mmu.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_HWRESET
  18. #define MMU_RST_PIN 76
  19. bool mmu_enabled = false;
  20. bool mmu_ready = false;
  21. int8_t mmu_state = 0;
  22. uint8_t mmu_cmd = 0;
  23. uint8_t mmu_extruder = 0;
  24. uint8_t tmp_extruder = 0;
  25. int8_t mmu_finda = -1;
  26. int16_t mmu_version = -1;
  27. int16_t mmu_buildnr = -1;
  28. uint32_t mmu_last_request = 0;
  29. uint32_t mmu_last_response = 0;
  30. //clear rx buffer
  31. void mmu_clr_rx_buf(void)
  32. {
  33. while (fgetc(uart2io) >= 0);
  34. }
  35. //send command - puts
  36. int mmu_puts_P(const char* str)
  37. {
  38. mmu_clr_rx_buf(); //clear rx buffer
  39. int r = fputs_P(str, uart2io); //send command
  40. mmu_last_request = millis();
  41. return r;
  42. }
  43. //send command - printf
  44. int mmu_printf_P(const char* format, ...)
  45. {
  46. va_list args;
  47. va_start(args, format);
  48. mmu_clr_rx_buf(); //clear rx buffer
  49. int r = vfprintf_P(uart2io, format, args); //send command
  50. va_end(args);
  51. mmu_last_request = millis();
  52. return r;
  53. }
  54. //check 'ok' response
  55. int8_t mmu_rx_ok(void)
  56. {
  57. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  58. if (res == 1) mmu_last_response = millis();
  59. return res;
  60. }
  61. //check 'start' response
  62. int8_t mmu_rx_start(void)
  63. {
  64. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  65. if (res == 1) mmu_last_response = millis();
  66. return res;
  67. }
  68. //initialize mmu2 unit - first part - should be done at begining of startup process
  69. void mmu_init(void)
  70. {
  71. digitalWrite(MMU_RST_PIN, HIGH);
  72. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  73. uart2_init(); //init uart2
  74. _delay_ms(10); //wait 10ms for sure
  75. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  76. mmu_state = -1;
  77. }
  78. //mmu main loop - state machine processing
  79. void mmu_loop(void)
  80. {
  81. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  82. switch (mmu_state)
  83. {
  84. case 0:
  85. return;
  86. case -1:
  87. if (mmu_rx_start() > 0)
  88. {
  89. puts_P(PSTR("MMU => 'start'"));
  90. puts_P(PSTR("MMU <= 'S1'"));
  91. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  92. mmu_state = -2;
  93. }
  94. else if (millis() > 30000) //30sec after reset disable mmu
  95. {
  96. puts_P(PSTR("MMU not responding - DISABLED"));
  97. mmu_state = 0;
  98. }
  99. return;
  100. case -2:
  101. if (mmu_rx_ok() > 0)
  102. {
  103. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  104. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  105. puts_P(PSTR("MMU <= 'S2'"));
  106. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  107. mmu_state = -3;
  108. }
  109. return;
  110. case -3:
  111. if (mmu_rx_ok() > 0)
  112. {
  113. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  114. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  115. puts_P(PSTR("MMU <= 'P0'"));
  116. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  117. mmu_state = -4;
  118. }
  119. return;
  120. case -4:
  121. if (mmu_rx_ok() > 0)
  122. {
  123. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  124. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  125. puts_P(PSTR("MMU - ENABLED"));
  126. mmu_enabled = true;
  127. mmu_state = 1;
  128. }
  129. return;
  130. case 1:
  131. if (mmu_cmd) //command request ?
