Marlin_main.cpp 352 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "backlight.h"
  61. #include "planner.h"
  62. #include "stepper.h"
  63. #include "temperature.h"
  64. #include "motion_control.h"
  65. #include "cardreader.h"
  66. #include "ConfigurationStore.h"
  67. #include "language.h"
  68. #include "pins_arduino.h"
  69. #include "math.h"
  70. #include "util.h"
  71. #include "Timer.h"
  72. #include <avr/wdt.h>
  73. #include <avr/pgmspace.h>
  74. #include "Dcodes.h"
  75. #include "AutoDeplete.h"
  76. #ifndef LA_NOCOMPAT
  77. #include "la10compat.h"
  78. #endif
  79. #ifdef SWSPI
  80. #include "swspi.h"
  81. #endif //SWSPI
  82. #include "spi.h"
  83. #ifdef SWI2C
  84. #include "swi2c.h"
  85. #endif //SWI2C
  86. #ifdef FILAMENT_SENSOR
  87. #include "fsensor.h"
  88. #endif //FILAMENT_SENSOR
  89. #ifdef TMC2130
  90. #include "tmc2130.h"
  91. #endif //TMC2130
  92. #ifdef W25X20CL
  93. #include "w25x20cl.h"
  94. #include "optiboot_w25x20cl.h"
  95. #endif //W25X20CL
  96. #ifdef BLINKM
  97. #include "BlinkM.h"
  98. #include "Wire.h"
  99. #endif
  100. #ifdef ULTRALCD
  101. #include "ultralcd.h"
  102. #endif
  103. #if NUM_SERVOS > 0
  104. #include "Servo.h"
  105. #endif
  106. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  107. #include <SPI.h>
  108. #endif
  109. #include "mmu.h"
  110. #define VERSION_STRING "1.0.2"
  111. #include "ultralcd.h"
  112. #include "sound.h"
  113. #include "cmdqueue.h"
  114. #include "io_atmega2560.h"
  115. // Macros for bit masks
  116. #define BIT(b) (1<<(b))
  117. #define TEST(n,b) (((n)&BIT(b))!=0)
  118. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  119. //Macro for print fan speed
  120. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  121. //filament types
  122. #define FILAMENT_DEFAULT 0
  123. #define FILAMENT_FLEX 1
  124. #define FILAMENT_PVA 2
  125. #define FILAMENT_UNDEFINED 255
  126. //Stepper Movement Variables
  127. //===========================================================================
  128. //=============================imported variables============================
  129. //===========================================================================
  130. //===========================================================================
  131. //=============================public variables=============================
  132. //===========================================================================
  133. #ifdef SDSUPPORT
  134. CardReader card;
  135. #endif
  136. unsigned long PingTime = _millis();
  137. unsigned long NcTime;
  138. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  139. //used for PINDA temp calibration and pause print
  140. #define DEFAULT_RETRACTION 1
  141. #define DEFAULT_RETRACTION_MM 4 //MM
  142. float default_retraction = DEFAULT_RETRACTION;
  143. float homing_feedrate[] = HOMING_FEEDRATE;
  144. // Currently only the extruder axis may be switched to a relative mode.
  145. // Other axes are always absolute or relative based on the common relative_mode flag.
  146. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  147. int feedmultiply=100; //100->1 200->2
  148. int extrudemultiply=100; //100->1 200->2
  149. int extruder_multiply[EXTRUDERS] = {100
  150. #if EXTRUDERS > 1
  151. , 100
  152. #if EXTRUDERS > 2
  153. , 100
  154. #endif
  155. #endif
  156. };
  157. int bowden_length[4] = {385, 385, 385, 385};
  158. bool is_usb_printing = false;
  159. bool homing_flag = false;
  160. bool temp_cal_active = false;
  161. unsigned long kicktime = _millis()+100000;
  162. unsigned int usb_printing_counter;
  163. int8_t lcd_change_fil_state = 0;
  164. unsigned long pause_time = 0;
  165. unsigned long start_pause_print = _millis();
  166. unsigned long t_fan_rising_edge = _millis();
  167. LongTimer safetyTimer;
  168. static LongTimer crashDetTimer;
  169. //unsigned long load_filament_time;
  170. bool mesh_bed_leveling_flag = false;
  171. bool mesh_bed_run_from_menu = false;
  172. bool prusa_sd_card_upload = false;
  173. unsigned int status_number = 0;
  174. unsigned long total_filament_used;
  175. unsigned int heating_status;
  176. unsigned int heating_status_counter;
  177. bool loading_flag = false;
  178. char snmm_filaments_used = 0;
  179. bool fan_state[2];
  180. int fan_edge_counter[2];
  181. int fan_speed[2];
  182. char dir_names[3][9];
  183. bool sortAlpha = false;
  184. float extruder_multiplier[EXTRUDERS] = {1.0
  185. #if EXTRUDERS > 1
  186. , 1.0
  187. #if EXTRUDERS > 2
  188. , 1.0
  189. #endif
  190. #endif
  191. };
  192. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  193. //shortcuts for more readable code
  194. #define _x current_position[X_AXIS]
  195. #define _y current_position[Y_AXIS]
  196. #define _z current_position[Z_AXIS]
  197. #define _e current_position[E_AXIS]
  198. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  199. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  200. bool axis_known_position[3] = {false, false, false};
  201. // Extruder offset
  202. #if EXTRUDERS > 1
  203. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  204. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  205. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  206. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  207. #endif
  208. };
  209. #endif
  210. uint8_t active_extruder = 0;
  211. int fanSpeed=0;
  212. #ifdef FWRETRACT
  213. bool retracted[EXTRUDERS]={false
  214. #if EXTRUDERS > 1
  215. , false
  216. #if EXTRUDERS > 2
  217. , false
  218. #endif
  219. #endif
  220. };
  221. bool retracted_swap[EXTRUDERS]={false
  222. #if EXTRUDERS > 1
  223. , false
  224. #if EXTRUDERS > 2
  225. , false
  226. #endif
  227. #endif
  228. };
  229. float retract_length_swap = RETRACT_LENGTH_SWAP;
  230. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  231. #endif
  232. #ifdef PS_DEFAULT_OFF
  233. bool powersupply = false;
  234. #else
  235. bool powersupply = true;
  236. #endif
  237. bool cancel_heatup = false ;
  238. int8_t busy_state = NOT_BUSY;
  239. static long prev_busy_signal_ms = -1;
  240. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  241. const char errormagic[] PROGMEM = "Error:";
  242. const char echomagic[] PROGMEM = "echo:";
  243. bool no_response = false;
  244. uint8_t important_status;
  245. uint8_t saved_filament_type;
  246. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  247. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  248. // save/restore printing in case that mmu was not responding
  249. bool mmu_print_saved = false;
  250. // storing estimated time to end of print counted by slicer
  251. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  252. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  253. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  254. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  255. //===========================================================================
  256. //=============================Private Variables=============================
  257. //===========================================================================
  258. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  259. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  260. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  261. // For tracing an arc
  262. static float offset[3] = {0.0, 0.0, 0.0};
  263. // Current feedrate
  264. float feedrate = 1500.0;
  265. // Feedrate for the next move
  266. static float next_feedrate;
  267. // Original feedrate saved during homing moves
  268. static float saved_feedrate;
  269. // Determines Absolute or Relative Coordinates.
  270. // Also there is bool axis_relative_modes[] per axis flag.
  271. static bool relative_mode = false;
  272. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  273. //static float tt = 0;
  274. //static float bt = 0;
  275. //Inactivity shutdown variables
  276. static unsigned long previous_millis_cmd = 0;
  277. unsigned long max_inactive_time = 0;
  278. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  279. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  280. unsigned long starttime=0;
  281. unsigned long stoptime=0;
  282. unsigned long _usb_timer = 0;
  283. bool Stopped=false;
  284. #if NUM_SERVOS > 0
  285. Servo servos[NUM_SERVOS];
  286. #endif
  287. bool target_direction;
  288. //Insert variables if CHDK is defined
  289. #ifdef CHDK
  290. unsigned long chdkHigh = 0;
  291. boolean chdkActive = false;
  292. #endif
  293. //! @name RAM save/restore printing
  294. //! @{
  295. bool saved_printing = false; //!< Print is paused and saved in RAM
  296. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  297. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  298. static float saved_pos[4] = { 0, 0, 0, 0 };
  299. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  300. static int saved_feedmultiply2 = 0;
  301. static uint8_t saved_active_extruder = 0;
  302. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  303. static bool saved_extruder_relative_mode = false;
  304. static int saved_fanSpeed = 0; //!< Print fan speed
  305. //! @}
  306. static int saved_feedmultiply_mm = 100;
  307. //===========================================================================
  308. //=============================Routines======================================
  309. //===========================================================================
  310. static void get_arc_coordinates();
  311. static bool setTargetedHotend(int code, uint8_t &extruder);
  312. static void print_time_remaining_init();
  313. static void wait_for_heater(long codenum, uint8_t extruder);
  314. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  315. static void temp_compensation_start();
  316. static void temp_compensation_apply();
  317. uint16_t gcode_in_progress = 0;
  318. uint16_t mcode_in_progress = 0;
  319. void serial_echopair_P(const char *s_P, float v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. void serial_echopair_P(const char *s_P, double v)
  322. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  323. void serial_echopair_P(const char *s_P, unsigned long v)
  324. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  325. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  326. {
  327. #if 0
  328. char ch=pgm_read_byte(str);
  329. while(ch)
  330. {
  331. MYSERIAL.write(ch);
  332. ch=pgm_read_byte(++str);
  333. }
  334. #else
  335. // hmm, same size as the above version, the compiler did a good job optimizing the above
  336. while( uint8_t ch = pgm_read_byte(str) ){
  337. MYSERIAL.write((char)ch);
  338. ++str;
  339. }
  340. #endif
  341. }
  342. #ifdef SDSUPPORT
  343. #include "SdFatUtil.h"
  344. int freeMemory() { return SdFatUtil::FreeRam(); }
  345. #else
  346. extern "C" {
  347. extern unsigned int __bss_end;
  348. extern unsigned int __heap_start;
  349. extern void *__brkval;
  350. int freeMemory() {
  351. int free_memory;
  352. if ((int)__brkval == 0)
  353. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  354. else
  355. free_memory = ((int)&free_memory) - ((int)__brkval);
  356. return free_memory;
  357. }
  358. }
  359. #endif //!SDSUPPORT
  360. void setup_killpin()
  361. {
  362. #if defined(KILL_PIN) && KILL_PIN > -1
  363. SET_INPUT(KILL_PIN);
  364. WRITE(KILL_PIN,HIGH);
  365. #endif
  366. }
  367. // Set home pin
  368. void setup_homepin(void)
  369. {
  370. #if defined(HOME_PIN) && HOME_PIN > -1
  371. SET_INPUT(HOME_PIN);
  372. WRITE(HOME_PIN,HIGH);
  373. #endif
  374. }
  375. void setup_photpin()
  376. {
  377. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  378. SET_OUTPUT(PHOTOGRAPH_PIN);
  379. WRITE(PHOTOGRAPH_PIN, LOW);
  380. #endif
  381. }
  382. void setup_powerhold()
  383. {
  384. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  385. SET_OUTPUT(SUICIDE_PIN);
  386. WRITE(SUICIDE_PIN, HIGH);
  387. #endif
  388. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  389. SET_OUTPUT(PS_ON_PIN);
  390. #if defined(PS_DEFAULT_OFF)
  391. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  392. #else
  393. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  394. #endif
  395. #endif
  396. }
  397. void suicide()
  398. {
  399. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  400. SET_OUTPUT(SUICIDE_PIN);
  401. WRITE(SUICIDE_PIN, LOW);
  402. #endif
  403. }
  404. void servo_init()
  405. {
  406. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  407. servos[0].attach(SERVO0_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  410. servos[1].attach(SERVO1_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  413. servos[2].attach(SERVO2_PIN);
  414. #endif
  415. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  416. servos[3].attach(SERVO3_PIN);
  417. #endif
  418. #if (NUM_SERVOS >= 5)
  419. #error "TODO: enter initalisation code for more servos"
  420. #endif
  421. }
  422. bool fans_check_enabled = true;
  423. #ifdef TMC2130
  424. void crashdet_stop_and_save_print()
  425. {
  426. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  427. }
  428. void crashdet_restore_print_and_continue()
  429. {
  430. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  431. // babystep_apply();
  432. }
  433. void crashdet_stop_and_save_print2()
  434. {
  435. cli();
  436. planner_abort_hard(); //abort printing
  437. cmdqueue_reset(); //empty cmdqueue
  438. card.sdprinting = false;
  439. card.closefile();
  440. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  441. st_reset_timer();
  442. sei();
  443. }
  444. void crashdet_detected(uint8_t mask)
  445. {
  446. st_synchronize();
  447. static uint8_t crashDet_counter = 0;
  448. bool automatic_recovery_after_crash = true;
  449. if (crashDet_counter++ == 0) {
  450. crashDetTimer.start();
  451. }
  452. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  453. crashDetTimer.stop();
  454. crashDet_counter = 0;
  455. }
  456. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  457. automatic_recovery_after_crash = false;
  458. crashDetTimer.stop();
  459. crashDet_counter = 0;
  460. }
  461. else {
  462. crashDetTimer.start();
  463. }
  464. lcd_update_enable(true);
  465. lcd_clear();
  466. lcd_update(2);
  467. if (mask & X_AXIS_MASK)
  468. {
  469. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  470. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  471. }
  472. if (mask & Y_AXIS_MASK)
  473. {
  474. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  475. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  476. }
  477. lcd_update_enable(true);
  478. lcd_update(2);
  479. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  480. gcode_G28(true, true, false); //home X and Y
  481. st_synchronize();
  482. if (automatic_recovery_after_crash) {
  483. enquecommand_P(PSTR("CRASH_RECOVER"));
  484. }else{
  485. setTargetHotend(0, active_extruder);
  486. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  487. lcd_update_enable(true);
  488. if (yesno)
  489. {
  490. enquecommand_P(PSTR("CRASH_RECOVER"));
  491. }
  492. else
  493. {
  494. enquecommand_P(PSTR("CRASH_CANCEL"));
  495. }
  496. }
  497. }
  498. void crashdet_recover()
  499. {
  500. crashdet_restore_print_and_continue();
  501. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  502. }
  503. void crashdet_cancel()
  504. {
  505. saved_printing = false;
  506. tmc2130_sg_stop_on_crash = true;
  507. if (saved_printing_type == PRINTING_TYPE_SD) {
  508. lcd_print_stop();
  509. }else if(saved_printing_type == PRINTING_TYPE_USB){
  510. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  511. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  512. }
  513. }
  514. #endif //TMC2130
  515. void failstats_reset_print()
  516. {
  517. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  519. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  520. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  521. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  522. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  523. }
  524. #ifdef MESH_BED_LEVELING
  525. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  526. #endif
  527. // Factory reset function
  528. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  529. // Level input parameter sets depth of reset
  530. int er_progress = 0;
  531. static void factory_reset(char level)
  532. {
  533. lcd_clear();
  534. switch (level) {
  535. // Level 0: Language reset
  536. case 0:
  537. Sound_MakeCustom(100,0,false);
  538. lang_reset();
  539. break;
  540. //Level 1: Reset statistics
  541. case 1:
  542. Sound_MakeCustom(100,0,false);
  543. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  544. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  548. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  553. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  554. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  555. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  556. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  557. lcd_menu_statistics();
  558. break;
  559. // Level 2: Prepare for shipping
  560. case 2:
  561. //lcd_puts_P(PSTR("Factory RESET"));
  562. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  563. // Force language selection at the next boot up.
  564. lang_reset();
  565. // Force the "Follow calibration flow" message at the next boot up.
  566. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  567. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  568. farm_no = 0;
  569. farm_mode = false;
  570. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  571. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  572. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  573. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  577. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  578. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  579. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  580. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  582. #ifdef FILAMENT_SENSOR
  583. fsensor_enable();
  584. fsensor_autoload_set(true);
  585. #endif //FILAMENT_SENSOR
  586. Sound_MakeCustom(100,0,false);
  587. //_delay_ms(2000);
  588. break;
  589. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  590. case 3:
  591. lcd_puts_P(PSTR("Factory RESET"));
  592. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  593. Sound_MakeCustom(100,0,false);
  594. er_progress = 0;
  595. lcd_puts_at_P(3, 3, PSTR(" "));
  596. lcd_set_cursor(3, 3);
  597. lcd_print(er_progress);
  598. // Erase EEPROM
  599. for (int i = 0; i < 4096; i++) {
  600. eeprom_update_byte((uint8_t*)i, 0xFF);
  601. if (i % 41 == 0) {
  602. er_progress++;
  603. lcd_puts_at_P(3, 3, PSTR(" "));
  604. lcd_set_cursor(3, 3);
  605. lcd_print(er_progress);
  606. lcd_puts_P(PSTR("%"));
  607. }
  608. }
  609. break;
  610. case 4:
  611. bowden_menu();
  612. break;
  613. default:
  614. break;
  615. }
  616. }
  617. extern "C" {
  618. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  619. }
  620. int uart_putchar(char c, FILE *)
  621. {
  622. MYSERIAL.write(c);
  623. return 0;
  624. }
  625. void lcd_splash()
  626. {
  627. lcd_clear(); // clears display and homes screen
  628. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  629. }
  630. void factory_reset()
  631. {
  632. KEEPALIVE_STATE(PAUSED_FOR_USER);
  633. if (!READ(BTN_ENC))
  634. {
  635. _delay_ms(1000);
  636. if (!READ(BTN_ENC))
  637. {
  638. lcd_clear();
  639. lcd_puts_P(PSTR("Factory RESET"));
  640. SET_OUTPUT(BEEPER);
  641. if(eSoundMode!=e_SOUND_MODE_SILENT)
  642. WRITE(BEEPER, HIGH);
  643. while (!READ(BTN_ENC));
  644. WRITE(BEEPER, LOW);
  645. _delay_ms(2000);
  646. char level = reset_menu();
  647. factory_reset(level);
  648. switch (level) {
  649. case 0: _delay_ms(0); break;
  650. case 1: _delay_ms(0); break;
  651. case 2: _delay_ms(0); break;
  652. case 3: _delay_ms(0); break;
  653. }
  654. }
  655. }
  656. KEEPALIVE_STATE(IN_HANDLER);
  657. }
  658. void show_fw_version_warnings() {
  659. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  660. switch (FW_DEV_VERSION) {
  661. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  662. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  663. case(FW_VERSION_DEVEL):
  664. case(FW_VERSION_DEBUG):
  665. lcd_update_enable(false);
  666. lcd_clear();
  667. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  668. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  669. #else
  670. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  671. #endif
  672. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  673. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  674. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  675. lcd_wait_for_click();
  676. break;
  677. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  678. }
  679. lcd_update_enable(true);
  680. }
  681. //! @brief try to check if firmware is on right type of printer
  682. static void check_if_fw_is_on_right_printer(){
  683. #ifdef FILAMENT_SENSOR
  684. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  685. #ifdef IR_SENSOR
  686. swi2c_init();
  687. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  688. if (pat9125_detected){
  689. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  690. #endif //IR_SENSOR
  691. #ifdef PAT9125
  692. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  693. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  694. if (ir_detected){
  695. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  696. #endif //PAT9125
  697. }
  698. #endif //FILAMENT_SENSOR
  699. }
  700. uint8_t check_printer_version()
  701. {
  702. uint8_t version_changed = 0;
  703. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  704. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  705. if (printer_type != PRINTER_TYPE) {
  706. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  707. else version_changed |= 0b10;
  708. }
  709. if (motherboard != MOTHERBOARD) {
  710. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  711. else version_changed |= 0b01;
  712. }
  713. return version_changed;
  714. }
  715. #ifdef BOOTAPP
  716. #include "bootapp.h" //bootloader support
  717. #endif //BOOTAPP
  718. #if (LANG_MODE != 0) //secondary language support
  719. #ifdef W25X20CL
  720. // language update from external flash
  721. #define LANGBOOT_BLOCKSIZE 0x1000u
  722. #define LANGBOOT_RAMBUFFER 0x0800
  723. void update_sec_lang_from_external_flash()
  724. {
  725. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  726. {
  727. uint8_t lang = boot_reserved >> 4;
  728. uint8_t state = boot_reserved & 0xf;
  729. lang_table_header_t header;
  730. uint32_t src_addr;
  731. if (lang_get_header(lang, &header, &src_addr))
  732. {
  733. lcd_puts_at_P(1,3,PSTR("Language update."));
  734. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  735. _delay(100);
  736. boot_reserved = (state + 1) | (lang << 4);
  737. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  738. {
  739. cli();
  740. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  741. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  742. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  743. if (state == 0)
  744. {
  745. //TODO - check header integrity
  746. }
  747. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  748. }
  749. else
  750. {
  751. //TODO - check sec lang data integrity
  752. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  753. }
  754. }
  755. }
  756. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  757. }
  758. #ifdef DEBUG_W25X20CL
  759. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  760. {
  761. lang_table_header_t header;
  762. uint8_t count = 0;
  763. uint32_t addr = 0x00000;
  764. while (1)
  765. {
  766. printf_P(_n("LANGTABLE%d:"), count);
  767. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  768. if (header.magic != LANG_MAGIC)
  769. {
  770. printf_P(_n("NG!\n"));
  771. break;
  772. }
  773. printf_P(_n("OK\n"));
  774. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  775. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  776. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  777. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  778. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  779. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  780. addr += header.size;
  781. codes[count] = header.code;
  782. count ++;
  783. }
  784. return count;
  785. }
  786. void list_sec_lang_from_external_flash()
  787. {
  788. uint16_t codes[8];
  789. uint8_t count = lang_xflash_enum_codes(codes);
  790. printf_P(_n("XFlash lang count = %hhd\n"), count);
  791. }
  792. #endif //DEBUG_W25X20CL
  793. #endif //W25X20CL
  794. #endif //(LANG_MODE != 0)
  795. static void w25x20cl_err_msg()
  796. {
  797. lcd_clear();
  798. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  799. }
  800. // "Setup" function is called by the Arduino framework on startup.
  801. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  802. // are initialized by the main() routine provided by the Arduino framework.
  803. void setup()
  804. {
  805. mmu_init();
  806. ultralcd_init();
  807. spi_init();
  808. lcd_splash();
  809. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  810. #ifdef W25X20CL
  811. bool w25x20cl_success = w25x20cl_init();
  812. if (w25x20cl_success)
  813. {
  814. optiboot_w25x20cl_enter();
  815. #if (LANG_MODE != 0) //secondary language support
  816. update_sec_lang_from_external_flash();
  817. #endif //(LANG_MODE != 0)
  818. }
  819. else
  820. {
  821. w25x20cl_err_msg();
  822. }
  823. #else
  824. const bool w25x20cl_success = true;
  825. #endif //W25X20CL
  826. setup_killpin();
  827. setup_powerhold();
  828. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  829. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  830. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  831. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  832. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  833. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  834. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  835. if (farm_mode)
  836. {
  837. no_response = true; //we need confirmation by recieving PRUSA thx
  838. important_status = 8;
  839. prusa_statistics(8);
  840. selectedSerialPort = 1;
  841. #ifdef TMC2130
  842. //increased extruder current (PFW363)
  843. tmc2130_current_h[E_AXIS] = 36;
  844. tmc2130_current_r[E_AXIS] = 36;
  845. #endif //TMC2130
  846. #ifdef FILAMENT_SENSOR
  847. //disabled filament autoload (PFW360)
  848. fsensor_autoload_set(false);
  849. #endif //FILAMENT_SENSOR
  850. // ~ FanCheck -> on
  851. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  852. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  853. }
  854. MYSERIAL.begin(BAUDRATE);
  855. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  856. #ifndef W25X20CL
  857. SERIAL_PROTOCOLLNPGM("start");
  858. #endif //W25X20CL
  859. stdout = uartout;
  860. SERIAL_ECHO_START;
  861. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  862. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  863. #ifdef DEBUG_SEC_LANG
  864. lang_table_header_t header;
  865. uint32_t src_addr = 0x00000;
  866. if (lang_get_header(1, &header, &src_addr))
  867. {
  868. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  869. #define LT_PRINT_TEST 2
  870. // flash usage
  871. // total p.test
  872. //0 252718 t+c text code
  873. //1 253142 424 170 254
  874. //2 253040 322 164 158
  875. //3 253248 530 135 395
  876. #if (LT_PRINT_TEST==1) //not optimized printf
  877. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  878. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  879. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  880. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  881. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  882. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  883. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  884. #elif (LT_PRINT_TEST==2) //optimized printf
  885. printf_P(
  886. _n(
  887. " _src_addr = 0x%08lx\n"
  888. " _lt_magic = 0x%08lx %S\n"
  889. " _lt_size = 0x%04x (%d)\n"
  890. " _lt_count = 0x%04x (%d)\n"
  891. " _lt_chsum = 0x%04x\n"
  892. " _lt_code = 0x%04x (%c%c)\n"
  893. " _lt_resv1 = 0x%08lx\n"
  894. ),
  895. src_addr,
  896. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  897. header.size, header.size,
  898. header.count, header.count,
  899. header.checksum,
  900. header.code, header.code >> 8, header.code & 0xff,
  901. header.signature
  902. );
  903. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  904. MYSERIAL.print(" _src_addr = 0x");
  905. MYSERIAL.println(src_addr, 16);
  906. MYSERIAL.print(" _lt_magic = 0x");
  907. MYSERIAL.print(header.magic, 16);
  908. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  909. MYSERIAL.print(" _lt_size = 0x");
  910. MYSERIAL.print(header.size, 16);
  911. MYSERIAL.print(" (");
  912. MYSERIAL.print(header.size, 10);
  913. MYSERIAL.println(")");
  914. MYSERIAL.print(" _lt_count = 0x");
  915. MYSERIAL.print(header.count, 16);
  916. MYSERIAL.print(" (");
  917. MYSERIAL.print(header.count, 10);
  918. MYSERIAL.println(")");
  919. MYSERIAL.print(" _lt_chsum = 0x");
  920. MYSERIAL.println(header.checksum, 16);
  921. MYSERIAL.print(" _lt_code = 0x");
  922. MYSERIAL.print(header.code, 16);
  923. MYSERIAL.print(" (");
  924. MYSERIAL.print((char)(header.code >> 8), 0);
  925. MYSERIAL.print((char)(header.code & 0xff), 0);
  926. MYSERIAL.println(")");
  927. MYSERIAL.print(" _lt_resv1 = 0x");
  928. MYSERIAL.println(header.signature, 16);
  929. #endif //(LT_PRINT_TEST==)
  930. #undef LT_PRINT_TEST
  931. #if 0
  932. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  933. for (uint16_t i = 0; i < 1024; i++)
  934. {
  935. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  936. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  937. if ((i % 16) == 15) putchar('\n');
  938. }
  939. #endif
  940. uint16_t sum = 0;
  941. for (uint16_t i = 0; i < header.size; i++)
  942. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  943. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  944. sum -= header.checksum; //subtract checksum
  945. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  946. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  947. if (sum == header.checksum)
  948. printf_P(_n("Checksum OK\n"), sum);
  949. else
  950. printf_P(_n("Checksum NG\n"), sum);
  951. }
  952. else
  953. printf_P(_n("lang_get_header failed!\n"));
  954. #if 0
  955. for (uint16_t i = 0; i < 1024*10; i++)
  956. {
  957. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  958. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  959. if ((i % 16) == 15) putchar('\n');
  960. }
  961. #endif
  962. #if 0
  963. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  964. for (int i = 0; i < 4096; ++i) {
  965. int b = eeprom_read_byte((unsigned char*)i);
  966. if (b != 255) {
  967. SERIAL_ECHO(i);
  968. SERIAL_ECHO(":");
  969. SERIAL_ECHO(b);
  970. SERIAL_ECHOLN("");
  971. }
  972. }
  973. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  974. #endif
  975. #endif //DEBUG_SEC_LANG
  976. // Check startup - does nothing if bootloader sets MCUSR to 0
  977. byte mcu = MCUSR;
  978. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  979. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  980. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  981. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  982. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  983. if (mcu & 1) puts_P(MSG_POWERUP);
  984. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  985. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  986. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  987. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  988. MCUSR = 0;
  989. //SERIAL_ECHORPGM(MSG_MARLIN);
  990. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  991. #ifdef STRING_VERSION_CONFIG_H
  992. #ifdef STRING_CONFIG_H_AUTHOR
  993. SERIAL_ECHO_START;
  994. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  995. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  996. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  997. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  998. SERIAL_ECHOPGM("Compiled: ");
  999. SERIAL_ECHOLNPGM(__DATE__);
  1000. #endif
  1001. #endif
  1002. SERIAL_ECHO_START;
  1003. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1004. SERIAL_ECHO(freeMemory());
  1005. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1006. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1007. //lcd_update_enable(false); // why do we need this?? - andre
  1008. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1009. bool previous_settings_retrieved = false;
  1010. uint8_t hw_changed = check_printer_version();
  1011. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1012. previous_settings_retrieved = Config_RetrieveSettings();
  1013. }
  1014. else { //printer version was changed so use default settings
  1015. Config_ResetDefault();
  1016. }
  1017. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1018. tp_init(); // Initialize temperature loop
  1019. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1020. else
  1021. {
  1022. w25x20cl_err_msg();
  1023. printf_P(_n("W25X20CL not responding.\n"));
  1024. }
  1025. plan_init(); // Initialize planner;
  1026. factory_reset();
  1027. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1028. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1029. {
  1030. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1031. // where all the EEPROM entries are set to 0x0ff.
