planner.cpp 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "fancheck.h"
  41. #include "ultralcd.h"
  42. #include "language.h"
  43. #include "ConfigurationStore.h"
  44. #ifdef MESH_BED_LEVELING
  45. #include "mesh_bed_leveling.h"
  46. #include "mesh_bed_calibration.h"
  47. #endif
  48. #ifdef TMC2130
  49. #include "tmc2130.h"
  50. #endif //TMC2130
  51. #include <util/atomic.h>
  52. //===========================================================================
  53. //=============================public variables ============================
  54. //===========================================================================
  55. // Use M203 to override by software
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  73. uint8_t maxlimit_status;
  74. #ifdef AUTOTEMP
  75. float autotemp_max=250;
  76. float autotemp_min=210;
  77. float autotemp_factor=0.1;
  78. bool autotemp_enabled=false;
  79. #endif
  80. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  81. //===========================================================================
  82. //=================semi-private variables, used in inline functions =====
  83. //===========================================================================
  84. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  85. volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  86. volatile uint8_t block_buffer_tail; // Index of the block to process now
  87. #ifdef PLANNER_DIAGNOSTICS
  88. // Diagnostic function: Minimum number of planned moves since the last
  89. static uint8_t g_cntr_planner_queue_min = 0;
  90. #endif /* PLANNER_DIAGNOSTICS */
  91. //===========================================================================
  92. //=============================private variables ============================
  93. //===========================================================================
  94. #ifdef PREVENT_DANGEROUS_EXTRUDE
  95. int extrude_min_temp = EXTRUDE_MINTEMP;
  96. #endif
  97. #ifdef LIN_ADVANCE
  98. float extruder_advance_K = LA_K_DEF;
  99. float position_float[NUM_AXIS];
  100. #endif
  101. // Request the next block to start at zero E count
  102. static bool plan_reset_next_e_queue;
  103. static bool plan_reset_next_e_sched;
  104. // Returns the index of the next block in the ring buffer
  105. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  106. static inline uint8_t next_block_index(uint8_t block_index) {
  107. if (++ block_index == BLOCK_BUFFER_SIZE)
  108. block_index = 0;
  109. return block_index;
  110. }
  111. // Returns the index of the previous block in the ring buffer
  112. static inline uint8_t prev_block_index(uint8_t block_index) {
  113. if (block_index == 0)
  114. block_index = BLOCK_BUFFER_SIZE;
  115. -- block_index;
  116. return block_index;
  117. }
  118. //===========================================================================
  119. //=============================functions ============================
  120. //===========================================================================
  121. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  122. // given acceleration:
  123. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  124. {
  125. if (acceleration!=0) {
  126. return((target_rate*target_rate-initial_rate*initial_rate)/
  127. (2.0*acceleration));
  128. }
  129. else {
  130. return 0.0; // acceleration was 0, set acceleration distance to 0
  131. }
  132. }
  133. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  134. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  135. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  136. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  137. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  138. {
  139. if (acceleration!=0) {
  140. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  141. (4.0*acceleration) );
  142. }
  143. else {
  144. return 0.0; // acceleration was 0, set intersection distance to 0
  145. }
  146. }
  147. // Minimum stepper rate 120Hz.
  148. #define MINIMAL_STEP_RATE 120
  149. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  150. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  151. {
  152. // These two lines are the only floating point calculations performed in this routine.
  153. // initial_rate, final_rate in Hz.
  154. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  155. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  156. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  157. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  158. // Limit minimal step rate (Otherwise the timer will overflow.)
  159. if (initial_rate < MINIMAL_STEP_RATE)
  160. initial_rate = MINIMAL_STEP_RATE;
  161. if (initial_rate > block->nominal_rate)
  162. initial_rate = block->nominal_rate;
  163. if (final_rate < MINIMAL_STEP_RATE)
  164. final_rate = MINIMAL_STEP_RATE;
  165. if (final_rate > block->nominal_rate)
  166. final_rate = block->nominal_rate;
  167. uint32_t acceleration = block->acceleration_st;
  168. if (acceleration == 0)
  169. // Don't allow zero acceleration.
  170. acceleration = 1;
  171. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  172. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  173. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  174. //FIXME assert that this result fits a 64bit unsigned int.
  175. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  176. uint32_t final_rate_sqr = final_rate*final_rate;
  177. uint32_t acceleration_x2 = acceleration << 1;
  178. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  179. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  180. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  181. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  182. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  183. // Size of Plateau of Nominal Rate.
  184. uint32_t plateau_steps = 0;
  185. #ifdef LIN_ADVANCE
  186. uint16_t final_adv_steps = 0;
  187. uint16_t max_adv_steps = 0;
  188. if (block->use_advance_lead) {
  189. final_adv_steps = final_rate * block->adv_comp;
  190. }
  191. #endif
  192. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  193. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  194. // in order to reach the final_rate exactly at the end of this block.