  132. {
  133. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  134. {
  135. int extruder = mmu_cmd - MMU_CMD_T0;
  136. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  137. mmu_printf_P(PSTR("T%d\n"), extruder);
  138. mmu_state = 3; // wait for response
  139. }
  140. mmu_cmd = 0;
  141. }
  142. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  143. {
  144. puts_P(PSTR("MMU <= 'P0'"));
  145. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  146. mmu_state = 2;
  147. }
  148. return;
  149. case 2: //response to command P0
  150. if (mmu_rx_ok() > 0)
  151. {
  152. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  153. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  154. mmu_state = 1;
  155. if (mmu_cmd == 0)
  156. mmu_ready = true;
  157. }
  158. else if ((mmu_last_request + 30000) < millis())
  159. { //resend request after timeout (30s)
  160. mmu_state = 1;
  161. }
  162. return;
  163. case 3: //response to commands T0-T4
  164. if (mmu_rx_ok() > 0)
  165. {
  166. printf_P(PSTR("MMU => 'ok'\n"), mmu_finda);
  167. mmu_ready = true;
  168. mmu_state = 1;
  169. }
  170. else if ((mmu_last_request + 30000) < millis())
  171. { //resend request after timeout (30s)
  172. mmu_state = 1;
  173. }
  174. return;
  175. }
  176. }
  177. void mmu_reset(void)
  178. {
  179. #ifdef MMU_HWRESET //HW - pulse reset pin
  180. digitalWrite(MMU_RST_PIN, LOW);
  181. _delay_us(100);
  182. digitalWrite(MMU_RST_PIN, HIGH);
  183. #else //SW - send X0 command
  184. mmu_puts_P(PSTR("X0\n"));
  185. #endif
  186. }
  187. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  188. {
  189. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  190. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  191. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  192. while ((mmu_rx_ok() <= 0) && (--timeout))
  193. delay_keep_alive(MMU_TODELAY);
  194. return timeout?1:0;
  195. }
  196. void mmu_command(uint8_t cmd)
  197. {
  198. mmu_cmd = cmd;
  199. mmu_ready = false;
  200. }
  201. bool mmu_get_response(void)
  202. {
  203. // printf_P(PSTR("mmu_get_response - begin\n"));
  204. KEEPALIVE_STATE(IN_PROCESS);
  205. while (mmu_cmd != 0)
  206. {
  207. // mmu_loop();
  208. delay_keep_alive(100);
  209. }
  210. while (!mmu_ready)
  211. {
  212. // mmu_loop();
  213. if (mmu_state != 3)
  214. break;
  215. delay_keep_alive(100);
  216. }
  217. bool ret = mmu_ready;
  218. mmu_ready = false;
  219. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  220. return ret;
  221. /* //waits for "ok" from mmu
  222. //function returns true if "ok" was received
  223. //if timeout is set to true function return false if there is no "ok" received before timeout
  224. bool response = true;
  225. LongTimer mmu_get_reponse_timeout;
  226. KEEPALIVE_STATE(IN_PROCESS);
  227. mmu_get_reponse_timeout.start();
  228. while (mmu_rx_ok() <= 0)
  229. {
  230. delay_keep_alive(100);
  231. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  232. { //5 minutes timeout
  233. response = false;
  234. break;
  235. }
  236. }
  237. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  238. return response;*/
  239. }
  240. void manage_response(bool move_axes, bool turn_off_nozzle)
  241. {
  242. bool response = false;
  243. mmu_print_saved = false;
  244. bool lcd_update_was_enabled = false;
  245. float hotend_temp_bckp = degTargetHotend(active_extruder);
  246. float z_position_bckp = current_position[Z_AXIS];
  247. float x_position_bckp = current_position[X_AXIS];
  248. float y_position_bckp = current_position[Y_AXIS];
  249. while(!response)
  250. {
  251. response = mmu_get_response(); //wait for "ok" from mmu
  252. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  253. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  254. if (lcd_update_enabled) {
  255. lcd_update_was_enabled = true;
  256. lcd_update_enable(false);
  257. }
  258. st_synchronize();
  259. mmu_print_saved = true;
  260. hotend_temp_bckp = degTargetHotend(active_extruder);
  261. if (move_axes) {
  262. z_position_bckp = current_position[Z_AXIS];
  263. x_position_bckp = current_position[X_AXIS];
  264. y_position_bckp = current_position[Y_AXIS];
  265. //lift z
  266. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  267. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  269. st_synchronize();
  270. //Move XY to side
  271. current_position[X_AXIS] = X_PAUSE_POS;