  1032. // Once a firmware boots up, it forces at least a language selection, which changes
  1033. // EEPROM_LANG to number lower than 0x0ff.
  1034. // 1) Set a high power mode.
  1035. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1036. #ifdef TMC2130
  1037. tmc2130_mode = TMC2130_MODE_NORMAL;
  1038. #endif //TMC2130
  1039. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1040. }
  1041. lcd_encoder_diff=0;
  1042. #ifdef TMC2130
  1043. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1044. if (silentMode == 0xff) silentMode = 0;
  1045. tmc2130_mode = TMC2130_MODE_NORMAL;
  1046. if (lcd_crash_detect_enabled() && !farm_mode)
  1047. {
  1048. lcd_crash_detect_enable();
  1049. puts_P(_N("CrashDetect ENABLED!"));
  1050. }
  1051. else
  1052. {
  1053. lcd_crash_detect_disable();
  1054. puts_P(_N("CrashDetect DISABLED"));
  1055. }
  1056. #ifdef TMC2130_LINEARITY_CORRECTION
  1057. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1058. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1059. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1060. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1061. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1062. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1063. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1064. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1065. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1066. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1067. #endif //TMC2130_LINEARITY_CORRECTION
  1068. #ifdef TMC2130_VARIABLE_RESOLUTION
  1069. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1070. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1071. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1072. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1073. #else //TMC2130_VARIABLE_RESOLUTION
  1074. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1075. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1076. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1077. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1078. #endif //TMC2130_VARIABLE_RESOLUTION
  1079. #endif //TMC2130
  1080. st_init(); // Initialize stepper, this enables interrupts!
  1081. #ifdef UVLO_SUPPORT
  1082. setup_uvlo_interrupt();
  1083. #endif //UVLO_SUPPORT
  1084. #ifdef TMC2130
  1085. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1086. update_mode_profile();
  1087. tmc2130_init();
  1088. #endif //TMC2130
  1089. #ifdef PSU_Delta
  1090. init_force_z(); // ! important for correct Z-axis initialization
  1091. #endif // PSU_Delta
  1092. setup_photpin();
  1093. servo_init();
  1094. // Reset the machine correction matrix.
  1095. // It does not make sense to load the correction matrix until the machine is homed.
  1096. world2machine_reset();
  1097. #ifdef FILAMENT_SENSOR
  1098. fsensor_init();
  1099. #endif //FILAMENT_SENSOR
  1100. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1101. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1102. #endif
  1103. setup_homepin();
  1104. #ifdef TMC2130
  1105. if (1) {
  1106. // try to run to zero phase before powering the Z motor.
  1107. // Move in negative direction
  1108. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1109. // Round the current micro-micro steps to micro steps.
  1110. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1111. // Until the phase counter is reset to zero.
  1112. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1113. _delay(2);
  1114. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1115. _delay(2);
  1116. }
  1117. }
  1118. #endif //TMC2130
  1119. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1120. enable_z();
  1121. #endif
  1122. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1123. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1124. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1125. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1126. if (farm_mode)
  1127. {
  1128. prusa_statistics(8);
  1129. }
  1130. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1131. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1132. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1133. // but this times out if a blocking dialog is shown in setup().
  1134. card.initsd();
  1135. #ifdef DEBUG_SD_SPEED_TEST
  1136. if (card.cardOK)
  1137. {
  1138. uint8_t* buff = (uint8_t*)block_buffer;
  1139. uint32_t block = 0;
  1140. uint32_t sumr = 0;
  1141. uint32_t sumw = 0;
  1142. for (int i = 0; i < 1024; i++)
  1143. {
  1144. uint32_t u = _micros();
  1145. bool res = card.card.readBlock(i, buff);
  1146. u = _micros() - u;
  1147. if (res)
  1148. {
  1149. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1150. sumr += u;
  1151. u = _micros();
  1152. res = card.card.writeBlock(i, buff);
  1153. u = _micros() - u;
  1154. if (res)
  1155. {
  1156. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1157. sumw += u;
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("writeBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. else
  1166. {
  1167. printf_P(PSTR("readBlock %4d error\n"), i);
  1168. break;
  1169. }
  1170. }
  1171. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1172. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1173. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1174. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1175. }
  1176. else
  1177. printf_P(PSTR("Card NG!\n"));
  1178. #endif //DEBUG_SD_SPEED_TEST
  1179. eeprom_init();
  1180. #ifdef SNMM
  1181. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1182. int _z = BOWDEN_LENGTH;
  1183. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1184. }
  1185. #endif
  1186. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1187. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1188. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1189. #if (LANG_MODE != 0) //secondary language support
  1190. #ifdef DEBUG_W25X20CL
  1191. W25X20CL_SPI_ENTER();
  1192. uint8_t uid[8]; // 64bit unique id
  1193. w25x20cl_rd_uid(uid);
  1194. puts_P(_n("W25X20CL UID="));
  1195. for (uint8_t i = 0; i < 8; i ++)
  1196. printf_P(PSTR("%02hhx"), uid[i]);
  1197. putchar('\n');
  1198. list_sec_lang_from_external_flash();
  1199. #endif //DEBUG_W25X20CL
  1200. // lang_reset();
  1201. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1202. lcd_language();
  1203. #ifdef DEBUG_SEC_LANG
  1204. uint16_t sec_lang_code = lang_get_code(1);
  1205. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1206. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1207. lang_print_sec_lang(uartout);
  1208. #endif //DEBUG_SEC_LANG
  1209. #endif //(LANG_MODE != 0)
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1211. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1212. temp_cal_active = false;
  1213. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1214. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1215. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1216. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1217. int16_t z_shift = 0;
  1218. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1219. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1220. temp_cal_active = false;
  1221. }
  1222. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1223. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1224. }
  1225. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1226. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1227. }
  1228. //mbl_mode_init();
  1229. mbl_settings_init();
  1230. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1231. if (SilentModeMenu_MMU == 255) {
  1232. SilentModeMenu_MMU = 1;
  1233. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1234. }
  1235. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1236. setup_fan_interrupt();
  1237. #endif //DEBUG_DISABLE_FANCHECK
  1238. #ifdef PAT9125
  1239. fsensor_setup_interrupt();
  1240. #endif //PAT9125
  1241. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1242. #ifndef DEBUG_DISABLE_STARTMSGS
  1243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1244. if (!farm_mode) {
  1245. check_if_fw_is_on_right_printer();
  1246. show_fw_version_warnings();
  1247. }
  1248. switch (hw_changed) {
  1249. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1250. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1251. case(0b01):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1254. break;
  1255. case(0b10):
  1256. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1257. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1258. break;
  1259. case(0b11):
  1260. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1261. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1262. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1263. break;
  1264. default: break; //no change, show no message
  1265. }
  1266. if (!previous_settings_retrieved) {
  1267. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1268. Config_StoreSettings();
  1269. }
  1270. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1271. lcd_wizard(WizState::Run);
  1272. }
  1273. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1274. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1275. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1276. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1277. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1278. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1279. // Show the message.
  1280. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1281. }
  1282. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1283. // Show the message.
  1284. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1285. lcd_update_enable(true);
  1286. }
  1287. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1288. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1289. lcd_update_enable(true);
  1290. }
  1291. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1292. // Show the message.
  1293. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1294. }
  1295. }
  1296. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1297. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1298. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1299. update_current_firmware_version_to_eeprom();
  1300. lcd_selftest();
  1301. }
  1302. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1303. KEEPALIVE_STATE(IN_PROCESS);
  1304. #endif //DEBUG_DISABLE_STARTMSGS
  1305. lcd_update_enable(true);
  1306. lcd_clear();
  1307. lcd_update(2);
  1308. // Store the currently running firmware into an eeprom,
  1309. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1310. update_current_firmware_version_to_eeprom();
  1311. #ifdef TMC2130
  1312. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1313. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1314. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1315. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1316. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1317. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1318. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1319. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1320. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1321. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1322. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1323. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1324. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1325. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1326. #endif //TMC2130
  1327. #ifdef UVLO_SUPPORT
  1328. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1329. /*
  1330. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1331. else {
  1332. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1333. lcd_update_enable(true);
  1334. lcd_update(2);
  1335. lcd_setstatuspgm(_T(WELCOME_MSG));
  1336. }
  1337. */
  1338. manage_heater(); // Update temperatures
  1339. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1340. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1341. #endif
  1342. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1343. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1344. puts_P(_N("Automatic recovery!"));
  1345. #endif
  1346. recover_print(1);
  1347. }
  1348. else{
  1349. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1350. puts_P(_N("Normal recovery!"));
  1351. #endif
  1352. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1353. else {
  1354. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1355. lcd_update_enable(true);
  1356. lcd_update(2);
  1357. lcd_setstatuspgm(_T(WELCOME_MSG));
  1358. }
  1359. }
  1360. }
  1361. #endif //UVLO_SUPPORT
  1362. fCheckModeInit();
  1363. fSetMmuMode(mmu_enabled);
  1364. KEEPALIVE_STATE(NOT_BUSY);
  1365. #ifdef WATCHDOG
  1366. wdt_enable(WDTO_4S);
  1367. #endif //WATCHDOG
  1368. }
  1369. void trace();
  1370. #define CHUNK_SIZE 64 // bytes
  1371. #define SAFETY_MARGIN 1
  1372. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1373. int chunkHead = 0;
  1374. void serial_read_stream() {
  1375. setAllTargetHotends(0);
  1376. setTargetBed(0);
  1377. lcd_clear();
  1378. lcd_puts_P(PSTR(" Upload in progress"));
  1379. // first wait for how many bytes we will receive
  1380. uint32_t bytesToReceive;
  1381. // receive the four bytes
  1382. char bytesToReceiveBuffer[4];
  1383. for (int i=0; i<4; i++) {
  1384. int data;
  1385. while ((data = MYSERIAL.read()) == -1) {};
  1386. bytesToReceiveBuffer[i] = data;
  1387. }
  1388. // make it a uint32
  1389. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1390. // we're ready, notify the sender
  1391. MYSERIAL.write('+');
  1392. // lock in the routine
  1393. uint32_t receivedBytes = 0;
  1394. while (prusa_sd_card_upload) {
  1395. int i;
  1396. for (i=0; i<CHUNK_SIZE; i++) {
  1397. int data;
  1398. // check if we're not done
  1399. if (receivedBytes == bytesToReceive) {
  1400. break;
  1401. }
  1402. // read the next byte
  1403. while ((data = MYSERIAL.read()) == -1) {};
  1404. receivedBytes++;
  1405. // save it to the chunk
  1406. chunk[i] = data;
  1407. }
  1408. // write the chunk to SD
  1409. card.write_command_no_newline(&chunk[0]);
  1410. // notify the sender we're ready for more data
  1411. MYSERIAL.write('+');
  1412. // for safety
  1413. manage_heater();
  1414. // check if we're done
  1415. if(receivedBytes == bytesToReceive) {
  1416. trace(); // beep
  1417. card.closefile();
  1418. prusa_sd_card_upload = false;
  1419. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1420. }
  1421. }
  1422. }
  1423. /**
  1424. * Output a "busy" message at regular intervals
  1425. * while the machine is not accepting commands.
  1426. */
  1427. void host_keepalive() {
  1428. #ifndef HOST_KEEPALIVE_FEATURE
  1429. return;
  1430. #endif //HOST_KEEPALIVE_FEATURE
  1431. if (farm_mode) return;
  1432. long ms = _millis();
  1433. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1434. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1435. switch (busy_state) {
  1436. case IN_HANDLER:
  1437. case IN_PROCESS:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: processing");
  1440. break;
  1441. case PAUSED_FOR_USER:
  1442. SERIAL_ECHO_START;
  1443. SERIAL_ECHOLNPGM("busy: paused for user");
  1444. break;
  1445. case PAUSED_FOR_INPUT:
  1446. SERIAL_ECHO_START;
  1447. SERIAL_ECHOLNPGM("busy: paused for input");
  1448. break;
  1449. default:
  1450. break;
  1451. }
  1452. }
  1453. prev_busy_signal_ms = ms;
  1454. }
  1455. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1456. // Before loop(), the setup() function is called by the main() routine.
  1457. void loop()
  1458. {
  1459. KEEPALIVE_STATE(NOT_BUSY);
  1460. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1461. {
  1462. is_usb_printing = true;
  1463. usb_printing_counter--;
  1464. _usb_timer = _millis();
  1465. }
  1466. if (usb_printing_counter == 0)
  1467. {
  1468. is_usb_printing = false;
  1469. }
  1470. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1471. {
  1472. is_usb_printing = true;
  1473. }
  1474. #ifdef FANCHECK
  1475. if (fan_check_error && isPrintPaused)
  1476. {
  1477. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1478. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1479. }
  1480. #endif
  1481. if (prusa_sd_card_upload)
  1482. {
  1483. //we read byte-by byte
  1484. serial_read_stream();
  1485. }
  1486. else
  1487. {
  1488. get_command();
  1489. #ifdef SDSUPPORT
  1490. card.checkautostart(false);
  1491. #endif
  1492. if(buflen)
  1493. {
  1494. cmdbuffer_front_already_processed = false;
  1495. #ifdef SDSUPPORT
  1496. if(card.saving)
  1497. {
  1498. // Saving a G-code file onto an SD-card is in progress.
  1499. // Saving starts with M28, saving until M29 is seen.
  1500. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1501. card.write_command(CMDBUFFER_CURRENT_STRING);
  1502. if(card.logging)
  1503. process_commands();
  1504. else
  1505. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1506. } else {
  1507. card.closefile();
  1508. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1509. }
  1510. } else {
  1511. process_commands();
  1512. }
  1513. #else
  1514. process_commands();
  1515. #endif //SDSUPPORT
  1516. if (! cmdbuffer_front_already_processed && buflen)
  1517. {
  1518. // ptr points to the start of the block currently being processed.
  1519. // The first character in the block is the block type.
  1520. char *ptr = cmdbuffer + bufindr;
  1521. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1522. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1523. union {
  1524. struct {
  1525. char lo;
  1526. char hi;
  1527. } lohi;
  1528. uint16_t value;
  1529. } sdlen;
  1530. sdlen.value = 0;
  1531. {
  1532. // This block locks the interrupts globally for 3.25 us,
  1533. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1534. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1535. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1536. cli();
  1537. // Reset the command to something, which will be ignored by the power panic routine,
  1538. // so this buffer length will not be counted twice.
  1539. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1540. // Extract the current buffer length.
  1541. sdlen.lohi.lo = *ptr ++;
  1542. sdlen.lohi.hi = *ptr;
  1543. // and pass it to the planner queue.
  1544. planner_add_sd_length(sdlen.value);
  1545. sei();
  1546. }
  1547. }
  1548. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1549. cli();
  1550. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1551. // and one for each command to previous block in the planner queue.
  1552. planner_add_sd_length(1);
  1553. sei();
  1554. }
  1555. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1556. // this block's SD card length will not be counted twice as its command type has been replaced
  1557. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1558. cmdqueue_pop_front();
  1559. }
  1560. host_keepalive();
  1561. }
  1562. }
  1563. //check heater every n milliseconds
  1564. manage_heater();
  1565. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1566. checkHitEndstops();
  1567. lcd_update(0);
  1568. #ifdef TMC2130
  1569. tmc2130_check_overtemp();
  1570. if (tmc2130_sg_crash)
  1571. {
  1572. uint8_t crash = tmc2130_sg_crash;
  1573. tmc2130_sg_crash = 0;
  1574. // crashdet_stop_and_save_print();
  1575. switch (crash)
  1576. {
  1577. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1578. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1579. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1580. }
  1581. }
  1582. #endif //TMC2130
  1583. mmu_loop();
  1584. }
  1585. #define DEFINE_PGM_READ_ANY(type, reader) \
  1586. static inline type pgm_read_any(const type *p) \
  1587. { return pgm_read_##reader##_near(p); }
  1588. DEFINE_PGM_READ_ANY(float, float);
  1589. DEFINE_PGM_READ_ANY(signed char, byte);
  1590. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1591. static const PROGMEM type array##_P[3] = \
  1592. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1593. static inline type array(int axis) \
  1594. { return pgm_read_any(&array##_P[axis]); } \
  1595. type array##_ext(int axis) \
  1596. { return pgm_read_any(&array##_P[axis]); }
  1597. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1598. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1599. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1600. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1601. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1602. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1603. static void axis_is_at_home(int axis) {
  1604. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1605. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1606. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1607. }
  1608. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1609. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1610. //! @return original feedmultiply
  1611. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1612. saved_feedrate = feedrate;
  1613. int l_feedmultiply = feedmultiply;
  1614. feedmultiply = 100;
  1615. previous_millis_cmd = _millis();
  1616. enable_endstops(enable_endstops_now);
  1617. return l_feedmultiply;
  1618. }
  1619. //! @param original_feedmultiply feedmultiply to restore
  1620. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1621. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1622. enable_endstops(false);
  1623. #endif
  1624. feedrate = saved_feedrate;
  1625. feedmultiply = original_feedmultiply;
  1626. previous_millis_cmd = _millis();
  1627. }
  1628. #ifdef ENABLE_AUTO_BED_LEVELING
  1629. #ifdef AUTO_BED_LEVELING_GRID
  1630. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1631. {
  1632. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1633. planeNormal.debug("planeNormal");
  1634. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1635. //bedLevel.debug("bedLevel");
  1636. //plan_bed_level_matrix.debug("bed level before");
  1637. //vector_3 uncorrected_position = plan_get_position_mm();
  1638. //uncorrected_position.debug("position before");
  1639. vector_3 corrected_position = plan_get_position();
  1640. // corrected_position.debug("position after");
  1641. current_position[X_AXIS] = corrected_position.x;
  1642. current_position[Y_AXIS] = corrected_position.y;
  1643. current_position[Z_AXIS] = corrected_position.z;
  1644. // put the bed at 0 so we don't go below it.
  1645. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1646. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1647. }
  1648. #else // not AUTO_BED_LEVELING_GRID
  1649. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1650. plan_bed_level_matrix.set_to_identity();
  1651. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1652. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1653. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1654. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1655. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1656. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1657. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1658. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1659. vector_3 corrected_position = plan_get_position();
  1660. current_position[X_AXIS] = corrected_position.x;
  1661. current_position[Y_AXIS] = corrected_position.y;
  1662. current_position[Z_AXIS] = corrected_position.z;
  1663. // put the bed at 0 so we don't go below it.
  1664. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1665. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1666. }
  1667. #endif // AUTO_BED_LEVELING_GRID
  1668. static void run_z_probe() {
  1669. plan_bed_level_matrix.set_to_identity();
  1670. feedrate = homing_feedrate[Z_AXIS];
  1671. // move down until you find the bed
  1672. float zPosition = -10;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1674. st_synchronize();
  1675. // we have to let the planner know where we are right now as it is not where we said to go.
  1676. zPosition = st_get_position_mm(Z_AXIS);
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1678. // move up the retract distance
  1679. zPosition += home_retract_mm(Z_AXIS);
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. // move back down slowly to find bed
  1683. feedrate = homing_feedrate[Z_AXIS]/4;
  1684. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1688. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1689. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1690. }
  1691. static void do_blocking_move_to(float x, float y, float z) {
  1692. float oldFeedRate = feedrate;
  1693. feedrate = homing_feedrate[Z_AXIS];
  1694. current_position[Z_AXIS] = z;
  1695. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1696. st_synchronize();
  1697. feedrate = XY_TRAVEL_SPEED;
  1698. current_position[X_AXIS] = x;
  1699. current_position[Y_AXIS] = y;
  1700. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1701. st_synchronize();
  1702. feedrate = oldFeedRate;
  1703. }
  1704. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1705. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1706. }
  1707. /// Probe bed height at position (x,y), returns the measured z value
  1708. static float probe_pt(float x, float y, float z_before) {
  1709. // move to right place
  1710. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1711. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1712. run_z_probe();
  1713. float measured_z = current_position[Z_AXIS];
  1714. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1715. SERIAL_PROTOCOLPGM(" x: ");
  1716. SERIAL_PROTOCOL(x);
  1717. SERIAL_PROTOCOLPGM(" y: ");
  1718. SERIAL_PROTOCOL(y);
  1719. SERIAL_PROTOCOLPGM(" z: ");
  1720. SERIAL_PROTOCOL(measured_z);
  1721. SERIAL_PROTOCOLPGM("\n");
  1722. return measured_z;
  1723. }
  1724. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1725. #ifdef LIN_ADVANCE
  1726. /**
  1727. * M900: Set and/or Get advance K factor
  1728. *
  1729. * K<factor> Set advance K factor
  1730. */
  1731. inline void gcode_M900() {
  1732. st_synchronize();
  1733. const float newK = code_seen('K') ? code_value_float() : -1;
  1734. #ifdef LA_NOCOMPAT
  1735. if (newK >= 0 && newK < 10)
  1736. extruder_advance_K = newK;
  1737. else
  1738. SERIAL_ECHOLNPGM("K out of allowed range!");
  1739. #else
  1740. if (newK == 0) {
  1741. la10c_reset();
  1742. extruder_advance_K = 0;
  1743. }
  1744. else if(newK > 0)
  1745. extruder_advance_K = la10c_value(newK);
  1746. else
  1747. SERIAL_ECHOLNPGM("K out of allowed range!");
  1748. #endif
  1749. SERIAL_ECHO_START;
  1750. SERIAL_ECHOPGM("Advance K=");
  1751. SERIAL_ECHOLN(extruder_advance_K);
  1752. }
  1753. #endif // LIN_ADVANCE
  1754. bool check_commands() {
  1755. bool end_command_found = false;
  1756. while (buflen)
  1757. {
  1758. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1759. if (!cmdbuffer_front_already_processed)
  1760. cmdqueue_pop_front();
  1761. cmdbuffer_front_already_processed = false;
  1762. }
  1763. return end_command_found;
  1764. }
  1765. // raise_z_above: slowly raise Z to the requested height
  1766. //
  1767. // contrarily to a simple move, this function will carefully plan a move
  1768. // when the current Z position is unknown. In such cases, stallguard is
  1769. // enabled and will prevent prolonged pushing against the Z tops
  1770. void raise_z_above(float target, bool plan)
  1771. {
  1772. if (current_position[Z_AXIS] >= target)
  1773. return;
  1774. // Z needs raising
  1775. current_position[Z_AXIS] = target;
  1776. if (axis_known_position[Z_AXIS])
  1777. {
  1778. // current position is known, it's safe to raise Z
  1779. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1780. return;
  1781. }
  1782. // ensure Z is powered in normal mode to overcome initial load
  1783. enable_z();
  1784. st_synchronize();
  1785. // rely on crashguard to limit damage
  1786. bool z_endstop_enabled = enable_z_endstop(true);
  1787. #ifdef TMC2130
  1788. tmc2130_home_enter(Z_AXIS_MASK);
  1789. #endif //TMC2130
  1790. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1791. st_synchronize();
  1792. #ifdef TMC2130
  1793. if (endstop_z_hit_on_purpose())
  1794. {
  1795. // not necessarily exact, but will avoid further vertical moves
  1796. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1798. current_position[Z_AXIS], current_position[E_AXIS]);
  1799. }
  1800. tmc2130_home_exit();
  1801. #endif //TMC2130
  1802. enable_z_endstop(z_endstop_enabled);
  1803. }
  1804. #ifdef TMC2130
  1805. bool calibrate_z_auto()
  1806. {
  1807. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1808. lcd_clear();
  1809. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1810. bool endstops_enabled = enable_endstops(true);
  1811. int axis_up_dir = -home_dir(Z_AXIS);
  1812. tmc2130_home_enter(Z_AXIS_MASK);
  1813. current_position[Z_AXIS] = 0;
  1814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1815. set_destination_to_current();
  1816. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1817. feedrate = homing_feedrate[Z_AXIS];
  1818. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1819. st_synchronize();
  1820. // current_position[axis] = 0;
  1821. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1822. tmc2130_home_exit();
  1823. enable_endstops(false);
  1824. current_position[Z_AXIS] = 0;
  1825. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1826. set_destination_to_current();
  1827. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1828. feedrate = homing_feedrate[Z_AXIS] / 2;
  1829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1830. st_synchronize();
  1831. enable_endstops(endstops_enabled);
  1832. if (PRINTER_TYPE == PRINTER_MK3) {
  1833. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1834. }
  1835. else {
  1836. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1837. }
  1838. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1839. return true;
  1840. }
  1841. #endif //TMC2130
  1842. #ifdef TMC2130
  1843. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1844. #else
  1845. void homeaxis(int axis, uint8_t cnt)
  1846. #endif //TMC2130
  1847. {
  1848. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1849. #define HOMEAXIS_DO(LETTER) \
  1850. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1851. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1852. {
  1853. int axis_home_dir = home_dir(axis);
  1854. feedrate = homing_feedrate[axis];
  1855. #ifdef TMC2130
  1856. tmc2130_home_enter(X_AXIS_MASK << axis);
  1857. #endif //TMC2130
  1858. // Move away a bit, so that the print head does not touch the end position,
  1859. // and the following movement to endstop has a chance to achieve the required velocity
  1860. // for the stall guard to work.
  1861. current_position[axis] = 0;
  1862. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1863. set_destination_to_current();
  1864. // destination[axis] = 11.f;
  1865. destination[axis] = -3.f * axis_home_dir;
  1866. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1867. st_synchronize();
  1868. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1869. endstops_hit_on_purpose();
  1870. enable_endstops(false);
  1871. current_position[axis] = 0;
  1872. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1873. destination[axis] = 1. * axis_home_dir;
  1874. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1875. st_synchronize();
  1876. // Now continue to move up to the left end stop with the collision detection enabled.
  1877. enable_endstops(true);
  1878. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1879. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1880. st_synchronize();
  1881. for (uint8_t i = 0; i < cnt; i++)
  1882. {
  1883. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1884. endstops_hit_on_purpose();
  1885. enable_endstops(false);
  1886. current_position[axis] = 0;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. destination[axis] = -10.f * axis_home_dir;
  1889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1890. st_synchronize();
  1891. endstops_hit_on_purpose();
  1892. // Now move left up to the collision, this time with a repeatable velocity.
