2424. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2425. feedrate = homing_feedrate[X_AXIS];
  2426. if(homing_feedrate[Y_AXIS]<feedrate)
  2427. feedrate = homing_feedrate[Y_AXIS];
  2428. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2429. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2430. } else {
  2431. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2432. }
  2433. plan_buffer_line_destinationXYZE(feedrate/60);
  2434. st_synchronize();
  2435. axis_is_at_home(X_AXIS);
  2436. axis_is_at_home(Y_AXIS);
  2437. plan_set_position_curposXYZE();
  2438. destination[X_AXIS] = current_position[X_AXIS];
  2439. destination[Y_AXIS] = current_position[Y_AXIS];
  2440. plan_buffer_line_destinationXYZE(feedrate/60);
  2441. feedrate = 0.0;
  2442. st_synchronize();
  2443. endstops_hit_on_purpose();
  2444. current_position[X_AXIS] = destination[X_AXIS];
  2445. current_position[Y_AXIS] = destination[Y_AXIS];
  2446. current_position[Z_AXIS] = destination[Z_AXIS];
  2447. }
  2448. #endif /* QUICK_HOME */
  2449. #ifdef TMC2130
  2450. if(home_x)
  2451. {
  2452. if (!calib)
  2453. homeaxis(X_AXIS);
  2454. else
  2455. tmc2130_home_calibrate(X_AXIS);
  2456. }
  2457. if(home_y)
  2458. {
  2459. if (!calib)
  2460. homeaxis(Y_AXIS);
  2461. else
  2462. tmc2130_home_calibrate(Y_AXIS);
  2463. }
  2464. #else //TMC2130
  2465. if(home_x) homeaxis(X_AXIS);
  2466. if(home_y) homeaxis(Y_AXIS);
  2467. #endif //TMC2130
  2468. if(home_x_axis && home_x_value != 0)
  2469. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2470. if(home_y_axis && home_y_value != 0)
  2471. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2472. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2473. #ifndef Z_SAFE_HOMING
  2474. if(home_z) {
  2475. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2476. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2477. st_synchronize();
  2478. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2479. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, move X&Y to safe position for home
  2480. raise_z_above(MESH_HOME_Z_SEARCH);
  2481. st_synchronize();
  2482. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2483. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2484. // 1st mesh bed leveling measurement point, corrected.
  2485. world2machine_initialize();
  2486. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2487. world2machine_reset();
  2488. if (destination[Y_AXIS] < Y_MIN_POS)
  2489. destination[Y_AXIS] = Y_MIN_POS;
  2490. feedrate = homing_feedrate[X_AXIS] / 20;
  2491. enable_endstops(false);
  2492. #ifdef DEBUG_BUILD
  2493. SERIAL_ECHOLNPGM("plan_set_position()");
  2494. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2495. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2496. #endif
  2497. plan_set_position_curposXYZE();
  2498. #ifdef DEBUG_BUILD
  2499. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2500. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2501. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2502. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2503. #endif
  2504. plan_buffer_line_destinationXYZE(feedrate);
  2505. st_synchronize();
  2506. current_position[X_AXIS] = destination[X_AXIS];
  2507. current_position[Y_AXIS] = destination[Y_AXIS];
  2508. enable_endstops(true);
  2509. endstops_hit_on_purpose();
  2510. homeaxis(Z_AXIS);
  2511. #else // MESH_BED_LEVELING
  2512. homeaxis(Z_AXIS);
  2513. #endif // MESH_BED_LEVELING
  2514. }
  2515. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2516. if(home_all_axes) {
  2517. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2518. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2519. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2520. feedrate = XY_TRAVEL_SPEED/60;
  2521. current_position[Z_AXIS] = 0;
  2522. plan_set_position_curposXYZE();
  2523. plan_buffer_line_destinationXYZE(feedrate);
  2524. st_synchronize();
  2525. current_position[X_AXIS] = destination[X_AXIS];
  2526. current_position[Y_AXIS] = destination[Y_AXIS];
  2527. homeaxis(Z_AXIS);
  2528. }
  2529. // Let's see if X and Y are homed and probe is inside bed area.
  2530. if(home_z) {
  2531. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2532. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2533. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2534. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2535. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2536. current_position[Z_AXIS] = 0;
  2537. plan_set_position_curposXYZE();
  2538. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2539. feedrate = max_feedrate[Z_AXIS];
  2540. plan_buffer_line_destinationXYZE(feedrate);
  2541. st_synchronize();
  2542. homeaxis(Z_AXIS);
  2543. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2544. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2545. SERIAL_ECHO_START;
  2546. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2547. } else {
  2548. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2549. SERIAL_ECHO_START;
  2550. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2551. }
  2552. }
  2553. #endif // Z_SAFE_HOMING
  2554. #endif // Z_HOME_DIR < 0
  2555. if(home_z_axis && home_z_value != 0)
  2556. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2557. #ifdef ENABLE_AUTO_BED_LEVELING
  2558. if(home_z)
  2559. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2560. #endif
  2561. // Set the planner and stepper routine positions.
  2562. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2563. // contains the machine coordinates.
  2564. plan_set_position_curposXYZE();
  2565. clean_up_after_endstop_move(l_feedmultiply);
  2566. endstops_hit_on_purpose();
  2567. #ifndef MESH_BED_LEVELING
  2568. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2569. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2570. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2571. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2572. lcd_adjust_z();
  2573. #endif
  2574. // Load the machine correction matrix
  2575. world2machine_initialize();
  2576. // and correct the current_position XY axes to match the transformed coordinate system.
  2577. world2machine_update_current();
  2578. #ifdef MESH_BED_LEVELING
  2579. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2580. {
  2581. if (! home_z && mbl_was_active) {
  2582. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2583. mbl.active = true;
  2584. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2585. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2586. }
  2587. }
  2588. #endif
  2589. if (farm_mode) { prusa_statistics(20); };
  2590. st_synchronize();
  2591. homing_flag = false;
  2592. #if 0
  2593. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2594. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2595. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2596. #endif
  2597. }
  2598. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2599. {
  2600. #ifdef TMC2130
  2601. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2602. #else
  2603. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2604. #endif //TMC2130
  2605. }
  2606. // G80 - Automatic mesh bed leveling
  2607. static void gcode_G80()
  2608. {
  2609. st_synchronize();
  2610. if (waiting_inside_plan_buffer_line_print_aborted)
  2611. return;
  2612. mesh_bed_leveling_flag = true;
  2613. #ifndef PINDA_THERMISTOR
  2614. static bool run = false; // thermistor-less PINDA temperature compensation is running
  2615. #endif // ndef PINDA_THERMISTOR
  2616. #ifdef SUPPORT_VERBOSITY
  2617. int8_t verbosity_level = 0;
  2618. if (code_seen('V')) {
  2619. // Just 'V' without a number counts as V1.
  2620. char c = strchr_pointer[1];
  2621. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2622. }
  2623. #endif //SUPPORT_VERBOSITY
  2624. // Firstly check if we know where we are
  2625. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2626. // We don't know where we are! HOME!
  2627. // Push the commands to the front of the message queue in the reverse order!
  2628. // There shall be always enough space reserved for these commands.
  2629. repeatcommand_front(); // repeat G80 with all its parameters
  2630. enquecommand_front_P(G28W0);
  2631. return;
  2632. }
  2633. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  2634. if (code_seen('N')) {
  2635. nMeasPoints = code_value_uint8();
  2636. if (nMeasPoints != 7) {
  2637. nMeasPoints = 3;
  2638. }
  2639. }
  2640. else {
  2641. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  2642. }
  2643. uint8_t nProbeRetry = 3;
  2644. if (code_seen('R')) {
  2645. nProbeRetry = code_value_uint8();
  2646. if (nProbeRetry > 10) {
  2647. nProbeRetry = 10;
  2648. }
  2649. }
  2650. else {
  2651. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  2652. }
  2653. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  2654. #ifndef PINDA_THERMISTOR
  2655. if (run == false && eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true && target_temperature_bed >= 50)
  2656. {
  2657. temp_compensation_start();
  2658. run = true;
  2659. repeatcommand_front(); // repeat G80 with all its parameters
  2660. enquecommand_front_P(G28W0);
  2661. break;
  2662. }
  2663. run = false;
  2664. #endif //PINDA_THERMISTOR
  2665. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2666. CustomMsg custom_message_type_old = custom_message_type;
  2667. uint8_t custom_message_state_old = custom_message_state;
  2668. custom_message_type = CustomMsg::MeshBedLeveling;
  2669. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  2670. lcd_update(1);
  2671. mbl.reset(); //reset mesh bed leveling
  2672. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2673. babystep_undo();
  2674. // Cycle through all points and probe them
  2675. // First move up. During this first movement, the babystepping will be reverted.
  2676. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2677. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  2678. // The move to the first calibration point.
  2679. current_position[X_AXIS] = BED_X0;
  2680. current_position[Y_AXIS] = BED_Y0;
  2681. #ifdef SUPPORT_VERBOSITY
  2682. if (verbosity_level >= 1)
  2683. {
  2684. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2685. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2686. }
  2687. #else //SUPPORT_VERBOSITY
  2688. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2689. #endif //SUPPORT_VERBOSITY
  2690. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2691. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2692. // Wait until the move is finished.
  2693. st_synchronize();
  2694. if (waiting_inside_plan_buffer_line_print_aborted)
  2695. {
  2696. custom_message_type = custom_message_type_old;
  2697. custom_message_state = custom_message_state_old;
  2698. return;
  2699. }
  2700. uint8_t mesh_point = 0; //index number of calibration point
  2701. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2702. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2703. #ifdef SUPPORT_VERBOSITY
  2704. if (verbosity_level >= 1) {
  2705. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2706. }
  2707. #endif // SUPPORT_VERBOSITY
  2708. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2709. while (mesh_point != nMeasPoints * nMeasPoints) {
  2710. // Get coords of a measuring point.
  2711. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  2712. uint8_t iy = mesh_point / nMeasPoints;
  2713. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  2714. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  2715. custom_message_state--;
  2716. mesh_point++;
  2717. continue; //skip
  2718. }*/
  2719. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  2720. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  2721. {
  2722. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  2723. }
  2724. float z0 = 0.f;
  2725. if (has_z && (mesh_point > 0)) {
  2726. uint16_t z_offset_u = 0;
  2727. if (nMeasPoints == 7) {
  2728. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  2729. }
  2730. else {
  2731. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2732. }
  2733. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2734. #ifdef SUPPORT_VERBOSITY
  2735. if (verbosity_level >= 1) {
  2736. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  2737. }
  2738. #endif // SUPPORT_VERBOSITY
  2739. }
  2740. // Move Z up to MESH_HOME_Z_SEARCH.
  2741. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2742. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  2743. float init_z_bckp = current_position[Z_AXIS];
  2744. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2745. st_synchronize();
  2746. // Move to XY position of the sensor point.
  2747. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  2748. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  2749. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2750. #ifdef SUPPORT_VERBOSITY
  2751. if (verbosity_level >= 1) {
  2752. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2753. SERIAL_PROTOCOL(mesh_point);
  2754. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2755. }
  2756. #else //SUPPORT_VERBOSITY
  2757. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2758. #endif // SUPPORT_VERBOSITY
  2759. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2760. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2761. st_synchronize();
  2762. if (waiting_inside_plan_buffer_line_print_aborted)
  2763. {
  2764. custom_message_type = custom_message_type_old;
  2765. custom_message_state = custom_message_state_old;
  2766. return;
  2767. }
  2768. // Go down until endstop is hit
  2769. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2770. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2771. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2772. break;
  2773. }
  2774. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  2775. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  2776. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2777. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2778. st_synchronize();
  2779. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2780. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2781. break;
  2782. }
  2783. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2784. puts_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken."));
  2785. break;
  2786. }
  2787. }
  2788. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2789. puts_P(PSTR("Bed leveling failed. Sensor triggered too high."));
  2790. break;
  2791. }
  2792. #ifdef SUPPORT_VERBOSITY
  2793. if (verbosity_level >= 10) {
  2794. SERIAL_ECHOPGM("X: ");
  2795. MYSERIAL.print(current_position[X_AXIS], 5);
  2796. SERIAL_ECHOLNPGM("");
  2797. SERIAL_ECHOPGM("Y: ");
  2798. MYSERIAL.print(current_position[Y_AXIS], 5);
  2799. SERIAL_PROTOCOLPGM("\n");
  2800. }
  2801. #endif // SUPPORT_VERBOSITY
  2802. float offset_z = 0;
  2803. #ifdef PINDA_THERMISTOR
  2804. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2805. #endif //PINDA_THERMISTOR
  2806. // #ifdef SUPPORT_VERBOSITY
  2807. /* if (verbosity_level >= 1)
  2808. {
  2809. SERIAL_ECHOPGM("mesh bed leveling: ");
  2810. MYSERIAL.print(current_position[Z_AXIS], 5);
  2811. SERIAL_ECHOPGM(" offset: ");
  2812. MYSERIAL.print(offset_z, 5);
  2813. SERIAL_ECHOLNPGM("");
  2814. }*/
  2815. // #endif // SUPPORT_VERBOSITY
  2816. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2817. custom_message_state--;
  2818. mesh_point++;
  2819. lcd_update(1);
  2820. }
  2821. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2822. #ifdef SUPPORT_VERBOSITY
  2823. if (verbosity_level >= 20) {
  2824. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2825. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2826. MYSERIAL.print(current_position[Z_AXIS], 5);
  2827. }
  2828. #endif // SUPPORT_VERBOSITY
  2829. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2830. st_synchronize();
  2831. if (mesh_point != nMeasPoints * nMeasPoints) {
  2832. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  2833. bool bState;
  2834. do { // repeat until Z-leveling o.k.
  2835. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  2836. #ifdef TMC2130
  2837. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  2838. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  2839. #else // TMC2130
  2840. lcd_wait_for_click_delay(0); // ~ no timeout
  2841. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  2842. #endif // TMC2130
  2843. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  2844. bState=enable_z_endstop(false);
  2845. current_position[Z_AXIS] -= 1;
  2846. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2847. st_synchronize();
  2848. enable_z_endstop(true);
  2849. #ifdef TMC2130
  2850. tmc2130_home_enter(Z_AXIS_MASK);
  2851. #endif // TMC2130
  2852. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2853. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2854. st_synchronize();
  2855. #ifdef TMC2130
  2856. tmc2130_home_exit();
  2857. #endif // TMC2130
  2858. enable_z_endstop(bState);
  2859. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  2860. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  2861. custom_message_type = custom_message_type_old;
  2862. custom_message_state = custom_message_state_old;
  2863. lcd_update_enable(true); // display / status-line recovery
  2864. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  2865. repeatcommand_front(); // re-run (i.e. of "G80")
  2866. return;
  2867. }
  2868. clean_up_after_endstop_move(l_feedmultiply);
  2869. // SERIAL_ECHOLNPGM("clean up finished ");
  2870. #ifndef PINDA_THERMISTOR
  2871. if(eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2872. #endif
  2873. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2874. // SERIAL_ECHOLNPGM("babystep applied");
  2875. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2876. #ifdef SUPPORT_VERBOSITY
  2877. if (verbosity_level >= 1) {
  2878. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2879. }
  2880. #endif // SUPPORT_VERBOSITY
  2881. for (uint8_t i = 0; i < 4; ++i) {
  2882. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2883. long correction = 0;
  2884. if (code_seen(codes[i]))
  2885. correction = code_value_long();
  2886. else if (eeprom_bed_correction_valid) {
  2887. unsigned char *addr = (i < 2) ?
  2888. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2889. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2890. correction = eeprom_read_int8(addr);
  2891. }
  2892. if (correction == 0)
  2893. continue;
  2894. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  2895. SERIAL_ERROR_START;
  2896. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2897. SERIAL_ECHO(correction);
  2898. SERIAL_ECHOLNPGM(" microns");
  2899. }
  2900. else {
  2901. float offset = float(correction) * 0.001f;
  2902. switch (i) {
  2903. case 0:
  2904. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2905. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  2906. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  2907. }
  2908. }
  2909. break;
  2910. case 1:
  2911. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2912. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  2913. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  2914. }
  2915. }
  2916. break;
  2917. case 2:
  2918. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2919. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2920. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  2921. }
  2922. }
  2923. break;
  2924. case 3:
  2925. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2926. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  2927. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  2928. }
  2929. }
  2930. break;
  2931. }
  2932. }
  2933. }
  2934. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2935. if (nMeasPoints == 3) {
  2936. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2937. }
  2938. /*
  2939. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2940. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2941. SERIAL_PROTOCOLPGM(",");
  2942. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2943. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2944. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2945. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2946. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2947. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2948. SERIAL_PROTOCOLPGM(" ");
  2949. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2950. }
  2951. SERIAL_PROTOCOLPGM("\n");
  2952. }
  2953. */
  2954. if (nMeasPoints == 7 && magnet_elimination) {
  2955. mbl_interpolation(nMeasPoints);
  2956. }
  2957. /*
  2958. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2959. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2960. SERIAL_PROTOCOLPGM(",");
  2961. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2962. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2963. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2964. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2965. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2966. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2967. SERIAL_PROTOCOLPGM(" ");
  2968. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2969. }
  2970. SERIAL_PROTOCOLPGM("\n");
  2971. }
  2972. */
  2973. // SERIAL_ECHOLNPGM("Upsample finished");
  2974. mbl.active = 1; //activate mesh bed leveling
  2975. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2976. go_home_with_z_lift();
  2977. // SERIAL_ECHOLNPGM("Go home finished");
  2978. //unretract (after PINDA preheat retraction)
  2979. if ((degHotend(active_extruder) > EXTRUDE_MINTEMP) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  2980. current_position[E_AXIS] += default_retraction;
  2981. plan_buffer_line_curposXYZE(400);
  2982. }
  2983. KEEPALIVE_STATE(NOT_BUSY);
  2984. // Restore custom message state
  2985. lcd_setstatuspgm(MSG_WELCOME);
  2986. custom_message_type = custom_message_type_old;
  2987. custom_message_state = custom_message_state_old;
  2988. lcd_update(2);
  2989. st_synchronize();
  2990. mesh_bed_leveling_flag = false;
  2991. }
  2992. void adjust_bed_reset()
  2993. {
  2994. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2995. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2996. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2997. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2998. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2999. }
  3000. //! @brief Calibrate XYZ
  3001. //! @param onlyZ if true, calibrate only Z axis
  3002. //! @param verbosity_level
  3003. //! @retval true Succeeded
  3004. //! @retval false Failed
  3005. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  3006. {
  3007. bool final_result = false;
  3008. #ifdef TMC2130
  3009. FORCE_HIGH_POWER_START;
  3010. #endif // TMC2130
  3011. FORCE_BL_ON_START;
  3012. // Only Z calibration?
  3013. if (!onlyZ)
  3014. {
  3015. setTargetBed(0);
  3016. setAllTargetHotends(0);
  3017. adjust_bed_reset(); //reset bed level correction
  3018. }
  3019. // Disable the default update procedure of the display. We will do a modal dialog.
  3020. lcd_update_enable(false);
  3021. // Let the planner use the uncorrected coordinates.
  3022. mbl.reset();
  3023. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3024. // the planner will not perform any adjustments in the XY plane.
  3025. // Wait for the motors to stop and update the current position with the absolute values.
  3026. world2machine_revert_to_uncorrected();
  3027. // Reset the baby step value applied without moving the axes.
  3028. babystep_reset();
  3029. // Mark all axes as in a need for homing.
  3030. memset(axis_known_position, 0, sizeof(axis_known_position));
  3031. // Home in the XY plane.
  3032. //set_destination_to_current();
  3033. int l_feedmultiply = setup_for_endstop_move();
  3034. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  3035. raise_z_above(MESH_HOME_Z_SEARCH);
  3036. st_synchronize();
  3037. home_xy();
  3038. enable_endstops(false);
  3039. current_position[X_AXIS] += 5;
  3040. current_position[Y_AXIS] += 5;
  3041. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3042. st_synchronize();
  3043. // Let the user move the Z axes up to the end stoppers.
  3044. #ifdef TMC2130
  3045. if (calibrate_z_auto())
  3046. {
  3047. #else //TMC2130
  3048. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  3049. {
  3050. #endif //TMC2130
  3051. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  3052. if(onlyZ){
  3053. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  3054. lcd_puts_at_P(0,3,_n("1/9"));
  3055. }else{
  3056. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3057. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3058. lcd_puts_at_P(0,3,_n("1/4"));
  3059. }
  3060. refresh_cmd_timeout();
  3061. #ifndef STEEL_SHEET
  3062. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  3063. {
  3064. lcd_wait_for_cool_down();
  3065. }
  3066. #endif //STEEL_SHEET
  3067. if(!onlyZ)
  3068. {
  3069. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3070. #ifdef STEEL_SHEET
  3071. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3072. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3073. #endif //STEEL_SHEET
  3074. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3075. KEEPALIVE_STATE(IN_HANDLER);
  3076. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3077. lcd_puts_at_P(0,3,_n("1/4"));
  3078. }
  3079. bool endstops_enabled = enable_endstops(false);
  3080. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  3081. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3082. st_synchronize();
  3083. // Move the print head close to the bed.
  3084. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3085. enable_endstops(true);
  3086. #ifdef TMC2130
  3087. tmc2130_home_enter(Z_AXIS_MASK);
  3088. #endif //TMC2130
  3089. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3090. st_synchronize();
  3091. #ifdef TMC2130
  3092. tmc2130_home_exit();
  3093. #endif //TMC2130
  3094. enable_endstops(endstops_enabled);
  3095. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  3096. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  3097. {
  3098. if (onlyZ)
  3099. {
  3100. clean_up_after_endstop_move(l_feedmultiply);
  3101. // Z only calibration.
  3102. // Load the machine correction matrix
  3103. world2machine_initialize();
  3104. // and correct the current_position to match the transformed coordinate system.
  3105. world2machine_update_current();
  3106. //FIXME
  3107. bool result = sample_mesh_and_store_reference();
  3108. if (result)
  3109. {
  3110. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3111. {
  3112. // Shipped, the nozzle height has been set already. The user can start printing now.
  3113. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3114. }
  3115. final_result = true;
  3116. // babystep_apply();
  3117. }
  3118. }
  3119. else
  3120. {
  3121. // Reset the baby step value and the baby step applied flag.
  3122. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  3123. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3124. // Complete XYZ calibration.
  3125. uint8_t point_too_far_mask = 0;
  3126. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3127. clean_up_after_endstop_move(l_feedmultiply);
  3128. // Print head up.
  3129. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3130. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3131. st_synchronize();
  3132. //#ifndef NEW_XYZCAL
  3133. if (result >= 0)
  3134. {
  3135. #ifdef HEATBED_V2
  3136. sample_z();
  3137. #else //HEATBED_V2
  3138. point_too_far_mask = 0;
  3139. // Second half: The fine adjustment.
  3140. // Let the planner use the uncorrected coordinates.
  3141. mbl.reset();
  3142. world2machine_reset();
  3143. // Home in the XY plane.
  3144. int l_feedmultiply = setup_for_endstop_move();
  3145. home_xy();
  3146. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3147. clean_up_after_endstop_move(l_feedmultiply);
  3148. // Print head up.
  3149. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3150. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3151. st_synchronize();
  3152. // if (result >= 0) babystep_apply();
  3153. #endif //HEATBED_V2
  3154. }
  3155. //#endif //NEW_XYZCAL
  3156. lcd_update_enable(true);
  3157. lcd_update(2);
  3158. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3159. if (result >= 0)
  3160. {
  3161. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3162. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3163. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  3164. final_result = true;
  3165. }
  3166. }
  3167. #ifdef TMC2130
  3168. tmc2130_home_exit();
  3169. #endif
  3170. }
  3171. else
  3172. {
  3173. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  3174. final_result = false;
  3175. }
  3176. }
  3177. else
  3178. {
  3179. // Timeouted.
  3180. }
  3181. lcd_update_enable(true);
  3182. #ifdef TMC2130
  3183. FORCE_HIGH_POWER_END;
  3184. #endif // TMC2130
  3185. FORCE_BL_ON_END;
  3186. return final_result;
  3187. }
  3188. void gcode_M114()
  3189. {
  3190. SERIAL_PROTOCOLPGM("X:");
  3191. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3192. SERIAL_PROTOCOLPGM(" Y:");
  3193. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3194. SERIAL_PROTOCOLPGM(" Z:");
  3195. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3196. SERIAL_PROTOCOLPGM(" E:");
  3197. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3198. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  3199. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  3200. SERIAL_PROTOCOLPGM(" Y:");
  3201. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  3202. SERIAL_PROTOCOLPGM(" Z:");
  3203. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  3204. SERIAL_PROTOCOLPGM(" E:");
  3205. SERIAL_PROTOCOLLN(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  3206. }
  3207. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3208. void gcode_M123()
  3209. {
  3210. printf_P(_N("E0:%d RPM PRN1:%d RPM E0@:%u PRN1@:%d\n"), 60*fan_speed[active_extruder], 60*fan_speed[1], newFanSpeed, fanSpeed);
  3211. }
  3212. #endif //FANCHECK and TACH_0 or TACH_1
  3213. //! extracted code to compute z_shift for M600 in case of filament change operation
  3214. //! requested from fsensors.
  3215. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  3216. //! unlike the previous implementation, which was adding 25mm even when the head was
  3217. //! printing at e.g. 24mm height.
  3218. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  3219. //! the printout.
  3220. //! This function is templated to enable fast change of computation data type.
  3221. //! @return new z_shift value
  3222. template<typename T>
  3223. static T gcode_M600_filament_change_z_shift()
  3224. {
  3225. #ifdef FILAMENTCHANGE_ZADD
  3226. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  3227. // avoid floating point arithmetics when not necessary - results in shorter code
  3228. T z_shift = T(FILAMENTCHANGE_ZADD); // always move above printout
  3229. T ztmp = T( current_position[Z_AXIS] );
  3230. if((ztmp + z_shift) < T(MIN_Z_FOR_SWAP)){
  3231. z_shift = T(MIN_Z_FOR_SWAP) - ztmp; // make sure to be at least 25mm above the heat bed
  3232. }
  3233. return z_shift;
  3234. #else
  3235. return T(0);
  3236. #endif
  3237. }
  3238. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  3239. {
  3240. st_synchronize();
  3241. float lastpos[4];
  3242. if (farm_mode)
  3243. {
  3244. prusa_statistics(22);
  3245. }
  3246. //First backup current position and settings
  3247. int feedmultiplyBckp = feedmultiply;
  3248. float HotendTempBckp = degTargetHotend(active_extruder);
  3249. int fanSpeedBckp = fanSpeed;
  3250. lastpos[X_AXIS] = current_position[X_AXIS];
  3251. lastpos[Y_AXIS] = current_position[Y_AXIS];
  3252. lastpos[Z_AXIS] = current_position[Z_AXIS];
  3253. lastpos[E_AXIS] = current_position[E_AXIS];
  3254. //Retract E
  3255. current_position[E_AXIS] += e_shift;
  3256. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  3257. st_synchronize();
  3258. //Lift Z
  3259. current_position[Z_AXIS] += z_shift;
  3260. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  3261. st_synchronize();
  3262. //Move XY to side
  3263. current_position[X_AXIS] = x_position;
  3264. current_position[Y_AXIS] = y_position;
  3265. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3266. st_synchronize();
  3267. //Beep, manage nozzle heater and wait for user to start unload filament
  3268. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  3269. lcd_change_fil_state = 0;
  3270. // Unload filament
  3271. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  3272. else unload_filament(true); //unload filament for single material (used also in M702)
  3273. //finish moves
  3274. st_synchronize();
  3275. if (!mmu_enabled)
  3276. {
  3277. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3278. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  3279. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  3280. if (lcd_change_fil_state == 0)
  3281. {
  3282. lcd_clear();
  3283. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3284. current_position[X_AXIS] -= 100;
  3285. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3286. st_synchronize();
  3287. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=5
  3288. }
  3289. }
  3290. if (mmu_enabled)
  3291. {
  3292. if (!automatic) {
  3293. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  3294. mmu_M600_wait_and_beep();
  3295. if (saved_printing) {
  3296. lcd_clear();
  3297. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3298. mmu_command(MmuCmd::R0);
  3299. manage_response(false, false);
  3300. }
  3301. }
  3302. mmu_M600_load_filament(automatic, HotendTempBckp);
  3303. }
  3304. else
  3305. M600_load_filament();
  3306. if (!automatic) M600_check_state(HotendTempBckp);
  3307. lcd_update_enable(true);
  3308. //Not let's go back to print
  3309. fanSpeed = fanSpeedBckp;
  3310. //Retract filament to prevent drooling
  3311. if (!automatic)
  3312. {
  3313. current_position[E_AXIS] -= FILAMENTCHANGE_LOADRETRACT;
  3314. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  3315. st_synchronize();
  3316. }
  3317. //Move XY back
  3318. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  3319. FILAMENTCHANGE_XYFEED, active_extruder);
  3320. st_synchronize();
  3321. //Move Z back
  3322. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  3323. FILAMENTCHANGE_ZFEED, active_extruder);
  3324. st_synchronize();
  3325. //Restore filament
  3326. if (!automatic)
  3327. {
  3328. current_position[E_AXIS] += FILAMENTCHANGE_LOADRETRACT;
  3329. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  3330. FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  3331. st_synchronize();
  3332. }
  3333. //Set E position to original
  3334. plan_set_e_position(lastpos[E_AXIS]);
  3335. memcpy(current_position, lastpos, sizeof(lastpos));
  3336. set_destination_to_current();
  3337. //Recover feed rate
  3338. feedmultiply = feedmultiplyBckp;
  3339. char cmd[9];
  3340. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3341. enquecommand(cmd);
  3342. #ifdef IR_SENSOR
  3343. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  3344. fsensor_check_autoload();
  3345. #endif //IR_SENSOR
  3346. lcd_setstatuspgm(MSG_WELCOME);
  3347. custom_message_type = CustomMsg::Status;
  3348. }
  3349. void gcode_M701()
  3350. {
  3351. printf_P(PSTR("gcode_M701 begin\n"));
  3352. if (farm_mode)
  3353. {
  3354. prusa_statistics(22);
  3355. }
  3356. if (mmu_enabled)
  3357. {
  3358. extr_adj(tmp_extruder);//loads current extruder
  3359. mmu_extruder = tmp_extruder;
  3360. }
  3361. else
  3362. {
  3363. enable_z();
  3364. custom_message_type = CustomMsg::FilamentLoading;
  3365. #ifdef FSENSOR_QUALITY
  3366. fsensor_oq_meassure_start(40);
  3367. #endif //FSENSOR_QUALITY
  3368. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  3369. current_position[E_AXIS] += 40;
  3370. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  3371. st_synchronize();
  3372. raise_z_above(MIN_Z_FOR_LOAD, false);
  3373. current_position[E_AXIS] += 30;
  3374. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  3375. load_filament_final_feed(); //slow sequence
  3376. st_synchronize();
  3377. Sound_MakeCustom(50,500,false);
  3378. if (!farm_mode && loading_flag) {
  3379. lcd_load_filament_color_check();
  3380. }
  3381. load_filament_final_retract();
  3382. lcd_update_enable(true);
  3383. lcd_update(2);
  3384. lcd_setstatuspgm(MSG_WELCOME);
  3385. disable_z();
  3386. loading_flag = false;
  3387. custom_message_type = CustomMsg::Status;
  3388. #ifdef FSENSOR_QUALITY
  3389. fsensor_oq_meassure_stop();
  3390. if (!fsensor_oq_result())
  3391. {
  3392. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  3393. lcd_update_enable(true);
  3394. lcd_update(2);
  3395. if (disable)
  3396. fsensor_disable();
  3397. }
  3398. #endif //FSENSOR_QUALITY
  3399. }
  3400. }
  3401. /**
  3402. * @brief Get serial number from 32U2 processor
  3403. *
  3404. * Typical format of S/N is:CZPX0917X003XC13518
  3405. *
  3406. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  3407. * reply is stored in *SN.
  3408. * Operation takes typically 23 ms. If no valid SN can be retrieved within the 250ms window, the function aborts
  3409. * and returns a general failure flag.
  3410. * The command will fail if the 32U2 processor is unpowered via USB since it is isolated from the rest of the electronics.