  195. if (accel_decel_steps < block->step_event_count.wide) {
  196. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  197. #ifdef LIN_ADVANCE
  198. if (block->use_advance_lead)
  199. max_adv_steps = block->nominal_rate * block->adv_comp;
  200. #endif
  201. } else {
  202. uint32_t acceleration_x4 = acceleration << 2;
  203. // Avoid negative numbers
  204. if (final_rate_sqr >= initial_rate_sqr) {
  205. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  206. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  207. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  208. #if 0
  209. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  210. #else
  211. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  212. if (block->step_event_count.wide & 1)
  213. accelerate_steps += acceleration_x2;
  214. accelerate_steps /= acceleration_x4;
  215. accelerate_steps += (block->step_event_count.wide >> 1);
  216. #endif
  217. if (accelerate_steps > block->step_event_count.wide)
  218. accelerate_steps = block->step_event_count.wide;
  219. } else {
  220. #if 0
  221. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  222. #else
  223. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  224. if (block->step_event_count.wide & 1)
  225. decelerate_steps += acceleration_x2;
  226. decelerate_steps /= acceleration_x4;
  227. decelerate_steps += (block->step_event_count.wide >> 1);
  228. #endif
  229. if (decelerate_steps > block->step_event_count.wide)
  230. decelerate_steps = block->step_event_count.wide;
  231. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  232. }
  233. #ifdef LIN_ADVANCE
  234. if (block->use_advance_lead) {
  235. if(!accelerate_steps || !decelerate_steps) {
  236. // accelerate_steps=0: deceleration-only ramp, max_rate is effectively unused
  237. // decelerate_steps=0: acceleration-only ramp, max_rate _is_ final_rate
  238. max_adv_steps = final_adv_steps;
  239. } else {
  240. float max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
  241. max_adv_steps = max_rate * block->adv_comp;
  242. }
  243. }
  244. #endif
  245. }
  246. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  247. // This block locks the interrupts globally for 4.38 us,
  248. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  249. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  250. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  251. if (! block->busy) { // Don't update variables if block is busy.
  252. block->accelerate_until = accelerate_steps;
  253. block->decelerate_after = accelerate_steps+plateau_steps;
  254. block->initial_rate = initial_rate;
  255. block->final_rate = final_rate;
  256. #ifdef LIN_ADVANCE
  257. block->final_adv_steps = final_adv_steps;
  258. block->max_adv_steps = max_adv_steps;
  259. #endif
  260. }
  261. CRITICAL_SECTION_END;
  262. }
  263. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  264. // decceleration within the allotted distance.
  265. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  266. {
  267. // assert(decceleration < 0);
  268. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  269. }
  270. // Recalculates the motion plan according to the following algorithm:
  271. //
  272. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  273. // so that:
  274. // a. The junction jerk is within the set limit
  275. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  276. // acceleration.
  277. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  278. // a. The speed increase within one block would require faster accelleration than the one, true
  279. // constant acceleration.
  280. //
  281. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  282. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  283. // the set limit. Finally it will:
  284. //
  285. // 3. Recalculate trapezoids for all blocks.
  286. //
  287. //FIXME This routine is called 15x every time a new line is added to the planner,
  288. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  289. // if the CPU is found lacking computational power.
  290. //
  291. // Following sources may be used to optimize the 8-bit AVR code:
  292. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  293. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  294. //
  295. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  296. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  297. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  298. //
  299. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  300. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  301. // https://github.com/rekka/avrmultiplication
  302. //
  303. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  304. // https://courses.cit.cornell.edu/ee476/Math/
  305. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  306. //
  307. void planner_recalculate(const float &safe_final_speed)
  308. {
  309. // Reverse pass
  310. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  311. // by consuming the blocks, therefore shortening the queue.
  312. uint8_t tail = block_buffer_tail;
  313. uint8_t block_index;
  314. block_t *prev, *current, *next;
  315. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  316. // At least three blocks are in the queue?
  317. uint8_t n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  318. if (n_blocks >= 3) {
  319. // Initialize the last tripple of blocks.
  320. block_index = prev_block_index(block_buffer_head);
  321. next = block_buffer + block_index;
  322. current = block_buffer + (block_index = prev_block_index(block_index));
  323. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  324. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  325. // 1) it may already be running at the stepper interrupt,
  326. // 2) there is no way to limit it when going in the forward direction.
  327. while (block_index != tail) {
  328. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  329. // Don't modify the entry velocity of the starting block.
  330. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  331. // for the stepper interrupt routine to use them.
  332. tail = block_index;
  333. // Update the number of blocks to process.
  334. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  335. // SERIAL_ECHOLNPGM("START");
  336. break;
  337. }
  338. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  339. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  340. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  341. if (current->entry_speed != current->max_entry_speed) {
  342. // assert(current->entry_speed < current->max_entry_speed);
  343. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  344. // segment and the maximum acceleration allowed for this segment.
  345. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  346. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  347. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  348. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  349. // together with an assembly 32bit->16bit sqrt function.
  350. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  351. current->max_entry_speed :
  352. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  353. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  354. current->flag |= BLOCK_FLAG_RECALCULATE;
  355. }
  356. next = current;
  357. current = block_buffer + (block_index = prev_block_index(block_index));
  358. }
  359. }
  360. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  361. // Forward pass and recalculate the trapezoids.
