mmu.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. #include "fsensor.h"
  10. #include "cardreader.h"
  11. #include "ultralcd.h"
  12. #define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
  13. #define MMU_TODELAY 100
  14. #define MMU_TIMEOUT 10
  15. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  16. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  17. #define MMU_HWRESET
  18. #define MMU_RST_PIN 76
  19. #define MMU_REQUIRED_FW_BUILDNR 81
  20. bool mmu_enabled = false;
  21. bool mmu_ready = false;
  22. int8_t mmu_state = 0;
  23. uint8_t mmu_cmd = 0;
  24. uint8_t mmu_extruder = 0;
  25. uint8_t tmp_extruder = 0;
  26. int8_t mmu_finda = -1;
  27. int16_t mmu_version = -1;
  28. int16_t mmu_buildnr = -1;
  29. uint32_t mmu_last_request = 0;
  30. uint32_t mmu_last_response = 0;
  31. //clear rx buffer
  32. void mmu_clr_rx_buf(void)
  33. {
  34. while (fgetc(uart2io) >= 0);
  35. }
  36. //send command - puts
  37. int mmu_puts_P(const char* str)
  38. {
  39. mmu_clr_rx_buf(); //clear rx buffer
  40. int r = fputs_P(str, uart2io); //send command
  41. mmu_last_request = millis();
  42. return r;
  43. }
  44. //send command - printf
  45. int mmu_printf_P(const char* format, ...)
  46. {
  47. va_list args;
  48. va_start(args, format);
  49. mmu_clr_rx_buf(); //clear rx buffer
  50. int r = vfprintf_P(uart2io, format, args); //send command
  51. va_end(args);
  52. mmu_last_request = millis();
  53. return r;
  54. }
  55. //check 'ok' response
  56. int8_t mmu_rx_ok(void)
  57. {
  58. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  59. if (res == 1) mmu_last_response = millis();
  60. return res;
  61. }
  62. //check 'start' response
  63. int8_t mmu_rx_start(void)
  64. {
  65. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  66. if (res == 1) mmu_last_response = millis();
  67. return res;
  68. }
  69. //initialize mmu2 unit - first part - should be done at begining of startup process
  70. void mmu_init(void)
  71. {
  72. digitalWrite(MMU_RST_PIN, HIGH);
  73. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  74. uart2_init(); //init uart2
  75. _delay_ms(10); //wait 10ms for sure
  76. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  77. mmu_state = -1;
  78. }
  79. //mmu main loop - state machine processing
  80. void mmu_loop(void)
  81. {
  82. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  83. switch (mmu_state)
  84. {
  85. case 0:
  86. return;
  87. case -1:
  88. if (mmu_rx_start() > 0)
  89. {
  90. puts_P(PSTR("MMU => 'start'"));
  91. puts_P(PSTR("MMU <= 'S1'"));
  92. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  93. mmu_state = -2;
  94. }
  95. else if (millis() > 30000) //30sec after reset disable mmu
  96. {
  97. puts_P(PSTR("MMU not responding - DISABLED"));
  98. mmu_state = 0;
  99. }
  100. return;
  101. case -2:
  102. if (mmu_rx_ok() > 0)
  103. {
  104. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  105. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  106. puts_P(PSTR("MMU <= 'S2'"));
  107. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  108. mmu_state = -3;
  109. }
  110. return;
  111. case -3:
  112. if (mmu_rx_ok() > 0)
  113. {
  114. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  115. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  116. bool version_valid = mmu_check_version();
  117. if (!version_valid) mmu_show_warning();
  118. else puts_P(PSTR("MMU version valid"));
  119. puts_P(PSTR("MMU <= 'P0'"));
  120. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  121. mmu_state = -4;
  122. }
  123. return;
  124. case -4:
  125. if (mmu_rx_ok() > 0)
  126. {
  127. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  128. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  129. puts_P(PSTR("MMU - ENABLED"));
  130. mmu_enabled = true;
  131. mmu_state = 1;
  132. }
  133. return;
  134. case 1:
  135. if (mmu_cmd) //command request ?