  1893. enable_endstops(true);
  1894. destination[axis] = 11.f * axis_home_dir;
  1895. #ifdef TMC2130
  1896. feedrate = homing_feedrate[axis];
  1897. #else //TMC2130
  1898. feedrate = homing_feedrate[axis] / 2;
  1899. #endif //TMC2130
  1900. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1901. st_synchronize();
  1902. #ifdef TMC2130
  1903. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1904. if (pstep) pstep[i] = mscnt >> 4;
  1905. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1906. #endif //TMC2130
  1907. }
  1908. endstops_hit_on_purpose();
  1909. enable_endstops(false);
  1910. #ifdef TMC2130
  1911. uint8_t orig = tmc2130_home_origin[axis];
  1912. uint8_t back = tmc2130_home_bsteps[axis];
  1913. if (tmc2130_home_enabled && (orig <= 63))
  1914. {
  1915. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1916. if (back > 0)
  1917. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1918. }
  1919. else
  1920. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1921. tmc2130_home_exit();
  1922. #endif //TMC2130
  1923. axis_is_at_home(axis);
  1924. axis_known_position[axis] = true;
  1925. // Move from minimum
  1926. #ifdef TMC2130
  1927. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1928. #else //TMC2130
  1929. float dist = - axis_home_dir * 0.01f * 64;
  1930. #endif //TMC2130
  1931. current_position[axis] -= dist;
  1932. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. current_position[axis] += dist;
  1934. destination[axis] = current_position[axis];
  1935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1936. st_synchronize();
  1937. feedrate = 0.0;
  1938. }
  1939. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1940. {
  1941. #ifdef TMC2130
  1942. FORCE_HIGH_POWER_START;
  1943. #endif
  1944. int axis_home_dir = home_dir(axis);
  1945. current_position[axis] = 0;
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1948. feedrate = homing_feedrate[axis];
  1949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1950. st_synchronize();
  1951. #ifdef TMC2130
  1952. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1953. FORCE_HIGH_POWER_END;
  1954. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1955. return;
  1956. }
  1957. #endif //TMC2130
  1958. current_position[axis] = 0;
  1959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1960. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1961. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1962. st_synchronize();
  1963. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1964. feedrate = homing_feedrate[axis]/2 ;
  1965. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1966. st_synchronize();
  1967. #ifdef TMC2130
  1968. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1969. FORCE_HIGH_POWER_END;
  1970. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1971. return;
  1972. }
  1973. #endif //TMC2130
  1974. axis_is_at_home(axis);
  1975. destination[axis] = current_position[axis];
  1976. feedrate = 0.0;
  1977. endstops_hit_on_purpose();
  1978. axis_known_position[axis] = true;
  1979. #ifdef TMC2130
  1980. FORCE_HIGH_POWER_END;
  1981. #endif
  1982. }
  1983. enable_endstops(endstops_enabled);
  1984. }
  1985. /**/
  1986. void home_xy()
  1987. {
  1988. set_destination_to_current();
  1989. homeaxis(X_AXIS);
  1990. homeaxis(Y_AXIS);
  1991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1992. endstops_hit_on_purpose();
  1993. }
  1994. void refresh_cmd_timeout(void)
  1995. {
  1996. previous_millis_cmd = _millis();
  1997. }
  1998. #ifdef FWRETRACT
  1999. void retract(bool retracting, bool swapretract = false) {
  2000. if(retracting && !retracted[active_extruder]) {
  2001. destination[X_AXIS]=current_position[X_AXIS];
  2002. destination[Y_AXIS]=current_position[Y_AXIS];
  2003. destination[Z_AXIS]=current_position[Z_AXIS];
  2004. destination[E_AXIS]=current_position[E_AXIS];
  2005. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2006. plan_set_e_position(current_position[E_AXIS]);
  2007. float oldFeedrate = feedrate;
  2008. feedrate=cs.retract_feedrate*60;
  2009. retracted[active_extruder]=true;
  2010. prepare_move();
  2011. current_position[Z_AXIS]-=cs.retract_zlift;
  2012. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2013. prepare_move();
  2014. feedrate = oldFeedrate;
  2015. } else if(!retracting && retracted[active_extruder]) {
  2016. destination[X_AXIS]=current_position[X_AXIS];
  2017. destination[Y_AXIS]=current_position[Y_AXIS];
  2018. destination[Z_AXIS]=current_position[Z_AXIS];
  2019. destination[E_AXIS]=current_position[E_AXIS];
  2020. current_position[Z_AXIS]+=cs.retract_zlift;
  2021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2022. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2023. plan_set_e_position(current_position[E_AXIS]);
  2024. float oldFeedrate = feedrate;
  2025. feedrate=cs.retract_recover_feedrate*60;
  2026. retracted[active_extruder]=false;
  2027. prepare_move();
  2028. feedrate = oldFeedrate;
  2029. }
  2030. } //retract
  2031. #endif //FWRETRACT
  2032. void trace() {
  2033. Sound_MakeCustom(25,440,true);
  2034. }
  2035. /*
  2036. void ramming() {
  2037. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2038. if (current_temperature[0] < 230) {
  2039. //PLA
  2040. max_feedrate[E_AXIS] = 50;
  2041. //current_position[E_AXIS] -= 8;
  2042. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2043. //current_position[E_AXIS] += 8;
  2044. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2045. current_position[E_AXIS] += 5.4;
  2046. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2047. current_position[E_AXIS] += 3.2;
  2048. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2049. current_position[E_AXIS] += 3;
  2050. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2051. st_synchronize();
  2052. max_feedrate[E_AXIS] = 80;
  2053. current_position[E_AXIS] -= 82;
  2054. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2055. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2056. current_position[E_AXIS] -= 20;
  2057. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2058. current_position[E_AXIS] += 5;
  2059. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2060. current_position[E_AXIS] += 5;
  2061. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2062. current_position[E_AXIS] -= 10;
  2063. st_synchronize();
  2064. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2065. current_position[E_AXIS] += 10;
  2066. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2067. current_position[E_AXIS] -= 10;
  2068. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2069. current_position[E_AXIS] += 10;
  2070. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2071. current_position[E_AXIS] -= 10;
  2072. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2073. st_synchronize();
  2074. }
  2075. else {
  2076. //ABS
  2077. max_feedrate[E_AXIS] = 50;
  2078. //current_position[E_AXIS] -= 8;
  2079. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2080. //current_position[E_AXIS] += 8;
  2081. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2082. current_position[E_AXIS] += 3.1;
  2083. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2084. current_position[E_AXIS] += 3.1;
  2085. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2086. current_position[E_AXIS] += 4;
  2087. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2088. st_synchronize();
  2089. //current_position[X_AXIS] += 23; //delay
  2090. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2091. //current_position[X_AXIS] -= 23; //delay
  2092. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2093. _delay(4700);
  2094. max_feedrate[E_AXIS] = 80;
  2095. current_position[E_AXIS] -= 92;
  2096. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2097. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2098. current_position[E_AXIS] -= 5;
  2099. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2100. current_position[E_AXIS] += 5;
  2101. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2102. current_position[E_AXIS] -= 5;
  2103. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2104. st_synchronize();
  2105. current_position[E_AXIS] += 5;
  2106. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2107. current_position[E_AXIS] -= 5;
  2108. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2109. current_position[E_AXIS] += 5;
  2110. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2111. current_position[E_AXIS] -= 5;
  2112. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2113. st_synchronize();
  2114. }
  2115. }
  2116. */
  2117. #ifdef TMC2130
  2118. void force_high_power_mode(bool start_high_power_section) {
  2119. #ifdef PSU_Delta
  2120. if (start_high_power_section == true) enable_force_z();
  2121. #endif //PSU_Delta
  2122. uint8_t silent;
  2123. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2124. if (silent == 1) {
  2125. //we are in silent mode, set to normal mode to enable crash detection
  2126. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2127. st_synchronize();
  2128. cli();
  2129. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2130. update_mode_profile();
  2131. tmc2130_init();
  2132. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2133. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2134. st_reset_timer();
  2135. sei();
  2136. }
  2137. }
  2138. #endif //TMC2130
  2139. #ifdef TMC2130
  2140. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2141. #else
  2142. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2143. #endif //TMC2130
  2144. {
  2145. st_synchronize();
  2146. #if 0
  2147. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2148. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2149. #endif
  2150. // Flag for the display update routine and to disable the print cancelation during homing.
  2151. homing_flag = true;
  2152. // Which axes should be homed?
  2153. bool home_x = home_x_axis;
  2154. bool home_y = home_y_axis;
  2155. bool home_z = home_z_axis;
  2156. // Either all X,Y,Z codes are present, or none of them.
  2157. bool home_all_axes = home_x == home_y && home_x == home_z;
  2158. if (home_all_axes)
  2159. // No X/Y/Z code provided means to home all axes.
  2160. home_x = home_y = home_z = true;
  2161. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2162. if (home_all_axes) {
  2163. raise_z_above(MESH_HOME_Z_SEARCH);
  2164. st_synchronize();
  2165. }
  2166. #ifdef ENABLE_AUTO_BED_LEVELING
  2167. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2168. #endif //ENABLE_AUTO_BED_LEVELING
  2169. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2170. // the planner will not perform any adjustments in the XY plane.
  2171. // Wait for the motors to stop and update the current position with the absolute values.
  2172. world2machine_revert_to_uncorrected();
  2173. // For mesh bed leveling deactivate the matrix temporarily.
  2174. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2175. // in a single axis only.
  2176. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2177. #ifdef MESH_BED_LEVELING
  2178. uint8_t mbl_was_active = mbl.active;
  2179. mbl.active = 0;
  2180. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2181. #endif
  2182. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2183. // consumed during the first movements following this statement.
  2184. if (home_z)
  2185. babystep_undo();
  2186. saved_feedrate = feedrate;
  2187. int l_feedmultiply = feedmultiply;
  2188. feedmultiply = 100;
  2189. previous_millis_cmd = _millis();
  2190. enable_endstops(true);
  2191. memcpy(destination, current_position, sizeof(destination));
  2192. feedrate = 0.0;
  2193. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2194. if(home_z)
  2195. homeaxis(Z_AXIS);
  2196. #endif
  2197. #ifdef QUICK_HOME
  2198. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2199. if(home_x && home_y) //first diagonal move
  2200. {
  2201. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2202. int x_axis_home_dir = home_dir(X_AXIS);
  2203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2204. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2205. feedrate = homing_feedrate[X_AXIS];
  2206. if(homing_feedrate[Y_AXIS]<feedrate)
  2207. feedrate = homing_feedrate[Y_AXIS];
  2208. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2209. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2210. } else {
  2211. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2212. }
  2213. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2214. st_synchronize();
  2215. axis_is_at_home(X_AXIS);
  2216. axis_is_at_home(Y_AXIS);
  2217. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2218. destination[X_AXIS] = current_position[X_AXIS];
  2219. destination[Y_AXIS] = current_position[Y_AXIS];
  2220. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2221. feedrate = 0.0;
  2222. st_synchronize();
  2223. endstops_hit_on_purpose();
  2224. current_position[X_AXIS] = destination[X_AXIS];
  2225. current_position[Y_AXIS] = destination[Y_AXIS];
  2226. current_position[Z_AXIS] = destination[Z_AXIS];
  2227. }
  2228. #endif /* QUICK_HOME */
  2229. #ifdef TMC2130
  2230. if(home_x)
  2231. {
  2232. if (!calib)
  2233. homeaxis(X_AXIS);
  2234. else
  2235. tmc2130_home_calibrate(X_AXIS);
  2236. }
  2237. if(home_y)
  2238. {
  2239. if (!calib)
  2240. homeaxis(Y_AXIS);
  2241. else
  2242. tmc2130_home_calibrate(Y_AXIS);
  2243. }
  2244. #else //TMC2130
  2245. if(home_x) homeaxis(X_AXIS);
  2246. if(home_y) homeaxis(Y_AXIS);
  2247. #endif //TMC2130
  2248. if(home_x_axis && home_x_value != 0)
  2249. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2250. if(home_y_axis && home_y_value != 0)
  2251. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2252. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2253. #ifndef Z_SAFE_HOMING
  2254. if(home_z) {
  2255. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2256. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2257. st_synchronize();
  2258. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2259. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2260. raise_z_above(MESH_HOME_Z_SEARCH);
  2261. st_synchronize();
  2262. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2263. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2264. // 1st mesh bed leveling measurement point, corrected.
  2265. world2machine_initialize();
  2266. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2267. world2machine_reset();
  2268. if (destination[Y_AXIS] < Y_MIN_POS)
  2269. destination[Y_AXIS] = Y_MIN_POS;
  2270. feedrate = homing_feedrate[X_AXIS] / 20;
  2271. enable_endstops(false);
  2272. #ifdef DEBUG_BUILD
  2273. SERIAL_ECHOLNPGM("plan_set_position()");
  2274. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2275. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2276. #endif
  2277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2278. #ifdef DEBUG_BUILD
  2279. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2280. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2281. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2282. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2283. #endif
  2284. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2285. st_synchronize();
  2286. current_position[X_AXIS] = destination[X_AXIS];
  2287. current_position[Y_AXIS] = destination[Y_AXIS];
  2288. enable_endstops(true);
  2289. endstops_hit_on_purpose();
  2290. homeaxis(Z_AXIS);
  2291. #else // MESH_BED_LEVELING
  2292. homeaxis(Z_AXIS);
  2293. #endif // MESH_BED_LEVELING
  2294. }
  2295. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2296. if(home_all_axes) {
  2297. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2298. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2299. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2300. feedrate = XY_TRAVEL_SPEED/60;
  2301. current_position[Z_AXIS] = 0;
  2302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2304. st_synchronize();
  2305. current_position[X_AXIS] = destination[X_AXIS];
  2306. current_position[Y_AXIS] = destination[Y_AXIS];
  2307. homeaxis(Z_AXIS);
  2308. }
  2309. // Let's see if X and Y are homed and probe is inside bed area.
  2310. if(home_z) {
  2311. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2312. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2313. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2314. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2315. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2316. current_position[Z_AXIS] = 0;
  2317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2318. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2319. feedrate = max_feedrate[Z_AXIS];
  2320. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2321. st_synchronize();
  2322. homeaxis(Z_AXIS);
  2323. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2324. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2325. SERIAL_ECHO_START;
  2326. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2327. } else {
  2328. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2329. SERIAL_ECHO_START;
  2330. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2331. }
  2332. }
  2333. #endif // Z_SAFE_HOMING
  2334. #endif // Z_HOME_DIR < 0
  2335. if(home_z_axis && home_z_value != 0)
  2336. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2337. #ifdef ENABLE_AUTO_BED_LEVELING
  2338. if(home_z)
  2339. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2340. #endif
  2341. // Set the planner and stepper routine positions.
  2342. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2343. // contains the machine coordinates.
  2344. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2345. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2346. enable_endstops(false);
  2347. #endif
  2348. feedrate = saved_feedrate;
  2349. feedmultiply = l_feedmultiply;
  2350. previous_millis_cmd = _millis();
  2351. endstops_hit_on_purpose();
  2352. #ifndef MESH_BED_LEVELING
  2353. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2354. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2355. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2356. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2357. lcd_adjust_z();
  2358. #endif
  2359. // Load the machine correction matrix
  2360. world2machine_initialize();
  2361. // and correct the current_position XY axes to match the transformed coordinate system.
  2362. world2machine_update_current();
  2363. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2364. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2365. {
  2366. if (! home_z && mbl_was_active) {
  2367. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2368. mbl.active = true;
  2369. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2370. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2371. }
  2372. }
  2373. else
  2374. {
  2375. st_synchronize();
  2376. homing_flag = false;
  2377. }
  2378. #endif
  2379. if (farm_mode) { prusa_statistics(20); };
  2380. homing_flag = false;
  2381. #if 0
  2382. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2383. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2384. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2385. #endif
  2386. }
  2387. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2388. {
  2389. #ifdef TMC2130
  2390. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2391. #else
  2392. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2393. #endif //TMC2130
  2394. }
  2395. void adjust_bed_reset()
  2396. {
  2397. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2398. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2399. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2400. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2401. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2402. }
  2403. //! @brief Calibrate XYZ
  2404. //! @param onlyZ if true, calibrate only Z axis
  2405. //! @param verbosity_level
  2406. //! @retval true Succeeded
  2407. //! @retval false Failed
  2408. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2409. {
  2410. bool final_result = false;
  2411. #ifdef TMC2130
  2412. FORCE_HIGH_POWER_START;
  2413. #endif // TMC2130
  2414. FORCE_BL_ON_START;
  2415. // Only Z calibration?
  2416. if (!onlyZ)
  2417. {
  2418. setTargetBed(0);
  2419. setAllTargetHotends(0);
  2420. adjust_bed_reset(); //reset bed level correction
  2421. }
  2422. // Disable the default update procedure of the display. We will do a modal dialog.
  2423. lcd_update_enable(false);
  2424. // Let the planner use the uncorrected coordinates.
  2425. mbl.reset();
  2426. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2427. // the planner will not perform any adjustments in the XY plane.
  2428. // Wait for the motors to stop and update the current position with the absolute values.
  2429. world2machine_revert_to_uncorrected();
  2430. // Reset the baby step value applied without moving the axes.
  2431. babystep_reset();
  2432. // Mark all axes as in a need for homing.
  2433. memset(axis_known_position, 0, sizeof(axis_known_position));
  2434. // Home in the XY plane.
  2435. //set_destination_to_current();
  2436. int l_feedmultiply = setup_for_endstop_move();
  2437. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2438. home_xy();
  2439. enable_endstops(false);
  2440. current_position[X_AXIS] += 5;
  2441. current_position[Y_AXIS] += 5;
  2442. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2443. st_synchronize();
  2444. // Let the user move the Z axes up to the end stoppers.
  2445. #ifdef TMC2130
  2446. if (calibrate_z_auto())
  2447. {
  2448. #else //TMC2130
  2449. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2450. {
  2451. #endif //TMC2130
  2452. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2453. if(onlyZ){
  2454. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2455. lcd_set_cursor(0, 3);
  2456. lcd_print(1);
  2457. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2458. }else{
  2459. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2460. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2461. lcd_set_cursor(0, 2);
  2462. lcd_print(1);
  2463. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2464. }
  2465. refresh_cmd_timeout();
  2466. #ifndef STEEL_SHEET
  2467. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2468. {
  2469. lcd_wait_for_cool_down();
  2470. }
  2471. #endif //STEEL_SHEET
  2472. if(!onlyZ)
  2473. {
  2474. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2475. #ifdef STEEL_SHEET
  2476. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2477. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2478. #endif //STEEL_SHEET
  2479. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2480. KEEPALIVE_STATE(IN_HANDLER);
  2481. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2482. lcd_set_cursor(0, 2);
  2483. lcd_print(1);
  2484. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2485. }
  2486. bool endstops_enabled = enable_endstops(false);
  2487. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2488. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2489. st_synchronize();
  2490. // Move the print head close to the bed.
  2491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2492. enable_endstops(true);
  2493. #ifdef TMC2130
  2494. tmc2130_home_enter(Z_AXIS_MASK);
  2495. #endif //TMC2130
  2496. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2497. st_synchronize();
  2498. #ifdef TMC2130
  2499. tmc2130_home_exit();
  2500. #endif //TMC2130
  2501. enable_endstops(endstops_enabled);
  2502. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2503. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2504. {
  2505. if (onlyZ)
  2506. {
  2507. clean_up_after_endstop_move(l_feedmultiply);
  2508. // Z only calibration.
  2509. // Load the machine correction matrix
  2510. world2machine_initialize();
  2511. // and correct the current_position to match the transformed coordinate system.
  2512. world2machine_update_current();
  2513. //FIXME
  2514. bool result = sample_mesh_and_store_reference();
  2515. if (result)
  2516. {
  2517. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2518. // Shipped, the nozzle height has been set already. The user can start printing now.
  2519. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2520. final_result = true;
  2521. // babystep_apply();
  2522. }
  2523. }
  2524. else
  2525. {
  2526. // Reset the baby step value and the baby step applied flag.
  2527. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2528. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2529. // Complete XYZ calibration.
  2530. uint8_t point_too_far_mask = 0;
  2531. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2532. clean_up_after_endstop_move(l_feedmultiply);
  2533. // Print head up.
  2534. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2535. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2536. st_synchronize();
  2537. //#ifndef NEW_XYZCAL
  2538. if (result >= 0)
  2539. {
  2540. #ifdef HEATBED_V2
  2541. sample_z();
  2542. #else //HEATBED_V2
  2543. point_too_far_mask = 0;
  2544. // Second half: The fine adjustment.
  2545. // Let the planner use the uncorrected coordinates.
  2546. mbl.reset();
  2547. world2machine_reset();
  2548. // Home in the XY plane.
  2549. int l_feedmultiply = setup_for_endstop_move();
  2550. home_xy();
  2551. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2552. clean_up_after_endstop_move(l_feedmultiply);
  2553. // Print head up.
  2554. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2555. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2556. st_synchronize();
  2557. // if (result >= 0) babystep_apply();
  2558. #endif //HEATBED_V2
  2559. }
  2560. //#endif //NEW_XYZCAL
  2561. lcd_update_enable(true);
  2562. lcd_update(2);
  2563. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2564. if (result >= 0)
  2565. {
  2566. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2567. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2568. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2569. final_result = true;
  2570. }
  2571. }
  2572. #ifdef TMC2130
  2573. tmc2130_home_exit();
  2574. #endif
  2575. }
  2576. else
  2577. {
  2578. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2579. final_result = false;
  2580. }
  2581. }
  2582. else
  2583. {
  2584. // Timeouted.
  2585. }
  2586. lcd_update_enable(true);
  2587. #ifdef TMC2130
  2588. FORCE_HIGH_POWER_END;
  2589. #endif // TMC2130
  2590. FORCE_BL_ON_END;
  2591. return final_result;
  2592. }
  2593. void gcode_M114()
  2594. {
  2595. SERIAL_PROTOCOLPGM("X:");
  2596. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2597. SERIAL_PROTOCOLPGM(" Y:");
  2598. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2599. SERIAL_PROTOCOLPGM(" Z:");
  2600. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2601. SERIAL_PROTOCOLPGM(" E:");
  2602. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2603. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2604. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2605. SERIAL_PROTOCOLPGM(" Y:");
  2606. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2607. SERIAL_PROTOCOLPGM(" Z:");
  2608. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2609. SERIAL_PROTOCOLPGM(" E:");
  2610. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2611. SERIAL_PROTOCOLLN("");
  2612. }
  2613. //! extracted code to compute z_shift for M600 in case of filament change operation
  2614. //! requested from fsensors.
  2615. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2616. //! unlike the previous implementation, which was adding 25mm even when the head was
  2617. //! printing at e.g. 24mm height.
  2618. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2619. //! the printout.
  2620. //! This function is templated to enable fast change of computation data type.
  2621. //! @return new z_shift value
  2622. template<typename T>
  2623. static T gcode_M600_filament_change_z_shift()
  2624. {
  2625. #ifdef FILAMENTCHANGE_ZADD
  2626. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2627. // avoid floating point arithmetics when not necessary - results in shorter code
  2628. T ztmp = T( current_position[Z_AXIS] );
  2629. T z_shift = 0;
  2630. if(ztmp < T(25)){
  2631. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2632. }
  2633. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2634. #else
  2635. return T(0);
  2636. #endif
  2637. }
  2638. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2639. {
  2640. st_synchronize();
  2641. float lastpos[4];
  2642. if (farm_mode)
  2643. {
  2644. prusa_statistics(22);
  2645. }
  2646. //First backup current position and settings
  2647. int feedmultiplyBckp = feedmultiply;
  2648. float HotendTempBckp = degTargetHotend(active_extruder);
  2649. int fanSpeedBckp = fanSpeed;
  2650. lastpos[X_AXIS] = current_position[X_AXIS];
  2651. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2652. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2653. lastpos[E_AXIS] = current_position[E_AXIS];
  2654. //Retract E
  2655. current_position[E_AXIS] += e_shift;
  2656. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2657. st_synchronize();
  2658. //Lift Z
  2659. current_position[Z_AXIS] += z_shift;
  2660. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2661. st_synchronize();
  2662. //Move XY to side
  2663. current_position[X_AXIS] = x_position;
  2664. current_position[Y_AXIS] = y_position;
  2665. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2666. st_synchronize();
  2667. //Beep, manage nozzle heater and wait for user to start unload filament
  2668. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2669. lcd_change_fil_state = 0;
  2670. // Unload filament
  2671. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2672. else unload_filament(); //unload filament for single material (used also in M702)
  2673. //finish moves
  2674. st_synchronize();
  2675. if (!mmu_enabled)
  2676. {
  2677. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2678. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2679. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2680. if (lcd_change_fil_state == 0)
  2681. {
  2682. lcd_clear();
  2683. lcd_set_cursor(0, 2);
  2684. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2685. current_position[X_AXIS] -= 100;
  2686. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2687. st_synchronize();
  2688. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2689. }
  2690. }
  2691. if (mmu_enabled)
  2692. {
  2693. if (!automatic) {
  2694. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2695. mmu_M600_wait_and_beep();
  2696. if (saved_printing) {
  2697. lcd_clear();
  2698. lcd_set_cursor(0, 2);
  2699. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2700. mmu_command(MmuCmd::R0);
  2701. manage_response(false, false);
  2702. }
  2703. }
  2704. mmu_M600_load_filament(automatic, HotendTempBckp);
  2705. }
  2706. else
  2707. M600_load_filament();
  2708. if (!automatic) M600_check_state(HotendTempBckp);
  2709. lcd_update_enable(true);
  2710. //Not let's go back to print
  2711. fanSpeed = fanSpeedBckp;
  2712. //Feed a little of filament to stabilize pressure
  2713. if (!automatic)
  2714. {
  2715. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2716. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2717. }
  2718. //Move XY back
  2719. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2720. FILAMENTCHANGE_XYFEED, active_extruder);
  2721. st_synchronize();
  2722. //Move Z back
  2723. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2724. FILAMENTCHANGE_ZFEED, active_extruder);
  2725. st_synchronize();
  2726. //Set E position to original
  2727. plan_set_e_position(lastpos[E_AXIS]);
  2728. memcpy(current_position, lastpos, sizeof(lastpos));
  2729. memcpy(destination, current_position, sizeof(current_position));
  2730. //Recover feed rate
  2731. feedmultiply = feedmultiplyBckp;
  2732. char cmd[9];
  2733. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2734. enquecommand(cmd);
  2735. #ifdef IR_SENSOR
  2736. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2737. fsensor_check_autoload();
  2738. #endif //IR_SENSOR
  2739. lcd_setstatuspgm(_T(WELCOME_MSG));
  2740. custom_message_type = CustomMsg::Status;
  2741. }
  2742. void gcode_M701()
  2743. {
  2744. printf_P(PSTR("gcode_M701 begin\n"));
  2745. if (farm_mode)
  2746. {
  2747. prusa_statistics(22);
  2748. }
  2749. if (mmu_enabled)
  2750. {
  2751. extr_adj(tmp_extruder);//loads current extruder
  2752. mmu_extruder = tmp_extruder;
  2753. }
  2754. else
  2755. {
  2756. enable_z();
  2757. custom_message_type = CustomMsg::FilamentLoading;
  2758. #ifdef FSENSOR_QUALITY
  2759. fsensor_oq_meassure_start(40);
  2760. #endif //FSENSOR_QUALITY
  2761. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2762. current_position[E_AXIS] += 40;
  2763. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2764. st_synchronize();
  2765. raise_z_above(MIN_Z_FOR_LOAD, false);
  2766. current_position[E_AXIS] += 30;
  2767. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2768. load_filament_final_feed(); //slow sequence
  2769. st_synchronize();
  2770. Sound_MakeCustom(50,500,false);
  2771. if (!farm_mode && loading_flag) {
  2772. lcd_load_filament_color_check();
  2773. }
  2774. lcd_update_enable(true);
  2775. lcd_update(2);
  2776. lcd_setstatuspgm(_T(WELCOME_MSG));
  2777. disable_z();
  2778. loading_flag = false;
  2779. custom_message_type = CustomMsg::Status;
  2780. #ifdef FSENSOR_QUALITY
  2781. fsensor_oq_meassure_stop();
  2782. if (!fsensor_oq_result())
  2783. {
  2784. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2785. lcd_update_enable(true);
  2786. lcd_update(2);
  2787. if (disable)
  2788. fsensor_disable();
  2789. }
  2790. #endif //FSENSOR_QUALITY
  2791. }
  2792. }
  2793. /**
  2794. * @brief Get serial number from 32U2 processor
  2795. *
  2796. * Typical format of S/N is:CZPX0917X003XC13518
  2797. *
  2798. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2799. *
  2800. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2801. * reply is transmitted to serial port 1 character by character.
  2802. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2803. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2804. * in any case.
  2805. */
  2806. static void gcode_PRUSA_SN()
  2807. {
  2808. if (farm_mode) {
  2809. selectedSerialPort = 0;
  2810. putchar(';');
  2811. putchar('S');
  2812. int numbersRead = 0;
  2813. ShortTimer timeout;
  2814. timeout.start();
  2815. while (numbersRead < 19) {
  2816. while (MSerial.available() > 0) {
  2817. uint8_t serial_char = MSerial.read();
  2818. selectedSerialPort = 1;
  2819. putchar(serial_char);
  2820. numbersRead++;
  2821. selectedSerialPort = 0;
  2822. }
  2823. if (timeout.expired(100u)) break;
  2824. }
  2825. selectedSerialPort = 1;
  2826. putchar('\n');
  2827. #if 0
  2828. for (int b = 0; b < 3; b++) {
  2829. _tone(BEEPER, 110);
  2830. _delay(50);
  2831. _noTone(BEEPER);
  2832. _delay(50);
  2833. }
  2834. #endif
  2835. } else {
  2836. puts_P(_N("Not in farm mode."));
  2837. }
  2838. }
  2839. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2840. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2841. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2842. //! it may even interfere with other functions of the printer! You have been warned!
  2843. //! The test idea is to measure the time necessary to charge the capacitor.
  2844. //! So the algorithm is as follows:
  2845. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2846. //! 2. Wait a few ms
  2847. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2848. //! Repeat 1.-3. several times
  2849. //! Good RAMBo's times are in the range of approx. 260-320 us
  2850. //! Bad RAMBo's times are approx. 260-1200 us
  2851. //! So basically we are interested in maximum time, the minima are mostly the same.
