Marlin_main.cpp 196 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // P Y - Starts filament allignment process for multicolor
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M907 - Set digital trimpot motor current using axis codes.
  179. // M908 - Control digital trimpot directly.
  180. // M350 - Set microstepping mode.
  181. // M351 - Toggle MS1 MS2 pins directly.
  182. // M928 - Start SD logging (M928 filename.g) - ended by M29
  183. // M999 - Restart after being stopped by error
  184. //Stepper Movement Variables
  185. //===========================================================================
  186. //=============================imported variables============================
  187. //===========================================================================
  188. //===========================================================================
  189. //=============================public variables=============================
  190. //===========================================================================
  191. #ifdef SDSUPPORT
  192. CardReader card;
  193. #endif
  194. unsigned long TimeSent = millis();
  195. unsigned long TimeNow = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. bool is_usb_printing = false;
  217. bool homing_flag = false;
  218. unsigned long kicktime = millis()+100000;
  219. unsigned int usb_printing_counter;
  220. int lcd_change_fil_state = 0;
  221. int feedmultiplyBckp = 100;
  222. unsigned char lang_selected = 0;
  223. bool prusa_sd_card_upload = false;
  224. unsigned long total_filament_used;
  225. unsigned int heating_status;
  226. unsigned int heating_status_counter;
  227. bool custom_message;
  228. unsigned int custom_message_type;
  229. unsigned int custom_message_state;
  230. bool volumetric_enabled = false;
  231. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  232. #if EXTRUDERS > 1
  233. , DEFAULT_NOMINAL_FILAMENT_DIA
  234. #if EXTRUDERS > 2
  235. , DEFAULT_NOMINAL_FILAMENT_DIA
  236. #endif
  237. #endif
  238. };
  239. float volumetric_multiplier[EXTRUDERS] = {1.0
  240. #if EXTRUDERS > 1
  241. , 1.0
  242. #if EXTRUDERS > 2
  243. , 1.0
  244. #endif
  245. #endif
  246. };
  247. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  248. float add_homing[3]={0,0,0};
  249. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  250. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  251. bool axis_known_position[3] = {false, false, false};
  252. float zprobe_zoffset;
  253. // Extruder offset
  254. #if EXTRUDERS > 1
  255. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  256. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  257. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  258. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  259. #endif
  260. };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. int fanSpeed=0;
  264. #ifdef FWRETRACT
  265. bool autoretract_enabled=false;
  266. bool retracted[EXTRUDERS]={false
  267. #if EXTRUDERS > 1
  268. , false
  269. #if EXTRUDERS > 2
  270. , false
  271. #endif
  272. #endif
  273. };
  274. bool retracted_swap[EXTRUDERS]={false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #endif
  280. #endif
  281. };
  282. float retract_length = RETRACT_LENGTH;
  283. float retract_length_swap = RETRACT_LENGTH_SWAP;
  284. float retract_feedrate = RETRACT_FEEDRATE;
  285. float retract_zlift = RETRACT_ZLIFT;
  286. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  287. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  288. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  289. #endif
  290. #ifdef ULTIPANEL
  291. #ifdef PS_DEFAULT_OFF
  292. bool powersupply = false;
  293. #else
  294. bool powersupply = true;
  295. #endif
  296. #endif
  297. bool cancel_heatup = false ;
  298. #ifdef FILAMENT_SENSOR
  299. //Variables for Filament Sensor input
  300. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  301. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  302. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  303. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  304. int delay_index1=0; //index into ring buffer
  305. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  306. float delay_dist=0; //delay distance counter
  307. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  308. #endif
  309. const char errormagic[] PROGMEM = "Error:";
  310. const char echomagic[] PROGMEM = "echo:";
  311. //===========================================================================
  312. //=============================Private Variables=============================
  313. //===========================================================================
  314. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  315. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  316. static float delta[3] = {0.0, 0.0, 0.0};
  317. // For tracing an arc
  318. static float offset[3] = {0.0, 0.0, 0.0};
  319. static bool home_all_axis = true;
  320. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  321. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  322. // Determines Absolute or Relative Coordinates.
  323. // Also there is bool axis_relative_modes[] per axis flag.
  324. static bool relative_mode = false;
  325. // String circular buffer. Commands may be pushed to the buffer from both sides:
  326. // Chained commands will be pushed to the front, interactive (from LCD menu)
  327. // and printing commands (from serial line or from SD card) are pushed to the tail.
  328. // First character of each entry indicates the type of the entry:
  329. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  330. // Command in cmdbuffer was sent over USB.
  331. #define CMDBUFFER_CURRENT_TYPE_USB 1
  332. // Command in cmdbuffer was read from SDCARD.
  333. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  334. // Command in cmdbuffer was generated by the UI.
  335. #define CMDBUFFER_CURRENT_TYPE_UI 3
  336. // Command in cmdbuffer was generated by another G-code.
  337. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  338. // How much space to reserve for the chained commands
  339. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  340. // which are pushed to the front of the queue?
  341. // Maximum 5 commands of max length 20 + null terminator.
  342. #define CMDBUFFER_RESERVE_FRONT (5*21)
  343. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  344. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  345. // Head of the circular buffer, where to read.
  346. static int bufindr = 0;
  347. // Tail of the buffer, where to write.
  348. static int bufindw = 0;
  349. // Number of lines in cmdbuffer.
  350. static int buflen = 0;
  351. // Flag for processing the current command inside the main Arduino loop().
  352. // If a new command was pushed to the front of a command buffer while
  353. // processing another command, this replaces the command on the top.
  354. // Therefore don't remove the command from the queue in the loop() function.
  355. static bool cmdbuffer_front_already_processed = false;
  356. // Type of a command, which is to be executed right now.
  357. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  358. // String of a command, which is to be executed right now.
  359. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  360. // Enable debugging of the command buffer.
  361. // Debugging information will be sent to serial line.
  362. // #define CMDBUFFER_DEBUG
  363. static int serial_count = 0;
  364. static boolean comment_mode = false;
  365. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  366. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  367. //static float tt = 0;
  368. //static float bt = 0;
  369. //Inactivity shutdown variables
  370. static unsigned long previous_millis_cmd = 0;
  371. unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime=0;
  374. unsigned long stoptime=0;
  375. unsigned long _usb_timer = 0;
  376. static uint8_t tmp_extruder;
  377. bool Stopped=false;
  378. #if NUM_SERVOS > 0
  379. Servo servos[NUM_SERVOS];
  380. #endif
  381. bool CooldownNoWait = true;
  382. bool target_direction;
  383. //Insert variables if CHDK is defined
  384. #ifdef CHDK
  385. unsigned long chdkHigh = 0;
  386. boolean chdkActive = false;
  387. #endif
  388. //===========================================================================
  389. //=============================Routines======================================
  390. //===========================================================================
  391. void get_arc_coordinates();
  392. bool setTargetedHotend(int code);
  393. void serial_echopair_P(const char *s_P, float v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, double v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. void serial_echopair_P(const char *s_P, unsigned long v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. #ifdef SDSUPPORT
  400. #include "SdFatUtil.h"
  401. int freeMemory() { return SdFatUtil::FreeRam(); }
  402. #else
  403. extern "C" {
  404. extern unsigned int __bss_end;
  405. extern unsigned int __heap_start;
  406. extern void *__brkval;
  407. int freeMemory() {
  408. int free_memory;
  409. if ((int)__brkval == 0)
  410. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  411. else
  412. free_memory = ((int)&free_memory) - ((int)__brkval);
  413. return free_memory;
  414. }
  415. }
  416. #endif //!SDSUPPORT
  417. // Pop the currently processed command from the queue.
  418. // It is expected, that there is at least one command in the queue.
  419. bool cmdqueue_pop_front()
  420. {
  421. if (buflen > 0) {
  422. #ifdef CMDBUFFER_DEBUG
  423. SERIAL_ECHOPGM("Dequeing ");
  424. SERIAL_ECHO(cmdbuffer+bufindr+1);
  425. SERIAL_ECHOLNPGM("");
  426. SERIAL_ECHOPGM("Old indices: buflen ");
  427. SERIAL_ECHO(buflen);
  428. SERIAL_ECHOPGM(", bufindr ");
  429. SERIAL_ECHO(bufindr);
  430. SERIAL_ECHOPGM(", bufindw ");
  431. SERIAL_ECHO(bufindw);
  432. SERIAL_ECHOPGM(", serial_count ");
  433. SERIAL_ECHO(serial_count);
  434. SERIAL_ECHOPGM(", bufsize ");
  435. SERIAL_ECHO(sizeof(cmdbuffer));
  436. SERIAL_ECHOLNPGM("");
  437. #endif /* CMDBUFFER_DEBUG */
  438. if (-- buflen == 0) {
  439. // Empty buffer.
  440. if (serial_count == 0)
  441. // No serial communication is pending. Reset both pointers to zero.
  442. bufindw = 0;
  443. bufindr = bufindw;
  444. } else {
  445. // There is at least one ready line in the buffer.
  446. // First skip the current command ID and iterate up to the end of the string.
  447. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  448. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  449. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. // If the end of the buffer was empty,
  451. if (bufindr == sizeof(cmdbuffer)) {
  452. // skip to the start and find the nonzero command.
  453. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  454. }
  455. #ifdef CMDBUFFER_DEBUG
  456. SERIAL_ECHOPGM("New indices: buflen ");
  457. SERIAL_ECHO(buflen);
  458. SERIAL_ECHOPGM(", bufindr ");
  459. SERIAL_ECHO(bufindr);
  460. SERIAL_ECHOPGM(", bufindw ");
  461. SERIAL_ECHO(bufindw);
  462. SERIAL_ECHOPGM(", serial_count ");
  463. SERIAL_ECHO(serial_count);
  464. SERIAL_ECHOPGM(" new command on the top: ");
  465. SERIAL_ECHO(cmdbuffer+bufindr+1);
  466. SERIAL_ECHOLNPGM("");
  467. #endif /* CMDBUFFER_DEBUG */
  468. }
  469. return true;
  470. }
  471. return false;
  472. }
  473. void cmdqueue_reset()
  474. {
  475. while (cmdqueue_pop_front()) ;
  476. }
  477. // How long a string could be pushed to the front of the command queue?
  478. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  479. // len_asked does not contain the zero terminator size.
  480. bool cmdqueue_could_enqueue_front(int len_asked)
  481. {
  482. // MAX_CMD_SIZE has to accommodate the zero terminator.
  483. if (len_asked >= MAX_CMD_SIZE)
  484. return false;
  485. // Remove the currently processed command from the queue.
  486. if (! cmdbuffer_front_already_processed) {
  487. cmdqueue_pop_front();
  488. cmdbuffer_front_already_processed = true;
  489. }
  490. if (bufindr == bufindw && buflen > 0)
  491. // Full buffer.
  492. return false;
  493. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  494. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  495. if (bufindw < bufindr) {
  496. int bufindr_new = bufindr - len_asked - 2;
  497. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  498. if (endw <= bufindr_new) {
  499. bufindr = bufindr_new;
  500. return true;
  501. }
  502. } else {
  503. // Otherwise the free space is split between the start and end.
  504. if (len_asked + 2 <= bufindr) {
  505. // Could fit at the start.
  506. bufindr -= len_asked + 2;
  507. return true;
  508. }
  509. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  510. if (endw <= bufindr_new) {
  511. memset(cmdbuffer, 0, bufindr);
  512. bufindr = bufindr_new;
  513. return true;
  514. }
  515. }
  516. return false;
  517. }
  518. // Could one enqueue a command of lenthg len_asked into the buffer,
  519. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  520. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  521. // len_asked does not contain the zero terminator size.
  522. bool cmdqueue_could_enqueue_back(int len_asked)
  523. {
  524. // MAX_CMD_SIZE has to accommodate the zero terminator.
  525. if (len_asked >= MAX_CMD_SIZE)
  526. return false;
  527. if (bufindr == bufindw && buflen > 0)
  528. // Full buffer.
  529. return false;
  530. if (serial_count > 0) {
  531. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  532. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  533. // serial data.
  534. // How much memory to reserve for the commands pushed to the front?
  535. // End of the queue, when pushing to the end.
  536. int endw = bufindw + len_asked + 2;
  537. if (bufindw < bufindr)
  538. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  539. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  540. // Otherwise the free space is split between the start and end.
  541. if (// Could one fit to the end, including the reserve?
  542. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  543. // Could one fit to the end, and the reserve to the start?
  544. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  545. return true;
  546. // Could one fit both to the start?
  547. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  548. // Mark the rest of the buffer as used.
  549. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  550. // and point to the start.
  551. bufindw = 0;
  552. return true;
  553. }
  554. } else {
  555. // How much memory to reserve for the commands pushed to the front?
  556. // End of the queue, when pushing to the end.
  557. int endw = bufindw + len_asked + 2;
  558. if (bufindw < bufindr)
  559. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  560. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  561. // Otherwise the free space is split between the start and end.
  562. if (// Could one fit to the end, including the reserve?
  563. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  564. // Could one fit to the end, and the reserve to the start?
  565. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  566. return true;
  567. // Could one fit both to the start?
  568. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  569. // Mark the rest of the buffer as used.
  570. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  571. // and point to the start.
  572. bufindw = 0;
  573. return true;
  574. }
  575. }
  576. return false;
  577. }
  578. #ifdef CMDBUFFER_DEBUG
  579. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  580. {
  581. SERIAL_ECHOPGM("Entry nr: ");
  582. SERIAL_ECHO(nr);
  583. SERIAL_ECHOPGM(", type: ");
  584. SERIAL_ECHO(int(*p));
  585. SERIAL_ECHOPGM(", cmd: ");
  586. SERIAL_ECHO(p+1);
  587. SERIAL_ECHOLNPGM("");
  588. }
  589. static void cmdqueue_dump_to_serial()
  590. {
  591. if (buflen == 0) {
  592. SERIAL_ECHOLNPGM("The command buffer is empty.");
  593. } else {
  594. SERIAL_ECHOPGM("Content of the buffer: entries ");
  595. SERIAL_ECHO(buflen);
  596. SERIAL_ECHOPGM(", indr ");
  597. SERIAL_ECHO(bufindr);
  598. SERIAL_ECHOPGM(", indw ");
  599. SERIAL_ECHO(bufindw);
  600. SERIAL_ECHOLNPGM("");
  601. int nr = 0;
  602. if (bufindr < bufindw) {
  603. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  604. cmdqueue_dump_to_serial_single_line(nr, p);
  605. // Skip the command.
  606. for (++p; *p != 0; ++ p);
  607. // Skip the gaps.
  608. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  609. }
  610. } else {
  611. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  612. cmdqueue_dump_to_serial_single_line(nr, p);
  613. // Skip the command.
  614. for (++p; *p != 0; ++ p);
  615. // Skip the gaps.
  616. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  617. }
  618. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  619. cmdqueue_dump_to_serial_single_line(nr, p);
  620. // Skip the command.
  621. for (++p; *p != 0; ++ p);
  622. // Skip the gaps.
  623. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  624. }
  625. }
  626. SERIAL_ECHOLNPGM("End of the buffer.");
  627. }
  628. }
  629. #endif /* CMDBUFFER_DEBUG */
  630. //adds an command to the main command buffer
  631. //thats really done in a non-safe way.
  632. //needs overworking someday
  633. // Currently the maximum length of a command piped through this function is around 20 characters
  634. void enquecommand(const char *cmd, bool from_progmem)
  635. {
  636. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  637. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  638. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  639. if (cmdqueue_could_enqueue_back(len)) {
  640. // This is dangerous if a mixing of serial and this happens
  641. // This may easily be tested: If serial_count > 0, we have a problem.
  642. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  643. if (from_progmem)
  644. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  645. else
  646. strcpy(cmdbuffer + bufindw + 1, cmd);
  647. SERIAL_ECHO_START;
  648. SERIAL_ECHORPGM(MSG_Enqueing);
  649. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  650. SERIAL_ECHOLNPGM("\"");
  651. bufindw += len + 2;
  652. if (bufindw == sizeof(cmdbuffer))
  653. bufindw = 0;
  654. ++ buflen;
  655. #ifdef CMDBUFFER_DEBUG
  656. cmdqueue_dump_to_serial();
  657. #endif /* CMDBUFFER_DEBUG */
  658. } else {
  659. SERIAL_ERROR_START;
  660. SERIAL_ECHORPGM(MSG_Enqueing);
  661. if (from_progmem)
  662. SERIAL_PROTOCOLRPGM(cmd);
  663. else
  664. SERIAL_ECHO(cmd);
  665. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  666. #ifdef CMDBUFFER_DEBUG
  667. cmdqueue_dump_to_serial();
  668. #endif /* CMDBUFFER_DEBUG */
  669. }
  670. }
  671. void enquecommand_front(const char *cmd, bool from_progmem)
  672. {
  673. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  674. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  675. if (cmdqueue_could_enqueue_front(len)) {
  676. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  677. if (from_progmem)
  678. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  679. else
  680. strcpy(cmdbuffer + bufindr + 1, cmd);
  681. ++ buflen;
  682. SERIAL_ECHO_START;
  683. SERIAL_ECHOPGM("Enqueing to the front: \"");
  684. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  685. SERIAL_ECHOLNPGM("\"");
  686. #ifdef CMDBUFFER_DEBUG
  687. cmdqueue_dump_to_serial();
  688. #endif /* CMDBUFFER_DEBUG */
  689. } else {
  690. SERIAL_ERROR_START;
  691. SERIAL_ECHOPGM("Enqueing to the front: \"");
  692. if (from_progmem)
  693. SERIAL_PROTOCOLRPGM(cmd);
  694. else
  695. SERIAL_ECHO(cmd);
  696. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  697. #ifdef CMDBUFFER_DEBUG
  698. cmdqueue_dump_to_serial();
  699. #endif /* CMDBUFFER_DEBUG */
  700. }
  701. }
  702. // Mark the command at the top of the command queue as new.
  703. // Therefore it will not be removed from the queue.