  362. if (n_blocks >= 2) {
  363. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  364. block_index = tail;
  365. prev = block_buffer + block_index;
  366. current = block_buffer + (block_index = next_block_index(block_index));
  367. do {
  368. // If the previous block is an acceleration block, but it is not long enough to complete the
  369. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  370. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  371. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  372. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  373. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  374. // Check for junction speed change
  375. if (current->entry_speed != entry_speed) {
  376. current->entry_speed = entry_speed;
  377. current->flag |= BLOCK_FLAG_RECALCULATE;
  378. }
  379. }
  380. // Recalculate if current block entry or exit junction speed has changed.
  381. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  382. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  383. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  384. // Reset current only to ensure next trapezoid is computed.
  385. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  386. }
  387. prev = current;
  388. current = block_buffer + (block_index = next_block_index(block_index));
  389. } while (block_index != block_buffer_head);
  390. }
  391. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  392. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  393. current = block_buffer + prev_block_index(block_buffer_head);
  394. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  395. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  396. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  397. }
  398. void plan_init() {
  399. block_buffer_head = 0;
  400. block_buffer_tail = 0;
  401. memset(position, 0, sizeof(position)); // clear position
  402. #ifdef LIN_ADVANCE
  403. memset(position_float, 0, sizeof(position_float)); // clear position
  404. #endif
  405. memset(previous_speed, 0, sizeof(previous_speed));
  406. previous_nominal_speed = 0.0;
  407. plan_reset_next_e_queue = false;
  408. plan_reset_next_e_sched = false;
  409. }
  410. #ifdef AUTOTEMP
  411. void getHighESpeed()
  412. {
  413. static float oldt=0;
  414. if(!autotemp_enabled){
  415. return;
  416. }
  417. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  418. return; //do nothing
  419. }
  420. float high=0.0;
  421. uint8_t block_index = block_buffer_tail;
  422. while(block_index != block_buffer_head) {
  423. if((block_buffer[block_index].steps_x.wide != 0) ||
  424. (block_buffer[block_index].steps_y.wide != 0) ||
  425. (block_buffer[block_index].steps_z.wide != 0)) {
  426. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  427. //se; mm/sec;
  428. if(se>high)
  429. {
  430. high=se;
  431. }
  432. }
  433. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  434. }
  435. float g=autotemp_min+high*autotemp_factor;
  436. float t=g;
  437. if(t<autotemp_min)
  438. t=autotemp_min;
  439. if(t>autotemp_max)
  440. t=autotemp_max;
  441. if(oldt>t)
  442. {
  443. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  444. }
  445. oldt=t;
  446. setTargetHotend0(t);
  447. }
  448. #endif
  449. bool e_active()
  450. {
  451. unsigned char e_active = 0;
  452. block_t *block;
  453. if(block_buffer_tail != block_buffer_head)
  454. {
  455. uint8_t block_index = block_buffer_tail;
  456. while(block_index != block_buffer_head)
  457. {
  458. block = &block_buffer[block_index];
  459. if(block->steps_e.wide != 0) e_active++;
  460. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  461. }
  462. }
  463. return (e_active > 0) ? true : false ;
  464. }
  465. void check_axes_activity()
  466. {
  467. unsigned char x_active = 0;
  468. unsigned char y_active = 0;
  469. unsigned char z_active = 0;
  470. unsigned char e_active = 0;
  471. unsigned char tail_fan_speed = fanSpeed;
  472. block_t *block;
  473. if(block_buffer_tail != block_buffer_head)
  474. {
  475. uint8_t block_index = block_buffer_tail;
  476. tail_fan_speed = block_buffer[block_index].fan_speed;
  477. while(block_index != block_buffer_head)
  478. {
  479. block = &block_buffer[block_index];
  480. if(block->steps_x.wide != 0) x_active++;
  481. if(block->steps_y.wide != 0) y_active++;
  482. if(block->steps_z.wide != 0) z_active++;
  483. if(block->steps_e.wide != 0) e_active++;
  484. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  485. }
  486. }
  487. if((DISABLE_X) && (x_active == 0)) disable_x();
  488. if((DISABLE_Y) && (y_active == 0)) disable_y();
  489. if((DISABLE_Z) && (z_active == 0)) disable_z();
  490. if((DISABLE_E) && (e_active == 0))
  491. {
  492. disable_e0();
  493. disable_e1();
  494. disable_e2();
  495. }
  496. #if defined(FAN_PIN) && FAN_PIN > -1
  497. #ifdef FAN_KICKSTART_TIME
  498. static unsigned long fan_kick_end;
  499. if (tail_fan_speed) {
  500. if (fan_kick_end == 0) {
  501. // Just starting up fan - run at full power.
  502. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  503. tail_fan_speed = 255;
  504. } else if (fan_kick_end > _millis())
  505. // Fan still spinning up.
  506. tail_fan_speed = 255;
  507. } else {
  508. fan_kick_end = 0;
  509. }
  510. #endif//FAN_KICKSTART_TIME
  511. #ifdef FAN_SOFT_PWM
  512. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  513. fanSpeedBckp = tail_fan_speed;
  514. }
  515. else {
  516. fanSpeedSoftPwm = tail_fan_speed;
  517. }
  518. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  519. #else
  520. analogWrite(FAN_PIN,tail_fan_speed);
  521. #endif//!FAN_SOFT_PWM
  522. #endif//FAN_PIN > -1
  523. #ifdef AUTOTEMP
  524. getHighESpeed();
  525. #endif
  526. }
  527. bool planner_aborted = false;
  528. #ifdef PLANNER_DIAGNOSTICS
  529. static inline void planner_update_queue_min_counter()
  530. {
  531. uint8_t new_counter = moves_planned();
  532. if (new_counter < g_cntr_planner_queue_min)
  533. g_cntr_planner_queue_min = new_counter;
  534. }
  535. #endif /* PLANNER_DIAGNOSTICS */
  536. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  537. void planner_abort_hard()
  538. {
  539. // Abort the stepper routine and flush the planner queue.