  2852. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2853. static void gcode_PRUSA_BadRAMBoFanTest(){
  2854. //printf_P(PSTR("Enter fan pin test\n"));
  2855. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2856. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2857. unsigned long tach1max = 0;
  2858. uint8_t tach1cntr = 0;
  2859. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2860. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2861. SET_OUTPUT(TACH_1);
  2862. WRITE(TACH_1, LOW);
  2863. _delay(20); // the delay may be lower
  2864. unsigned long tachMeasure = _micros();
  2865. cli();
  2866. SET_INPUT(TACH_1);
  2867. // just wait brutally in an endless cycle until we reach HIGH
  2868. // if this becomes a problem it may be improved to non-endless cycle
  2869. while( READ(TACH_1) == 0 ) ;
  2870. sei();
  2871. tachMeasure = _micros() - tachMeasure;
  2872. if( tach1max < tachMeasure )
  2873. tach1max = tachMeasure;
  2874. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2875. }
  2876. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2877. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2878. if( tach1max > 500 ){
  2879. // bad RAMBo
  2880. SERIAL_PROTOCOLLNPGM("BAD");
  2881. } else {
  2882. SERIAL_PROTOCOLLNPGM("OK");
  2883. }
  2884. // cleanup after the test function
  2885. SET_INPUT(TACH_1);
  2886. WRITE(TACH_1, HIGH);
  2887. #endif
  2888. }
  2889. #ifdef BACKLASH_X
  2890. extern uint8_t st_backlash_x;
  2891. #endif //BACKLASH_X
  2892. #ifdef BACKLASH_Y
  2893. extern uint8_t st_backlash_y;
  2894. #endif //BACKLASH_Y
  2895. //! \ingroup marlin_main
  2896. //! @brief Parse and process commands
  2897. //!
  2898. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2899. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2900. //!
  2901. //!
  2902. //! Implemented Codes
  2903. //! -------------------
  2904. //!
  2905. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2906. //!
  2907. //!@n PRUSA CODES
  2908. //!@n P F - Returns FW versions
  2909. //!@n P R - Returns revision of printer
  2910. //!
  2911. //!@n G0 -> G1
  2912. //!@n G1 - Coordinated Movement X Y Z E
  2913. //!@n G2 - CW ARC
  2914. //!@n G3 - CCW ARC
  2915. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2916. //!@n G10 - retract filament according to settings of M207
  2917. //!@n G11 - retract recover filament according to settings of M208
  2918. //!@n G28 - Home all Axis
  2919. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2920. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2921. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2922. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2923. //!@n G80 - Automatic mesh bed leveling
  2924. //!@n G81 - Print bed profile
  2925. //!@n G90 - Use Absolute Coordinates
  2926. //!@n G91 - Use Relative Coordinates
  2927. //!@n G92 - Set current position to coordinates given
  2928. //!
  2929. //!@n M Codes
  2930. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2931. //!@n M1 - Same as M0
  2932. //!@n M17 - Enable/Power all stepper motors
  2933. //!@n M18 - Disable all stepper motors; same as M84
  2934. //!@n M20 - List SD card
  2935. //!@n M21 - Init SD card
  2936. //!@n M22 - Release SD card
  2937. //!@n M23 - Select SD file (M23 filename.g)
  2938. //!@n M24 - Start/resume SD print
  2939. //!@n M25 - Pause SD print
  2940. //!@n M26 - Set SD position in bytes (M26 S12345)
  2941. //!@n M27 - Report SD print status
  2942. //!@n M28 - Start SD write (M28 filename.g)
  2943. //!@n M29 - Stop SD write
  2944. //!@n M30 - Delete file from SD (M30 filename.g)
  2945. //!@n M31 - Output time since last M109 or SD card start to serial
  2946. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2947. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2948. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2949. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2950. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2951. //!@n M73 - Show percent done and print time remaining
  2952. //!@n M80 - Turn on Power Supply
  2953. //!@n M81 - Turn off Power Supply
  2954. //!@n M82 - Set E codes absolute (default)
  2955. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2956. //!@n M84 - Disable steppers until next move,
  2957. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2958. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2959. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2960. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2961. //!@n M104 - Set extruder target temp
  2962. //!@n M105 - Read current temp
  2963. //!@n M106 - Fan on
  2964. //!@n M107 - Fan off
  2965. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2966. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2967. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2968. //!@n M112 - Emergency stop
  2969. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2970. //!@n M114 - Output current position to serial port
  2971. //!@n M115 - Capabilities string
  2972. //!@n M117 - display message
  2973. //!@n M119 - Output Endstop status to serial port
  2974. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2975. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2976. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2977. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2978. //!@n M140 - Set bed target temp
  2979. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2980. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2981. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2982. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2983. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2984. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2985. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2986. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2987. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2988. //!@n M206 - set additional homing offset
  2989. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2990. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2991. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2992. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2993. //!@n M220 S<factor in percent>- set speed factor override percentage
  2994. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2995. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2996. //!@n M240 - Trigger a camera to take a photograph
  2997. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2998. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2999. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3000. //!@n M301 - Set PID parameters P I and D
  3001. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3002. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3003. //!@n M304 - Set bed PID parameters P I and D
  3004. //!@n M400 - Finish all moves
  3005. //!@n M401 - Lower z-probe if present
  3006. //!@n M402 - Raise z-probe if present
  3007. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3008. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3009. //!@n M406 - Turn off Filament Sensor extrusion control
  3010. //!@n M407 - Displays measured filament diameter
  3011. //!@n M500 - stores parameters in EEPROM
  3012. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3013. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3014. //!@n M503 - print the current settings (from memory not from EEPROM)
  3015. //!@n M509 - force language selection on next restart
  3016. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3017. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3018. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3019. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3020. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3021. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3022. //!@n M907 - Set digital trimpot motor current using axis codes.
  3023. //!@n M908 - Control digital trimpot directly.
  3024. //!@n M350 - Set microstepping mode.
  3025. //!@n M351 - Toggle MS1 MS2 pins directly.
  3026. //!
  3027. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3028. //!@n M999 - Restart after being stopped by error
  3029. //! <br><br>
  3030. /** @defgroup marlin_main Marlin main */
  3031. /** \ingroup GCodes */
  3032. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  3033. void process_commands()
  3034. {
  3035. #ifdef FANCHECK
  3036. if(fan_check_error){
  3037. if(fan_check_error == EFCE_DETECTED){
  3038. fan_check_error = EFCE_REPORTED;
  3039. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3040. lcd_pause_print();
  3041. } // otherwise it has already been reported, so just ignore further processing
  3042. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3043. }
  3044. #endif
  3045. if (!buflen) return; //empty command
  3046. #ifdef FILAMENT_RUNOUT_SUPPORT
  3047. SET_INPUT(FR_SENS);
  3048. #endif
  3049. #ifdef CMDBUFFER_DEBUG
  3050. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3051. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3052. SERIAL_ECHOLNPGM("");
  3053. SERIAL_ECHOPGM("In cmdqueue: ");
  3054. SERIAL_ECHO(buflen);
  3055. SERIAL_ECHOLNPGM("");
  3056. #endif /* CMDBUFFER_DEBUG */
  3057. unsigned long codenum; //throw away variable
  3058. char *starpos = NULL;
  3059. #ifdef ENABLE_AUTO_BED_LEVELING
  3060. float x_tmp, y_tmp, z_tmp, real_z;
  3061. #endif
  3062. // PRUSA GCODES
  3063. KEEPALIVE_STATE(IN_HANDLER);
  3064. #ifdef SNMM
  3065. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3066. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3067. int8_t SilentMode;
  3068. #endif
  3069. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3070. starpos = (strchr(strchr_pointer + 5, '*'));
  3071. if (starpos != NULL)
  3072. *(starpos) = '\0';
  3073. lcd_setstatus(strchr_pointer + 5);
  3074. }
  3075. #ifdef TMC2130
  3076. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3077. {
  3078. //! ### CRASH_DETECTED - TMC2130
  3079. // ---------------------------------
  3080. if(code_seen("CRASH_DETECTED"))
  3081. {
  3082. uint8_t mask = 0;
  3083. if (code_seen('X')) mask |= X_AXIS_MASK;
  3084. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3085. crashdet_detected(mask);
  3086. }
  3087. //! ### CRASH_RECOVER - TMC2130
  3088. // ----------------------------------
  3089. else if(code_seen("CRASH_RECOVER"))
  3090. crashdet_recover();
  3091. //! ### CRASH_CANCEL - TMC2130
  3092. // ----------------------------------
  3093. else if(code_seen("CRASH_CANCEL"))
  3094. crashdet_cancel();
  3095. }
  3096. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3097. {
  3098. //! ### TMC_SET_WAVE_
  3099. // --------------------
  3100. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3101. {
  3102. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3103. axis = (axis == 'E')?3:(axis - 'X');
  3104. if (axis < 4)
  3105. {
  3106. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3107. tmc2130_set_wave(axis, 247, fac);
  3108. }
  3109. }
  3110. //! ### TMC_SET_STEP_
  3111. // ------------------
  3112. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3113. {
  3114. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3115. axis = (axis == 'E')?3:(axis - 'X');
  3116. if (axis < 4)
  3117. {
  3118. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3119. uint16_t res = tmc2130_get_res(axis);
  3120. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3121. }
  3122. }
  3123. //! ### TMC_SET_CHOP_
  3124. // -------------------
  3125. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3126. {
  3127. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3128. axis = (axis == 'E')?3:(axis - 'X');
  3129. if (axis < 4)
  3130. {
  3131. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3132. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3133. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3134. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3135. char* str_end = 0;
  3136. if (CMDBUFFER_CURRENT_STRING[14])
  3137. {
  3138. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3139. if (str_end && *str_end)
  3140. {
  3141. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3142. if (str_end && *str_end)
  3143. {
  3144. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3145. if (str_end && *str_end)
  3146. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3147. }
  3148. }
  3149. }
  3150. tmc2130_chopper_config[axis].toff = chop0;
  3151. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3152. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3153. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3154. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3155. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3156. }
  3157. }
  3158. }
  3159. #ifdef BACKLASH_X
  3160. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3161. {
  3162. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3163. st_backlash_x = bl;
  3164. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3165. }
  3166. #endif //BACKLASH_X
  3167. #ifdef BACKLASH_Y
  3168. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3169. {
  3170. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3171. st_backlash_y = bl;
  3172. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3173. }
  3174. #endif //BACKLASH_Y
  3175. #endif //TMC2130
  3176. else if(code_seen("PRUSA")){
  3177. /*!
  3178. *
  3179. ### PRUSA - Internal command set
  3180. Set of internal PRUSA commands
  3181. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3182. - `Ping`
  3183. - `PRN` - Prints revision of the printer
  3184. - `FAN` - Prints fan details
  3185. - `fn` - Prints farm no.
  3186. - `thx`
  3187. - `uvlo`
  3188. - `MMURES` - Reset MMU
  3189. - `RESET` - (Careful!)
  3190. - `fv` - ?
  3191. - `M28`
  3192. - `SN`
  3193. - `Fir` - Prints firmware version
  3194. - `Rev`- Prints filament size, elelectronics, nozzle type
  3195. - `Lang` - Reset the language
  3196. - `Lz`
  3197. - `Beat` - Kick farm link timer
  3198. - `FR` - Full factory reset
  3199. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3200. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3201. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3202. *
  3203. */
  3204. if (code_seen("Ping")) { // PRUSA Ping
  3205. if (farm_mode) {
  3206. PingTime = _millis();
  3207. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3208. }
  3209. }
  3210. else if (code_seen("PRN")) { // PRUSA PRN
  3211. printf_P(_N("%d"), status_number);
  3212. } else if( code_seen("FANPINTST") ){
  3213. gcode_PRUSA_BadRAMBoFanTest();
  3214. }else if (code_seen("FAN")) { //! PRUSA FAN
  3215. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3216. }else if (code_seen("fn")) { // PRUSA fn
  3217. if (farm_mode) {
  3218. printf_P(_N("%d"), farm_no);
  3219. }
  3220. else {
  3221. puts_P(_N("Not in farm mode."));
  3222. }
  3223. }
  3224. else if (code_seen("thx")) // PRUSA thx
  3225. {
  3226. no_response = false;
  3227. }
  3228. else if (code_seen("uvlo")) // PRUSA uvlo
  3229. {
  3230. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3231. enquecommand_P(PSTR("M24"));
  3232. }
  3233. else if (code_seen("MMURES")) // PRUSA MMURES
  3234. {
  3235. mmu_reset();
  3236. }
  3237. else if (code_seen("RESET")) { // PRUSA RESET
  3238. // careful!
  3239. if (farm_mode) {
  3240. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3241. boot_app_magic = BOOT_APP_MAGIC;
  3242. boot_app_flags = BOOT_APP_FLG_RUN;
  3243. wdt_enable(WDTO_15MS);
  3244. cli();
  3245. while(1);
  3246. #else //WATCHDOG
  3247. asm volatile("jmp 0x3E000");
  3248. #endif //WATCHDOG
  3249. }
  3250. else {
  3251. MYSERIAL.println("Not in farm mode.");
  3252. }
  3253. }else if (code_seen("fv")) { // PRUSA fv
  3254. // get file version
  3255. #ifdef SDSUPPORT
  3256. card.openFile(strchr_pointer + 3,true);
  3257. while (true) {
  3258. uint16_t readByte = card.get();
  3259. MYSERIAL.write(readByte);
  3260. if (readByte=='\n') {
  3261. break;
  3262. }
  3263. }
  3264. card.closefile();
  3265. #endif // SDSUPPORT
  3266. } else if (code_seen("M28")) { // PRUSA M28
  3267. trace();
  3268. prusa_sd_card_upload = true;
  3269. card.openFile(strchr_pointer+4,false);
  3270. } else if (code_seen("SN")) { // PRUSA SN
  3271. gcode_PRUSA_SN();
  3272. } else if(code_seen("Fir")){ // PRUSA Fir
  3273. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3274. } else if(code_seen("Rev")){ // PRUSA Rev
  3275. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3276. } else if(code_seen("Lang")) { // PRUSA Lang
  3277. lang_reset();
  3278. } else if(code_seen("Lz")) { // PRUSA Lz
  3279. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3280. } else if(code_seen("Beat")) { // PRUSA Beat
  3281. // Kick farm link timer
  3282. kicktime = _millis();
  3283. } else if(code_seen("FR")) { // PRUSA FR
  3284. // Factory full reset
  3285. factory_reset(0);
  3286. //-//
  3287. /*
  3288. } else if(code_seen("rrr")) {
  3289. MYSERIAL.println("=== checking ===");
  3290. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3291. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3292. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3293. MYSERIAL.println(farm_mode,DEC);
  3294. MYSERIAL.println(eCheckMode,DEC);
  3295. } else if(code_seen("www")) {
  3296. MYSERIAL.println("=== @ FF ===");
  3297. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3298. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3299. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3300. */
  3301. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3302. uint16_t nDiameter;
  3303. if(code_seen('D'))
  3304. {
  3305. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3306. nozzle_diameter_check(nDiameter);
  3307. }
  3308. else if(code_seen("set") && farm_mode)
  3309. {
  3310. strchr_pointer++; // skip 1st char (~ 's')
  3311. strchr_pointer++; // skip 2nd char (~ 'e')
  3312. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3313. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3314. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3315. }
  3316. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3317. //-// !!! SupportMenu
  3318. /*
  3319. // musi byt PRED "PRUSA model"
  3320. } else if (code_seen("smodel")) { //! PRUSA smodel
  3321. size_t nOffset;
  3322. // ! -> "l"
  3323. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3324. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3325. if(*(strchr_pointer+1+nOffset))
  3326. printer_smodel_check(strchr_pointer);
  3327. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3328. } else if (code_seen("model")) { //! PRUSA model
  3329. uint16_t nPrinterModel;
  3330. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3331. nPrinterModel=(uint16_t)code_value_long();
  3332. if(nPrinterModel!=0)
  3333. printer_model_check(nPrinterModel);
  3334. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3335. } else if (code_seen("version")) { //! PRUSA version
  3336. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3337. while(*strchr_pointer==' ') // skip leading spaces
  3338. strchr_pointer++;
  3339. if(*strchr_pointer!=0)
  3340. fw_version_check(strchr_pointer);
  3341. else SERIAL_PROTOCOLLN(FW_VERSION);
  3342. } else if (code_seen("gcode")) { //! PRUSA gcode
  3343. uint16_t nGcodeLevel;
  3344. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3345. nGcodeLevel=(uint16_t)code_value_long();
  3346. if(nGcodeLevel!=0)
  3347. gcode_level_check(nGcodeLevel);
  3348. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3349. */
  3350. }
  3351. //else if (code_seen('Cal')) {
  3352. // lcd_calibration();
  3353. // }
  3354. }
  3355. // This prevents reading files with "^" in their names.
  3356. // Since it is unclear, if there is some usage of this construct,
  3357. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3358. // else if (code_seen('^')) {
  3359. // // nothing, this is a version line
  3360. // }
  3361. else if(code_seen('G'))
  3362. {
  3363. gcode_in_progress = (int)code_value();
  3364. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3365. switch (gcode_in_progress)
  3366. {
  3367. //! ### G0, G1 - Coordinated movement X Y Z E
  3368. // --------------------------------------
  3369. case 0: // G0 -> G1
  3370. case 1: // G1
  3371. if(Stopped == false) {
  3372. #ifdef FILAMENT_RUNOUT_SUPPORT
  3373. if(READ(FR_SENS)){
  3374. int feedmultiplyBckp=feedmultiply;
  3375. float target[4];
  3376. float lastpos[4];
  3377. target[X_AXIS]=current_position[X_AXIS];
  3378. target[Y_AXIS]=current_position[Y_AXIS];
  3379. target[Z_AXIS]=current_position[Z_AXIS];
  3380. target[E_AXIS]=current_position[E_AXIS];
  3381. lastpos[X_AXIS]=current_position[X_AXIS];
  3382. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3383. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3384. lastpos[E_AXIS]=current_position[E_AXIS];
  3385. //retract by E
  3386. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3387. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3388. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3389. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3390. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3391. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3392. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3393. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3394. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3395. //finish moves
  3396. st_synchronize();
  3397. //disable extruder steppers so filament can be removed
  3398. disable_e0();
  3399. disable_e1();
  3400. disable_e2();
  3401. _delay(100);
  3402. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3403. uint8_t cnt=0;
  3404. int counterBeep = 0;
  3405. lcd_wait_interact();
  3406. while(!lcd_clicked()){
  3407. cnt++;
  3408. manage_heater();
  3409. manage_inactivity(true);
  3410. //lcd_update(0);
  3411. if(cnt==0)
  3412. {
  3413. #if BEEPER > 0
  3414. if (counterBeep== 500){
  3415. counterBeep = 0;
  3416. }
  3417. SET_OUTPUT(BEEPER);
  3418. if (counterBeep== 0){
  3419. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3420. WRITE(BEEPER,HIGH);
  3421. }
  3422. if (counterBeep== 20){
  3423. WRITE(BEEPER,LOW);
  3424. }
  3425. counterBeep++;
  3426. #else
  3427. #endif
  3428. }
  3429. }
  3430. WRITE(BEEPER,LOW);
  3431. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3432. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3433. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3434. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3435. lcd_change_fil_state = 0;
  3436. lcd_loading_filament();
  3437. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3438. lcd_change_fil_state = 0;
  3439. lcd_alright();
  3440. switch(lcd_change_fil_state){
  3441. case 2:
  3442. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3444. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3446. lcd_loading_filament();
  3447. break;
  3448. case 3:
  3449. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3451. lcd_loading_color();
  3452. break;
  3453. default:
  3454. lcd_change_success();
  3455. break;
  3456. }
  3457. }
  3458. target[E_AXIS]+= 5;
  3459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3460. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3461. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3462. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3463. //plan_set_e_position(current_position[E_AXIS]);
  3464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3465. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3466. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3467. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3468. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3469. plan_set_e_position(lastpos[E_AXIS]);
  3470. feedmultiply=feedmultiplyBckp;
  3471. char cmd[9];
  3472. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3473. enquecommand(cmd);
  3474. }
  3475. #endif
  3476. get_coordinates(); // For X Y Z E F
  3477. // When recovering from a previous print move, restore the originally
  3478. // calculated target position on the first USB/SD command. This accounts
  3479. // properly for relative moves
  3480. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3481. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3482. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3483. {
  3484. memcpy(destination, saved_target, sizeof(destination));
  3485. saved_target[0] = SAVED_TARGET_UNSET;
  3486. }
  3487. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3488. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3489. }
  3490. #ifdef FWRETRACT
  3491. if(cs.autoretract_enabled)
  3492. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3493. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3494. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3495. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3496. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3497. retract(!retracted[active_extruder]);
  3498. return;
  3499. }
  3500. }
  3501. #endif //FWRETRACT
  3502. prepare_move();
  3503. //ClearToSend();
  3504. }
  3505. break;
  3506. //! ### G2 - CW ARC
  3507. // ------------------------------
  3508. case 2:
  3509. if(Stopped == false) {
  3510. get_arc_coordinates();
  3511. prepare_arc_move(true);
  3512. }
  3513. break;
  3514. //! ### G3 - CCW ARC
  3515. // -------------------------------
  3516. case 3:
  3517. if(Stopped == false) {
  3518. get_arc_coordinates();
  3519. prepare_arc_move(false);
  3520. }
  3521. break;
  3522. //! ### G4 - Dwell
  3523. // -------------------------------
  3524. case 4:
  3525. codenum = 0;
  3526. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3527. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3528. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3529. st_synchronize();
  3530. codenum += _millis(); // keep track of when we started waiting
  3531. previous_millis_cmd = _millis();
  3532. while(_millis() < codenum) {
  3533. manage_heater();
  3534. manage_inactivity();
  3535. lcd_update(0);
  3536. }
  3537. break;
  3538. #ifdef FWRETRACT
  3539. //! ### G10 Retract
  3540. // ------------------------------
  3541. case 10:
  3542. #if EXTRUDERS > 1
  3543. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3544. retract(true,retracted_swap[active_extruder]);
  3545. #else
  3546. retract(true);
  3547. #endif
  3548. break;
  3549. //! ### G11 - Retract recover
  3550. // -----------------------------
  3551. case 11:
  3552. #if EXTRUDERS > 1
  3553. retract(false,retracted_swap[active_extruder]);
  3554. #else
  3555. retract(false);
  3556. #endif
  3557. break;
  3558. #endif //FWRETRACT
  3559. //! ### G28 - Home all Axis one at a time
  3560. // --------------------------------------------
  3561. case 28:
  3562. {
  3563. #ifndef LA_NOCOMPAT
  3564. la10c_reset();
  3565. #endif
  3566. long home_x_value = 0;
  3567. long home_y_value = 0;
  3568. long home_z_value = 0;
  3569. // Which axes should be homed?
  3570. bool home_x = code_seen(axis_codes[X_AXIS]);
  3571. home_x_value = code_value_long();
  3572. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3573. home_y_value = code_value_long();
  3574. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3575. home_z_value = code_value_long();
  3576. bool without_mbl = code_seen('W');
  3577. // calibrate?
  3578. #ifdef TMC2130
  3579. bool calib = code_seen('C');
  3580. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3581. #else
  3582. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3583. #endif //TMC2130
  3584. if ((home_x || home_y || without_mbl || home_z) == false) {
  3585. // Push the commands to the front of the message queue in the reverse order!
  3586. // There shall be always enough space reserved for these commands.
  3587. goto case_G80;
  3588. }
  3589. break;
  3590. }
  3591. #ifdef ENABLE_AUTO_BED_LEVELING
  3592. //! ### G29 - Detailed Z-Probe
  3593. // --------------------------------
  3594. case 29:
  3595. {
  3596. #if Z_MIN_PIN == -1
  3597. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3598. #endif
  3599. // Prevent user from running a G29 without first homing in X and Y
  3600. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3601. {
  3602. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3603. SERIAL_ECHO_START;
  3604. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3605. break; // abort G29, since we don't know where we are
  3606. }
  3607. st_synchronize();
  3608. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3609. //vector_3 corrected_position = plan_get_position_mm();
  3610. //corrected_position.debug("position before G29");
  3611. plan_bed_level_matrix.set_to_identity();
  3612. vector_3 uncorrected_position = plan_get_position();
  3613. //uncorrected_position.debug("position durring G29");
  3614. current_position[X_AXIS] = uncorrected_position.x;
  3615. current_position[Y_AXIS] = uncorrected_position.y;
  3616. current_position[Z_AXIS] = uncorrected_position.z;
  3617. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3618. int l_feedmultiply = setup_for_endstop_move();
  3619. feedrate = homing_feedrate[Z_AXIS];
  3620. #ifdef AUTO_BED_LEVELING_GRID
  3621. // probe at the points of a lattice grid
  3622. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3623. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3624. // solve the plane equation ax + by + d = z
  3625. // A is the matrix with rows [x y 1] for all the probed points
  3626. // B is the vector of the Z positions
  3627. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3628. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3629. // "A" matrix of the linear system of equations
  3630. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3631. // "B" vector of Z points
  3632. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3633. int probePointCounter = 0;
  3634. bool zig = true;
  3635. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3636. {
  3637. int xProbe, xInc;
  3638. if (zig)
  3639. {
  3640. xProbe = LEFT_PROBE_BED_POSITION;
  3641. //xEnd = RIGHT_PROBE_BED_POSITION;
  3642. xInc = xGridSpacing;
  3643. zig = false;
  3644. } else // zag
  3645. {
  3646. xProbe = RIGHT_PROBE_BED_POSITION;
  3647. //xEnd = LEFT_PROBE_BED_POSITION;
  3648. xInc = -xGridSpacing;
  3649. zig = true;
  3650. }
  3651. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3652. {
  3653. float z_before;
  3654. if (probePointCounter == 0)
  3655. {
  3656. // raise before probing
  3657. z_before = Z_RAISE_BEFORE_PROBING;
  3658. } else
  3659. {
  3660. // raise extruder
  3661. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3662. }
  3663. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3664. eqnBVector[probePointCounter] = measured_z;
  3665. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3666. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3667. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3668. probePointCounter++;
  3669. xProbe += xInc;
  3670. }
  3671. }
  3672. clean_up_after_endstop_move(l_feedmultiply);
  3673. // solve lsq problem
  3674. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3675. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3676. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3677. SERIAL_PROTOCOLPGM(" b: ");
  3678. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3679. SERIAL_PROTOCOLPGM(" d: ");
  3680. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3681. set_bed_level_equation_lsq(plane_equation_coefficients);
  3682. free(plane_equation_coefficients);
  3683. #else // AUTO_BED_LEVELING_GRID not defined
  3684. // Probe at 3 arbitrary points
  3685. // probe 1
  3686. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3687. // probe 2
  3688. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3689. // probe 3
  3690. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3691. clean_up_after_endstop_move(l_feedmultiply);
  3692. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3693. #endif // AUTO_BED_LEVELING_GRID
  3694. st_synchronize();
  3695. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3696. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3697. // When the bed is uneven, this height must be corrected.
  3698. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3699. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3700. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3701. z_tmp = current_position[Z_AXIS];
  3702. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3703. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3704. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3705. }
  3706. break;
  3707. #ifndef Z_PROBE_SLED
  3708. //! ### G30 - Single Z Probe
  3709. // ------------------------------------
  3710. case 30:
  3711. {
  3712. st_synchronize();
  3713. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3714. int l_feedmultiply = setup_for_endstop_move();
  3715. feedrate = homing_feedrate[Z_AXIS];
  3716. run_z_probe();
  3717. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3718. SERIAL_PROTOCOLPGM(" X: ");
  3719. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3720. SERIAL_PROTOCOLPGM(" Y: ");
  3721. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3722. SERIAL_PROTOCOLPGM(" Z: ");
  3723. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3724. SERIAL_PROTOCOLPGM("\n");
  3725. clean_up_after_endstop_move(l_feedmultiply);
  3726. }
  3727. break;
  3728. #else
  3729. //! ### G31 - Dock the sled
  3730. // ---------------------------
  3731. case 31:
  3732. dock_sled(true);
  3733. break;
  3734. //! ### G32 - Undock the sled
  3735. // ----------------------------
  3736. case 32:
  3737. dock_sled(false);
  3738. break;
  3739. #endif // Z_PROBE_SLED
  3740. #endif // ENABLE_AUTO_BED_LEVELING
  3741. #ifdef MESH_BED_LEVELING
  3742. //! ### G30 - Single Z Probe
  3743. // ----------------------------
  3744. case 30:
  3745. {
  3746. st_synchronize();
  3747. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3748. int l_feedmultiply = setup_for_endstop_move();
  3749. feedrate = homing_feedrate[Z_AXIS];
  3750. find_bed_induction_sensor_point_z(-10.f, 3);
  3751. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3752. clean_up_after_endstop_move(l_feedmultiply);
  3753. }
  3754. break;
  3755. //! ### G75 - Print temperature interpolation
  3756. // ---------------------------------------------
  3757. case 75:
  3758. {
  3759. for (int i = 40; i <= 110; i++)
  3760. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3761. }
  3762. break;
  3763. //! ### G76 - PINDA probe temperature calibration
  3764. // ------------------------------------------------
  3765. case 76:
  3766. {
  3767. #ifdef PINDA_THERMISTOR
  3768. if (true)
  3769. {
  3770. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3771. //we need to know accurate position of first calibration point
  3772. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3773. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3774. break;
  3775. }
  3776. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3777. {
  3778. // We don't know where we are! HOME!