  704. void repeatcommand_front()
  705. {
  706. cmdbuffer_front_already_processed = true;
  707. }
  708. void setup_killpin()
  709. {
  710. #if defined(KILL_PIN) && KILL_PIN > -1
  711. SET_INPUT(KILL_PIN);
  712. WRITE(KILL_PIN,HIGH);
  713. #endif
  714. }
  715. // Set home pin
  716. void setup_homepin(void)
  717. {
  718. #if defined(HOME_PIN) && HOME_PIN > -1
  719. SET_INPUT(HOME_PIN);
  720. WRITE(HOME_PIN,HIGH);
  721. #endif
  722. }
  723. void setup_photpin()
  724. {
  725. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  726. SET_OUTPUT(PHOTOGRAPH_PIN);
  727. WRITE(PHOTOGRAPH_PIN, LOW);
  728. #endif
  729. }
  730. void setup_powerhold()
  731. {
  732. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  733. SET_OUTPUT(SUICIDE_PIN);
  734. WRITE(SUICIDE_PIN, HIGH);
  735. #endif
  736. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  737. SET_OUTPUT(PS_ON_PIN);
  738. #if defined(PS_DEFAULT_OFF)
  739. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  740. #else
  741. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  742. #endif
  743. #endif
  744. }
  745. void suicide()
  746. {
  747. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  748. SET_OUTPUT(SUICIDE_PIN);
  749. WRITE(SUICIDE_PIN, LOW);
  750. #endif
  751. }
  752. void servo_init()
  753. {
  754. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  755. servos[0].attach(SERVO0_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  758. servos[1].attach(SERVO1_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  761. servos[2].attach(SERVO2_PIN);
  762. #endif
  763. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  764. servos[3].attach(SERVO3_PIN);
  765. #endif
  766. #if (NUM_SERVOS >= 5)
  767. #error "TODO: enter initalisation code for more servos"
  768. #endif
  769. }
  770. static void lcd_language_menu();
  771. #ifdef MESH_BED_LEVELING
  772. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  773. #endif
  774. // Factory reset function
  775. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  776. // Level input parameter sets depth of reset
  777. // Quiet parameter masks all waitings for user interact.
  778. int er_progress = 0;
  779. void factory_reset(char level, bool quiet)
  780. {
  781. lcd_implementation_clear();
  782. switch (level) {
  783. // Level 0: Language reset
  784. case 0:
  785. WRITE(BEEPER, HIGH);
  786. _delay_ms(100);
  787. WRITE(BEEPER, LOW);
  788. lcd_force_language_selection();
  789. break;
  790. //Level 1: Reset statistics
  791. case 1:
  792. WRITE(BEEPER, HIGH);
  793. _delay_ms(100);
  794. WRITE(BEEPER, LOW);
  795. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  796. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  797. lcd_menu_statistics();
  798. break;
  799. // Level 2: Prepare for shipping
  800. case 2:
  801. //lcd_printPGM(PSTR("Factory RESET"));
  802. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  803. // Force language selection at the next boot up.
  804. lcd_force_language_selection();
  805. // Force the "Follow calibration flow" message at the next boot up.
  806. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  807. farm_no = 0;
  808. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  809. farm_mode = false;
  810. WRITE(BEEPER, HIGH);
  811. _delay_ms(100);
  812. WRITE(BEEPER, LOW);
  813. //_delay_ms(2000);
  814. break;
  815. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  816. case 3:
  817. lcd_printPGM(PSTR("Factory RESET"));
  818. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  819. WRITE(BEEPER, HIGH);
  820. _delay_ms(100);
  821. WRITE(BEEPER, LOW);
  822. er_progress = 0;
  823. lcd_print_at_PGM(3, 3, PSTR(" "));
  824. lcd_implementation_print_at(3, 3, er_progress);
  825. // Erase EEPROM
  826. for (int i = 0; i < 4096; i++) {
  827. eeprom_write_byte((uint8_t*)i, 0xFF);
  828. if (i % 41 == 0) {
  829. er_progress++;
  830. lcd_print_at_PGM(3, 3, PSTR(" "));
  831. lcd_implementation_print_at(3, 3, er_progress);
  832. lcd_printPGM(PSTR("%"));
  833. }
  834. }
  835. break;
  836. default:
  837. break;
  838. }
  839. }
  840. // "Setup" function is called by the Arduino framework on startup.
  841. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  842. // are initialized by the main() routine provided by the Arduino framework.
  843. void setup()
  844. {
  845. setup_killpin();
  846. setup_powerhold();
  847. MYSERIAL.begin(BAUDRATE);
  848. SERIAL_PROTOCOLLNPGM("start");
  849. SERIAL_ECHO_START;
  850. #if 0
  851. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  852. for (int i = 0; i < 4096; ++ i) {
  853. int b = eeprom_read_byte((unsigned char*)i);
  854. if (b != 255) {
  855. SERIAL_ECHO(i);
  856. SERIAL_ECHO(":");
  857. SERIAL_ECHO(b);
  858. SERIAL_ECHOLN("");
  859. }
  860. }
  861. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  862. #endif
  863. // Check startup - does nothing if bootloader sets MCUSR to 0
  864. byte mcu = MCUSR;
  865. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  866. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  867. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  868. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  869. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  870. MCUSR=0;
  871. //SERIAL_ECHORPGM(MSG_MARLIN);
  872. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  873. #ifdef STRING_VERSION_CONFIG_H
  874. #ifdef STRING_CONFIG_H_AUTHOR
  875. SERIAL_ECHO_START;
  876. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  877. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  878. SERIAL_ECHORPGM(MSG_AUTHOR);
  879. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  880. SERIAL_ECHOPGM("Compiled: ");
  881. SERIAL_ECHOLNPGM(__DATE__);
  882. #endif
  883. #endif
  884. SERIAL_ECHO_START;
  885. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  886. SERIAL_ECHO(freeMemory());
  887. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  888. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  889. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  890. Config_RetrieveSettings();
  891. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  892. tp_init(); // Initialize temperature loop
  893. plan_init(); // Initialize planner;
  894. watchdog_init();
  895. st_init(); // Initialize stepper, this enables interrupts!
  896. setup_photpin();
  897. servo_init();
  898. // Reset the machine correction matrix.
  899. // It does not make sense to load the correction matrix until the machine is homed.
  900. world2machine_reset();
  901. lcd_init();
  902. if (!READ(BTN_ENC))
  903. {
  904. _delay_ms(1000);
  905. if (!READ(BTN_ENC))
  906. {
  907. lcd_implementation_clear();
  908. lcd_printPGM(PSTR("Factory RESET"));
  909. SET_OUTPUT(BEEPER);
  910. WRITE(BEEPER, HIGH);
  911. while (!READ(BTN_ENC));
  912. WRITE(BEEPER, LOW);
  913. _delay_ms(2000);
  914. char level = reset_menu();
  915. factory_reset(level, false);
  916. switch (level) {
  917. case 0: _delay_ms(0); break;
  918. case 1: _delay_ms(0); break;
  919. case 2: _delay_ms(0); break;
  920. case 3: _delay_ms(0); break;
  921. }
  922. // _delay_ms(100);
  923. /*
  924. #ifdef MESH_BED_LEVELING
  925. _delay_ms(2000);
  926. if (!READ(BTN_ENC))
  927. {
  928. WRITE(BEEPER, HIGH);
  929. _delay_ms(100);
  930. WRITE(BEEPER, LOW);
  931. _delay_ms(200);
  932. WRITE(BEEPER, HIGH);
  933. _delay_ms(100);
  934. WRITE(BEEPER, LOW);
  935. int _z = 0;
  936. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  937. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  938. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  939. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  940. }
  941. else
  942. {
  943. WRITE(BEEPER, HIGH);
  944. _delay_ms(100);
  945. WRITE(BEEPER, LOW);
  946. }
  947. #endif // mesh */
  948. }
  949. }
  950. else
  951. {
  952. _delay_ms(1000); // wait 1sec to display the splash screen
  953. }
  954. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  955. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  956. #endif
  957. #ifdef DIGIPOT_I2C
  958. digipot_i2c_init();
  959. #endif
  960. setup_homepin();
  961. #if defined(Z_AXIS_ALWAYS_ON)
  962. enable_z();
  963. #endif
  964. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  965. if (farm_no > 0)
  966. {
  967. farm_mode = true;
  968. farm_no = farm_no;
  969. prusa_statistics(8);
  970. }
  971. else
  972. {
  973. farm_mode = false;
  974. farm_no = 0;
  975. }
  976. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  977. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  978. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  979. // but this times out if a blocking dialog is shown in setup().
  980. card.initsd();
  981. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  982. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  983. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  984. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  985. // where all the EEPROM entries are set to 0x0ff.
  986. // Once a firmware boots up, it forces at least a language selection, which changes
  987. // EEPROM_LANG to number lower than 0x0ff.
  988. // 1) Set a high power mode.
  989. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  990. }
  991. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  992. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  993. // is being written into the EEPROM, so the update procedure will be triggered only once.
  994. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  995. if (lang_selected >= LANG_NUM){
  996. lcd_mylang();
  997. }
  998. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  999. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1000. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1001. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1002. // Show the message.
  1003. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1004. lcd_update_enable(true);
  1005. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1006. // Show the message.
  1007. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1008. lcd_update_enable(true);
  1009. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1010. // Show the message.
  1011. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1012. lcd_update_enable(true);
  1013. }
  1014. // Store the currently running firmware into an eeprom,
  1015. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1016. update_current_firmware_version_to_eeprom();
  1017. }
  1018. void trace();
  1019. #define CHUNK_SIZE 64 // bytes
  1020. #define SAFETY_MARGIN 1
  1021. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1022. int chunkHead = 0;
  1023. int serial_read_stream() {
  1024. setTargetHotend(0, 0);
  1025. setTargetBed(0);
  1026. lcd_implementation_clear();
  1027. lcd_printPGM(PSTR(" Upload in progress"));
  1028. // first wait for how many bytes we will receive
  1029. uint32_t bytesToReceive;
  1030. // receive the four bytes
  1031. char bytesToReceiveBuffer[4];
  1032. for (int i=0; i<4; i++) {
  1033. int data;
  1034. while ((data = MYSERIAL.read()) == -1) {};
  1035. bytesToReceiveBuffer[i] = data;
  1036. }
  1037. // make it a uint32
  1038. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1039. // we're ready, notify the sender
  1040. MYSERIAL.write('+');
  1041. // lock in the routine
  1042. uint32_t receivedBytes = 0;
  1043. while (prusa_sd_card_upload) {
  1044. int i;
  1045. for (i=0; i<CHUNK_SIZE; i++) {
  1046. int data;
  1047. // check if we're not done
  1048. if (receivedBytes == bytesToReceive) {
  1049. break;
  1050. }
  1051. // read the next byte
  1052. while ((data = MYSERIAL.read()) == -1) {};
  1053. receivedBytes++;
  1054. // save it to the chunk
  1055. chunk[i] = data;
  1056. }
  1057. // write the chunk to SD
  1058. card.write_command_no_newline(&chunk[0]);
  1059. // notify the sender we're ready for more data
  1060. MYSERIAL.write('+');
  1061. // for safety
  1062. manage_heater();
  1063. // check if we're done
  1064. if(receivedBytes == bytesToReceive) {
  1065. trace(); // beep
  1066. card.closefile();
  1067. prusa_sd_card_upload = false;
  1068. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1069. return 0;
  1070. }
  1071. }
  1072. }
  1073. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1074. // Before loop(), the setup() function is called by the main() routine.
  1075. void loop()
  1076. {
  1077. bool stack_integrity = true;
  1078. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1079. {
  1080. is_usb_printing = true;
  1081. usb_printing_counter--;
  1082. _usb_timer = millis();
  1083. }
  1084. if (usb_printing_counter == 0)
  1085. {
  1086. is_usb_printing = false;
  1087. }
  1088. if (prusa_sd_card_upload)
  1089. {
  1090. //we read byte-by byte
  1091. serial_read_stream();
  1092. } else
  1093. {
  1094. get_command();
  1095. #ifdef SDSUPPORT
  1096. card.checkautostart(false);
  1097. #endif
  1098. if(buflen)
  1099. {
  1100. #ifdef SDSUPPORT
  1101. if(card.saving)
  1102. {
  1103. // Saving a G-code file onto an SD-card is in progress.
  1104. // Saving starts with M28, saving until M29 is seen.
  1105. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1106. card.write_command(CMDBUFFER_CURRENT_STRING);
  1107. if(card.logging)
  1108. process_commands();
  1109. else
  1110. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1111. } else {
  1112. card.closefile();
  1113. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1114. }
  1115. } else {
  1116. process_commands();
  1117. }
  1118. #else
  1119. process_commands();
  1120. #endif //SDSUPPORT
  1121. if (! cmdbuffer_front_already_processed)
  1122. cmdqueue_pop_front();
  1123. cmdbuffer_front_already_processed = false;
  1124. }
  1125. }
  1126. //check heater every n milliseconds
  1127. manage_heater();
  1128. manage_inactivity();
  1129. checkHitEndstops();
  1130. lcd_update();
  1131. }
  1132. void get_command()
  1133. {
  1134. // Test and reserve space for the new command string.
  1135. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1136. return;
  1137. while (MYSERIAL.available() > 0) {
  1138. char serial_char = MYSERIAL.read();
  1139. TimeSent = millis();
  1140. TimeNow = millis();
  1141. if (serial_char < 0)
  1142. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1143. // and Marlin does not support such file names anyway.
  1144. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1145. // to a hang-up of the print process from an SD card.
  1146. continue;
  1147. if(serial_char == '\n' ||
  1148. serial_char == '\r' ||
  1149. (serial_char == ':' && comment_mode == false) ||
  1150. serial_count >= (MAX_CMD_SIZE - 1) )
  1151. {
  1152. if(!serial_count) { //if empty line
  1153. comment_mode = false; //for new command
  1154. return;
  1155. }
  1156. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1157. if(!comment_mode){
  1158. comment_mode = false; //for new command
  1159. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1160. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1161. {
  1162. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1163. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1164. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1165. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1166. // M110 - set current line number.
  1167. // Line numbers not sent in succession.
  1168. SERIAL_ERROR_START;
  1169. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1170. SERIAL_ERRORLN(gcode_LastN);
  1171. //Serial.println(gcode_N);
  1172. FlushSerialRequestResend();
  1173. serial_count = 0;
  1174. return;
  1175. }
  1176. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1177. {
  1178. byte checksum = 0;
  1179. char *p = cmdbuffer+bufindw+1;
  1180. while (p != strchr_pointer)
  1181. checksum = checksum^(*p++);
  1182. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1183. SERIAL_ERROR_START;
  1184. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1185. SERIAL_ERRORLN(gcode_LastN);
  1186. FlushSerialRequestResend();
  1187. serial_count = 0;
  1188. return;
  1189. }
  1190. // If no errors, remove the checksum and continue parsing.
  1191. *strchr_pointer = 0;
  1192. }
  1193. else
  1194. {
  1195. SERIAL_ERROR_START;
  1196. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1197. SERIAL_ERRORLN(gcode_LastN);
  1198. FlushSerialRequestResend();
  1199. serial_count = 0;
  1200. return;
  1201. }
  1202. gcode_LastN = gcode_N;
  1203. //if no errors, continue parsing
  1204. } // end of 'N' command
  1205. }
  1206. else // if we don't receive 'N' but still see '*'
  1207. {
  1208. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1209. {
  1210. SERIAL_ERROR_START;
  1211. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1212. SERIAL_ERRORLN(gcode_LastN);
  1213. serial_count = 0;
  1214. return;
  1215. }
  1216. } // end of '*' command
  1217. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1218. if (! IS_SD_PRINTING) {
  1219. usb_printing_counter = 10;
  1220. is_usb_printing = true;
  1221. }
  1222. if (Stopped == true) {
  1223. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1224. if (gcode >= 0 && gcode <= 3) {
  1225. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1226. LCD_MESSAGERPGM(MSG_STOPPED);
  1227. }
  1228. }
  1229. } // end of 'G' command
  1230. //If command was e-stop process now
  1231. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1232. kill();
  1233. // Store the current line into buffer, move to the next line.
  1234. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1235. #ifdef CMDBUFFER_DEBUG
  1236. SERIAL_ECHO_START;
  1237. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1238. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1239. SERIAL_ECHOLNPGM("");
  1240. #endif /* CMDBUFFER_DEBUG */
  1241. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1242. if (bufindw == sizeof(cmdbuffer))
  1243. bufindw = 0;
  1244. ++ buflen;
  1245. #ifdef CMDBUFFER_DEBUG
  1246. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1247. SERIAL_ECHO(buflen);
  1248. SERIAL_ECHOLNPGM("");
  1249. #endif /* CMDBUFFER_DEBUG */
  1250. } // end of 'not comment mode'
  1251. serial_count = 0; //clear buffer
  1252. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1253. // in the queue, as this function will reserve the memory.
  1254. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1255. return;
  1256. } // end of "end of line" processing
  1257. else {
  1258. // Not an "end of line" symbol. Store the new character into a buffer.
  1259. if(serial_char == ';') comment_mode = true;
  1260. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1261. }
  1262. } // end of serial line processing loop
  1263. if(farm_mode){
  1264. TimeNow = millis();
  1265. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1266. cmdbuffer[bufindw+serial_count+1] = 0;
  1267. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1268. if (bufindw == sizeof(cmdbuffer))
  1269. bufindw = 0;
  1270. ++ buflen;
  1271. serial_count = 0;
  1272. SERIAL_ECHOPGM("TIMEOUT:");
  1273. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1274. return;
  1275. }
  1276. }
  1277. #ifdef SDSUPPORT
  1278. if(!card.sdprinting || serial_count!=0){
  1279. // If there is a half filled buffer from serial line, wait until return before
  1280. // continuing with the serial line.
  1281. return;
  1282. }
  1283. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1284. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1285. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1286. static bool stop_buffering=false;
  1287. if(buflen==0) stop_buffering=false;
  1288. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1289. while( !card.eof() && !stop_buffering) {
  1290. int16_t n=card.get();
  1291. char serial_char = (char)n;
  1292. if(serial_char == '\n' ||
  1293. serial_char == '\r' ||
  1294. (serial_char == '#' && comment_mode == false) ||
  1295. (serial_char == ':' && comment_mode == false) ||
  1296. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1297. {
  1298. if(card.eof()){
  1299. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1300. stoptime=millis();
  1301. char time[30];
  1302. unsigned long t=(stoptime-starttime)/1000;
  1303. int hours, minutes;
  1304. minutes=(t/60)%60;
  1305. hours=t/60/60;
  1306. save_statistics(total_filament_used, t);
  1307. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1308. SERIAL_ECHO_START;
  1309. SERIAL_ECHOLN(time);
  1310. lcd_setstatus(time);
  1311. card.printingHasFinished();
  1312. card.checkautostart(true);
  1313. if (farm_mode)
  1314. {
  1315. prusa_statistics(6);
  1316. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1317. }
  1318. }
  1319. if(serial_char=='#')
  1320. stop_buffering=true;
  1321. if(!serial_count)
  1322. {
  1323. comment_mode = false; //for new command
  1324. return; //if empty line
  1325. }
  1326. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1327. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1328. ++ buflen;
  1329. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1330. if (bufindw == sizeof(cmdbuffer))
  1331. bufindw = 0;
  1332. comment_mode = false; //for new command
  1333. serial_count = 0; //clear buffer
  1334. // The following line will reserve buffer space if available.