  136. {
  137. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  138. {
  139. int extruder = mmu_cmd - MMU_CMD_T0;
  140. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  141. mmu_printf_P(PSTR("T%d\n"), extruder);
  142. mmu_state = 3; // wait for response
  143. }
  144. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  145. {
  146. int filament = mmu_cmd - MMU_CMD_L0;
  147. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  148. mmu_printf_P(PSTR("L%d\n"), filament);
  149. mmu_state = 3; // wait for response
  150. }
  151. else if (mmu_cmd == MMU_CMD_C0)
  152. {
  153. printf_P(PSTR("MMU <= 'C0'\n"));
  154. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  155. mmu_state = 3;
  156. }
  157. else if (mmu_cmd == MMU_CMD_U0)
  158. {
  159. printf_P(PSTR("MMU <= 'U0'\n"));
  160. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  161. mmu_state = 3;
  162. }
  163. mmu_cmd = 0;
  164. }
  165. else if ((mmu_last_response + 800) < millis()) //request every 800ms
  166. {
  167. puts_P(PSTR("MMU <= 'P0'"));
  168. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  169. mmu_state = 2;
  170. }
  171. return;
  172. case 2: //response to command P0
  173. if (mmu_rx_ok() > 0)
  174. {
  175. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  176. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  177. //printf_P(PSTR("Eact: %d\n"), int(e_active()));
  178. if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
  179. fsensor_stop_and_save_print();
  180. enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
  181. enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  182. }
  183. mmu_state = 1;
  184. if (mmu_cmd == 0)
  185. mmu_ready = true;
  186. }
  187. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  188. { //resend request after timeout (30s)
  189. mmu_state = 1;
  190. }
  191. return;
  192. case 3: //response to commands T0-T4
  193. if (mmu_rx_ok() > 0)
  194. {
  195. printf_P(PSTR("MMU => 'ok'\n"));
  196. mmu_ready = true;
  197. mmu_state = 1;
  198. }
  199. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  200. { //resend request after timeout (5 min)
  201. mmu_state = 1;
  202. }
  203. return;
  204. }
  205. }
  206. void mmu_reset(void)
  207. {
  208. #ifdef MMU_HWRESET //HW - pulse reset pin
  209. digitalWrite(MMU_RST_PIN, LOW);
  210. _delay_us(100);
  211. digitalWrite(MMU_RST_PIN, HIGH);
  212. #else //SW - send X0 command
  213. mmu_puts_P(PSTR("X0\n"));
  214. #endif
  215. }
  216. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  217. {
  218. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  219. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  220. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  221. while ((mmu_rx_ok() <= 0) && (--timeout))
  222. delay_keep_alive(MMU_TODELAY);
  223. return timeout?1:0;
  224. }
  225. void mmu_command(uint8_t cmd)
  226. {
  227. mmu_cmd = cmd;
  228. mmu_ready = false;
  229. }
  230. bool mmu_get_response(void)
  231. {
  232. // printf_P(PSTR("mmu_get_response - begin\n"));
  233. KEEPALIVE_STATE(IN_PROCESS);
  234. while (mmu_cmd != 0)
  235. {
  236. // mmu_loop();
  237. delay_keep_alive(100);
  238. }
  239. while (!mmu_ready)
  240. {
  241. // mmu_loop();
  242. if (mmu_state != 3)
  243. break;
  244. delay_keep_alive(100);
  245. }
  246. bool ret = mmu_ready;
  247. mmu_ready = false;
  248. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  249. return ret;
  250. /* //waits for "ok" from mmu
  251. //function returns true if "ok" was received
  252. //if timeout is set to true function return false if there is no "ok" received before timeout
  253. bool response = true;
  254. LongTimer mmu_get_reponse_timeout;
  255. KEEPALIVE_STATE(IN_PROCESS);
  256. mmu_get_reponse_timeout.start();
  257. while (mmu_rx_ok() <= 0)
  258. {
  259. delay_keep_alive(100);
  260. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  261. { //5 minutes timeout
  262. response = false;
  263. break;
  264. }
  265. }
  266. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  267. return response;*/
  268. }
  269. void manage_response(bool move_axes, bool turn_off_nozzle)
  270. {
  271. bool response = false;
  272. mmu_print_saved = false;
  273. bool lcd_update_was_enabled = false;
  274. float hotend_temp_bckp = degTargetHotend(active_extruder);
  275. float z_position_bckp = current_position[Z_AXIS];
  276. float x_position_bckp = current_position[X_AXIS];
  277. float y_position_bckp = current_position[Y_AXIS];
  278. while(!response)
  279. {
  280. response = mmu_get_response(); //wait for "ok" from mmu
  281. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  282. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  283. if (lcd_update_enabled) {
  284. lcd_update_was_enabled = true;