  3411. * In that case the value that is stored in the EEPROM should be used instead.
  3412. *
  3413. * @return 0 on success
  3414. * @return 1 on general failure
  3415. */
  3416. static uint8_t get_PRUSA_SN(char* SN)
  3417. {
  3418. uint8_t selectedSerialPort_bak = selectedSerialPort;
  3419. uint8_t rxIndex;
  3420. bool SN_valid = false;
  3421. ShortTimer timeout;
  3422. selectedSerialPort = 0;
  3423. timeout.start();
  3424. while (!SN_valid)
  3425. {
  3426. rxIndex = 0;
  3427. _delay(50);
  3428. MYSERIAL.flush(); //clear RX buffer
  3429. SERIAL_ECHOLNRPGM(PSTR(";S"));
  3430. while (rxIndex < 19)
  3431. {
  3432. if (timeout.expired(250u))
  3433. goto exit;
  3434. if (MYSERIAL.available() > 0)
  3435. {
  3436. SN[rxIndex] = MYSERIAL.read();
  3437. rxIndex++;
  3438. }
  3439. }
  3440. SN[rxIndex] = 0;
  3441. // printf_P(PSTR("SN:%s\n"), SN);
  3442. SN_valid = (strncmp_P(SN, PSTR("CZPX"), 4) == 0);
  3443. }
  3444. exit:
  3445. selectedSerialPort = selectedSerialPort_bak;
  3446. return !SN_valid;
  3447. }
  3448. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  3449. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  3450. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  3451. //! it may even interfere with other functions of the printer! You have been warned!
  3452. //! The test idea is to measure the time necessary to charge the capacitor.
  3453. //! So the algorithm is as follows:
  3454. //! 1. Set TACH_1 pin to INPUT mode and LOW
  3455. //! 2. Wait a few ms
  3456. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  3457. //! Repeat 1.-3. several times
  3458. //! Good RAMBo's times are in the range of approx. 260-320 us
  3459. //! Bad RAMBo's times are approx. 260-1200 us
  3460. //! So basically we are interested in maximum time, the minima are mostly the same.
  3461. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  3462. static void gcode_PRUSA_BadRAMBoFanTest(){
  3463. //printf_P(PSTR("Enter fan pin test\n"));
  3464. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  3465. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  3466. unsigned long tach1max = 0;
  3467. uint8_t tach1cntr = 0;
  3468. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  3469. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  3470. SET_OUTPUT(TACH_1);
  3471. WRITE(TACH_1, LOW);
  3472. _delay(20); // the delay may be lower
  3473. unsigned long tachMeasure = _micros();
  3474. cli();
  3475. SET_INPUT(TACH_1);
  3476. // just wait brutally in an endless cycle until we reach HIGH
  3477. // if this becomes a problem it may be improved to non-endless cycle
  3478. while( READ(TACH_1) == 0 ) ;
  3479. sei();
  3480. tachMeasure = _micros() - tachMeasure;
  3481. if( tach1max < tachMeasure )
  3482. tach1max = tachMeasure;
  3483. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  3484. }
  3485. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  3486. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  3487. if( tach1max > 500 ){
  3488. // bad RAMBo
  3489. SERIAL_PROTOCOLLNPGM("BAD");
  3490. } else {
  3491. SERIAL_PROTOCOLLNPGM("OK");
  3492. }
  3493. // cleanup after the test function
  3494. SET_INPUT(TACH_1);
  3495. WRITE(TACH_1, HIGH);
  3496. #endif
  3497. }
  3498. // G92 - Set current position to coordinates given
  3499. static void gcode_G92()
  3500. {
  3501. bool codes[NUM_AXIS];
  3502. float values[NUM_AXIS];
  3503. // Check which axes need to be set
  3504. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3505. {
  3506. codes[i] = code_seen(axis_codes[i]);
  3507. if(codes[i])
  3508. values[i] = code_value();
  3509. }
  3510. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3511. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3512. {
  3513. // As a special optimization, when _just_ clearing the E position
  3514. // we schedule a flag asynchronously along with the next block to
  3515. // reset the starting E position instead of stopping the planner
  3516. current_position[E_AXIS] = 0;
  3517. plan_reset_next_e();
  3518. }
  3519. else
  3520. {
  3521. // In any other case we're forced to synchronize
  3522. st_synchronize();
  3523. for(uint8_t i = 0; i < 3; ++i)
  3524. {
  3525. if(codes[i])
  3526. current_position[i] = values[i] + cs.add_homing[i];
  3527. }
  3528. if(codes[E_AXIS])
  3529. current_position[E_AXIS] = values[E_AXIS];
  3530. // Set all at once
  3531. plan_set_position_curposXYZE();
  3532. }
  3533. }
  3534. #ifdef EXTENDED_CAPABILITIES_REPORT
  3535. static void cap_line(const char* name, bool ena = false) {
  3536. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  3537. }
  3538. static void extended_capabilities_report()
  3539. {
  3540. // AUTOREPORT_TEMP (M155)
  3541. cap_line(PSTR("AUTOREPORT_TEMP"), ENABLED(AUTO_REPORT));
  3542. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3543. // AUTOREPORT_FANS (M123)
  3544. cap_line(PSTR("AUTOREPORT_FANS"), ENABLED(AUTO_REPORT));
  3545. #endif //FANCHECK and TACH_0 or TACH_1
  3546. // AUTOREPORT_POSITION (M114)
  3547. cap_line(PSTR("AUTOREPORT_POSITION"), ENABLED(AUTO_REPORT));
  3548. // EXTENDED_M20 (support for L and T parameters)
  3549. cap_line(PSTR("EXTENDED_M20"), 1);
  3550. cap_line(PSTR("PRUSA_MMU2"), 1); //this will soon change to ENABLED(PRUSA_MMU2_SUPPORT)
  3551. }
  3552. #endif //EXTENDED_CAPABILITIES_REPORT
  3553. #ifdef BACKLASH_X
  3554. extern uint8_t st_backlash_x;
  3555. #endif //BACKLASH_X
  3556. #ifdef BACKLASH_Y
  3557. extern uint8_t st_backlash_y;
  3558. #endif //BACKLASH_Y
  3559. //! \ingroup marlin_main
  3560. //! @brief Parse and process commands
  3561. //!
  3562. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3563. //!
  3564. //!
  3565. //! Implemented Codes
  3566. //! -------------------
  3567. //!
  3568. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3569. //!
  3570. //!@n PRUSA CODES
  3571. //!@n P F - Returns FW versions
  3572. //!@n P R - Returns revision of printer
  3573. //!
  3574. //!@n G0 -> G1
  3575. //!@n G1 - Coordinated Movement X Y Z E
  3576. //!@n G2 - CW ARC
  3577. //!@n G3 - CCW ARC
  3578. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3579. //!@n G10 - retract filament according to settings of M207
  3580. //!@n G11 - retract recover filament according to settings of M208
  3581. //!@n G28 - Home all Axes
  3582. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3583. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3584. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3585. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3586. //!@n G80 - Automatic mesh bed leveling
  3587. //!@n G81 - Print bed profile
  3588. //!@n G90 - Use Absolute Coordinates
  3589. //!@n G91 - Use Relative Coordinates
  3590. //!@n G92 - Set current position to coordinates given
  3591. //!
  3592. //!@n M Codes
  3593. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3594. //!@n M1 - Same as M0
  3595. //!@n M17 - Enable/Power all stepper motors
  3596. //!@n M18 - Disable all stepper motors; same as M84
  3597. //!@n M20 - List SD card
  3598. //!@n M21 - Init SD card
  3599. //!@n M22 - Release SD card
  3600. //!@n M23 - Select SD file (M23 filename.g)
  3601. //!@n M24 - Start/resume SD print
  3602. //!@n M25 - Pause SD print
  3603. //!@n M26 - Set SD position in bytes (M26 S12345)
  3604. //!@n M27 - Report SD print status
  3605. //!@n M28 - Start SD write (M28 filename.g)
  3606. //!@n M29 - Stop SD write
  3607. //!@n M30 - Delete file from SD (M30 filename.g)
  3608. //!@n M31 - Output time since last M109 or SD card start to serial
  3609. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3610. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3611. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3612. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3613. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3614. //!@n M73 - Show percent done and print time remaining
  3615. //!@n M80 - Turn on Power Supply
  3616. //!@n M81 - Turn off Power Supply
  3617. //!@n M82 - Set E codes absolute (default)
  3618. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3619. //!@n M84 - Disable steppers until next move,
  3620. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3621. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3622. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3623. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3624. //!@n M104 - Set extruder target temp
  3625. //!@n M105 - Read current temp
  3626. //!@n M106 - Fan on
  3627. //!@n M107 - Fan off
  3628. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3629. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3630. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3631. //!@n M112 - Emergency stop
  3632. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3633. //!@n M114 - Output current position to serial port
  3634. //!@n M115 - Capabilities string
  3635. //!@n M117 - display message
  3636. //!@n M119 - Output Endstop status to serial port
  3637. //!@n M123 - Tachometer value
  3638. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3639. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3640. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3641. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3642. //!@n M140 - Set bed target temp
  3643. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3644. //!@n M155 - Automatically send temperatures, fan speeds, position
  3645. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3646. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3647. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3648. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3649. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3650. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3651. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3652. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3653. //!@n M206 - set additional homing offset
  3654. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3655. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3656. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3657. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3658. //!@n M220 S<factor in percent>- set speed factor override percentage
  3659. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3660. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3661. //!@n M240 - Trigger a camera to take a photograph
  3662. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3663. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3664. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3665. //!@n M301 - Set PID parameters P I and D
  3666. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3667. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3668. //!@n M304 - Set bed PID parameters P I and D
  3669. //!@n M400 - Finish all moves
  3670. //!@n M401 - Lower z-probe if present
  3671. //!@n M402 - Raise z-probe if present
  3672. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3673. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3674. //!@n M406 - Turn off Filament Sensor extrusion control
  3675. //!@n M407 - Displays measured filament diameter
  3676. //!@n M500 - stores parameters in EEPROM
  3677. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3678. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3679. //!@n M503 - print the current settings (from memory not from EEPROM)
  3680. //!@n M509 - force language selection on next restart
  3681. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3682. //!@n M552 - Set IP address
  3683. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3684. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3685. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3686. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3687. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3688. //!@n M907 - Set digital trimpot motor current using axis codes.
  3689. //!@n M908 - Control digital trimpot directly.
  3690. //!@n M350 - Set microstepping mode.
  3691. //!@n M351 - Toggle MS1 MS2 pins directly.
  3692. //!
  3693. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3694. //!@n M999 - Restart after being stopped by error
  3695. //! <br><br>
  3696. /** @defgroup marlin_main Marlin main */
  3697. /** \ingroup GCodes */
  3698. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3699. /**
  3700. They are shown in order of appearance in the code.
  3701. There are reasons why some G Codes aren't in numerical order.
  3702. */
  3703. void process_commands()
  3704. {
  3705. #ifdef FANCHECK
  3706. if(fan_check_error == EFCE_DETECTED) {
  3707. fan_check_error = EFCE_REPORTED;
  3708. if (usb_timer.running())
  3709. lcd_pause_usb_print();
  3710. else
  3711. lcd_pause_print();
  3712. }
  3713. #endif
  3714. if (!buflen) return; //empty command
  3715. #ifdef FILAMENT_RUNOUT_SUPPORT
  3716. SET_INPUT(FR_SENS);
  3717. #endif
  3718. #ifdef CMDBUFFER_DEBUG
  3719. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3720. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3721. SERIAL_ECHOLNPGM("");
  3722. SERIAL_ECHOPGM("In cmdqueue: ");
  3723. SERIAL_ECHO(buflen);
  3724. SERIAL_ECHOLNPGM("");
  3725. #endif /* CMDBUFFER_DEBUG */
  3726. unsigned long codenum; //throw away variable
  3727. char *starpos = NULL;
  3728. #ifdef ENABLE_AUTO_BED_LEVELING
  3729. float x_tmp, y_tmp, z_tmp, real_z;
  3730. #endif
  3731. // PRUSA GCODES
  3732. KEEPALIVE_STATE(IN_HANDLER);
  3733. /*!
  3734. ---------------------------------------------------------------------------------
  3735. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3736. This causes the given message to be shown in the status line on an attached LCD.
  3737. It is processed early as to allow printing messages that contain G, M, N or T.
  3738. ---------------------------------------------------------------------------------
  3739. ### Special internal commands
  3740. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3741. They are processed early as the commands are complex (strings).
  3742. These are only available on the MK3(S) as these require TMC2130 drivers:
  3743. - CRASH DETECTED
  3744. - CRASH RECOVER
  3745. - CRASH_CANCEL
  3746. - TMC_SET_WAVE
  3747. - TMC_SET_STEP
  3748. - TMC_SET_CHOP
  3749. */
  3750. if (code_seen_P(PSTR("M117"))) //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3751. {
  3752. starpos = (strchr(strchr_pointer + 5, '*'));
  3753. if (starpos != NULL)
  3754. *(starpos) = '\0';
  3755. lcd_setstatus(strchr_pointer + 5);
  3756. custom_message_type = CustomMsg::MsgUpdate;
  3757. }
  3758. /*!
  3759. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  3760. #### Usage
  3761. M0 [P<ms<] [S<sec>] [string]
  3762. M1 [P<ms>] [S<sec>] [string]
  3763. #### Parameters
  3764. - `P<ms>` - Expire time, in milliseconds
  3765. - `S<sec>` - Expire time, in seconds
  3766. - `string` - Must for M1 and optional for M0 message to display on the LCD
  3767. */
  3768. else if (code_seen_P(PSTR("M0")) || code_seen_P(PSTR("M1 "))) {// M0 and M1 - (Un)conditional stop - Wait for user button press on LCD
  3769. char *src = strchr_pointer + 2;
  3770. codenum = 0;
  3771. bool hasP = false, hasS = false;
  3772. if (code_seen('P')) {
  3773. codenum = code_value_long(); // milliseconds to wait
  3774. hasP = codenum > 0;
  3775. }
  3776. if (code_seen('S')) {
  3777. codenum = code_value_long() * 1000; // seconds to wait
  3778. hasS = codenum > 0;
  3779. }
  3780. starpos = strchr(src, '*');
  3781. if (starpos != NULL) *(starpos) = '\0';
  3782. while (*src == ' ') ++src;
  3783. custom_message_type = CustomMsg::M0Wait;
  3784. if (!hasP && !hasS && *src != '\0') {
  3785. lcd_setstatus(src);
  3786. } else {
  3787. // farmers want to abuse a bug from the previous firmware releases
  3788. // - they need to see the filename on the status screen instead of "Wait for user..."
  3789. // So we won't update the message in farm mode...
  3790. if( ! farm_mode){
  3791. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=20
  3792. } else {
  3793. custom_message_type = CustomMsg::Status; // let the lcd display the name of the printed G-code file in farm mode
  3794. }
  3795. }
  3796. lcd_ignore_click(); //call lcd_ignore_click also for else ???
  3797. st_synchronize();
  3798. previous_millis_cmd.start();
  3799. if (codenum > 0 ) {
  3800. codenum += _millis(); // keep track of when we started waiting
  3801. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3802. while(_millis() < codenum && !lcd_clicked()) {
  3803. manage_heater();
  3804. manage_inactivity(true);
  3805. lcd_update(0);
  3806. }
  3807. KEEPALIVE_STATE(IN_HANDLER);
  3808. lcd_ignore_click(false);
  3809. } else {
  3810. marlin_wait_for_click();
  3811. }
  3812. if (IS_SD_PRINTING)
  3813. custom_message_type = CustomMsg::Status;
  3814. else
  3815. LCD_MESSAGERPGM(MSG_WELCOME);
  3816. }
  3817. #ifdef TMC2130
  3818. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3819. {
  3820. // ### CRASH_DETECTED - TMC2130
  3821. // ---------------------------------
  3822. if(code_seen_P(PSTR("CRASH_DETECTED")))
  3823. {
  3824. uint8_t mask = 0;
  3825. if (code_seen('X')) mask |= X_AXIS_MASK;
  3826. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3827. crashdet_detected(mask);
  3828. }
  3829. // ### CRASH_RECOVER - TMC2130
  3830. // ----------------------------------
  3831. else if(code_seen_P(PSTR("CRASH_RECOVER")))
  3832. crashdet_recover();
  3833. // ### CRASH_CANCEL - TMC2130
  3834. // ----------------------------------
  3835. else if(code_seen_P(PSTR("CRASH_CANCEL")))
  3836. crashdet_cancel();
  3837. }
  3838. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3839. {
  3840. // ### TMC_SET_WAVE_
  3841. // --------------------
  3842. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3843. {
  3844. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3845. axis = (axis == 'E')?3:(axis - 'X');
  3846. if (axis < 4)
  3847. {
  3848. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3849. tmc2130_set_wave(axis, 247, fac);
  3850. }
  3851. }
  3852. // ### TMC_SET_STEP_
  3853. // ------------------
  3854. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3855. {
  3856. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3857. axis = (axis == 'E')?3:(axis - 'X');
  3858. if (axis < 4)
  3859. {
  3860. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3861. uint16_t res = tmc2130_get_res(axis);
  3862. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3863. }
  3864. }
  3865. // ### TMC_SET_CHOP_
  3866. // -------------------
  3867. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3868. {
  3869. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3870. axis = (axis == 'E')?3:(axis - 'X');
  3871. if (axis < 4)
  3872. {
  3873. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3874. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3875. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3876. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3877. char* str_end = 0;
  3878. if (CMDBUFFER_CURRENT_STRING[14])
  3879. {
  3880. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3881. if (str_end && *str_end)
  3882. {
  3883. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3884. if (str_end && *str_end)
  3885. {
  3886. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3887. if (str_end && *str_end)
  3888. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3889. }
  3890. }
  3891. }
  3892. tmc2130_chopper_config[axis].toff = chop0;
  3893. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3894. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3895. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3896. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3897. //printf_P(_N("TMC_SET_CHOP_%c %d %d %d %d\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3898. }
  3899. }
  3900. }
  3901. #ifdef BACKLASH_X
  3902. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3903. {
  3904. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3905. st_backlash_x = bl;
  3906. printf_P(_N("st_backlash_x = %d\n"), st_backlash_x);
  3907. }
  3908. #endif //BACKLASH_X
  3909. #ifdef BACKLASH_Y
  3910. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3911. {
  3912. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3913. st_backlash_y = bl;
  3914. printf_P(_N("st_backlash_y = %d\n"), st_backlash_y);
  3915. }
  3916. #endif //BACKLASH_Y
  3917. #endif //TMC2130
  3918. else if(code_seen_P(PSTR("PRUSA"))){
  3919. /*!
  3920. ---------------------------------------------------------------------------------
  3921. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3922. Set of internal PRUSA commands
  3923. #### Usage
  3924. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | FR ]
  3925. #### Parameters
  3926. - `Ping`
  3927. - `PRN` - Prints revision of the printer
  3928. - `FAN` - Prints fan details
  3929. - `fn` - Prints farm no.
  3930. - `thx`
  3931. - `uvlo`
  3932. - `MMURES` - Reset MMU
  3933. - `RESET` - (Careful!)
  3934. - `fv` - ?
  3935. - `M28`
  3936. - `SN`
  3937. - `Fir` - Prints firmware version
  3938. - `Rev`- Prints filament size, elelectronics, nozzle type
  3939. - `Lang` - Reset the language
  3940. - `Lz`
  3941. - `FR` - Full factory reset
  3942. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3943. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3944. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3945. */
  3946. if (code_seen_P(PSTR("Ping"))) { // PRUSA Ping
  3947. if (farm_mode) {
  3948. PingTime = _millis();
  3949. }
  3950. }
  3951. else if (code_seen_P(PSTR("PRN"))) { // PRUSA PRN
  3952. printf_P(_N("%u"), status_number);
  3953. } else if( code_seen_P(PSTR("FANPINTST"))){
  3954. gcode_PRUSA_BadRAMBoFanTest();
  3955. }else if (code_seen_P(PSTR("FAN"))) { // PRUSA FAN
  3956. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3957. }
  3958. else if (code_seen_P(PSTR("thx"))) // PRUSA thx
  3959. {
  3960. no_response = false;
  3961. }
  3962. else if (code_seen_P(PSTR("uvlo"))) // PRUSA uvlo
  3963. {
  3964. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3965. enquecommand_P(PSTR("M24"));
  3966. }
  3967. else if (code_seen_P(PSTR("MMURES"))) // PRUSA MMURES
  3968. {
  3969. mmu_reset();
  3970. }
  3971. else if (code_seen_P(PSTR("RESET"))) { // PRUSA RESET
  3972. #ifdef WATCHDOG
  3973. #if defined(XFLASH) && defined(BOOTAPP)
  3974. boot_app_magic = BOOT_APP_MAGIC;
  3975. boot_app_flags = BOOT_APP_FLG_RUN;
  3976. #endif //defined(XFLASH) && defined(BOOTAPP)
  3977. softReset();
  3978. #elif defined(BOOTAPP) //this is a safety precaution. This is because the new bootloader turns off the heaters, but the old one doesn't. The watchdog should be used most of the time.
  3979. asm volatile("jmp 0x3E000");
  3980. #endif
  3981. }else if (code_seen_P("fv")) { // PRUSA fv
  3982. // get file version
  3983. #ifdef SDSUPPORT
  3984. card.openFileReadFilteredGcode(strchr_pointer + 3,true);
  3985. while (true) {
  3986. uint16_t readByte = card.getFilteredGcodeChar();
  3987. MYSERIAL.write(readByte);
  3988. if (readByte=='\n') {
  3989. break;
  3990. }
  3991. }
  3992. card.closefile();
  3993. #endif // SDSUPPORT
  3994. }
  3995. #ifdef PRUSA_M28
  3996. else if (code_seen_P(PSTR("M28"))) { // PRUSA M28
  3997. trace();
  3998. prusa_sd_card_upload = true;
  3999. card.openFileWrite(strchr_pointer+4);
  4000. }
  4001. #endif //PRUSA_M28
  4002. else if (code_seen_P(PSTR("SN"))) { // PRUSA SN
  4003. char SN[20];
  4004. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  4005. if (SN[19])
  4006. puts_P(PSTR("SN invalid"));
  4007. else
  4008. puts(SN);
  4009. } else if(code_seen_P(PSTR("Fir"))){ // PRUSA Fir
  4010. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  4011. } else if(code_seen_P(PSTR("Rev"))){ // PRUSA Rev
  4012. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  4013. } else if(code_seen_P(PSTR("Lang"))) { // PRUSA Lang
  4014. lang_reset();
  4015. } else if(code_seen_P(PSTR("Lz"))) { // PRUSA Lz
  4016. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4017. } else if(code_seen_P(PSTR("FR"))) { // PRUSA FR
  4018. // Factory full reset
  4019. factory_reset(0);
  4020. } else if(code_seen_P(PSTR("MBL"))) { // PRUSA MBL
  4021. // Change the MBL status without changing the logical Z position.
  4022. if(code_seen('V')) {
  4023. bool value = code_value_short();
  4024. st_synchronize();
  4025. if(value != mbl.active) {
  4026. mbl.active = value;
  4027. // Use plan_set_z_position to reset the physical values
  4028. plan_set_z_position(current_position[Z_AXIS]);
  4029. }
  4030. }
  4031. //-//
  4032. /*
  4033. } else if(code_seen("rrr")) {
  4034. MYSERIAL.println("=== checking ===");
  4035. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  4036. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  4037. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  4038. MYSERIAL.println(farm_mode,DEC);
  4039. MYSERIAL.println(eCheckMode,DEC);
  4040. } else if(code_seen("www")) {
  4041. MYSERIAL.println("=== @ FF ===");
  4042. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  4043. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  4044. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  4045. */
  4046. } else if (code_seen_P(PSTR("nozzle"))) { // PRUSA nozzle
  4047. uint16_t nDiameter;
  4048. if(code_seen('D'))
  4049. {
  4050. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  4051. nozzle_diameter_check(nDiameter);
  4052. }
  4053. else if(code_seen_P(PSTR("set")) && farm_mode)
  4054. {
  4055. strchr_pointer++; // skip 1st char (~ 's')
  4056. strchr_pointer++; // skip 2nd char (~ 'e')
  4057. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  4058. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  4059. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  4060. }
  4061. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  4062. //-// !!! SupportMenu
  4063. /*
  4064. // musi byt PRED "PRUSA model"
  4065. } else if (code_seen("smodel")) { //! PRUSA smodel
  4066. size_t nOffset;
  4067. // ! -> "l"
  4068. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  4069. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  4070. if(*(strchr_pointer+1+nOffset))
  4071. printer_smodel_check(strchr_pointer);
  4072. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  4073. } else if (code_seen("model")) { //! PRUSA model
  4074. uint16_t nPrinterModel;
  4075. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  4076. nPrinterModel=(uint16_t)code_value_long();
  4077. if(nPrinterModel!=0)
  4078. printer_model_check(nPrinterModel);
  4079. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  4080. } else if (code_seen("version")) { //! PRUSA version
  4081. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  4082. while(*strchr_pointer==' ') // skip leading spaces
  4083. strchr_pointer++;
  4084. if(*strchr_pointer!=0)
  4085. fw_version_check(strchr_pointer);
  4086. else SERIAL_PROTOCOLLN(FW_VERSION);
  4087. } else if (code_seen("gcode")) { //! PRUSA gcode
  4088. uint16_t nGcodeLevel;
  4089. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  4090. nGcodeLevel=(uint16_t)code_value_long();
  4091. if(nGcodeLevel!=0)
  4092. gcode_level_check(nGcodeLevel);
  4093. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  4094. */
  4095. }
  4096. //else if (code_seen('Cal')) {
  4097. // lcd_calibration();
  4098. // }
  4099. }
  4100. // This prevents reading files with "^" in their names.
  4101. // Since it is unclear, if there is some usage of this construct,
  4102. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  4103. // else if (code_seen('^')) {
  4104. // // nothing, this is a version line
  4105. // }
  4106. else if(code_seen('G'))
  4107. {
  4108. gcode_in_progress = code_value_short();
  4109. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  4110. switch (gcode_in_progress)
  4111. {
  4112. /*!
  4113. ---------------------------------------------------------------------------------
  4114. # G Codes
  4115. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  4116. In Prusa Firmware G0 and G1 are the same.
  4117. #### Usage
  4118. G0 [ X | Y | Z | E | F | S ]
  4119. G1 [ X | Y | Z | E | F | S ]
  4120. #### Parameters
  4121. - `X` - The position to move to on the X axis
  4122. - `Y` - The position to move to on the Y axis
  4123. - `Z` - The position to move to on the Z axis
  4124. - `E` - The amount to extrude between the starting point and ending point
  4125. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4126. */
  4127. case 0: // G0 -> G1
  4128. case 1: // G1
  4129. if(Stopped == false) {
  4130. #ifdef FILAMENT_RUNOUT_SUPPORT
  4131. if(READ(FR_SENS)){
  4132. int feedmultiplyBckp=feedmultiply;
  4133. float target[4];
  4134. float lastpos[4];
  4135. target[X_AXIS]=current_position[X_AXIS];
  4136. target[Y_AXIS]=current_position[Y_AXIS];
  4137. target[Z_AXIS]=current_position[Z_AXIS];
  4138. target[E_AXIS]=current_position[E_AXIS];
  4139. lastpos[X_AXIS]=current_position[X_AXIS];
  4140. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4141. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4142. lastpos[E_AXIS]=current_position[E_AXIS];
  4143. //retract by E
  4144. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4145. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4146. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  4148. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4149. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4150. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  4151. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  4153. //finish moves
  4154. st_synchronize();
  4155. //disable extruder steppers so filament can be removed
  4156. disable_e0();
  4157. disable_e1();
  4158. disable_e2();
  4159. _delay(100);
  4160. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  4161. uint8_t cnt=0;
  4162. int counterBeep = 0;
  4163. lcd_wait_interact();
  4164. while(!lcd_clicked()){
  4165. cnt++;
  4166. manage_heater();
  4167. manage_inactivity(true);
  4168. //lcd_update(0);
  4169. if(cnt==0)
  4170. {
  4171. #if BEEPER > 0
  4172. if (counterBeep== 500){
  4173. counterBeep = 0;
  4174. }
  4175. SET_OUTPUT(BEEPER);
  4176. if (counterBeep== 0){
  4177. if(eSoundMode!=e_SOUND_MODE_SILENT)
  4178. WRITE(BEEPER,HIGH);
  4179. }
  4180. if (counterBeep== 20){
  4181. WRITE(BEEPER,LOW);
  4182. }
  4183. counterBeep++;
  4184. #else
  4185. #endif
  4186. }
  4187. }
  4188. WRITE(BEEPER,LOW);
  4189. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4190. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  4191. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4192. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  4193. lcd_change_fil_state = 0;
  4194. lcd_loading_filament();
  4195. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4196. lcd_change_fil_state = 0;
  4197. lcd_alright();
  4198. switch(lcd_change_fil_state){
  4199. case 2:
  4200. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4201. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  4202. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4203. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  4204. lcd_loading_filament();
  4205. break;
  4206. case 3:
  4207. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4208. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  4209. lcd_loading_color();
  4210. break;
  4211. default:
  4212. lcd_change_success();
  4213. break;
  4214. }
  4215. }
  4216. target[E_AXIS]+= 5;
  4217. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4218. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4219. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4220. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4221. //plan_set_e_position(current_position[E_AXIS]);
  4222. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4223. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  4224. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  4225. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4226. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  4227. plan_set_e_position(lastpos[E_AXIS]);
  4228. feedmultiply=feedmultiplyBckp;
  4229. char cmd[9];
  4230. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4231. enquecommand(cmd);
  4232. }
  4233. #endif
  4234. get_coordinates(); // For X Y Z E F
  4235. // When recovering from a previous print move, restore the originally
  4236. // calculated target position on the first USB/SD command. This accounts
  4237. // properly for relative moves
  4238. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  4239. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  4240. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  4241. {
  4242. memcpy(destination, saved_target, sizeof(destination));
  4243. saved_target[0] = SAVED_TARGET_UNSET;
  4244. }
  4245. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  4246. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  4247. }
  4248. #ifdef FWRETRACT
  4249. if(cs.autoretract_enabled) {
  4250. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  4251. float echange=destination[E_AXIS]-current_position[E_AXIS];
  4252. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  4253. st_synchronize();
  4254. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  4255. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  4256. retract(!retracted[active_extruder]);
  4257. return;
  4258. }
  4259. }
  4260. }
  4261. #endif //FWRETRACT
  4262. prepare_move();
  4263. //ClearToSend();
  4264. }
  4265. break;
  4266. /*!
  4267. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  4268. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  4269. #### Usage
  4270. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  4271. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  4272. #### Parameters
  4273. - `X` - The position to move to on the X axis
  4274. - `Y` - The position to move to on the Y axis
  4275. - `I` - The point in X space from the current X position to maintain a constant distance from
  4276. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  4277. - `E` - The amount to extrude between the starting point and ending point
  4278. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4279. */
  4280. case 2:
  4281. if(Stopped == false) {
  4282. get_arc_coordinates();
  4283. prepare_arc_move(true);
  4284. }
  4285. break;
  4286. // -------------------------------
  4287. case 3:
  4288. if(Stopped == false) {
  4289. get_arc_coordinates();
  4290. prepare_arc_move(false);
  4291. }
  4292. break;
  4293. /*!
  4294. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  4295. Pause the machine for a period of time.
  4296. #### Usage
  4297. G4 [ P | S ]
  4298. #### Parameters
  4299. - `P` - Time to wait, in milliseconds
  4300. - `S` - Time to wait, in seconds
  4301. */
  4302. case 4:
  4303. codenum = 0;
  4304. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  4305. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  4306. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  4307. st_synchronize();
  4308. codenum += _millis(); // keep track of when we started waiting
  4309. previous_millis_cmd.start();
  4310. while(_millis() < codenum) {
  4311. manage_heater();
  4312. manage_inactivity();
  4313. lcd_update(0);
  4314. }
  4315. break;
  4316. #ifdef FWRETRACT
  4317. /*!
  4318. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  4319. Retracts filament according to settings of `M207`
  4320. */
  4321. case 10:
  4322. #if EXTRUDERS > 1
  4323. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  4324. retract(true,retracted_swap[active_extruder]);
  4325. #else
  4326. retract(true);
  4327. #endif
  4328. break;
  4329. /*!