  1335. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1336. return;
  1337. }
  1338. else
  1339. {
  1340. if(serial_char == ';') comment_mode = true;
  1341. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1342. }
  1343. }
  1344. #endif //SDSUPPORT
  1345. }
  1346. // Return True if a character was found
  1347. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1348. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1349. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1350. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1351. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1352. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1353. #define DEFINE_PGM_READ_ANY(type, reader) \
  1354. static inline type pgm_read_any(const type *p) \
  1355. { return pgm_read_##reader##_near(p); }
  1356. DEFINE_PGM_READ_ANY(float, float);
  1357. DEFINE_PGM_READ_ANY(signed char, byte);
  1358. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1359. static const PROGMEM type array##_P[3] = \
  1360. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1361. static inline type array(int axis) \
  1362. { return pgm_read_any(&array##_P[axis]); } \
  1363. type array##_ext(int axis) \
  1364. { return pgm_read_any(&array##_P[axis]); }
  1365. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1366. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1367. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1368. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1369. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1370. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1371. static void axis_is_at_home(int axis) {
  1372. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1373. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1374. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1375. }
  1376. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1377. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1378. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1379. saved_feedrate = feedrate;
  1380. saved_feedmultiply = feedmultiply;
  1381. feedmultiply = 100;
  1382. previous_millis_cmd = millis();
  1383. enable_endstops(enable_endstops_now);
  1384. }
  1385. static void clean_up_after_endstop_move() {
  1386. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1387. enable_endstops(false);
  1388. #endif
  1389. feedrate = saved_feedrate;
  1390. feedmultiply = saved_feedmultiply;
  1391. previous_millis_cmd = millis();
  1392. }
  1393. #ifdef ENABLE_AUTO_BED_LEVELING
  1394. #ifdef AUTO_BED_LEVELING_GRID
  1395. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1396. {
  1397. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1398. planeNormal.debug("planeNormal");
  1399. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1400. //bedLevel.debug("bedLevel");
  1401. //plan_bed_level_matrix.debug("bed level before");
  1402. //vector_3 uncorrected_position = plan_get_position_mm();
  1403. //uncorrected_position.debug("position before");
  1404. vector_3 corrected_position = plan_get_position();
  1405. // corrected_position.debug("position after");
  1406. current_position[X_AXIS] = corrected_position.x;
  1407. current_position[Y_AXIS] = corrected_position.y;
  1408. current_position[Z_AXIS] = corrected_position.z;
  1409. // put the bed at 0 so we don't go below it.
  1410. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1411. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1412. }
  1413. #else // not AUTO_BED_LEVELING_GRID
  1414. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1415. plan_bed_level_matrix.set_to_identity();
  1416. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1417. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1418. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1419. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1420. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1421. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1422. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1423. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1424. vector_3 corrected_position = plan_get_position();
  1425. current_position[X_AXIS] = corrected_position.x;
  1426. current_position[Y_AXIS] = corrected_position.y;
  1427. current_position[Z_AXIS] = corrected_position.z;
  1428. // put the bed at 0 so we don't go below it.
  1429. current_position[Z_AXIS] = zprobe_zoffset;
  1430. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1431. }
  1432. #endif // AUTO_BED_LEVELING_GRID
  1433. static void run_z_probe() {
  1434. plan_bed_level_matrix.set_to_identity();
  1435. feedrate = homing_feedrate[Z_AXIS];
  1436. // move down until you find the bed
  1437. float zPosition = -10;
  1438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1439. st_synchronize();
  1440. // we have to let the planner know where we are right now as it is not where we said to go.
  1441. zPosition = st_get_position_mm(Z_AXIS);
  1442. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1443. // move up the retract distance
  1444. zPosition += home_retract_mm(Z_AXIS);
  1445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1446. st_synchronize();
  1447. // move back down slowly to find bed
  1448. feedrate = homing_feedrate[Z_AXIS]/4;
  1449. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1451. st_synchronize();
  1452. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1453. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. }
  1456. static void do_blocking_move_to(float x, float y, float z) {
  1457. float oldFeedRate = feedrate;
  1458. feedrate = homing_feedrate[Z_AXIS];
  1459. current_position[Z_AXIS] = z;
  1460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1461. st_synchronize();
  1462. feedrate = XY_TRAVEL_SPEED;
  1463. current_position[X_AXIS] = x;
  1464. current_position[Y_AXIS] = y;
  1465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1466. st_synchronize();
  1467. feedrate = oldFeedRate;
  1468. }
  1469. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1470. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1471. }
  1472. /// Probe bed height at position (x,y), returns the measured z value
  1473. static float probe_pt(float x, float y, float z_before) {
  1474. // move to right place
  1475. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1476. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1477. run_z_probe();
  1478. float measured_z = current_position[Z_AXIS];
  1479. SERIAL_PROTOCOLRPGM(MSG_BED);
  1480. SERIAL_PROTOCOLPGM(" x: ");
  1481. SERIAL_PROTOCOL(x);
  1482. SERIAL_PROTOCOLPGM(" y: ");
  1483. SERIAL_PROTOCOL(y);
  1484. SERIAL_PROTOCOLPGM(" z: ");
  1485. SERIAL_PROTOCOL(measured_z);
  1486. SERIAL_PROTOCOLPGM("\n");
  1487. return measured_z;
  1488. }
  1489. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1490. void homeaxis(int axis) {
  1491. #define HOMEAXIS_DO(LETTER) \
  1492. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1493. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1494. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1495. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1496. 0) {
  1497. int axis_home_dir = home_dir(axis);
  1498. current_position[axis] = 0;
  1499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1500. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1501. feedrate = homing_feedrate[axis];
  1502. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1503. st_synchronize();
  1504. current_position[axis] = 0;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1507. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1508. st_synchronize();
  1509. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1510. feedrate = homing_feedrate[axis]/2 ;
  1511. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1512. st_synchronize();
  1513. axis_is_at_home(axis);
  1514. destination[axis] = current_position[axis];
  1515. feedrate = 0.0;
  1516. endstops_hit_on_purpose();
  1517. axis_known_position[axis] = true;
  1518. }
  1519. }
  1520. void home_xy()
  1521. {
  1522. set_destination_to_current();
  1523. homeaxis(X_AXIS);
  1524. homeaxis(Y_AXIS);
  1525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1526. endstops_hit_on_purpose();
  1527. }
  1528. void refresh_cmd_timeout(void)
  1529. {
  1530. previous_millis_cmd = millis();
  1531. }
  1532. #ifdef FWRETRACT
  1533. void retract(bool retracting, bool swapretract = false) {
  1534. if(retracting && !retracted[active_extruder]) {
  1535. destination[X_AXIS]=current_position[X_AXIS];
  1536. destination[Y_AXIS]=current_position[Y_AXIS];
  1537. destination[Z_AXIS]=current_position[Z_AXIS];
  1538. destination[E_AXIS]=current_position[E_AXIS];
  1539. if (swapretract) {
  1540. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1541. } else {
  1542. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1543. }
  1544. plan_set_e_position(current_position[E_AXIS]);
  1545. float oldFeedrate = feedrate;
  1546. feedrate=retract_feedrate*60;
  1547. retracted[active_extruder]=true;
  1548. prepare_move();
  1549. current_position[Z_AXIS]-=retract_zlift;
  1550. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1551. prepare_move();
  1552. feedrate = oldFeedrate;
  1553. } else if(!retracting && retracted[active_extruder]) {
  1554. destination[X_AXIS]=current_position[X_AXIS];
  1555. destination[Y_AXIS]=current_position[Y_AXIS];
  1556. destination[Z_AXIS]=current_position[Z_AXIS];
  1557. destination[E_AXIS]=current_position[E_AXIS];
  1558. current_position[Z_AXIS]+=retract_zlift;
  1559. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1560. //prepare_move();
  1561. if (swapretract) {
  1562. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1563. } else {
  1564. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1565. }
  1566. plan_set_e_position(current_position[E_AXIS]);
  1567. float oldFeedrate = feedrate;
  1568. feedrate=retract_recover_feedrate*60;
  1569. retracted[active_extruder]=false;
  1570. prepare_move();
  1571. feedrate = oldFeedrate;
  1572. }
  1573. } //retract
  1574. #endif //FWRETRACT
  1575. void trace() {
  1576. tone(BEEPER, 440);
  1577. delay(25);
  1578. noTone(BEEPER);
  1579. delay(20);
  1580. }
  1581. void ramming() {
  1582. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1583. if (current_temperature[0] < 230) {
  1584. //PLA
  1585. max_feedrate[E_AXIS] = 50;
  1586. //current_position[E_AXIS] -= 8;
  1587. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1588. //current_position[E_AXIS] += 8;
  1589. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1590. current_position[E_AXIS] += 5.4;
  1591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1592. current_position[E_AXIS] += 3.2;
  1593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1594. current_position[E_AXIS] += 3;
  1595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1596. st_synchronize();
  1597. max_feedrate[E_AXIS] = 80;
  1598. current_position[E_AXIS] -= 82;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1600. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1601. current_position[E_AXIS] -= 20;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1603. current_position[E_AXIS] += 5;
  1604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1605. current_position[E_AXIS] += 5;
  1606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1607. current_position[E_AXIS] -= 10;
  1608. st_synchronize();
  1609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1610. current_position[E_AXIS] += 10;
  1611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1612. current_position[E_AXIS] -= 10;
  1613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1614. current_position[E_AXIS] += 10;
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1616. current_position[E_AXIS] -= 10;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1618. st_synchronize();
  1619. }
  1620. else {
  1621. //ABS
  1622. max_feedrate[E_AXIS] = 50;
  1623. //current_position[E_AXIS] -= 8;
  1624. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1625. //current_position[E_AXIS] += 8;
  1626. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1627. current_position[E_AXIS] += 3.1;
  1628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1629. current_position[E_AXIS] += 3.1;
  1630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1631. current_position[E_AXIS] += 4;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1633. st_synchronize();
  1634. /*current_position[X_AXIS] += 23; //delay
  1635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1636. current_position[X_AXIS] -= 23; //delay
  1637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1638. delay(4700);
  1639. max_feedrate[E_AXIS] = 80;
  1640. current_position[E_AXIS] -= 92;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1642. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1643. current_position[E_AXIS] -= 5;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1645. current_position[E_AXIS] += 5;
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1647. current_position[E_AXIS] -= 5;
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1649. st_synchronize();
  1650. current_position[E_AXIS] += 5;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1652. current_position[E_AXIS] -= 5;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1654. current_position[E_AXIS] += 5;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1656. current_position[E_AXIS] -= 5;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1658. st_synchronize();
  1659. }
  1660. }
  1661. void process_commands()
  1662. {
  1663. #ifdef FILAMENT_RUNOUT_SUPPORT
  1664. SET_INPUT(FR_SENS);
  1665. #endif
  1666. #ifdef CMDBUFFER_DEBUG
  1667. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1668. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1669. SERIAL_ECHOLNPGM("");
  1670. SERIAL_ECHOPGM("In cmdqueue: ");
  1671. SERIAL_ECHO(buflen);
  1672. SERIAL_ECHOLNPGM("");
  1673. #endif /* CMDBUFFER_DEBUG */
  1674. unsigned long codenum; //throw away variable
  1675. char *starpos = NULL;
  1676. #ifdef ENABLE_AUTO_BED_LEVELING
  1677. float x_tmp, y_tmp, z_tmp, real_z;
  1678. #endif
  1679. // PRUSA GCODES
  1680. #ifdef SNMM
  1681. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1682. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1683. int8_t SilentMode;
  1684. #endif
  1685. if(code_seen("PRUSA")){
  1686. if (code_seen("fv")) {
  1687. // get file version
  1688. #ifdef SDSUPPORT
  1689. card.openFile(strchr_pointer + 3,true);
  1690. while (true) {
  1691. uint16_t readByte = card.get();
  1692. MYSERIAL.write(readByte);
  1693. if (readByte=='\n') {
  1694. break;
  1695. }
  1696. }
  1697. card.closefile();
  1698. #endif // SDSUPPORT
  1699. } else if (code_seen("M28")) {
  1700. trace();
  1701. prusa_sd_card_upload = true;
  1702. card.openFile(strchr_pointer+4,false);
  1703. } else if(code_seen("Fir")){
  1704. SERIAL_PROTOCOLLN(FW_version);
  1705. } else if(code_seen("Rev")){
  1706. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1707. } else if(code_seen("Lang")) {
  1708. lcd_force_language_selection();
  1709. } else if(code_seen("Lz")) {
  1710. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1711. } else if (code_seen("SERIAL LOW")) {
  1712. MYSERIAL.println("SERIAL LOW");
  1713. MYSERIAL.begin(BAUDRATE);
  1714. return;
  1715. } else if (code_seen("SERIAL HIGH")) {
  1716. MYSERIAL.println("SERIAL HIGH");
  1717. MYSERIAL.begin(1152000);
  1718. return;
  1719. } else if(code_seen("Beat")) {
  1720. // Kick farm link timer
  1721. kicktime = millis();
  1722. } else if(code_seen("FR")) {
  1723. // Factory full reset
  1724. factory_reset(0,true);
  1725. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1726. #ifdef SNMM
  1727. int extr;
  1728. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1729. lcd_implementation_clear();
  1730. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1731. current_position[Z_AXIS] = 100;
  1732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1733. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1734. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1735. change_extr(extr);
  1736. ramming();
  1737. }
  1738. change_extr(0);
  1739. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1741. st_synchronize();
  1742. for (extr = 1; extr < 4; extr++) {
  1743. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1744. change_extr(extr);
  1745. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1747. st_synchronize();
  1748. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1749. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1751. st_synchronize();
  1752. }
  1753. change_extr(0);
  1754. current_position[E_AXIS] += 25;
  1755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1756. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1757. ramming();
  1758. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1759. else digipot_current(2, tmp_motor_loud[2]);
  1760. st_synchronize();
  1761. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1762. lcd_implementation_clear();
  1763. lcd_printPGM(MSG_PLEASE_WAIT);
  1764. current_position[Z_AXIS] = 0;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1766. st_synchronize();
  1767. lcd_update_enable(true);
  1768. #endif
  1769. }
  1770. //else if (code_seen('Cal')) {
  1771. // lcd_calibration();
  1772. // }
  1773. }
  1774. else if (code_seen('^')) {
  1775. // nothing, this is a version line
  1776. } else if(code_seen('G'))
  1777. {
  1778. switch((int)code_value())
  1779. {
  1780. case 0: // G0 -> G1
  1781. case 1: // G1
  1782. if(Stopped == false) {
  1783. #ifdef FILAMENT_RUNOUT_SUPPORT
  1784. if(READ(FR_SENS)){
  1785. feedmultiplyBckp=feedmultiply;
  1786. float target[4];
  1787. float lastpos[4];
  1788. target[X_AXIS]=current_position[X_AXIS];
  1789. target[Y_AXIS]=current_position[Y_AXIS];
  1790. target[Z_AXIS]=current_position[Z_AXIS];
  1791. target[E_AXIS]=current_position[E_AXIS];
  1792. lastpos[X_AXIS]=current_position[X_AXIS];
  1793. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1794. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1795. lastpos[E_AXIS]=current_position[E_AXIS];
  1796. //retract by E
  1797. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1798. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1799. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1800. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1801. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1802. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1803. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1804. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1805. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1806. //finish moves
  1807. st_synchronize();
  1808. //disable extruder steppers so filament can be removed
  1809. disable_e0();
  1810. disable_e1();
  1811. disable_e2();
  1812. delay(100);
  1813. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1814. uint8_t cnt=0;
  1815. int counterBeep = 0;
  1816. lcd_wait_interact();
  1817. while(!lcd_clicked()){
  1818. cnt++;
  1819. manage_heater();
  1820. manage_inactivity(true);
  1821. //lcd_update();
  1822. if(cnt==0)
  1823. {
  1824. #if BEEPER > 0
  1825. if (counterBeep== 500){
  1826. counterBeep = 0;
  1827. }
  1828. SET_OUTPUT(BEEPER);
  1829. if (counterBeep== 0){
  1830. WRITE(BEEPER,HIGH);
  1831. }
  1832. if (counterBeep== 20){
  1833. WRITE(BEEPER,LOW);
  1834. }
  1835. counterBeep++;
  1836. #else
  1837. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1838. lcd_buzz(1000/6,100);
  1839. #else
  1840. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1841. #endif
  1842. #endif
  1843. }
  1844. }
  1845. WRITE(BEEPER,LOW);
  1846. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1847. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1848. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1849. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1850. lcd_change_fil_state = 0;
  1851. lcd_loading_filament();
  1852. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1853. lcd_change_fil_state = 0;
  1854. lcd_alright();
  1855. switch(lcd_change_fil_state){
  1856. case 2:
  1857. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1858. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1859. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1860. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1861. lcd_loading_filament();
  1862. break;
  1863. case 3:
  1864. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1865. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1866. lcd_loading_color();
  1867. break;
  1868. default:
  1869. lcd_change_success();
  1870. break;
  1871. }
  1872. }
  1873. target[E_AXIS]+= 5;
  1874. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1875. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1876. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1877. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1878. //plan_set_e_position(current_position[E_AXIS]);
  1879. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1880. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1881. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1882. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1883. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1884. plan_set_e_position(lastpos[E_AXIS]);
  1885. feedmultiply=feedmultiplyBckp;
  1886. char cmd[9];
  1887. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1888. enquecommand(cmd);
  1889. }
  1890. #endif
  1891. get_coordinates(); // For X Y Z E F
  1892. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1893. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1894. }
  1895. #ifdef FWRETRACT
  1896. if(autoretract_enabled)
  1897. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1898. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1899. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1900. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1901. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1902. retract(!retracted);
  1903. return;
  1904. }
  1905. }
  1906. #endif //FWRETRACT
  1907. prepare_move();
  1908. //ClearToSend();
  1909. }
  1910. break;
  1911. case 2: // G2 - CW ARC
  1912. if(Stopped == false) {
  1913. get_arc_coordinates();
  1914. prepare_arc_move(true);
  1915. }
  1916. break;
  1917. case 3: // G3 - CCW ARC
  1918. if(Stopped == false) {
  1919. get_arc_coordinates();
  1920. prepare_arc_move(false);
  1921. }
  1922. break;
  1923. case 4: // G4 dwell
  1924. LCD_MESSAGERPGM(MSG_DWELL);
  1925. codenum = 0;
  1926. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1927. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1928. st_synchronize();
  1929. codenum += millis(); // keep track of when we started waiting
  1930. previous_millis_cmd = millis();
  1931. while(millis() < codenum) {
  1932. manage_heater();
  1933. manage_inactivity();
  1934. lcd_update();
  1935. }
  1936. break;
  1937. #ifdef FWRETRACT
  1938. case 10: // G10 retract
  1939. #if EXTRUDERS > 1
  1940. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1941. retract(true,retracted_swap[active_extruder]);
  1942. #else
  1943. retract(true);
  1944. #endif
  1945. break;
  1946. case 11: // G11 retract_recover
  1947. #if EXTRUDERS > 1
  1948. retract(false,retracted_swap[active_extruder]);
  1949. #else
  1950. retract(false);
  1951. #endif
  1952. break;
  1953. #endif //FWRETRACT
  1954. case 28: //G28 Home all Axis one at a time
  1955. homing_flag = true;
  1956. #ifdef ENABLE_AUTO_BED_LEVELING
  1957. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1958. #endif //ENABLE_AUTO_BED_LEVELING
  1959. // For mesh bed leveling deactivate the matrix temporarily
  1960. #ifdef MESH_BED_LEVELING
  1961. mbl.active = 0;
  1962. #endif
  1963. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1964. // the planner will not perform any adjustments in the XY plane.