  3779. // Push the commands to the front of the message queue in the reverse order!
  3780. // There shall be always enough space reserved for these commands.
  3781. repeatcommand_front(); // repeat G76 with all its parameters
  3782. enquecommand_front_P((PSTR("G28 W0")));
  3783. break;
  3784. }
  3785. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3786. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3787. if (result)
  3788. {
  3789. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3790. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3791. current_position[Z_AXIS] = 50;
  3792. current_position[Y_AXIS] = 180;
  3793. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3794. st_synchronize();
  3795. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3796. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3797. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3798. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3799. st_synchronize();
  3800. gcode_G28(false, false, true);
  3801. }
  3802. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3803. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3804. current_position[Z_AXIS] = 100;
  3805. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3806. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3807. lcd_temp_cal_show_result(false);
  3808. break;
  3809. }
  3810. }
  3811. lcd_update_enable(true);
  3812. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3813. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3814. float zero_z;
  3815. int z_shift = 0; //unit: steps
  3816. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3817. if (start_temp < 35) start_temp = 35;
  3818. if (start_temp < current_temperature_pinda) start_temp += 5;
  3819. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3820. // setTargetHotend(200, 0);
  3821. setTargetBed(70 + (start_temp - 30));
  3822. custom_message_type = CustomMsg::TempCal;
  3823. custom_message_state = 1;
  3824. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3825. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3826. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3827. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3828. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3829. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3830. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3831. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3832. st_synchronize();
  3833. while (current_temperature_pinda < start_temp)
  3834. {
  3835. delay_keep_alive(1000);
  3836. serialecho_temperatures();
  3837. }
  3838. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3839. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3840. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3841. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3842. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3843. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3844. st_synchronize();
  3845. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3846. if (find_z_result == false) {
  3847. lcd_temp_cal_show_result(find_z_result);
  3848. break;
  3849. }
  3850. zero_z = current_position[Z_AXIS];
  3851. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3852. int i = -1; for (; i < 5; i++)
  3853. {
  3854. float temp = (40 + i * 5);
  3855. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3856. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3857. if (start_temp <= temp) break;
  3858. }
  3859. for (i++; i < 5; i++)
  3860. {
  3861. float temp = (40 + i * 5);
  3862. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3863. custom_message_state = i + 2;
  3864. setTargetBed(50 + 10 * (temp - 30) / 5);
  3865. // setTargetHotend(255, 0);
  3866. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3867. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3868. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3869. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3870. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3871. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3872. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3873. st_synchronize();
  3874. while (current_temperature_pinda < temp)
  3875. {
  3876. delay_keep_alive(1000);
  3877. serialecho_temperatures();
  3878. }
  3879. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3880. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3881. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3882. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3883. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3884. st_synchronize();
  3885. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3886. if (find_z_result == false) {
  3887. lcd_temp_cal_show_result(find_z_result);
  3888. break;
  3889. }
  3890. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3891. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3892. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3893. }
  3894. lcd_temp_cal_show_result(true);
  3895. break;
  3896. }
  3897. #endif //PINDA_THERMISTOR
  3898. setTargetBed(PINDA_MIN_T);
  3899. float zero_z;
  3900. int z_shift = 0; //unit: steps
  3901. int t_c; // temperature
  3902. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3903. // We don't know where we are! HOME!
  3904. // Push the commands to the front of the message queue in the reverse order!
  3905. // There shall be always enough space reserved for these commands.
  3906. repeatcommand_front(); // repeat G76 with all its parameters
  3907. enquecommand_front_P((PSTR("G28 W0")));
  3908. break;
  3909. }
  3910. puts_P(_N("PINDA probe calibration start"));
  3911. custom_message_type = CustomMsg::TempCal;
  3912. custom_message_state = 1;
  3913. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3914. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3915. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3916. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3917. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3918. st_synchronize();
  3919. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3920. delay_keep_alive(1000);
  3921. serialecho_temperatures();
  3922. }
  3923. //enquecommand_P(PSTR("M190 S50"));
  3924. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3925. delay_keep_alive(1000);
  3926. serialecho_temperatures();
  3927. }
  3928. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3929. current_position[Z_AXIS] = 5;
  3930. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3931. current_position[X_AXIS] = BED_X0;
  3932. current_position[Y_AXIS] = BED_Y0;
  3933. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3934. st_synchronize();
  3935. find_bed_induction_sensor_point_z(-1.f);
  3936. zero_z = current_position[Z_AXIS];
  3937. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3938. for (int i = 0; i<5; i++) {
  3939. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3940. custom_message_state = i + 2;
  3941. t_c = 60 + i * 10;
  3942. setTargetBed(t_c);
  3943. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3944. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3945. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3946. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3947. st_synchronize();
  3948. while (degBed() < t_c) {
  3949. delay_keep_alive(1000);
  3950. serialecho_temperatures();
  3951. }
  3952. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3953. delay_keep_alive(1000);
  3954. serialecho_temperatures();
  3955. }
  3956. current_position[Z_AXIS] = 5;
  3957. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3958. current_position[X_AXIS] = BED_X0;
  3959. current_position[Y_AXIS] = BED_Y0;
  3960. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3961. st_synchronize();
  3962. find_bed_induction_sensor_point_z(-1.f);
  3963. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3964. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3965. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3966. }
  3967. custom_message_type = CustomMsg::Status;
  3968. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3969. puts_P(_N("Temperature calibration done."));
  3970. disable_x();
  3971. disable_y();
  3972. disable_z();
  3973. disable_e0();
  3974. disable_e1();
  3975. disable_e2();
  3976. setTargetBed(0); //set bed target temperature back to 0
  3977. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3978. temp_cal_active = true;
  3979. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3980. lcd_update_enable(true);
  3981. lcd_update(2);
  3982. }
  3983. break;
  3984. //! ### G80 - Mesh-based Z probe
  3985. // -----------------------------------
  3986. /*
  3987. * Probes a grid and produces a mesh to compensate for variable bed height
  3988. * The S0 report the points as below
  3989. * +----> X-axis
  3990. * |
  3991. * |
  3992. * v Y-axis
  3993. */
  3994. case 80:
  3995. #ifdef MK1BP
  3996. break;
  3997. #endif //MK1BP
  3998. case_G80:
  3999. {
  4000. mesh_bed_leveling_flag = true;
  4001. #ifndef PINDA_THERMISTOR
  4002. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4003. #endif // ndef PINDA_THERMISTOR
  4004. #ifdef SUPPORT_VERBOSITY
  4005. int8_t verbosity_level = 0;
  4006. if (code_seen('V')) {
  4007. // Just 'V' without a number counts as V1.
  4008. char c = strchr_pointer[1];
  4009. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4010. }
  4011. #endif //SUPPORT_VERBOSITY
  4012. // Firstly check if we know where we are
  4013. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4014. // We don't know where we are! HOME!
  4015. // Push the commands to the front of the message queue in the reverse order!
  4016. // There shall be always enough space reserved for these commands.
  4017. if (lcd_commands_type != LcdCommands::StopPrint) {
  4018. repeatcommand_front(); // repeat G80 with all its parameters
  4019. enquecommand_front_P((PSTR("G28 W0")));
  4020. }
  4021. else {
  4022. mesh_bed_leveling_flag = false;
  4023. }
  4024. break;
  4025. }
  4026. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4027. if (code_seen('N')) {
  4028. nMeasPoints = code_value_uint8();
  4029. if (nMeasPoints != 7) {
  4030. nMeasPoints = 3;
  4031. }
  4032. }
  4033. else {
  4034. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4035. }
  4036. uint8_t nProbeRetry = 3;
  4037. if (code_seen('R')) {
  4038. nProbeRetry = code_value_uint8();
  4039. if (nProbeRetry > 10) {
  4040. nProbeRetry = 10;
  4041. }
  4042. }
  4043. else {
  4044. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4045. }
  4046. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4047. #ifndef PINDA_THERMISTOR
  4048. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4049. {
  4050. if (lcd_commands_type != LcdCommands::StopPrint) {
  4051. temp_compensation_start();
  4052. run = true;
  4053. repeatcommand_front(); // repeat G80 with all its parameters
  4054. enquecommand_front_P((PSTR("G28 W0")));
  4055. }
  4056. else {
  4057. mesh_bed_leveling_flag = false;
  4058. }
  4059. break;
  4060. }
  4061. run = false;
  4062. #endif //PINDA_THERMISTOR
  4063. if (lcd_commands_type == LcdCommands::StopPrint) {
  4064. mesh_bed_leveling_flag = false;
  4065. break;
  4066. }
  4067. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4068. CustomMsg custom_message_type_old = custom_message_type;
  4069. unsigned int custom_message_state_old = custom_message_state;
  4070. custom_message_type = CustomMsg::MeshBedLeveling;
  4071. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4072. lcd_update(1);
  4073. mbl.reset(); //reset mesh bed leveling
  4074. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4075. // consumed during the first movements following this statement.
  4076. babystep_undo();
  4077. // Cycle through all points and probe them
  4078. // First move up. During this first movement, the babystepping will be reverted.
  4079. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4080. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4081. // The move to the first calibration point.
  4082. current_position[X_AXIS] = BED_X0;
  4083. current_position[Y_AXIS] = BED_Y0;
  4084. #ifdef SUPPORT_VERBOSITY
  4085. if (verbosity_level >= 1)
  4086. {
  4087. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4088. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4089. }
  4090. #else //SUPPORT_VERBOSITY
  4091. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4092. #endif //SUPPORT_VERBOSITY
  4093. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4094. // Wait until the move is finished.
  4095. st_synchronize();
  4096. uint8_t mesh_point = 0; //index number of calibration point
  4097. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4098. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4099. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4100. #ifdef SUPPORT_VERBOSITY
  4101. if (verbosity_level >= 1) {
  4102. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4103. }
  4104. #endif // SUPPORT_VERBOSITY
  4105. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4106. const char *kill_message = NULL;
  4107. while (mesh_point != nMeasPoints * nMeasPoints) {
  4108. // Get coords of a measuring point.
  4109. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4110. uint8_t iy = mesh_point / nMeasPoints;
  4111. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4112. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4113. custom_message_state--;
  4114. mesh_point++;
  4115. continue; //skip
  4116. }*/
  4117. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4118. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4119. {
  4120. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4121. }
  4122. float z0 = 0.f;
  4123. if (has_z && (mesh_point > 0)) {
  4124. uint16_t z_offset_u = 0;
  4125. if (nMeasPoints == 7) {
  4126. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4127. }
  4128. else {
  4129. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4130. }
  4131. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4132. #ifdef SUPPORT_VERBOSITY
  4133. if (verbosity_level >= 1) {
  4134. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4135. }
  4136. #endif // SUPPORT_VERBOSITY
  4137. }
  4138. // Move Z up to MESH_HOME_Z_SEARCH.
  4139. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4140. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4141. float init_z_bckp = current_position[Z_AXIS];
  4142. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4143. st_synchronize();
  4144. // Move to XY position of the sensor point.
  4145. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4146. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4147. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4148. #ifdef SUPPORT_VERBOSITY
  4149. if (verbosity_level >= 1) {
  4150. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4151. SERIAL_PROTOCOL(mesh_point);
  4152. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4153. }
  4154. #else //SUPPORT_VERBOSITY
  4155. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4156. #endif // SUPPORT_VERBOSITY
  4157. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4158. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4159. st_synchronize();
  4160. // Go down until endstop is hit
  4161. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4162. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4163. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4164. break;
  4165. }
  4166. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4167. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4168. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4169. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4170. st_synchronize();
  4171. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4172. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4173. break;
  4174. }
  4175. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4176. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4177. break;
  4178. }
  4179. }
  4180. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4181. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4182. break;
  4183. }
  4184. #ifdef SUPPORT_VERBOSITY
  4185. if (verbosity_level >= 10) {
  4186. SERIAL_ECHOPGM("X: ");
  4187. MYSERIAL.print(current_position[X_AXIS], 5);
  4188. SERIAL_ECHOLNPGM("");
  4189. SERIAL_ECHOPGM("Y: ");
  4190. MYSERIAL.print(current_position[Y_AXIS], 5);
  4191. SERIAL_PROTOCOLPGM("\n");
  4192. }
  4193. #endif // SUPPORT_VERBOSITY
  4194. float offset_z = 0;
  4195. #ifdef PINDA_THERMISTOR
  4196. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4197. #endif //PINDA_THERMISTOR
  4198. // #ifdef SUPPORT_VERBOSITY
  4199. /* if (verbosity_level >= 1)
  4200. {
  4201. SERIAL_ECHOPGM("mesh bed leveling: ");
  4202. MYSERIAL.print(current_position[Z_AXIS], 5);
  4203. SERIAL_ECHOPGM(" offset: ");
  4204. MYSERIAL.print(offset_z, 5);
  4205. SERIAL_ECHOLNPGM("");
  4206. }*/
  4207. // #endif // SUPPORT_VERBOSITY
  4208. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4209. custom_message_state--;
  4210. mesh_point++;
  4211. lcd_update(1);
  4212. }
  4213. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4214. #ifdef SUPPORT_VERBOSITY
  4215. if (verbosity_level >= 20) {
  4216. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4217. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4218. MYSERIAL.print(current_position[Z_AXIS], 5);
  4219. }
  4220. #endif // SUPPORT_VERBOSITY
  4221. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4222. st_synchronize();
  4223. if (mesh_point != nMeasPoints * nMeasPoints) {
  4224. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4225. bool bState;
  4226. do { // repeat until Z-leveling o.k.
  4227. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4228. #ifdef TMC2130
  4229. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4230. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4231. #else // TMC2130
  4232. lcd_wait_for_click_delay(0); // ~ no timeout
  4233. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4234. #endif // TMC2130
  4235. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4236. bState=enable_z_endstop(false);
  4237. current_position[Z_AXIS] -= 1;
  4238. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4239. st_synchronize();
  4240. enable_z_endstop(true);
  4241. #ifdef TMC2130
  4242. tmc2130_home_enter(Z_AXIS_MASK);
  4243. #endif // TMC2130
  4244. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4245. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4246. st_synchronize();
  4247. #ifdef TMC2130
  4248. tmc2130_home_exit();
  4249. #endif // TMC2130
  4250. enable_z_endstop(bState);
  4251. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4252. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4253. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4254. lcd_update_enable(true); // display / status-line recovery
  4255. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4256. repeatcommand_front(); // re-run (i.e. of "G80")
  4257. break;
  4258. }
  4259. clean_up_after_endstop_move(l_feedmultiply);
  4260. // SERIAL_ECHOLNPGM("clean up finished ");
  4261. #ifndef PINDA_THERMISTOR
  4262. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4263. #endif
  4264. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4265. // SERIAL_ECHOLNPGM("babystep applied");
  4266. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4267. #ifdef SUPPORT_VERBOSITY
  4268. if (verbosity_level >= 1) {
  4269. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4270. }
  4271. #endif // SUPPORT_VERBOSITY
  4272. for (uint8_t i = 0; i < 4; ++i) {
  4273. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4274. long correction = 0;
  4275. if (code_seen(codes[i]))
  4276. correction = code_value_long();
  4277. else if (eeprom_bed_correction_valid) {
  4278. unsigned char *addr = (i < 2) ?
  4279. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4280. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4281. correction = eeprom_read_int8(addr);
  4282. }
  4283. if (correction == 0)
  4284. continue;
  4285. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4286. SERIAL_ERROR_START;
  4287. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4288. SERIAL_ECHO(correction);
  4289. SERIAL_ECHOLNPGM(" microns");
  4290. }
  4291. else {
  4292. float offset = float(correction) * 0.001f;
  4293. switch (i) {
  4294. case 0:
  4295. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4296. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4297. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4298. }
  4299. }
  4300. break;
  4301. case 1:
  4302. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4303. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4304. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4305. }
  4306. }
  4307. break;
  4308. case 2:
  4309. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4310. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4311. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4312. }
  4313. }
  4314. break;
  4315. case 3:
  4316. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4317. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4318. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4319. }
  4320. }
  4321. break;
  4322. }
  4323. }
  4324. }
  4325. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4326. if (nMeasPoints == 3) {
  4327. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4328. }
  4329. /*
  4330. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4331. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4332. SERIAL_PROTOCOLPGM(",");
  4333. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4334. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4335. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4336. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4337. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4338. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4339. SERIAL_PROTOCOLPGM(" ");
  4340. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4341. }
  4342. SERIAL_PROTOCOLPGM("\n");
  4343. }
  4344. */
  4345. if (nMeasPoints == 7 && magnet_elimination) {
  4346. mbl_interpolation(nMeasPoints);
  4347. }
  4348. /*
  4349. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4350. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4351. SERIAL_PROTOCOLPGM(",");
  4352. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4353. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4354. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4355. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4356. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4357. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4358. SERIAL_PROTOCOLPGM(" ");
  4359. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4360. }
  4361. SERIAL_PROTOCOLPGM("\n");
  4362. }
  4363. */
  4364. // SERIAL_ECHOLNPGM("Upsample finished");
  4365. mbl.active = 1; //activate mesh bed leveling
  4366. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4367. go_home_with_z_lift();
  4368. // SERIAL_ECHOLNPGM("Go home finished");
  4369. //unretract (after PINDA preheat retraction)
  4370. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4371. current_position[E_AXIS] += default_retraction;
  4372. plan_buffer_line_curposXYZE(400, active_extruder);
  4373. }
  4374. KEEPALIVE_STATE(NOT_BUSY);
  4375. // Restore custom message state
  4376. lcd_setstatuspgm(_T(WELCOME_MSG));
  4377. custom_message_type = custom_message_type_old;
  4378. custom_message_state = custom_message_state_old;
  4379. mesh_bed_leveling_flag = false;
  4380. mesh_bed_run_from_menu = false;
  4381. lcd_update(2);
  4382. }
  4383. break;
  4384. //! ### G81 - Mesh bed leveling status
  4385. // -----------------------------------------
  4386. /*
  4387. * Prints mesh bed leveling status and bed profile if activated
  4388. */
  4389. case 81:
  4390. if (mbl.active) {
  4391. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4392. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4393. SERIAL_PROTOCOLPGM(",");
  4394. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4395. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4396. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4397. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4398. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4399. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4400. SERIAL_PROTOCOLPGM(" ");
  4401. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4402. }
  4403. SERIAL_PROTOCOLPGM("\n");
  4404. }
  4405. }
  4406. else
  4407. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4408. break;
  4409. #if 0
  4410. /*
  4411. * G82: Single Z probe at current location
  4412. *
  4413. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4414. *
  4415. */
  4416. case 82:
  4417. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4418. int l_feedmultiply = setup_for_endstop_move();
  4419. find_bed_induction_sensor_point_z();
  4420. clean_up_after_endstop_move(l_feedmultiply);
  4421. SERIAL_PROTOCOLPGM("Bed found at: ");
  4422. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4423. SERIAL_PROTOCOLPGM("\n");
  4424. break;
  4425. /*
  4426. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4427. */
  4428. case 83:
  4429. {
  4430. int babystepz = code_seen('S') ? code_value() : 0;
  4431. int BabyPosition = code_seen('P') ? code_value() : 0;
  4432. if (babystepz != 0) {
  4433. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4434. // Is the axis indexed starting with zero or one?
  4435. if (BabyPosition > 4) {
  4436. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4437. }else{
  4438. // Save it to the eeprom
  4439. babystepLoadZ = babystepz;
  4440. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4441. // adjust the Z
  4442. babystepsTodoZadd(babystepLoadZ);
  4443. }
  4444. }
  4445. }
  4446. break;
  4447. /*
  4448. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4449. */
  4450. case 84:
  4451. babystepsTodoZsubtract(babystepLoadZ);
  4452. // babystepLoadZ = 0;
  4453. break;
  4454. /*
  4455. * G85: Prusa3D specific: Pick best babystep
  4456. */
  4457. case 85:
  4458. lcd_pick_babystep();
  4459. break;
  4460. #endif
  4461. /**
  4462. * ### G86 - Disable babystep correction after home
  4463. *
  4464. * This G-code will be performed at the start of a calibration script.
  4465. * (Prusa3D specific)
  4466. */
  4467. case 86:
  4468. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4469. break;
  4470. /**
  4471. * ### G87 - Enable babystep correction after home
  4472. *
  4473. *
  4474. * This G-code will be performed at the end of a calibration script.
  4475. * (Prusa3D specific)
  4476. */
  4477. case 87:
  4478. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4479. break;
  4480. /**
  4481. * ### G88 - Reserved
  4482. *
  4483. * Currently has no effect.
  4484. */
  4485. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4486. case 88:
  4487. break;
  4488. #endif // ENABLE_MESH_BED_LEVELING
  4489. //! ### G90 - Switch off relative mode
  4490. // -------------------------------
  4491. case 90:
  4492. relative_mode = false;
  4493. break;
  4494. //! ### G91 - Switch on relative mode
  4495. // -------------------------------
  4496. case 91:
  4497. relative_mode = true;
  4498. break;
  4499. //! ### G92 - Set position
  4500. // -----------------------------
  4501. case 92:
  4502. if(!code_seen(axis_codes[E_AXIS]))
  4503. st_synchronize();
  4504. for(int8_t i=0; i < NUM_AXIS; i++) {
  4505. if(code_seen(axis_codes[i])) {
  4506. if(i == E_AXIS) {
  4507. current_position[i] = code_value();
  4508. plan_set_e_position(current_position[E_AXIS]);
  4509. }
  4510. else {
  4511. current_position[i] = code_value()+cs.add_homing[i];
  4512. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4513. }
  4514. }
  4515. }
  4516. break;
  4517. //! ### G98 - Activate farm mode
  4518. // -----------------------------------
  4519. case 98:
  4520. farm_mode = 1;
  4521. PingTime = _millis();
  4522. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4523. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4524. SilentModeMenu = SILENT_MODE_OFF;
  4525. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4526. fCheckModeInit(); // alternatively invoke printer reset
  4527. break;
  4528. //! ### G99 - Deactivate farm mode
  4529. // -------------------------------------
  4530. case 99:
  4531. farm_mode = 0;
  4532. lcd_printer_connected();
  4533. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4534. lcd_update(2);
  4535. fCheckModeInit(); // alternatively invoke printer reset
  4536. break;
  4537. default:
  4538. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4539. }
  4540. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4541. gcode_in_progress = 0;
  4542. } // end if(code_seen('G'))
  4543. //! ---------------------------------------------------------------------------------
  4544. else if(code_seen('M'))
  4545. {
  4546. int index;
  4547. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4548. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4549. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4550. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4551. } else
  4552. {
  4553. mcode_in_progress = (int)code_value();
  4554. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4555. switch(mcode_in_progress)
  4556. {
  4557. //! ### M0, M1 - Stop the printer
  4558. // ---------------------------------------------------------------
  4559. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4560. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4561. {
  4562. char *src = strchr_pointer + 2;
  4563. codenum = 0;
  4564. bool hasP = false, hasS = false;
  4565. if (code_seen('P')) {
  4566. codenum = code_value(); // milliseconds to wait
  4567. hasP = codenum > 0;
  4568. }
  4569. if (code_seen('S')) {
  4570. codenum = code_value() * 1000; // seconds to wait
  4571. hasS = codenum > 0;
  4572. }
  4573. starpos = strchr(src, '*');
  4574. if (starpos != NULL) *(starpos) = '\0';
  4575. while (*src == ' ') ++src;
  4576. if (!hasP && !hasS && *src != '\0') {
  4577. lcd_setstatus(src);
  4578. } else {
  4579. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4580. }
  4581. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4582. st_synchronize();
  4583. previous_millis_cmd = _millis();
  4584. if (codenum > 0){
  4585. codenum += _millis(); // keep track of when we started waiting
  4586. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4587. while(_millis() < codenum && !lcd_clicked()){
  4588. manage_heater();
  4589. manage_inactivity(true);
  4590. lcd_update(0);
  4591. }
  4592. KEEPALIVE_STATE(IN_HANDLER);
  4593. lcd_ignore_click(false);
  4594. }else{
  4595. marlin_wait_for_click();
  4596. }
  4597. if (IS_SD_PRINTING)
  4598. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4599. else
  4600. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4601. }
  4602. break;
  4603. //! ### M17 - Enable axes
  4604. // ---------------------------------
  4605. case 17:
  4606. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4607. enable_x();
  4608. enable_y();
  4609. enable_z();
  4610. enable_e0();
  4611. enable_e1();
  4612. enable_e2();
  4613. break;
  4614. #ifdef SDSUPPORT
  4615. //! ### M20 - SD Card file list
  4616. // -----------------------------------
  4617. case 20:
  4618. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4619. card.ls();
  4620. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4621. break;
  4622. //! ### M21 - Init SD card
  4623. // ------------------------------------
  4624. case 21:
  4625. card.initsd();
  4626. break;
  4627. //! ### M22 - Release SD card
  4628. // -----------------------------------
  4629. case 22:
  4630. card.release();
  4631. break;
  4632. //! ### M23 - Select file
  4633. // -----------------------------------
  4634. case 23:
  4635. starpos = (strchr(strchr_pointer + 4,'*'));
  4636. if(starpos!=NULL)
  4637. *(starpos)='\0';
  4638. card.openFile(strchr_pointer + 4,true);
  4639. break;
  4640. //! ### M24 - Start/resume SD print
  4641. // ----------------------------------
  4642. case 24:
  4643. if (isPrintPaused)
  4644. lcd_resume_print();
  4645. else
  4646. {
  4647. failstats_reset_print();
  4648. #ifndef LA_NOCOMPAT
  4649. la10c_reset();
  4650. #endif
  4651. card.startFileprint();
  4652. starttime=_millis();
  4653. }
  4654. break;
  4655. //! ### M26 S\<index\> - Set SD index
  4656. //! Set position in SD card file to index in bytes.
  4657. //! This command is expected to be called after M23 and before M24.
  4658. //! Otherwise effect of this command is undefined.
  4659. // ----------------------------------
  4660. case 26:
  4661. if(card.cardOK && code_seen('S')) {
  4662. long index = code_value_long();
  4663. card.setIndex(index);
  4664. // We don't disable interrupt during update of sdpos_atomic
  4665. // as we expect, that SD card print is not active in this moment
  4666. sdpos_atomic = index;
  4667. }
  4668. break;
  4669. //! ### M27 - Get SD status
  4670. // ----------------------------------
  4671. case 27:
  4672. card.getStatus();
  4673. break;
  4674. //! ### M28 - Start SD write
  4675. // ---------------------------------
  4676. case 28:
  4677. starpos = (strchr(strchr_pointer + 4,'*'));
  4678. if(starpos != NULL){
  4679. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4680. strchr_pointer = strchr(npos,' ') + 1;
  4681. *(starpos) = '\0';
  4682. }
  4683. card.openFile(strchr_pointer+4,false);
  4684. break;
  4685. //! ### M29 - Stop SD write
  4686. // -------------------------------------
  4687. //! Currently has no effect.
  4688. case 29:
  4689. //processed in write to file routine above
  4690. //card,saving = false;
  4691. break;
  4692. //! ### M30 - Delete file <filename>
  4693. // ----------------------------------
  4694. case 30:
  4695. if (card.cardOK){
  4696. card.closefile();
  4697. starpos = (strchr(strchr_pointer + 4,'*'));
  4698. if(starpos != NULL){
  4699. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4700. strchr_pointer = strchr(npos,' ') + 1;
  4701. *(starpos) = '\0';
  4702. }
  4703. card.removeFile(strchr_pointer + 4);
  4704. }
  4705. break;
  4706. //! ### M32 - Select file and start SD print
  4707. // ------------------------------------
  4708. case 32:
  4709. {
  4710. if(card.sdprinting) {
  4711. st_synchronize();
  4712. }
  4713. starpos = (strchr(strchr_pointer + 4,'*'));
  4714. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4715. if(namestartpos==NULL)
  4716. {
  4717. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4718. }
  4719. else
  4720. namestartpos++; //to skip the '!'