  4330. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  4331. Unretracts/recovers filament according to settings of `M208`
  4332. */
  4333. case 11:
  4334. #if EXTRUDERS > 1
  4335. retract(false,retracted_swap[active_extruder]);
  4336. #else
  4337. retract(false);
  4338. #endif
  4339. break;
  4340. #endif //FWRETRACT
  4341. /*!
  4342. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  4343. Units are in millimeters. Prusa doesn't support inches.
  4344. */
  4345. case 21:
  4346. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  4347. /*!
  4348. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  4349. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  4350. #### Usage
  4351. G28 [ X | Y | Z | W | C ]
  4352. #### Parameters
  4353. - `X` - Flag to go back to the X axis origin
  4354. - `Y` - Flag to go back to the Y axis origin
  4355. - `Z` - Flag to go back to the Z axis origin
  4356. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  4357. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  4358. */
  4359. case 28:
  4360. {
  4361. long home_x_value = 0;
  4362. long home_y_value = 0;
  4363. long home_z_value = 0;
  4364. // Which axes should be homed?
  4365. bool home_x = code_seen(axis_codes[X_AXIS]);
  4366. home_x_value = code_value_long();
  4367. bool home_y = code_seen(axis_codes[Y_AXIS]);
  4368. home_y_value = code_value_long();
  4369. bool home_z = code_seen(axis_codes[Z_AXIS]);
  4370. home_z_value = code_value_long();
  4371. bool without_mbl = code_seen('W');
  4372. // calibrate?
  4373. #ifdef TMC2130
  4374. bool calib = code_seen('C');
  4375. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  4376. #else
  4377. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  4378. #endif //TMC2130
  4379. if ((home_x || home_y || without_mbl || home_z) == false) {
  4380. gcode_G80();
  4381. }
  4382. break;
  4383. }
  4384. #ifdef ENABLE_AUTO_BED_LEVELING
  4385. /*!
  4386. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  4387. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4388. See `G81`
  4389. */
  4390. case 29:
  4391. {
  4392. #if Z_MIN_PIN == -1
  4393. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  4394. #endif
  4395. // Prevent user from running a G29 without first homing in X and Y
  4396. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  4397. {
  4398. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  4399. SERIAL_ECHO_START;
  4400. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  4401. break; // abort G29, since we don't know where we are
  4402. }
  4403. st_synchronize();
  4404. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  4405. //vector_3 corrected_position = plan_get_position_mm();
  4406. //corrected_position.debug("position before G29");
  4407. plan_bed_level_matrix.set_to_identity();
  4408. vector_3 uncorrected_position = plan_get_position();
  4409. //uncorrected_position.debug("position durring G29");
  4410. current_position[X_AXIS] = uncorrected_position.x;
  4411. current_position[Y_AXIS] = uncorrected_position.y;
  4412. current_position[Z_AXIS] = uncorrected_position.z;
  4413. plan_set_position_curposXYZE();
  4414. int l_feedmultiply = setup_for_endstop_move();
  4415. feedrate = homing_feedrate[Z_AXIS];
  4416. #ifdef AUTO_BED_LEVELING_GRID
  4417. // probe at the points of a lattice grid
  4418. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4419. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4420. // solve the plane equation ax + by + d = z
  4421. // A is the matrix with rows [x y 1] for all the probed points
  4422. // B is the vector of the Z positions
  4423. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4424. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4425. // "A" matrix of the linear system of equations
  4426. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  4427. // "B" vector of Z points
  4428. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  4429. int probePointCounter = 0;
  4430. bool zig = true;
  4431. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  4432. {
  4433. int xProbe, xInc;
  4434. if (zig)
  4435. {
  4436. xProbe = LEFT_PROBE_BED_POSITION;
  4437. //xEnd = RIGHT_PROBE_BED_POSITION;
  4438. xInc = xGridSpacing;
  4439. zig = false;
  4440. } else // zag
  4441. {
  4442. xProbe = RIGHT_PROBE_BED_POSITION;
  4443. //xEnd = LEFT_PROBE_BED_POSITION;
  4444. xInc = -xGridSpacing;
  4445. zig = true;
  4446. }
  4447. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  4448. {
  4449. float z_before;
  4450. if (probePointCounter == 0)
  4451. {
  4452. // raise before probing
  4453. z_before = Z_RAISE_BEFORE_PROBING;
  4454. } else
  4455. {
  4456. // raise extruder
  4457. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  4458. }
  4459. float measured_z = probe_pt(xProbe, yProbe, z_before);
  4460. eqnBVector[probePointCounter] = measured_z;
  4461. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  4462. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  4463. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  4464. probePointCounter++;
  4465. xProbe += xInc;
  4466. }
  4467. }
  4468. clean_up_after_endstop_move(l_feedmultiply);
  4469. // solve lsq problem
  4470. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  4471. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4472. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  4473. SERIAL_PROTOCOLPGM(" b: ");
  4474. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  4475. SERIAL_PROTOCOLPGM(" d: ");
  4476. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  4477. set_bed_level_equation_lsq(plane_equation_coefficients);
  4478. free(plane_equation_coefficients);
  4479. #else // AUTO_BED_LEVELING_GRID not defined
  4480. // Probe at 3 arbitrary points
  4481. // probe 1
  4482. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  4483. // probe 2
  4484. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4485. // probe 3
  4486. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4487. clean_up_after_endstop_move(l_feedmultiply);
  4488. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  4489. #endif // AUTO_BED_LEVELING_GRID
  4490. st_synchronize();
  4491. // The following code correct the Z height difference from z-probe position and hotend tip position.
  4492. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  4493. // When the bed is uneven, this height must be corrected.
  4494. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  4495. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  4496. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4497. z_tmp = current_position[Z_AXIS];
  4498. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  4499. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  4500. plan_set_position_curposXYZE();
  4501. }
  4502. break;
  4503. #ifndef Z_PROBE_SLED
  4504. /*!
  4505. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4506. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4507. */
  4508. case 30:
  4509. {
  4510. st_synchronize();
  4511. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4512. int l_feedmultiply = setup_for_endstop_move();
  4513. feedrate = homing_feedrate[Z_AXIS];
  4514. run_z_probe();
  4515. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  4516. SERIAL_PROTOCOLPGM(" X: ");
  4517. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4518. SERIAL_PROTOCOLPGM(" Y: ");
  4519. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4520. SERIAL_PROTOCOLPGM(" Z: ");
  4521. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4522. SERIAL_PROTOCOLPGM("\n");
  4523. clean_up_after_endstop_move(l_feedmultiply);
  4524. }
  4525. break;
  4526. #else
  4527. /*!
  4528. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  4529. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4530. */
  4531. case 31:
  4532. dock_sled(true);
  4533. break;
  4534. /*!
  4535. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4536. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4537. */
  4538. case 32:
  4539. dock_sled(false);
  4540. break;
  4541. #endif // Z_PROBE_SLED
  4542. #endif // ENABLE_AUTO_BED_LEVELING
  4543. #ifdef MESH_BED_LEVELING
  4544. /*!
  4545. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4546. Sensor must be over the bed.
  4547. The maximum travel distance before an error is triggered is 10mm.
  4548. */
  4549. case 30:
  4550. {
  4551. st_synchronize();
  4552. homing_flag = true;
  4553. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4554. int l_feedmultiply = setup_for_endstop_move();
  4555. feedrate = homing_feedrate[Z_AXIS];
  4556. find_bed_induction_sensor_point_z(-10.f, 3);
  4557. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  4558. clean_up_after_endstop_move(l_feedmultiply);
  4559. homing_flag = false;
  4560. }
  4561. break;
  4562. /*!
  4563. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  4564. Show/print PINDA temperature interpolating.
  4565. */
  4566. case 75:
  4567. {
  4568. for (uint8_t i = 40; i <= 110; i++)
  4569. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4570. }
  4571. break;
  4572. /*!
  4573. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4574. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4575. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4576. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4577. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4578. If PINDA_THERMISTOR and SUPERPINDA_SUPPORT is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4579. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4580. #### Example
  4581. ```
  4582. G76
  4583. echo PINDA probe calibration start
  4584. echo start temperature: 35.0°
  4585. echo ...
  4586. echo PINDA temperature -- Z shift (mm): 0.---
  4587. ```
  4588. */
  4589. case 76:
  4590. {
  4591. #ifdef PINDA_THERMISTOR
  4592. if (!has_temperature_compensation())
  4593. {
  4594. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4595. break;
  4596. }
  4597. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4598. //we need to know accurate position of first calibration point
  4599. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4600. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  4601. break;
  4602. }
  4603. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4604. {
  4605. // We don't know where we are! HOME!
  4606. // Push the commands to the front of the message queue in the reverse order!
  4607. // There shall be always enough space reserved for these commands.
  4608. repeatcommand_front(); // repeat G76 with all its parameters
  4609. enquecommand_front_P(G28W0);
  4610. break;
  4611. }
  4612. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4613. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  4614. if (result)
  4615. {
  4616. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4617. plan_buffer_line_curposXYZE(3000 / 60);
  4618. current_position[Z_AXIS] = 50;
  4619. current_position[Y_AXIS] = 180;
  4620. plan_buffer_line_curposXYZE(3000 / 60);
  4621. st_synchronize();
  4622. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4623. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4624. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4625. plan_buffer_line_curposXYZE(3000 / 60);
  4626. st_synchronize();
  4627. gcode_G28(false, false, true);
  4628. }
  4629. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4630. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4631. current_position[Z_AXIS] = 100;
  4632. plan_buffer_line_curposXYZE(3000 / 60);
  4633. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4634. lcd_temp_cal_show_result(false);
  4635. break;
  4636. }
  4637. }
  4638. st_synchronize();
  4639. homing_flag = true; // keep homing on to avoid babystepping while the LCD is enabled
  4640. lcd_update_enable(true);
  4641. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4642. float zero_z;
  4643. int z_shift = 0; //unit: steps
  4644. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4645. if (start_temp < 35) start_temp = 35;
  4646. if (start_temp < current_temperature_pinda) start_temp += 5;
  4647. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4648. // setTargetHotend(200, 0);
  4649. setTargetBed(70 + (start_temp - 30));
  4650. custom_message_type = CustomMsg::TempCal;
  4651. custom_message_state = 1;
  4652. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4653. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4654. plan_buffer_line_curposXYZE(3000 / 60);
  4655. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4656. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4657. plan_buffer_line_curposXYZE(3000 / 60);
  4658. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4659. plan_buffer_line_curposXYZE(3000 / 60);
  4660. st_synchronize();
  4661. while (current_temperature_pinda < start_temp)
  4662. {
  4663. delay_keep_alive(1000);
  4664. serialecho_temperatures();
  4665. }
  4666. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4667. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4668. plan_buffer_line_curposXYZE(3000 / 60);
  4669. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4670. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4671. plan_buffer_line_curposXYZE(3000 / 60);
  4672. st_synchronize();
  4673. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4674. if (find_z_result == false) {
  4675. lcd_temp_cal_show_result(find_z_result);
  4676. homing_flag = false;
  4677. break;
  4678. }
  4679. zero_z = current_position[Z_AXIS];
  4680. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4681. int i = -1; for (; i < 5; i++)
  4682. {
  4683. float temp = (40 + i * 5);
  4684. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4685. if (i >= 0) {
  4686. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4687. }
  4688. if (start_temp <= temp) break;
  4689. }
  4690. for (i++; i < 5; i++)
  4691. {
  4692. float temp = (40 + i * 5);
  4693. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4694. custom_message_state = i + 2;
  4695. setTargetBed(50 + 10 * (temp - 30) / 5);
  4696. // setTargetHotend(255, 0);
  4697. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4698. plan_buffer_line_curposXYZE(3000 / 60);
  4699. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4700. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4701. plan_buffer_line_curposXYZE(3000 / 60);
  4702. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4703. plan_buffer_line_curposXYZE(3000 / 60);
  4704. st_synchronize();
  4705. while (current_temperature_pinda < temp)
  4706. {
  4707. delay_keep_alive(1000);
  4708. serialecho_temperatures();
  4709. }
  4710. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4711. plan_buffer_line_curposXYZE(3000 / 60);
  4712. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4713. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4714. plan_buffer_line_curposXYZE(3000 / 60);
  4715. st_synchronize();
  4716. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4717. if (find_z_result == false) {
  4718. lcd_temp_cal_show_result(find_z_result);
  4719. break;
  4720. }
  4721. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4722. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4723. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4724. }
  4725. lcd_temp_cal_show_result(true);
  4726. homing_flag = false;
  4727. #else //PINDA_THERMISTOR
  4728. setTargetBed(PINDA_MIN_T);
  4729. float zero_z;
  4730. int z_shift = 0; //unit: steps
  4731. int t_c; // temperature
  4732. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4733. // We don't know where we are! HOME!
  4734. // Push the commands to the front of the message queue in the reverse order!
  4735. // There shall be always enough space reserved for these commands.
  4736. repeatcommand_front(); // repeat G76 with all its parameters
  4737. enquecommand_front_P(G28W0);
  4738. break;
  4739. }
  4740. puts_P(_N("PINDA probe calibration start"));
  4741. custom_message_type = CustomMsg::TempCal;
  4742. custom_message_state = 1;
  4743. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4744. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4745. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4746. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4747. plan_buffer_line_curposXYZE(3000 / 60);
  4748. st_synchronize();
  4749. while (fabs(degBed() - PINDA_MIN_T) > 1) {
  4750. delay_keep_alive(1000);
  4751. serialecho_temperatures();
  4752. }
  4753. //enquecommand_P(PSTR("M190 S50"));
  4754. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4755. delay_keep_alive(1000);
  4756. serialecho_temperatures();
  4757. }
  4758. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4759. current_position[Z_AXIS] = 5;
  4760. plan_buffer_line_curposXYZE(3000 / 60);
  4761. current_position[X_AXIS] = BED_X0;
  4762. current_position[Y_AXIS] = BED_Y0;
  4763. plan_buffer_line_curposXYZE(3000 / 60);
  4764. st_synchronize();
  4765. find_bed_induction_sensor_point_z(-1.f);
  4766. zero_z = current_position[Z_AXIS];
  4767. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4768. for (int i = 0; i<5; i++) {
  4769. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4770. custom_message_state = i + 2;
  4771. t_c = 60 + i * 10;
  4772. setTargetBed(t_c);
  4773. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4774. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4775. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4776. plan_buffer_line_curposXYZE(3000 / 60);
  4777. st_synchronize();
  4778. while (degBed() < t_c) {
  4779. delay_keep_alive(1000);
  4780. serialecho_temperatures();
  4781. }
  4782. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4783. delay_keep_alive(1000);
  4784. serialecho_temperatures();
  4785. }
  4786. current_position[Z_AXIS] = 5;
  4787. plan_buffer_line_curposXYZE(3000 / 60);
  4788. current_position[X_AXIS] = BED_X0;
  4789. current_position[Y_AXIS] = BED_Y0;
  4790. plan_buffer_line_curposXYZE(3000 / 60);
  4791. st_synchronize();
  4792. find_bed_induction_sensor_point_z(-1.f);
  4793. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4794. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4795. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4796. }
  4797. custom_message_type = CustomMsg::Status;
  4798. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4799. puts_P(_N("Temperature calibration done."));
  4800. disable_x();
  4801. disable_y();
  4802. disable_z();
  4803. disable_e0();
  4804. disable_e1();
  4805. disable_e2();
  4806. setTargetBed(0); //set bed target temperature back to 0
  4807. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4808. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4809. lcd_update_enable(true);
  4810. lcd_update(2);
  4811. #endif //PINDA_THERMISTOR
  4812. }
  4813. break;
  4814. /*!
  4815. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4816. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4817. #### Usage
  4818. G80 [ N | R | V | L | R | F | B ]
  4819. #### Parameters
  4820. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4821. - `R` - Probe retries. Default 3 max. 10
  4822. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4823. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4824. #### Additional Parameters
  4825. - `L` - Left Bed Level correct value in um.
  4826. - `R` - Right Bed Level correct value in um.
  4827. - `F` - Front Bed Level correct value in um.
  4828. - `B` - Back Bed Level correct value in um.
  4829. */
  4830. /*
  4831. * Probes a grid and produces a mesh to compensate for variable bed height
  4832. * The S0 report the points as below
  4833. * +----> X-axis
  4834. * |
  4835. * |
  4836. * v Y-axis
  4837. */
  4838. case 80: {
  4839. gcode_G80();
  4840. }
  4841. break;
  4842. /*!
  4843. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4844. Prints mesh bed leveling status and bed profile if activated.
  4845. */
  4846. case 81:
  4847. if (mbl.active) {
  4848. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4849. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4850. SERIAL_PROTOCOL(',');
  4851. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4852. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4853. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4854. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4855. for (uint8_t y = MESH_NUM_Y_POINTS; y-- > 0;) {
  4856. for (uint8_t x = 0; x < MESH_NUM_X_POINTS; x++) {
  4857. SERIAL_PROTOCOLPGM(" ");
  4858. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4859. }
  4860. SERIAL_PROTOCOLLN();
  4861. }
  4862. }
  4863. else
  4864. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4865. break;
  4866. #if 0
  4867. /*!
  4868. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4869. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4870. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4871. */
  4872. case 82:
  4873. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4874. int l_feedmultiply = setup_for_endstop_move();
  4875. find_bed_induction_sensor_point_z();
  4876. clean_up_after_endstop_move(l_feedmultiply);
  4877. SERIAL_PROTOCOLPGM("Bed found at: ");
  4878. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4879. SERIAL_PROTOCOLPGM("\n");
  4880. break;
  4881. /*!
  4882. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4883. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4884. */
  4885. case 83:
  4886. {
  4887. int babystepz = code_seen('S') ? code_value() : 0;
  4888. int BabyPosition = code_seen('P') ? code_value() : 0;
  4889. if (babystepz != 0) {
  4890. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4891. // Is the axis indexed starting with zero or one?
  4892. if (BabyPosition > 4) {
  4893. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4894. }else{
  4895. // Save it to the eeprom
  4896. babystepLoadZ = babystepz;
  4897. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z0 + BabyPosition, babystepLoadZ);
  4898. // adjust the Z
  4899. babystepsTodoZadd(babystepLoadZ);
  4900. }
  4901. }
  4902. }
  4903. break;
  4904. /*!
  4905. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4906. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4907. */
  4908. case 84:
  4909. babystepsTodoZsubtract(babystepLoadZ);
  4910. // babystepLoadZ = 0;
  4911. break;
  4912. /*!
  4913. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4914. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4915. */
  4916. case 85:
  4917. lcd_pick_babystep();
  4918. break;
  4919. #endif
  4920. /*!
  4921. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4922. This G-code will be performed at the start of a calibration script.
  4923. (Prusa3D specific)
  4924. */
  4925. case 86:
  4926. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4927. break;
  4928. /*!
  4929. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4930. This G-code will be performed at the end of a calibration script.
  4931. (Prusa3D specific)
  4932. */
  4933. case 87:
  4934. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4935. break;
  4936. /*!
  4937. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4938. Currently has no effect.
  4939. */
  4940. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4941. case 88:
  4942. break;
  4943. #endif // ENABLE_MESH_BED_LEVELING
  4944. /*!
  4945. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4946. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4947. */
  4948. case 90: {
  4949. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4950. }
  4951. break;
  4952. /*!
  4953. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4954. All coordinates from now on are relative to the last position. E axis is left intact.
  4955. */
  4956. case 91: {
  4957. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4958. }
  4959. break;
  4960. /*!
  4961. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4962. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4963. If a parameter is omitted, that axis will not be affected.
  4964. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4965. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4966. #### Usage
  4967. G92 [ X | Y | Z | E ]
  4968. #### Parameters
  4969. - `X` - new X axis position
  4970. - `Y` - new Y axis position
  4971. - `Z` - new Z axis position
  4972. - `E` - new extruder position
  4973. */
  4974. case 92: {
  4975. gcode_G92();
  4976. }
  4977. break;
  4978. /*!
  4979. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4980. Enable Prusa-specific Farm functions and g-code.
  4981. See Internal Prusa commands.
  4982. */
  4983. case 98:
  4984. farm_mode = 1;
  4985. PingTime = _millis();
  4986. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4987. SilentModeMenu = SILENT_MODE_OFF;
  4988. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4989. fCheckModeInit(); // alternatively invoke printer reset
  4990. break;
  4991. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4992. Disables Prusa-specific Farm functions and g-code.
  4993. */
  4994. case 99:
  4995. farm_mode = 0;
  4996. lcd_printer_connected();
  4997. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4998. lcd_update(2);
  4999. fCheckModeInit(); // alternatively invoke printer reset
  5000. break;
  5001. default:
  5002. printf_P(MSG_UNKNOWN_CODE, 'G', cmdbuffer + bufindr + CMDHDRSIZE);
  5003. }
  5004. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  5005. gcode_in_progress = 0;
  5006. } // end if(code_seen('G'))
  5007. /*!
  5008. ### End of G-Codes
  5009. */
  5010. /*!
  5011. ---------------------------------------------------------------------------------
  5012. # M Commands
  5013. */
  5014. else if(code_seen('M'))
  5015. {
  5016. int index;
  5017. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5018. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  5019. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  5020. printf_P(PSTR("Invalid M code: %s\n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5021. } else
  5022. {
  5023. mcode_in_progress = code_value_short();
  5024. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  5025. switch(mcode_in_progress)
  5026. {
  5027. /*!
  5028. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  5029. */
  5030. case 17:
  5031. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=20
  5032. enable_x();
  5033. enable_y();
  5034. enable_z();
  5035. enable_e0();
  5036. enable_e1();
  5037. enable_e2();
  5038. break;
  5039. #ifdef SDSUPPORT
  5040. /*!
  5041. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  5042. #### Usage
  5043. M20 [ L | T ]
  5044. #### Parameters
  5045. - `T` - Report timestamps as well. The value is one uint32_t encoded as hex. Requires host software parsing (Cap:EXTENDED_M20).
  5046. - `L` - Reports long filenames instead of just short filenames. Requires host software parsing (Cap:EXTENDED_M20).
  5047. */
  5048. case 20:
  5049. KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
  5050. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  5051. card.ls(CardReader::ls_param(code_seen('L'), code_seen('T')));
  5052. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  5053. break;
  5054. /*!
  5055. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  5056. */
  5057. case 21:
  5058. card.initsd();
  5059. break;
  5060. /*!
  5061. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  5062. */
  5063. case 22:
  5064. card.release();
  5065. break;
  5066. /*!
  5067. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  5068. #### Usage
  5069. M23 [filename]
  5070. */
  5071. case 23:
  5072. starpos = (strchr(strchr_pointer + 4,'*'));
  5073. if(starpos!=NULL)
  5074. *(starpos)='\0';
  5075. card.openFileReadFilteredGcode(strchr_pointer + 4, true);
  5076. break;
  5077. /*!
  5078. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  5079. */
  5080. case 24:
  5081. if (isPrintPaused)
  5082. lcd_resume_print();
  5083. else
  5084. {
  5085. if (!card.get_sdpos())
  5086. {
  5087. // A new print has started from scratch, reset stats
  5088. failstats_reset_print();
  5089. #ifndef LA_NOCOMPAT
  5090. la10c_reset();
  5091. #endif
  5092. }
  5093. card.startFileprint();
  5094. starttime=_millis();
  5095. }
  5096. break;
  5097. /*!
  5098. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  5099. Set position in SD card file to index in bytes.
  5100. This command is expected to be called after M23 and before M24.
  5101. Otherwise effect of this command is undefined.
  5102. #### Usage
  5103. M26 [ S ]
  5104. #### Parameters
  5105. - `S` - Index in bytes
  5106. */
  5107. case 26:
  5108. if(card.cardOK && code_seen('S')) {
  5109. long index = code_value_long();
  5110. card.setIndex(index);
  5111. // We don't disable interrupt during update of sdpos_atomic
  5112. // as we expect, that SD card print is not active in this moment
  5113. sdpos_atomic = index;
  5114. }
  5115. break;
  5116. /*!
  5117. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  5118. #### Usage
  5119. M27 [ P ]
  5120. #### Parameters
  5121. - `P` - Show full SFN path instead of LFN only.
  5122. */
  5123. case 27:
  5124. card.getStatus(code_seen('P'));
  5125. break;
  5126. /*!
  5127. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  5128. */
  5129. case 28:
  5130. starpos = (strchr(strchr_pointer + 4,'*'));
  5131. if(starpos != NULL){
  5132. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5133. strchr_pointer = strchr(npos,' ') + 1;
  5134. *(starpos) = '\0';
  5135. }
  5136. card.openFileWrite(strchr_pointer+4);
  5137. break;
  5138. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  5139. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  5140. */
  5141. case 29:
  5142. //processed in write to file routine above
  5143. //card,saving = false;
  5144. break;
  5145. /*!
  5146. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  5147. #### Usage
  5148. M30 [filename]
  5149. */
  5150. case 30:
  5151. if (card.cardOK){
  5152. card.closefile();
  5153. starpos = (strchr(strchr_pointer + 4,'*'));
  5154. if(starpos != NULL){
  5155. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5156. strchr_pointer = strchr(npos,' ') + 1;
  5157. *(starpos) = '\0';
  5158. }
  5159. card.removeFile(strchr_pointer + 4);
  5160. }
  5161. break;
  5162. /*!
  5163. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  5164. @todo What are the parameters P and S for in M32?
  5165. */
  5166. case 32:
  5167. {
  5168. if(card.sdprinting) {
  5169. st_synchronize();
  5170. }
  5171. starpos = (strchr(strchr_pointer + 4,'*'));
  5172. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  5173. if(namestartpos==NULL)
  5174. {
  5175. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  5176. }
  5177. else
  5178. namestartpos++; //to skip the '!'
  5179. if(starpos!=NULL)
  5180. *(starpos)='\0';
  5181. bool call_procedure=(code_seen('P'));
  5182. if(strchr_pointer>namestartpos)
  5183. call_procedure=false; //false alert, 'P' found within filename
  5184. if( card.cardOK )
  5185. {
  5186. card.openFileReadFilteredGcode(namestartpos,!call_procedure);
  5187. if(code_seen('S'))
  5188. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  5189. card.setIndex(code_value_long());
  5190. card.startFileprint();
  5191. if(!call_procedure)
  5192. {
  5193. if(!card.get_sdpos())
  5194. {
  5195. // A new print has started from scratch, reset stats
  5196. failstats_reset_print();
  5197. #ifndef LA_NOCOMPAT
  5198. la10c_reset();
  5199. #endif
  5200. }
  5201. starttime=_millis(); // procedure calls count as normal print time.
  5202. }
  5203. }
  5204. } break;
  5205. /*!
  5206. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  5207. #### Usage
  5208. M928 [filename]
  5209. */
  5210. case 928:
  5211. starpos = (strchr(strchr_pointer + 5,'*'));
  5212. if(starpos != NULL){
  5213. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5214. strchr_pointer = strchr(npos,' ') + 1;
  5215. *(starpos) = '\0';
  5216. }
  5217. card.openLogFile(strchr_pointer+5);
  5218. break;
  5219. #endif //SDSUPPORT
  5220. /*!
  5221. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  5222. */
  5223. case 31: //M31 take time since the start of the SD print or an M109 command
  5224. {
  5225. stoptime=_millis();
  5226. char time[30];
  5227. unsigned long t=(stoptime-starttime)/1000;
  5228. int sec,min;
  5229. min=t/60;
  5230. sec=t%60;
  5231. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  5232. SERIAL_ECHO_START;
  5233. SERIAL_ECHOLN(time);
  5234. lcd_setstatus(time);
  5235. autotempShutdown();
  5236. }
  5237. break;
  5238. /*!
  5239. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  5240. #### Usage
  5241. M42 [ P | S ]
  5242. #### Parameters
  5243. - `P` - Pin number.
  5244. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  5245. */
  5246. case 42:
  5247. if (code_seen('S'))
  5248. {
  5249. uint8_t pin_status = code_value_uint8();
  5250. int8_t pin_number = LED_PIN;
  5251. if (code_seen('P'))
  5252. pin_number = code_value_uint8();
  5253. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  5254. {
  5255. if ((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number)
  5256. {
  5257. pin_number = -1;
  5258. break;
  5259. }
  5260. }
  5261. #if defined(FAN_PIN) && FAN_PIN > -1
  5262. if (pin_number == FAN_PIN)
  5263. fanSpeed = pin_status;
  5264. #endif
  5265. if (pin_number > -1)
  5266. {
  5267. pinMode(pin_number, OUTPUT);
  5268. digitalWrite(pin_number, pin_status);
  5269. analogWrite(pin_number, pin_status);
  5270. }
  5271. }
  5272. break;
  5273. /*!
  5274. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5275. */
  5276. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5277. // Reset the baby step value and the baby step applied flag.
  5278. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5279. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5280. // Reset the skew and offset in both RAM and EEPROM.
  5281. reset_bed_offset_and_skew();
  5282. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5283. // the planner will not perform any adjustments in the XY plane.
  5284. // Wait for the motors to stop and update the current position with the absolute values.
  5285. world2machine_revert_to_uncorrected();
  5286. break;
  5287. /*!
  5288. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5289. #### Usage
  5290. M45 [ V ]
  5291. #### Parameters
  5292. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5293. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5294. */
  5295. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5296. {
  5297. int8_t verbosity_level = 0;
  5298. bool only_Z = code_seen('Z');
  5299. #ifdef SUPPORT_VERBOSITY
  5300. if (code_seen('V'))
  5301. {
  5302. // Just 'V' without a number counts as V1.
  5303. char c = strchr_pointer[1];
  5304. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5305. }
  5306. #endif //SUPPORT_VERBOSITY
  5307. gcode_M45(only_Z, verbosity_level);
  5308. }
  5309. break;
  5310. /*!
  5311. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5312. */
  5313. case 46:
  5314. {
  5315. // M46: Prusa3D: Show the assigned IP address.
  5316. if (card.ToshibaFlashAir_isEnabled()) {
  5317. uint8_t ip[4];
  5318. if (card.ToshibaFlashAir_GetIP(ip)) {
  5319. // SERIAL_PROTOCOLPGM("Toshiba FlashAir current IP: ");
  5320. SERIAL_PROTOCOL(uint8_t(ip[0]));
  5321. SERIAL_PROTOCOL('.');
  5322. SERIAL_PROTOCOL(uint8_t(ip[1]));
  5323. SERIAL_PROTOCOL('.');
  5324. SERIAL_PROTOCOL(uint8_t(ip[2]));
  5325. SERIAL_PROTOCOL('.');
  5326. SERIAL_PROTOCOLLN(uint8_t(ip[3]));
  5327. } else {
  5328. SERIAL_PROTOCOLPGM("?Toshiba FlashAir GetIP failed\n");
  5329. }
  5330. } else {
  5331. SERIAL_PROTOCOLLNPGM("n/a");
  5332. }
  5333. break;
  5334. }
  5335. /*!
  5336. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5337. */
  5338. case 47:
  5339. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5340. lcd_diag_show_end_stops();
  5341. KEEPALIVE_STATE(IN_HANDLER);
  5342. break;
  5343. #if 0
  5344. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5345. {
  5346. // Disable the default update procedure of the display. We will do a modal dialog.
  5347. lcd_update_enable(false);
  5348. // Let the planner use the uncorrected coordinates.
  5349. mbl.reset();
  5350. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5351. // the planner will not perform any adjustments in the XY plane.
  5352. // Wait for the motors to stop and update the current position with the absolute values.
  5353. world2machine_revert_to_uncorrected();
  5354. // Move the print head close to the bed.
  5355. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5357. st_synchronize();
  5358. // Home in the XY plane.
  5359. set_destination_to_current();
  5360. int l_feedmultiply = setup_for_endstop_move();
  5361. home_xy();
  5362. int8_t verbosity_level = 0;
  5363. if (code_seen('V')) {
  5364. // Just 'V' without a number counts as V1.
  5365. char c = strchr_pointer[1];
  5366. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5367. }
  5368. bool success = scan_bed_induction_points(verbosity_level);
  5369. clean_up_after_endstop_move(l_feedmultiply);
  5370. // Print head up.