  1965. // Wait for the motors to stop and update the current position with the absolute values.
  1966. world2machine_revert_to_uncorrected();
  1967. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1968. // consumed during the first movements following this statement.
  1969. babystep_undo();
  1970. saved_feedrate = feedrate;
  1971. saved_feedmultiply = feedmultiply;
  1972. feedmultiply = 100;
  1973. previous_millis_cmd = millis();
  1974. enable_endstops(true);
  1975. for(int8_t i=0; i < NUM_AXIS; i++)
  1976. destination[i] = current_position[i];
  1977. feedrate = 0.0;
  1978. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1979. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1980. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1981. homeaxis(Z_AXIS);
  1982. }
  1983. #endif
  1984. #ifdef QUICK_HOME
  1985. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1986. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1987. {
  1988. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1989. int x_axis_home_dir = home_dir(X_AXIS);
  1990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1991. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1992. feedrate = homing_feedrate[X_AXIS];
  1993. if(homing_feedrate[Y_AXIS]<feedrate)
  1994. feedrate = homing_feedrate[Y_AXIS];
  1995. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1996. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1997. } else {
  1998. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1999. }
  2000. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2001. st_synchronize();
  2002. axis_is_at_home(X_AXIS);
  2003. axis_is_at_home(Y_AXIS);
  2004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2005. destination[X_AXIS] = current_position[X_AXIS];
  2006. destination[Y_AXIS] = current_position[Y_AXIS];
  2007. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2008. feedrate = 0.0;
  2009. st_synchronize();
  2010. endstops_hit_on_purpose();
  2011. current_position[X_AXIS] = destination[X_AXIS];
  2012. current_position[Y_AXIS] = destination[Y_AXIS];
  2013. current_position[Z_AXIS] = destination[Z_AXIS];
  2014. }
  2015. #endif /* QUICK_HOME */
  2016. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2017. homeaxis(X_AXIS);
  2018. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2019. homeaxis(Y_AXIS);
  2020. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2021. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2022. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2023. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2024. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2025. #ifndef Z_SAFE_HOMING
  2026. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2027. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2028. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2029. feedrate = max_feedrate[Z_AXIS];
  2030. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2031. st_synchronize();
  2032. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2033. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2034. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2035. {
  2036. homeaxis(X_AXIS);
  2037. homeaxis(Y_AXIS);
  2038. }
  2039. // 1st mesh bed leveling measurement point, corrected.
  2040. world2machine_initialize();
  2041. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2042. world2machine_reset();
  2043. if (destination[Y_AXIS] < Y_MIN_POS)
  2044. destination[Y_AXIS] = Y_MIN_POS;
  2045. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2046. feedrate = homing_feedrate[Z_AXIS]/10;
  2047. current_position[Z_AXIS] = 0;
  2048. enable_endstops(false);
  2049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2050. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2051. st_synchronize();
  2052. current_position[X_AXIS] = destination[X_AXIS];
  2053. current_position[Y_AXIS] = destination[Y_AXIS];
  2054. enable_endstops(true);
  2055. endstops_hit_on_purpose();
  2056. homeaxis(Z_AXIS);
  2057. #else // MESH_BED_LEVELING
  2058. homeaxis(Z_AXIS);
  2059. #endif // MESH_BED_LEVELING
  2060. }
  2061. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2062. if(home_all_axis) {
  2063. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2064. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2065. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2066. feedrate = XY_TRAVEL_SPEED/60;
  2067. current_position[Z_AXIS] = 0;
  2068. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2069. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2070. st_synchronize();
  2071. current_position[X_AXIS] = destination[X_AXIS];
  2072. current_position[Y_AXIS] = destination[Y_AXIS];
  2073. homeaxis(Z_AXIS);
  2074. }
  2075. // Let's see if X and Y are homed and probe is inside bed area.
  2076. if(code_seen(axis_codes[Z_AXIS])) {
  2077. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2078. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2079. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2080. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2081. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2082. current_position[Z_AXIS] = 0;
  2083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2084. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2085. feedrate = max_feedrate[Z_AXIS];
  2086. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2087. st_synchronize();
  2088. homeaxis(Z_AXIS);
  2089. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2090. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2091. SERIAL_ECHO_START;
  2092. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2093. } else {
  2094. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2095. SERIAL_ECHO_START;
  2096. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2097. }
  2098. }
  2099. #endif // Z_SAFE_HOMING
  2100. #endif // Z_HOME_DIR < 0
  2101. if(code_seen(axis_codes[Z_AXIS])) {
  2102. if(code_value_long() != 0) {
  2103. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2104. }
  2105. }
  2106. #ifdef ENABLE_AUTO_BED_LEVELING
  2107. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2108. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2109. }
  2110. #endif
  2111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2112. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2113. enable_endstops(false);
  2114. #endif
  2115. feedrate = saved_feedrate;
  2116. feedmultiply = saved_feedmultiply;
  2117. previous_millis_cmd = millis();
  2118. endstops_hit_on_purpose();
  2119. #ifndef MESH_BED_LEVELING
  2120. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2121. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2122. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2123. lcd_adjust_z();
  2124. #endif
  2125. // Load the machine correction matrix
  2126. world2machine_initialize();
  2127. // and correct the current_position to match the transformed coordinate system.
  2128. world2machine_update_current();
  2129. #ifdef MESH_BED_LEVELING
  2130. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2131. {
  2132. }
  2133. else
  2134. {
  2135. st_synchronize();
  2136. homing_flag = false;
  2137. // Push the commands to the front of the message queue in the reverse order!
  2138. // There shall be always enough space reserved for these commands.
  2139. // enquecommand_front_P((PSTR("G80")));
  2140. goto case_G80;
  2141. }
  2142. #endif
  2143. if (farm_mode) { prusa_statistics(20); };
  2144. homing_flag = false;
  2145. break;
  2146. #ifdef ENABLE_AUTO_BED_LEVELING
  2147. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2148. {
  2149. #if Z_MIN_PIN == -1
  2150. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2151. #endif
  2152. // Prevent user from running a G29 without first homing in X and Y
  2153. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2154. {
  2155. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2156. SERIAL_ECHO_START;
  2157. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2158. break; // abort G29, since we don't know where we are
  2159. }
  2160. st_synchronize();
  2161. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2162. //vector_3 corrected_position = plan_get_position_mm();
  2163. //corrected_position.debug("position before G29");
  2164. plan_bed_level_matrix.set_to_identity();
  2165. vector_3 uncorrected_position = plan_get_position();
  2166. //uncorrected_position.debug("position durring G29");
  2167. current_position[X_AXIS] = uncorrected_position.x;
  2168. current_position[Y_AXIS] = uncorrected_position.y;
  2169. current_position[Z_AXIS] = uncorrected_position.z;
  2170. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2171. setup_for_endstop_move();
  2172. feedrate = homing_feedrate[Z_AXIS];
  2173. #ifdef AUTO_BED_LEVELING_GRID
  2174. // probe at the points of a lattice grid
  2175. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2176. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2177. // solve the plane equation ax + by + d = z
  2178. // A is the matrix with rows [x y 1] for all the probed points
  2179. // B is the vector of the Z positions
  2180. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2181. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2182. // "A" matrix of the linear system of equations
  2183. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2184. // "B" vector of Z points
  2185. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2186. int probePointCounter = 0;
  2187. bool zig = true;
  2188. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2189. {
  2190. int xProbe, xInc;
  2191. if (zig)
  2192. {
  2193. xProbe = LEFT_PROBE_BED_POSITION;
  2194. //xEnd = RIGHT_PROBE_BED_POSITION;
  2195. xInc = xGridSpacing;
  2196. zig = false;
  2197. } else // zag
  2198. {
  2199. xProbe = RIGHT_PROBE_BED_POSITION;
  2200. //xEnd = LEFT_PROBE_BED_POSITION;
  2201. xInc = -xGridSpacing;
  2202. zig = true;
  2203. }
  2204. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2205. {
  2206. float z_before;
  2207. if (probePointCounter == 0)
  2208. {
  2209. // raise before probing
  2210. z_before = Z_RAISE_BEFORE_PROBING;
  2211. } else
  2212. {
  2213. // raise extruder
  2214. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2215. }
  2216. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2217. eqnBVector[probePointCounter] = measured_z;
  2218. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2219. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2220. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2221. probePointCounter++;
  2222. xProbe += xInc;
  2223. }
  2224. }
  2225. clean_up_after_endstop_move();
  2226. // solve lsq problem
  2227. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2228. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2229. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2230. SERIAL_PROTOCOLPGM(" b: ");
  2231. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2232. SERIAL_PROTOCOLPGM(" d: ");
  2233. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2234. set_bed_level_equation_lsq(plane_equation_coefficients);
  2235. free(plane_equation_coefficients);
  2236. #else // AUTO_BED_LEVELING_GRID not defined
  2237. // Probe at 3 arbitrary points
  2238. // probe 1
  2239. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2240. // probe 2
  2241. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2242. // probe 3
  2243. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2244. clean_up_after_endstop_move();
  2245. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2246. #endif // AUTO_BED_LEVELING_GRID
  2247. st_synchronize();
  2248. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2249. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2250. // When the bed is uneven, this height must be corrected.
  2251. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2252. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2253. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2254. z_tmp = current_position[Z_AXIS];
  2255. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2256. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2258. }
  2259. break;
  2260. #ifndef Z_PROBE_SLED
  2261. case 30: // G30 Single Z Probe
  2262. {
  2263. st_synchronize();
  2264. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2265. setup_for_endstop_move();
  2266. feedrate = homing_feedrate[Z_AXIS];
  2267. run_z_probe();
  2268. SERIAL_PROTOCOLPGM(MSG_BED);
  2269. SERIAL_PROTOCOLPGM(" X: ");
  2270. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2271. SERIAL_PROTOCOLPGM(" Y: ");
  2272. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2273. SERIAL_PROTOCOLPGM(" Z: ");
  2274. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2275. SERIAL_PROTOCOLPGM("\n");
  2276. clean_up_after_endstop_move();
  2277. }
  2278. break;
  2279. #else
  2280. case 31: // dock the sled
  2281. dock_sled(true);
  2282. break;
  2283. case 32: // undock the sled
  2284. dock_sled(false);
  2285. break;
  2286. #endif // Z_PROBE_SLED
  2287. #endif // ENABLE_AUTO_BED_LEVELING
  2288. #ifdef MESH_BED_LEVELING
  2289. case 30: // G30 Single Z Probe
  2290. {
  2291. st_synchronize();
  2292. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2293. setup_for_endstop_move();
  2294. feedrate = homing_feedrate[Z_AXIS];
  2295. find_bed_induction_sensor_point_z(-10.f, 3);
  2296. SERIAL_PROTOCOLRPGM(MSG_BED);
  2297. SERIAL_PROTOCOLPGM(" X: ");
  2298. MYSERIAL.print(current_position[X_AXIS], 5);
  2299. SERIAL_PROTOCOLPGM(" Y: ");
  2300. MYSERIAL.print(current_position[Y_AXIS], 5);
  2301. SERIAL_PROTOCOLPGM(" Z: ");
  2302. MYSERIAL.print(current_position[Z_AXIS], 5);
  2303. SERIAL_PROTOCOLPGM("\n");
  2304. clean_up_after_endstop_move();
  2305. }
  2306. break;
  2307. /**
  2308. * G80: Mesh-based Z probe, probes a grid and produces a
  2309. * mesh to compensate for variable bed height
  2310. *
  2311. * The S0 report the points as below
  2312. *
  2313. * +----> X-axis
  2314. * |
  2315. * |
  2316. * v Y-axis
  2317. *
  2318. */
  2319. case 80:
  2320. case_G80:
  2321. {
  2322. // Firstly check if we know where we are
  2323. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2324. // We don't know where we are! HOME!
  2325. // Push the commands to the front of the message queue in the reverse order!
  2326. // There shall be always enough space reserved for these commands.
  2327. repeatcommand_front(); // repeat G80 with all its parameters
  2328. enquecommand_front_P((PSTR("G28 W0")));
  2329. break;
  2330. }
  2331. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2332. bool custom_message_old = custom_message;
  2333. unsigned int custom_message_type_old = custom_message_type;
  2334. unsigned int custom_message_state_old = custom_message_state;
  2335. custom_message = true;
  2336. custom_message_type = 1;
  2337. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2338. lcd_update(1);
  2339. mbl.reset();
  2340. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2341. // consumed during the first movements following this statement.
  2342. babystep_undo();
  2343. // Cycle through all points and probe them
  2344. // First move up. During this first movement, the babystepping will be reverted.
  2345. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2347. // The move to the first calibration point.
  2348. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2349. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2350. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2351. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2353. // Wait until the move is finished.
  2354. st_synchronize();
  2355. int mesh_point = 0;
  2356. int ix = 0;
  2357. int iy = 0;
  2358. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2359. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2360. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2361. bool has_z = is_bed_z_jitter_data_valid();
  2362. setup_for_endstop_move(false);
  2363. const char *kill_message = NULL;
  2364. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2365. // Get coords of a measuring point.
  2366. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2367. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2368. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2369. float z0 = 0.f;
  2370. if (has_z && mesh_point > 0) {
  2371. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2372. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2373. #if 0
  2374. SERIAL_ECHOPGM("Bed leveling, point: ");
  2375. MYSERIAL.print(mesh_point);
  2376. SERIAL_ECHOPGM(", calibration z: ");
  2377. MYSERIAL.print(z0, 5);
  2378. SERIAL_ECHOLNPGM("");
  2379. #endif
  2380. }
  2381. // Move Z up to MESH_HOME_Z_SEARCH.
  2382. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2384. st_synchronize();
  2385. // Move to XY position of the sensor point.
  2386. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2387. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2388. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2390. st_synchronize();
  2391. // Go down until endstop is hit
  2392. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2393. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2394. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2395. break;
  2396. }
  2397. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2398. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2399. break;
  2400. }
  2401. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2402. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2403. break;
  2404. }
  2405. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2406. custom_message_state--;
  2407. mesh_point++;
  2408. lcd_update(1);
  2409. }
  2410. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2412. st_synchronize();
  2413. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2414. kill(kill_message);
  2415. }
  2416. clean_up_after_endstop_move();
  2417. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2418. babystep_apply();
  2419. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2420. for (uint8_t i = 0; i < 4; ++ i) {
  2421. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2422. long correction = 0;
  2423. if (code_seen(codes[i]))
  2424. correction = code_value_long();
  2425. else if (eeprom_bed_correction_valid) {
  2426. unsigned char *addr = (i < 2) ?
  2427. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2428. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2429. correction = eeprom_read_int8(addr);
  2430. }
  2431. if (correction == 0)
  2432. continue;
  2433. float offset = float(correction) * 0.001f;
  2434. if (fabs(offset) > 0.101f) {
  2435. SERIAL_ERROR_START;
  2436. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2437. SERIAL_ECHO(offset);
  2438. SERIAL_ECHOLNPGM(" microns");
  2439. } else {
  2440. switch (i) {
  2441. case 0:
  2442. for (uint8_t row = 0; row < 3; ++ row) {
  2443. mbl.z_values[row][1] += 0.5f * offset;
  2444. mbl.z_values[row][0] += offset;
  2445. }
  2446. break;
  2447. case 1:
  2448. for (uint8_t row = 0; row < 3; ++ row) {
  2449. mbl.z_values[row][1] += 0.5f * offset;
  2450. mbl.z_values[row][2] += offset;
  2451. }
  2452. break;
  2453. case 2:
  2454. for (uint8_t col = 0; col < 3; ++ col) {
  2455. mbl.z_values[1][col] += 0.5f * offset;
  2456. mbl.z_values[0][col] += offset;
  2457. }
  2458. break;
  2459. case 3:
  2460. for (uint8_t col = 0; col < 3; ++ col) {
  2461. mbl.z_values[1][col] += 0.5f * offset;
  2462. mbl.z_values[2][col] += offset;
  2463. }
  2464. break;
  2465. }
  2466. }
  2467. }
  2468. mbl.upsample_3x3();
  2469. mbl.active = 1;
  2470. go_home_with_z_lift();
  2471. // Restore custom message state
  2472. custom_message = custom_message_old;
  2473. custom_message_type = custom_message_type_old;
  2474. custom_message_state = custom_message_state_old;
  2475. lcd_update(1);
  2476. }
  2477. break;
  2478. /**
  2479. * G81: Print mesh bed leveling status and bed profile if activated
  2480. */
  2481. case 81:
  2482. if (mbl.active) {
  2483. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2484. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2485. SERIAL_PROTOCOLPGM(",");
  2486. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2487. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2488. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2489. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2490. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2491. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2492. SERIAL_PROTOCOLPGM(" ");
  2493. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2494. }
  2495. SERIAL_PROTOCOLPGM("\n");
  2496. }
  2497. }
  2498. else
  2499. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2500. break;
  2501. #if 0
  2502. /**
  2503. * G82: Single Z probe at current location
  2504. *
  2505. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2506. *
  2507. */
  2508. case 82:
  2509. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2510. setup_for_endstop_move();
  2511. find_bed_induction_sensor_point_z();
  2512. clean_up_after_endstop_move();
  2513. SERIAL_PROTOCOLPGM("Bed found at: ");
  2514. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2515. SERIAL_PROTOCOLPGM("\n");
  2516. break;
  2517. /**
  2518. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2519. */
  2520. case 83:
  2521. {
  2522. int babystepz = code_seen('S') ? code_value() : 0;
  2523. int BabyPosition = code_seen('P') ? code_value() : 0;
  2524. if (babystepz != 0) {
  2525. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2526. // Is the axis indexed starting with zero or one?