  540. DISABLE_STEPPER_DRIVER_INTERRUPT();
  541. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  542. // First update the planner's current position in the physical motor steps.
  543. position[X_AXIS] = st_get_position(X_AXIS);
  544. position[Y_AXIS] = st_get_position(Y_AXIS);
  545. position[Z_AXIS] = st_get_position(Z_AXIS);
  546. position[E_AXIS] = st_get_position(E_AXIS);
  547. // Second update the current position of the front end.
  548. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  549. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  550. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  551. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  552. // Apply the mesh bed leveling correction to the Z axis.
  553. #ifdef MESH_BED_LEVELING
  554. if (mbl.active) {
  555. #if 1
  556. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  557. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  558. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  559. #else
  560. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  561. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  562. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  563. else {
  564. float t = float(step_events_completed) / float(current_block->step_event_count);
  565. float vec[3] = {
  566. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  567. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  568. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  569. };
  570. float pos1[3], pos2[3];
  571. for (int8_t i = 0; i < 3; ++ i) {
  572. if (current_block->direction_bits & (1<<i))
  573. vec[i] = - vec[i];
  574. pos1[i] = current_position[i] - vec[i] * t;
  575. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  576. }
  577. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  578. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  579. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  580. }
  581. #endif
  582. }
  583. #endif
  584. // Relay to planner wait routine, that the current line shall be canceled.
  585. planner_aborted = true;
  586. // Clear the planner queue, reset and re-enable the stepper timer.
  587. quickStop();
  588. // Apply inverse world correction matrix.
  589. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  590. memcpy(destination, current_position, sizeof(destination));
  591. #ifdef LIN_ADVANCE
  592. memcpy(position_float, current_position, sizeof(position_float));
  593. #endif
  594. // Resets planner junction speeds. Assumes start from rest.
  595. previous_nominal_speed = 0.0;
  596. memset(previous_speed, 0, sizeof(previous_speed));
  597. plan_reset_next_e_queue = false;
  598. plan_reset_next_e_sched = false;
  599. }
  600. void plan_buffer_line_curposXYZE(float feed_rate) {
  601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder );
  602. }
  603. void plan_buffer_line_destinationXYZE(float feed_rate) {
  604. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate, active_extruder);
  605. }
  606. void plan_set_position_curposXYZE(){
  607. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  608. }
  609. float junction_deviation = 0.1;
  610. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  611. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  612. // calculation the caller must also provide the physical length of the line in millimeters.
  613. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
  614. {
  615. // Calculate the buffer head after we push this byte
  616. uint8_t next_buffer_head = next_block_index(block_buffer_head);
  617. // If the buffer is full: good! That means we are well ahead of the robot.
  618. // Rest here until there is room in the buffer.
  619. if (block_buffer_tail == next_buffer_head) {
  620. do {
  621. manage_heater();
  622. // Vojtech: Don't disable motors inside the planner!
  623. manage_inactivity(false);
  624. lcd_update(0);
  625. } while (block_buffer_tail == next_buffer_head);
  626. }
  627. #ifdef PLANNER_DIAGNOSTICS
  628. planner_update_queue_min_counter();
  629. #endif /* PLANNER_DIAGNOSTICS */
  630. if(planner_aborted) {
  631. // avoid planning the block early if aborted
  632. return;
  633. }
  634. // Prepare to set up new block
  635. block_t *block = &block_buffer[block_buffer_head];
  636. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  637. block->busy = false;
  638. // Set sdlen for calculating sd position
  639. block->sdlen = 0;
  640. // Save original destination of the move
  641. if (gcode_target)
  642. memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
  643. else
  644. {
  645. block->gcode_target[X_AXIS] = x;
  646. block->gcode_target[Y_AXIS] = y;
  647. block->gcode_target[Z_AXIS] = z;
  648. block->gcode_target[E_AXIS] = e;
  649. }
  650. // Save the global feedrate at scheduling time
  651. block->gcode_feedrate = feedrate;
  652. // Reset the starting E position when requested
  653. if (plan_reset_next_e_queue)
  654. {
  655. position[E_AXIS] = 0;
  656. #ifdef LIN_ADVANCE
  657. position_float[E_AXIS] = 0;
  658. #endif
  659. // the block might still be discarded later, but we need to ensure the lower-level
  660. // count_position is also reset correctly for consistent results!
  661. plan_reset_next_e_queue = false;
  662. plan_reset_next_e_sched = true;
  663. }
  664. #ifdef ENABLE_AUTO_BED_LEVELING
  665. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  666. #endif // ENABLE_AUTO_BED_LEVELING
  667. // Apply the machine correction matrix.