  5371. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5373. st_synchronize();
  5374. lcd_update_enable(true);
  5375. break;
  5376. }
  5377. #endif
  5378. #ifdef ENABLE_AUTO_BED_LEVELING
  5379. #ifdef Z_PROBE_REPEATABILITY_TEST
  5380. /*!
  5381. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5382. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5383. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5384. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5385. #### Usage
  5386. M48 [ n | X | Y | V | L ]
  5387. #### Parameters
  5388. - `n` - Number of samples. Valid values 4-50
  5389. - `X` - X position for samples
  5390. - `Y` - Y position for samples
  5391. - `V` - Verbose level. Valid values 1-4
  5392. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5393. */
  5394. case 48: // M48 Z-Probe repeatability
  5395. {
  5396. #if Z_MIN_PIN == -1
  5397. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5398. #endif
  5399. double sum=0.0;
  5400. double mean=0.0;
  5401. double sigma=0.0;
  5402. double sample_set[50];
  5403. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5404. double X_current, Y_current, Z_current;
  5405. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5406. if (code_seen('V') || code_seen('v')) {
  5407. verbose_level = code_value();
  5408. if (verbose_level<0 || verbose_level>4 ) {
  5409. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5410. goto Sigma_Exit;
  5411. }
  5412. }
  5413. if (verbose_level > 0) {
  5414. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5415. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5416. }
  5417. if (code_seen('n')) {
  5418. n_samples = code_value();
  5419. if (n_samples<4 || n_samples>50 ) {
  5420. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5421. goto Sigma_Exit;
  5422. }
  5423. }
  5424. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5425. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5426. Z_current = st_get_position_mm(Z_AXIS);
  5427. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5428. ext_position = st_get_position_mm(E_AXIS);
  5429. if (code_seen('X') || code_seen('x') ) {
  5430. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5431. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5432. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5433. goto Sigma_Exit;
  5434. }
  5435. }
  5436. if (code_seen('Y') || code_seen('y') ) {
  5437. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5438. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5439. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5440. goto Sigma_Exit;
  5441. }
  5442. }
  5443. if (code_seen('L') || code_seen('l') ) {
  5444. n_legs = code_value();
  5445. if ( n_legs==1 )
  5446. n_legs = 2;
  5447. if ( n_legs<0 || n_legs>15 ) {
  5448. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5449. goto Sigma_Exit;
  5450. }
  5451. }
  5452. //
  5453. // Do all the preliminary setup work. First raise the probe.
  5454. //
  5455. st_synchronize();
  5456. plan_bed_level_matrix.set_to_identity();
  5457. plan_buffer_line( X_current, Y_current, Z_start_location,
  5458. ext_position,
  5459. homing_feedrate[Z_AXIS]/60,
  5460. active_extruder);
  5461. st_synchronize();
  5462. //
  5463. // Now get everything to the specified probe point So we can safely do a probe to
  5464. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5465. // use that as a starting point for each probe.
  5466. //
  5467. if (verbose_level > 2)
  5468. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5469. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5470. ext_position,
  5471. homing_feedrate[X_AXIS]/60,
  5472. active_extruder);
  5473. st_synchronize();
  5474. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5475. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5476. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5477. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5478. //
  5479. // OK, do the inital probe to get us close to the bed.
  5480. // Then retrace the right amount and use that in subsequent probes
  5481. //
  5482. int l_feedmultiply = setup_for_endstop_move();
  5483. run_z_probe();
  5484. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5485. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5486. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5487. ext_position,
  5488. homing_feedrate[X_AXIS]/60,
  5489. active_extruder);
  5490. st_synchronize();
  5491. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5492. for( n=0; n<n_samples; n++) {
  5493. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5494. if ( n_legs) {
  5495. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5496. int rotational_direction, l;
  5497. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5498. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5499. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5500. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5501. //SERIAL_ECHOPAIR(" theta: ",theta);
  5502. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5503. //SERIAL_PROTOCOLLNPGM("");
  5504. for( l=0; l<n_legs-1; l++) {
  5505. if (rotational_direction==1)
  5506. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5507. else
  5508. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5509. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5510. if ( radius<0.0 )
  5511. radius = -radius;
  5512. X_current = X_probe_location + cos(theta) * radius;
  5513. Y_current = Y_probe_location + sin(theta) * radius;
  5514. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5515. X_current = X_MIN_POS;
  5516. if ( X_current>X_MAX_POS)
  5517. X_current = X_MAX_POS;
  5518. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5519. Y_current = Y_MIN_POS;
  5520. if ( Y_current>Y_MAX_POS)
  5521. Y_current = Y_MAX_POS;
  5522. if (verbose_level>3 ) {
  5523. SERIAL_ECHOPAIR("x: ", X_current);
  5524. SERIAL_ECHOPAIR("y: ", Y_current);
  5525. SERIAL_PROTOCOLLNPGM("");
  5526. }
  5527. do_blocking_move_to( X_current, Y_current, Z_current );
  5528. }
  5529. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5530. }
  5531. int l_feedmultiply = setup_for_endstop_move();
  5532. run_z_probe();
  5533. sample_set[n] = current_position[Z_AXIS];
  5534. //
  5535. // Get the current mean for the data points we have so far
  5536. //
  5537. sum=0.0;
  5538. for( j=0; j<=n; j++) {
  5539. sum = sum + sample_set[j];
  5540. }
  5541. mean = sum / (double (n+1));
  5542. //
  5543. // Now, use that mean to calculate the standard deviation for the
  5544. // data points we have so far
  5545. //
  5546. sum=0.0;
  5547. for( j=0; j<=n; j++) {
  5548. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5549. }
  5550. sigma = sqrt( sum / (double (n+1)) );
  5551. if (verbose_level > 1) {
  5552. SERIAL_PROTOCOL(n+1);
  5553. SERIAL_PROTOCOL(" of ");
  5554. SERIAL_PROTOCOL(n_samples);
  5555. SERIAL_PROTOCOLPGM(" z: ");
  5556. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5557. }
  5558. if (verbose_level > 2) {
  5559. SERIAL_PROTOCOL(" mean: ");
  5560. SERIAL_PROTOCOL_F(mean,6);
  5561. SERIAL_PROTOCOL(" sigma: ");
  5562. SERIAL_PROTOCOL_F(sigma,6);
  5563. }
  5564. if (verbose_level > 0)
  5565. SERIAL_PROTOCOLPGM("\n");
  5566. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5567. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5568. st_synchronize();
  5569. }
  5570. _delay(1000);
  5571. clean_up_after_endstop_move(l_feedmultiply);
  5572. // enable_endstops(true);
  5573. if (verbose_level > 0) {
  5574. SERIAL_PROTOCOLPGM("Mean: ");
  5575. SERIAL_PROTOCOL_F(mean, 6);
  5576. SERIAL_PROTOCOLPGM("\n");
  5577. }
  5578. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5579. SERIAL_PROTOCOL_F(sigma, 6);
  5580. SERIAL_PROTOCOLPGM("\n\n");
  5581. Sigma_Exit:
  5582. break;
  5583. }
  5584. #endif // Z_PROBE_REPEATABILITY_TEST
  5585. #endif // ENABLE_AUTO_BED_LEVELING
  5586. /*!
  5587. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5588. #### Usage
  5589. M73 [ P | R | Q | S | C | D ]
  5590. #### Parameters
  5591. - `P` - Percent in normal mode
  5592. - `R` - Time remaining in normal mode
  5593. - `Q` - Percent in silent mode
  5594. - `S` - Time in silent mode
  5595. - `C` - Time to change/pause/user interaction in normal mode
  5596. - `D` - Time to change/pause/user interaction in silent mode
  5597. */
  5598. case 73: //M73 show percent done, time remaining and time to change/pause
  5599. {
  5600. if(code_seen('P')) print_percent_done_normal = code_value_uint8();
  5601. if(code_seen('R')) print_time_remaining_normal = code_value();
  5602. if(code_seen('Q')) print_percent_done_silent = code_value_uint8();
  5603. if(code_seen('S')) print_time_remaining_silent = code_value();
  5604. if(code_seen('C')){
  5605. float print_time_to_change_normal_f = code_value_float();
  5606. print_time_to_change_normal = ( print_time_to_change_normal_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_normal_f;
  5607. }
  5608. if(code_seen('D')){
  5609. float print_time_to_change_silent_f = code_value_float();
  5610. print_time_to_change_silent = ( print_time_to_change_silent_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_silent_f;
  5611. }
  5612. {
  5613. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %hhd; print time remaining in mins: %d; Change in mins: %d\n");
  5614. printf_P(_msg_mode_done_remain, _N("NORMAL"), int8_t(print_percent_done_normal), print_time_remaining_normal, print_time_to_change_normal);
  5615. printf_P(_msg_mode_done_remain, _N("SILENT"), int8_t(print_percent_done_silent), print_time_remaining_silent, print_time_to_change_silent);
  5616. }
  5617. break;
  5618. }
  5619. /*!
  5620. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5621. #### Usage
  5622. M104 [ S ]
  5623. #### Parameters
  5624. - `S` - Target temperature
  5625. */
  5626. case 104: // M104
  5627. {
  5628. uint8_t extruder;
  5629. if(setTargetedHotend(104,extruder)){
  5630. break;
  5631. }
  5632. if (code_seen('S'))
  5633. {
  5634. setTargetHotendSafe(code_value(), extruder);
  5635. }
  5636. break;
  5637. }
  5638. /*!
  5639. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5640. It is processed much earlier as to bypass the cmdqueue.
  5641. */
  5642. case 112:
  5643. kill(MSG_M112_KILL, 3);
  5644. break;
  5645. /*!
  5646. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5647. #### Usage
  5648. M140 [ S ]
  5649. #### Parameters
  5650. - `S` - Target temperature
  5651. */
  5652. case 140:
  5653. if (code_seen('S')) setTargetBed(code_value());
  5654. break;
  5655. /*!
  5656. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5657. Prints temperatures:
  5658. - `T:` - Hotend (actual / target)
  5659. - `B:` - Bed (actual / target)
  5660. - `Tx:` - x Tool (actual / target)
  5661. - `@:` - Hotend power
  5662. - `B@:` - Bed power
  5663. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5664. - `A:` - Ambient actual (only MK3/s)
  5665. _Example:_
  5666. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5667. */
  5668. case 105:
  5669. {
  5670. uint8_t extruder;
  5671. if(setTargetedHotend(105, extruder)){
  5672. break;
  5673. }
  5674. SERIAL_PROTOCOLPGM("ok ");
  5675. gcode_M105(extruder);
  5676. cmdqueue_pop_front(); //prevent an ok after the command since this command uses an ok at the beginning.
  5677. cmdbuffer_front_already_processed = true;
  5678. break;
  5679. }
  5680. #if defined(AUTO_REPORT)
  5681. /*!
  5682. ### M155 - Automatically send status <a href="https://reprap.org/wiki/G-code#M155:_Automatically_send_temperatures">M155: Automatically send temperatures</a>
  5683. #### Usage
  5684. M155 [ S ] [ C ]
  5685. #### Parameters
  5686. - `S` - Set autoreporting interval in seconds. 0 to disable. Maximum: 255
  5687. - `C` - Activate auto-report function (bit mask). Default is temperature.
  5688. bit 0 = Auto-report temperatures
  5689. bit 1 = Auto-report fans
  5690. bit 2 = Auto-report position
  5691. bit 3 = free
  5692. bit 4 = free
  5693. bit 5 = free
  5694. bit 6 = free
  5695. bit 7 = free
  5696. */
  5697. case 155:
  5698. {
  5699. if (code_seen('S')){
  5700. autoReportFeatures.SetPeriod( code_value_uint8() );
  5701. }
  5702. if (code_seen('C')){
  5703. autoReportFeatures.SetMask(code_value_uint8());
  5704. } else{
  5705. autoReportFeatures.SetMask(1); //Backwards compability to host systems like Octoprint to send only temp if paramerter `C`isn't used.
  5706. }
  5707. }
  5708. break;
  5709. #endif //AUTO_REPORT
  5710. /*!
  5711. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5712. #### Usage
  5713. M104 [ B | R | S ]
  5714. #### Parameters (not mandatory)
  5715. - `S` - Set extruder temperature
  5716. - `R` - Set extruder temperature
  5717. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5718. Parameters S and R are treated identically.
  5719. Command always waits for both cool down and heat up.
  5720. If no parameters are supplied waits for previously set extruder temperature.
  5721. */
  5722. case 109:
  5723. {
  5724. uint8_t extruder;
  5725. if(setTargetedHotend(109, extruder)){
  5726. break;
  5727. }
  5728. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5729. heating_status = HeatingStatus::EXTRUDER_HEATING;
  5730. if (farm_mode) { prusa_statistics(1); };
  5731. #ifdef AUTOTEMP
  5732. autotemp_enabled=false;
  5733. #endif
  5734. if (code_seen('S')) {
  5735. setTargetHotendSafe(code_value(), extruder);
  5736. } else if (code_seen('R')) {
  5737. setTargetHotendSafe(code_value(), extruder);
  5738. }
  5739. #ifdef AUTOTEMP
  5740. if (code_seen('S')) autotemp_min=code_value();
  5741. if (code_seen('B')) autotemp_max=code_value();
  5742. if (code_seen('F'))
  5743. {
  5744. autotemp_factor=code_value();
  5745. autotemp_enabled=true;
  5746. }
  5747. #endif
  5748. codenum = _millis();
  5749. /* See if we are heating up or cooling down */
  5750. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5751. cancel_heatup = false;
  5752. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5753. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5754. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  5755. if (farm_mode) { prusa_statistics(2); };
  5756. //starttime=_millis();
  5757. previous_millis_cmd.start();
  5758. }
  5759. break;
  5760. /*!
  5761. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5762. #### Usage
  5763. M190 [ R | S ]
  5764. #### Parameters (not mandatory)
  5765. - `S` - Set extruder temperature and wait for heating
  5766. - `R` - Set extruder temperature and wait for heating or cooling
  5767. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5768. */
  5769. case 190:
  5770. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5771. {
  5772. bool CooldownNoWait = false;
  5773. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5774. heating_status = HeatingStatus::BED_HEATING;
  5775. if (farm_mode) { prusa_statistics(1); };
  5776. if (code_seen('S'))
  5777. {
  5778. setTargetBed(code_value());
  5779. CooldownNoWait = true;
  5780. }
  5781. else if (code_seen('R'))
  5782. {
  5783. setTargetBed(code_value());
  5784. }
  5785. codenum = _millis();
  5786. cancel_heatup = false;
  5787. target_direction = isHeatingBed(); // true if heating, false if cooling
  5788. while ( (!cancel_heatup) && (target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false))) )
  5789. {
  5790. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5791. {
  5792. if (!farm_mode) {
  5793. float tt = degHotend(active_extruder);
  5794. SERIAL_PROTOCOLPGM("T:");
  5795. SERIAL_PROTOCOL(tt);
  5796. SERIAL_PROTOCOLPGM(" E:");
  5797. SERIAL_PROTOCOL((int)active_extruder);
  5798. SERIAL_PROTOCOLPGM(" B:");
  5799. SERIAL_PROTOCOL_F(degBed(), 1);
  5800. SERIAL_PROTOCOLLN();
  5801. }
  5802. codenum = _millis();
  5803. }
  5804. manage_heater();
  5805. manage_inactivity();
  5806. lcd_update(0);
  5807. }
  5808. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5809. heating_status = HeatingStatus::BED_HEATING_COMPLETE;
  5810. previous_millis_cmd.start();
  5811. }
  5812. #endif
  5813. break;
  5814. #if defined(FAN_PIN) && FAN_PIN > -1
  5815. /*!
  5816. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5817. #### Usage
  5818. M106 [ S ]
  5819. #### Parameters
  5820. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5821. */
  5822. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5823. if (code_seen('S')){
  5824. fanSpeed = code_value_uint8();
  5825. }
  5826. else {
  5827. fanSpeed = 255;
  5828. }
  5829. break;
  5830. /*!
  5831. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5832. */
  5833. case 107:
  5834. fanSpeed = 0;
  5835. break;
  5836. #endif //FAN_PIN
  5837. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5838. /*!
  5839. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5840. Only works if the firmware is compiled with PS_ON_PIN defined.
  5841. */
  5842. case 80:
  5843. SET_OUTPUT(PS_ON_PIN); //GND
  5844. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5845. // If you have a switch on suicide pin, this is useful
  5846. // if you want to start another print with suicide feature after
  5847. // a print without suicide...
  5848. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5849. SET_OUTPUT(SUICIDE_PIN);
  5850. WRITE(SUICIDE_PIN, HIGH);
  5851. #endif
  5852. powersupply = true;
  5853. LCD_MESSAGERPGM(MSG_WELCOME);
  5854. lcd_update(0);
  5855. break;
  5856. /*!
  5857. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5858. Only works if the firmware is compiled with PS_ON_PIN defined.
  5859. */
  5860. case 81:
  5861. disable_heater();
  5862. st_synchronize();
  5863. disable_e0();
  5864. disable_e1();
  5865. disable_e2();
  5866. finishAndDisableSteppers();
  5867. fanSpeed = 0;
  5868. _delay(1000); // Wait a little before to switch off
  5869. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5870. st_synchronize();
  5871. suicide();
  5872. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5873. SET_OUTPUT(PS_ON_PIN);
  5874. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5875. #endif
  5876. powersupply = false;
  5877. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5878. lcd_update(0);
  5879. break;
  5880. #endif
  5881. /*!
  5882. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5883. Makes the extruder interpret extrusion as absolute positions.
  5884. */
  5885. case 82:
  5886. axis_relative_modes &= ~E_AXIS_MASK;
  5887. break;
  5888. /*!
  5889. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5890. Makes the extruder interpret extrusion values as relative positions.
  5891. */
  5892. case 83:
  5893. axis_relative_modes |= E_AXIS_MASK;
  5894. break;
  5895. /*!
  5896. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5897. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5898. This command can be used without any additional parameters. In that case all steppers are disabled.
  5899. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5900. M84 [ S | X | Y | Z | E ]
  5901. - `S` - Seconds
  5902. - `X` - X axis
  5903. - `Y` - Y axis
  5904. - `Z` - Z axis
  5905. - `E` - Extruder
  5906. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5907. Equal to M84 (compatibility)
  5908. */
  5909. case 18: //compatibility
  5910. case 84: // M84
  5911. if(code_seen('S')){
  5912. stepper_inactive_time = code_value() * 1000;
  5913. }
  5914. else
  5915. {
  5916. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5917. if(all_axis)
  5918. {
  5919. st_synchronize();
  5920. disable_e0();
  5921. disable_e1();
  5922. disable_e2();
  5923. finishAndDisableSteppers();
  5924. }
  5925. else
  5926. {
  5927. st_synchronize();
  5928. if (code_seen('X')) disable_x();
  5929. if (code_seen('Y')) disable_y();
  5930. if (code_seen('Z')) disable_z();
  5931. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5932. if (code_seen('E')) {
  5933. disable_e0();
  5934. disable_e1();
  5935. disable_e2();
  5936. }
  5937. #endif
  5938. }
  5939. }
  5940. break;
  5941. /*!
  5942. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5943. #### Usage
  5944. M85 [ S ]
  5945. #### Parameters
  5946. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5947. */
  5948. case 85: // M85
  5949. if(code_seen('S')) {
  5950. max_inactive_time = code_value() * 1000;
  5951. }
  5952. break;
  5953. #ifdef SAFETYTIMER
  5954. /*!
  5955. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5956. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5957. #### Usage
  5958. M86 [ S ]
  5959. #### Parameters
  5960. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5961. */
  5962. case 86:
  5963. if (code_seen('S')) {
  5964. safetytimer_inactive_time = code_value() * 1000;
  5965. safetyTimer.start();
  5966. }
  5967. break;
  5968. #endif
  5969. /*!
  5970. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5971. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5972. #### Usage
  5973. M92 [ X | Y | Z | E ]
  5974. #### Parameters
  5975. - `X` - Steps per unit for the X drive
  5976. - `Y` - Steps per unit for the Y drive
  5977. - `Z` - Steps per unit for the Z drive
  5978. - `E` - Steps per unit for the extruder drive
  5979. */
  5980. case 92:
  5981. for(int8_t i=0; i < NUM_AXIS; i++)
  5982. {
  5983. if(code_seen(axis_codes[i]))
  5984. {
  5985. if(i == E_AXIS) { // E
  5986. float value = code_value();
  5987. if(value < 20.0) {
  5988. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5989. cs.max_jerk[E_AXIS] *= factor;
  5990. max_feedrate[i] *= factor;
  5991. axis_steps_per_sqr_second[i] *= factor;
  5992. }
  5993. cs.axis_steps_per_unit[i] = value;
  5994. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5995. fsensor_set_axis_steps_per_unit(value);
  5996. #endif
  5997. }
  5998. else {
  5999. cs.axis_steps_per_unit[i] = code_value();
  6000. }
  6001. }
  6002. }
  6003. break;
  6004. /*!
  6005. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  6006. Sets the line number in G-code
  6007. #### Usage
  6008. M110 [ N ]
  6009. #### Parameters
  6010. - `N` - Line number
  6011. */
  6012. case 110:
  6013. if (code_seen('N'))
  6014. gcode_LastN = code_value_long();
  6015. break;
  6016. /*!
  6017. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  6018. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  6019. #### Usage
  6020. M113 [ S ]
  6021. #### Parameters
  6022. - `S` - Seconds. Default is 2 seconds between "busy" messages
  6023. */
  6024. case 113:
  6025. if (code_seen('S')) {
  6026. host_keepalive_interval = code_value_uint8();
  6027. // NOMORE(host_keepalive_interval, 60);
  6028. }
  6029. else {
  6030. SERIAL_ECHO_START;
  6031. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6032. SERIAL_PROTOCOLLN();
  6033. }
  6034. break;
  6035. /*!
  6036. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  6037. Print the firmware info and capabilities
  6038. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  6039. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  6040. _Examples:_
  6041. `M115` results:
  6042. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  6043. `M115 V` results:
  6044. `3.8.1`
  6045. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  6046. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  6047. #### Usage
  6048. M115 [ V | U ]
  6049. #### Parameters
  6050. - V - Report current installed firmware version
  6051. - U - Firmware version provided by G-code to be compared to current one.
  6052. */
  6053. case 115: // M115
  6054. if (code_seen('V')) {
  6055. // Report the Prusa version number.
  6056. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  6057. } else if (code_seen('U')) {
  6058. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  6059. // pause the print for 30s and ask the user to upgrade the firmware.
  6060. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  6061. } else {
  6062. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  6063. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  6064. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  6065. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  6066. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  6067. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  6068. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  6069. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  6070. SERIAL_ECHOPGM(" UUID:");
  6071. SERIAL_ECHOLNPGM(MACHINE_UUID);
  6072. #ifdef EXTENDED_CAPABILITIES_REPORT
  6073. extended_capabilities_report();
  6074. #endif //EXTENDED_CAPABILITIES_REPORT
  6075. }
  6076. break;
  6077. /*!
  6078. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  6079. */
  6080. case 114:
  6081. gcode_M114();
  6082. break;
  6083. /*
  6084. M117 moved up to get the high priority
  6085. case 117: // M117 display message
  6086. starpos = (strchr(strchr_pointer + 5,'*'));
  6087. if(starpos!=NULL)
  6088. *(starpos)='\0';
  6089. lcd_setstatus(strchr_pointer + 5);
  6090. break;*/
  6091. #ifdef M120_M121_ENABLED
  6092. /*!
  6093. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  6094. */
  6095. case 120:
  6096. enable_endstops(true) ;
  6097. break;
  6098. /*!
  6099. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  6100. */
  6101. case 121:
  6102. enable_endstops(false) ;
  6103. break;
  6104. #endif //M120_M121_ENABLED
  6105. /*!
  6106. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  6107. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  6108. */
  6109. case 119:
  6110. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  6111. SERIAL_PROTOCOLLN();
  6112. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  6113. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  6114. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  6115. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6116. }else{
  6117. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6118. }
  6119. SERIAL_PROTOCOLLN();
  6120. #endif
  6121. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  6122. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  6123. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  6124. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6125. }else{
  6126. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6127. }
  6128. SERIAL_PROTOCOLLN();
  6129. #endif
  6130. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  6131. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  6132. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  6133. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6134. }else{
  6135. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6136. }
  6137. SERIAL_PROTOCOLLN();
  6138. #endif
  6139. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  6140. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  6141. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  6142. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6143. }else{
  6144. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6145. }
  6146. SERIAL_PROTOCOLLN();
  6147. #endif
  6148. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  6149. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  6150. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  6151. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6152. }else{
  6153. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6154. }
  6155. SERIAL_PROTOCOLLN();
  6156. #endif
  6157. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  6158. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  6159. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  6160. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6161. }else{
  6162. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6163. }
  6164. SERIAL_PROTOCOLLN();
  6165. #endif
  6166. break;
  6167. //!@todo update for all axes, use for loop
  6168. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  6169. /*!
  6170. ### M123 - Tachometer value <a href="https://www.reprap.org/wiki/G-code#M123:_Tachometer_value_.28RepRap_.26_Prusa.29">M123: Tachometer value</a>
  6171. This command is used to report fan speeds and fan pwm values.
  6172. #### Usage
  6173. M123
  6174. - E0: - Hotend fan speed in RPM
  6175. - PRN1: - Part cooling fans speed in RPM
  6176. - E0@: - Hotend fan PWM value
  6177. - PRN1@: -Part cooling fan PWM value
  6178. _Example:_
  6179. E0:3240 RPM PRN1:4560 RPM E0@:255 PRN1@:255
  6180. */
  6181. case 123:
  6182. gcode_M123();
  6183. break;
  6184. #endif //FANCHECK and TACH_0 and TACH_1
  6185. #ifdef BLINKM
  6186. /*!
  6187. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  6188. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  6189. #### Usage
  6190. M150 [ R | U | B ]
  6191. #### Parameters
  6192. - `R` - Red color value
  6193. - `U` - Green color value. It is NOT `G`!
  6194. - `B` - Blue color value
  6195. */
  6196. case 150:
  6197. {
  6198. byte red;
  6199. byte grn;
  6200. byte blu;
  6201. if(code_seen('R')) red = code_value();
  6202. if(code_seen('U')) grn = code_value();
  6203. if(code_seen('B')) blu = code_value();
  6204. SendColors(red,grn,blu);
  6205. }
  6206. break;
  6207. #endif //BLINKM
  6208. /*!
  6209. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  6210. #### Usage
  6211. M200 [ D | T ]
  6212. #### Parameters
  6213. - `D` - Diameter in mm
  6214. - `T` - Number of extruder (MMUs)
  6215. */
  6216. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6217. {
  6218. uint8_t extruder = active_extruder;
  6219. if(code_seen('T')) {
  6220. extruder = code_value_uint8();
  6221. if(extruder >= EXTRUDERS) {
  6222. SERIAL_ECHO_START;
  6223. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  6224. break;
  6225. }
  6226. }
  6227. if(code_seen('D')) {
  6228. float diameter = code_value();
  6229. if (diameter == 0.0) {
  6230. // setting any extruder filament size disables volumetric on the assumption that
  6231. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6232. // for all extruders
  6233. cs.volumetric_enabled = false;
  6234. } else {
  6235. cs.filament_size[extruder] = code_value();
  6236. // make sure all extruders have some sane value for the filament size
  6237. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6238. #if EXTRUDERS > 1
  6239. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6240. #if EXTRUDERS > 2
  6241. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6242. #endif
  6243. #endif
  6244. cs.volumetric_enabled = true;
  6245. }
  6246. } else {
  6247. //reserved for setting filament diameter via UFID or filament measuring device
  6248. break;
  6249. }
  6250. calculate_extruder_multipliers();
  6251. }
  6252. break;
  6253. /*!
  6254. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6255. For each axis individually.
  6256. */
  6257. case 201:
  6258. for (int8_t i = 0; i < NUM_AXIS; i++)
  6259. {
  6260. if (code_seen(axis_codes[i]))
  6261. {
  6262. unsigned long val = code_value();
  6263. #ifdef TMC2130
  6264. unsigned long val_silent = val;
  6265. if ((i == X_AXIS) || (i == Y_AXIS))
  6266. {
  6267. if (val > NORMAL_MAX_ACCEL_XY)
  6268. val = NORMAL_MAX_ACCEL_XY;
  6269. if (val_silent > SILENT_MAX_ACCEL_XY)
  6270. val_silent = SILENT_MAX_ACCEL_XY;
  6271. }
  6272. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6273. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6274. #else //TMC2130
  6275. max_acceleration_units_per_sq_second[i] = val;
  6276. #endif //TMC2130
  6277. }
  6278. }
  6279. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6280. reset_acceleration_rates();
  6281. break;
  6282. #if 0 // Not used for Sprinter/grbl gen6
  6283. case 202: // M202
  6284. for(int8_t i=0; i < NUM_AXIS; i++) {
  6285. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6286. }
  6287. break;
  6288. #endif
  6289. /*!
  6290. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6291. For each axis individually.
  6292. */
  6293. case 203: // M203 max feedrate mm/sec
  6294. for (uint8_t i = 0; i < NUM_AXIS; i++)
  6295. {
  6296. if (code_seen(axis_codes[i]))
  6297. {
  6298. float val = code_value();
  6299. #ifdef TMC2130
  6300. float val_silent = val;
  6301. if ((i == X_AXIS) || (i == Y_AXIS))
  6302. {
  6303. if (val > NORMAL_MAX_FEEDRATE_XY)
  6304. val = NORMAL_MAX_FEEDRATE_XY;
  6305. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6306. val_silent = SILENT_MAX_FEEDRATE_XY;
  6307. }
  6308. cs.max_feedrate_normal[i] = val;
  6309. cs.max_feedrate_silent[i] = val_silent;
  6310. #else //TMC2130
  6311. max_feedrate[i] = val;
  6312. #endif //TMC2130
  6313. }
  6314. }
  6315. break;
  6316. /*!
  6317. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6318. #### Old format:
  6319. ##### Usage
  6320. M204 [ S | T ]
  6321. ##### Parameters
  6322. - `S` - normal moves
  6323. - `T` - filmanent only moves
  6324. #### New format:
  6325. ##### Usage
  6326. M204 [ P | R | T ]
  6327. ##### Parameters
  6328. - `P` - printing moves
  6329. - `R` - filmanent only moves
  6330. - `T` - travel moves (as of now T is ignored)
  6331. */
  6332. case 204:
  6333. {
  6334. if(code_seen('S')) {
  6335. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6336. // and it is also generated by Slic3r to control acceleration per extrusion type
  6337. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6338. cs.acceleration = cs.travel_acceleration = code_value();
  6339. // Interpret the T value as retract acceleration in the old Marlin format.
  6340. if(code_seen('T'))
  6341. cs.retract_acceleration = code_value();
  6342. } else {
  6343. // New acceleration format, compatible with the upstream Marlin.
  6344. if(code_seen('P'))
  6345. cs.acceleration = code_value();
  6346. if(code_seen('R'))
  6347. cs.retract_acceleration = code_value();
  6348. if(code_seen('T'))
  6349. cs.travel_acceleration = code_value();
  6350. }
  6351. }
  6352. break;
  6353. /*!
  6354. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6355. Set some advanced settings related to movement.
  6356. #### Usage
  6357. M205 [ S | T | B | X | Y | Z | E ]
  6358. #### Parameters
  6359. - `S` - Minimum feedrate for print moves (unit/s)
  6360. - `T` - Minimum feedrate for travel moves (units/s)
  6361. - `B` - Minimum segment time (us)
  6362. - `X` - Maximum X jerk (units/s)
  6363. - `Y` - Maximum Y jerk (units/s)
  6364. - `Z` - Maximum Z jerk (units/s)
  6365. - `E` - Maximum E jerk (units/s)
  6366. */
  6367. case 205:
  6368. {
  6369. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6370. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6371. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6372. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6373. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6374. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6375. if(code_seen('E'))
  6376. {
  6377. float e = code_value();
  6378. #ifndef LA_NOCOMPAT
  6379. e = la10c_jerk(e);
  6380. #endif
  6381. cs.max_jerk[E_AXIS] = e;
  6382. }
  6383. }
  6384. break;
  6385. /*!