  4721. if(starpos!=NULL)
  4722. *(starpos)='\0';
  4723. bool call_procedure=(code_seen('P'));
  4724. if(strchr_pointer>namestartpos)
  4725. call_procedure=false; //false alert, 'P' found within filename
  4726. if( card.cardOK )
  4727. {
  4728. card.openFile(namestartpos,true,!call_procedure);
  4729. if(code_seen('S'))
  4730. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4731. card.setIndex(code_value_long());
  4732. #ifndef LA_NOCOMPAT
  4733. la10c_reset();
  4734. #endif
  4735. card.startFileprint();
  4736. if(!call_procedure)
  4737. starttime=_millis(); //procedure calls count as normal print time.
  4738. }
  4739. } break;
  4740. //! ### M982 - Start SD write
  4741. // ---------------------------------
  4742. case 928:
  4743. starpos = (strchr(strchr_pointer + 5,'*'));
  4744. if(starpos != NULL){
  4745. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4746. strchr_pointer = strchr(npos,' ') + 1;
  4747. *(starpos) = '\0';
  4748. }
  4749. card.openLogFile(strchr_pointer+5);
  4750. break;
  4751. #endif //SDSUPPORT
  4752. //! ### M31 - Report current print time
  4753. // --------------------------------------------------
  4754. case 31: //M31 take time since the start of the SD print or an M109 command
  4755. {
  4756. stoptime=_millis();
  4757. char time[30];
  4758. unsigned long t=(stoptime-starttime)/1000;
  4759. int sec,min;
  4760. min=t/60;
  4761. sec=t%60;
  4762. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4763. SERIAL_ECHO_START;
  4764. SERIAL_ECHOLN(time);
  4765. lcd_setstatus(time);
  4766. autotempShutdown();
  4767. }
  4768. break;
  4769. //! ### M42 - Set pin state
  4770. // -----------------------------
  4771. case 42:
  4772. if (code_seen('S'))
  4773. {
  4774. int pin_status = code_value();
  4775. int pin_number = LED_PIN;
  4776. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4777. pin_number = code_value();
  4778. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4779. {
  4780. if (sensitive_pins[i] == pin_number)
  4781. {
  4782. pin_number = -1;
  4783. break;
  4784. }
  4785. }
  4786. #if defined(FAN_PIN) && FAN_PIN > -1
  4787. if (pin_number == FAN_PIN)
  4788. fanSpeed = pin_status;
  4789. #endif
  4790. if (pin_number > -1)
  4791. {
  4792. pinMode(pin_number, OUTPUT);
  4793. digitalWrite(pin_number, pin_status);
  4794. analogWrite(pin_number, pin_status);
  4795. }
  4796. }
  4797. break;
  4798. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4799. // --------------------------------------------------------------------
  4800. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4801. // Reset the baby step value and the baby step applied flag.
  4802. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4803. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4804. // Reset the skew and offset in both RAM and EEPROM.
  4805. reset_bed_offset_and_skew();
  4806. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4807. // the planner will not perform any adjustments in the XY plane.
  4808. // Wait for the motors to stop and update the current position with the absolute values.
  4809. world2machine_revert_to_uncorrected();
  4810. break;
  4811. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4812. // ------------------------------------------------------
  4813. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4814. {
  4815. int8_t verbosity_level = 0;
  4816. bool only_Z = code_seen('Z');
  4817. #ifdef SUPPORT_VERBOSITY
  4818. if (code_seen('V'))
  4819. {
  4820. // Just 'V' without a number counts as V1.
  4821. char c = strchr_pointer[1];
  4822. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4823. }
  4824. #endif //SUPPORT_VERBOSITY
  4825. gcode_M45(only_Z, verbosity_level);
  4826. }
  4827. break;
  4828. /*
  4829. case 46:
  4830. {
  4831. // M46: Prusa3D: Show the assigned IP address.
  4832. uint8_t ip[4];
  4833. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4834. if (hasIP) {
  4835. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4836. SERIAL_ECHO(int(ip[0]));
  4837. SERIAL_ECHOPGM(".");
  4838. SERIAL_ECHO(int(ip[1]));
  4839. SERIAL_ECHOPGM(".");
  4840. SERIAL_ECHO(int(ip[2]));
  4841. SERIAL_ECHOPGM(".");
  4842. SERIAL_ECHO(int(ip[3]));
  4843. SERIAL_ECHOLNPGM("");
  4844. } else {
  4845. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4846. }
  4847. break;
  4848. }
  4849. */
  4850. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4851. // ----------------------------------------------------
  4852. case 47:
  4853. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4854. lcd_diag_show_end_stops();
  4855. KEEPALIVE_STATE(IN_HANDLER);
  4856. break;
  4857. #if 0
  4858. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4859. {
  4860. // Disable the default update procedure of the display. We will do a modal dialog.
  4861. lcd_update_enable(false);
  4862. // Let the planner use the uncorrected coordinates.
  4863. mbl.reset();
  4864. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4865. // the planner will not perform any adjustments in the XY plane.
  4866. // Wait for the motors to stop and update the current position with the absolute values.
  4867. world2machine_revert_to_uncorrected();
  4868. // Move the print head close to the bed.
  4869. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4871. st_synchronize();
  4872. // Home in the XY plane.
  4873. set_destination_to_current();
  4874. int l_feedmultiply = setup_for_endstop_move();
  4875. home_xy();
  4876. int8_t verbosity_level = 0;
  4877. if (code_seen('V')) {
  4878. // Just 'V' without a number counts as V1.
  4879. char c = strchr_pointer[1];
  4880. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4881. }
  4882. bool success = scan_bed_induction_points(verbosity_level);
  4883. clean_up_after_endstop_move(l_feedmultiply);
  4884. // Print head up.
  4885. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4887. st_synchronize();
  4888. lcd_update_enable(true);
  4889. break;
  4890. }
  4891. #endif
  4892. #ifdef ENABLE_AUTO_BED_LEVELING
  4893. #ifdef Z_PROBE_REPEATABILITY_TEST
  4894. //! ### M48 - Z-Probe repeatability measurement function.
  4895. // ------------------------------------------------------
  4896. //!
  4897. //! _Usage:_
  4898. //!
  4899. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4900. //!
  4901. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4902. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4903. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4904. //! regenerated.
  4905. //!
  4906. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4907. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4908. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4909. //!
  4910. case 48: // M48 Z-Probe repeatability
  4911. {
  4912. #if Z_MIN_PIN == -1
  4913. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4914. #endif
  4915. double sum=0.0;
  4916. double mean=0.0;
  4917. double sigma=0.0;
  4918. double sample_set[50];
  4919. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4920. double X_current, Y_current, Z_current;
  4921. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4922. if (code_seen('V') || code_seen('v')) {
  4923. verbose_level = code_value();
  4924. if (verbose_level<0 || verbose_level>4 ) {
  4925. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4926. goto Sigma_Exit;
  4927. }
  4928. }
  4929. if (verbose_level > 0) {
  4930. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4931. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4932. }
  4933. if (code_seen('n')) {
  4934. n_samples = code_value();
  4935. if (n_samples<4 || n_samples>50 ) {
  4936. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4937. goto Sigma_Exit;
  4938. }
  4939. }
  4940. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4941. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4942. Z_current = st_get_position_mm(Z_AXIS);
  4943. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4944. ext_position = st_get_position_mm(E_AXIS);
  4945. if (code_seen('X') || code_seen('x') ) {
  4946. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4947. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4948. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4949. goto Sigma_Exit;
  4950. }
  4951. }
  4952. if (code_seen('Y') || code_seen('y') ) {
  4953. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4954. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4955. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4956. goto Sigma_Exit;
  4957. }
  4958. }
  4959. if (code_seen('L') || code_seen('l') ) {
  4960. n_legs = code_value();
  4961. if ( n_legs==1 )
  4962. n_legs = 2;
  4963. if ( n_legs<0 || n_legs>15 ) {
  4964. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4965. goto Sigma_Exit;
  4966. }
  4967. }
  4968. //
  4969. // Do all the preliminary setup work. First raise the probe.
  4970. //
  4971. st_synchronize();
  4972. plan_bed_level_matrix.set_to_identity();
  4973. plan_buffer_line( X_current, Y_current, Z_start_location,
  4974. ext_position,
  4975. homing_feedrate[Z_AXIS]/60,
  4976. active_extruder);
  4977. st_synchronize();
  4978. //
  4979. // Now get everything to the specified probe point So we can safely do a probe to
  4980. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4981. // use that as a starting point for each probe.
  4982. //
  4983. if (verbose_level > 2)
  4984. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4985. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4986. ext_position,
  4987. homing_feedrate[X_AXIS]/60,
  4988. active_extruder);
  4989. st_synchronize();
  4990. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4991. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4992. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4993. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4994. //
  4995. // OK, do the inital probe to get us close to the bed.
  4996. // Then retrace the right amount and use that in subsequent probes
  4997. //
  4998. int l_feedmultiply = setup_for_endstop_move();
  4999. run_z_probe();
  5000. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5001. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5002. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5003. ext_position,
  5004. homing_feedrate[X_AXIS]/60,
  5005. active_extruder);
  5006. st_synchronize();
  5007. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5008. for( n=0; n<n_samples; n++) {
  5009. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5010. if ( n_legs) {
  5011. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5012. int rotational_direction, l;
  5013. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5014. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5015. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5016. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5017. //SERIAL_ECHOPAIR(" theta: ",theta);
  5018. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5019. //SERIAL_PROTOCOLLNPGM("");
  5020. for( l=0; l<n_legs-1; l++) {
  5021. if (rotational_direction==1)
  5022. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5023. else
  5024. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5025. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5026. if ( radius<0.0 )
  5027. radius = -radius;
  5028. X_current = X_probe_location + cos(theta) * radius;
  5029. Y_current = Y_probe_location + sin(theta) * radius;
  5030. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5031. X_current = X_MIN_POS;
  5032. if ( X_current>X_MAX_POS)
  5033. X_current = X_MAX_POS;
  5034. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5035. Y_current = Y_MIN_POS;
  5036. if ( Y_current>Y_MAX_POS)
  5037. Y_current = Y_MAX_POS;
  5038. if (verbose_level>3 ) {
  5039. SERIAL_ECHOPAIR("x: ", X_current);
  5040. SERIAL_ECHOPAIR("y: ", Y_current);
  5041. SERIAL_PROTOCOLLNPGM("");
  5042. }
  5043. do_blocking_move_to( X_current, Y_current, Z_current );
  5044. }
  5045. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5046. }
  5047. int l_feedmultiply = setup_for_endstop_move();
  5048. run_z_probe();
  5049. sample_set[n] = current_position[Z_AXIS];
  5050. //
  5051. // Get the current mean for the data points we have so far
  5052. //
  5053. sum=0.0;
  5054. for( j=0; j<=n; j++) {
  5055. sum = sum + sample_set[j];
  5056. }
  5057. mean = sum / (double (n+1));
  5058. //
  5059. // Now, use that mean to calculate the standard deviation for the
  5060. // data points we have so far
  5061. //
  5062. sum=0.0;
  5063. for( j=0; j<=n; j++) {
  5064. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5065. }
  5066. sigma = sqrt( sum / (double (n+1)) );
  5067. if (verbose_level > 1) {
  5068. SERIAL_PROTOCOL(n+1);
  5069. SERIAL_PROTOCOL(" of ");
  5070. SERIAL_PROTOCOL(n_samples);
  5071. SERIAL_PROTOCOLPGM(" z: ");
  5072. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5073. }
  5074. if (verbose_level > 2) {
  5075. SERIAL_PROTOCOL(" mean: ");
  5076. SERIAL_PROTOCOL_F(mean,6);
  5077. SERIAL_PROTOCOL(" sigma: ");
  5078. SERIAL_PROTOCOL_F(sigma,6);
  5079. }
  5080. if (verbose_level > 0)
  5081. SERIAL_PROTOCOLPGM("\n");
  5082. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5083. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5084. st_synchronize();
  5085. }
  5086. _delay(1000);
  5087. clean_up_after_endstop_move(l_feedmultiply);
  5088. // enable_endstops(true);
  5089. if (verbose_level > 0) {
  5090. SERIAL_PROTOCOLPGM("Mean: ");
  5091. SERIAL_PROTOCOL_F(mean, 6);
  5092. SERIAL_PROTOCOLPGM("\n");
  5093. }
  5094. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5095. SERIAL_PROTOCOL_F(sigma, 6);
  5096. SERIAL_PROTOCOLPGM("\n\n");
  5097. Sigma_Exit:
  5098. break;
  5099. }
  5100. #endif // Z_PROBE_REPEATABILITY_TEST
  5101. #endif // ENABLE_AUTO_BED_LEVELING
  5102. //! ### M73 - Set/get print progress
  5103. // -------------------------------------
  5104. //! _Usage:_
  5105. //!
  5106. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5107. //!
  5108. case 73: //M73 show percent done and time remaining
  5109. if(code_seen('P')) print_percent_done_normal = code_value();
  5110. if(code_seen('R')) print_time_remaining_normal = code_value();
  5111. if(code_seen('Q')) print_percent_done_silent = code_value();
  5112. if(code_seen('S')) print_time_remaining_silent = code_value();
  5113. {
  5114. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5115. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5116. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5117. }
  5118. break;
  5119. //! ### M104 - Set hotend temperature
  5120. // -----------------------------------------
  5121. case 104: // M104
  5122. {
  5123. uint8_t extruder;
  5124. if(setTargetedHotend(104,extruder)){
  5125. break;
  5126. }
  5127. if (code_seen('S'))
  5128. {
  5129. setTargetHotendSafe(code_value(), extruder);
  5130. }
  5131. break;
  5132. }
  5133. //! ### M112 - Emergency stop
  5134. // -----------------------------------------
  5135. case 112:
  5136. kill(MSG_M112_KILL, 3);
  5137. break;
  5138. //! ### M140 - Set bed temperature
  5139. // -----------------------------------------
  5140. case 140:
  5141. if (code_seen('S')) setTargetBed(code_value());
  5142. break;
  5143. //! ### M105 - Report temperatures
  5144. // -----------------------------------------
  5145. case 105:
  5146. {
  5147. uint8_t extruder;
  5148. if(setTargetedHotend(105, extruder)){
  5149. break;
  5150. }
  5151. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5152. SERIAL_PROTOCOLPGM("ok T:");
  5153. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5154. SERIAL_PROTOCOLPGM(" /");
  5155. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5156. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5157. SERIAL_PROTOCOLPGM(" B:");
  5158. SERIAL_PROTOCOL_F(degBed(),1);
  5159. SERIAL_PROTOCOLPGM(" /");
  5160. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5161. #endif //TEMP_BED_PIN
  5162. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5163. SERIAL_PROTOCOLPGM(" T");
  5164. SERIAL_PROTOCOL(cur_extruder);
  5165. SERIAL_PROTOCOLPGM(":");
  5166. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5167. SERIAL_PROTOCOLPGM(" /");
  5168. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5169. }
  5170. #else
  5171. SERIAL_ERROR_START;
  5172. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5173. #endif
  5174. SERIAL_PROTOCOLPGM(" @:");
  5175. #ifdef EXTRUDER_WATTS
  5176. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5177. SERIAL_PROTOCOLPGM("W");
  5178. #else
  5179. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5180. #endif
  5181. SERIAL_PROTOCOLPGM(" B@:");
  5182. #ifdef BED_WATTS
  5183. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5184. SERIAL_PROTOCOLPGM("W");
  5185. #else
  5186. SERIAL_PROTOCOL(getHeaterPower(-1));
  5187. #endif
  5188. #ifdef PINDA_THERMISTOR
  5189. SERIAL_PROTOCOLPGM(" P:");
  5190. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5191. #endif //PINDA_THERMISTOR
  5192. #ifdef AMBIENT_THERMISTOR
  5193. SERIAL_PROTOCOLPGM(" A:");
  5194. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5195. #endif //AMBIENT_THERMISTOR
  5196. #ifdef SHOW_TEMP_ADC_VALUES
  5197. {float raw = 0.0;
  5198. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5199. SERIAL_PROTOCOLPGM(" ADC B:");
  5200. SERIAL_PROTOCOL_F(degBed(),1);
  5201. SERIAL_PROTOCOLPGM("C->");
  5202. raw = rawBedTemp();
  5203. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5204. SERIAL_PROTOCOLPGM(" Rb->");
  5205. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5206. SERIAL_PROTOCOLPGM(" Rxb->");
  5207. SERIAL_PROTOCOL_F(raw, 5);
  5208. #endif
  5209. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5210. SERIAL_PROTOCOLPGM(" T");
  5211. SERIAL_PROTOCOL(cur_extruder);
  5212. SERIAL_PROTOCOLPGM(":");
  5213. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5214. SERIAL_PROTOCOLPGM("C->");
  5215. raw = rawHotendTemp(cur_extruder);
  5216. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5217. SERIAL_PROTOCOLPGM(" Rt");
  5218. SERIAL_PROTOCOL(cur_extruder);
  5219. SERIAL_PROTOCOLPGM("->");
  5220. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5221. SERIAL_PROTOCOLPGM(" Rx");
  5222. SERIAL_PROTOCOL(cur_extruder);
  5223. SERIAL_PROTOCOLPGM("->");
  5224. SERIAL_PROTOCOL_F(raw, 5);
  5225. }}
  5226. #endif
  5227. SERIAL_PROTOCOLLN("");
  5228. KEEPALIVE_STATE(NOT_BUSY);
  5229. return;
  5230. break;
  5231. }
  5232. //! ### M109 - Wait for extruder temperature
  5233. //! Parameters (not mandatory):
  5234. //! * S \<temp\> set extruder temperature
  5235. //! * R \<temp\> set extruder temperature
  5236. //!
  5237. //! Parameters S and R are treated identically.
  5238. //! Command always waits for both cool down and heat up.
  5239. //! If no parameters are supplied waits for previously
  5240. //! set extruder temperature.
  5241. // -------------------------------------------------
  5242. case 109:
  5243. {
  5244. uint8_t extruder;
  5245. if(setTargetedHotend(109, extruder)){
  5246. break;
  5247. }
  5248. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5249. heating_status = 1;
  5250. if (farm_mode) { prusa_statistics(1); };
  5251. #ifdef AUTOTEMP
  5252. autotemp_enabled=false;
  5253. #endif
  5254. if (code_seen('S')) {
  5255. setTargetHotendSafe(code_value(), extruder);
  5256. } else if (code_seen('R')) {
  5257. setTargetHotendSafe(code_value(), extruder);
  5258. }
  5259. #ifdef AUTOTEMP
  5260. if (code_seen('S')) autotemp_min=code_value();
  5261. if (code_seen('B')) autotemp_max=code_value();
  5262. if (code_seen('F'))
  5263. {
  5264. autotemp_factor=code_value();
  5265. autotemp_enabled=true;
  5266. }
  5267. #endif
  5268. codenum = _millis();
  5269. /* See if we are heating up or cooling down */
  5270. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5271. KEEPALIVE_STATE(NOT_BUSY);
  5272. cancel_heatup = false;
  5273. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5274. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5275. KEEPALIVE_STATE(IN_HANDLER);
  5276. heating_status = 2;
  5277. if (farm_mode) { prusa_statistics(2); };
  5278. //starttime=_millis();
  5279. previous_millis_cmd = _millis();
  5280. }
  5281. break;
  5282. //! ### M190 - Wait for bed temperature
  5283. //! Parameters (not mandatory):
  5284. //! * S \<temp\> set extruder temperature and wait for heating
  5285. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5286. //!
  5287. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5288. case 190:
  5289. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5290. {
  5291. bool CooldownNoWait = false;
  5292. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5293. heating_status = 3;
  5294. if (farm_mode) { prusa_statistics(1); };
  5295. if (code_seen('S'))
  5296. {
  5297. setTargetBed(code_value());
  5298. CooldownNoWait = true;
  5299. }
  5300. else if (code_seen('R'))
  5301. {
  5302. setTargetBed(code_value());
  5303. }
  5304. codenum = _millis();
  5305. cancel_heatup = false;
  5306. target_direction = isHeatingBed(); // true if heating, false if cooling
  5307. KEEPALIVE_STATE(NOT_BUSY);
  5308. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5309. {
  5310. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5311. {
  5312. if (!farm_mode) {
  5313. float tt = degHotend(active_extruder);
  5314. SERIAL_PROTOCOLPGM("T:");
  5315. SERIAL_PROTOCOL(tt);
  5316. SERIAL_PROTOCOLPGM(" E:");
  5317. SERIAL_PROTOCOL((int)active_extruder);
  5318. SERIAL_PROTOCOLPGM(" B:");
  5319. SERIAL_PROTOCOL_F(degBed(), 1);
  5320. SERIAL_PROTOCOLLN("");
  5321. }
  5322. codenum = _millis();
  5323. }
  5324. manage_heater();
  5325. manage_inactivity();
  5326. lcd_update(0);
  5327. }
  5328. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5329. KEEPALIVE_STATE(IN_HANDLER);
  5330. heating_status = 4;
  5331. previous_millis_cmd = _millis();
  5332. }
  5333. #endif
  5334. break;
  5335. #if defined(FAN_PIN) && FAN_PIN > -1
  5336. //! ### M106 - Set fan speed
  5337. // -------------------------------------------
  5338. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5339. if (code_seen('S')){
  5340. fanSpeed=constrain(code_value(),0,255);
  5341. }
  5342. else {
  5343. fanSpeed=255;
  5344. }
  5345. break;
  5346. //! ### M107 - Fan off
  5347. // -------------------------------
  5348. case 107:
  5349. fanSpeed = 0;
  5350. break;
  5351. #endif //FAN_PIN
  5352. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5353. //! ### M80 - Turn on the Power Supply
  5354. // -------------------------------
  5355. case 80:
  5356. SET_OUTPUT(PS_ON_PIN); //GND
  5357. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5358. // If you have a switch on suicide pin, this is useful
  5359. // if you want to start another print with suicide feature after
  5360. // a print without suicide...
  5361. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5362. SET_OUTPUT(SUICIDE_PIN);
  5363. WRITE(SUICIDE_PIN, HIGH);
  5364. #endif
  5365. powersupply = true;
  5366. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5367. lcd_update(0);
  5368. break;
  5369. //! ### M81 - Turn off Power Supply
  5370. // --------------------------------------
  5371. case 81:
  5372. disable_heater();
  5373. st_synchronize();
  5374. disable_e0();
  5375. disable_e1();
  5376. disable_e2();
  5377. finishAndDisableSteppers();
  5378. fanSpeed = 0;
  5379. _delay(1000); // Wait a little before to switch off
  5380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5381. st_synchronize();
  5382. suicide();
  5383. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5384. SET_OUTPUT(PS_ON_PIN);
  5385. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5386. #endif
  5387. powersupply = false;
  5388. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5389. lcd_update(0);
  5390. break;
  5391. #endif
  5392. //! ### M82 - Set E axis to absolute mode
  5393. // ---------------------------------------
  5394. case 82:
  5395. axis_relative_modes[3] = false;
  5396. break;
  5397. //! ### M83 - Set E axis to relative mode
  5398. // ---------------------------------------
  5399. case 83:
  5400. axis_relative_modes[3] = true;
  5401. break;
  5402. //! ### M84, M18 - Disable steppers
  5403. //---------------------------------------
  5404. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5405. //!
  5406. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5407. //!
  5408. case 18: //compatibility
  5409. case 84: // M84
  5410. if(code_seen('S')){
  5411. stepper_inactive_time = code_value() * 1000;
  5412. }
  5413. else
  5414. {
  5415. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5416. if(all_axis)
  5417. {
  5418. st_synchronize();
  5419. disable_e0();
  5420. disable_e1();
  5421. disable_e2();
  5422. finishAndDisableSteppers();
  5423. }
  5424. else
  5425. {
  5426. st_synchronize();
  5427. if (code_seen('X')) disable_x();
  5428. if (code_seen('Y')) disable_y();
  5429. if (code_seen('Z')) disable_z();
  5430. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5431. if (code_seen('E')) {
  5432. disable_e0();
  5433. disable_e1();
  5434. disable_e2();
  5435. }
  5436. #endif
  5437. }
  5438. }
  5439. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5440. print_time_remaining_init();
  5441. snmm_filaments_used = 0;
  5442. break;
  5443. //! ### M85 - Set max inactive time
  5444. // ---------------------------------------
  5445. case 85: // M85
  5446. if(code_seen('S')) {
  5447. max_inactive_time = code_value() * 1000;
  5448. }
  5449. break;
  5450. #ifdef SAFETYTIMER
  5451. //! ### M86 - Set safety timer expiration time
  5452. //!
  5453. //! _Usage:_
  5454. //! M86 S<seconds>
  5455. //!
  5456. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5457. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5458. case 86:
  5459. if (code_seen('S')) {
  5460. safetytimer_inactive_time = code_value() * 1000;
  5461. safetyTimer.start();
  5462. }
  5463. break;
  5464. #endif
  5465. //! ### M92 Set Axis steps-per-unit
  5466. // ---------------------------------------
  5467. //! Same syntax as G92
  5468. case 92:
  5469. for(int8_t i=0; i < NUM_AXIS; i++)
  5470. {
  5471. if(code_seen(axis_codes[i]))
  5472. {
  5473. if(i == 3) { // E
  5474. float value = code_value();
  5475. if(value < 20.0) {
  5476. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5477. cs.max_jerk[E_AXIS] *= factor;
  5478. max_feedrate[i] *= factor;
  5479. axis_steps_per_sqr_second[i] *= factor;
  5480. }
  5481. cs.axis_steps_per_unit[i] = value;
  5482. }
  5483. else {
  5484. cs.axis_steps_per_unit[i] = code_value();
  5485. }
  5486. }
  5487. }
  5488. break;
  5489. //! ### M110 - Set Line number
  5490. // ---------------------------------------
  5491. case 110:
  5492. if (code_seen('N'))
  5493. gcode_LastN = code_value_long();
  5494. break;
  5495. //! ### M113 - Get or set host keep-alive interval
  5496. // ------------------------------------------
  5497. case 113:
  5498. if (code_seen('S')) {
  5499. host_keepalive_interval = (uint8_t)code_value_short();
  5500. // NOMORE(host_keepalive_interval, 60);
  5501. }
  5502. else {
  5503. SERIAL_ECHO_START;
  5504. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5505. SERIAL_PROTOCOLLN("");
  5506. }
  5507. break;
  5508. //! ### M115 - Firmware info
  5509. // --------------------------------------
  5510. //! Print the firmware info and capabilities
  5511. //!
  5512. //! M115 [V] [U<version>]
  5513. //!
  5514. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5515. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5516. //! pause the print for 30s and ask the user to upgrade the firmware.
  5517. case 115: // M115
  5518. if (code_seen('V')) {
  5519. // Report the Prusa version number.
  5520. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5521. } else if (code_seen('U')) {
  5522. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5523. // pause the print for 30s and ask the user to upgrade the firmware.