  285. lcd_update_enable(false);
  286. }
  287. st_synchronize();
  288. mmu_print_saved = true;
  289. printf_P(PSTR("MMU not responding\n"));
  290. hotend_temp_bckp = degTargetHotend(active_extruder);
  291. if (move_axes) {
  292. z_position_bckp = current_position[Z_AXIS];
  293. x_position_bckp = current_position[X_AXIS];
  294. y_position_bckp = current_position[Y_AXIS];
  295. //lift z
  296. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  297. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  299. st_synchronize();
  300. //Move XY to side
  301. current_position[X_AXIS] = X_PAUSE_POS;
  302. current_position[Y_AXIS] = Y_PAUSE_POS;
  303. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  304. st_synchronize();
  305. }
  306. if (turn_off_nozzle) {
  307. //set nozzle target temperature to 0
  308. setAllTargetHotends(0);
  309. }
  310. }
  311. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  312. delay_keep_alive(1000);
  313. }
  314. else if (mmu_print_saved) {
  315. printf_P(PSTR("MMU starts responding\n"));
  316. if (turn_off_nozzle)
  317. {
  318. lcd_clear();
  319. setTargetHotend(hotend_temp_bckp, active_extruder);
  320. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  321. delay_keep_alive(3000);
  322. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  323. {
  324. delay_keep_alive(1000);
  325. lcd_wait_for_heater();
  326. }
  327. }
  328. if (move_axes) {
  329. lcd_clear();
  330. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  331. current_position[X_AXIS] = x_position_bckp;
  332. current_position[Y_AXIS] = y_position_bckp;
  333. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  334. st_synchronize();
  335. current_position[Z_AXIS] = z_position_bckp;
  336. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  337. st_synchronize();
  338. }
  339. else {
  340. lcd_clear();
  341. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  342. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  343. }
  344. }
  345. }
  346. if (lcd_update_was_enabled) lcd_update_enable(true);
  347. }
  348. void mmu_load_to_nozzle()
  349. {
  350. st_synchronize();
  351. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  352. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  353. current_position[E_AXIS] += 7.2f;
  354. float feedrate = 562;
  355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  356. st_synchronize();
  357. current_position[E_AXIS] += 14.4f;
  358. feedrate = 871;
  359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  360. st_synchronize();
  361. current_position[E_AXIS] += 36.0f;
  362. feedrate = 1393;
  363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  364. st_synchronize();
  365. current_position[E_AXIS] += 14.4f;
  366. feedrate = 871;
  367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  368. st_synchronize();
  369. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  370. }
  371. void mmu_M600_load_filament(bool automatic)
  372. {
  373. //load filament for mmu v2
  374. bool response = false;
  375. bool yes = false;
  376. if (!automatic) {
  377. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  378. if(yes) tmp_extruder = choose_extruder_menu();
  379. else tmp_extruder = mmu_extruder;
  380. }
  381. else {
  382. tmp_extruder = (tmp_extruder+1)%5;
  383. }
  384. lcd_update_enable(false);
  385. lcd_clear();
  386. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  387. lcd_print(" ");
  388. lcd_print(tmp_extruder + 1);
  389. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  390. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  391. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  392. mmu_command(MMU_CMD_T0 + tmp_extruder);
  393. manage_response(false, true);
  394. mmu_command(MMU_CMD_C0);
  395. mmu_extruder = tmp_extruder; //filament change is finished
  396. mmu_load_to_nozzle();
  397. st_synchronize();
  398. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  400. }
  401. void extr_mov(float shift, float feed_rate)
  402. { //move extruder no matter what the current heater temperature is
  403. set_extrude_min_temp(.0);
  404. current_position[E_AXIS] += shift;
  405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  406. set_extrude_min_temp(EXTRUDE_MINTEMP);
  407. }
  408. void change_extr(int extr) { //switches multiplexer for extruders
  409. #ifdef SNMM
  410. st_synchronize();
  411. delay(100);
  412. disable_e0();
  413. disable_e1();
  414. disable_e2();
  415. mmu_extruder = extr;
  416. pinMode(E_MUX0_PIN, OUTPUT);
  417. pinMode(E_MUX1_PIN, OUTPUT);
  418. switch (extr) {
  419. case 1:
  420. WRITE(E_MUX0_PIN, HIGH);
  421. WRITE(E_MUX1_PIN, LOW);
  422. break;
  423. case 2:
  424. WRITE(E_MUX0_PIN, LOW);
  425. WRITE(E_MUX1_PIN, HIGH);
  426. break;