  6386. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6387. #### Usage
  6388. M206 [ X | Y | Z ]
  6389. #### Parameters
  6390. - `X` - X axis offset
  6391. - `Y` - Y axis offset
  6392. - `Z` - Z axis offset
  6393. */
  6394. case 206:
  6395. for(uint8_t i=0; i < 3; i++)
  6396. {
  6397. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6398. }
  6399. break;
  6400. #ifdef FWRETRACT
  6401. /*!
  6402. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6403. #### Usage
  6404. M207 [ S | F | Z ]
  6405. #### Parameters
  6406. - `S` - positive length to retract, in mm
  6407. - `F` - retraction feedrate, in mm/min
  6408. - `Z` - additional zlift/hop
  6409. */
  6410. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6411. {
  6412. if(code_seen('S'))
  6413. {
  6414. cs.retract_length = code_value() ;
  6415. }
  6416. if(code_seen('F'))
  6417. {
  6418. cs.retract_feedrate = code_value()/60 ;
  6419. }
  6420. if(code_seen('Z'))
  6421. {
  6422. cs.retract_zlift = code_value() ;
  6423. }
  6424. }break;
  6425. /*!
  6426. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6427. #### Usage
  6428. M208 [ S | F ]
  6429. #### Parameters
  6430. - `S` - positive length surplus to the M207 Snnn, in mm
  6431. - `F` - feedrate, in mm/sec
  6432. */
  6433. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6434. {
  6435. if(code_seen('S'))
  6436. {
  6437. cs.retract_recover_length = code_value() ;
  6438. }
  6439. if(code_seen('F'))
  6440. {
  6441. cs.retract_recover_feedrate = code_value()/60 ;
  6442. }
  6443. }break;
  6444. /*!
  6445. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6446. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6447. #### Usage
  6448. M209 [ S ]
  6449. #### Parameters
  6450. - `S` - 1=true or 0=false
  6451. */
  6452. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6453. {
  6454. if(code_seen('S'))
  6455. {
  6456. switch(code_value_uint8())
  6457. {
  6458. case 0:
  6459. {
  6460. cs.autoretract_enabled=false;
  6461. retracted[0]=false;
  6462. #if EXTRUDERS > 1
  6463. retracted[1]=false;
  6464. #endif
  6465. #if EXTRUDERS > 2
  6466. retracted[2]=false;
  6467. #endif
  6468. }break;
  6469. case 1:
  6470. {
  6471. cs.autoretract_enabled=true;
  6472. retracted[0]=false;
  6473. #if EXTRUDERS > 1
  6474. retracted[1]=false;
  6475. #endif
  6476. #if EXTRUDERS > 2
  6477. retracted[2]=false;
  6478. #endif
  6479. }break;
  6480. default:
  6481. SERIAL_ECHO_START;
  6482. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6483. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6484. SERIAL_ECHOLNPGM("\"(1)");
  6485. }
  6486. }
  6487. }break;
  6488. #endif // FWRETRACT
  6489. #if EXTRUDERS > 1
  6490. /*!
  6491. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6492. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6493. #### Usage
  6494. M218 [ X | Y ]
  6495. #### Parameters
  6496. - `X` - X offset
  6497. - `Y` - Y offset
  6498. */
  6499. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6500. {
  6501. uint8_t extruder;
  6502. if(setTargetedHotend(218, extruder)){
  6503. break;
  6504. }
  6505. if(code_seen('X'))
  6506. {
  6507. extruder_offset[X_AXIS][extruder] = code_value();
  6508. }
  6509. if(code_seen('Y'))
  6510. {
  6511. extruder_offset[Y_AXIS][extruder] = code_value();
  6512. }
  6513. SERIAL_ECHO_START;
  6514. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6515. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6516. {
  6517. SERIAL_ECHO(" ");
  6518. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6519. SERIAL_ECHO(",");
  6520. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6521. }
  6522. SERIAL_ECHOLN("");
  6523. }break;
  6524. #endif
  6525. /*!
  6526. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6527. #### Usage
  6528. M220 [ B | S | R ]
  6529. #### Parameters
  6530. - `B` - Backup current speed factor
  6531. - `S` - Speed factor override percentage (0..100 or higher)
  6532. - `R` - Restore previous speed factor
  6533. */
  6534. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6535. {
  6536. bool codesWereSeen = false;
  6537. if (code_seen('B')) //backup current speed factor
  6538. {
  6539. saved_feedmultiply_mm = feedmultiply;
  6540. codesWereSeen = true;
  6541. }
  6542. if (code_seen('S'))
  6543. {
  6544. feedmultiply = code_value_short();
  6545. codesWereSeen = true;
  6546. }
  6547. if (code_seen('R')) //restore previous feedmultiply
  6548. {
  6549. feedmultiply = saved_feedmultiply_mm;
  6550. codesWereSeen = true;
  6551. }
  6552. if (!codesWereSeen)
  6553. {
  6554. printf_P(PSTR("%i%%\n"), feedmultiply);
  6555. }
  6556. }
  6557. break;
  6558. /*!
  6559. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6560. #### Usage
  6561. M221 [ S | T ]
  6562. #### Parameters
  6563. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6564. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6565. */
  6566. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6567. {
  6568. if (code_seen('S'))
  6569. {
  6570. int tmp_code = code_value_short();
  6571. if (code_seen('T'))
  6572. {
  6573. uint8_t extruder;
  6574. if (setTargetedHotend(221, extruder))
  6575. break;
  6576. extruder_multiply[extruder] = tmp_code;
  6577. }
  6578. else
  6579. {
  6580. extrudemultiply = tmp_code ;
  6581. }
  6582. }
  6583. else
  6584. {
  6585. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6586. }
  6587. calculate_extruder_multipliers();
  6588. }
  6589. break;
  6590. /*!
  6591. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6592. Wait until the specified pin reaches the state required
  6593. #### Usage
  6594. M226 [ P | S ]
  6595. #### Parameters
  6596. - `P` - pin number
  6597. - `S` - pin state
  6598. */
  6599. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6600. {
  6601. if(code_seen('P')){
  6602. int pin_number = code_value_short(); // pin number
  6603. int pin_state = -1; // required pin state - default is inverted
  6604. if(code_seen('S')) pin_state = code_value_short(); // required pin state
  6605. if(pin_state >= -1 && pin_state <= 1){
  6606. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  6607. {
  6608. if (((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number))
  6609. {
  6610. pin_number = -1;
  6611. break;
  6612. }
  6613. }
  6614. if (pin_number > -1)
  6615. {
  6616. int target = LOW;
  6617. st_synchronize();
  6618. pinMode(pin_number, INPUT);
  6619. switch(pin_state){
  6620. case 1:
  6621. target = HIGH;
  6622. break;
  6623. case 0:
  6624. target = LOW;
  6625. break;
  6626. case -1:
  6627. target = !digitalRead(pin_number);
  6628. break;
  6629. }
  6630. while(digitalRead(pin_number) != target){
  6631. manage_heater();
  6632. manage_inactivity();
  6633. lcd_update(0);
  6634. }
  6635. }
  6636. }
  6637. }
  6638. }
  6639. break;
  6640. #if NUM_SERVOS > 0
  6641. /*!
  6642. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6643. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6644. #### Usage
  6645. M280 [ P | S ]
  6646. #### Parameters
  6647. - `P` - Servo index (id)
  6648. - `S` - Target position
  6649. */
  6650. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6651. {
  6652. int servo_index = -1;
  6653. int servo_position = 0;
  6654. if (code_seen('P'))
  6655. servo_index = code_value();
  6656. if (code_seen('S')) {
  6657. servo_position = code_value();
  6658. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6659. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6660. servos[servo_index].attach(0);
  6661. #endif
  6662. servos[servo_index].write(servo_position);
  6663. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6664. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6665. servos[servo_index].detach();
  6666. #endif
  6667. }
  6668. else {
  6669. SERIAL_ECHO_START;
  6670. SERIAL_ECHO("Servo ");
  6671. SERIAL_ECHO(servo_index);
  6672. SERIAL_ECHOLN(" out of range");
  6673. }
  6674. }
  6675. else if (servo_index >= 0) {
  6676. SERIAL_PROTOCOL(MSG_OK);
  6677. SERIAL_PROTOCOL(" Servo ");
  6678. SERIAL_PROTOCOL(servo_index);
  6679. SERIAL_PROTOCOL(": ");
  6680. SERIAL_PROTOCOLLN(servos[servo_index].read());
  6681. }
  6682. }
  6683. break;
  6684. #endif // NUM_SERVOS > 0
  6685. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6686. /*!
  6687. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6688. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6689. #### Usage
  6690. M300 [ S | P ]
  6691. #### Parameters
  6692. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6693. - `P` - duration in milliseconds
  6694. */
  6695. case 300: // M300
  6696. {
  6697. uint16_t beepS = code_seen('S') ? code_value() : 110;
  6698. uint16_t beepP = code_seen('P') ? code_value() : 1000;
  6699. if (beepS > 0)
  6700. {
  6701. #if BEEPER > 0
  6702. Sound_MakeCustom(beepP,beepS,false);
  6703. #endif
  6704. }
  6705. else
  6706. {
  6707. _delay(beepP);
  6708. }
  6709. }
  6710. break;
  6711. #endif // M300
  6712. #ifdef PIDTEMP
  6713. /*!
  6714. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6715. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6716. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6717. #### Usage
  6718. M301 [ P | I | D | C ]
  6719. #### Parameters
  6720. - `P` - proportional (Kp)
  6721. - `I` - integral (Ki)
  6722. - `D` - derivative (Kd)
  6723. - `C` - heating power=Kc*(e_speed0)
  6724. */
  6725. case 301:
  6726. {
  6727. if(code_seen('P')) cs.Kp = code_value();
  6728. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6729. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6730. #ifdef PID_ADD_EXTRUSION_RATE
  6731. if(code_seen('C')) Kc = code_value();
  6732. #endif
  6733. updatePID();
  6734. SERIAL_PROTOCOLRPGM(MSG_OK);
  6735. SERIAL_PROTOCOLPGM(" p:");
  6736. SERIAL_PROTOCOL(cs.Kp);
  6737. SERIAL_PROTOCOLPGM(" i:");
  6738. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6739. SERIAL_PROTOCOLPGM(" d:");
  6740. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6741. #ifdef PID_ADD_EXTRUSION_RATE
  6742. SERIAL_PROTOCOLPGM(" c:");
  6743. //Kc does not have scaling applied above, or in resetting defaults
  6744. SERIAL_PROTOCOL(Kc);
  6745. #endif
  6746. SERIAL_PROTOCOLLN();
  6747. }
  6748. break;
  6749. #endif //PIDTEMP
  6750. #ifdef PIDTEMPBED
  6751. /*!
  6752. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6753. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6754. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6755. #### Usage
  6756. M304 [ P | I | D ]
  6757. #### Parameters
  6758. - `P` - proportional (Kp)
  6759. - `I` - integral (Ki)
  6760. - `D` - derivative (Kd)
  6761. */
  6762. case 304:
  6763. {
  6764. if(code_seen('P')) cs.bedKp = code_value();
  6765. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6766. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6767. updatePID();
  6768. SERIAL_PROTOCOLRPGM(MSG_OK);
  6769. SERIAL_PROTOCOLPGM(" p:");
  6770. SERIAL_PROTOCOL(cs.bedKp);
  6771. SERIAL_PROTOCOLPGM(" i:");
  6772. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6773. SERIAL_PROTOCOLPGM(" d:");
  6774. SERIAL_PROTOCOLLN(unscalePID_d(cs.bedKd));
  6775. }
  6776. break;
  6777. #endif //PIDTEMP
  6778. /*!
  6779. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6780. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6781. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6782. */
  6783. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6784. {
  6785. #ifdef CHDK
  6786. SET_OUTPUT(CHDK);
  6787. WRITE(CHDK, HIGH);
  6788. chdkHigh = _millis();
  6789. chdkActive = true;
  6790. #else
  6791. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6792. const uint8_t NUM_PULSES=16;
  6793. const float PULSE_LENGTH=0.01524;
  6794. for(int i=0; i < NUM_PULSES; i++) {
  6795. WRITE(PHOTOGRAPH_PIN, HIGH);
  6796. _delay_ms(PULSE_LENGTH);
  6797. WRITE(PHOTOGRAPH_PIN, LOW);
  6798. _delay_ms(PULSE_LENGTH);
  6799. }
  6800. _delay(7.33);
  6801. for(int i=0; i < NUM_PULSES; i++) {
  6802. WRITE(PHOTOGRAPH_PIN, HIGH);
  6803. _delay_ms(PULSE_LENGTH);
  6804. WRITE(PHOTOGRAPH_PIN, LOW);
  6805. _delay_ms(PULSE_LENGTH);
  6806. }
  6807. #endif
  6808. #endif //chdk end if
  6809. }
  6810. break;
  6811. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6812. /*!
  6813. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6814. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6815. #### Usage
  6816. M302 [ S ]
  6817. #### Parameters
  6818. - `S` - Cold extrude minimum temperature
  6819. */
  6820. case 302:
  6821. {
  6822. float temp = .0;
  6823. if (code_seen('S')) temp=code_value();
  6824. set_extrude_min_temp(temp);
  6825. }
  6826. break;
  6827. #endif
  6828. /*!
  6829. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6830. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6831. #### Usage
  6832. M303 [ E | S | C ]
  6833. #### Parameters
  6834. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6835. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6836. - `C` - Cycles, default `5`
  6837. */
  6838. case 303:
  6839. {
  6840. float temp = 150.0;
  6841. int e = 0;
  6842. int c = 5;
  6843. if (code_seen('E')) e = code_value_short();
  6844. if (e < 0)
  6845. temp = 70;
  6846. if (code_seen('S')) temp = code_value();
  6847. if (code_seen('C')) c = code_value_short();
  6848. PID_autotune(temp, e, c);
  6849. }
  6850. break;
  6851. /*!
  6852. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6853. Finishes all current moves and and thus clears the buffer.
  6854. Equivalent to `G4` with no parameters.
  6855. */
  6856. case 400:
  6857. {
  6858. st_synchronize();
  6859. }
  6860. break;
  6861. /*!
  6862. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6863. Currently three different materials are needed (default, flex and PVA).
  6864. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6865. #### Usage
  6866. M403 [ E | F ]
  6867. #### Parameters
  6868. - `E` - Extruder number. 0-indexed.
  6869. - `F` - Filament type
  6870. */
  6871. case 403:
  6872. {
  6873. // currently three different materials are needed (default, flex and PVA)
  6874. // add storing this information for different load/unload profiles etc. in the future
  6875. // firmware does not wait for "ok" from mmu
  6876. if (mmu_enabled)
  6877. {
  6878. uint8_t extruder = 255;
  6879. uint8_t filament = FILAMENT_UNDEFINED;
  6880. if(code_seen('E')) extruder = code_value_uint8();
  6881. if(code_seen('F')) filament = code_value_uint8();
  6882. mmu_set_filament_type(extruder, filament);
  6883. }
  6884. }
  6885. break;
  6886. /*!
  6887. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6888. Save current parameters to EEPROM.
  6889. */
  6890. case 500:
  6891. {
  6892. Config_StoreSettings();
  6893. }
  6894. break;
  6895. /*!
  6896. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6897. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6898. */
  6899. case 501:
  6900. {
  6901. Config_RetrieveSettings();
  6902. }
  6903. break;
  6904. /*!
  6905. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6906. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6907. */
  6908. case 502:
  6909. {
  6910. Config_ResetDefault();
  6911. }
  6912. break;
  6913. /*!
  6914. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6915. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6916. */
  6917. case 503:
  6918. {
  6919. Config_PrintSettings();
  6920. }
  6921. break;
  6922. /*!
  6923. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6924. Resets the language to English.
  6925. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6926. */
  6927. case 509:
  6928. {
  6929. lang_reset();
  6930. SERIAL_ECHO_START;
  6931. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6932. }
  6933. break;
  6934. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6935. /*!
  6936. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6937. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6938. #### Usage
  6939. M540 [ S ]
  6940. #### Parameters
  6941. - `S` - disabled=0, enabled=1
  6942. */
  6943. case 540:
  6944. {
  6945. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6946. }
  6947. break;
  6948. #endif
  6949. /*!
  6950. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6951. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6952. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6953. #### Usage
  6954. M851 [ Z ]
  6955. #### Parameters
  6956. - `Z` - Z offset probe to nozzle.
  6957. */
  6958. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6959. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6960. {
  6961. float value;
  6962. if (code_seen('Z'))
  6963. {
  6964. value = code_value();
  6965. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6966. {
  6967. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6968. SERIAL_ECHO_START;
  6969. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6970. SERIAL_PROTOCOLLN();
  6971. }
  6972. else
  6973. {
  6974. SERIAL_ECHO_START;
  6975. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6976. SERIAL_ECHORPGM(MSG_Z_MIN);
  6977. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6978. SERIAL_ECHORPGM(MSG_Z_MAX);
  6979. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6980. SERIAL_PROTOCOLLN();
  6981. }
  6982. }
  6983. else
  6984. {
  6985. SERIAL_ECHO_START;
  6986. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6987. SERIAL_ECHO(-cs.zprobe_zoffset);
  6988. SERIAL_PROTOCOLLN();
  6989. }
  6990. break;
  6991. }
  6992. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6993. /*!
  6994. ### M552 - Set IP address <a href="https://reprap.org/wiki/G-code#M552:_Set_IP_address.2C_enable.2Fdisable_network_interface">M552: Set IP address, enable/disable network interface"</a>
  6995. Sets the printer IP address that is shown in the support menu. Designed to be used with the help of host software.
  6996. If P is not specified nothing happens.
  6997. If the structure of the IP address is invalid, 0.0.0.0 is assumed and nothing is shown on the screen in the Support menu.
  6998. #### Usage
  6999. M552 [ P<IP_address> ]
  7000. #### Parameters
  7001. - `P` - The IP address in xxx.xxx.xxx.xxx format. Eg: P192.168.1.14
  7002. */
  7003. case 552:
  7004. {
  7005. if (code_seen('P'))
  7006. {
  7007. uint8_t valCnt = 0;
  7008. IP_address = 0;
  7009. do
  7010. {
  7011. *strchr_pointer = '*';
  7012. ((uint8_t*)&IP_address)[valCnt] = code_value_short();
  7013. valCnt++;
  7014. } while ((valCnt < 4) && code_seen('.'));
  7015. if (valCnt != 4)
  7016. IP_address = 0;
  7017. }
  7018. } break;
  7019. #ifdef FILAMENTCHANGEENABLE
  7020. /*!
  7021. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  7022. Initiates Filament change, it is also used during Filament Runout Sensor process.
  7023. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  7024. #### Usage
  7025. M600 [ X | Y | Z | E | L | AUTO ]
  7026. - `X` - X position, default 211
  7027. - `Y` - Y position, default 0
  7028. - `Z` - relative lift Z, default 2.
  7029. - `E` - initial retract, default -2
  7030. - `L` - later retract distance for removal, default -80
  7031. - `AUTO` - Automatically (only with MMU)
  7032. */
  7033. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  7034. {
  7035. st_synchronize();
  7036. float x_position = current_position[X_AXIS];
  7037. float y_position = current_position[Y_AXIS];
  7038. float z_shift = 0; // is it necessary to be a float?
  7039. float e_shift_init = 0;
  7040. float e_shift_late = 0;
  7041. bool automatic = false;
  7042. //Retract extruder
  7043. if(code_seen('E'))
  7044. {
  7045. e_shift_init = code_value();
  7046. }
  7047. else
  7048. {
  7049. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  7050. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  7051. #endif
  7052. }
  7053. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  7054. if (code_seen('L'))
  7055. {
  7056. e_shift_late = code_value();
  7057. }
  7058. else
  7059. {
  7060. #ifdef FILAMENTCHANGE_FINALRETRACT
  7061. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  7062. #endif
  7063. }
  7064. //Lift Z
  7065. if(code_seen('Z'))
  7066. {
  7067. z_shift = code_value();
  7068. }
  7069. else
  7070. {
  7071. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  7072. }
  7073. //Move XY to side
  7074. if(code_seen('X'))
  7075. {
  7076. x_position = code_value();
  7077. }
  7078. else
  7079. {
  7080. #ifdef FILAMENTCHANGE_XPOS
  7081. x_position = FILAMENTCHANGE_XPOS;
  7082. #endif
  7083. }
  7084. if(code_seen('Y'))
  7085. {
  7086. y_position = code_value();
  7087. }
  7088. else
  7089. {
  7090. #ifdef FILAMENTCHANGE_YPOS
  7091. y_position = FILAMENTCHANGE_YPOS ;
  7092. #endif
  7093. }
  7094. if (mmu_enabled && code_seen_P(PSTR("AUTO")))
  7095. automatic = true;
  7096. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  7097. }
  7098. break;
  7099. #endif //FILAMENTCHANGEENABLE
  7100. /*!
  7101. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  7102. */
  7103. /*!
  7104. ### M125 - Pause print (TODO: not implemented)
  7105. */
  7106. /*!
  7107. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  7108. */
  7109. case 25:
  7110. case 601:
  7111. {
  7112. if (!isPrintPaused) {
  7113. st_synchronize();
  7114. ClearToSend(); //send OK even before the command finishes executing because we want to make sure it is not skipped because of cmdqueue_pop_front();
  7115. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  7116. lcd_pause_print();
  7117. }
  7118. }
  7119. break;
  7120. /*!
  7121. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  7122. */
  7123. case 602:
  7124. {
  7125. if (isPrintPaused) lcd_resume_print();
  7126. }
  7127. break;
  7128. /*!
  7129. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  7130. */
  7131. case 603: {
  7132. lcd_print_stop();
  7133. }
  7134. break;
  7135. #ifdef PINDA_THERMISTOR
  7136. /*!
  7137. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  7138. Wait for PINDA thermistor to reach target temperature
  7139. #### Usage
  7140. M860 [ S ]
  7141. #### Parameters
  7142. - `S` - Target temperature
  7143. */
  7144. case 860:
  7145. {
  7146. int set_target_pinda = 0;
  7147. if (code_seen('S')) {
  7148. set_target_pinda = code_value_short();
  7149. }
  7150. else {
  7151. break;
  7152. }
  7153. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  7154. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  7155. SERIAL_PROTOCOLLN(set_target_pinda);
  7156. codenum = _millis();
  7157. cancel_heatup = false;
  7158. bool is_pinda_cooling = false;
  7159. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  7160. is_pinda_cooling = true;
  7161. }
  7162. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  7163. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  7164. {
  7165. SERIAL_PROTOCOLPGM("P:");
  7166. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  7167. SERIAL_PROTOCOL('/');
  7168. SERIAL_PROTOCOLLN(set_target_pinda);
  7169. codenum = _millis();
  7170. }
  7171. manage_heater();
  7172. manage_inactivity();
  7173. lcd_update(0);
  7174. }
  7175. LCD_MESSAGERPGM(MSG_OK);
  7176. break;
  7177. }
  7178. /*!
  7179. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  7180. Set compensation ustep value `S` for compensation table index `I`.
  7181. #### Usage
  7182. M861 [ ? | ! | Z | S | I ]
  7183. #### Parameters
  7184. - `?` - Print current EEPROM offset values
  7185. - `!` - Set factory default values
  7186. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7187. - `S` - Microsteps
  7188. - `I` - Table index
  7189. */
  7190. case 861: {
  7191. const char * const _header = PSTR("index, temp, ustep, um");
  7192. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  7193. int16_t usteps = 0;
  7194. SERIAL_PROTOCOLPGM("PINDA cal status: ");
  7195. SERIAL_PROTOCOLLN(calibration_status_pinda());
  7196. SERIAL_PROTOCOLLNRPGM(_header);
  7197. for (uint8_t i = 0; i < 6; i++)
  7198. {
  7199. if(i > 0) {
  7200. usteps = eeprom_read_word((uint16_t*) EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  7201. }
  7202. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7203. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7204. SERIAL_PROTOCOLPGM(", ");
  7205. SERIAL_PROTOCOL(35 + (i * 5));
  7206. SERIAL_PROTOCOLPGM(", ");
  7207. SERIAL_PROTOCOL(usteps);
  7208. SERIAL_PROTOCOLPGM(", ");
  7209. SERIAL_PROTOCOLLN(mm * 1000);
  7210. }
  7211. }
  7212. else if (code_seen('!')) { // ! - Set factory default values
  7213. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7214. int16_t z_shift = 8; //40C - 20um - 8usteps
  7215. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT, z_shift);
  7216. z_shift = 24; //45C - 60um - 24usteps
  7217. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 1, z_shift);
  7218. z_shift = 48; //50C - 120um - 48usteps
  7219. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 2, z_shift);
  7220. z_shift = 80; //55C - 200um - 80usteps
  7221. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 3, z_shift);
  7222. z_shift = 120; //60C - 300um - 120usteps
  7223. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 4, z_shift);
  7224. SERIAL_PROTOCOLLNPGM("factory restored");
  7225. }
  7226. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7227. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7228. int16_t z_shift = 0;
  7229. for (uint8_t i = 0; i < 5; i++) {
  7230. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  7231. }
  7232. SERIAL_PROTOCOLLNPGM("zerorized");
  7233. }
  7234. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  7235. int16_t usteps = code_value_short();
  7236. if (code_seen('I')) {
  7237. uint8_t index = code_value_uint8();
  7238. if (index < 5) {
  7239. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + index, usteps);
  7240. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7241. SERIAL_PROTOCOLLNRPGM(_header);
  7242. for (uint8_t i = 0; i < 6; i++)
  7243. {
  7244. usteps = 0;
  7245. if (i > 0) {
  7246. usteps = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  7247. }
  7248. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7249. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7250. SERIAL_PROTOCOLPGM(", ");
  7251. SERIAL_PROTOCOL(35 + (i * 5));
  7252. SERIAL_PROTOCOLPGM(", ");
  7253. SERIAL_PROTOCOL(usteps);
  7254. SERIAL_PROTOCOLPGM(", ");
  7255. SERIAL_PROTOCOLLN(mm * 1000);
  7256. }
  7257. }
  7258. }
  7259. }
  7260. else {
  7261. SERIAL_PROTOCOLLNPGM("no valid command");
  7262. }
  7263. } break;
  7264. #endif //PINDA_THERMISTOR
  7265. /*!
  7266. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7267. Checks the parameters of the printer and gcode and performs compatibility check
  7268. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7269. - M862.2 { P<model_code> | Q }
  7270. - M862.3 { P"<model_name>" | Q }
  7271. - M862.4 { P<fw_version> | Q }
  7272. - M862.5 { P<gcode_level> | Q }
  7273. When run with P<> argument, the check is performed against the input value.
  7274. When run with Q argument, the current value is shown.
  7275. M862.3 accepts text identifiers of printer types too.
  7276. The syntax of M862.3 is (note the quotes around the type):
  7277. M862.3 P "MK3S"
  7278. Accepted printer type identifiers and their numeric counterparts:
  7279. - MK1 (100)
  7280. - MK2 (200)
  7281. - MK2MM (201)
  7282. - MK2S (202)
  7283. - MK2SMM (203)
  7284. - MK2.5 (250)
  7285. - MK2.5MMU2 (20250)
  7286. - MK2.5S (252)
  7287. - MK2.5SMMU2S (20252)
  7288. - MK3 (300)
  7289. - MK3MMU2 (20300)
  7290. - MK3S (302)
  7291. - MK3SMMU2S (20302)
  7292. */
  7293. case 862: // M862: print checking
  7294. float nDummy;
  7295. uint8_t nCommand;
  7296. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7297. switch((ClPrintChecking)nCommand)
  7298. {
  7299. case ClPrintChecking::_Nozzle: // ~ .1
  7300. uint16_t nDiameter;
  7301. if(code_seen('P'))
  7302. {
  7303. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7304. nozzle_diameter_check(nDiameter);
  7305. }
  7306. /*
  7307. else if(code_seen('S')&&farm_mode)
  7308. {
  7309. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7310. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7311. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7312. }
  7313. */
  7314. else if(code_seen('Q'))
  7315. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7316. break;
  7317. case ClPrintChecking::_Model: // ~ .2
  7318. if(code_seen('P'))
  7319. {
  7320. uint16_t nPrinterModel;
  7321. nPrinterModel=(uint16_t)code_value_long();
  7322. printer_model_check(nPrinterModel);
  7323. }
  7324. else if(code_seen('Q'))
  7325. SERIAL_PROTOCOLLN(nPrinterType);
  7326. break;
  7327. case ClPrintChecking::_Smodel: // ~ .3
  7328. if(code_seen('P'))
  7329. printer_smodel_check(strchr_pointer);
  7330. else if(code_seen('Q'))
  7331. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7332. break;
  7333. case ClPrintChecking::_Version: // ~ .4
  7334. if(code_seen('P'))
  7335. fw_version_check(++strchr_pointer);
  7336. else if(code_seen('Q'))
  7337. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  7338. break;
  7339. case ClPrintChecking::_Gcode: // ~ .5
  7340. if(code_seen('P'))
  7341. {
  7342. uint16_t nGcodeLevel;
  7343. nGcodeLevel=(uint16_t)code_value_long();
  7344. gcode_level_check(nGcodeLevel);
  7345. }
  7346. else if(code_seen('Q'))
  7347. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7348. break;
  7349. }
  7350. break;
  7351. #ifdef LIN_ADVANCE
  7352. /*!
  7353. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7354. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7355. #### Usage
  7356. M900 [ K | R | W | H | D]
  7357. #### Parameters
  7358. - `K` - Advance K factor
  7359. - `R` - Set ratio directly (overrides WH/D)
  7360. - `W` - Width
  7361. - `H` - Height
  7362. - `D` - Diameter Set ratio from WH/D
  7363. */
  7364. case 900:
  7365. gcode_M900();
  7366. break;
  7367. #endif
  7368. /*!
  7369. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7370. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7371. M907 has no effect when the experimental Extruder motor current scaling mode is active (that applies to farm printing as well)
  7372. #### Usage
  7373. M907 [ X | Y | Z | E | B | S ]
  7374. #### Parameters
  7375. - `X` - X motor driver
  7376. - `Y` - Y motor driver
  7377. - `Z` - Z motor driver
  7378. - `E` - Extruder motor driver
  7379. - `B` - Second Extruder motor driver
  7380. - `S` - All motors
  7381. */
  7382. case 907:
  7383. {
  7384. #ifdef TMC2130
  7385. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7386. for (uint_least8_t i = 0; i < NUM_AXIS; i++){
  7387. if(code_seen(axis_codes[i])){
  7388. if( i == E_AXIS && FarmOrUserECool() ){
  7389. SERIAL_ECHORPGM(eMotorCurrentScalingEnabled);
  7390. SERIAL_ECHOLNPGM(", M907 E ignored");
  7391. continue;
  7392. }
  7393. long cur_mA = code_value_long();
  7394. uint8_t val = tmc2130_cur2val(cur_mA);
  7395. tmc2130_set_current_h(i, val);
  7396. tmc2130_set_current_r(i, val);
  7397. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7398. }
  7399. }
  7400. #else //TMC2130
  7401. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7402. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7403. if(code_seen('B')) st_current_set(4,code_value());
  7404. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7405. #endif
  7406. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7407. if(code_seen('X')) st_current_set(0, code_value());
  7408. #endif
  7409. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7410. if(code_seen('Z')) st_current_set(1, code_value());
  7411. #endif
  7412. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7413. if(code_seen('E')) st_current_set(2, code_value());
  7414. #endif
  7415. #endif //TMC2130
  7416. }
  7417. break;
  7418. /*!
  7419. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7420. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7421. #### Usage
  7422. M908 [ P | S ]
  7423. #### Parameters
  7424. - `P` - channel
  7425. - `S` - current
  7426. */
  7427. case 908:
  7428. {
  7429. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7430. uint8_t channel,current;
  7431. if(code_seen('P')) channel=code_value();
  7432. if(code_seen('S')) current=code_value();
  7433. digitalPotWrite(channel, current);
  7434. #endif
  7435. }
  7436. break;
  7437. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7438. /*!
  7439. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7440. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7441. */
  7442. case 910:
  7443. {
  7444. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7445. }
  7446. break;
  7447. /*!
  7448. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7449. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7450. #### Usage
  7451. M911 [ X | Y | Z | E ]
  7452. #### Parameters
  7453. - `X` - X stepper driver holding current value
  7454. - `Y` - Y stepper driver holding current value
  7455. - `Z` - Z stepper driver holding current value
  7456. - `E` - Extruder stepper driver holding current value
  7457. */
  7458. case 911:
  7459. {
  7460. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7461. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7462. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7463. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7464. }
  7465. break;
  7466. /*!