  5524. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5525. } else {
  5526. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5527. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5528. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5529. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5530. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5531. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5532. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5533. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5534. SERIAL_ECHOPGM(" UUID:");
  5535. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5536. }
  5537. break;
  5538. //! ### M114 - Get current position
  5539. // -------------------------------------
  5540. case 114:
  5541. gcode_M114();
  5542. break;
  5543. //! ### M117 - Set LCD Message
  5544. // --------------------------------------
  5545. /*
  5546. M117 moved up to get the high priority
  5547. case 117: // M117 display message
  5548. starpos = (strchr(strchr_pointer + 5,'*'));
  5549. if(starpos!=NULL)
  5550. *(starpos)='\0';
  5551. lcd_setstatus(strchr_pointer + 5);
  5552. break;*/
  5553. //! ### M120 - Disable endstops
  5554. // ----------------------------------------
  5555. case 120:
  5556. enable_endstops(false) ;
  5557. break;
  5558. //! ### M121 - Enable endstops
  5559. // ----------------------------------------
  5560. case 121:
  5561. enable_endstops(true) ;
  5562. break;
  5563. //! ### M119 - Get endstop states
  5564. // ----------------------------------------
  5565. case 119:
  5566. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5567. SERIAL_PROTOCOLLN("");
  5568. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5569. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5570. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5571. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5572. }else{
  5573. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5574. }
  5575. SERIAL_PROTOCOLLN("");
  5576. #endif
  5577. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5578. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5579. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5580. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5581. }else{
  5582. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5583. }
  5584. SERIAL_PROTOCOLLN("");
  5585. #endif
  5586. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5587. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5588. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5589. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5590. }else{
  5591. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5592. }
  5593. SERIAL_PROTOCOLLN("");
  5594. #endif
  5595. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5596. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5597. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5598. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5599. }else{
  5600. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5601. }
  5602. SERIAL_PROTOCOLLN("");
  5603. #endif
  5604. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5605. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5606. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5607. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5608. }else{
  5609. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5610. }
  5611. SERIAL_PROTOCOLLN("");
  5612. #endif
  5613. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5614. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5615. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5616. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5617. }else{
  5618. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5619. }
  5620. SERIAL_PROTOCOLLN("");
  5621. #endif
  5622. break;
  5623. //TODO: update for all axis, use for loop
  5624. #ifdef BLINKM
  5625. //! ### M150 - Set RGB(W) Color
  5626. // -------------------------------------------
  5627. case 150:
  5628. {
  5629. byte red;
  5630. byte grn;
  5631. byte blu;
  5632. if(code_seen('R')) red = code_value();
  5633. if(code_seen('U')) grn = code_value();
  5634. if(code_seen('B')) blu = code_value();
  5635. SendColors(red,grn,blu);
  5636. }
  5637. break;
  5638. #endif //BLINKM
  5639. //! ### M200 - Set filament diameter
  5640. // ----------------------------------------
  5641. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5642. {
  5643. uint8_t extruder = active_extruder;
  5644. if(code_seen('T')) {
  5645. extruder = code_value();
  5646. if(extruder >= EXTRUDERS) {
  5647. SERIAL_ECHO_START;
  5648. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5649. break;
  5650. }
  5651. }
  5652. if(code_seen('D')) {
  5653. float diameter = (float)code_value();
  5654. if (diameter == 0.0) {
  5655. // setting any extruder filament size disables volumetric on the assumption that
  5656. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5657. // for all extruders
  5658. cs.volumetric_enabled = false;
  5659. } else {
  5660. cs.filament_size[extruder] = (float)code_value();
  5661. // make sure all extruders have some sane value for the filament size
  5662. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5663. #if EXTRUDERS > 1
  5664. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5665. #if EXTRUDERS > 2
  5666. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5667. #endif
  5668. #endif
  5669. cs.volumetric_enabled = true;
  5670. }
  5671. } else {
  5672. //reserved for setting filament diameter via UFID or filament measuring device
  5673. break;
  5674. }
  5675. calculate_extruder_multipliers();
  5676. }
  5677. break;
  5678. //! ### M201 - Set Print Max Acceleration
  5679. // -------------------------------------------
  5680. case 201:
  5681. for (int8_t i = 0; i < NUM_AXIS; i++)
  5682. {
  5683. if (code_seen(axis_codes[i]))
  5684. {
  5685. unsigned long val = code_value();
  5686. #ifdef TMC2130
  5687. unsigned long val_silent = val;
  5688. if ((i == X_AXIS) || (i == Y_AXIS))
  5689. {
  5690. if (val > NORMAL_MAX_ACCEL_XY)
  5691. val = NORMAL_MAX_ACCEL_XY;
  5692. if (val_silent > SILENT_MAX_ACCEL_XY)
  5693. val_silent = SILENT_MAX_ACCEL_XY;
  5694. }
  5695. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5696. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5697. #else //TMC2130
  5698. max_acceleration_units_per_sq_second[i] = val;
  5699. #endif //TMC2130
  5700. }
  5701. }
  5702. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5703. reset_acceleration_rates();
  5704. break;
  5705. #if 0 // Not used for Sprinter/grbl gen6
  5706. case 202: // M202
  5707. for(int8_t i=0; i < NUM_AXIS; i++) {
  5708. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5709. }
  5710. break;
  5711. #endif
  5712. //! ### M203 - Set Max Feedrate
  5713. // ---------------------------------------
  5714. case 203: // M203 max feedrate mm/sec
  5715. for (int8_t i = 0; i < NUM_AXIS; i++)
  5716. {
  5717. if (code_seen(axis_codes[i]))
  5718. {
  5719. float val = code_value();
  5720. #ifdef TMC2130
  5721. float val_silent = val;
  5722. if ((i == X_AXIS) || (i == Y_AXIS))
  5723. {
  5724. if (val > NORMAL_MAX_FEEDRATE_XY)
  5725. val = NORMAL_MAX_FEEDRATE_XY;
  5726. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5727. val_silent = SILENT_MAX_FEEDRATE_XY;
  5728. }
  5729. cs.max_feedrate_normal[i] = val;
  5730. cs.max_feedrate_silent[i] = val_silent;
  5731. #else //TMC2130
  5732. max_feedrate[i] = val;
  5733. #endif //TMC2130
  5734. }
  5735. }
  5736. break;
  5737. //! ### M204 - Acceleration settings
  5738. // ------------------------------------------
  5739. //! Supporting old format:
  5740. //!
  5741. //! M204 S[normal moves] T[filmanent only moves]
  5742. //!
  5743. //! and new format:
  5744. //!
  5745. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5746. case 204:
  5747. {
  5748. if(code_seen('S')) {
  5749. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5750. // and it is also generated by Slic3r to control acceleration per extrusion type
  5751. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5752. cs.acceleration = code_value();
  5753. // Interpret the T value as retract acceleration in the old Marlin format.
  5754. if(code_seen('T'))
  5755. cs.retract_acceleration = code_value();
  5756. } else {
  5757. // New acceleration format, compatible with the upstream Marlin.
  5758. if(code_seen('P'))
  5759. cs.acceleration = code_value();
  5760. if(code_seen('R'))
  5761. cs.retract_acceleration = code_value();
  5762. if(code_seen('T')) {
  5763. // Interpret the T value as the travel acceleration in the new Marlin format.
  5764. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5765. // travel_acceleration = code_value();
  5766. }
  5767. }
  5768. }
  5769. break;
  5770. //! ### M205 - Set advanced settings
  5771. // ---------------------------------------------
  5772. //! Set some advanced settings related to movement.
  5773. //!
  5774. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5775. /*!
  5776. - `S` - Minimum feedrate for print moves (unit/s)
  5777. - `T` - Minimum feedrate for travel moves (units/s)
  5778. - `B` - Minimum segment time (us)
  5779. - `X` - Maximum X jerk (units/s), similarly for other axes
  5780. */
  5781. case 205:
  5782. {
  5783. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5784. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5785. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5786. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5787. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5788. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5789. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5790. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5791. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5792. }
  5793. break;
  5794. //! ### M206 - Set additional homing offsets
  5795. // ----------------------------------------------
  5796. case 206:
  5797. for(int8_t i=0; i < 3; i++)
  5798. {
  5799. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5800. }
  5801. break;
  5802. #ifdef FWRETRACT
  5803. //! ### M207 - Set firmware retraction
  5804. // --------------------------------------------------
  5805. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5806. {
  5807. if(code_seen('S'))
  5808. {
  5809. cs.retract_length = code_value() ;
  5810. }
  5811. if(code_seen('F'))
  5812. {
  5813. cs.retract_feedrate = code_value()/60 ;
  5814. }
  5815. if(code_seen('Z'))
  5816. {
  5817. cs.retract_zlift = code_value() ;
  5818. }
  5819. }break;
  5820. //! ### M208 - Set retract recover length
  5821. // --------------------------------------------
  5822. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5823. {
  5824. if(code_seen('S'))
  5825. {
  5826. cs.retract_recover_length = code_value() ;
  5827. }
  5828. if(code_seen('F'))
  5829. {
  5830. cs.retract_recover_feedrate = code_value()/60 ;
  5831. }
  5832. }break;
  5833. //! ### M209 - Enable/disable automatict retract
  5834. // ---------------------------------------------
  5835. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5836. {
  5837. if(code_seen('S'))
  5838. {
  5839. int t= code_value() ;
  5840. switch(t)
  5841. {
  5842. case 0:
  5843. {
  5844. cs.autoretract_enabled=false;
  5845. retracted[0]=false;
  5846. #if EXTRUDERS > 1
  5847. retracted[1]=false;
  5848. #endif
  5849. #if EXTRUDERS > 2
  5850. retracted[2]=false;
  5851. #endif
  5852. }break;
  5853. case 1:
  5854. {
  5855. cs.autoretract_enabled=true;
  5856. retracted[0]=false;
  5857. #if EXTRUDERS > 1
  5858. retracted[1]=false;
  5859. #endif
  5860. #if EXTRUDERS > 2
  5861. retracted[2]=false;
  5862. #endif
  5863. }break;
  5864. default:
  5865. SERIAL_ECHO_START;
  5866. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5867. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5868. SERIAL_ECHOLNPGM("\"(1)");
  5869. }
  5870. }
  5871. }break;
  5872. #endif // FWRETRACT
  5873. #if EXTRUDERS > 1
  5874. // ### M218 - Set hotend offset
  5875. // ----------------------------------------
  5876. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5877. {
  5878. uint8_t extruder;
  5879. if(setTargetedHotend(218, extruder)){
  5880. break;
  5881. }
  5882. if(code_seen('X'))
  5883. {
  5884. extruder_offset[X_AXIS][extruder] = code_value();
  5885. }
  5886. if(code_seen('Y'))
  5887. {
  5888. extruder_offset[Y_AXIS][extruder] = code_value();
  5889. }
  5890. SERIAL_ECHO_START;
  5891. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5892. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5893. {
  5894. SERIAL_ECHO(" ");
  5895. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5896. SERIAL_ECHO(",");
  5897. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5898. }
  5899. SERIAL_ECHOLN("");
  5900. }break;
  5901. #endif
  5902. //! ### M220 Set feedrate percentage
  5903. // -----------------------------------------------
  5904. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5905. {
  5906. if (code_seen('B')) //backup current speed factor
  5907. {
  5908. saved_feedmultiply_mm = feedmultiply;
  5909. }
  5910. if(code_seen('S'))
  5911. {
  5912. feedmultiply = code_value() ;
  5913. }
  5914. if (code_seen('R')) { //restore previous feedmultiply
  5915. feedmultiply = saved_feedmultiply_mm;
  5916. }
  5917. }
  5918. break;
  5919. //! ### M221 - Set extrude factor override percentage
  5920. // ----------------------------------------------------
  5921. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5922. {
  5923. if(code_seen('S'))
  5924. {
  5925. int tmp_code = code_value();
  5926. if (code_seen('T'))
  5927. {
  5928. uint8_t extruder;
  5929. if(setTargetedHotend(221, extruder)){
  5930. break;
  5931. }
  5932. extruder_multiply[extruder] = tmp_code;
  5933. }
  5934. else
  5935. {
  5936. extrudemultiply = tmp_code ;
  5937. }
  5938. }
  5939. calculate_extruder_multipliers();
  5940. }
  5941. break;
  5942. //! ### M226 - Wait for Pin state
  5943. // ------------------------------------------
  5944. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5945. {
  5946. if(code_seen('P')){
  5947. int pin_number = code_value(); // pin number
  5948. int pin_state = -1; // required pin state - default is inverted
  5949. if(code_seen('S')) pin_state = code_value(); // required pin state
  5950. if(pin_state >= -1 && pin_state <= 1){
  5951. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5952. {
  5953. if (sensitive_pins[i] == pin_number)
  5954. {
  5955. pin_number = -1;
  5956. break;
  5957. }
  5958. }
  5959. if (pin_number > -1)
  5960. {
  5961. int target = LOW;
  5962. st_synchronize();
  5963. pinMode(pin_number, INPUT);
  5964. switch(pin_state){
  5965. case 1:
  5966. target = HIGH;
  5967. break;
  5968. case 0:
  5969. target = LOW;
  5970. break;
  5971. case -1:
  5972. target = !digitalRead(pin_number);
  5973. break;
  5974. }
  5975. while(digitalRead(pin_number) != target){
  5976. manage_heater();
  5977. manage_inactivity();
  5978. lcd_update(0);
  5979. }
  5980. }
  5981. }
  5982. }
  5983. }
  5984. break;
  5985. #if NUM_SERVOS > 0
  5986. //! ### M280 - Set/Get servo position
  5987. // --------------------------------------------
  5988. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5989. {
  5990. int servo_index = -1;
  5991. int servo_position = 0;
  5992. if (code_seen('P'))
  5993. servo_index = code_value();
  5994. if (code_seen('S')) {
  5995. servo_position = code_value();
  5996. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5997. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5998. servos[servo_index].attach(0);
  5999. #endif
  6000. servos[servo_index].write(servo_position);
  6001. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6002. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6003. servos[servo_index].detach();
  6004. #endif
  6005. }
  6006. else {
  6007. SERIAL_ECHO_START;
  6008. SERIAL_ECHO("Servo ");
  6009. SERIAL_ECHO(servo_index);
  6010. SERIAL_ECHOLN(" out of range");
  6011. }
  6012. }
  6013. else if (servo_index >= 0) {
  6014. SERIAL_PROTOCOL(MSG_OK);
  6015. SERIAL_PROTOCOL(" Servo ");
  6016. SERIAL_PROTOCOL(servo_index);
  6017. SERIAL_PROTOCOL(": ");
  6018. SERIAL_PROTOCOL(servos[servo_index].read());
  6019. SERIAL_PROTOCOLLN("");
  6020. }
  6021. }
  6022. break;
  6023. #endif // NUM_SERVOS > 0
  6024. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6025. //! ### M300 - Play tone
  6026. // -----------------------
  6027. case 300: // M300
  6028. {
  6029. int beepS = code_seen('S') ? code_value() : 110;
  6030. int beepP = code_seen('P') ? code_value() : 1000;
  6031. if (beepS > 0)
  6032. {
  6033. #if BEEPER > 0
  6034. Sound_MakeCustom(beepP,beepS,false);
  6035. #endif
  6036. }
  6037. else
  6038. {
  6039. _delay(beepP);
  6040. }
  6041. }
  6042. break;
  6043. #endif // M300
  6044. #ifdef PIDTEMP
  6045. //! ### M301 - Set hotend PID
  6046. // ---------------------------------------
  6047. case 301:
  6048. {
  6049. if(code_seen('P')) cs.Kp = code_value();
  6050. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6051. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6052. #ifdef PID_ADD_EXTRUSION_RATE
  6053. if(code_seen('C')) Kc = code_value();
  6054. #endif
  6055. updatePID();
  6056. SERIAL_PROTOCOLRPGM(MSG_OK);
  6057. SERIAL_PROTOCOL(" p:");
  6058. SERIAL_PROTOCOL(cs.Kp);
  6059. SERIAL_PROTOCOL(" i:");
  6060. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6061. SERIAL_PROTOCOL(" d:");
  6062. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6063. #ifdef PID_ADD_EXTRUSION_RATE
  6064. SERIAL_PROTOCOL(" c:");
  6065. //Kc does not have scaling applied above, or in resetting defaults
  6066. SERIAL_PROTOCOL(Kc);
  6067. #endif
  6068. SERIAL_PROTOCOLLN("");
  6069. }
  6070. break;
  6071. #endif //PIDTEMP
  6072. #ifdef PIDTEMPBED
  6073. //! ### M304 - Set bed PID
  6074. // --------------------------------------
  6075. case 304:
  6076. {
  6077. if(code_seen('P')) cs.bedKp = code_value();
  6078. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6079. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6080. updatePID();
  6081. SERIAL_PROTOCOLRPGM(MSG_OK);
  6082. SERIAL_PROTOCOL(" p:");
  6083. SERIAL_PROTOCOL(cs.bedKp);
  6084. SERIAL_PROTOCOL(" i:");
  6085. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6086. SERIAL_PROTOCOL(" d:");
  6087. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6088. SERIAL_PROTOCOLLN("");
  6089. }
  6090. break;
  6091. #endif //PIDTEMP
  6092. //! ### M240 - Trigger camera
  6093. // --------------------------------------------
  6094. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6095. {
  6096. #ifdef CHDK
  6097. SET_OUTPUT(CHDK);
  6098. WRITE(CHDK, HIGH);
  6099. chdkHigh = _millis();
  6100. chdkActive = true;
  6101. #else
  6102. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6103. const uint8_t NUM_PULSES=16;
  6104. const float PULSE_LENGTH=0.01524;
  6105. for(int i=0; i < NUM_PULSES; i++) {
  6106. WRITE(PHOTOGRAPH_PIN, HIGH);
  6107. _delay_ms(PULSE_LENGTH);
  6108. WRITE(PHOTOGRAPH_PIN, LOW);
  6109. _delay_ms(PULSE_LENGTH);
  6110. }
  6111. _delay(7.33);
  6112. for(int i=0; i < NUM_PULSES; i++) {
  6113. WRITE(PHOTOGRAPH_PIN, HIGH);
  6114. _delay_ms(PULSE_LENGTH);
  6115. WRITE(PHOTOGRAPH_PIN, LOW);
  6116. _delay_ms(PULSE_LENGTH);
  6117. }
  6118. #endif
  6119. #endif //chdk end if
  6120. }
  6121. break;
  6122. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6123. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6124. // -------------------------------------------------------------------
  6125. case 302:
  6126. {
  6127. float temp = .0;
  6128. if (code_seen('S')) temp=code_value();
  6129. set_extrude_min_temp(temp);
  6130. }
  6131. break;
  6132. #endif
  6133. //! ### M303 - PID autotune
  6134. // -------------------------------------
  6135. case 303:
  6136. {
  6137. float temp = 150.0;
  6138. int e=0;
  6139. int c=5;
  6140. if (code_seen('E')) e=code_value();
  6141. if (e<0)
  6142. temp=70;
  6143. if (code_seen('S')) temp=code_value();
  6144. if (code_seen('C')) c=code_value();
  6145. PID_autotune(temp, e, c);
  6146. }
  6147. break;
  6148. //! ### M400 - Wait for all moves to finish
  6149. // -----------------------------------------
  6150. case 400:
  6151. {
  6152. st_synchronize();
  6153. }
  6154. break;
  6155. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6156. // ----------------------------------------------
  6157. case 403:
  6158. {
  6159. // currently three different materials are needed (default, flex and PVA)
  6160. // add storing this information for different load/unload profiles etc. in the future
  6161. // firmware does not wait for "ok" from mmu
  6162. if (mmu_enabled)
  6163. {
  6164. uint8_t extruder = 255;
  6165. uint8_t filament = FILAMENT_UNDEFINED;
  6166. if(code_seen('E')) extruder = code_value();
  6167. if(code_seen('F')) filament = code_value();
  6168. mmu_set_filament_type(extruder, filament);
  6169. }
  6170. }
  6171. break;
  6172. //! ### M500 - Store settings in EEPROM
  6173. // -----------------------------------------
  6174. case 500:
  6175. {
  6176. Config_StoreSettings();
  6177. }
  6178. break;
  6179. //! ### M501 - Read settings from EEPROM
  6180. // ----------------------------------------
  6181. case 501:
  6182. {
  6183. Config_RetrieveSettings();
  6184. }
  6185. break;
  6186. //! ### M502 - Revert all settings to factory default
  6187. // -------------------------------------------------
  6188. case 502:
  6189. {
  6190. Config_ResetDefault();
  6191. }
  6192. break;
  6193. //! ### M503 - Repport all settings currently in memory
  6194. // -------------------------------------------------
  6195. case 503:
  6196. {
  6197. Config_PrintSettings();
  6198. }
  6199. break;
  6200. //! ### M509 - Force language selection
  6201. // ------------------------------------------------
  6202. case 509:
  6203. {
  6204. lang_reset();
  6205. SERIAL_ECHO_START;
  6206. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6207. }
  6208. break;
  6209. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6210. //! ### M540 - Abort print on endstop hit (enable/disable)
  6211. // -----------------------------------------------------
  6212. case 540:
  6213. {
  6214. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6215. }
  6216. break;
  6217. #endif
  6218. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6219. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6220. {
  6221. float value;
  6222. if (code_seen('Z'))
  6223. {
  6224. value = code_value();
  6225. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6226. {
  6227. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6228. SERIAL_ECHO_START;
  6229. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6230. SERIAL_PROTOCOLLN("");
  6231. }
  6232. else
  6233. {
  6234. SERIAL_ECHO_START;
  6235. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6236. SERIAL_ECHORPGM(MSG_Z_MIN);
  6237. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6238. SERIAL_ECHORPGM(MSG_Z_MAX);
  6239. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6240. SERIAL_PROTOCOLLN("");
  6241. }
  6242. }
  6243. else
  6244. {
  6245. SERIAL_ECHO_START;
  6246. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6247. SERIAL_ECHO(-cs.zprobe_zoffset);
  6248. SERIAL_PROTOCOLLN("");
  6249. }
  6250. break;
  6251. }
  6252. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6253. #ifdef FILAMENTCHANGEENABLE
  6254. //! ### M600 - Initiate Filament change procedure
  6255. // --------------------------------------
  6256. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6257. {
  6258. st_synchronize();
  6259. float x_position = current_position[X_AXIS];
  6260. float y_position = current_position[Y_AXIS];
  6261. float z_shift = 0; // is it necessary to be a float?
  6262. float e_shift_init = 0;
  6263. float e_shift_late = 0;
  6264. bool automatic = false;
  6265. //Retract extruder
  6266. if(code_seen('E'))
  6267. {
  6268. e_shift_init = code_value();
  6269. }
  6270. else
  6271. {
  6272. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6273. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6274. #endif
  6275. }
  6276. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6277. if (code_seen('L'))
  6278. {
  6279. e_shift_late = code_value();
  6280. }
  6281. else
  6282. {
  6283. #ifdef FILAMENTCHANGE_FINALRETRACT
  6284. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6285. #endif
  6286. }
  6287. //Lift Z
  6288. if(code_seen('Z'))
  6289. {
  6290. z_shift = code_value();
  6291. }
  6292. else
  6293. {
  6294. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6295. }
  6296. //Move XY to side
  6297. if(code_seen('X'))
  6298. {
  6299. x_position = code_value();
  6300. }
  6301. else
  6302. {
  6303. #ifdef FILAMENTCHANGE_XPOS
  6304. x_position = FILAMENTCHANGE_XPOS;
  6305. #endif
  6306. }
  6307. if(code_seen('Y'))
  6308. {
  6309. y_position = code_value();
  6310. }
  6311. else
  6312. {
  6313. #ifdef FILAMENTCHANGE_YPOS
  6314. y_position = FILAMENTCHANGE_YPOS ;
  6315. #endif
  6316. }
  6317. if (mmu_enabled && code_seen("AUTO"))
  6318. automatic = true;
  6319. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6320. }
  6321. break;
  6322. #endif //FILAMENTCHANGEENABLE
  6323. //! ### M25 - Pause SD print
  6324. //! ### M601 - Pause print
  6325. //! ### M125 - Pause print (TODO: not implemented)
  6326. // -------------------------------
  6327. case 25:
  6328. case 601:
  6329. {
  6330. if (!isPrintPaused)
  6331. {
  6332. st_synchronize();
  6333. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6334. lcd_pause_print();
  6335. }
  6336. }
  6337. break;
  6338. //! ### M602 - Resume print
  6339. // -------------------------------
  6340. case 602: {
  6341. if (isPrintPaused)
  6342. lcd_resume_print();
  6343. }
  6344. break;
  6345. //! ### M603 - Stop print
  6346. // -------------------------------
  6347. case 603: {
  6348. lcd_print_stop();
  6349. }
  6350. break;
  6351. #ifdef PINDA_THERMISTOR
  6352. //! ### M860 - Wait for extruder temperature (PINDA)
  6353. // --------------------------------------------------------------
  6354. /*!
  6355. Wait for PINDA thermistor to reach target temperature
  6356. M860 [S<target_temperature>]
  6357. */
  6358. case 860:
  6359. {
  6360. int set_target_pinda = 0;
  6361. if (code_seen('S')) {
  6362. set_target_pinda = code_value();
  6363. }
  6364. else {
  6365. break;
  6366. }
  6367. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6368. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6369. SERIAL_PROTOCOL(set_target_pinda);
  6370. SERIAL_PROTOCOLLN("");
  6371. codenum = _millis();
  6372. cancel_heatup = false;
  6373. bool is_pinda_cooling = false;
  6374. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6375. is_pinda_cooling = true;
  6376. }
  6377. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6378. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6379. {
  6380. SERIAL_PROTOCOLPGM("P:");
  6381. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6382. SERIAL_PROTOCOLPGM("/");
  6383. SERIAL_PROTOCOL(set_target_pinda);
  6384. SERIAL_PROTOCOLLN("");
  6385. codenum = _millis();
  6386. }
  6387. manage_heater();
  6388. manage_inactivity();
  6389. lcd_update(0);
  6390. }
  6391. LCD_MESSAGERPGM(MSG_OK);
  6392. break;
  6393. }
  6394. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6395. // -----------------------------------------------------------
  6396. /*!
  6397. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6398. - `?` - Print current EEPROM offset values
  6399. - `!` - Set factory default values
  6400. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6401. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6402. */
  6403. case 861:
  6404. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6405. uint8_t cal_status = calibration_status_pinda();
  6406. int16_t usteps = 0;
  6407. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6408. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6409. for (uint8_t i = 0; i < 6; i++)
  6410. {
  6411. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6412. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6413. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6414. SERIAL_PROTOCOLPGM(", ");
  6415. SERIAL_PROTOCOL(35 + (i * 5));
  6416. SERIAL_PROTOCOLPGM(", ");
  6417. SERIAL_PROTOCOL(usteps);
  6418. SERIAL_PROTOCOLPGM(", ");
  6419. SERIAL_PROTOCOL(mm * 1000);
  6420. SERIAL_PROTOCOLLN("");
  6421. }
  6422. }
  6423. else if (code_seen('!')) { // ! - Set factory default values
  6424. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6425. int16_t z_shift = 8; //40C - 20um - 8usteps
  6426. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6427. z_shift = 24; //45C - 60um - 24usteps
  6428. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6429. z_shift = 48; //50C - 120um - 48usteps
  6430. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6431. z_shift = 80; //55C - 200um - 80usteps
  6432. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6433. z_shift = 120; //60C - 300um - 120usteps
  6434. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6435. SERIAL_PROTOCOLLN("factory restored");
  6436. }
  6437. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6438. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6439. int16_t z_shift = 0;
  6440. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6441. SERIAL_PROTOCOLLN("zerorized");
  6442. }
  6443. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6444. int16_t usteps = code_value();
  6445. if (code_seen('I')) {
  6446. uint8_t index = code_value();
  6447. if (index < 5) {
  6448. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6449. SERIAL_PROTOCOLLN("OK");
  6450. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6451. for (uint8_t i = 0; i < 6; i++)
  6452. {
  6453. usteps = 0;
  6454. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6455. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6456. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6457. SERIAL_PROTOCOLPGM(", ");
  6458. SERIAL_PROTOCOL(35 + (i * 5));
  6459. SERIAL_PROTOCOLPGM(", ");
  6460. SERIAL_PROTOCOL(usteps);
  6461. SERIAL_PROTOCOLPGM(", ");
  6462. SERIAL_PROTOCOL(mm * 1000);
  6463. SERIAL_PROTOCOLLN("");
  6464. }
  6465. }
  6466. }
  6467. }
  6468. else {
  6469. SERIAL_PROTOCOLPGM("no valid command");
  6470. }
  6471. break;
  6472. #endif //PINDA_THERMISTOR
  6473. //! ### M862 - Print checking
  6474. // ----------------------------------------------
  6475. /*!