  2527. if (BabyPosition > 4) {
  2528. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2529. }else{
  2530. // Save it to the eeprom
  2531. babystepLoadZ = babystepz;
  2532. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2533. // adjust the Z
  2534. babystepsTodoZadd(babystepLoadZ);
  2535. }
  2536. }
  2537. }
  2538. break;
  2539. /**
  2540. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2541. */
  2542. case 84:
  2543. babystepsTodoZsubtract(babystepLoadZ);
  2544. // babystepLoadZ = 0;
  2545. break;
  2546. /**
  2547. * G85: Prusa3D specific: Pick best babystep
  2548. */
  2549. case 85:
  2550. lcd_pick_babystep();
  2551. break;
  2552. #endif
  2553. /**
  2554. * G86: Prusa3D specific: Disable babystep correction after home.
  2555. * This G-code will be performed at the start of a calibration script.
  2556. */
  2557. case 86:
  2558. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2559. break;
  2560. /**
  2561. * G87: Prusa3D specific: Enable babystep correction after home
  2562. * This G-code will be performed at the end of a calibration script.
  2563. */
  2564. case 87:
  2565. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2566. break;
  2567. /**
  2568. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2569. */
  2570. case 88:
  2571. break;
  2572. #endif // ENABLE_MESH_BED_LEVELING
  2573. case 90: // G90
  2574. relative_mode = false;
  2575. break;
  2576. case 91: // G91
  2577. relative_mode = true;
  2578. break;
  2579. case 92: // G92
  2580. if(!code_seen(axis_codes[E_AXIS]))
  2581. st_synchronize();
  2582. for(int8_t i=0; i < NUM_AXIS; i++) {
  2583. if(code_seen(axis_codes[i])) {
  2584. if(i == E_AXIS) {
  2585. current_position[i] = code_value();
  2586. plan_set_e_position(current_position[E_AXIS]);
  2587. }
  2588. else {
  2589. current_position[i] = code_value()+add_homing[i];
  2590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2591. }
  2592. }
  2593. }
  2594. break;
  2595. case 98:
  2596. farm_no = 21;
  2597. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2598. farm_mode = true;
  2599. break;
  2600. case 99:
  2601. farm_no = 0;
  2602. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2603. farm_mode = false;
  2604. break;
  2605. }
  2606. } // end if(code_seen('G'))
  2607. else if(code_seen('M'))
  2608. {
  2609. switch( (int)code_value() )
  2610. {
  2611. #ifdef ULTIPANEL
  2612. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2613. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2614. {
  2615. char *src = strchr_pointer + 2;
  2616. codenum = 0;
  2617. bool hasP = false, hasS = false;
  2618. if (code_seen('P')) {
  2619. codenum = code_value(); // milliseconds to wait
  2620. hasP = codenum > 0;
  2621. }
  2622. if (code_seen('S')) {
  2623. codenum = code_value() * 1000; // seconds to wait
  2624. hasS = codenum > 0;
  2625. }
  2626. starpos = strchr(src, '*');
  2627. if (starpos != NULL) *(starpos) = '\0';
  2628. while (*src == ' ') ++src;
  2629. if (!hasP && !hasS && *src != '\0') {
  2630. lcd_setstatus(src);
  2631. } else {
  2632. LCD_MESSAGERPGM(MSG_USERWAIT);
  2633. }
  2634. lcd_ignore_click();
  2635. st_synchronize();
  2636. previous_millis_cmd = millis();
  2637. if (codenum > 0){
  2638. codenum += millis(); // keep track of when we started waiting
  2639. while(millis() < codenum && !lcd_clicked()){
  2640. manage_heater();
  2641. manage_inactivity();
  2642. lcd_update();
  2643. }
  2644. lcd_ignore_click(false);
  2645. }else{
  2646. if (!lcd_detected())
  2647. break;
  2648. while(!lcd_clicked()){
  2649. manage_heater();
  2650. manage_inactivity();
  2651. lcd_update();
  2652. }
  2653. }
  2654. if (IS_SD_PRINTING)
  2655. LCD_MESSAGERPGM(MSG_RESUMING);
  2656. else
  2657. LCD_MESSAGERPGM(WELCOME_MSG);
  2658. }
  2659. break;
  2660. #endif
  2661. case 17:
  2662. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2663. enable_x();
  2664. enable_y();
  2665. enable_z();
  2666. enable_e0();
  2667. enable_e1();
  2668. enable_e2();
  2669. break;
  2670. #ifdef SDSUPPORT
  2671. case 20: // M20 - list SD card
  2672. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2673. card.ls();
  2674. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2675. break;
  2676. case 21: // M21 - init SD card
  2677. card.initsd();
  2678. break;
  2679. case 22: //M22 - release SD card
  2680. card.release();
  2681. break;
  2682. case 23: //M23 - Select file
  2683. starpos = (strchr(strchr_pointer + 4,'*'));
  2684. if(starpos!=NULL)
  2685. *(starpos)='\0';
  2686. card.openFile(strchr_pointer + 4,true);
  2687. break;
  2688. case 24: //M24 - Start SD print
  2689. card.startFileprint();
  2690. starttime=millis();
  2691. break;
  2692. case 25: //M25 - Pause SD print
  2693. card.pauseSDPrint();
  2694. break;
  2695. case 26: //M26 - Set SD index
  2696. if(card.cardOK && code_seen('S')) {
  2697. card.setIndex(code_value_long());
  2698. }
  2699. break;
  2700. case 27: //M27 - Get SD status
  2701. card.getStatus();
  2702. break;
  2703. case 28: //M28 - Start SD write
  2704. starpos = (strchr(strchr_pointer + 4,'*'));
  2705. if(starpos != NULL){
  2706. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2707. strchr_pointer = strchr(npos,' ') + 1;
  2708. *(starpos) = '\0';
  2709. }
  2710. card.openFile(strchr_pointer+4,false);
  2711. break;
  2712. case 29: //M29 - Stop SD write
  2713. //processed in write to file routine above
  2714. //card,saving = false;
  2715. break;
  2716. case 30: //M30 <filename> Delete File
  2717. if (card.cardOK){
  2718. card.closefile();
  2719. starpos = (strchr(strchr_pointer + 4,'*'));
  2720. if(starpos != NULL){
  2721. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2722. strchr_pointer = strchr(npos,' ') + 1;
  2723. *(starpos) = '\0';
  2724. }
  2725. card.removeFile(strchr_pointer + 4);
  2726. }
  2727. break;
  2728. case 32: //M32 - Select file and start SD print
  2729. {
  2730. if(card.sdprinting) {
  2731. st_synchronize();
  2732. }
  2733. starpos = (strchr(strchr_pointer + 4,'*'));
  2734. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2735. if(namestartpos==NULL)
  2736. {
  2737. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2738. }
  2739. else
  2740. namestartpos++; //to skip the '!'
  2741. if(starpos!=NULL)
  2742. *(starpos)='\0';
  2743. bool call_procedure=(code_seen('P'));
  2744. if(strchr_pointer>namestartpos)
  2745. call_procedure=false; //false alert, 'P' found within filename
  2746. if( card.cardOK )
  2747. {
  2748. card.openFile(namestartpos,true,!call_procedure);
  2749. if(code_seen('S'))
  2750. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2751. card.setIndex(code_value_long());
  2752. card.startFileprint();
  2753. if(!call_procedure)
  2754. starttime=millis(); //procedure calls count as normal print time.
  2755. }
  2756. } break;
  2757. case 928: //M928 - Start SD write
  2758. starpos = (strchr(strchr_pointer + 5,'*'));
  2759. if(starpos != NULL){
  2760. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2761. strchr_pointer = strchr(npos,' ') + 1;
  2762. *(starpos) = '\0';
  2763. }
  2764. card.openLogFile(strchr_pointer+5);
  2765. break;
  2766. #endif //SDSUPPORT
  2767. case 31: //M31 take time since the start of the SD print or an M109 command
  2768. {
  2769. stoptime=millis();
  2770. char time[30];
  2771. unsigned long t=(stoptime-starttime)/1000;
  2772. int sec,min;
  2773. min=t/60;
  2774. sec=t%60;
  2775. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2776. SERIAL_ECHO_START;
  2777. SERIAL_ECHOLN(time);
  2778. lcd_setstatus(time);
  2779. autotempShutdown();
  2780. }
  2781. break;
  2782. case 42: //M42 -Change pin status via gcode
  2783. if (code_seen('S'))
  2784. {
  2785. int pin_status = code_value();
  2786. int pin_number = LED_PIN;
  2787. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2788. pin_number = code_value();
  2789. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2790. {
  2791. if (sensitive_pins[i] == pin_number)
  2792. {
  2793. pin_number = -1;
  2794. break;
  2795. }
  2796. }
  2797. #if defined(FAN_PIN) && FAN_PIN > -1
  2798. if (pin_number == FAN_PIN)
  2799. fanSpeed = pin_status;
  2800. #endif
  2801. if (pin_number > -1)
  2802. {
  2803. pinMode(pin_number, OUTPUT);
  2804. digitalWrite(pin_number, pin_status);
  2805. analogWrite(pin_number, pin_status);
  2806. }
  2807. }
  2808. break;
  2809. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2810. // Reset the skew and offset in both RAM and EEPROM.
  2811. reset_bed_offset_and_skew();
  2812. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2813. // the planner will not perform any adjustments in the XY plane.
  2814. // Wait for the motors to stop and update the current position with the absolute values.
  2815. world2machine_revert_to_uncorrected();
  2816. break;
  2817. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2818. {
  2819. setTargetBed(0);
  2820. setTargetHotend(0, 0);
  2821. setTargetHotend(0, 1);
  2822. setTargetHotend(0, 2);
  2823. adjust_bed_reset(); //reset bed level correction
  2824. // Disable the default update procedure of the display. We will do a modal dialog.
  2825. lcd_update_enable(false);
  2826. // Let the planner use the uncorrected coordinates.
  2827. mbl.reset();
  2828. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2829. // the planner will not perform any adjustments in the XY plane.
  2830. // Wait for the motors to stop and update the current position with the absolute values.
  2831. world2machine_revert_to_uncorrected();
  2832. // Reset the baby step value applied without moving the axes.
  2833. babystep_reset();
  2834. // Mark all axes as in a need for homing.
  2835. memset(axis_known_position, 0, sizeof(axis_known_position));
  2836. // Only Z calibration?
  2837. bool onlyZ = code_seen('Z');
  2838. // Let the user move the Z axes up to the end stoppers.
  2839. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2840. refresh_cmd_timeout();
  2841. if (((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION))&& (!onlyZ)) lcd_wait_for_cool_down();
  2842. lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
  2843. lcd_implementation_print_at(0, 3, 1);
  2844. lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
  2845. // Move the print head close to the bed.
  2846. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2848. st_synchronize();
  2849. // Home in the XY plane.
  2850. set_destination_to_current();
  2851. setup_for_endstop_move();
  2852. home_xy();
  2853. int8_t verbosity_level = 0;
  2854. if (code_seen('V')) {
  2855. // Just 'V' without a number counts as V1.
  2856. char c = strchr_pointer[1];
  2857. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2858. }
  2859. if (onlyZ) {
  2860. clean_up_after_endstop_move();
  2861. // Z only calibration.
  2862. // Load the machine correction matrix
  2863. world2machine_initialize();
  2864. // and correct the current_position to match the transformed coordinate system.
  2865. world2machine_update_current();
  2866. //FIXME
  2867. bool result = sample_mesh_and_store_reference();
  2868. if (result) {
  2869. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2870. // Shipped, the nozzle height has been set already. The user can start printing now.
  2871. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2872. // babystep_apply();
  2873. }
  2874. } else {
  2875. // Reset the baby step value and the baby step applied flag.
  2876. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2877. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2878. // Complete XYZ calibration.
  2879. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2880. uint8_t point_too_far_mask = 0;
  2881. clean_up_after_endstop_move();
  2882. // Print head up.
  2883. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2885. st_synchronize();
  2886. if (result >= 0) {
  2887. // Second half: The fine adjustment.
  2888. // Let the planner use the uncorrected coordinates.
  2889. mbl.reset();
  2890. world2machine_reset();
  2891. // Home in the XY plane.
  2892. setup_for_endstop_move();
  2893. home_xy();
  2894. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2895. clean_up_after_endstop_move();
  2896. // Print head up.
  2897. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2899. st_synchronize();
  2900. // if (result >= 0) babystep_apply();
  2901. }
  2902. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2903. if (result >= 0) {
  2904. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2905. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2906. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2907. }
  2908. }
  2909. } else {
  2910. // Timeouted.
  2911. }
  2912. lcd_update_enable(true);
  2913. break;
  2914. }
  2915. /*
  2916. case 46:
  2917. {
  2918. // M46: Prusa3D: Show the assigned IP address.
  2919. uint8_t ip[4];
  2920. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2921. if (hasIP) {
  2922. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2923. SERIAL_ECHO(int(ip[0]));
  2924. SERIAL_ECHOPGM(".");
  2925. SERIAL_ECHO(int(ip[1]));
  2926. SERIAL_ECHOPGM(".");
  2927. SERIAL_ECHO(int(ip[2]));
  2928. SERIAL_ECHOPGM(".");
  2929. SERIAL_ECHO(int(ip[3]));
  2930. SERIAL_ECHOLNPGM("");
  2931. } else {
  2932. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2933. }
  2934. break;
  2935. }
  2936. */
  2937. case 47:
  2938. // M47: Prusa3D: Show end stops dialog on the display.
  2939. lcd_diag_show_end_stops();
  2940. break;
  2941. #if 0
  2942. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2943. {
  2944. // Disable the default update procedure of the display. We will do a modal dialog.
  2945. lcd_update_enable(false);
  2946. // Let the planner use the uncorrected coordinates.
  2947. mbl.reset();
  2948. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2949. // the planner will not perform any adjustments in the XY plane.
  2950. // Wait for the motors to stop and update the current position with the absolute values.
  2951. world2machine_revert_to_uncorrected();
  2952. // Move the print head close to the bed.
  2953. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2955. st_synchronize();
  2956. // Home in the XY plane.
  2957. set_destination_to_current();
  2958. setup_for_endstop_move();
  2959. home_xy();
  2960. int8_t verbosity_level = 0;
  2961. if (code_seen('V')) {
  2962. // Just 'V' without a number counts as V1.
  2963. char c = strchr_pointer[1];
  2964. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2965. }
  2966. bool success = scan_bed_induction_points(verbosity_level);
  2967. clean_up_after_endstop_move();
  2968. // Print head up.
  2969. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2971. st_synchronize();
  2972. lcd_update_enable(true);
  2973. break;
  2974. }
  2975. #endif
  2976. // M48 Z-Probe repeatability measurement function.
  2977. //
  2978. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2979. //
  2980. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2981. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2982. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2983. // regenerated.
  2984. //
  2985. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2986. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2987. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2988. //
  2989. #ifdef ENABLE_AUTO_BED_LEVELING
  2990. #ifdef Z_PROBE_REPEATABILITY_TEST
  2991. case 48: // M48 Z-Probe repeatability
  2992. {
  2993. #if Z_MIN_PIN == -1
  2994. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2995. #endif
  2996. double sum=0.0;
  2997. double mean=0.0;
  2998. double sigma=0.0;
  2999. double sample_set[50];
  3000. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3001. double X_current, Y_current, Z_current;
  3002. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3003. if (code_seen('V') || code_seen('v')) {
  3004. verbose_level = code_value();
  3005. if (verbose_level<0 || verbose_level>4 ) {
  3006. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3007. goto Sigma_Exit;
  3008. }
  3009. }
  3010. if (verbose_level > 0) {
  3011. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3012. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3013. }
  3014. if (code_seen('n')) {
  3015. n_samples = code_value();
  3016. if (n_samples<4 || n_samples>50 ) {
  3017. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3018. goto Sigma_Exit;
  3019. }
  3020. }
  3021. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3022. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3023. Z_current = st_get_position_mm(Z_AXIS);
  3024. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3025. ext_position = st_get_position_mm(E_AXIS);
  3026. if (code_seen('X') || code_seen('x') ) {
  3027. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3028. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3029. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3030. goto Sigma_Exit;
  3031. }
  3032. }
  3033. if (code_seen('Y') || code_seen('y') ) {
  3034. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3035. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3036. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3037. goto Sigma_Exit;
  3038. }
  3039. }
  3040. if (code_seen('L') || code_seen('l') ) {
  3041. n_legs = code_value();
  3042. if ( n_legs==1 )
  3043. n_legs = 2;
  3044. if ( n_legs<0 || n_legs>15 ) {
  3045. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3046. goto Sigma_Exit;
  3047. }
  3048. }
  3049. //
  3050. // Do all the preliminary setup work. First raise the probe.
  3051. //
  3052. st_synchronize();
  3053. plan_bed_level_matrix.set_to_identity();
  3054. plan_buffer_line( X_current, Y_current, Z_start_location,
  3055. ext_position,
  3056. homing_feedrate[Z_AXIS]/60,
  3057. active_extruder);
  3058. st_synchronize();
  3059. //
  3060. // Now get everything to the specified probe point So we can safely do a probe to
  3061. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3062. // use that as a starting point for each probe.
  3063. //
  3064. if (verbose_level > 2)
  3065. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3066. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3067. ext_position,
  3068. homing_feedrate[X_AXIS]/60,
  3069. active_extruder);
  3070. st_synchronize();
  3071. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3072. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3073. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3074. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3075. //
  3076. // OK, do the inital probe to get us close to the bed.