  427. case 3:
  428. WRITE(E_MUX0_PIN, HIGH);
  429. WRITE(E_MUX1_PIN, HIGH);
  430. break;
  431. default:
  432. WRITE(E_MUX0_PIN, LOW);
  433. WRITE(E_MUX1_PIN, LOW);
  434. break;
  435. }
  436. delay(100);
  437. #endif
  438. }
  439. int get_ext_nr()
  440. { //reads multiplexer input pins and return current extruder number (counted from 0)
  441. #ifndef SNMM
  442. return(mmu_extruder); //update needed
  443. #else
  444. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  445. #endif
  446. }
  447. void display_loading()
  448. {
  449. switch (mmu_extruder)
  450. {
  451. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  452. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  453. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  454. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  455. }
  456. }
  457. void extr_adj(int extruder) //loading filament for SNMM
  458. {
  459. #ifndef SNMM
  460. uint8_t cmd = MMU_CMD_L0 + extruder;
  461. if (cmd > MMU_CMD_L4)
  462. {
  463. printf_P(PSTR("Filament out of range %d \n"),extruder);
  464. return;
  465. }
  466. mmu_command(cmd);
  467. //show which filament is currently loaded
  468. lcd_update_enable(false);
  469. lcd_clear();
  470. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  471. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  472. //else lcd.print(" ");
  473. lcd_print(" ");
  474. lcd_print(extruder + 1);
  475. // get response
  476. manage_response(false, false);
  477. lcd_update_enable(true);
  478. //lcd_return_to_status();
  479. #else
  480. bool correct;
  481. max_feedrate[E_AXIS] =80;
  482. //max_feedrate[E_AXIS] = 50;
  483. START:
  484. lcd_clear();
  485. lcd_set_cursor(0, 0);
  486. switch (extruder) {
  487. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  488. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  489. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  490. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  491. }
  492. KEEPALIVE_STATE(PAUSED_FOR_USER);
  493. do{
  494. extr_mov(0.001,1000);
  495. delay_keep_alive(2);
  496. } while (!lcd_clicked());
  497. //delay_keep_alive(500);
  498. KEEPALIVE_STATE(IN_HANDLER);
  499. st_synchronize();
  500. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  501. //if (!correct) goto START;
  502. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  503. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  504. extr_mov(bowden_length[extruder], 500);
  505. lcd_clear();
  506. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  507. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  508. else lcd_print(" ");
  509. lcd_print(mmu_extruder + 1);
  510. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  511. st_synchronize();
  512. max_feedrate[E_AXIS] = 50;
  513. lcd_update_enable(true);
  514. lcd_return_to_status();
  515. lcdDrawUpdate = 2;
  516. #endif
  517. }
  518. void extr_unload()
  519. { //unload just current filament for multimaterial printers
  520. #ifdef SNMM
  521. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  522. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  523. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  524. #endif
  525. if (degHotend0() > EXTRUDE_MINTEMP)
  526. {
  527. #ifndef SNMM
  528. st_synchronize();
  529. //show which filament is currently unloaded
  530. lcd_update_enable(false);
  531. lcd_clear();
  532. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  533. lcd_print(" ");
  534. lcd_print(mmu_extruder + 1);
  535. current_position[E_AXIS] -= 80;
  536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  537. st_synchronize();
  538. mmu_command(MMU_CMD_U0);
  539. // get response
  540. manage_response(false, true);
  541. lcd_update_enable(true);
  542. #else //SNMM
  543. lcd_clear();
  544. lcd_display_message_fullscreen_P(PSTR(""));
  545. max_feedrate[E_AXIS] = 50;
  546. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  547. lcd_print(" ");
  548. lcd_print(mmu_extruder + 1);
  549. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  550. if (current_position[Z_AXIS] < 15) {
  551. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  553. }
  554. current_position[E_AXIS] += 10; //extrusion
  555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  556. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  557. if (current_temperature[0] < 230) { //PLA & all other filaments
  558. current_position[E_AXIS] += 5.4;
  559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  560. current_position[E_AXIS] += 3.2;
  561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  562. current_position[E_AXIS] += 3;
  563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  564. }
  565. else { //ABS
  566. current_position[E_AXIS] += 3.1;