  272. current_position[Y_AXIS] = Y_PAUSE_POS;
  273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  274. st_synchronize();
  275. }
  276. if (turn_off_nozzle) {
  277. //set nozzle target temperature to 0
  278. setAllTargetHotends(0);
  279. printf_P(PSTR("MMU not responding\n"));
  280. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  281. setTargetHotend(hotend_temp_bckp, active_extruder);
  282. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  283. delay_keep_alive(1000);
  284. lcd_wait_for_heater();
  285. }
  286. }
  287. }
  288. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  289. delay_keep_alive(1000);
  290. }
  291. else if (mmu_print_saved) {
  292. printf_P(PSTR("MMU start responding\n"));
  293. lcd_clear();
  294. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  295. if (move_axes) {
  296. current_position[X_AXIS] = x_position_bckp;
  297. current_position[Y_AXIS] = y_position_bckp;
  298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  299. st_synchronize();
  300. current_position[Z_AXIS] = z_position_bckp;
  301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  302. st_synchronize();
  303. }
  304. else {
  305. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  306. }
  307. }
  308. }
  309. if (lcd_update_was_enabled) lcd_update_enable(true);
  310. }
  311. void mmu_load_to_nozzle()
  312. {
  313. st_synchronize();
  314. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  315. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  316. current_position[E_AXIS] += 7.2f;
  317. float feedrate = 562;
  318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  319. st_synchronize();
  320. current_position[E_AXIS] += 14.4f;
  321. feedrate = 871;
  322. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  323. st_synchronize();
  324. current_position[E_AXIS] += 36.0f;
  325. feedrate = 1393;
  326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  327. st_synchronize();
  328. current_position[E_AXIS] += 14.4f;
  329. feedrate = 871;
  330. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  331. st_synchronize();
  332. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  333. }
  334. void mmu_M600_load_filament(bool automatic)
  335. {
  336. //load filament for mmu v2
  337. bool response = false;
  338. bool yes = false;
  339. if (!automatic) {
  340. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  341. if(yes) tmp_extruder = choose_extruder_menu();
  342. else tmp_extruder = mmu_extruder;
  343. }
  344. else {
  345. tmp_extruder = (tmp_extruder+1)%5;
  346. }
  347. lcd_update_enable(false);
  348. lcd_clear();
  349. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  350. lcd_print(" ");
  351. lcd_print(tmp_extruder + 1);
  352. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  353. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  354. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  355. mmu_command(MMU_CMD_T0 + tmp_extruder);
  356. manage_response(false, true);
  357. mmu_extruder = tmp_extruder; //filament change is finished
  358. mmu_load_to_nozzle();
  359. st_synchronize();
  360. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  362. }
  363. void extr_mov(float shift, float feed_rate)
  364. { //move extruder no matter what the current heater temperature is
  365. set_extrude_min_temp(.0);
  366. current_position[E_AXIS] += shift;
  367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  368. set_extrude_min_temp(EXTRUDE_MINTEMP);
  369. }
  370. void change_extr(int extr) { //switches multiplexer for extruders
  371. #ifdef SNMM
  372. st_synchronize();
  373. delay(100);
  374. disable_e0();
  375. disable_e1();
  376. disable_e2();
  377. mmu_extruder = extr;
  378. pinMode(E_MUX0_PIN, OUTPUT);
  379. pinMode(E_MUX1_PIN, OUTPUT);
  380. switch (extr) {
  381. case 1:
  382. WRITE(E_MUX0_PIN, HIGH);
  383. WRITE(E_MUX1_PIN, LOW);
  384. break;
  385. case 2:
  386. WRITE(E_MUX0_PIN, LOW);
  387. WRITE(E_MUX1_PIN, HIGH);
  388. break;
  389. case 3:
  390. WRITE(E_MUX0_PIN, HIGH);
  391. WRITE(E_MUX1_PIN, HIGH);
  392. break;
  393. default:
  394. WRITE(E_MUX0_PIN, LOW);
  395. WRITE(E_MUX1_PIN, LOW);
  396. break;
  397. }
  398. delay(100);
  399. #endif
  400. }
  401. int get_ext_nr()
  402. { //reads multiplexer input pins and return current extruder number (counted from 0)
  403. #ifndef SNMM
  404. return(mmu_extruder); //update needed