  668. {
  669. #if 0
  670. SERIAL_ECHOPGM("Planner, current position - servos: ");
  671. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  672. SERIAL_ECHOPGM(", ");
  673. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  674. SERIAL_ECHOPGM(", ");
  675. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  676. SERIAL_ECHOLNPGM("");
  677. SERIAL_ECHOPGM("Planner, target position, initial: ");
  678. MYSERIAL.print(x, 5);
  679. SERIAL_ECHOPGM(", ");
  680. MYSERIAL.print(y, 5);
  681. SERIAL_ECHOLNPGM("");
  682. SERIAL_ECHOPGM("Planner, world2machine: ");
  683. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  684. SERIAL_ECHOPGM(", ");
  685. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  686. SERIAL_ECHOPGM(", ");
  687. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  688. SERIAL_ECHOPGM(", ");
  689. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  690. SERIAL_ECHOLNPGM("");
  691. SERIAL_ECHOPGM("Planner, offset: ");
  692. MYSERIAL.print(world2machine_shift[0], 5);
  693. SERIAL_ECHOPGM(", ");
  694. MYSERIAL.print(world2machine_shift[1], 5);
  695. SERIAL_ECHOLNPGM("");
  696. #endif
  697. world2machine(x, y);
  698. #if 0
  699. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  700. MYSERIAL.print(x, 5);
  701. SERIAL_ECHOPGM(", ");
  702. MYSERIAL.print(y, 5);
  703. SERIAL_ECHOLNPGM("");
  704. #endif
  705. }
  706. // The target position of the tool in absolute steps
  707. // Calculate target position in absolute steps
  708. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  709. long target[4];
  710. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  711. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  712. #ifdef MESH_BED_LEVELING
  713. if (mbl.active){
  714. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  715. }else{
  716. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  717. }
  718. #else
  719. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  720. #endif // ENABLE_MESH_BED_LEVELING
  721. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  722. #ifdef PREVENT_DANGEROUS_EXTRUDE
  723. if(target[E_AXIS]!=position[E_AXIS])
  724. {
  725. if((int)degHotend(active_extruder)<extrude_min_temp)
  726. {
  727. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  728. #ifdef LIN_ADVANCE
  729. position_float[E_AXIS] = e;
  730. #endif
  731. SERIAL_ECHO_START;
  732. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  733. }
  734. #ifdef PREVENT_LENGTHY_EXTRUDE
  735. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  736. {
  737. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  738. #ifdef LIN_ADVANCE
  739. position_float[E_AXIS] = e;
  740. #endif
  741. SERIAL_ECHO_START;
  742. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  743. }
  744. #endif
  745. }
  746. #endif
  747. // Number of steps for each axis
  748. #ifndef COREXY
  749. // default non-h-bot planning
  750. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  751. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  752. #else
  753. // corexy planning
  754. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  755. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  756. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  757. #endif
  758. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  759. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  760. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  761. // Bail if this is a zero-length block
  762. if (block->step_event_count.wide <= dropsegments)
  763. {
  764. #ifdef PLANNER_DIAGNOSTICS
  765. planner_update_queue_min_counter();
  766. #endif /* PLANNER_DIAGNOSTICS */
  767. return;
  768. }
  769. block->fan_speed = fanSpeed;
  770. // Compute direction bits for this block
  771. block->direction_bits = 0;
  772. #ifndef COREXY
  773. if (target[X_AXIS] < position[X_AXIS])
  774. {
  775. block->direction_bits |= (1<<X_AXIS);
  776. }
  777. if (target[Y_AXIS] < position[Y_AXIS])
  778. {
  779. block->direction_bits |= (1<<Y_AXIS);
  780. }
  781. #else
  782. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  783. {
  784. block->direction_bits |= (1<<X_AXIS);
  785. }
  786. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  787. {
  788. block->direction_bits |= (1<<Y_AXIS);
  789. }
  790. #endif
  791. if (target[Z_AXIS] < position[Z_AXIS])
  792. {
  793. block->direction_bits |= (1<<Z_AXIS);
  794. }
  795. if (target[E_AXIS] < position[E_AXIS])
  796. {
  797. block->direction_bits |= (1<<E_AXIS);
  798. }
  799. block->active_extruder = extruder;
  800. //enable active axes
  801. #ifdef COREXY
  802. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  803. {
  804. enable_x();
  805. enable_y();
  806. }
  807. #else
  808. if(block->steps_x.wide != 0) enable_x();
  809. if(block->steps_y.wide != 0) enable_y();
  810. #endif
  811. if(block->steps_z.wide != 0) enable_z();
  812. // Enable extruder(s)
  813. if(block->steps_e.wide != 0)
  814. {
  815. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  816. {
  817. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  818. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  819. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  820. switch(extruder)
  821. {
  822. case 0:
  823. enable_e0();
  824. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  825. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  826. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  827. break;
  828. case 1:
  829. enable_e1();
  830. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  831. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  832. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  833. break;
  834. case 2:
  835. enable_e2();
  836. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  837. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  838. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  839. break;
  840. }
  841. }
  842. else //enable all
  843. {
  844. enable_e0();
  845. enable_e1();
  846. enable_e2();
  847. }
  848. }
  849. if (block->steps_e.wide == 0)
  850. {
  851. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  852. }
  853. else
  854. {
  855. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  856. }
  857. /* This part of the code calculates the total length of the movement.