  7467. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7468. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7469. #### Usage
  7470. M912 [ X | Y | Z | E ]
  7471. #### Parameters
  7472. - `X` - X stepper driver running current value
  7473. - `Y` - Y stepper driver running current value
  7474. - `Z` - Z stepper driver running current value
  7475. - `E` - Extruder stepper driver running current value
  7476. */
  7477. case 912:
  7478. {
  7479. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7480. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7481. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7482. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7483. }
  7484. break;
  7485. /*!
  7486. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7487. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7488. Shows TMC2130 currents.
  7489. */
  7490. case 913:
  7491. {
  7492. tmc2130_print_currents();
  7493. }
  7494. break;
  7495. /*!
  7496. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7497. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7498. */
  7499. case 914:
  7500. {
  7501. tmc2130_mode = TMC2130_MODE_NORMAL;
  7502. update_mode_profile();
  7503. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7504. }
  7505. break;
  7506. /*!
  7507. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7508. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7509. */
  7510. case 915:
  7511. {
  7512. tmc2130_mode = TMC2130_MODE_SILENT;
  7513. update_mode_profile();
  7514. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7515. }
  7516. break;
  7517. /*!
  7518. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7519. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7520. #### Usage
  7521. M916 [ X | Y | Z | E ]
  7522. #### Parameters
  7523. - `X` - X stepper driver stallguard sensitivity threshold value
  7524. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7525. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7526. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7527. */
  7528. case 916:
  7529. {
  7530. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7531. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7532. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7533. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7534. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7535. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7536. }
  7537. break;
  7538. /*!
  7539. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7540. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7541. #### Usage
  7542. M917 [ X | Y | Z | E ]
  7543. #### Parameters
  7544. - `X` - X stepper driver PWM amplitude offset value
  7545. - `Y` - Y stepper driver PWM amplitude offset value
  7546. - `Z` - Z stepper driver PWM amplitude offset value
  7547. - `E` - Extruder stepper driver PWM amplitude offset value
  7548. */
  7549. case 917:
  7550. {
  7551. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7552. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7553. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7554. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7555. }
  7556. break;
  7557. /*!
  7558. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7559. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7560. #### Usage
  7561. M918 [ X | Y | Z | E ]
  7562. #### Parameters
  7563. - `X` - X stepper driver PWM amplitude gradient value
  7564. - `Y` - Y stepper driver PWM amplitude gradient value
  7565. - `Z` - Z stepper driver PWM amplitude gradient value
  7566. - `E` - Extruder stepper driver PWM amplitude gradient value
  7567. */
  7568. case 918:
  7569. {
  7570. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7571. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7572. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7573. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7574. }
  7575. break;
  7576. #endif //TMC2130_SERVICE_CODES_M910_M918
  7577. /*!
  7578. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7579. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7580. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7581. #### Usage
  7582. M350 [ X | Y | Z | E | B | S ]
  7583. #### Parameters
  7584. - `X` - X new resolution
  7585. - `Y` - Y new resolution
  7586. - `Z` - Z new resolution
  7587. - `E` - E new resolution
  7588. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7589. - `B` - Second extruder new resolution
  7590. - `S` - All axes new resolution
  7591. */
  7592. case 350:
  7593. {
  7594. #ifdef TMC2130
  7595. for (uint_least8_t i=0; i<NUM_AXIS; i++)
  7596. {
  7597. if(code_seen(axis_codes[i]))
  7598. {
  7599. uint16_t res_new = code_value();
  7600. #ifdef ALLOW_ALL_MRES
  7601. bool res_valid = res_new > 0 && res_new <= 256 && !(res_new & (res_new - 1)); // must be a power of two
  7602. #else
  7603. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7604. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7605. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7606. #endif
  7607. if (res_valid)
  7608. {
  7609. st_synchronize();
  7610. uint16_t res = tmc2130_get_res(i);
  7611. tmc2130_set_res(i, res_new);
  7612. cs.axis_ustep_resolution[i] = res_new;
  7613. if (res_new > res)
  7614. {
  7615. uint16_t fac = (res_new / res);
  7616. cs.axis_steps_per_unit[i] *= fac;
  7617. position[i] *= fac;
  7618. }
  7619. else
  7620. {
  7621. uint16_t fac = (res / res_new);
  7622. cs.axis_steps_per_unit[i] /= fac;
  7623. position[i] /= fac;
  7624. }
  7625. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7626. if (i == E_AXIS)
  7627. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7628. #endif
  7629. }
  7630. }
  7631. }
  7632. #else //TMC2130
  7633. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7634. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7635. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7636. if(code_seen('B')) microstep_mode(4,code_value());
  7637. microstep_readings();
  7638. #endif
  7639. #endif //TMC2130
  7640. }
  7641. break;
  7642. /*!
  7643. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7644. Toggle MS1 MS2 pins directly.
  7645. #### Usage
  7646. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7647. #### Parameters
  7648. - `X` - Update X axis
  7649. - `Y` - Update Y axis
  7650. - `Z` - Update Z axis
  7651. - `E` - Update E axis
  7652. - `S` - which MSx pin to toggle
  7653. - `B` - new pin value
  7654. */
  7655. case 351:
  7656. {
  7657. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7658. if(code_seen('S')) switch((int)code_value())
  7659. {
  7660. case 1:
  7661. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7662. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7663. break;
  7664. case 2:
  7665. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7666. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7667. break;
  7668. }
  7669. microstep_readings();
  7670. #endif
  7671. }
  7672. break;
  7673. /*!
  7674. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7675. */
  7676. case 701:
  7677. {
  7678. if (mmu_enabled && code_seen('E'))
  7679. tmp_extruder = code_value_uint8();
  7680. gcode_M701();
  7681. }
  7682. break;
  7683. /*!
  7684. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7685. #### Usage
  7686. M702 [ U | C ]
  7687. #### Parameters
  7688. - `C` - Unload just current filament
  7689. - without any parameters unload all filaments
  7690. */
  7691. case 702:
  7692. {
  7693. if (code_seen('C')) {
  7694. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7695. }
  7696. else {
  7697. if(mmu_enabled) extr_unload(); //! unload current filament
  7698. else unload_filament();
  7699. }
  7700. }
  7701. break;
  7702. /*!
  7703. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7704. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7705. */
  7706. case 999:
  7707. Stopped = false;
  7708. lcd_reset_alert_level();
  7709. gcode_LastN = Stopped_gcode_LastN;
  7710. FlushSerialRequestResend();
  7711. break;
  7712. /*!
  7713. #### End of M-Commands
  7714. */
  7715. default:
  7716. printf_P(MSG_UNKNOWN_CODE, 'M', cmdbuffer + bufindr + CMDHDRSIZE);
  7717. }
  7718. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7719. mcode_in_progress = 0;
  7720. }
  7721. }
  7722. // end if(code_seen('M')) (end of M codes)
  7723. /*!
  7724. -----------------------------------------------------------------------------------------
  7725. # T Codes
  7726. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7727. #### For MMU_V2:
  7728. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7729. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7730. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7731. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7732. */
  7733. else if(code_seen('T'))
  7734. {
  7735. static const char duplicate_Tcode_ignored[] PROGMEM = "Duplicate T-code ignored.";
  7736. int index;
  7737. bool load_to_nozzle = false;
  7738. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7739. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7740. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7741. SERIAL_ECHOLNPGM("Invalid T code.");
  7742. }
  7743. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7744. if (mmu_enabled)
  7745. {
  7746. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7747. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7748. {
  7749. puts_P(duplicate_Tcode_ignored);
  7750. }
  7751. else
  7752. {
  7753. st_synchronize();
  7754. mmu_command(MmuCmd::T0 + tmp_extruder);
  7755. manage_response(true, true, MMU_TCODE_MOVE);
  7756. }
  7757. }
  7758. }
  7759. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7760. if (mmu_enabled)
  7761. {
  7762. st_synchronize();
  7763. mmu_continue_loading(usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal));
  7764. mmu_extruder = tmp_extruder; //filament change is finished
  7765. mmu_load_to_nozzle();
  7766. }
  7767. }
  7768. else {
  7769. if (*(strchr_pointer + index) == '?')
  7770. {
  7771. if(mmu_enabled)
  7772. {
  7773. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7774. load_to_nozzle = true;
  7775. } else
  7776. {
  7777. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7778. }
  7779. }
  7780. else {
  7781. tmp_extruder = code_value();
  7782. if (mmu_enabled && lcd_autoDepleteEnabled())
  7783. {
  7784. tmp_extruder = ad_getAlternative(tmp_extruder);
  7785. }
  7786. }
  7787. st_synchronize();
  7788. if (mmu_enabled)
  7789. {
  7790. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7791. {
  7792. puts_P(duplicate_Tcode_ignored);
  7793. }
  7794. else
  7795. {
  7796. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7797. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7798. {
  7799. mmu_command(MmuCmd::K0 + tmp_extruder);
  7800. manage_response(true, true, MMU_UNLOAD_MOVE);
  7801. }
  7802. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7803. mmu_command(MmuCmd::T0 + tmp_extruder);
  7804. manage_response(true, true, MMU_TCODE_MOVE);
  7805. mmu_continue_loading(usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal));
  7806. mmu_extruder = tmp_extruder; //filament change is finished
  7807. if (load_to_nozzle)// for single material usage with mmu
  7808. {
  7809. mmu_load_to_nozzle();
  7810. }
  7811. }
  7812. }
  7813. else
  7814. {
  7815. if (tmp_extruder >= EXTRUDERS) {
  7816. SERIAL_ECHO_START;
  7817. SERIAL_ECHO('T');
  7818. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7819. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7820. }
  7821. else {
  7822. #if EXTRUDERS > 1
  7823. bool make_move = false;
  7824. #endif
  7825. if (code_seen('F')) {
  7826. #if EXTRUDERS > 1
  7827. make_move = true;
  7828. #endif
  7829. next_feedrate = code_value();
  7830. if (next_feedrate > 0.0) {
  7831. feedrate = next_feedrate;
  7832. }
  7833. }
  7834. #if EXTRUDERS > 1
  7835. if (tmp_extruder != active_extruder) {
  7836. // Save current position to return to after applying extruder offset
  7837. set_destination_to_current();
  7838. // Offset extruder (only by XY)
  7839. int i;
  7840. for (i = 0; i < 2; i++) {
  7841. current_position[i] = current_position[i] -
  7842. extruder_offset[i][active_extruder] +
  7843. extruder_offset[i][tmp_extruder];
  7844. }
  7845. // Set the new active extruder and position
  7846. active_extruder = tmp_extruder;
  7847. plan_set_position_curposXYZE();
  7848. // Move to the old position if 'F' was in the parameters
  7849. if (make_move && Stopped == false) {
  7850. prepare_move();
  7851. }
  7852. }
  7853. #endif
  7854. SERIAL_ECHO_START;
  7855. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7856. SERIAL_PROTOCOLLN((int)active_extruder);
  7857. }
  7858. }
  7859. }
  7860. } // end if(code_seen('T')) (end of T codes)
  7861. /*!
  7862. #### End of T-Codes
  7863. */
  7864. /**
  7865. *---------------------------------------------------------------------------------
  7866. *# D codes
  7867. */
  7868. else if (code_seen('D')) // D codes (debug)
  7869. {
  7870. switch(code_value_short())
  7871. {
  7872. /*!
  7873. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7874. */
  7875. case -1:
  7876. dcode__1(); break;
  7877. #ifdef DEBUG_DCODES
  7878. /*!
  7879. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7880. #### Usage
  7881. D0 [ B ]
  7882. #### Parameters
  7883. - `B` - Bootloader
  7884. */
  7885. case 0:
  7886. dcode_0(); break;
  7887. /*!
  7888. *
  7889. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7890. D1
  7891. *
  7892. */
  7893. case 1:
  7894. dcode_1(); break;
  7895. #endif
  7896. #if defined DEBUG_DCODE2 || defined DEBUG_DCODES
  7897. /*!
  7898. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7899. This command can be used without any additional parameters. It will read the entire RAM.
  7900. #### Usage
  7901. D2 [ A | C | X ]
  7902. #### Parameters
  7903. - `A` - Address (x0000-x1fff)
  7904. - `C` - Count (1-8192)
  7905. - `X` - Data
  7906. #### Notes
  7907. - The hex address needs to be lowercase without the 0 before the x
  7908. - Count is decimal
  7909. - The hex data needs to be lowercase
  7910. */
  7911. case 2:
  7912. dcode_2(); break;
  7913. #endif //DEBUG_DCODES
  7914. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7915. /*!
  7916. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7917. This command can be used without any additional parameters. It will read the entire eeprom.
  7918. #### Usage
  7919. D3 [ A | C | X ]
  7920. #### Parameters
  7921. - `A` - Address (x0000-x0fff)
  7922. - `C` - Count (1-4096)
  7923. - `X` - Data (hex)
  7924. #### Notes
  7925. - The hex address needs to be lowercase without the 0 before the x
  7926. - Count is decimal
  7927. - The hex data needs to be lowercase
  7928. */
  7929. case 3:
  7930. dcode_3(); break;
  7931. #endif //DEBUG_DCODE3
  7932. #ifdef DEBUG_DCODES
  7933. /*!
  7934. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7935. To read the digital value of a pin you need only to define the pin number.
  7936. #### Usage
  7937. D4 [ P | F | V ]
  7938. #### Parameters
  7939. - `P` - Pin (0-255)
  7940. - `F` - Function in/out (0/1)
  7941. - `V` - Value (0/1)
  7942. */
  7943. case 4:
  7944. dcode_4(); break;
  7945. #endif //DEBUG_DCODES
  7946. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7947. /*!
  7948. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7949. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7950. #### Usage
  7951. D5 [ A | C | X | E ]
  7952. #### Parameters
  7953. - `A` - Address (x00000-x3ffff)
  7954. - `C` - Count (1-8192)
  7955. - `X` - Data (hex)
  7956. - `E` - Erase
  7957. #### Notes
  7958. - The hex address needs to be lowercase without the 0 before the x
  7959. - Count is decimal
  7960. - The hex data needs to be lowercase
  7961. */
  7962. case 5:
  7963. dcode_5(); break;
  7964. #endif //DEBUG_DCODE5
  7965. #if defined DEBUG_DCODE6 || defined DEBUG_DCODES
  7966. /*!
  7967. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7968. Reserved
  7969. */
  7970. case 6:
  7971. dcode_6(); break;
  7972. #endif
  7973. #ifdef DEBUG_DCODES
  7974. /*!
  7975. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7976. Reserved
  7977. */
  7978. case 7:
  7979. dcode_7(); break;
  7980. /*!
  7981. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7982. #### Usage
  7983. D8 [ ? | ! | P | Z ]
  7984. #### Parameters
  7985. - `?` - Read PINDA temperature shift values
  7986. - `!` - Reset PINDA temperature shift values to default
  7987. - `P` - Pinda temperature [C]
  7988. - `Z` - Z Offset [mm]
  7989. */
  7990. case 8:
  7991. dcode_8(); break;
  7992. /*!
  7993. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7994. #### Usage
  7995. D9 [ I | V ]
  7996. #### Parameters
  7997. - `I` - ADC channel index
  7998. - `0` - Heater 0 temperature
  7999. - `1` - Heater 1 temperature
  8000. - `2` - Bed temperature
  8001. - `3` - PINDA temperature
  8002. - `4` - PWR voltage
  8003. - `5` - Ambient temperature
  8004. - `6` - BED voltage
  8005. - `V` Value to be written as simulated
  8006. */
  8007. case 9:
  8008. dcode_9(); break;
  8009. /*!
  8010. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  8011. */
  8012. case 10:
  8013. dcode_10(); break;
  8014. /*!
  8015. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  8016. Writes the current time in the log file.
  8017. */
  8018. #endif //DEBUG_DCODES
  8019. #ifdef XFLASH_DUMP
  8020. /*!
  8021. ### D20 - Generate an offline crash dump <a href="https://reprap.org/wiki/G-code#D20:_Generate_an_offline_crash_dump">D20: Generate an offline crash dump</a>
  8022. Generate a crash dump for later retrival.
  8023. #### Usage
  8024. D20 [E]
  8025. ### Parameters
  8026. - `E` - Perform an emergency crash dump (resets the printer).
  8027. ### Notes
  8028. - A crash dump can be later recovered with D21, or cleared with D22.
  8029. - An emergency crash dump includes register data, but will cause the printer to reset after the dump
  8030. is completed.
  8031. */
  8032. case 20: {
  8033. dcode_20();
  8034. break;
  8035. };
  8036. /*!
  8037. ### D21 - Print crash dump to serial <a href="https://reprap.org/wiki/G-code#D21:_Print_crash_dump_to_serial">D21: Print crash dump to serial</a>
  8038. Output the complete crash dump (if present) to the serial.
  8039. #### Usage
  8040. D21
  8041. ### Notes
  8042. - The starting address can vary between builds, but it's always at the beginning of the data section.
  8043. */
  8044. case 21: {
  8045. dcode_21();
  8046. break;
  8047. };
  8048. /*!
  8049. ### D22 - Clear crash dump state <a href="https://reprap.org/wiki/G-code#D22:_Clear_crash_dump_state">D22: Clear crash dump state</a>
  8050. Clear an existing internal crash dump.
  8051. #### Usage
  8052. D22
  8053. */
  8054. case 22: {
  8055. dcode_22();
  8056. break;
  8057. };
  8058. #endif //XFLASH_DUMP
  8059. #ifdef EMERGENCY_SERIAL_DUMP
  8060. /*!
  8061. ### D23 - Request emergency dump on serial <a href="https://reprap.org/wiki/G-code#D23:_Request_emergency_dump_on_serial">D23: Request emergency dump on serial</a>
  8062. On boards without offline dump support, request online dumps to the serial port on firmware faults.
  8063. When online dumps are enabled, the FW will dump memory on the serial before resetting.
  8064. #### Usage
  8065. D23 [E] [R]
  8066. #### Parameters
  8067. - `E` - Perform an emergency crash dump (resets the printer).
  8068. - `R` - Disable online dumps.
  8069. */
  8070. case 23: {
  8071. dcode_23();
  8072. break;
  8073. };
  8074. #endif
  8075. #ifdef HEATBED_ANALYSIS
  8076. /*!
  8077. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  8078. This command will log data to SD card file "mesh.txt".
  8079. #### Usage
  8080. D80 [ E | F | G | H | I | J ]
  8081. #### Parameters
  8082. - `E` - Dimension X (default 40)
  8083. - `F` - Dimention Y (default 40)
  8084. - `G` - Points X (default 40)
  8085. - `H` - Points Y (default 40)
  8086. - `I` - Offset X (default 74)
  8087. - `J` - Offset Y (default 34)
  8088. */
  8089. case 80:
  8090. dcode_80(); break;
  8091. /*!
  8092. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  8093. This command will log data to SD card file "wldsd.txt".
  8094. #### Usage
  8095. D81 [ E | F | G | H | I | J ]
  8096. #### Parameters
  8097. - `E` - Dimension X (default 40)
  8098. - `F` - Dimention Y (default 40)
  8099. - `G` - Points X (default 40)
  8100. - `H` - Points Y (default 40)
  8101. - `I` - Offset X (default 74)
  8102. - `J` - Offset Y (default 34)
  8103. */
  8104. case 81:
  8105. dcode_81(); break;
  8106. #endif //HEATBED_ANALYSIS
  8107. #ifdef DEBUG_DCODES
  8108. /*!
  8109. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  8110. */
  8111. case 106:
  8112. dcode_106(); break;
  8113. #ifdef TMC2130
  8114. /*!
  8115. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  8116. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  8117. #### Usage
  8118. D2130 [ Axis | Command | Subcommand | Value ]
  8119. #### Parameters
  8120. - Axis
  8121. - `X` - X stepper driver
  8122. - `Y` - Y stepper driver
  8123. - `Z` - Z stepper driver
  8124. - `E` - Extruder stepper driver
  8125. - Commands
  8126. - `0` - Current off
  8127. - `1` - Current on
  8128. - `+` - Single step
  8129. - `-` - Single step oposite direction
  8130. - `NNN` - Value sereval steps
  8131. - `?` - Read register
  8132. - Subcommands for read register
  8133. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  8134. - `step` - Step
  8135. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  8136. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  8137. - `wave` - Microstep linearity compensation curve
  8138. - `!` - Set register
  8139. - Subcommands for set register
  8140. - `mres` - Micro step resolution
  8141. - `step` - Step
  8142. - `wave` - Microstep linearity compensation curve
  8143. - Values for set register
  8144. - `0, 180 --> 250` - Off
  8145. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  8146. - `@` - Home calibrate axis
  8147. Examples:
  8148. D2130E?wave
  8149. Print extruder microstep linearity compensation curve
  8150. D2130E!wave0
  8151. Disable extruder linearity compensation curve, (sine curve is used)
  8152. D2130E!wave220
  8153. (sin(x))^1.1 extruder microstep compensation curve used
  8154. Notes:
  8155. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  8156. *
  8157. */
  8158. case 2130:
  8159. dcode_2130(); break;
  8160. #endif //TMC2130
  8161. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  8162. /*!
  8163. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  8164. #### Usage
  8165. D9125 [ ? | ! | R | X | Y | L ]
  8166. #### Parameters
  8167. - `?` - Print values
  8168. - `!` - Print values
  8169. - `R` - Resolution. Not active in code
  8170. - `X` - X values
  8171. - `Y` - Y values
  8172. - `L` - Activate filament sensor log
  8173. */
  8174. case 9125:
  8175. dcode_9125(); break;
  8176. #endif //FILAMENT_SENSOR
  8177. #endif //DEBUG_DCODES
  8178. default:
  8179. printf_P(MSG_UNKNOWN_CODE, 'D', cmdbuffer + bufindr + CMDHDRSIZE);
  8180. }
  8181. }
  8182. else
  8183. {
  8184. SERIAL_ECHO_START;
  8185. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  8186. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  8187. SERIAL_ECHOLNPGM("\"(2)");
  8188. }
  8189. KEEPALIVE_STATE(NOT_BUSY);
  8190. ClearToSend();
  8191. }
  8192. /*!
  8193. #### End of D-Codes
  8194. */
  8195. /** @defgroup GCodes G-Code List
  8196. */
  8197. // ---------------------------------------------------
  8198. void FlushSerialRequestResend()
  8199. {
  8200. //char cmdbuffer[bufindr][100]="Resend:";
  8201. MYSERIAL.flush();
  8202. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  8203. }
  8204. // Confirm the execution of a command, if sent from a serial line.
  8205. // Execution of a command from a SD card will not be confirmed.
  8206. void ClearToSend()
  8207. {
  8208. previous_millis_cmd.start();
  8209. if (buflen && ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  8210. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  8211. }
  8212. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8213. void update_currents() {
  8214. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  8215. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  8216. float tmp_motor[3];
  8217. //SERIAL_ECHOLNPGM("Currents updated: ");
  8218. if (destination[Z_AXIS] < Z_SILENT) {
  8219. //SERIAL_ECHOLNPGM("LOW");
  8220. for (uint8_t i = 0; i < 3; i++) {
  8221. st_current_set(i, current_low[i]);
  8222. /*MYSERIAL.print(int(i));
  8223. SERIAL_ECHOPGM(": ");
  8224. MYSERIAL.println(current_low[i]);*/
  8225. }
  8226. }
  8227. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  8228. //SERIAL_ECHOLNPGM("HIGH");
  8229. for (uint8_t i = 0; i < 3; i++) {
  8230. st_current_set(i, current_high[i]);
  8231. /*MYSERIAL.print(int(i));
  8232. SERIAL_ECHOPGM(": ");
  8233. MYSERIAL.println(current_high[i]);*/
  8234. }
  8235. }
  8236. else {
  8237. for (uint8_t i = 0; i < 3; i++) {
  8238. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  8239. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  8240. st_current_set(i, tmp_motor[i]);
  8241. /*MYSERIAL.print(int(i));
  8242. SERIAL_ECHOPGM(": ");
  8243. MYSERIAL.println(tmp_motor[i]);*/
  8244. }
  8245. }
  8246. }
  8247. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8248. void get_coordinates()
  8249. {
  8250. bool seen[4]={false,false,false,false};
  8251. for(int8_t i=0; i < NUM_AXIS; i++) {
  8252. if(code_seen(axis_codes[i]))
  8253. {
  8254. bool relative = axis_relative_modes & (1 << i);
  8255. destination[i] = code_value();
  8256. if (i == E_AXIS) {
  8257. float emult = extruder_multiplier[active_extruder];
  8258. if (emult != 1.) {
  8259. if (! relative) {
  8260. destination[i] -= current_position[i];
  8261. relative = true;
  8262. }
  8263. destination[i] *= emult;
  8264. }
  8265. }
  8266. if (relative)
  8267. destination[i] += current_position[i];
  8268. seen[i]=true;
  8269. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8270. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  8271. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8272. }
  8273. else destination[i] = current_position[i]; //Are these else lines really needed?
  8274. }
  8275. if(code_seen('F')) {
  8276. next_feedrate = code_value();
  8277. if(next_feedrate > 0.0) feedrate = next_feedrate;
  8278. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  8279. {
  8280. // float e_max_speed =
  8281. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  8282. }
  8283. }
  8284. }
  8285. void get_arc_coordinates()
  8286. {
  8287. #ifdef SF_ARC_FIX
  8288. bool relative_mode_backup = relative_mode;
  8289. relative_mode = true;
  8290. #endif
  8291. get_coordinates();
  8292. #ifdef SF_ARC_FIX
  8293. relative_mode=relative_mode_backup;
  8294. #endif
  8295. if(code_seen('I')) {
  8296. offset[0] = code_value();
  8297. }
  8298. else {
  8299. offset[0] = 0.0;
  8300. }
  8301. if(code_seen('J')) {
  8302. offset[1] = code_value();
  8303. }
  8304. else {
  8305. offset[1] = 0.0;
  8306. }
  8307. }
  8308. void clamp_to_software_endstops(float target[3])
  8309. {
  8310. #ifdef DEBUG_DISABLE_SWLIMITS
  8311. return;
  8312. #endif //DEBUG_DISABLE_SWLIMITS
  8313. world2machine_clamp(target[0], target[1]);
  8314. // Clamp the Z coordinate.
  8315. if (min_software_endstops) {
  8316. float negative_z_offset = 0;
  8317. #ifdef ENABLE_AUTO_BED_LEVELING
  8318. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8319. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8320. #endif
  8321. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8322. }
  8323. if (max_software_endstops) {
  8324. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8325. }
  8326. }
  8327. #ifdef MESH_BED_LEVELING
  8328. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8329. float dx = x - current_position[X_AXIS];
  8330. float dy = y - current_position[Y_AXIS];
  8331. int n_segments = 0;
  8332. if (mbl.active) {
  8333. float len = fabs(dx) + fabs(dy);
  8334. if (len > 0)
  8335. // Split to 3cm segments or shorter.
  8336. n_segments = int(ceil(len / 30.f));
  8337. }
  8338. if (n_segments > 1) {
  8339. // In a multi-segment move explicitly set the final target in the plan
  8340. // as the move will be recalculated in it's entirety
  8341. float gcode_target[NUM_AXIS];
  8342. gcode_target[X_AXIS] = x;
  8343. gcode_target[Y_AXIS] = y;
  8344. gcode_target[Z_AXIS] = z;
  8345. gcode_target[E_AXIS] = e;
  8346. float dz = z - current_position[Z_AXIS];
  8347. float de = e - current_position[E_AXIS];
  8348. for (int i = 1; i < n_segments; ++ i) {
  8349. float t = float(i) / float(n_segments);
  8350. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8351. current_position[Y_AXIS] + t * dy,
  8352. current_position[Z_AXIS] + t * dz,
  8353. current_position[E_AXIS] + t * de,
  8354. feed_rate, extruder, gcode_target);
  8355. if (waiting_inside_plan_buffer_line_print_aborted)
  8356. return;
  8357. }
  8358. }
  8359. // The rest of the path.
  8360. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8361. }
  8362. #endif // MESH_BED_LEVELING
  8363. void prepare_move()
  8364. {
  8365. clamp_to_software_endstops(destination);
  8366. previous_millis_cmd.start();
  8367. // Do not use feedmultiply for E or Z only moves
  8368. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8369. plan_buffer_line_destinationXYZE(feedrate/60);
  8370. }
  8371. else {
  8372. #ifdef MESH_BED_LEVELING
  8373. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8374. #else
  8375. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8376. #endif
  8377. }
  8378. set_current_to_destination();
  8379. }
  8380. void prepare_arc_move(bool isclockwise) {
  8381. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8382. // Trace the arc
  8383. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8384. // As far as the parser is concerned, the position is now == target. In reality the
  8385. // motion control system might still be processing the action and the real tool position
  8386. // in any intermediate location.
  8387. set_current_to_destination();
  8388. previous_millis_cmd.start();
  8389. }
  8390. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8391. #if defined(FAN_PIN)
  8392. #if CONTROLLERFAN_PIN == FAN_PIN
  8393. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8394. #endif
  8395. #endif
  8396. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8397. unsigned long lastMotorCheck = 0;
  8398. void controllerFan()
  8399. {
  8400. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8401. {
  8402. lastMotorCheck = _millis();
  8403. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8404. #if EXTRUDERS > 2
  8405. || !READ(E2_ENABLE_PIN)
  8406. #endif
  8407. #if EXTRUDER > 1
  8408. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8409. || !READ(X2_ENABLE_PIN)
  8410. #endif
  8411. || !READ(E1_ENABLE_PIN)
  8412. #endif
  8413. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8414. {
  8415. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8416. }
  8417. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8418. {
  8419. digitalWrite(CONTROLLERFAN_PIN, 0);
  8420. analogWrite(CONTROLLERFAN_PIN, 0);
  8421. }
  8422. else
  8423. {
  8424. // allows digital or PWM fan output to be used (see M42 handling)
  8425. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8426. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8427. }
  8428. }
  8429. }
  8430. #endif
  8431. #ifdef SAFETYTIMER
  8432. /**
  8433. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8434. *
  8435. * Full screen blocking notification message is shown after heater turning off.
  8436. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8437. * damage print.
  8438. *
  8439. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8440. */
  8441. static void handleSafetyTimer()
  8442. {
  8443. #if (EXTRUDERS > 1)
  8444. #error Implemented only for one extruder.
  8445. #endif //(EXTRUDERS > 1)
  8446. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8447. {
  8448. safetyTimer.stop();
  8449. }
  8450. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8451. {
  8452. safetyTimer.start();
  8453. }
  8454. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8455. {
  8456. setTargetBed(0);
  8457. setAllTargetHotends(0);
  8458. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=20 r=4
  8459. }
  8460. }
  8461. #endif //SAFETYTIMER
  8462. #ifdef IR_SENSOR_ANALOG
  8463. #define FS_CHECK_COUNT 16
  8464. /// Switching mechanism of the fsensor type.