  405. #else
  406. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  407. #endif
  408. }
  409. void display_loading()
  410. {
  411. switch (mmu_extruder)
  412. {
  413. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  414. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  415. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  416. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  417. }
  418. }
  419. void extr_adj(int extruder) //loading filament for SNMM
  420. {
  421. #ifndef SNMM
  422. printf_P(PSTR("L%d \n"),extruder);
  423. fprintf_P(uart2io, PSTR("L%d\n"), extruder);
  424. //show which filament is currently loaded
  425. lcd_update_enable(false);
  426. lcd_clear();
  427. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  428. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  429. //else lcd.print(" ");
  430. lcd_print(" ");
  431. lcd_print(mmu_extruder + 1);
  432. // get response
  433. manage_response(false, false);
  434. lcd_update_enable(true);
  435. //lcd_return_to_status();
  436. #else
  437. bool correct;
  438. max_feedrate[E_AXIS] =80;
  439. //max_feedrate[E_AXIS] = 50;
  440. START:
  441. lcd_clear();
  442. lcd_set_cursor(0, 0);
  443. switch (extruder) {
  444. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  445. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  446. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  447. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  448. }
  449. KEEPALIVE_STATE(PAUSED_FOR_USER);
  450. do{
  451. extr_mov(0.001,1000);
  452. delay_keep_alive(2);
  453. } while (!lcd_clicked());
  454. //delay_keep_alive(500);
  455. KEEPALIVE_STATE(IN_HANDLER);
  456. st_synchronize();
  457. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  458. //if (!correct) goto START;
  459. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  460. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  461. extr_mov(bowden_length[extruder], 500);
  462. lcd_clear();
  463. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  464. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  465. else lcd_print(" ");
  466. lcd_print(mmu_extruder + 1);
  467. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  468. st_synchronize();
  469. max_feedrate[E_AXIS] = 50;
  470. lcd_update_enable(true);
  471. lcd_return_to_status();
  472. lcdDrawUpdate = 2;
  473. #endif
  474. }
  475. void extr_unload()
  476. { //unload just current filament for multimaterial printers
  477. #ifdef SNMM
  478. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  479. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  480. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  481. #endif
  482. if (degHotend0() > EXTRUDE_MINTEMP)
  483. {
  484. #ifndef SNMM
  485. st_synchronize();
  486. //show which filament is currently unloaded
  487. lcd_update_enable(false);
  488. lcd_clear();
  489. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  490. lcd_print(" ");
  491. lcd_print(mmu_extruder + 1);
  492. current_position[E_AXIS] -= 80;
  493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  494. st_synchronize();
  495. printf_P(PSTR("U0\n"));
  496. fprintf_P(uart2io, PSTR("U0\n"));
  497. // get response
  498. manage_response(false, true);
  499. lcd_update_enable(true);
  500. #else //SNMM
  501. lcd_clear();
  502. lcd_display_message_fullscreen_P(PSTR(""));
  503. max_feedrate[E_AXIS] = 50;
  504. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  505. lcd_print(" ");
  506. lcd_print(mmu_extruder + 1);
  507. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  508. if (current_position[Z_AXIS] < 15) {
  509. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  511. }
  512. current_position[E_AXIS] += 10; //extrusion
  513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  514. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  515. if (current_temperature[0] < 230) { //PLA & all other filaments
  516. current_position[E_AXIS] += 5.4;
  517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  518. current_position[E_AXIS] += 3.2;
  519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  520. current_position[E_AXIS] += 3;
  521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  522. }
  523. else { //ABS
  524. current_position[E_AXIS] += 3.1;
  525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  526. current_position[E_AXIS] += 3.1;