  3077. // Then retrace the right amount and use that in subsequent probes
  3078. //
  3079. setup_for_endstop_move();
  3080. run_z_probe();
  3081. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3082. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3083. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3084. ext_position,
  3085. homing_feedrate[X_AXIS]/60,
  3086. active_extruder);
  3087. st_synchronize();
  3088. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3089. for( n=0; n<n_samples; n++) {
  3090. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3091. if ( n_legs) {
  3092. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3093. int rotational_direction, l;
  3094. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3095. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3096. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3097. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3098. //SERIAL_ECHOPAIR(" theta: ",theta);
  3099. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3100. //SERIAL_PROTOCOLLNPGM("");
  3101. for( l=0; l<n_legs-1; l++) {
  3102. if (rotational_direction==1)
  3103. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3104. else
  3105. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3106. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3107. if ( radius<0.0 )
  3108. radius = -radius;
  3109. X_current = X_probe_location + cos(theta) * radius;
  3110. Y_current = Y_probe_location + sin(theta) * radius;
  3111. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3112. X_current = X_MIN_POS;
  3113. if ( X_current>X_MAX_POS)
  3114. X_current = X_MAX_POS;
  3115. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3116. Y_current = Y_MIN_POS;
  3117. if ( Y_current>Y_MAX_POS)
  3118. Y_current = Y_MAX_POS;
  3119. if (verbose_level>3 ) {
  3120. SERIAL_ECHOPAIR("x: ", X_current);
  3121. SERIAL_ECHOPAIR("y: ", Y_current);
  3122. SERIAL_PROTOCOLLNPGM("");
  3123. }
  3124. do_blocking_move_to( X_current, Y_current, Z_current );
  3125. }
  3126. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3127. }
  3128. setup_for_endstop_move();
  3129. run_z_probe();
  3130. sample_set[n] = current_position[Z_AXIS];
  3131. //
  3132. // Get the current mean for the data points we have so far
  3133. //
  3134. sum=0.0;
  3135. for( j=0; j<=n; j++) {
  3136. sum = sum + sample_set[j];
  3137. }
  3138. mean = sum / (double (n+1));
  3139. //
  3140. // Now, use that mean to calculate the standard deviation for the
  3141. // data points we have so far
  3142. //
  3143. sum=0.0;
  3144. for( j=0; j<=n; j++) {
  3145. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3146. }
  3147. sigma = sqrt( sum / (double (n+1)) );
  3148. if (verbose_level > 1) {
  3149. SERIAL_PROTOCOL(n+1);
  3150. SERIAL_PROTOCOL(" of ");
  3151. SERIAL_PROTOCOL(n_samples);
  3152. SERIAL_PROTOCOLPGM(" z: ");
  3153. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3154. }
  3155. if (verbose_level > 2) {
  3156. SERIAL_PROTOCOL(" mean: ");
  3157. SERIAL_PROTOCOL_F(mean,6);
  3158. SERIAL_PROTOCOL(" sigma: ");
  3159. SERIAL_PROTOCOL_F(sigma,6);
  3160. }
  3161. if (verbose_level > 0)
  3162. SERIAL_PROTOCOLPGM("\n");
  3163. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3164. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3165. st_synchronize();
  3166. }
  3167. delay(1000);
  3168. clean_up_after_endstop_move();
  3169. // enable_endstops(true);
  3170. if (verbose_level > 0) {
  3171. SERIAL_PROTOCOLPGM("Mean: ");
  3172. SERIAL_PROTOCOL_F(mean, 6);
  3173. SERIAL_PROTOCOLPGM("\n");
  3174. }
  3175. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3176. SERIAL_PROTOCOL_F(sigma, 6);
  3177. SERIAL_PROTOCOLPGM("\n\n");
  3178. Sigma_Exit:
  3179. break;
  3180. }
  3181. #endif // Z_PROBE_REPEATABILITY_TEST
  3182. #endif // ENABLE_AUTO_BED_LEVELING
  3183. case 104: // M104
  3184. if(setTargetedHotend(104)){
  3185. break;
  3186. }
  3187. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3188. setWatch();
  3189. break;
  3190. case 112: // M112 -Emergency Stop
  3191. kill();
  3192. break;
  3193. case 140: // M140 set bed temp
  3194. if (code_seen('S')) setTargetBed(code_value());
  3195. break;
  3196. case 105 : // M105
  3197. if(setTargetedHotend(105)){
  3198. break;
  3199. }
  3200. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3201. SERIAL_PROTOCOLPGM("ok T:");
  3202. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3203. SERIAL_PROTOCOLPGM(" /");
  3204. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3205. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3206. SERIAL_PROTOCOLPGM(" B:");
  3207. SERIAL_PROTOCOL_F(degBed(),1);
  3208. SERIAL_PROTOCOLPGM(" /");
  3209. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3210. #endif //TEMP_BED_PIN
  3211. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3212. SERIAL_PROTOCOLPGM(" T");
  3213. SERIAL_PROTOCOL(cur_extruder);
  3214. SERIAL_PROTOCOLPGM(":");
  3215. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3216. SERIAL_PROTOCOLPGM(" /");
  3217. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3218. }
  3219. #else
  3220. SERIAL_ERROR_START;
  3221. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3222. #endif
  3223. SERIAL_PROTOCOLPGM(" @:");
  3224. #ifdef EXTRUDER_WATTS
  3225. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3226. SERIAL_PROTOCOLPGM("W");
  3227. #else
  3228. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3229. #endif
  3230. SERIAL_PROTOCOLPGM(" B@:");
  3231. #ifdef BED_WATTS
  3232. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3233. SERIAL_PROTOCOLPGM("W");
  3234. #else
  3235. SERIAL_PROTOCOL(getHeaterPower(-1));
  3236. #endif
  3237. #ifdef SHOW_TEMP_ADC_VALUES
  3238. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3239. SERIAL_PROTOCOLPGM(" ADC B:");
  3240. SERIAL_PROTOCOL_F(degBed(),1);
  3241. SERIAL_PROTOCOLPGM("C->");
  3242. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3243. #endif
  3244. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3245. SERIAL_PROTOCOLPGM(" T");
  3246. SERIAL_PROTOCOL(cur_extruder);
  3247. SERIAL_PROTOCOLPGM(":");
  3248. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3249. SERIAL_PROTOCOLPGM("C->");
  3250. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3251. }
  3252. #endif
  3253. SERIAL_PROTOCOLLN("");
  3254. return;
  3255. break;
  3256. case 109:
  3257. {// M109 - Wait for extruder heater to reach target.
  3258. if(setTargetedHotend(109)){
  3259. break;
  3260. }
  3261. LCD_MESSAGERPGM(MSG_HEATING);
  3262. heating_status = 1;
  3263. if (farm_mode) { prusa_statistics(1); };
  3264. #ifdef AUTOTEMP
  3265. autotemp_enabled=false;
  3266. #endif
  3267. if (code_seen('S')) {
  3268. setTargetHotend(code_value(), tmp_extruder);
  3269. CooldownNoWait = true;
  3270. } else if (code_seen('R')) {
  3271. setTargetHotend(code_value(), tmp_extruder);
  3272. CooldownNoWait = false;
  3273. }
  3274. #ifdef AUTOTEMP
  3275. if (code_seen('S')) autotemp_min=code_value();
  3276. if (code_seen('B')) autotemp_max=code_value();
  3277. if (code_seen('F'))
  3278. {
  3279. autotemp_factor=code_value();
  3280. autotemp_enabled=true;
  3281. }
  3282. #endif
  3283. setWatch();
  3284. codenum = millis();
  3285. /* See if we are heating up or cooling down */
  3286. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3287. cancel_heatup = false;
  3288. #ifdef TEMP_RESIDENCY_TIME
  3289. long residencyStart;
  3290. residencyStart = -1;
  3291. /* continue to loop until we have reached the target temp
  3292. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3293. while((!cancel_heatup)&&((residencyStart == -1) ||
  3294. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3295. #else
  3296. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3297. #endif //TEMP_RESIDENCY_TIME
  3298. if( (millis() - codenum) > 1000UL )
  3299. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3300. SERIAL_PROTOCOLPGM("T:");
  3301. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3302. SERIAL_PROTOCOLPGM(" E:");
  3303. SERIAL_PROTOCOL((int)tmp_extruder);
  3304. #ifdef TEMP_RESIDENCY_TIME
  3305. SERIAL_PROTOCOLPGM(" W:");
  3306. if(residencyStart > -1)
  3307. {
  3308. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3309. SERIAL_PROTOCOLLN( codenum );
  3310. }
  3311. else
  3312. {
  3313. SERIAL_PROTOCOLLN( "?" );
  3314. }
  3315. #else
  3316. SERIAL_PROTOCOLLN("");
  3317. #endif
  3318. codenum = millis();
  3319. }
  3320. manage_heater();
  3321. manage_inactivity();
  3322. lcd_update();
  3323. #ifdef TEMP_RESIDENCY_TIME
  3324. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3325. or when current temp falls outside the hysteresis after target temp was reached */
  3326. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3327. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3328. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3329. {
  3330. residencyStart = millis();
  3331. }
  3332. #endif //TEMP_RESIDENCY_TIME
  3333. }
  3334. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3335. heating_status = 2;
  3336. if (farm_mode) { prusa_statistics(2); };
  3337. starttime=millis();
  3338. previous_millis_cmd = millis();
  3339. }
  3340. break;
  3341. case 190: // M190 - Wait for bed heater to reach target.
  3342. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3343. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3344. heating_status = 3;
  3345. if (farm_mode) { prusa_statistics(1); };
  3346. if (code_seen('S'))
  3347. {
  3348. setTargetBed(code_value());
  3349. CooldownNoWait = true;
  3350. }
  3351. else if (code_seen('R'))
  3352. {
  3353. setTargetBed(code_value());
  3354. CooldownNoWait = false;
  3355. }
  3356. codenum = millis();
  3357. cancel_heatup = false;
  3358. target_direction = isHeatingBed(); // true if heating, false if cooling
  3359. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3360. {
  3361. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3362. {
  3363. float tt=degHotend(active_extruder);
  3364. SERIAL_PROTOCOLPGM("T:");
  3365. SERIAL_PROTOCOL(tt);
  3366. SERIAL_PROTOCOLPGM(" E:");
  3367. SERIAL_PROTOCOL((int)active_extruder);
  3368. SERIAL_PROTOCOLPGM(" B:");
  3369. SERIAL_PROTOCOL_F(degBed(),1);
  3370. SERIAL_PROTOCOLLN("");
  3371. codenum = millis();
  3372. }
  3373. manage_heater();
  3374. manage_inactivity();
  3375. lcd_update();
  3376. }
  3377. LCD_MESSAGERPGM(MSG_BED_DONE);
  3378. heating_status = 4;
  3379. previous_millis_cmd = millis();
  3380. #endif
  3381. break;
  3382. #if defined(FAN_PIN) && FAN_PIN > -1
  3383. case 106: //M106 Fan On
  3384. if (code_seen('S')){
  3385. fanSpeed=constrain(code_value(),0,255);
  3386. }
  3387. else {
  3388. fanSpeed=255;
  3389. }
  3390. break;
  3391. case 107: //M107 Fan Off
  3392. fanSpeed = 0;
  3393. break;
  3394. #endif //FAN_PIN
  3395. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3396. case 80: // M80 - Turn on Power Supply
  3397. SET_OUTPUT(PS_ON_PIN); //GND
  3398. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3399. // If you have a switch on suicide pin, this is useful
  3400. // if you want to start another print with suicide feature after
  3401. // a print without suicide...
  3402. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3403. SET_OUTPUT(SUICIDE_PIN);
  3404. WRITE(SUICIDE_PIN, HIGH);
  3405. #endif
  3406. #ifdef ULTIPANEL
  3407. powersupply = true;
  3408. LCD_MESSAGERPGM(WELCOME_MSG);
  3409. lcd_update();
  3410. #endif
  3411. break;
  3412. #endif
  3413. case 81: // M81 - Turn off Power Supply
  3414. disable_heater();
  3415. st_synchronize();
  3416. disable_e0();
  3417. disable_e1();
  3418. disable_e2();
  3419. finishAndDisableSteppers();
  3420. fanSpeed = 0;
  3421. delay(1000); // Wait a little before to switch off
  3422. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3423. st_synchronize();
  3424. suicide();
  3425. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3426. SET_OUTPUT(PS_ON_PIN);
  3427. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3428. #endif
  3429. #ifdef ULTIPANEL
  3430. powersupply = false;
  3431. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3432. /*
  3433. MACHNAME = "Prusa i3"
  3434. MSGOFF = "Vypnuto"
  3435. "Prusai3"" ""vypnuto""."
  3436. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3437. */
  3438. lcd_update();
  3439. #endif
  3440. break;
  3441. case 82:
  3442. axis_relative_modes[3] = false;
  3443. break;
  3444. case 83:
  3445. axis_relative_modes[3] = true;
  3446. break;
  3447. case 18: //compatibility
  3448. case 84: // M84
  3449. if(code_seen('S')){
  3450. stepper_inactive_time = code_value() * 1000;
  3451. }
  3452. else
  3453. {
  3454. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3455. if(all_axis)
  3456. {
  3457. st_synchronize();
  3458. disable_e0();
  3459. disable_e1();
  3460. disable_e2();
  3461. finishAndDisableSteppers();
  3462. }
  3463. else
  3464. {
  3465. st_synchronize();
  3466. if(code_seen('X')) disable_x();
  3467. if(code_seen('Y')) disable_y();
  3468. if(code_seen('Z')) disable_z();
  3469. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3470. if(code_seen('E')) {
  3471. disable_e0();
  3472. disable_e1();
  3473. disable_e2();
  3474. }
  3475. #endif
  3476. }
  3477. }
  3478. break;
  3479. case 85: // M85
  3480. if(code_seen('S')) {
  3481. max_inactive_time = code_value() * 1000;
  3482. }
  3483. break;
  3484. case 92: // M92
  3485. for(int8_t i=0; i < NUM_AXIS; i++)
  3486. {
  3487. if(code_seen(axis_codes[i]))
  3488. {
  3489. if(i == 3) { // E
  3490. float value = code_value();
  3491. if(value < 20.0) {
  3492. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3493. max_jerk[E_AXIS] *= factor;
  3494. max_feedrate[i] *= factor;
  3495. axis_steps_per_sqr_second[i] *= factor;
  3496. }
  3497. axis_steps_per_unit[i] = value;
  3498. }
  3499. else {
  3500. axis_steps_per_unit[i] = code_value();
  3501. }
  3502. }
  3503. }
  3504. break;
  3505. case 115: // M115
  3506. if (code_seen('V')) {
  3507. // Report the Prusa version number.
  3508. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3509. } else if (code_seen('U')) {
  3510. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3511. // pause the print and ask the user to upgrade the firmware.