  8465. /// Called from 2 spots which have a very similar behavior
  8466. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8467. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8468. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8469. bool bTemp = (!CHECK_ALL_HEATERS);
  8470. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8471. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8472. bTemp = bTemp && fsensor_enabled;
  8473. if (bTemp) {
  8474. nFSCheckCount++;
  8475. if (nFSCheckCount > FS_CHECK_COUNT) {
  8476. nFSCheckCount = 0; // not necessary
  8477. oFsensorPCB = switchTo;
  8478. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8479. printf_IRSensorAnalogBoardChange();
  8480. lcd_setstatuspgm(statusLineTxt_P);
  8481. }
  8482. } else {
  8483. nFSCheckCount = 0;
  8484. }
  8485. }
  8486. #endif
  8487. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8488. {
  8489. #ifdef FILAMENT_SENSOR
  8490. bool bInhibitFlag = false;
  8491. #ifdef IR_SENSOR_ANALOG
  8492. static uint16_t nFSCheckCount=0;
  8493. #endif // IR_SENSOR_ANALOG
  8494. if (mmu_enabled == false)
  8495. {
  8496. //-// if (mcode_in_progress != 600) //M600 not in progress
  8497. if (!PRINTER_ACTIVE) bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); //Block Filament sensor actions if PRINTER is not active and Support::SensorInfo menu active
  8498. #ifdef IR_SENSOR_ANALOG
  8499. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Block Filament sensor actions if Settings::HWsetup::FSdetect menu active
  8500. #endif // IR_SENSOR_ANALOG
  8501. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag) && (menu_menu != lcd_move_e)) //M600 not in progress, preHeat @ autoLoad menu not active
  8502. {
  8503. if (!moves_planned() && !IS_SD_PRINTING && !usb_timer.running() && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8504. {
  8505. #ifdef IR_SENSOR_ANALOG
  8506. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8507. // detect min-max, some long term sliding window for filtration may be added
  8508. // avoiding floating point operations, thus computing in raw
  8509. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8510. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8511. #if 0 // Start: IR Sensor debug info
  8512. { // debug print
  8513. static uint16_t lastVolt = ~0U;
  8514. if( current_voltage_raw_IR != lastVolt ){
  8515. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8516. lastVolt = current_voltage_raw_IR;
  8517. }
  8518. }
  8519. #endif // End: IR Sensor debug info
  8520. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8521. //! to be detected as the new fsensor
  8522. //! We can either fake it by extending the detection window to a looooong time
  8523. //! or do some other countermeasures
  8524. //! what we want to detect:
  8525. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8526. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8527. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8528. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8529. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8530. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8531. ){
  8532. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////MSG_FS_V_04_OR_NEWER c=18
  8533. }
  8534. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8535. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8536. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8537. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8538. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8539. ){
  8540. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////MSG_FS_V_03_OR_OLDER c=18
  8541. }
  8542. #endif // IR_SENSOR_ANALOG
  8543. if (fsensor_check_autoload())
  8544. {
  8545. #ifdef PAT9125
  8546. fsensor_autoload_check_stop();
  8547. #endif //PAT9125
  8548. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8549. if(0)
  8550. {
  8551. Sound_MakeCustom(50,1000,false);
  8552. loading_flag = true;
  8553. enquecommand_front_P((PSTR("M701")));
  8554. }
  8555. else
  8556. {
  8557. /*
  8558. lcd_update_enable(false);
  8559. show_preheat_nozzle_warning();
  8560. lcd_update_enable(true);
  8561. */
  8562. eFilamentAction=FilamentAction::AutoLoad;
  8563. bFilamentFirstRun=false;
  8564. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8565. bFilamentPreheatState=true;
  8566. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8567. menu_submenu(mFilamentItemForce);
  8568. } else {
  8569. menu_submenu(lcd_generic_preheat_menu);
  8570. lcd_timeoutToStatus.start();
  8571. }
  8572. }
  8573. }
  8574. }
  8575. else
  8576. {
  8577. #ifdef PAT9125
  8578. fsensor_autoload_check_stop();
  8579. #endif //PAT9125
  8580. if (fsensor_enabled && !saved_printing)
  8581. fsensor_update();
  8582. }
  8583. }
  8584. }
  8585. #endif //FILAMENT_SENSOR
  8586. #ifdef SAFETYTIMER
  8587. handleSafetyTimer();
  8588. #endif //SAFETYTIMER
  8589. #if defined(KILL_PIN) && KILL_PIN > -1
  8590. static int killCount = 0; // make the inactivity button a bit less responsive
  8591. const int KILL_DELAY = 10000;
  8592. #endif
  8593. if(buflen < (BUFSIZE-1)){
  8594. get_command();
  8595. }
  8596. if(previous_millis_cmd.expired(max_inactive_time))
  8597. if(max_inactive_time)
  8598. kill(_n("Inactivity Shutdown"), 4);
  8599. if(stepper_inactive_time) {
  8600. if(previous_millis_cmd.expired(stepper_inactive_time))
  8601. {
  8602. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8603. disable_x();
  8604. disable_y();
  8605. disable_z();
  8606. disable_e0();
  8607. disable_e1();
  8608. disable_e2();
  8609. }
  8610. }
  8611. }
  8612. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8613. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8614. {
  8615. chdkActive = false;
  8616. WRITE(CHDK, LOW);
  8617. }
  8618. #endif
  8619. #if defined(KILL_PIN) && KILL_PIN > -1
  8620. // Check if the kill button was pressed and wait just in case it was an accidental
  8621. // key kill key press
  8622. // -------------------------------------------------------------------------------
  8623. if( 0 == READ(KILL_PIN) )
  8624. {
  8625. killCount++;
  8626. }
  8627. else if (killCount > 0)
  8628. {
  8629. killCount--;
  8630. }
  8631. // Exceeded threshold and we can confirm that it was not accidental
  8632. // KILL the machine
  8633. // ----------------------------------------------------------------
  8634. if ( killCount >= KILL_DELAY)
  8635. {
  8636. kill(NULL, 5);
  8637. }
  8638. #endif
  8639. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8640. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8641. #endif
  8642. #ifdef EXTRUDER_RUNOUT_PREVENT
  8643. if(previous_millis_cmd.expired(EXTRUDER_RUNOUT_SECONDS*1000))
  8644. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8645. {
  8646. bool oldstatus=READ(E0_ENABLE_PIN);
  8647. enable_e0();
  8648. float oldepos=current_position[E_AXIS];
  8649. float oldedes=destination[E_AXIS];
  8650. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8651. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8652. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8653. current_position[E_AXIS]=oldepos;
  8654. destination[E_AXIS]=oldedes;
  8655. plan_set_e_position(oldepos);
  8656. previous_millis_cmd.start();
  8657. st_synchronize();
  8658. WRITE(E0_ENABLE_PIN,oldstatus);
  8659. }
  8660. #endif
  8661. check_axes_activity();
  8662. mmu_loop();
  8663. // handle longpress
  8664. if(lcd_longpress_trigger)
  8665. {
  8666. // long press is not possible in modal mode, wait until ready
  8667. if (lcd_longpress_func && lcd_update_enabled)
  8668. {
  8669. lcd_longpress_func();
  8670. lcd_longpress_trigger = 0;
  8671. }
  8672. }
  8673. #if defined(AUTO_REPORT)
  8674. host_autoreport();
  8675. #endif //AUTO_REPORT
  8676. host_keepalive();
  8677. }
  8678. void kill(const char *full_screen_message, unsigned char id)
  8679. {
  8680. printf_P(_N("KILL: %d\n"), id);
  8681. //return;
  8682. cli(); // Stop interrupts
  8683. disable_heater();
  8684. disable_x();
  8685. // SERIAL_ECHOLNPGM("kill - disable Y");
  8686. disable_y();
  8687. poweroff_z();
  8688. disable_e0();
  8689. disable_e1();
  8690. disable_e2();
  8691. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8692. pinMode(PS_ON_PIN,INPUT);
  8693. #endif
  8694. SERIAL_ERROR_START;
  8695. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8696. if (full_screen_message != NULL) {
  8697. SERIAL_ERRORLNRPGM(full_screen_message);
  8698. lcd_display_message_fullscreen_P(full_screen_message);
  8699. } else {
  8700. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8701. }
  8702. // FMC small patch to update the LCD before ending
  8703. sei(); // enable interrupts
  8704. for ( int i=5; i--; lcd_update(0))
  8705. {
  8706. _delay(200);
  8707. }
  8708. cli(); // disable interrupts
  8709. suicide();
  8710. while(1)
  8711. {
  8712. #ifdef WATCHDOG
  8713. wdt_reset();
  8714. #endif //WATCHDOG
  8715. /* Intentionally left empty */
  8716. } // Wait for reset
  8717. }
  8718. void UnconditionalStop()
  8719. {
  8720. CRITICAL_SECTION_START;
  8721. // Disable all heaters and unroll the temperature wait loop stack
  8722. disable_heater();
  8723. cancel_heatup = true;
  8724. // Clear any saved printing state
  8725. cancel_saved_printing();
  8726. // Abort the planner
  8727. planner_abort_hard();
  8728. // Reset the queue
  8729. cmdqueue_reset();
  8730. cmdqueue_serial_disabled = false;
  8731. // Reset the sd status
  8732. card.sdprinting = false;
  8733. card.closefile();
  8734. st_reset_timer();
  8735. CRITICAL_SECTION_END;
  8736. }
  8737. // Stop: Emergency stop used by overtemp functions which allows recovery
  8738. //
  8739. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8740. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8741. // manually started from scratch with the LCD.
  8742. //
  8743. // Note that the current instruction is completely discarded, so resuming from Stop()
  8744. // will introduce either over/under extrusion on the current segment, and will not
  8745. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8746. // the addition of disabling the headers) could allow true recovery in the future.
  8747. void Stop()
  8748. {
  8749. // Keep disabling heaters
  8750. disable_heater();
  8751. // Call the regular stop function if that's the first time during a new print
  8752. if(Stopped == false) {
  8753. Stopped = true;
  8754. lcd_print_stop();
  8755. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8756. // Eventually report the stopped status (though this is usually overridden by a
  8757. // higher-priority alert status message)
  8758. SERIAL_ERROR_START;
  8759. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8760. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8761. }
  8762. // Return to the status screen to stop any pending menu action which could have been
  8763. // started by the user while stuck in the Stopped state. This also ensures the NEW
  8764. // error is immediately shown.
  8765. if (menu_menu != lcd_status_screen)
  8766. lcd_return_to_status();
  8767. }
  8768. bool IsStopped() { return Stopped; };
  8769. void finishAndDisableSteppers()
  8770. {
  8771. st_synchronize();
  8772. disable_x();
  8773. disable_y();
  8774. disable_z();
  8775. disable_e0();
  8776. disable_e1();
  8777. disable_e2();
  8778. #ifndef LA_NOCOMPAT
  8779. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8780. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8781. // state for the next print.
  8782. la10c_reset();
  8783. #endif
  8784. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  8785. print_time_remaining_init();
  8786. }
  8787. #ifdef FAST_PWM_FAN
  8788. void setPwmFrequency(uint8_t pin, int val)
  8789. {
  8790. val &= 0x07;
  8791. switch(digitalPinToTimer(pin))
  8792. {
  8793. #if defined(TCCR0A)
  8794. case TIMER0A:
  8795. case TIMER0B:
  8796. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8797. // TCCR0B |= val;
  8798. break;
  8799. #endif
  8800. #if defined(TCCR1A)
  8801. case TIMER1A:
  8802. case TIMER1B:
  8803. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8804. // TCCR1B |= val;
  8805. break;
  8806. #endif
  8807. #if defined(TCCR2)
  8808. case TIMER2:
  8809. case TIMER2:
  8810. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8811. TCCR2 |= val;
  8812. break;
  8813. #endif
  8814. #if defined(TCCR2A)
  8815. case TIMER2A:
  8816. case TIMER2B:
  8817. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8818. TCCR2B |= val;
  8819. break;
  8820. #endif
  8821. #if defined(TCCR3A)
  8822. case TIMER3A:
  8823. case TIMER3B:
  8824. case TIMER3C:
  8825. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8826. TCCR3B |= val;
  8827. break;
  8828. #endif
  8829. #if defined(TCCR4A)
  8830. case TIMER4A:
  8831. case TIMER4B:
  8832. case TIMER4C:
  8833. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8834. TCCR4B |= val;
  8835. break;
  8836. #endif
  8837. #if defined(TCCR5A)
  8838. case TIMER5A:
  8839. case TIMER5B:
  8840. case TIMER5C:
  8841. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8842. TCCR5B |= val;
  8843. break;
  8844. #endif
  8845. }
  8846. }
  8847. #endif //FAST_PWM_FAN
  8848. //! @brief Get and validate extruder number
  8849. //!
  8850. //! If it is not specified, active_extruder is returned in parameter extruder.
  8851. //! @param [in] code M code number
  8852. //! @param [out] extruder
  8853. //! @return error
  8854. //! @retval true Invalid extruder specified in T code
  8855. //! @retval false Valid extruder specified in T code, or not specifiead
  8856. bool setTargetedHotend(int code, uint8_t &extruder)
  8857. {
  8858. extruder = active_extruder;
  8859. if(code_seen('T')) {
  8860. extruder = code_value_uint8();
  8861. if(extruder >= EXTRUDERS) {
  8862. SERIAL_ECHO_START;
  8863. switch(code){
  8864. case 104:
  8865. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8866. break;
  8867. case 105:
  8868. SERIAL_ECHORPGM(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8869. break;
  8870. case 109:
  8871. SERIAL_ECHORPGM(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8872. break;
  8873. case 218:
  8874. SERIAL_ECHORPGM(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8875. break;
  8876. case 221:
  8877. SERIAL_ECHORPGM(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8878. break;
  8879. }
  8880. SERIAL_PROTOCOLLN((int)extruder);
  8881. return true;
  8882. }
  8883. }
  8884. return false;
  8885. }
  8886. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8887. {
  8888. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8889. {
  8890. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8891. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8892. }
  8893. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8894. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8895. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8896. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8897. total_filament_used = 0;
  8898. }
  8899. float calculate_extruder_multiplier(float diameter) {
  8900. float out = 1.f;
  8901. if (cs.volumetric_enabled && diameter > 0.f) {
  8902. float area = M_PI * diameter * diameter * 0.25;
  8903. out = 1.f / area;
  8904. }
  8905. if (extrudemultiply != 100)
  8906. out *= float(extrudemultiply) * 0.01f;
  8907. return out;
  8908. }
  8909. void calculate_extruder_multipliers() {
  8910. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8911. #if EXTRUDERS > 1
  8912. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8913. #if EXTRUDERS > 2
  8914. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8915. #endif
  8916. #endif
  8917. }
  8918. void delay_keep_alive(unsigned int ms)
  8919. {
  8920. for (;;) {
  8921. manage_heater();
  8922. // Manage inactivity, but don't disable steppers on timeout.
  8923. manage_inactivity(true);
  8924. lcd_update(0);
  8925. if (ms == 0)
  8926. break;
  8927. else if (ms >= 50) {
  8928. _delay(50);
  8929. ms -= 50;
  8930. } else {
  8931. _delay(ms);
  8932. ms = 0;
  8933. }
  8934. }
  8935. }
  8936. static void wait_for_heater(long codenum, uint8_t extruder) {
  8937. if (!degTargetHotend(extruder))
  8938. return;
  8939. #ifdef TEMP_RESIDENCY_TIME
  8940. long residencyStart;
  8941. residencyStart = -1;
  8942. /* continue to loop until we have reached the target temp
  8943. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8944. cancel_heatup = false;
  8945. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8946. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8947. #else
  8948. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8949. #endif //TEMP_RESIDENCY_TIME
  8950. if ((_millis() - codenum) > 1000UL)
  8951. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8952. if (!farm_mode) {
  8953. SERIAL_PROTOCOLPGM("T:");
  8954. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8955. SERIAL_PROTOCOLPGM(" E:");
  8956. SERIAL_PROTOCOL((int)extruder);
  8957. #ifdef TEMP_RESIDENCY_TIME
  8958. SERIAL_PROTOCOLPGM(" W:");
  8959. if (residencyStart > -1)
  8960. {
  8961. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8962. SERIAL_PROTOCOLLN(codenum);
  8963. }
  8964. else
  8965. {
  8966. SERIAL_PROTOCOLLN('?');
  8967. }
  8968. }
  8969. #else
  8970. SERIAL_PROTOCOLLN();
  8971. #endif
  8972. codenum = _millis();
  8973. }
  8974. manage_heater();
  8975. manage_inactivity(true); //do not disable steppers
  8976. lcd_update(0);
  8977. #ifdef TEMP_RESIDENCY_TIME
  8978. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8979. or when current temp falls outside the hysteresis after target temp was reached */
  8980. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8981. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8982. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8983. {
  8984. residencyStart = _millis();
  8985. }
  8986. #endif //TEMP_RESIDENCY_TIME
  8987. }
  8988. }
  8989. void check_babystep()
  8990. {
  8991. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8992. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8993. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8994. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8995. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8996. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8997. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8998. babystep_z);
  8999. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  9000. lcd_update_enable(true);
  9001. }
  9002. }
  9003. #ifdef HEATBED_ANALYSIS
  9004. void d_setup()
  9005. {
  9006. pinMode(D_DATACLOCK, INPUT_PULLUP);
  9007. pinMode(D_DATA, INPUT_PULLUP);
  9008. pinMode(D_REQUIRE, OUTPUT);
  9009. digitalWrite(D_REQUIRE, HIGH);
  9010. }
  9011. float d_ReadData()
  9012. {
  9013. int digit[13];
  9014. String mergeOutput;
  9015. float output;
  9016. digitalWrite(D_REQUIRE, HIGH);
  9017. for (int i = 0; i<13; i++)
  9018. {
  9019. for (int j = 0; j < 4; j++)
  9020. {
  9021. while (digitalRead(D_DATACLOCK) == LOW) {}
  9022. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9023. bitWrite(digit[i], j, digitalRead(D_DATA));
  9024. }
  9025. }
  9026. digitalWrite(D_REQUIRE, LOW);
  9027. mergeOutput = "";
  9028. output = 0;
  9029. for (int r = 5; r <= 10; r++) //Merge digits
  9030. {
  9031. mergeOutput += digit[r];
  9032. }
  9033. output = mergeOutput.toFloat();
  9034. if (digit[4] == 8) //Handle sign
  9035. {
  9036. output *= -1;
  9037. }
  9038. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9039. {
  9040. output /= 10;
  9041. }
  9042. return output;
  9043. }
  9044. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9045. int t1 = 0;
  9046. int t_delay = 0;
  9047. int digit[13];
  9048. int m;
  9049. char str[3];
  9050. //String mergeOutput;
  9051. char mergeOutput[15];
  9052. float output;
  9053. int mesh_point = 0; //index number of calibration point
  9054. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9055. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9056. float mesh_home_z_search = 4;
  9057. float measure_z_height = 0.2f;
  9058. float row[x_points_num];
  9059. int ix = 0;
  9060. int iy = 0;
  9061. const char* filename_wldsd = "mesh.txt";
  9062. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  9063. char numb_wldsd[8]; // (" -A.BCD" + null)
  9064. #ifdef MICROMETER_LOGGING
  9065. d_setup();
  9066. #endif //MICROMETER_LOGGING
  9067. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9068. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9069. unsigned int custom_message_type_old = custom_message_type;
  9070. unsigned int custom_message_state_old = custom_message_state;
  9071. custom_message_type = CustomMsg::MeshBedLeveling;
  9072. custom_message_state = (x_points_num * y_points_num) + 10;
  9073. lcd_update(1);
  9074. //mbl.reset();
  9075. babystep_undo();
  9076. card.openFile(filename_wldsd, false);
  9077. /*destination[Z_AXIS] = mesh_home_z_search;
  9078. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  9079. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9080. for(int8_t i=0; i < NUM_AXIS; i++) {
  9081. current_position[i] = destination[i];
  9082. }
  9083. st_synchronize();
  9084. */
  9085. destination[Z_AXIS] = measure_z_height;
  9086. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9087. for(int8_t i=0; i < NUM_AXIS; i++) {
  9088. current_position[i] = destination[i];
  9089. }
  9090. st_synchronize();
  9091. /*int l_feedmultiply = */setup_for_endstop_move(false);
  9092. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9093. SERIAL_PROTOCOL(x_points_num);
  9094. SERIAL_PROTOCOLPGM(",");
  9095. SERIAL_PROTOCOL(y_points_num);
  9096. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9097. SERIAL_PROTOCOL(mesh_home_z_search);
  9098. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9099. SERIAL_PROTOCOL(x_dimension);
  9100. SERIAL_PROTOCOLPGM(",");
  9101. SERIAL_PROTOCOL(y_dimension);
  9102. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9103. while (mesh_point != x_points_num * y_points_num) {
  9104. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9105. iy = mesh_point / x_points_num;
  9106. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9107. float z0 = 0.f;
  9108. /*destination[Z_AXIS] = mesh_home_z_search;
  9109. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  9110. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9111. for(int8_t i=0; i < NUM_AXIS; i++) {
  9112. current_position[i] = destination[i];
  9113. }
  9114. st_synchronize();*/
  9115. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9116. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9117. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  9118. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  9119. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  9120. set_current_to_destination();
  9121. st_synchronize();
  9122. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9123. delay_keep_alive(1000);
  9124. #ifdef MICROMETER_LOGGING
  9125. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9126. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9127. //strcat(data_wldsd, numb_wldsd);
  9128. //MYSERIAL.println(data_wldsd);
  9129. //delay(1000);
  9130. //delay(3000);
  9131. //t1 = millis();
  9132. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9133. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9134. memset(digit, 0, sizeof(digit));
  9135. //cli();
  9136. digitalWrite(D_REQUIRE, LOW);
  9137. for (int i = 0; i<13; i++)
  9138. {
  9139. //t1 = millis();
  9140. for (int j = 0; j < 4; j++)
  9141. {
  9142. while (digitalRead(D_DATACLOCK) == LOW) {}
  9143. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9144. //printf_P(PSTR("Done %d\n"), j);
  9145. bitWrite(digit[i], j, digitalRead(D_DATA));
  9146. }
  9147. //t_delay = (millis() - t1);
  9148. //SERIAL_PROTOCOLPGM(" ");
  9149. //SERIAL_PROTOCOL_F(t_delay, 5);
  9150. //SERIAL_PROTOCOLPGM(" ");
  9151. }
  9152. //sei();
  9153. digitalWrite(D_REQUIRE, HIGH);
  9154. mergeOutput[0] = '\0';
  9155. output = 0;
  9156. for (int r = 5; r <= 10; r++) //Merge digits
  9157. {
  9158. sprintf(str, "%d", digit[r]);
  9159. strcat(mergeOutput, str);
  9160. }
  9161. output = atof(mergeOutput);
  9162. if (digit[4] == 8) //Handle sign
  9163. {
  9164. output *= -1;
  9165. }
  9166. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9167. {
  9168. output *= 0.1;
  9169. }
  9170. //output = d_ReadData();
  9171. //row[ix] = current_position[Z_AXIS];
  9172. //row[ix] = d_ReadData();
  9173. row[ix] = output;
  9174. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9175. memset(data_wldsd, 0, sizeof(data_wldsd));
  9176. for (int i = 0; i < x_points_num; i++) {
  9177. SERIAL_PROTOCOLPGM(" ");
  9178. SERIAL_PROTOCOL_F(row[i], 5);
  9179. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9180. dtostrf(row[i], 7, 3, numb_wldsd);
  9181. strcat(data_wldsd, numb_wldsd);
  9182. }
  9183. card.write_command(data_wldsd);
  9184. SERIAL_PROTOCOLPGM("\n");
  9185. }
  9186. custom_message_state--;
  9187. mesh_point++;
  9188. lcd_update(1);
  9189. }
  9190. #endif //MICROMETER_LOGGING
  9191. card.closefile();
  9192. //clean_up_after_endstop_move(l_feedmultiply);
  9193. }
  9194. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9195. int t1 = 0;
  9196. int t_delay = 0;
  9197. int digit[13];
  9198. int m;
  9199. char str[3];
  9200. //String mergeOutput;
  9201. char mergeOutput[15];
  9202. float output;
  9203. int mesh_point = 0; //index number of calibration point
  9204. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9205. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9206. float mesh_home_z_search = 4;
  9207. float row[x_points_num];
  9208. int ix = 0;
  9209. int iy = 0;
  9210. const char* filename_wldsd = "wldsd.txt";
  9211. char data_wldsd[70];
  9212. char numb_wldsd[10];
  9213. d_setup();
  9214. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  9215. // We don't know where we are! HOME!
  9216. // Push the commands to the front of the message queue in the reverse order!
  9217. // There shall be always enough space reserved for these commands.
  9218. repeatcommand_front(); // repeat G80 with all its parameters
  9219. enquecommand_front_P(G28W0);
  9220. enquecommand_front_P((PSTR("G1 Z5")));
  9221. return;
  9222. }
  9223. unsigned int custom_message_type_old = custom_message_type;
  9224. unsigned int custom_message_state_old = custom_message_state;
  9225. custom_message_type = CustomMsg::MeshBedLeveling;
  9226. custom_message_state = (x_points_num * y_points_num) + 10;
  9227. lcd_update(1);
  9228. mbl.reset();
  9229. babystep_undo();
  9230. card.openFile(filename_wldsd, false);
  9231. current_position[Z_AXIS] = mesh_home_z_search;
  9232. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  9233. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9234. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9235. int l_feedmultiply = setup_for_endstop_move(false);
  9236. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9237. SERIAL_PROTOCOL(x_points_num);
  9238. SERIAL_PROTOCOLPGM(",");
  9239. SERIAL_PROTOCOL(y_points_num);
  9240. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9241. SERIAL_PROTOCOL(mesh_home_z_search);
  9242. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9243. SERIAL_PROTOCOL(x_dimension);
  9244. SERIAL_PROTOCOLPGM(",");
  9245. SERIAL_PROTOCOL(y_dimension);
  9246. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9247. while (mesh_point != x_points_num * y_points_num) {
  9248. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9249. iy = mesh_point / x_points_num;
  9250. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9251. float z0 = 0.f;
  9252. current_position[Z_AXIS] = mesh_home_z_search;
  9253. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  9254. st_synchronize();
  9255. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9256. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9257. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  9258. st_synchronize();
  9259. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  9260. break;
  9261. card.closefile();
  9262. }
  9263. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9264. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9265. //strcat(data_wldsd, numb_wldsd);
  9266. //MYSERIAL.println(data_wldsd);
  9267. //_delay(1000);
  9268. //_delay(3000);
  9269. //t1 = _millis();
  9270. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9271. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9272. memset(digit, 0, sizeof(digit));
  9273. //cli();
  9274. digitalWrite(D_REQUIRE, LOW);
  9275. for (int i = 0; i<13; i++)
  9276. {
  9277. //t1 = _millis();
  9278. for (int j = 0; j < 4; j++)
  9279. {
  9280. while (digitalRead(D_DATACLOCK) == LOW) {}
  9281. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9282. bitWrite(digit[i], j, digitalRead(D_DATA));
  9283. }
  9284. //t_delay = (_millis() - t1);
  9285. //SERIAL_PROTOCOLPGM(" ");
  9286. //SERIAL_PROTOCOL_F(t_delay, 5);
  9287. //SERIAL_PROTOCOLPGM(" ");
  9288. }
  9289. //sei();
  9290. digitalWrite(D_REQUIRE, HIGH);
  9291. mergeOutput[0] = '\0';
  9292. output = 0;
  9293. for (int r = 5; r <= 10; r++) //Merge digits
  9294. {
  9295. sprintf(str, "%d", digit[r]);
  9296. strcat(mergeOutput, str);
  9297. }
  9298. output = atof(mergeOutput);
  9299. if (digit[4] == 8) //Handle sign
  9300. {
  9301. output *= -1;
  9302. }
  9303. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9304. {
  9305. output *= 0.1;
  9306. }
  9307. //output = d_ReadData();
  9308. //row[ix] = current_position[Z_AXIS];
  9309. memset(data_wldsd, 0, sizeof(data_wldsd));
  9310. for (int i = 0; i <3; i++) {
  9311. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9312. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9313. strcat(data_wldsd, numb_wldsd);
  9314. strcat(data_wldsd, ";");
  9315. }
  9316. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9317. dtostrf(output, 8, 5, numb_wldsd);
  9318. strcat(data_wldsd, numb_wldsd);
  9319. //strcat(data_wldsd, ";");
  9320. card.write_command(data_wldsd);
  9321. //row[ix] = d_ReadData();
  9322. row[ix] = output; // current_position[Z_AXIS];
  9323. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9324. for (int i = 0; i < x_points_num; i++) {
  9325. SERIAL_PROTOCOLPGM(" ");
  9326. SERIAL_PROTOCOL_F(row[i], 5);
  9327. }
  9328. SERIAL_PROTOCOLPGM("\n");
  9329. }
  9330. custom_message_state--;
  9331. mesh_point++;
  9332. lcd_update(1);
  9333. }
  9334. card.closefile();
  9335. clean_up_after_endstop_move(l_feedmultiply);
  9336. }
  9337. #endif //HEATBED_ANALYSIS
  9338. #ifndef PINDA_THERMISTOR
  9339. static void temp_compensation_start() {
  9340. custom_message_type = CustomMsg::TempCompPreheat;
  9341. custom_message_state = PINDA_HEAT_T + 1;
  9342. lcd_update(2);
  9343. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9344. current_position[E_AXIS] -= default_retraction;
  9345. }
  9346. plan_buffer_line_curposXYZE(400, active_extruder);
  9347. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9348. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9349. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9350. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9351. st_synchronize();
  9352. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9353. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9354. delay_keep_alive(1000);
  9355. custom_message_state = PINDA_HEAT_T - i;
  9356. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9357. else lcd_update(1);
  9358. }
  9359. custom_message_type = CustomMsg::Status;
  9360. custom_message_state = 0;
  9361. }
  9362. static void temp_compensation_apply() {
  9363. int i_add;
  9364. int z_shift = 0;
  9365. float z_shift_mm;
  9366. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9367. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9368. i_add = (target_temperature_bed - 60) / 10;
  9369. z_shift = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i_add);
  9370. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9371. }else {
  9372. //interpolation
  9373. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9374. }
  9375. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9377. st_synchronize();
  9378. plan_set_z_position(current_position[Z_AXIS]);
  9379. }
  9380. else {
  9381. //we have no temp compensation data
  9382. }
  9383. }
  9384. #endif //ndef PINDA_THERMISTOR
  9385. float temp_comp_interpolation(float inp_temperature) {
  9386. //cubic spline interpolation
  9387. int n, i, j;
  9388. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9389. int shift[10];
  9390. int temp_C[10];
  9391. n = 6; //number of measured points
  9392. shift[0] = 0;
  9393. for (i = 0; i < n; i++) {
  9394. if (i > 0) {
  9395. //read shift in steps from EEPROM
  9396. shift[i] = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  9397. }
  9398. temp_C[i] = 50 + i * 10; //temperature in C
  9399. #ifdef PINDA_THERMISTOR
  9400. constexpr int start_compensating_temp = 35;
  9401. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9402. #ifdef SUPERPINDA_SUPPORT
  9403. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9404. #endif //SUPERPINDA_SUPPORT
  9405. #else
  9406. temp_C[i] = 50 + i * 10; //temperature in C
  9407. #endif
  9408. x[i] = (float)temp_C[i];
  9409. f[i] = (float)shift[i];
  9410. }
  9411. if (inp_temperature < x[0]) return 0;
  9412. for (i = n - 1; i>0; i--) {
  9413. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9414. h[i - 1] = x[i] - x[i - 1];
  9415. }
  9416. //*********** formation of h, s , f matrix **************
  9417. for (i = 1; i<n - 1; i++) {
  9418. m[i][i] = 2 * (h[i - 1] + h[i]);
  9419. if (i != 1) {
  9420. m[i][i - 1] = h[i - 1];
  9421. m[i - 1][i] = h[i - 1];
  9422. }
  9423. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9424. }
  9425. //*********** forward elimination **************
  9426. for (i = 1; i<n - 2; i++) {
  9427. temp = (m[i + 1][i] / m[i][i]);
  9428. for (j = 1; j <= n - 1; j++)
  9429. m[i + 1][j] -= temp*m[i][j];
  9430. }
  9431. //*********** backward substitution *********
  9432. for (i = n - 2; i>0; i--) {
  9433. sum = 0;
  9434. for (j = i; j <= n - 2; j++)
  9435. sum += m[i][j] * s[j];
  9436. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9437. }
  9438. for (i = 0; i<n - 1; i++)
  9439. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9440. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9441. b = s[i] / 2;
  9442. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9443. d = f[i];
  9444. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9445. }
  9446. return sum;
  9447. }
  9448. #ifdef PINDA_THERMISTOR
  9449. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9450. {
  9451. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9452. if (!calibration_status_pinda()) return 0;
  9453. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9454. }
  9455. #endif //PINDA_THERMISTOR
  9456. void long_pause() //long pause print
  9457. {
  9458. st_synchronize();
  9459. start_pause_print = _millis();
  9460. // Stop heaters
  9461. setAllTargetHotends(0);
  9462. //lift z
  9463. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9464. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9465. plan_buffer_line_curposXYZE(15);
  9466. //Move XY to side
  9467. current_position[X_AXIS] = X_PAUSE_POS;
  9468. current_position[Y_AXIS] = Y_PAUSE_POS;
  9469. plan_buffer_line_curposXYZE(50);
  9470. // Turn off the print fan
  9471. fanSpeed = 0;
  9472. }
  9473. void serialecho_temperatures() {
  9474. float tt = degHotend(active_extruder);
  9475. SERIAL_PROTOCOLPGM("T:");
  9476. SERIAL_PROTOCOL(tt);
  9477. SERIAL_PROTOCOLPGM(" E:");
  9478. SERIAL_PROTOCOL((int)active_extruder);
  9479. SERIAL_PROTOCOLPGM(" B:");
  9480. SERIAL_PROTOCOL_F(degBed(), 1);
  9481. SERIAL_PROTOCOLLN();
  9482. }
  9483. #ifdef UVLO_SUPPORT
  9484. void uvlo_drain_reset()
  9485. {
  9486. // burn all that residual power
  9487. wdt_enable(WDTO_1S);
  9488. WRITE(BEEPER,HIGH);
  9489. lcd_clear();
  9490. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9491. while(1);
  9492. }
  9493. void uvlo_()
  9494. {
  9495. unsigned long time_start = _millis();
  9496. bool sd_print = card.sdprinting;
  9497. // Conserve power as soon as possible.