  567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  568. current_position[E_AXIS] += 3.1;
  569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  570. current_position[E_AXIS] += 4;
  571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  572. /*current_position[X_AXIS] += 23; //delay
  573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  574. current_position[X_AXIS] -= 23; //delay
  575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  576. delay_keep_alive(4700);
  577. }
  578. max_feedrate[E_AXIS] = 80;
  579. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  581. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  583. st_synchronize();
  584. //st_current_init();
  585. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  586. else st_current_set(2, tmp_motor_loud[2]);
  587. lcd_update_enable(true);
  588. lcd_return_to_status();
  589. max_feedrate[E_AXIS] = 50;
  590. #endif //SNMM
  591. }
  592. else
  593. {
  594. lcd_clear();
  595. lcd_set_cursor(0, 0);
  596. lcd_puts_P(_T(MSG_ERROR));
  597. lcd_set_cursor(0, 2);
  598. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  599. delay(2000);
  600. lcd_clear();
  601. }
  602. //lcd_return_to_status();
  603. }
  604. //wrapper functions for loading filament
  605. void extr_adj_0()
  606. {
  607. #ifndef SNMM
  608. enquecommand_P(PSTR("M701 E0"));
  609. #else
  610. change_extr(0);
  611. extr_adj(0);
  612. #endif
  613. }
  614. void extr_adj_1()
  615. {
  616. #ifndef SNMM
  617. enquecommand_P(PSTR("M701 E1"));
  618. #else
  619. change_extr(1);
  620. extr_adj(1);
  621. #endif
  622. }
  623. void extr_adj_2()
  624. {
  625. #ifndef SNMM
  626. enquecommand_P(PSTR("M701 E2"));
  627. #else
  628. change_extr(2);
  629. extr_adj(2);
  630. #endif
  631. }
  632. void extr_adj_3()
  633. {
  634. #ifndef SNMM
  635. enquecommand_P(PSTR("M701 E3"));
  636. #else
  637. change_extr(3);
  638. extr_adj(3);
  639. #endif
  640. }
  641. void extr_adj_4()
  642. {
  643. #ifndef SNMM
  644. enquecommand_P(PSTR("M701 E4"));
  645. #else
  646. change_extr(4);
  647. extr_adj(4);
  648. #endif
  649. }
  650. void load_all()
  651. {
  652. #ifndef SNMM
  653. enquecommand_P(PSTR("M701 E0"));
  654. enquecommand_P(PSTR("M701 E1"));
  655. enquecommand_P(PSTR("M701 E2"));
  656. enquecommand_P(PSTR("M701 E3"));
  657. enquecommand_P(PSTR("M701 E4"));
  658. #else
  659. for (int i = 0; i < 4; i++)
  660. {
  661. change_extr(i);
  662. extr_adj(i);
  663. }
  664. #endif
  665. }
  666. //wrapper functions for changing extruders
  667. void extr_change_0()
  668. {
  669. change_extr(0);
  670. lcd_return_to_status();
  671. }
  672. void extr_change_1()
  673. {
  674. change_extr(1);
  675. lcd_return_to_status();
  676. }
  677. void extr_change_2()
  678. {
  679. change_extr(2);
  680. lcd_return_to_status();
  681. }
  682. void extr_change_3()
  683. {
  684. change_extr(3);
  685. lcd_return_to_status();
  686. }
  687. //wrapper functions for unloading filament
  688. void extr_unload_all()
  689. {
  690. if (degHotend0() > EXTRUDE_MINTEMP)
  691. {
  692. for (int i = 0; i < 4; i++)
  693. {
  694. change_extr(i);
  695. extr_unload();
  696. }
  697. }
  698. else
  699. {
  700. lcd_clear();
  701. lcd_set_cursor(0, 0);
  702. lcd_puts_P(_T(MSG_ERROR));
  703. lcd_set_cursor(0, 2);
  704. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  705. delay(2000);
  706. lcd_clear();
  707. lcd_return_to_status();
  708. }
  709. }
  710. //unloading just used filament (for snmm)
  711. void extr_unload_used()
  712. {
  713. if (degHotend0() > EXTRUDE_MINTEMP) {
  714. for (int i = 0; i < 4; i++) {
  715. if (snmm_filaments_used & (1 << i)) {
  716. change_extr(i);
  717. extr_unload();
  718. }
  719. }
  720. snmm_filaments_used = 0;
  721. }
  722. else {
  723. lcd_clear();
  724. lcd_set_cursor(0, 0);
  725. lcd_puts_P(_T(MSG_ERROR));
  726. lcd_set_cursor(0, 2);
  727. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  728. delay(2000);
  729. lcd_clear();
  730. lcd_return_to_status();
  731. }
  732. }
  733. void extr_unload_0()
  734. {
  735. change_extr(0);
  736. extr_unload();
  737. }
  738. void extr_unload_1()
  739. {
  740. change_extr(1);
  741. extr_unload();
  742. }
  743. void extr_unload_2()
  744. {
  745. change_extr(2);
  746. extr_unload();
  747. }
  748. void extr_unload_3()
  749. {
  750. change_extr(3);
  751. extr_unload();
  752. }
  753. void extr_unload_4()
  754. {
  755. change_extr(4);
  756. extr_unload();
  757. }
  758. bool mmu_check_version()
  759. {
  760. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  761. }
  762. void mmu_show_warning()
  763. {
  764. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  765. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  766. }