  3512. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3513. } else {
  3514. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3515. }
  3516. break;
  3517. case 117: // M117 display message
  3518. starpos = (strchr(strchr_pointer + 5,'*'));
  3519. if(starpos!=NULL)
  3520. *(starpos)='\0';
  3521. lcd_setstatus(strchr_pointer + 5);
  3522. break;
  3523. case 114: // M114
  3524. SERIAL_PROTOCOLPGM("X:");
  3525. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3526. SERIAL_PROTOCOLPGM(" Y:");
  3527. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3528. SERIAL_PROTOCOLPGM(" Z:");
  3529. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3530. SERIAL_PROTOCOLPGM(" E:");
  3531. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3532. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3533. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3534. SERIAL_PROTOCOLPGM(" Y:");
  3535. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3536. SERIAL_PROTOCOLPGM(" Z:");
  3537. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3538. SERIAL_PROTOCOLLN("");
  3539. break;
  3540. case 120: // M120
  3541. enable_endstops(false) ;
  3542. break;
  3543. case 121: // M121
  3544. enable_endstops(true) ;
  3545. break;
  3546. case 119: // M119
  3547. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3548. SERIAL_PROTOCOLLN("");
  3549. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3550. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3551. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3552. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3553. }else{
  3554. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3555. }
  3556. SERIAL_PROTOCOLLN("");
  3557. #endif
  3558. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3559. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3560. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3561. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3562. }else{
  3563. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3564. }
  3565. SERIAL_PROTOCOLLN("");
  3566. #endif
  3567. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3568. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3569. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3570. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3571. }else{
  3572. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3573. }
  3574. SERIAL_PROTOCOLLN("");
  3575. #endif
  3576. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3577. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3578. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3579. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3580. }else{
  3581. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3582. }
  3583. SERIAL_PROTOCOLLN("");
  3584. #endif
  3585. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3586. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3587. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3588. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3589. }else{
  3590. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3591. }
  3592. SERIAL_PROTOCOLLN("");
  3593. #endif
  3594. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3595. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3596. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3597. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3598. }else{
  3599. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3600. }
  3601. SERIAL_PROTOCOLLN("");
  3602. #endif
  3603. break;
  3604. //TODO: update for all axis, use for loop
  3605. #ifdef BLINKM
  3606. case 150: // M150
  3607. {
  3608. byte red;
  3609. byte grn;
  3610. byte blu;
  3611. if(code_seen('R')) red = code_value();
  3612. if(code_seen('U')) grn = code_value();
  3613. if(code_seen('B')) blu = code_value();
  3614. SendColors(red,grn,blu);
  3615. }
  3616. break;
  3617. #endif //BLINKM
  3618. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3619. {
  3620. tmp_extruder = active_extruder;
  3621. if(code_seen('T')) {
  3622. tmp_extruder = code_value();
  3623. if(tmp_extruder >= EXTRUDERS) {
  3624. SERIAL_ECHO_START;
  3625. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3626. break;
  3627. }
  3628. }
  3629. float area = .0;
  3630. if(code_seen('D')) {
  3631. float diameter = (float)code_value();
  3632. if (diameter == 0.0) {
  3633. // setting any extruder filament size disables volumetric on the assumption that
  3634. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3635. // for all extruders
  3636. volumetric_enabled = false;
  3637. } else {
  3638. filament_size[tmp_extruder] = (float)code_value();
  3639. // make sure all extruders have some sane value for the filament size
  3640. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3641. #if EXTRUDERS > 1
  3642. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3643. #if EXTRUDERS > 2
  3644. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3645. #endif
  3646. #endif
  3647. volumetric_enabled = true;
  3648. }
  3649. } else {
  3650. //reserved for setting filament diameter via UFID or filament measuring device
  3651. break;
  3652. }
  3653. calculate_volumetric_multipliers();
  3654. }
  3655. break;
  3656. case 201: // M201
  3657. for(int8_t i=0; i < NUM_AXIS; i++)
  3658. {
  3659. if(code_seen(axis_codes[i]))
  3660. {
  3661. max_acceleration_units_per_sq_second[i] = code_value();
  3662. }
  3663. }
  3664. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3665. reset_acceleration_rates();
  3666. break;
  3667. #if 0 // Not used for Sprinter/grbl gen6
  3668. case 202: // M202
  3669. for(int8_t i=0; i < NUM_AXIS; i++) {
  3670. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3671. }
  3672. break;
  3673. #endif
  3674. case 203: // M203 max feedrate mm/sec
  3675. for(int8_t i=0; i < NUM_AXIS; i++) {
  3676. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3677. }
  3678. break;
  3679. case 204: // M204 acclereration S normal moves T filmanent only moves
  3680. {
  3681. if(code_seen('S')) acceleration = code_value() ;
  3682. if(code_seen('T')) retract_acceleration = code_value() ;
  3683. }
  3684. break;
  3685. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3686. {
  3687. if(code_seen('S')) minimumfeedrate = code_value();
  3688. if(code_seen('T')) mintravelfeedrate = code_value();
  3689. if(code_seen('B')) minsegmenttime = code_value() ;
  3690. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3691. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3692. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3693. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3694. }
  3695. break;
  3696. case 206: // M206 additional homing offset
  3697. for(int8_t i=0; i < 3; i++)
  3698. {
  3699. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3700. }
  3701. break;
  3702. #ifdef FWRETRACT
  3703. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3704. {
  3705. if(code_seen('S'))
  3706. {
  3707. retract_length = code_value() ;
  3708. }
  3709. if(code_seen('F'))
  3710. {
  3711. retract_feedrate = code_value()/60 ;
  3712. }
  3713. if(code_seen('Z'))
  3714. {
  3715. retract_zlift = code_value() ;
  3716. }
  3717. }break;
  3718. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3719. {
  3720. if(code_seen('S'))
  3721. {
  3722. retract_recover_length = code_value() ;
  3723. }
  3724. if(code_seen('F'))
  3725. {
  3726. retract_recover_feedrate = code_value()/60 ;
  3727. }
  3728. }break;
  3729. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3730. {
  3731. if(code_seen('S'))
  3732. {
  3733. int t= code_value() ;
  3734. switch(t)
  3735. {
  3736. case 0:
  3737. {
  3738. autoretract_enabled=false;
  3739. retracted[0]=false;
  3740. #if EXTRUDERS > 1
  3741. retracted[1]=false;
  3742. #endif
  3743. #if EXTRUDERS > 2
  3744. retracted[2]=false;
  3745. #endif
  3746. }break;
  3747. case 1:
  3748. {
  3749. autoretract_enabled=true;
  3750. retracted[0]=false;
  3751. #if EXTRUDERS > 1
  3752. retracted[1]=false;
  3753. #endif
  3754. #if EXTRUDERS > 2
  3755. retracted[2]=false;
  3756. #endif
  3757. }break;
  3758. default:
  3759. SERIAL_ECHO_START;
  3760. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3761. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3762. SERIAL_ECHOLNPGM("\"");
  3763. }
  3764. }
  3765. }break;
  3766. #endif // FWRETRACT
  3767. #if EXTRUDERS > 1
  3768. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3769. {
  3770. if(setTargetedHotend(218)){
  3771. break;
  3772. }
  3773. if(code_seen('X'))
  3774. {
  3775. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3776. }
  3777. if(code_seen('Y'))
  3778. {
  3779. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3780. }
  3781. SERIAL_ECHO_START;
  3782. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3783. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3784. {
  3785. SERIAL_ECHO(" ");
  3786. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3787. SERIAL_ECHO(",");
  3788. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3789. }
  3790. SERIAL_ECHOLN("");
  3791. }break;
  3792. #endif
  3793. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3794. {
  3795. if(code_seen('S'))
  3796. {
  3797. feedmultiply = code_value() ;
  3798. }
  3799. }
  3800. break;
  3801. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3802. {
  3803. if(code_seen('S'))
  3804. {
  3805. int tmp_code = code_value();
  3806. if (code_seen('T'))
  3807. {
  3808. if(setTargetedHotend(221)){
  3809. break;
  3810. }
  3811. extruder_multiply[tmp_extruder] = tmp_code;
  3812. }
  3813. else
  3814. {
  3815. extrudemultiply = tmp_code ;
  3816. }
  3817. }
  3818. }
  3819. break;
  3820. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3821. {
  3822. if(code_seen('P')){
  3823. int pin_number = code_value(); // pin number
  3824. int pin_state = -1; // required pin state - default is inverted
  3825. if(code_seen('S')) pin_state = code_value(); // required pin state
  3826. if(pin_state >= -1 && pin_state <= 1){
  3827. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3828. {
  3829. if (sensitive_pins[i] == pin_number)
  3830. {
  3831. pin_number = -1;
  3832. break;
  3833. }
  3834. }
  3835. if (pin_number > -1)
  3836. {
  3837. int target = LOW;
  3838. st_synchronize();
  3839. pinMode(pin_number, INPUT);
  3840. switch(pin_state){
  3841. case 1:
  3842. target = HIGH;
  3843. break;
  3844. case 0:
  3845. target = LOW;
  3846. break;
  3847. case -1:
  3848. target = !digitalRead(pin_number);
  3849. break;
  3850. }
  3851. while(digitalRead(pin_number) != target){
  3852. manage_heater();
  3853. manage_inactivity();
  3854. lcd_update();
  3855. }
  3856. }
  3857. }
  3858. }
  3859. }
  3860. break;
  3861. #if NUM_SERVOS > 0
  3862. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3863. {
  3864. int servo_index = -1;
  3865. int servo_position = 0;
  3866. if (code_seen('P'))
  3867. servo_index = code_value();
  3868. if (code_seen('S')) {
  3869. servo_position = code_value();
  3870. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3871. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3872. servos[servo_index].attach(0);
  3873. #endif
  3874. servos[servo_index].write(servo_position);
  3875. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3876. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3877. servos[servo_index].detach();
  3878. #endif
  3879. }
  3880. else {
  3881. SERIAL_ECHO_START;
  3882. SERIAL_ECHO("Servo ");
  3883. SERIAL_ECHO(servo_index);
  3884. SERIAL_ECHOLN(" out of range");
  3885. }
  3886. }
  3887. else if (servo_index >= 0) {
  3888. SERIAL_PROTOCOL(MSG_OK);
  3889. SERIAL_PROTOCOL(" Servo ");
  3890. SERIAL_PROTOCOL(servo_index);
  3891. SERIAL_PROTOCOL(": ");
  3892. SERIAL_PROTOCOL(servos[servo_index].read());
  3893. SERIAL_PROTOCOLLN("");
  3894. }
  3895. }
  3896. break;
  3897. #endif // NUM_SERVOS > 0
  3898. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3899. case 300: // M300
  3900. {
  3901. int beepS = code_seen('S') ? code_value() : 110;
  3902. int beepP = code_seen('P') ? code_value() : 1000;
  3903. if (beepS > 0)
  3904. {
  3905. #if BEEPER > 0
  3906. tone(BEEPER, beepS);
  3907. delay(beepP);
  3908. noTone(BEEPER);
  3909. #elif defined(ULTRALCD)
  3910. lcd_buzz(beepS, beepP);
  3911. #elif defined(LCD_USE_I2C_BUZZER)
  3912. lcd_buzz(beepP, beepS);
  3913. #endif
  3914. }
  3915. else
  3916. {
  3917. delay(beepP);
  3918. }
  3919. }
  3920. break;
  3921. #endif // M300
  3922. #ifdef PIDTEMP
  3923. case 301: // M301
  3924. {
  3925. if(code_seen('P')) Kp = code_value();
  3926. if(code_seen('I')) Ki = scalePID_i(code_value());
  3927. if(code_seen('D')) Kd = scalePID_d(code_value());
  3928. #ifdef PID_ADD_EXTRUSION_RATE
  3929. if(code_seen('C')) Kc = code_value();
  3930. #endif
  3931. updatePID();
  3932. SERIAL_PROTOCOLRPGM(MSG_OK);
  3933. SERIAL_PROTOCOL(" p:");
  3934. SERIAL_PROTOCOL(Kp);
  3935. SERIAL_PROTOCOL(" i:");
  3936. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3937. SERIAL_PROTOCOL(" d:");
  3938. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3939. #ifdef PID_ADD_EXTRUSION_RATE
  3940. SERIAL_PROTOCOL(" c:");
  3941. //Kc does not have scaling applied above, or in resetting defaults
  3942. SERIAL_PROTOCOL(Kc);
  3943. #endif
  3944. SERIAL_PROTOCOLLN("");
  3945. }
  3946. break;
  3947. #endif //PIDTEMP
  3948. #ifdef PIDTEMPBED
  3949. case 304: // M304
  3950. {
  3951. if(code_seen('P')) bedKp = code_value();
  3952. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3953. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3954. updatePID();
  3955. SERIAL_PROTOCOLRPGM(MSG_OK);
  3956. SERIAL_PROTOCOL(" p:");
  3957. SERIAL_PROTOCOL(bedKp);
  3958. SERIAL_PROTOCOL(" i:");
  3959. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3960. SERIAL_PROTOCOL(" d:");
  3961. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3962. SERIAL_PROTOCOLLN("");
  3963. }
  3964. break;
  3965. #endif //PIDTEMP
  3966. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3967. {
  3968. #ifdef CHDK
  3969. SET_OUTPUT(CHDK);
  3970. WRITE(CHDK, HIGH);
  3971. chdkHigh = millis();
  3972. chdkActive = true;
  3973. #else
  3974. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3975. const uint8_t NUM_PULSES=16;
  3976. const float PULSE_LENGTH=0.01524;
  3977. for(int i=0; i < NUM_PULSES; i++) {
  3978. WRITE(PHOTOGRAPH_PIN, HIGH);
  3979. _delay_ms(PULSE_LENGTH);
  3980. WRITE(PHOTOGRAPH_PIN, LOW);
  3981. _delay_ms(PULSE_LENGTH);
  3982. }
  3983. delay(7.33);
  3984. for(int i=0; i < NUM_PULSES; i++) {
  3985. WRITE(PHOTOGRAPH_PIN, HIGH);
  3986. _delay_ms(PULSE_LENGTH);
  3987. WRITE(PHOTOGRAPH_PIN, LOW);
  3988. _delay_ms(PULSE_LENGTH);
  3989. }
  3990. #endif
  3991. #endif //chdk end if
  3992. }
  3993. break;
  3994. #ifdef DOGLCD
  3995. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3996. {
  3997. if (code_seen('C')) {
  3998. lcd_setcontrast( ((int)code_value())&63 );
  3999. }
  4000. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4001. SERIAL_PROTOCOL(lcd_contrast);
  4002. SERIAL_PROTOCOLLN("");
  4003. }
  4004. break;
  4005. #endif
  4006. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4007. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4008. {
  4009. float temp = .0;
  4010. if (code_seen('S')) temp=code_value();
  4011. set_extrude_min_temp(temp);
  4012. }
  4013. break;
  4014. #endif
  4015. case 303: // M303 PID autotune
  4016. {
  4017. float temp = 150.0;
  4018. int e=0;
  4019. int c=5;
  4020. if (code_seen('E')) e=code_value();
  4021. if (e<0)
  4022. temp=70;
  4023. if (code_seen('S')) temp=code_value();
  4024. if (code_seen('C')) c=code_value();
  4025. PID_autotune(temp, e, c);
  4026. }
  4027. break;
  4028. case 400: // M400 finish all moves
  4029. {
  4030. st_synchronize();
  4031. }
  4032. break;
  4033. #ifdef FILAMENT_SENSOR
  4034. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4035. {
  4036. #if (FILWIDTH_PIN > -1)
  4037. if(code_seen('N')) filament_width_nominal=code_value();
  4038. else{
  4039. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4040. SERIAL_PROTOCOLLN(filament_width_nominal);
  4041. }
  4042. #endif
  4043. }
  4044. break;
  4045. case 405: //M405 Turn on filament sensor for control
  4046. {
  4047. if(code_seen('D')) meas_delay_cm=code_value();
  4048. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4049. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4050. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4051. {
  4052. int temp_ratio = widthFil_to_size_ratio();
  4053. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4054. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4055. }
  4056. delay_index1=0;
  4057. delay_index2=0;
  4058. }
  4059. filament_sensor = true ;
  4060. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4061. //SERIAL_PROTOCOL(filament_width_meas);
  4062. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4063. //SERIAL_PROTOCOL(extrudemultiply);
  4064. }
  4065. break;
  4066. case 406: //M406 Turn off filament sensor for control
  4067. {
  4068. filament_sensor = false ;
  4069. }
  4070. break;
  4071. case 407: //M407 Display measured filament diameter
  4072. {
  4073. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4074. SERIAL_PROTOCOLLN(filament_width_meas);
  4075. }
  4076. break;
  4077. #endif
  4078. case 500: // M500 Store settings in EEPROM
  4079. {
  4080. Config_StoreSettings();
  4081. }
  4082. break;
  4083. case 501: // M501 Read settings from EEPROM
  4084. {
  4085. Config_RetrieveSettings();
  4086. }
  4087. break;
  4088. case 502: // M502 Revert to default settings
  4089. {
  4090. Config_ResetDefault();
  4091. }
  4092. break;
  4093. case 503: // M503 print settings currently in memory
  4094. {
  4095. Config_PrintSettings();
  4096. }
  4097. break;
  4098. case 509: //M509 Force language selection
  4099. {
  4100. lcd_force_language_selection();
  4101. SERIAL_ECHO_START;
  4102. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4103. }
  4104. break;
  4105. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4106. case 540:
  4107. {
  4108. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4109. }
  4110. break;
  4111. #endif
  4112. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4113. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4114. {
  4115. float value;
  4116. if (code_seen('Z'))
  4117. {
  4118. value = code_value();
  4119. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4120. {
  4121. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4122. SERIAL_ECHO_START;
  4123. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4124. SERIAL_PROTOCOLLN("");
  4125. }
  4126. else
  4127. {
  4128. SERIAL_ECHO_START;
  4129. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4130. SERIAL_ECHORPGM(MSG_Z_MIN);
  4131. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4132. SERIAL_ECHORPGM(MSG_Z_MAX);
  4133. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4134. SERIAL_PROTOCOLLN("");
  4135. }
  4136. }
  4137. else
  4138. {
  4139. SERIAL_ECHO_START;
  4140. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4141. SERIAL_ECHO(-zprobe_zoffset);
  4142. SERIAL_PROTOCOLLN("");
  4143. }
  4144. break;
  4145. }
  4146. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4147. #ifdef FILAMENTCHANGEENABLE
  4148. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4149. {
  4150. st_synchronize();
  4151. if (farm_mode)
  4152. {
  4153. prusa_statistics(22);
  4154. }
  4155. feedmultiplyBckp=feedmultiply;
  4156. int8_t TooLowZ = 0;
  4157. float target[4];
  4158. float lastpos[4];
  4159. target[X_AXIS]=current_position[X_AXIS];
  4160. target[Y_AXIS]=current_position[Y_AXIS];
  4161. target[Z_AXIS]=current_position[Z_AXIS];
  4162. target[E_AXIS]=current_position[E_AXIS];
  4163. lastpos[X_AXIS]=current_position[X_AXIS];
  4164. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4165. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4166. lastpos[E_AXIS]=current_position[E_AXIS];
  4167. //Restract extruder
  4168. if(code_seen('E'))
  4169. {
  4170. target[E_AXIS]+= code_value();
  4171. }
  4172. else
  4173. {
  4174. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4175. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4176. #endif
  4177. }
  4178. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4179. //Lift Z
  4180. if(code_seen('Z'))
  4181. {
  4182. target[Z_AXIS]+= code_value();
  4183. }
  4184. else
  4185. {
  4186. #ifdef FILAMENTCHANGE_ZADD
  4187. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4188. if(target[Z_AXIS] < 10){
  4189. target[Z_AXIS]+= 10 ;
  4190. TooLowZ = 1;
  4191. }else{
  4192. TooLowZ = 0;
  4193. }
  4194. #endif
  4195. }
  4196. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4197. //Move XY to side
  4198. if(code_seen('X'))
  4199. {
  4200. target[X_AXIS]+= code_value();
  4201. }
  4202. else
  4203. {
  4204. #ifdef FILAMENTCHANGE_XPOS
  4205. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4206. #endif
  4207. }
  4208. if(code_seen('Y'))
  4209. {
  4210. target[Y_AXIS]= code_value();
  4211. }
  4212. else
  4213. {
  4214. #ifdef FILAMENTCHANGE_YPOS
  4215. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4216. #endif
  4217. }
  4218. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4219. // Unload filament
  4220. if(code_seen('L'))
  4221. {
  4222. target[E_AXIS]+= code_value();
  4223. }
  4224. else
  4225. {
  4226. #ifdef FILAMENTCHANGE_FINALRETRACT
  4227. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4228. #endif
  4229. }
  4230. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4231. //finish moves
  4232. st_synchronize();
  4233. //disable extruder steppers so filament can be removed
  4234. disable_e0();
  4235. disable_e1();
  4236. disable_e2();
  4237. delay(100);
  4238. //Wait for user to insert filament
  4239. uint8_t cnt=0;
  4240. int counterBeep = 0;
  4241. lcd_wait_interact();
  4242. while(!lcd_clicked()){
  4243. cnt++;
  4244. manage_heater();
  4245. manage_inactivity(true);
  4246. if(cnt==0)
  4247. {
  4248. #if BEEPER > 0
  4249. if (counterBeep== 500){
  4250. counterBeep = 0;
  4251. }
  4252. SET_OUTPUT(BEEPER);
  4253. if (counterBeep== 0){
  4254. WRITE(BEEPER,HIGH);
  4255. }
  4256. if (counterBeep== 20){
  4257. WRITE(BEEPER,LOW);
  4258. }
  4259. counterBeep++;
  4260. #else
  4261. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4262. lcd_buzz(1000/6,100);
  4263. #else
  4264. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4265. #endif
  4266. #endif
  4267. }
  4268. }
  4269. //Filament inserted
  4270. WRITE(BEEPER,LOW);
  4271. //Feed the filament to the end of nozzle quickly
  4272. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4273. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4274. //Extrude some filament
  4275. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4276. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4277. //Wait for user to check the state
  4278. lcd_change_fil_state = 0;
  4279. lcd_loading_filament();
  4280. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4281. lcd_change_fil_state = 0;
  4282. lcd_alright();
  4283. switch(lcd_change_fil_state){
  4284. // Filament failed to load so load it again
  4285. case 2:
  4286. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4287. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4288. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4289. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4290. lcd_loading_filament();
  4291. break;
  4292. // Filament loaded properly but color is not clear
  4293. case 3:
  4294. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4295. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4296. lcd_loading_color();
  4297. break;
  4298. // Everything good
  4299. default:
  4300. lcd_change_success();
  4301. break;
  4302. }
  4303. }
  4304. //Not let's go back to print
  4305. //Feed a little of filament to stabilize pressure
  4306. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4308. //Retract
  4309. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4311. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4312. //Move XY back
  4313. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4314. //Move Z back
  4315. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4316. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4317. //Unretract
  4318. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4319. //Set E position to original
  4320. plan_set_e_position(lastpos[E_AXIS]);
  4321. //Recover feed rate
  4322. feedmultiply=feedmultiplyBckp;
  4323. char cmd[9];
  4324. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4325. enquecommand(cmd);
  4326. }
  4327. break;
  4328. #endif //FILAMENTCHANGEENABLE
  4329. case 907: // M907 Set digital trimpot motor current using axis codes.
  4330. {
  4331. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4332. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4333. if(code_seen('B')) digipot_current(4,code_value());
  4334. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4335. #endif
  4336. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4337. if(code_seen('X')) digipot_current(0, code_value());
  4338. #endif
  4339. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4340. if(code_seen('Z')) digipot_current(1, code_value());
  4341. #endif
  4342. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4343. if(code_seen('E')) digipot_current(2, code_value());
  4344. #endif
  4345. #ifdef DIGIPOT_I2C
  4346. // this one uses actual amps in floating point
  4347. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4348. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4349. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4350. #endif
  4351. }
  4352. break;
  4353. case 908: // M908 Control digital trimpot directly.