  858. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  859. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  860. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  861. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  862. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  863. */
  864. #ifndef COREXY
  865. float delta_mm[4];
  866. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  867. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  868. #else
  869. float delta_mm[6];
  870. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  871. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  872. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  873. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  874. #endif
  875. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  876. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  877. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  878. {
  879. block->millimeters = fabs(delta_mm[E_AXIS]);
  880. }
  881. else
  882. {
  883. #ifndef COREXY
  884. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  885. #else
  886. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  887. #endif
  888. }
  889. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  890. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  891. float inverse_second = feed_rate * inverse_millimeters;
  892. uint8_t moves_queued = moves_planned();
  893. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  894. #ifdef SLOWDOWN
  895. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  896. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  897. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  898. // segment time in micro seconds
  899. unsigned long segment_time = lround(1000000.0/inverse_second);
  900. if (segment_time < cs.minsegmenttime)
  901. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  902. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  903. }
  904. #endif // SLOWDOWN
  905. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  906. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  907. // Calculate and limit speed in mm/sec for each axis
  908. float current_speed[4];
  909. float speed_factor = 1.0; //factor <=1 do decrease speed
  910. for(int i=0; i < 4; i++)
  911. {
  912. current_speed[i] = delta_mm[i] * inverse_second;
  913. if(fabs(current_speed[i]) > max_feedrate[i])
  914. {
  915. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  916. }
  917. }
  918. // Correct the speed
  919. if( speed_factor < 1.0)
  920. {
  921. for(unsigned char i=0; i < 4; i++)
  922. {
  923. current_speed[i] *= speed_factor;
  924. }
  925. block->nominal_speed *= speed_factor;
  926. block->nominal_rate *= speed_factor;
  927. }
  928. #ifdef LIN_ADVANCE
  929. float e_D_ratio = 0;
  930. #endif
  931. // Compute and limit the acceleration rate for the trapezoid generator.
  932. // block->step_event_count ... event count of the fastest axis
  933. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  934. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  935. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  936. {
  937. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  938. #ifdef LIN_ADVANCE
  939. block->use_advance_lead = false;
  940. #endif
  941. }
  942. else
  943. {
  944. float acceleration = (block->steps_e.wide == 0? cs.travel_acceleration: cs.acceleration);
  945. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  946. #ifdef LIN_ADVANCE
  947. /**
  948. * Use LIN_ADVANCE within this block if all these are true:
  949. *
  950. * extruder_advance_K : There is an advance factor set.
  951. * delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
  952. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  953. */
  954. block->use_advance_lead = extruder_advance_K > 0
  955. && delta_mm[E_AXIS] >= 0
  956. && fabs(delta_mm[Z_AXIS]) < 0.5;
  957. if (block->use_advance_lead) {
  958. #ifdef LA_FLOWADJ
  959. // M221/FLOW should change uniformly the extrusion thickness
  960. float delta_e = (e - position_float[E_AXIS]) / extruder_multiplier[extruder];
  961. #else
  962. // M221/FLOW only adjusts for an incorrect source diameter
  963. float delta_e = (e - position_float[E_AXIS]);
  964. #endif
  965. float delta_D = sqrt(sq(x - position_float[X_AXIS])
  966. + sq(y - position_float[Y_AXIS])
  967. + sq(z - position_float[Z_AXIS]));
  968. // all extrusion moves with LA require a compression which is proportional to the
  969. // extrusion_length to distance ratio (e/D)
  970. e_D_ratio = delta_e / delta_D;
  971. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  972. // print move due to min. steps per segment. Never execute this with advance! This assumes
  973. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  974. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  975. if (e_D_ratio > 3.0)
  976. block->use_advance_lead = false;
  977. else if (e_D_ratio > 0) {
  978. const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
  979. if (cs.acceleration > max_accel_per_s2) {
  980. block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
  981. #ifdef LA_DEBUG
  982. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  983. #endif
  984. }
  985. }
  986. }
  987. #endif
  988. // Limit acceleration per axis
  989. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  990. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  991. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; }
  992. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  993. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; }
  994. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  995. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; }
  996. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  997. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; }
  998. }
  999. // Acceleration of the segment, in mm/sec^2
  1000. block->acceleration = block->acceleration_st / steps_per_mm;
  1001. #if 0
  1002. // Oversample diagonal movements by a power of 2 up to 8x
  1003. // to achieve more accurate diagonal movements.
  1004. uint8_t bresenham_oversample = 1;
  1005. for (uint8_t i = 0; i < 3; ++ i) {
  1006. if (block->nominal_rate >= 5000) // 5kHz
  1007. break;
  1008. block->nominal_rate << 1;
  1009. bresenham_oversample << 1;
  1010. block->step_event_count << 1;
  1011. }
  1012. if (bresenham_oversample > 1)
  1013. // Lower the acceleration steps/sec^2 to account for the oversampling.
  1014. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  1015. #endif
  1016. block->acceleration_rate = ((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1017. // Start with a safe speed.
  1018. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1019. float safe_speed = block->nominal_speed;
  1020. bool limited = false;
  1021. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1022. float jerk = fabs(current_speed[axis]);
  1023. if (jerk > cs.max_jerk[axis]) {
  1024. // The actual jerk is lower, if it has been limited by the XY jerk.