  527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  528. current_position[E_AXIS] += 4;
  529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  530. /*current_position[X_AXIS] += 23; //delay
  531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  532. current_position[X_AXIS] -= 23; //delay
  533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  534. delay_keep_alive(4700);
  535. }
  536. max_feedrate[E_AXIS] = 80;
  537. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  539. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  541. st_synchronize();
  542. //st_current_init();
  543. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  544. else st_current_set(2, tmp_motor_loud[2]);
  545. lcd_update_enable(true);
  546. lcd_return_to_status();
  547. max_feedrate[E_AXIS] = 50;
  548. #endif //SNMM
  549. }
  550. else
  551. {
  552. lcd_clear();
  553. lcd_set_cursor(0, 0);
  554. lcd_puts_P(_T(MSG_ERROR));
  555. lcd_set_cursor(0, 2);
  556. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  557. delay(2000);
  558. lcd_clear();
  559. }
  560. //lcd_return_to_status();
  561. }
  562. //wrapper functions for loading filament
  563. void extr_adj_0()
  564. {
  565. #ifndef SNMM
  566. enquecommand_P(PSTR("M701 E0"));
  567. #else
  568. change_extr(0);
  569. extr_adj(0);
  570. #endif
  571. }
  572. void extr_adj_1()
  573. {
  574. #ifndef SNMM
  575. enquecommand_P(PSTR("M701 E1"));
  576. #else
  577. change_extr(1);
  578. extr_adj(1);
  579. #endif
  580. }
  581. void extr_adj_2()
  582. {
  583. #ifndef SNMM
  584. enquecommand_P(PSTR("M701 E2"));
  585. #else
  586. change_extr(2);
  587. extr_adj(2);
  588. #endif
  589. }
  590. void extr_adj_3()
  591. {
  592. #ifndef SNMM
  593. enquecommand_P(PSTR("M701 E3"));
  594. #else
  595. change_extr(3);
  596. extr_adj(3);
  597. #endif
  598. }
  599. void extr_adj_4()
  600. {
  601. #ifndef SNMM
  602. enquecommand_P(PSTR("M701 E4"));
  603. #else
  604. change_extr(4);
  605. extr_adj(4);
  606. #endif
  607. }
  608. void load_all()
  609. {
  610. #ifndef SNMM
  611. enquecommand_P(PSTR("M701 E0"));
  612. enquecommand_P(PSTR("M701 E1"));
  613. enquecommand_P(PSTR("M701 E2"));
  614. enquecommand_P(PSTR("M701 E3"));
  615. enquecommand_P(PSTR("M701 E4"));
  616. #else
  617. for (int i = 0; i < 4; i++)
  618. {
  619. change_extr(i);
  620. extr_adj(i);
  621. }
  622. #endif
  623. }
  624. //wrapper functions for changing extruders
  625. void extr_change_0()
  626. {
  627. change_extr(0);
  628. lcd_return_to_status();
  629. }
  630. void extr_change_1()
  631. {
  632. change_extr(1);
  633. lcd_return_to_status();
  634. }
  635. void extr_change_2()
  636. {
  637. change_extr(2);
  638. lcd_return_to_status();
  639. }
  640. void extr_change_3()
  641. {
  642. change_extr(3);
  643. lcd_return_to_status();
  644. }
  645. //wrapper functions for unloading filament
  646. void extr_unload_all()
  647. {
  648. if (degHotend0() > EXTRUDE_MINTEMP)
  649. {
  650. for (int i = 0; i < 4; i++)
  651. {
  652. change_extr(i);
  653. extr_unload();
  654. }
  655. }
  656. else
  657. {
  658. lcd_clear();
  659. lcd_set_cursor(0, 0);
  660. lcd_puts_P(_T(MSG_ERROR));
  661. lcd_set_cursor(0, 2);
  662. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  663. delay(2000);
  664. lcd_clear();
  665. lcd_return_to_status();
  666. }
  667. }
  668. //unloading just used filament (for snmm)
  669. void extr_unload_used()
  670. {
  671. if (degHotend0() > EXTRUDE_MINTEMP) {
  672. for (int i = 0; i < 4; i++) {
  673. if (snmm_filaments_used & (1 << i)) {
  674. change_extr(i);
  675. extr_unload();
  676. }
  677. }
  678. snmm_filaments_used = 0;
  679. }
  680. else {
  681. lcd_clear();
  682. lcd_set_cursor(0, 0);
  683. lcd_puts_P(_T(MSG_ERROR));
  684. lcd_set_cursor(0, 2);
  685. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  686. delay(2000);
  687. lcd_clear();
  688. lcd_return_to_status();
  689. }
  690. }
  691. void extr_unload_0()
  692. {
  693. change_extr(0);
  694. extr_unload();
  695. }
  696. void extr_unload_1()
  697. {
  698. change_extr(1);
  699. extr_unload();
  700. }
  701. void extr_unload_2()
  702. {
  703. change_extr(2);
  704. extr_unload();
  705. }
  706. void extr_unload_3()
  707. {
  708. change_extr(3);
  709. extr_unload();
  710. }
  711. void extr_unload_4()
  712. {
  713. change_extr(4);
  714. extr_unload();
  715. }