  4354. {
  4355. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4356. uint8_t channel,current;
  4357. if(code_seen('P')) channel=code_value();
  4358. if(code_seen('S')) current=code_value();
  4359. digitalPotWrite(channel, current);
  4360. #endif
  4361. }
  4362. break;
  4363. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4364. {
  4365. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4366. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4367. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4368. if(code_seen('B')) microstep_mode(4,code_value());
  4369. microstep_readings();
  4370. #endif
  4371. }
  4372. break;
  4373. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4374. {
  4375. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4376. if(code_seen('S')) switch((int)code_value())
  4377. {
  4378. case 1:
  4379. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4380. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4381. break;
  4382. case 2:
  4383. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4384. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4385. break;
  4386. }
  4387. microstep_readings();
  4388. #endif
  4389. }
  4390. break;
  4391. case 999: // M999: Restart after being stopped
  4392. Stopped = false;
  4393. lcd_reset_alert_level();
  4394. gcode_LastN = Stopped_gcode_LastN;
  4395. FlushSerialRequestResend();
  4396. break;
  4397. }
  4398. } // end if(code_seen('M')) (end of M codes)
  4399. else if(code_seen('T'))
  4400. {
  4401. tmp_extruder = code_value();
  4402. #ifdef SNMM
  4403. st_synchronize();
  4404. delay(100);
  4405. disable_e0();
  4406. disable_e1();
  4407. disable_e2();
  4408. pinMode(E_MUX0_PIN,OUTPUT);
  4409. pinMode(E_MUX1_PIN,OUTPUT);
  4410. pinMode(E_MUX2_PIN,OUTPUT);
  4411. delay(100);
  4412. SERIAL_ECHO_START;
  4413. SERIAL_ECHO("T:");
  4414. SERIAL_ECHOLN((int)tmp_extruder);
  4415. switch (tmp_extruder) {
  4416. case 1:
  4417. WRITE(E_MUX0_PIN, HIGH);
  4418. WRITE(E_MUX1_PIN, LOW);
  4419. WRITE(E_MUX2_PIN, LOW);
  4420. break;
  4421. case 2:
  4422. WRITE(E_MUX0_PIN, LOW);
  4423. WRITE(E_MUX1_PIN, HIGH);
  4424. WRITE(E_MUX2_PIN, LOW);
  4425. break;
  4426. case 3:
  4427. WRITE(E_MUX0_PIN, HIGH);
  4428. WRITE(E_MUX1_PIN, HIGH);
  4429. WRITE(E_MUX2_PIN, LOW);
  4430. break;
  4431. default:
  4432. WRITE(E_MUX0_PIN, LOW);
  4433. WRITE(E_MUX1_PIN, LOW);
  4434. WRITE(E_MUX2_PIN, LOW);
  4435. break;
  4436. }
  4437. delay(100);
  4438. #else
  4439. if(tmp_extruder >= EXTRUDERS) {
  4440. SERIAL_ECHO_START;
  4441. SERIAL_ECHO("T");
  4442. SERIAL_ECHO(tmp_extruder);
  4443. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4444. }
  4445. else {
  4446. boolean make_move = false;
  4447. if(code_seen('F')) {
  4448. make_move = true;
  4449. next_feedrate = code_value();
  4450. if(next_feedrate > 0.0) {
  4451. feedrate = next_feedrate;
  4452. }
  4453. }
  4454. #if EXTRUDERS > 1
  4455. if(tmp_extruder != active_extruder) {
  4456. // Save current position to return to after applying extruder offset
  4457. memcpy(destination, current_position, sizeof(destination));
  4458. // Offset extruder (only by XY)
  4459. int i;
  4460. for(i = 0; i < 2; i++) {
  4461. current_position[i] = current_position[i] -
  4462. extruder_offset[i][active_extruder] +
  4463. extruder_offset[i][tmp_extruder];
  4464. }
  4465. // Set the new active extruder and position
  4466. active_extruder = tmp_extruder;
  4467. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4468. // Move to the old position if 'F' was in the parameters
  4469. if(make_move && Stopped == false) {
  4470. prepare_move();
  4471. }
  4472. }
  4473. #endif
  4474. SERIAL_ECHO_START;
  4475. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4476. SERIAL_PROTOCOLLN((int)active_extruder);
  4477. }
  4478. #endif
  4479. } // end if(code_seen('T')) (end of T codes)
  4480. else
  4481. {
  4482. SERIAL_ECHO_START;
  4483. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4484. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4485. SERIAL_ECHOLNPGM("\"");
  4486. }
  4487. ClearToSend();
  4488. }
  4489. void FlushSerialRequestResend()
  4490. {
  4491. //char cmdbuffer[bufindr][100]="Resend:";
  4492. MYSERIAL.flush();
  4493. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4494. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4495. ClearToSend();
  4496. }
  4497. // Confirm the execution of a command, if sent from a serial line.
  4498. // Execution of a command from a SD card will not be confirmed.
  4499. void ClearToSend()
  4500. {
  4501. previous_millis_cmd = millis();
  4502. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4504. }
  4505. void get_coordinates()
  4506. {
  4507. bool seen[4]={false,false,false,false};
  4508. for(int8_t i=0; i < NUM_AXIS; i++) {
  4509. if(code_seen(axis_codes[i]))
  4510. {
  4511. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4512. seen[i]=true;
  4513. }
  4514. else destination[i] = current_position[i]; //Are these else lines really needed?
  4515. }
  4516. if(code_seen('F')) {
  4517. next_feedrate = code_value();
  4518. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4519. }
  4520. }
  4521. void get_arc_coordinates()
  4522. {
  4523. #ifdef SF_ARC_FIX
  4524. bool relative_mode_backup = relative_mode;
  4525. relative_mode = true;
  4526. #endif
  4527. get_coordinates();
  4528. #ifdef SF_ARC_FIX
  4529. relative_mode=relative_mode_backup;
  4530. #endif
  4531. if(code_seen('I')) {
  4532. offset[0] = code_value();
  4533. }
  4534. else {
  4535. offset[0] = 0.0;
  4536. }
  4537. if(code_seen('J')) {
  4538. offset[1] = code_value();
  4539. }
  4540. else {
  4541. offset[1] = 0.0;
  4542. }
  4543. }
  4544. void clamp_to_software_endstops(float target[3])
  4545. {
  4546. world2machine_clamp(target[0], target[1]);
  4547. // Clamp the Z coordinate.
  4548. if (min_software_endstops) {
  4549. float negative_z_offset = 0;
  4550. #ifdef ENABLE_AUTO_BED_LEVELING
  4551. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4552. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4553. #endif
  4554. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4555. }
  4556. if (max_software_endstops) {
  4557. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4558. }
  4559. }
  4560. #ifdef MESH_BED_LEVELING
  4561. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4562. float dx = x - current_position[X_AXIS];
  4563. float dy = y - current_position[Y_AXIS];
  4564. float dz = z - current_position[Z_AXIS];
  4565. int n_segments = 0;
  4566. if (mbl.active) {
  4567. float len = abs(dx) + abs(dy);
  4568. if (len > 0)
  4569. // Split to 3cm segments or shorter.
  4570. n_segments = int(ceil(len / 30.f));
  4571. }
  4572. if (n_segments > 1) {
  4573. float de = e - current_position[E_AXIS];
  4574. for (int i = 1; i < n_segments; ++ i) {
  4575. float t = float(i) / float(n_segments);
  4576. plan_buffer_line(
  4577. current_position[X_AXIS] + t * dx,
  4578. current_position[Y_AXIS] + t * dy,
  4579. current_position[Z_AXIS] + t * dz,
  4580. current_position[E_AXIS] + t * de,
  4581. feed_rate, extruder);
  4582. }
  4583. }
  4584. // The rest of the path.
  4585. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4586. current_position[X_AXIS] = x;
  4587. current_position[Y_AXIS] = y;
  4588. current_position[Z_AXIS] = z;
  4589. current_position[E_AXIS] = e;
  4590. }
  4591. #endif // MESH_BED_LEVELING
  4592. void prepare_move()
  4593. {
  4594. clamp_to_software_endstops(destination);
  4595. previous_millis_cmd = millis();
  4596. // Do not use feedmultiply for E or Z only moves
  4597. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4598. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4599. }
  4600. else {
  4601. #ifdef MESH_BED_LEVELING
  4602. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4603. #else
  4604. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4605. #endif
  4606. }
  4607. for(int8_t i=0; i < NUM_AXIS; i++) {
  4608. current_position[i] = destination[i];
  4609. }
  4610. }
  4611. void prepare_arc_move(char isclockwise) {
  4612. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4613. // Trace the arc
  4614. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4615. // As far as the parser is concerned, the position is now == target. In reality the
  4616. // motion control system might still be processing the action and the real tool position
  4617. // in any intermediate location.
  4618. for(int8_t i=0; i < NUM_AXIS; i++) {
  4619. current_position[i] = destination[i];
  4620. }
  4621. previous_millis_cmd = millis();
  4622. }
  4623. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4624. #if defined(FAN_PIN)
  4625. #if CONTROLLERFAN_PIN == FAN_PIN
  4626. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4627. #endif
  4628. #endif
  4629. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4630. unsigned long lastMotorCheck = 0;
  4631. void controllerFan()
  4632. {
  4633. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4634. {
  4635. lastMotorCheck = millis();
  4636. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4637. #if EXTRUDERS > 2
  4638. || !READ(E2_ENABLE_PIN)
  4639. #endif
  4640. #if EXTRUDER > 1
  4641. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4642. || !READ(X2_ENABLE_PIN)
  4643. #endif
  4644. || !READ(E1_ENABLE_PIN)
  4645. #endif
  4646. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4647. {
  4648. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4649. }
  4650. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4651. {
  4652. digitalWrite(CONTROLLERFAN_PIN, 0);
  4653. analogWrite(CONTROLLERFAN_PIN, 0);
  4654. }
  4655. else
  4656. {
  4657. // allows digital or PWM fan output to be used (see M42 handling)
  4658. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4659. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4660. }
  4661. }
  4662. }
  4663. #endif
  4664. #ifdef TEMP_STAT_LEDS
  4665. static bool blue_led = false;
  4666. static bool red_led = false;
  4667. static uint32_t stat_update = 0;
  4668. void handle_status_leds(void) {
  4669. float max_temp = 0.0;
  4670. if(millis() > stat_update) {
  4671. stat_update += 500; // Update every 0.5s
  4672. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4673. max_temp = max(max_temp, degHotend(cur_extruder));
  4674. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4675. }
  4676. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4677. max_temp = max(max_temp, degTargetBed());
  4678. max_temp = max(max_temp, degBed());
  4679. #endif
  4680. if((max_temp > 55.0) && (red_led == false)) {
  4681. digitalWrite(STAT_LED_RED, 1);
  4682. digitalWrite(STAT_LED_BLUE, 0);
  4683. red_led = true;
  4684. blue_led = false;
  4685. }
  4686. if((max_temp < 54.0) && (blue_led == false)) {
  4687. digitalWrite(STAT_LED_RED, 0);
  4688. digitalWrite(STAT_LED_BLUE, 1);
  4689. red_led = false;
  4690. blue_led = true;
  4691. }
  4692. }
  4693. }
  4694. #endif
  4695. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4696. {
  4697. #if defined(KILL_PIN) && KILL_PIN > -1
  4698. static int killCount = 0; // make the inactivity button a bit less responsive
  4699. const int KILL_DELAY = 10000;
  4700. #endif
  4701. if(buflen < (BUFSIZE-1)){
  4702. get_command();
  4703. }
  4704. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4705. if(max_inactive_time)
  4706. kill();
  4707. if(stepper_inactive_time) {
  4708. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4709. {
  4710. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4711. disable_x();
  4712. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4713. disable_y();
  4714. disable_z();
  4715. disable_e0();
  4716. disable_e1();
  4717. disable_e2();
  4718. }
  4719. }
  4720. }
  4721. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4722. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4723. {
  4724. chdkActive = false;
  4725. WRITE(CHDK, LOW);
  4726. }
  4727. #endif
  4728. #if defined(KILL_PIN) && KILL_PIN > -1
  4729. // Check if the kill button was pressed and wait just in case it was an accidental
  4730. // key kill key press
  4731. // -------------------------------------------------------------------------------
  4732. if( 0 == READ(KILL_PIN) )
  4733. {
  4734. killCount++;
  4735. }
  4736. else if (killCount > 0)
  4737. {
  4738. killCount--;
  4739. }
  4740. // Exceeded threshold and we can confirm that it was not accidental
  4741. // KILL the machine
  4742. // ----------------------------------------------------------------
  4743. if ( killCount >= KILL_DELAY)
  4744. {
  4745. kill();
  4746. }
  4747. #endif
  4748. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4749. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4750. #endif
  4751. #ifdef EXTRUDER_RUNOUT_PREVENT
  4752. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4753. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4754. {
  4755. bool oldstatus=READ(E0_ENABLE_PIN);
  4756. enable_e0();
  4757. float oldepos=current_position[E_AXIS];
  4758. float oldedes=destination[E_AXIS];
  4759. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4760. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4761. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4762. current_position[E_AXIS]=oldepos;
  4763. destination[E_AXIS]=oldedes;
  4764. plan_set_e_position(oldepos);
  4765. previous_millis_cmd=millis();
  4766. st_synchronize();
  4767. WRITE(E0_ENABLE_PIN,oldstatus);
  4768. }
  4769. #endif
  4770. #ifdef TEMP_STAT_LEDS
  4771. handle_status_leds();
  4772. #endif
  4773. check_axes_activity();
  4774. }
  4775. void kill(const char *full_screen_message)
  4776. {
  4777. cli(); // Stop interrupts
  4778. disable_heater();
  4779. disable_x();
  4780. // SERIAL_ECHOLNPGM("kill - disable Y");
  4781. disable_y();
  4782. disable_z();
  4783. disable_e0();
  4784. disable_e1();
  4785. disable_e2();
  4786. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4787. pinMode(PS_ON_PIN,INPUT);
  4788. #endif
  4789. SERIAL_ERROR_START;
  4790. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4791. if (full_screen_message != NULL) {
  4792. SERIAL_ERRORLNRPGM(full_screen_message);
  4793. lcd_display_message_fullscreen_P(full_screen_message);
  4794. } else {
  4795. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4796. }
  4797. // FMC small patch to update the LCD before ending
  4798. sei(); // enable interrupts
  4799. for ( int i=5; i--; lcd_update())
  4800. {
  4801. delay(200);
  4802. }
  4803. cli(); // disable interrupts
  4804. suicide();
  4805. while(1) { /* Intentionally left empty */ } // Wait for reset
  4806. }
  4807. void Stop()
  4808. {
  4809. disable_heater();
  4810. if(Stopped == false) {
  4811. Stopped = true;
  4812. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4813. SERIAL_ERROR_START;
  4814. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4815. LCD_MESSAGERPGM(MSG_STOPPED);
  4816. }
  4817. }
  4818. bool IsStopped() { return Stopped; };
  4819. #ifdef FAST_PWM_FAN
  4820. void setPwmFrequency(uint8_t pin, int val)
  4821. {
  4822. val &= 0x07;
  4823. switch(digitalPinToTimer(pin))
  4824. {
  4825. #if defined(TCCR0A)
  4826. case TIMER0A:
  4827. case TIMER0B:
  4828. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4829. // TCCR0B |= val;
  4830. break;
  4831. #endif
  4832. #if defined(TCCR1A)
  4833. case TIMER1A:
  4834. case TIMER1B:
  4835. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4836. // TCCR1B |= val;
  4837. break;
  4838. #endif
  4839. #if defined(TCCR2)
  4840. case TIMER2:
  4841. case TIMER2:
  4842. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4843. TCCR2 |= val;
  4844. break;
  4845. #endif
  4846. #if defined(TCCR2A)
  4847. case TIMER2A:
  4848. case TIMER2B:
  4849. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4850. TCCR2B |= val;
  4851. break;
  4852. #endif
  4853. #if defined(TCCR3A)
  4854. case TIMER3A:
  4855. case TIMER3B:
  4856. case TIMER3C:
  4857. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4858. TCCR3B |= val;
  4859. break;
  4860. #endif
  4861. #if defined(TCCR4A)
  4862. case TIMER4A:
  4863. case TIMER4B:
  4864. case TIMER4C:
  4865. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4866. TCCR4B |= val;
  4867. break;
  4868. #endif
  4869. #if defined(TCCR5A)
  4870. case TIMER5A:
  4871. case TIMER5B:
  4872. case TIMER5C:
  4873. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4874. TCCR5B |= val;
  4875. break;
  4876. #endif
  4877. }
  4878. }
  4879. #endif //FAST_PWM_FAN
  4880. bool setTargetedHotend(int code){
  4881. tmp_extruder = active_extruder;
  4882. if(code_seen('T')) {
  4883. tmp_extruder = code_value();
  4884. if(tmp_extruder >= EXTRUDERS) {
  4885. SERIAL_ECHO_START;
  4886. switch(code){
  4887. case 104:
  4888. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4889. break;
  4890. case 105:
  4891. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4892. break;
  4893. case 109:
  4894. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4895. break;
  4896. case 218:
  4897. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4898. break;
  4899. case 221:
  4900. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4901. break;
  4902. }
  4903. SERIAL_ECHOLN(tmp_extruder);
  4904. return true;
  4905. }
  4906. }
  4907. return false;
  4908. }
  4909. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100
  4910. {
  4911. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4912. {
  4913. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4914. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4915. }
  4916. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  4917. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4918. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4919. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4920. total_filament_used = 0;
  4921. }
  4922. float calculate_volumetric_multiplier(float diameter) {
  4923. float area = .0;
  4924. float radius = .0;
  4925. radius = diameter * .5;
  4926. if (! volumetric_enabled || radius == 0) {
  4927. area = 1;
  4928. }
  4929. else {
  4930. area = M_PI * pow(radius, 2);
  4931. }
  4932. return 1.0 / area;
  4933. }
  4934. void calculate_volumetric_multipliers() {
  4935. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4936. #if EXTRUDERS > 1
  4937. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4938. #if EXTRUDERS > 2
  4939. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4940. #endif
  4941. #endif
  4942. }
  4943. void delay_keep_alive(int ms)
  4944. {
  4945. for (;;) {
  4946. manage_heater();
  4947. // Manage inactivity, but don't disable steppers on timeout.
  4948. manage_inactivity(true);
  4949. lcd_update();
  4950. if (ms == 0)
  4951. break;
  4952. else if (ms >= 50) {
  4953. delay(50);
  4954. ms -= 50;
  4955. } else {
  4956. delay(ms);
  4957. ms = 0;
  4958. }
  4959. }
  4960. }