  1025. if (limited) {
  1026. // Spare one division by a following gymnastics:
  1027. // Instead of jerk *= safe_speed / block->nominal_speed,
  1028. // multiply max_jerk[axis] by the divisor.
  1029. jerk *= safe_speed;
  1030. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1031. if (jerk > mjerk) {
  1032. safe_speed *= mjerk / jerk;
  1033. limited = true;
  1034. }
  1035. } else {
  1036. safe_speed = cs.max_jerk[axis];
  1037. limited = true;
  1038. }
  1039. }
  1040. }
  1041. // Reset the block flag.
  1042. block->flag = 0;
  1043. if (plan_reset_next_e_sched)
  1044. {
  1045. // finally propagate a pending reset
  1046. block->flag |= BLOCK_FLAG_E_RESET;
  1047. plan_reset_next_e_sched = false;
  1048. }
  1049. // Initial limit on the segment entry velocity.
  1050. float vmax_junction;
  1051. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1052. // Is it because we don't want to tinker with the first buffer line, which
  1053. // is likely to be executed by the stepper interrupt routine soon?
  1054. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1055. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1056. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1057. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1058. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1059. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1060. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1061. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1062. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1063. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1064. float v_factor = 1.f;
  1065. limited = false;
  1066. // Now limit the jerk in all axes.
  1067. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1068. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1069. float v_exit = previous_speed[axis];
  1070. float v_entry = current_speed [axis];
  1071. if (prev_speed_larger)
  1072. v_exit *= smaller_speed_factor;
  1073. if (limited) {
  1074. v_exit *= v_factor;
  1075. v_entry *= v_factor;
  1076. }
  1077. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1078. float jerk =
  1079. (v_exit > v_entry) ?
  1080. ((v_entry > 0.f || v_exit < 0.f) ?
  1081. // coasting
  1082. (v_exit - v_entry) :
  1083. // axis reversal
  1084. max(v_exit, - v_entry)) :
  1085. // v_exit <= v_entry
  1086. ((v_entry < 0.f || v_exit > 0.f) ?
  1087. // coasting
  1088. (v_entry - v_exit) :
  1089. // axis reversal
  1090. max(- v_exit, v_entry));
  1091. if (jerk > cs.max_jerk[axis]) {
  1092. v_factor *= cs.max_jerk[axis] / jerk;
  1093. limited = true;
  1094. }
  1095. }
  1096. if (limited)
  1097. vmax_junction *= v_factor;
  1098. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1099. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1100. float vmax_junction_threshold = vmax_junction * 0.99f;
  1101. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1102. // Not coasting. The machine will stop and start the movements anyway,
  1103. // better to start the segment from start.
  1104. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1105. vmax_junction = safe_speed;
  1106. }
  1107. } else {
  1108. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1109. vmax_junction = safe_speed;
  1110. }
  1111. // Max entry speed of this block equals the max exit speed of the previous block.
  1112. block->max_entry_speed = vmax_junction;
  1113. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1114. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1115. block->entry_speed = min(vmax_junction, v_allowable);
  1116. // Initialize planner efficiency flags
  1117. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1118. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1119. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1120. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1121. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1122. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1123. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1124. // Always calculate trapezoid for new block
  1125. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1126. // Update previous path unit_vector and nominal speed
  1127. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1128. previous_nominal_speed = block->nominal_speed;
  1129. previous_safe_speed = safe_speed;
  1130. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1131. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1132. #ifdef LIN_ADVANCE
  1133. if (block->use_advance_lead) {
  1134. // calculate the compression ratio for the segment (the required advance steps are computed
  1135. // during trapezoid planning)
  1136. float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
  1137. block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
  1138. float advance_speed;
  1139. if (e_D_ratio > 0)
  1140. advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1141. else
  1142. advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
  1143. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1144. // still need to replicate the *exact* same step grouping policy (see below)
  1145. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1146. float advance_rate = (F_CPU / 8.0) / advance_speed;
  1147. if (advance_speed > 20000) {
  1148. block->advance_rate = advance_rate * 4;
  1149. block->advance_step_loops = 4;
  1150. }
  1151. else if (advance_speed > 10000) {
  1152. block->advance_rate = advance_rate * 2;
  1153. block->advance_step_loops = 2;
  1154. }
  1155. else
  1156. {
  1157. // never overflow the internal accumulator with very low rates
  1158. if (advance_rate < UINT16_MAX)
  1159. block->advance_rate = advance_rate;
  1160. else
  1161. block->advance_rate = UINT16_MAX;
  1162. block->advance_step_loops = 1;
  1163. }
  1164. #ifdef LA_DEBUG
  1165. if (block->advance_step_loops > 2)
  1166. // @wavexx: we should really check for the difference between step_loops and
  1167. // advance_step_loops instead. A difference of more than 1 will lead
  1168. // to uneven speed and *should* be adjusted here by furthermore
  1169. // reducing the speed.