  9498. #ifdef LCD_BL_PIN
  9499. backlightMode = BACKLIGHT_MODE_DIM;
  9500. backlightLevel_LOW = 0;
  9501. backlight_update();
  9502. #endif //LCD_BL_PIN
  9503. disable_x();
  9504. disable_y();
  9505. #ifdef TMC2130
  9506. tmc2130_set_current_h(Z_AXIS, 20);
  9507. tmc2130_set_current_r(Z_AXIS, 20);
  9508. tmc2130_set_current_h(E_AXIS, 20);
  9509. tmc2130_set_current_r(E_AXIS, 20);
  9510. #endif //TMC2130
  9511. // Stop all heaters
  9512. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9513. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9514. setAllTargetHotends(0);
  9515. setTargetBed(0);
  9516. // Calculate the file position, from which to resume this print.
  9517. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9518. {
  9519. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9520. sd_position -= sdlen_planner;
  9521. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9522. sd_position -= sdlen_cmdqueue;
  9523. if (sd_position < 0) sd_position = 0;
  9524. }
  9525. // save the global state at planning time
  9526. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9527. uint16_t feedrate_bckp;
  9528. if (current_block && !pos_invalid)
  9529. {
  9530. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9531. feedrate_bckp = current_block->gcode_feedrate;
  9532. }
  9533. else
  9534. {
  9535. saved_target[0] = SAVED_TARGET_UNSET;
  9536. feedrate_bckp = feedrate;
  9537. }
  9538. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9539. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9540. // get the physical Z for further manipulation.
  9541. bool mbl_was_active = mbl.active;
  9542. mbl.active = false;
  9543. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9544. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9545. // are in action.
  9546. planner_abort_hard();
  9547. // Store the print logical Z position, which we need to recover (a slight error here would be
  9548. // recovered on the next Gcode instruction, while a physical location error would not)
  9549. float logical_z = current_position[Z_AXIS];
  9550. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9551. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9552. // Store the print E position before we lose track
  9553. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9554. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9555. // Clean the input command queue, inhibit serial processing using saved_printing
  9556. cmdqueue_reset();
  9557. card.sdprinting = false;
  9558. saved_printing = true;
  9559. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9560. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9561. sei();
  9562. // Retract
  9563. current_position[E_AXIS] -= default_retraction;
  9564. plan_buffer_line_curposXYZE(95);
  9565. st_synchronize();
  9566. disable_e0();
  9567. // Read out the current Z motor microstep counter to move the axis up towards
  9568. // a full step before powering off. NOTE: we need to ensure to schedule more
  9569. // than "dropsegments" steps in order to move (this is always the case here
  9570. // due to UVLO_Z_AXIS_SHIFT being used)
  9571. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9572. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9573. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9574. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9575. + UVLO_Z_AXIS_SHIFT;
  9576. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9577. st_synchronize();
  9578. poweroff_z();
  9579. // Write the file position.
  9580. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9581. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9582. for (uint8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9583. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9584. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9585. // Scale the z value to 1u resolution.
  9586. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9587. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9588. }
  9589. // Write the _final_ Z position and motor microstep counter (unused).
  9590. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9591. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9592. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9593. // Store the current position.
  9594. if (pos_invalid)
  9595. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), X_COORD_INVALID);
  9596. else
  9597. {
  9598. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9599. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9600. }
  9601. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9602. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9603. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9604. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9605. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9606. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9607. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9608. #if EXTRUDERS > 1
  9609. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9610. #if EXTRUDERS > 2
  9611. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9612. #endif
  9613. #endif
  9614. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9615. eeprom_update_float((float*)(EEPROM_UVLO_ACCELL), cs.acceleration);
  9616. eeprom_update_float((float*)(EEPROM_UVLO_RETRACT_ACCELL), cs.retract_acceleration);
  9617. eeprom_update_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL), cs.travel_acceleration);
  9618. // Store the saved target
  9619. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9620. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9621. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9622. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9623. #ifdef LIN_ADVANCE
  9624. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9625. #endif
  9626. // Finaly store the "power outage" flag.
  9627. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9628. // Increment power failure counter
  9629. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9630. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9631. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9632. WRITE(BEEPER,HIGH);
  9633. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9634. poweron_z();
  9635. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9636. plan_buffer_line_curposXYZE(500);
  9637. st_synchronize();
  9638. wdt_enable(WDTO_1S);
  9639. while(1);
  9640. }
  9641. void uvlo_tiny()
  9642. {
  9643. unsigned long time_start = _millis();
  9644. // Conserve power as soon as possible.
  9645. disable_x();
  9646. disable_y();
  9647. disable_e0();
  9648. #ifdef TMC2130
  9649. tmc2130_set_current_h(Z_AXIS, 20);
  9650. tmc2130_set_current_r(Z_AXIS, 20);
  9651. #endif //TMC2130
  9652. // Stop all heaters
  9653. setAllTargetHotends(0);
  9654. setTargetBed(0);
  9655. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9656. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9657. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9658. // Disable MBL (if not already) to work with physical coordinates.
  9659. mbl.active = false;
  9660. planner_abort_hard();
  9661. // Allow for small roundoffs to be ignored
  9662. if(fabs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9663. {
  9664. // Clean the input command queue, inhibit serial processing using saved_printing
  9665. cmdqueue_reset();
  9666. card.sdprinting = false;
  9667. saved_printing = true;
  9668. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9669. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9670. sei();
  9671. // The axis was moved: adjust Z as done on a regular UVLO.
  9672. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9673. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9674. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9675. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9676. + UVLO_TINY_Z_AXIS_SHIFT;
  9677. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9678. st_synchronize();
  9679. poweroff_z();
  9680. // Update Z position
  9681. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9682. // Update the _final_ Z motor microstep counter (unused).
  9683. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9684. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9685. }
  9686. // Update the the "power outage" flag.
  9687. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9688. // Increment power failure counter
  9689. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9690. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9691. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9692. uvlo_drain_reset();
  9693. }
  9694. #endif //UVLO_SUPPORT
  9695. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9696. void setup_fan_interrupt() {
  9697. //INT7
  9698. DDRE &= ~(1 << 7); //input pin
  9699. PORTE &= ~(1 << 7); //no internal pull-up
  9700. //start with sensing rising edge
  9701. EICRB &= ~(1 << 6);
  9702. EICRB |= (1 << 7);
  9703. //enable INT7 interrupt
  9704. EIMSK |= (1 << 7);
  9705. }
  9706. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9707. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9708. ISR(INT7_vect) {
  9709. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9710. #ifdef FAN_SOFT_PWM
  9711. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9712. #else //FAN_SOFT_PWM
  9713. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9714. #endif //FAN_SOFT_PWM
  9715. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9716. t_fan_rising_edge = millis_nc();
  9717. }
  9718. else { //interrupt was triggered by falling edge
  9719. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9720. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9721. }
  9722. }
  9723. EICRB ^= (1 << 6); //change edge
  9724. }
  9725. #endif
  9726. #ifdef UVLO_SUPPORT
  9727. void setup_uvlo_interrupt() {
  9728. DDRE &= ~(1 << 4); //input pin
  9729. PORTE &= ~(1 << 4); //no internal pull-up
  9730. // sensing falling edge
  9731. EICRB |= (1 << 0);
  9732. EICRB &= ~(1 << 1);
  9733. // enable INT4 interrupt
  9734. EIMSK |= (1 << 4);
  9735. // check if power was lost before we armed the interrupt
  9736. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9737. {
  9738. SERIAL_ECHOLNPGM("INT4");
  9739. uvlo_drain_reset();
  9740. }
  9741. }
  9742. ISR(INT4_vect) {
  9743. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9744. SERIAL_ECHOLNPGM("INT4");
  9745. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9746. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9747. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9748. }
  9749. void recover_print(uint8_t automatic) {
  9750. char cmd[30];
  9751. lcd_update_enable(true);
  9752. lcd_update(2);
  9753. lcd_setstatuspgm(_i("Recovering print"));////MSG_RECOVERING_PRINT c=20
  9754. // Recover position, temperatures and extrude_multipliers
  9755. bool mbl_was_active = recover_machine_state_after_power_panic();
  9756. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9757. // and second also so one may remove the excess priming material.
  9758. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9759. {
  9760. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9761. enquecommand(cmd);
  9762. }
  9763. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9764. // transformation status. G28 will not touch Z when MBL is off.
  9765. enquecommand_P(PSTR("G28 X Y"));
  9766. // Set the target bed and nozzle temperatures and wait.
  9767. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9768. enquecommand(cmd);
  9769. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9770. enquecommand(cmd);
  9771. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9772. enquecommand(cmd);
  9773. enquecommand_P(PSTR("M83")); //E axis relative mode
  9774. // If not automatically recoreverd (long power loss)
  9775. if(automatic == 0){
  9776. //Extrude some filament to stabilize the pressure
  9777. enquecommand_P(PSTR("G1 E5 F120"));
  9778. // Retract to be consistent with a short pause
  9779. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9780. enquecommand(cmd);
  9781. }
  9782. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9783. // Restart the print.
  9784. restore_print_from_eeprom(mbl_was_active);
  9785. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9786. }
  9787. bool recover_machine_state_after_power_panic()
  9788. {
  9789. // 1) Preset some dummy values for the XY axes
  9790. current_position[X_AXIS] = 0;
  9791. current_position[Y_AXIS] = 0;
  9792. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9793. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9794. bool mbl_was_active = false;
  9795. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9796. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9797. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9798. // Scale the z value to 10u resolution.
  9799. int16_t v;
  9800. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9801. if (v != 0)
  9802. mbl_was_active = true;
  9803. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9804. }
  9805. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9806. // The current position after power panic is moved to the next closest 0th full step.
  9807. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9808. // Recover last E axis position
  9809. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9810. // 3) Initialize the logical to physical coordinate system transformation.
  9811. world2machine_initialize();
  9812. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9813. // print_mesh_bed_leveling_table();
  9814. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9815. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9816. babystep_load();
  9817. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9818. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9819. clamp_to_software_endstops(current_position);
  9820. set_destination_to_current();
  9821. plan_set_position_curposXYZE();
  9822. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9823. print_world_coordinates();
  9824. // 6) Power up the Z motors, mark their positions as known.
  9825. axis_known_position[Z_AXIS] = true;
  9826. enable_z();
  9827. // 7) Recover the target temperatures.
  9828. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9829. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9830. // 8) Recover extruder multipilers
  9831. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9832. #if EXTRUDERS > 1
  9833. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9834. #if EXTRUDERS > 2
  9835. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9836. #endif
  9837. #endif
  9838. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9839. // 9) Recover the saved target
  9840. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9841. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9842. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9843. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9844. #ifdef LIN_ADVANCE
  9845. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9846. #endif
  9847. return mbl_was_active;
  9848. }
  9849. void restore_print_from_eeprom(bool mbl_was_active) {
  9850. int feedrate_rec;
  9851. int feedmultiply_rec;
  9852. uint8_t fan_speed_rec;
  9853. char cmd[48];
  9854. char filename[13];
  9855. uint8_t depth = 0;
  9856. char dir_name[9];
  9857. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9858. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9859. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9860. SERIAL_ECHOPGM("Feedrate:");
  9861. MYSERIAL.print(feedrate_rec);
  9862. SERIAL_ECHOPGM(", feedmultiply:");
  9863. MYSERIAL.println(feedmultiply_rec);
  9864. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9865. MYSERIAL.println(int(depth));
  9866. for (uint8_t i = 0; i < depth; i++) {
  9867. for (uint8_t j = 0; j < 8; j++) {
  9868. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9869. }
  9870. dir_name[8] = '\0';
  9871. MYSERIAL.println(dir_name);
  9872. // strcpy(card.dir_names[i], dir_name);
  9873. card.chdir(dir_name, false);
  9874. }
  9875. for (uint8_t i = 0; i < 8; i++) {
  9876. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9877. }
  9878. filename[8] = '\0';
  9879. MYSERIAL.print(filename);
  9880. strcat_P(filename, PSTR(".gco"));
  9881. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9882. enquecommand(cmd);
  9883. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9884. SERIAL_ECHOPGM("Position read from eeprom:");
  9885. MYSERIAL.println(position);
  9886. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9887. // without shifting Z along the way. This requires performing the move without mbl.
  9888. float pos_x = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9889. float pos_y = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9890. if (pos_x != X_COORD_INVALID)
  9891. {
  9892. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"), pos_x, pos_y);
  9893. enquecommand(cmd);
  9894. }
  9895. // Enable MBL and switch to logical positioning
  9896. if (mbl_was_active)
  9897. enquecommand_P(PSTR("PRUSA MBL V1"));
  9898. // Move the Z axis down to the print, in logical coordinates.
  9899. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9900. enquecommand(cmd);
  9901. // Restore acceleration settings
  9902. float acceleration = eeprom_read_float((float*)(EEPROM_UVLO_ACCELL));
  9903. float retract_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_RETRACT_ACCELL));
  9904. float travel_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL));
  9905. sprintf_P(cmd, PSTR("M204 P%f R%f T%f"), acceleration, retract_acceleration, travel_acceleration);
  9906. enquecommand(cmd);
  9907. // Unretract.
  9908. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9909. enquecommand(cmd);
  9910. // Recover final E axis position and mode
  9911. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9912. sprintf_P(cmd, PSTR("G92 E%6.3f"), pos_e);
  9913. enquecommand(cmd);
  9914. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9915. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9916. // Set the feedrates saved at the power panic.
  9917. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9918. enquecommand(cmd);
  9919. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9920. enquecommand(cmd);
  9921. // Set the fan speed saved at the power panic.
  9922. strcpy_P(cmd, PSTR("M106 S"));
  9923. strcat(cmd, itostr3(int(fan_speed_rec)));
  9924. enquecommand(cmd);
  9925. // Set a position in the file.
  9926. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9927. enquecommand(cmd);
  9928. enquecommand_P(PSTR("G4 S0"));
  9929. enquecommand_P(PSTR("PRUSA uvlo"));
  9930. }
  9931. #endif //UVLO_SUPPORT
  9932. //! @brief Immediately stop print moves
  9933. //!
  9934. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9935. //! If printing from sd card, position in file is saved.
  9936. //! If printing from USB, line number is saved.
  9937. //!
  9938. //! @param z_move
  9939. //! @param e_move
  9940. void stop_and_save_print_to_ram(float z_move, float e_move)
  9941. {
  9942. if (saved_printing) return;
  9943. #if 0
  9944. unsigned char nplanner_blocks;
  9945. #endif
  9946. unsigned char nlines;
  9947. uint16_t sdlen_planner;
  9948. uint16_t sdlen_cmdqueue;
  9949. cli();
  9950. if (card.sdprinting) {
  9951. #if 0
  9952. nplanner_blocks = number_of_blocks();
  9953. #endif
  9954. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9955. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9956. saved_sdpos -= sdlen_planner;
  9957. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9958. saved_sdpos -= sdlen_cmdqueue;
  9959. saved_printing_type = PRINTING_TYPE_SD;
  9960. }
  9961. else if (usb_timer.running()) { //reuse saved_sdpos for storing line number
  9962. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9963. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9964. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9965. saved_sdpos -= nlines;
  9966. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9967. saved_printing_type = PRINTING_TYPE_USB;
  9968. }
  9969. else {
  9970. saved_printing_type = PRINTING_TYPE_NONE;
  9971. //not sd printing nor usb printing
  9972. }
  9973. #if 0
  9974. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9975. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9976. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9977. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9978. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9979. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9980. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9981. {
  9982. card.setIndex(saved_sdpos);
  9983. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9984. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9985. MYSERIAL.print(char(card.get()));
  9986. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9987. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9988. MYSERIAL.print(char(card.get()));
  9989. SERIAL_ECHOLNPGM("End of command buffer");
  9990. }
  9991. {
  9992. // Print the content of the planner buffer, line by line:
  9993. card.setIndex(saved_sdpos);
  9994. int8_t iline = 0;
  9995. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9996. SERIAL_ECHOPGM("Planner line (from file): ");
  9997. MYSERIAL.print(int(iline), DEC);
  9998. SERIAL_ECHOPGM(", length: ");
  9999. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  10000. SERIAL_ECHOPGM(", steps: (");
  10001. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  10002. SERIAL_ECHOPGM(",");
  10003. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  10004. SERIAL_ECHOPGM(",");
  10005. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  10006. SERIAL_ECHOPGM(",");
  10007. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  10008. SERIAL_ECHOPGM("), events: ");
  10009. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  10010. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  10011. MYSERIAL.print(char(card.get()));
  10012. }
  10013. }
  10014. {
  10015. // Print the content of the command buffer, line by line:
  10016. int8_t iline = 0;
  10017. union {
  10018. struct {
  10019. char lo;
  10020. char hi;
  10021. } lohi;
  10022. uint16_t value;
  10023. } sdlen_single;
  10024. int _bufindr = bufindr;
  10025. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  10026. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  10027. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  10028. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  10029. }
  10030. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  10031. MYSERIAL.print(int(iline), DEC);
  10032. SERIAL_ECHOPGM(", type: ");
  10033. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  10034. SERIAL_ECHOPGM(", len: ");
  10035. MYSERIAL.println(sdlen_single.value, DEC);
  10036. // Print the content of the buffer line.
  10037. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  10038. SERIAL_ECHOPGM("Buffer line (from file): ");
  10039. MYSERIAL.println(int(iline), DEC);
  10040. for (; sdlen_single.value > 0; -- sdlen_single.value)
  10041. MYSERIAL.print(char(card.get()));
  10042. if (-- _buflen == 0)
  10043. break;
  10044. // First skip the current command ID and iterate up to the end of the string.
  10045. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  10046. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  10047. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  10048. // If the end of the buffer was empty,
  10049. if (_bufindr == sizeof(cmdbuffer)) {
  10050. // skip to the start and find the nonzero command.
  10051. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  10052. }
  10053. }
  10054. }
  10055. #endif
  10056. // save the global state at planning time
  10057. bool pos_invalid = XY_NO_RESTORE_FLAG;
  10058. if (current_block && !pos_invalid)
  10059. {
  10060. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  10061. saved_feedrate2 = current_block->gcode_feedrate;
  10062. }
  10063. else
  10064. {
  10065. saved_target[0] = SAVED_TARGET_UNSET;
  10066. saved_feedrate2 = feedrate;
  10067. }
  10068. planner_abort_hard(); //abort printing
  10069. memcpy(saved_pos, current_position, sizeof(saved_pos));
  10070. if (pos_invalid) saved_pos[X_AXIS] = X_COORD_INVALID;
  10071. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  10072. saved_active_extruder = active_extruder; //save active_extruder
  10073. saved_extruder_temperature = degTargetHotend(active_extruder);
  10074. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  10075. saved_fanSpeed = fanSpeed;
  10076. cmdqueue_reset(); //empty cmdqueue
  10077. card.sdprinting = false;
  10078. // card.closefile();
  10079. saved_printing = true;
  10080. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  10081. st_reset_timer();
  10082. sei();
  10083. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  10084. #if 1
  10085. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  10086. // the caller can continue processing. This is used during powerpanic to save the state as we
  10087. // move away from the print.
  10088. char buf[48];
  10089. if(e_move)
  10090. {
  10091. // First unretract (relative extrusion)
  10092. if(!saved_extruder_relative_mode){
  10093. enquecommand(PSTR("M83"), true);
  10094. }
  10095. //retract 45mm/s
  10096. // A single sprintf may not be faster, but is definitely 20B shorter
  10097. // than a sequence of commands building the string piece by piece
  10098. // A snprintf would have been a safer call, but since it is not used
  10099. // in the whole program, its implementation would bring more bytes to the total size
  10100. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  10101. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  10102. enquecommand(buf, false);
  10103. }
  10104. if(z_move)
  10105. {
  10106. // Then lift Z axis
  10107. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  10108. enquecommand(buf, false);
  10109. }
  10110. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  10111. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  10112. repeatcommand_front();
  10113. #else
  10114. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  10115. st_synchronize(); //wait moving
  10116. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10117. set_destination_to_current();
  10118. #endif
  10119. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10120. }
  10121. }
  10122. //! @brief Restore print from ram
  10123. //!
  10124. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  10125. //! print fan speed, waits for extruder temperature restore, then restores
  10126. //! position and continues print moves.
  10127. //!
  10128. //! Internally lcd_update() is called by wait_for_heater().
  10129. //!
  10130. //! @param e_move
  10131. void restore_print_from_ram_and_continue(float e_move)
  10132. {
  10133. if (!saved_printing) return;
  10134. #ifdef FANCHECK
  10135. // Do not allow resume printing if fans are still not ok
  10136. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  10137. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  10138. #endif
  10139. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  10140. // current_position[axis] = st_get_position_mm(axis);
  10141. active_extruder = saved_active_extruder; //restore active_extruder
  10142. fanSpeed = saved_fanSpeed;
  10143. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  10144. {
  10145. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  10146. heating_status = HeatingStatus::EXTRUDER_HEATING;
  10147. wait_for_heater(_millis(), saved_active_extruder);
  10148. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  10149. }
  10150. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  10151. float e = saved_pos[E_AXIS] - e_move;
  10152. plan_set_e_position(e);
  10153. #ifdef FANCHECK
  10154. fans_check_enabled = false;
  10155. #endif
  10156. // do not restore XY for commands that do not require that
  10157. if (saved_pos[X_AXIS] == X_COORD_INVALID)
  10158. {
  10159. saved_pos[X_AXIS] = current_position[X_AXIS];
  10160. saved_pos[Y_AXIS] = current_position[Y_AXIS];
  10161. }
  10162. //first move print head in XY to the saved position:
  10163. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10164. //then move Z
  10165. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10166. //and finaly unretract (35mm/s)
  10167. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  10168. st_synchronize();
  10169. #ifdef FANCHECK
  10170. fans_check_enabled = true;
  10171. #endif
  10172. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  10173. feedrate = saved_feedrate2;
  10174. feedmultiply = saved_feedmultiply2;
  10175. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10176. set_destination_to_current();
  10177. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  10178. card.setIndex(saved_sdpos);
  10179. sdpos_atomic = saved_sdpos;
  10180. card.sdprinting = true;
  10181. }
  10182. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  10183. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  10184. serial_count = 0;
  10185. FlushSerialRequestResend();
  10186. }
  10187. else {
  10188. //not sd printing nor usb printing
  10189. }
  10190. lcd_setstatuspgm(MSG_WELCOME);
  10191. saved_printing_type = PRINTING_TYPE_NONE;
  10192. saved_printing = false;
  10193. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10194. }
  10195. // Cancel the state related to a currently saved print
  10196. void cancel_saved_printing()
  10197. {
  10198. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  10199. saved_target[0] = SAVED_TARGET_UNSET;
  10200. saved_printing_type = PRINTING_TYPE_NONE;
  10201. saved_printing = false;
  10202. }
  10203. void print_world_coordinates()
  10204. {
  10205. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  10206. }
  10207. void print_physical_coordinates()
  10208. {
  10209. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  10210. }
  10211. void print_mesh_bed_leveling_table()
  10212. {
  10213. SERIAL_ECHOPGM("mesh bed leveling: ");
  10214. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  10215. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  10216. MYSERIAL.print(mbl.z_values[y][x], 3);
  10217. SERIAL_ECHO(' ');
  10218. }
  10219. SERIAL_ECHOLN();
  10220. }
  10221. uint8_t calc_percent_done()
  10222. {
  10223. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  10224. uint8_t percent_done = 0;
  10225. #ifdef TMC2130
  10226. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100)
  10227. {
  10228. percent_done = print_percent_done_normal;
  10229. }
  10230. else if (print_percent_done_silent <= 100)
  10231. {
  10232. percent_done = print_percent_done_silent;
  10233. }
  10234. #else
  10235. if (print_percent_done_normal <= 100)
  10236. {
  10237. percent_done = print_percent_done_normal;
  10238. }
  10239. #endif //TMC2130
  10240. else
  10241. {
  10242. percent_done = card.percentDone();
  10243. }
  10244. return percent_done;
  10245. }
  10246. static void print_time_remaining_init()
  10247. {
  10248. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  10249. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  10250. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  10251. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  10252. print_time_to_change_normal = PRINT_TIME_REMAINING_INIT;
  10253. print_time_to_change_silent = PRINT_TIME_REMAINING_INIT;
  10254. }
  10255. void load_filament_final_feed()
  10256. {
  10257. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  10258. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  10259. }
  10260. void load_filament_final_retract()
  10261. {
  10262. current_position[E_AXIS] -= FILAMENTCHANGE_LOADRETRACT;
  10263. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10264. }
  10265. //! @brief Wait for user to check the state
  10266. //! @par nozzle_temp nozzle temperature to load filament
  10267. void M600_check_state(float nozzle_temp)
  10268. {
  10269. lcd_change_fil_state = 0;
  10270. while (lcd_change_fil_state != 1)
  10271. {
  10272. lcd_change_fil_state = 0;
  10273. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10274. lcd_alright();
  10275. KEEPALIVE_STATE(IN_HANDLER);
  10276. switch(lcd_change_fil_state)
  10277. {
  10278. // Filament failed to load so load it again
  10279. case 2:
  10280. if (mmu_enabled)
  10281. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  10282. else
  10283. M600_load_filament_movements();
  10284. break;
  10285. // Filament loaded properly but color is not clear
  10286. case 3:
  10287. st_synchronize();
  10288. load_filament_final_feed();
  10289. lcd_loading_color();
  10290. st_synchronize();
  10291. break;
  10292. // Everything good
  10293. default:
  10294. lcd_change_success();
  10295. break;
  10296. }
  10297. }
  10298. }
  10299. //! @brief Wait for user action
  10300. //!
  10301. //! Beep, manage nozzle heater and wait for user to start unload filament
  10302. //! If times out, active extruder temperature is set to 0.
  10303. //!
  10304. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  10305. void M600_wait_for_user(float HotendTempBckp) {
  10306. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10307. int counterBeep = 0;
  10308. unsigned long waiting_start_time = _millis();
  10309. uint8_t wait_for_user_state = 0;
  10310. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10311. bool bFirst=true;
  10312. while (!(wait_for_user_state == 0 && lcd_clicked())){
  10313. manage_heater();
  10314. manage_inactivity(true);
  10315. #if BEEPER > 0
  10316. if (counterBeep == 500) {
  10317. counterBeep = 0;
  10318. }
  10319. SET_OUTPUT(BEEPER);
  10320. if (counterBeep == 0) {
  10321. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10322. {
  10323. bFirst=false;
  10324. WRITE(BEEPER, HIGH);
  10325. }
  10326. }
  10327. if (counterBeep == 20) {
  10328. WRITE(BEEPER, LOW);
  10329. }
  10330. counterBeep++;
  10331. #endif //BEEPER > 0
  10332. switch (wait_for_user_state) {
  10333. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10334. delay_keep_alive(4);
  10335. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10336. lcd_display_message_fullscreen_P(_i("Press the knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10337. wait_for_user_state = 1;
  10338. setAllTargetHotends(0);
  10339. st_synchronize();
  10340. disable_e0();
  10341. disable_e1();
  10342. disable_e2();
  10343. }
  10344. break;
  10345. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10346. delay_keep_alive(4);
  10347. if (lcd_clicked()) {
  10348. setTargetHotend(HotendTempBckp, active_extruder);
  10349. lcd_wait_for_heater();
  10350. wait_for_user_state = 2;
  10351. }
  10352. break;
  10353. case 2: //waiting for nozzle to reach target temperature
  10354. if (fabs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10355. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10356. waiting_start_time = _millis();
  10357. wait_for_user_state = 0;
  10358. }
  10359. else {
  10360. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10361. lcd_set_cursor(1, 4);
  10362. lcd_printf_P(PSTR("%3d"), (int16_t)degHotend(active_extruder));
  10363. }
  10364. break;
  10365. }
  10366. }
  10367. WRITE(BEEPER, LOW);
  10368. }
  10369. void M600_load_filament_movements()
  10370. {
  10371. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED;
  10372. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10373. load_filament_final_feed();
  10374. lcd_loading_filament();
  10375. st_synchronize();
  10376. }
  10377. void M600_load_filament() {
  10378. //load filament for single material and MMU
  10379. lcd_wait_interact();
  10380. //load_filament_time = _millis();
  10381. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10382. #ifdef PAT9125
  10383. fsensor_autoload_check_start();
  10384. #endif //PAT9125
  10385. while(!lcd_clicked())
  10386. {
  10387. manage_heater();
  10388. manage_inactivity(true);
  10389. #ifdef FILAMENT_SENSOR
  10390. if (fsensor_check_autoload())
  10391. {
  10392. Sound_MakeCustom(50,1000,false);
  10393. break;
  10394. }
  10395. #endif //FILAMENT_SENSOR
  10396. }
  10397. #ifdef PAT9125
  10398. fsensor_autoload_check_stop();
  10399. #endif //PAT9125
  10400. KEEPALIVE_STATE(IN_HANDLER);
  10401. #ifdef FSENSOR_QUALITY
  10402. fsensor_oq_meassure_start(70);
  10403. #endif //FSENSOR_QUALITY
  10404. M600_load_filament_movements();
  10405. Sound_MakeCustom(50,1000,false);
  10406. #ifdef FSENSOR_QUALITY
  10407. fsensor_oq_meassure_stop();
  10408. if (!fsensor_oq_result())
  10409. {
  10410. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10411. lcd_update_enable(true);
  10412. lcd_update(2);
  10413. if (disable)
  10414. fsensor_disable();
  10415. }
  10416. #endif //FSENSOR_QUALITY
  10417. lcd_update_enable(false);
  10418. }
  10419. //! @brief Wait for click
  10420. //!
  10421. //! Set
  10422. void marlin_wait_for_click()
  10423. {
  10424. int8_t busy_state_backup = busy_state;
  10425. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10426. lcd_consume_click();
  10427. while(!lcd_clicked())
  10428. {
  10429. manage_heater();
  10430. manage_inactivity(true);
  10431. lcd_update(0);
  10432. }
  10433. KEEPALIVE_STATE(busy_state_backup);
  10434. }
  10435. #define FIL_LOAD_LENGTH 60
  10436. #ifdef PSU_Delta
  10437. bool bEnableForce_z;
  10438. void init_force_z()
  10439. {
  10440. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10441. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10442. disable_force_z();
  10443. }
  10444. void check_force_z()
  10445. {
  10446. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10447. init_force_z(); // causes enforced switching into disable-state
  10448. }
  10449. void disable_force_z()
  10450. {
  10451. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10452. bEnableForce_z=false;
  10453. // switching to silent mode
  10454. #ifdef TMC2130
  10455. tmc2130_mode=TMC2130_MODE_SILENT;
  10456. update_mode_profile();
  10457. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10458. #endif // TMC2130
  10459. }
  10460. void enable_force_z()
  10461. {
  10462. if(bEnableForce_z)
  10463. return; // motor already enabled (may be ;-p )
  10464. bEnableForce_z=true;
  10465. // mode recovering
  10466. #ifdef TMC2130
  10467. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10468. update_mode_profile();
  10469. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10470. #endif // TMC2130
  10471. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10472. }
  10473. #endif // PSU_Delta