  1170. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1171. #endif
  1172. }
  1173. #endif
  1174. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1175. if (block->step_event_count.wide <= 32767)
  1176. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1177. ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
  1178. // Move the buffer head ensuring the current block hasn't been cancelled from an isr context
  1179. // (this is possible both during crash detection *and* uvlo, thus needing a global cli)
  1180. if(planner_aborted) return;
  1181. block_buffer_head = next_buffer_head;
  1182. }
  1183. // Update position
  1184. memcpy(position, target, sizeof(target)); // position[] = target[]
  1185. #ifdef LIN_ADVANCE
  1186. position_float[X_AXIS] = x;
  1187. position_float[Y_AXIS] = y;
  1188. position_float[Z_AXIS] = z;
  1189. position_float[E_AXIS] = e;
  1190. #endif
  1191. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1192. // the machine limits (maximum acceleration and maximum jerk).
  1193. // This runs asynchronously with the stepper interrupt controller, which may
  1194. // interfere with the process.
  1195. planner_recalculate(safe_speed);
  1196. // SERIAL_ECHOPGM("Q");
  1197. // SERIAL_ECHO(int(moves_planned()));
  1198. // SERIAL_ECHOLNPGM("");
  1199. #ifdef PLANNER_DIAGNOSTICS
  1200. planner_update_queue_min_counter();
  1201. #endif /* PLANNER_DIAGNOSTIC */
  1202. // The stepper timer interrupt will run continuously from now on.
  1203. // If there are no planner blocks to be executed by the stepper routine,
  1204. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1205. // from the planner queue if available.
  1206. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1207. }
  1208. #ifdef ENABLE_AUTO_BED_LEVELING
  1209. vector_3 plan_get_position() {
  1210. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1211. //position.debug("in plan_get position");
  1212. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1213. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1214. //inverse.debug("in plan_get inverse");
  1215. position.apply_rotation(inverse);
  1216. //position.debug("after rotation");
  1217. return position;
  1218. }
  1219. #endif // ENABLE_AUTO_BED_LEVELING
  1220. void plan_set_position(float x, float y, float z, const float &e)
  1221. {
  1222. #ifdef ENABLE_AUTO_BED_LEVELING
  1223. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1224. #endif // ENABLE_AUTO_BED_LEVELING
  1225. world2machine(x, y);
  1226. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1227. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1228. #ifdef MESH_BED_LEVELING
  1229. position[Z_AXIS] = mbl.active ?
  1230. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1231. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1232. #else
  1233. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1234. #endif // ENABLE_MESH_BED_LEVELING
  1235. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1236. #ifdef LIN_ADVANCE
  1237. position_float[X_AXIS] = x;
  1238. position_float[Y_AXIS] = y;
  1239. position_float[Z_AXIS] = z;
  1240. position_float[E_AXIS] = e;
  1241. #endif
  1242. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1243. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1244. memset(previous_speed, 0, sizeof(previous_speed));
  1245. }
  1246. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1247. void plan_set_z_position(const float &z)
  1248. {
  1249. #ifdef LIN_ADVANCE
  1250. position_float[Z_AXIS] = z;
  1251. #endif
  1252. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1253. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1254. }
  1255. void plan_set_e_position(const float &e)
  1256. {
  1257. #ifdef LIN_ADVANCE
  1258. position_float[E_AXIS] = e;
  1259. #endif
  1260. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1261. st_set_e_position(position[E_AXIS]);
  1262. }
  1263. void plan_reset_next_e()
  1264. {
  1265. plan_reset_next_e_queue = true;
  1266. }
  1267. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1268. void set_extrude_min_temp(int temp)
  1269. {
  1270. extrude_min_temp = temp;
  1271. }
  1272. #endif
  1273. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1274. void reset_acceleration_rates()
  1275. {
  1276. for(int8_t i=0; i < NUM_AXIS; i++)
  1277. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1278. }
  1279. #ifdef TMC2130
  1280. void update_mode_profile()
  1281. {
  1282. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1283. {
  1284. max_feedrate = cs.max_feedrate_normal;
  1285. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1286. }
  1287. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1288. {
  1289. max_feedrate = cs.max_feedrate_silent;
  1290. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1291. }
  1292. reset_acceleration_rates();
  1293. }
  1294. #endif //TMC2130
  1295. uint8_t number_of_blocks()
  1296. {
  1297. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1298. }
  1299. #ifdef PLANNER_DIAGNOSTICS
  1300. uint8_t planner_queue_min()
  1301. {
  1302. return g_cntr_planner_queue_min;
  1303. }
  1304. void planner_queue_min_reset()
  1305. {
  1306. g_cntr_planner_queue_min = moves_planned();
  1307. }
  1308. #endif /* PLANNER_DIAGNOSTICS */
  1309. void planner_add_sd_length(uint16_t sdlen)
  1310. {
  1311. if (block_buffer_head != block_buffer_tail) {
  1312. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1313. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1314. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1315. } else {
  1316. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1317. // at a power panic, so the length of this command may be forgotten.
  1318. }
  1319. }
  1320. uint16_t planner_calc_sd_length()
  1321. {
  1322. uint8_t _block_buffer_head = block_buffer_head;
  1323. uint8_t _block_buffer_tail = block_buffer_tail;
  1324. uint16_t sdlen = 0;
  1325. while (_block_buffer_head != _block_buffer_tail)
  1326. {
  1327. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1328. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1329. }
  1330. return sdlen;
  1331. }