  6476. Checks the parameters of the printer and gcode and performs compatibility check
  6477. - M862.1 { P<nozzle_diameter> | Q }
  6478. - M862.2 { P<model_code> | Q }
  6479. - M862.3 { P"<model_name>" | Q }
  6480. - M862.4 { P<fw_version> | Q }
  6481. - M862.5 { P<gcode_level> | Q }
  6482. When run with P<> argument, the check is performed against the input value.
  6483. When run with Q argument, the current value is shown.
  6484. M862.3 accepts text identifiers of printer types too.
  6485. The syntax of M862.3 is (note the quotes around the type):
  6486. M862.3 P "MK3S"
  6487. Accepted printer type identifiers and their numeric counterparts:
  6488. - MK1 (100)
  6489. - MK2 (200)
  6490. - MK2MM (201)
  6491. - MK2S (202)
  6492. - MK2SMM (203)
  6493. - MK2.5 (250)
  6494. - MK2.5MMU2 (20250)
  6495. - MK2.5S (252)
  6496. - MK2.5SMMU2S (20252)
  6497. - MK3 (300)
  6498. - MK3MMU2 (20300)
  6499. - MK3S (302)
  6500. - MK3SMMU2S (20302)
  6501. */
  6502. case 862: // M862: print checking
  6503. float nDummy;
  6504. uint8_t nCommand;
  6505. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6506. switch((ClPrintChecking)nCommand)
  6507. {
  6508. case ClPrintChecking::_Nozzle: // ~ .1
  6509. uint16_t nDiameter;
  6510. if(code_seen('P'))
  6511. {
  6512. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6513. nozzle_diameter_check(nDiameter);
  6514. }
  6515. /*
  6516. else if(code_seen('S')&&farm_mode)
  6517. {
  6518. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6519. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6520. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6521. }
  6522. */
  6523. else if(code_seen('Q'))
  6524. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6525. break;
  6526. case ClPrintChecking::_Model: // ~ .2
  6527. if(code_seen('P'))
  6528. {
  6529. uint16_t nPrinterModel;
  6530. nPrinterModel=(uint16_t)code_value_long();
  6531. printer_model_check(nPrinterModel);
  6532. }
  6533. else if(code_seen('Q'))
  6534. SERIAL_PROTOCOLLN(nPrinterType);
  6535. break;
  6536. case ClPrintChecking::_Smodel: // ~ .3
  6537. if(code_seen('P'))
  6538. printer_smodel_check(strchr_pointer);
  6539. else if(code_seen('Q'))
  6540. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6541. break;
  6542. case ClPrintChecking::_Version: // ~ .4
  6543. if(code_seen('P'))
  6544. fw_version_check(++strchr_pointer);
  6545. else if(code_seen('Q'))
  6546. SERIAL_PROTOCOLLN(FW_VERSION);
  6547. break;
  6548. case ClPrintChecking::_Gcode: // ~ .5
  6549. if(code_seen('P'))
  6550. {
  6551. uint16_t nGcodeLevel;
  6552. nGcodeLevel=(uint16_t)code_value_long();
  6553. gcode_level_check(nGcodeLevel);
  6554. }
  6555. else if(code_seen('Q'))
  6556. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6557. break;
  6558. }
  6559. break;
  6560. #ifdef LIN_ADVANCE
  6561. //! ### M900 - Set Linear advance options
  6562. // ----------------------------------------------
  6563. case 900:
  6564. gcode_M900();
  6565. break;
  6566. #endif
  6567. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6568. // ---------------------------------------------------------------
  6569. case 907:
  6570. {
  6571. #ifdef TMC2130
  6572. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6573. for (int i = 0; i < NUM_AXIS; i++)
  6574. if(code_seen(axis_codes[i]))
  6575. {
  6576. long cur_mA = code_value_long();
  6577. uint8_t val = tmc2130_cur2val(cur_mA);
  6578. tmc2130_set_current_h(i, val);
  6579. tmc2130_set_current_r(i, val);
  6580. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6581. }
  6582. #else //TMC2130
  6583. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6584. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6585. if(code_seen('B')) st_current_set(4,code_value());
  6586. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6587. #endif
  6588. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6589. if(code_seen('X')) st_current_set(0, code_value());
  6590. #endif
  6591. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6592. if(code_seen('Z')) st_current_set(1, code_value());
  6593. #endif
  6594. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6595. if(code_seen('E')) st_current_set(2, code_value());
  6596. #endif
  6597. #endif //TMC2130
  6598. }
  6599. break;
  6600. //! ### M908 - Control digital trimpot directly
  6601. // ---------------------------------------------------------
  6602. case 908:
  6603. {
  6604. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6605. uint8_t channel,current;
  6606. if(code_seen('P')) channel=code_value();
  6607. if(code_seen('S')) current=code_value();
  6608. digitalPotWrite(channel, current);
  6609. #endif
  6610. }
  6611. break;
  6612. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6613. //! ### M910 - TMC2130 init
  6614. // -----------------------------------------------
  6615. case 910:
  6616. {
  6617. tmc2130_init();
  6618. }
  6619. break;
  6620. //! ### M911 - Set TMC2130 holding currents
  6621. // -------------------------------------------------
  6622. case 911:
  6623. {
  6624. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6625. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6626. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6627. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6628. }
  6629. break;
  6630. //! ### M912 - Set TMC2130 running currents
  6631. // -----------------------------------------------
  6632. case 912:
  6633. {
  6634. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6635. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6636. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6637. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6638. }
  6639. break;
  6640. //! ### M913 - Print TMC2130 currents
  6641. // -----------------------------
  6642. case 913:
  6643. {
  6644. tmc2130_print_currents();
  6645. }
  6646. break;
  6647. //! ### M914 - Set TMC2130 normal mode
  6648. // ------------------------------
  6649. case 914:
  6650. {
  6651. tmc2130_mode = TMC2130_MODE_NORMAL;
  6652. update_mode_profile();
  6653. tmc2130_init();
  6654. }
  6655. break;
  6656. //! ### M95 - Set TMC2130 silent mode
  6657. // ------------------------------
  6658. case 915:
  6659. {
  6660. tmc2130_mode = TMC2130_MODE_SILENT;
  6661. update_mode_profile();
  6662. tmc2130_init();
  6663. }
  6664. break;
  6665. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6666. // -------------------------------------------------------
  6667. case 916:
  6668. {
  6669. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6670. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6671. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6672. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6673. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6674. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6675. }
  6676. break;
  6677. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6678. // --------------------------------------------------------------
  6679. case 917:
  6680. {
  6681. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6682. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6683. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6684. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6685. }
  6686. break;
  6687. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6688. // -------------------------------------------------------------
  6689. case 918:
  6690. {
  6691. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6692. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6693. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6694. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6695. }
  6696. break;
  6697. #endif //TMC2130_SERVICE_CODES_M910_M918
  6698. //! ### M350 - Set microstepping mode
  6699. // ---------------------------------------------------
  6700. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6701. case 350:
  6702. {
  6703. #ifdef TMC2130
  6704. for (int i=0; i<NUM_AXIS; i++)
  6705. {
  6706. if(code_seen(axis_codes[i]))
  6707. {
  6708. uint16_t res_new = code_value();
  6709. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  6710. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  6711. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  6712. if (res_valid)
  6713. {
  6714. st_synchronize();
  6715. uint16_t res = tmc2130_get_res(i);
  6716. tmc2130_set_res(i, res_new);
  6717. cs.axis_ustep_resolution[i] = res_new;
  6718. if (res_new > res)
  6719. {
  6720. uint16_t fac = (res_new / res);
  6721. cs.axis_steps_per_unit[i] *= fac;
  6722. position[i] *= fac;
  6723. }
  6724. else
  6725. {
  6726. uint16_t fac = (res / res_new);
  6727. cs.axis_steps_per_unit[i] /= fac;
  6728. position[i] /= fac;
  6729. }
  6730. }
  6731. }
  6732. }
  6733. #else //TMC2130
  6734. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6735. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6736. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6737. if(code_seen('B')) microstep_mode(4,code_value());
  6738. microstep_readings();
  6739. #endif
  6740. #endif //TMC2130
  6741. }
  6742. break;
  6743. //! ### M351 - Toggle Microstep Pins
  6744. // -----------------------------------
  6745. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6746. //!
  6747. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6748. case 351:
  6749. {
  6750. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6751. if(code_seen('S')) switch((int)code_value())
  6752. {
  6753. case 1:
  6754. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6755. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6756. break;
  6757. case 2:
  6758. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6759. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6760. break;
  6761. }
  6762. microstep_readings();
  6763. #endif
  6764. }
  6765. break;
  6766. //! ### M701 - Load filament
  6767. // -------------------------
  6768. case 701:
  6769. {
  6770. if (mmu_enabled && code_seen('E'))
  6771. tmp_extruder = code_value();
  6772. gcode_M701();
  6773. }
  6774. break;
  6775. //! ### M702 - Unload filament
  6776. // ------------------------
  6777. /*!
  6778. M702 [U C]
  6779. - `U` Unload all filaments used in current print
  6780. - `C` Unload just current filament
  6781. - without any parameters unload all filaments
  6782. */
  6783. case 702:
  6784. {
  6785. #ifdef SNMM
  6786. if (code_seen('U'))
  6787. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6788. else if (code_seen('C'))
  6789. extr_unload(); //! if "C" unload just current filament
  6790. else
  6791. extr_unload_all(); //! otherwise unload all filaments
  6792. #else
  6793. if (code_seen('C')) {
  6794. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6795. }
  6796. else {
  6797. if(mmu_enabled) extr_unload(); //! unload current filament
  6798. else unload_filament();
  6799. }
  6800. #endif //SNMM
  6801. }
  6802. break;
  6803. //! ### M999 - Restart after being stopped
  6804. // ------------------------------------
  6805. case 999:
  6806. Stopped = false;
  6807. lcd_reset_alert_level();
  6808. gcode_LastN = Stopped_gcode_LastN;
  6809. FlushSerialRequestResend();
  6810. break;
  6811. default:
  6812. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6813. }
  6814. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6815. mcode_in_progress = 0;
  6816. }
  6817. }
  6818. // end if(code_seen('M')) (end of M codes)
  6819. //! -----------------------------------------------------------------------------------------
  6820. //! T Codes
  6821. //!
  6822. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6823. //! select filament in case of MMU_V2
  6824. //! if extruder is "?", open menu to let the user select extruder/filament
  6825. //!
  6826. //! For MMU_V2:
  6827. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6828. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6829. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6830. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6831. else if(code_seen('T'))
  6832. {
  6833. int index;
  6834. bool load_to_nozzle = false;
  6835. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6836. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6837. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6838. SERIAL_ECHOLNPGM("Invalid T code.");
  6839. }
  6840. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6841. if (mmu_enabled)
  6842. {
  6843. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6844. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6845. {
  6846. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6847. }
  6848. else
  6849. {
  6850. st_synchronize();
  6851. mmu_command(MmuCmd::T0 + tmp_extruder);
  6852. manage_response(true, true, MMU_TCODE_MOVE);
  6853. }
  6854. }
  6855. }
  6856. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6857. if (mmu_enabled)
  6858. {
  6859. st_synchronize();
  6860. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6861. mmu_extruder = tmp_extruder; //filament change is finished
  6862. mmu_load_to_nozzle();
  6863. }
  6864. }
  6865. else {
  6866. if (*(strchr_pointer + index) == '?')
  6867. {
  6868. if(mmu_enabled)
  6869. {
  6870. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6871. load_to_nozzle = true;
  6872. } else
  6873. {
  6874. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6875. }
  6876. }
  6877. else {
  6878. tmp_extruder = code_value();
  6879. if (mmu_enabled && lcd_autoDepleteEnabled())
  6880. {
  6881. tmp_extruder = ad_getAlternative(tmp_extruder);
  6882. }
  6883. }
  6884. st_synchronize();
  6885. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6886. if (mmu_enabled)
  6887. {
  6888. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6889. {
  6890. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6891. }
  6892. else
  6893. {
  6894. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6895. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6896. {
  6897. mmu_command(MmuCmd::K0 + tmp_extruder);
  6898. manage_response(true, true, MMU_UNLOAD_MOVE);
  6899. }
  6900. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6901. mmu_command(MmuCmd::T0 + tmp_extruder);
  6902. manage_response(true, true, MMU_TCODE_MOVE);
  6903. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6904. mmu_extruder = tmp_extruder; //filament change is finished
  6905. if (load_to_nozzle)// for single material usage with mmu
  6906. {
  6907. mmu_load_to_nozzle();
  6908. }
  6909. }
  6910. }
  6911. else
  6912. {
  6913. #ifdef SNMM
  6914. mmu_extruder = tmp_extruder;
  6915. _delay(100);
  6916. disable_e0();
  6917. disable_e1();
  6918. disable_e2();
  6919. pinMode(E_MUX0_PIN, OUTPUT);
  6920. pinMode(E_MUX1_PIN, OUTPUT);
  6921. _delay(100);
  6922. SERIAL_ECHO_START;
  6923. SERIAL_ECHO("T:");
  6924. SERIAL_ECHOLN((int)tmp_extruder);
  6925. switch (tmp_extruder) {
  6926. case 1:
  6927. WRITE(E_MUX0_PIN, HIGH);
  6928. WRITE(E_MUX1_PIN, LOW);
  6929. break;
  6930. case 2:
  6931. WRITE(E_MUX0_PIN, LOW);
  6932. WRITE(E_MUX1_PIN, HIGH);
  6933. break;
  6934. case 3:
  6935. WRITE(E_MUX0_PIN, HIGH);
  6936. WRITE(E_MUX1_PIN, HIGH);
  6937. break;
  6938. default:
  6939. WRITE(E_MUX0_PIN, LOW);
  6940. WRITE(E_MUX1_PIN, LOW);
  6941. break;
  6942. }
  6943. _delay(100);
  6944. #else //SNMM
  6945. if (tmp_extruder >= EXTRUDERS) {
  6946. SERIAL_ECHO_START;
  6947. SERIAL_ECHOPGM("T");
  6948. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6949. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6950. }
  6951. else {
  6952. #if EXTRUDERS > 1
  6953. boolean make_move = false;
  6954. #endif
  6955. if (code_seen('F')) {
  6956. #if EXTRUDERS > 1
  6957. make_move = true;
  6958. #endif
  6959. next_feedrate = code_value();
  6960. if (next_feedrate > 0.0) {
  6961. feedrate = next_feedrate;
  6962. }
  6963. }
  6964. #if EXTRUDERS > 1
  6965. if (tmp_extruder != active_extruder) {
  6966. // Save current position to return to after applying extruder offset
  6967. memcpy(destination, current_position, sizeof(destination));
  6968. // Offset extruder (only by XY)
  6969. int i;
  6970. for (i = 0; i < 2; i++) {
  6971. current_position[i] = current_position[i] -
  6972. extruder_offset[i][active_extruder] +
  6973. extruder_offset[i][tmp_extruder];
  6974. }
  6975. // Set the new active extruder and position
  6976. active_extruder = tmp_extruder;
  6977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6978. // Move to the old position if 'F' was in the parameters
  6979. if (make_move && Stopped == false) {
  6980. prepare_move();
  6981. }
  6982. }
  6983. #endif
  6984. SERIAL_ECHO_START;
  6985. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6986. SERIAL_PROTOCOLLN((int)active_extruder);
  6987. }
  6988. #endif //SNMM
  6989. }
  6990. }
  6991. } // end if(code_seen('T')) (end of T codes)
  6992. //! ----------------------------------------------------------------------------------------------
  6993. else if (code_seen('D')) // D codes (debug)
  6994. {
  6995. switch((int)code_value())
  6996. {
  6997. //! ### D-1 - Endless loop
  6998. // -------------------
  6999. case -1:
  7000. dcode__1(); break;
  7001. #ifdef DEBUG_DCODES
  7002. //! ### D0 - Reset
  7003. // --------------
  7004. case 0:
  7005. dcode_0(); break;
  7006. //! ### D1 - Clear EEPROM
  7007. // ------------------
  7008. case 1:
  7009. dcode_1(); break;
  7010. //! ### D2 - Read/Write RAM
  7011. // --------------------
  7012. case 2:
  7013. dcode_2(); break;
  7014. #endif //DEBUG_DCODES
  7015. #ifdef DEBUG_DCODE3
  7016. //! ### D3 - Read/Write EEPROM
  7017. // -----------------------
  7018. case 3:
  7019. dcode_3(); break;
  7020. #endif //DEBUG_DCODE3
  7021. #ifdef DEBUG_DCODES
  7022. //! ### D4 - Read/Write PIN
  7023. // ---------------------
  7024. case 4:
  7025. dcode_4(); break;
  7026. #endif //DEBUG_DCODES
  7027. #ifdef DEBUG_DCODE5
  7028. //! ### D5 - Read/Write FLASH
  7029. // ------------------------
  7030. case 5:
  7031. dcode_5(); break;
  7032. break;
  7033. #endif //DEBUG_DCODE5
  7034. #ifdef DEBUG_DCODES
  7035. //! ### D6 - Read/Write external FLASH
  7036. // ---------------------------------------
  7037. case 6:
  7038. dcode_6(); break;
  7039. //! ### D7 - Read/Write Bootloader
  7040. // -------------------------------
  7041. case 7:
  7042. dcode_7(); break;
  7043. //! ### D8 - Read/Write PINDA
  7044. // ---------------------------
  7045. case 8:
  7046. dcode_8(); break;
  7047. // ### D9 - Read/Write ADC
  7048. // ------------------------
  7049. case 9:
  7050. dcode_9(); break;
  7051. //! ### D10 - XYZ calibration = OK
  7052. // ------------------------------
  7053. case 10:
  7054. dcode_10(); break;
  7055. #endif //DEBUG_DCODES
  7056. #ifdef HEATBED_ANALYSIS
  7057. //! ### D80 - Bed check
  7058. // ---------------------
  7059. /*!
  7060. - `E` - dimension x
  7061. - `F` - dimention y
  7062. - `G` - points_x
  7063. - `H` - points_y
  7064. - `I` - offset_x
  7065. - `J` - offset_y
  7066. */
  7067. case 80:
  7068. {
  7069. float dimension_x = 40;
  7070. float dimension_y = 40;
  7071. int points_x = 40;
  7072. int points_y = 40;
  7073. float offset_x = 74;
  7074. float offset_y = 33;
  7075. if (code_seen('E')) dimension_x = code_value();
  7076. if (code_seen('F')) dimension_y = code_value();
  7077. if (code_seen('G')) {points_x = code_value(); }
  7078. if (code_seen('H')) {points_y = code_value(); }
  7079. if (code_seen('I')) {offset_x = code_value(); }
  7080. if (code_seen('J')) {offset_y = code_value(); }
  7081. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7082. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7083. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7084. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7085. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7086. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7087. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7088. }break;
  7089. //! ### D81 - Bed analysis
  7090. // -----------------------------
  7091. /*!
  7092. - `E` - dimension x
  7093. - `F` - dimention y
  7094. - `G` - points_x
  7095. - `H` - points_y
  7096. - `I` - offset_x
  7097. - `J` - offset_y
  7098. */
  7099. case 81:
  7100. {
  7101. float dimension_x = 40;
  7102. float dimension_y = 40;
  7103. int points_x = 40;
  7104. int points_y = 40;
  7105. float offset_x = 74;
  7106. float offset_y = 33;
  7107. if (code_seen('E')) dimension_x = code_value();
  7108. if (code_seen('F')) dimension_y = code_value();
  7109. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7110. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7111. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7112. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7113. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7114. } break;
  7115. #endif //HEATBED_ANALYSIS
  7116. #ifdef DEBUG_DCODES
  7117. //! ### D106 print measured fan speed for different pwm values
  7118. // --------------------------------------------------------------
  7119. case 106:
  7120. {
  7121. for (int i = 255; i > 0; i = i - 5) {
  7122. fanSpeed = i;
  7123. //delay_keep_alive(2000);
  7124. for (int j = 0; j < 100; j++) {
  7125. delay_keep_alive(100);
  7126. }
  7127. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7128. }
  7129. }break;
  7130. #ifdef TMC2130
  7131. //! ### D2130 - TMC2130 Trinamic stepper controller
  7132. // ---------------------------
  7133. /*!
  7134. D2130<axis><command>[subcommand][value]
  7135. - <command>:
  7136. - '0' current off
  7137. - '1' current on
  7138. - '+' single step
  7139. - * value sereval steps
  7140. - '-' dtto oposite direction
  7141. - '?' read register
  7142. - * "mres"
  7143. - * "step"
  7144. - * "mscnt"
  7145. - * "mscuract"
  7146. - * "wave"
  7147. - '!' set register
  7148. - * "mres"
  7149. - * "step"
  7150. - * "wave"
  7151. - '@' home calibrate axis
  7152. Example:
  7153. D2130E?wave ... print extruder microstep linearity compensation curve
  7154. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7155. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7156. */
  7157. case 2130:
  7158. dcode_2130(); break;
  7159. #endif //TMC2130
  7160. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7161. //! ### D9125 - FILAMENT_SENSOR
  7162. // ---------------------------------
  7163. case 9125:
  7164. dcode_9125(); break;
  7165. #endif //FILAMENT_SENSOR
  7166. #endif //DEBUG_DCODES
  7167. }
  7168. }
  7169. else
  7170. {
  7171. SERIAL_ECHO_START;
  7172. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7173. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7174. SERIAL_ECHOLNPGM("\"(2)");
  7175. }
  7176. KEEPALIVE_STATE(NOT_BUSY);
  7177. ClearToSend();
  7178. }
  7179. /** @defgroup GCodes G-Code List
  7180. */
  7181. // ---------------------------------------------------
  7182. void FlushSerialRequestResend()
  7183. {
  7184. //char cmdbuffer[bufindr][100]="Resend:";
  7185. MYSERIAL.flush();
  7186. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7187. }
  7188. // Confirm the execution of a command, if sent from a serial line.
  7189. // Execution of a command from a SD card will not be confirmed.
  7190. void ClearToSend()
  7191. {
  7192. previous_millis_cmd = _millis();
  7193. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7194. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7195. }
  7196. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7197. void update_currents() {
  7198. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7199. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7200. float tmp_motor[3];
  7201. //SERIAL_ECHOLNPGM("Currents updated: ");
  7202. if (destination[Z_AXIS] < Z_SILENT) {
  7203. //SERIAL_ECHOLNPGM("LOW");
  7204. for (uint8_t i = 0; i < 3; i++) {
  7205. st_current_set(i, current_low[i]);
  7206. /*MYSERIAL.print(int(i));
  7207. SERIAL_ECHOPGM(": ");
  7208. MYSERIAL.println(current_low[i]);*/
  7209. }
  7210. }
  7211. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7212. //SERIAL_ECHOLNPGM("HIGH");
  7213. for (uint8_t i = 0; i < 3; i++) {
  7214. st_current_set(i, current_high[i]);
  7215. /*MYSERIAL.print(int(i));
  7216. SERIAL_ECHOPGM(": ");
  7217. MYSERIAL.println(current_high[i]);*/
  7218. }
  7219. }
  7220. else {
  7221. for (uint8_t i = 0; i < 3; i++) {
  7222. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7223. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7224. st_current_set(i, tmp_motor[i]);
  7225. /*MYSERIAL.print(int(i));
  7226. SERIAL_ECHOPGM(": ");
  7227. MYSERIAL.println(tmp_motor[i]);*/
  7228. }
  7229. }
  7230. }
  7231. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7232. void get_coordinates()
  7233. {
  7234. bool seen[4]={false,false,false,false};
  7235. for(int8_t i=0; i < NUM_AXIS; i++) {
  7236. if(code_seen(axis_codes[i]))
  7237. {
  7238. bool relative = axis_relative_modes[i] || relative_mode;
  7239. destination[i] = (float)code_value();
  7240. if (i == E_AXIS) {
  7241. float emult = extruder_multiplier[active_extruder];
  7242. if (emult != 1.) {
  7243. if (! relative) {
  7244. destination[i] -= current_position[i];
  7245. relative = true;
  7246. }
  7247. destination[i] *= emult;
  7248. }
  7249. }
  7250. if (relative)
  7251. destination[i] += current_position[i];
  7252. seen[i]=true;
  7253. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7254. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7255. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7256. }
  7257. else destination[i] = current_position[i]; //Are these else lines really needed?
  7258. }
  7259. if(code_seen('F')) {
  7260. next_feedrate = code_value();
  7261. #ifdef MAX_SILENT_FEEDRATE
  7262. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7263. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7264. #endif //MAX_SILENT_FEEDRATE
  7265. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7266. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7267. {
  7268. // float e_max_speed =
  7269. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7270. }
  7271. }
  7272. }
  7273. void get_arc_coordinates()
  7274. {
  7275. #ifdef SF_ARC_FIX
  7276. bool relative_mode_backup = relative_mode;
  7277. relative_mode = true;
  7278. #endif
  7279. get_coordinates();
  7280. #ifdef SF_ARC_FIX
  7281. relative_mode=relative_mode_backup;
  7282. #endif
  7283. if(code_seen('I')) {
  7284. offset[0] = code_value();
  7285. }
  7286. else {
  7287. offset[0] = 0.0;
  7288. }
  7289. if(code_seen('J')) {
  7290. offset[1] = code_value();
  7291. }
  7292. else {
  7293. offset[1] = 0.0;
  7294. }
  7295. }
  7296. void clamp_to_software_endstops(float target[3])
  7297. {
  7298. #ifdef DEBUG_DISABLE_SWLIMITS
  7299. return;
  7300. #endif //DEBUG_DISABLE_SWLIMITS
  7301. world2machine_clamp(target[0], target[1]);
  7302. // Clamp the Z coordinate.
  7303. if (min_software_endstops) {
  7304. float negative_z_offset = 0;
  7305. #ifdef ENABLE_AUTO_BED_LEVELING
  7306. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7307. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7308. #endif
  7309. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7310. }
  7311. if (max_software_endstops) {
  7312. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7313. }
  7314. }
  7315. #ifdef MESH_BED_LEVELING
  7316. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7317. float dx = x - current_position[X_AXIS];
  7318. float dy = y - current_position[Y_AXIS];
  7319. int n_segments = 0;
  7320. if (mbl.active) {
  7321. float len = abs(dx) + abs(dy);
  7322. if (len > 0)
  7323. // Split to 3cm segments or shorter.
  7324. n_segments = int(ceil(len / 30.f));
  7325. }
  7326. if (n_segments > 1) {
  7327. // In a multi-segment move explicitly set the final target in the plan
  7328. // as the move will be recalculated in it's entirety
  7329. float gcode_target[NUM_AXIS];
  7330. gcode_target[X_AXIS] = x;
  7331. gcode_target[Y_AXIS] = y;
  7332. gcode_target[Z_AXIS] = z;
  7333. gcode_target[E_AXIS] = e;
  7334. float dz = z - current_position[Z_AXIS];
  7335. float de = e - current_position[E_AXIS];
  7336. for (int i = 1; i < n_segments; ++ i) {
  7337. float t = float(i) / float(n_segments);
  7338. plan_buffer_line(current_position[X_AXIS] + t * dx,
  7339. current_position[Y_AXIS] + t * dy,
  7340. current_position[Z_AXIS] + t * dz,
  7341. current_position[E_AXIS] + t * de,
  7342. feed_rate, extruder, gcode_target);
  7343. if (waiting_inside_plan_buffer_line_print_aborted)
  7344. return;
  7345. }
  7346. }
  7347. // The rest of the path.
  7348. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7349. }
  7350. #endif // MESH_BED_LEVELING
  7351. void prepare_move()
  7352. {
  7353. clamp_to_software_endstops(destination);
  7354. previous_millis_cmd = _millis();
  7355. // Do not use feedmultiply for E or Z only moves
  7356. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7358. }
  7359. else {
  7360. #ifdef MESH_BED_LEVELING
  7361. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7362. #else
  7363. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7364. #endif
  7365. }
  7366. set_current_to_destination();
  7367. }
  7368. void prepare_arc_move(char isclockwise) {
  7369. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7370. // Trace the arc
  7371. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7372. // As far as the parser is concerned, the position is now == target. In reality the
  7373. // motion control system might still be processing the action and the real tool position
  7374. // in any intermediate location.
  7375. for(int8_t i=0; i < NUM_AXIS; i++) {
  7376. current_position[i] = destination[i];
  7377. }
  7378. previous_millis_cmd = _millis();
  7379. }
  7380. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7381. #if defined(FAN_PIN)
  7382. #if CONTROLLERFAN_PIN == FAN_PIN
  7383. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7384. #endif
  7385. #endif
  7386. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7387. unsigned long lastMotorCheck = 0;
  7388. void controllerFan()
  7389. {
  7390. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7391. {
  7392. lastMotorCheck = _millis();
  7393. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7394. #if EXTRUDERS > 2
  7395. || !READ(E2_ENABLE_PIN)
  7396. #endif
  7397. #if EXTRUDER > 1
  7398. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7399. || !READ(X2_ENABLE_PIN)
  7400. #endif
  7401. || !READ(E1_ENABLE_PIN)
  7402. #endif
  7403. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7404. {
  7405. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7406. }
  7407. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7408. {
  7409. digitalWrite(CONTROLLERFAN_PIN, 0);
  7410. analogWrite(CONTROLLERFAN_PIN, 0);
  7411. }
  7412. else
  7413. {
  7414. // allows digital or PWM fan output to be used (see M42 handling)
  7415. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7416. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7417. }
  7418. }
  7419. }
  7420. #endif
  7421. #ifdef TEMP_STAT_LEDS
  7422. static bool blue_led = false;
  7423. static bool red_led = false;
  7424. static uint32_t stat_update = 0;
  7425. void handle_status_leds(void) {
  7426. float max_temp = 0.0;
  7427. if(_millis() > stat_update) {
  7428. stat_update += 500; // Update every 0.5s
  7429. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7430. max_temp = max(max_temp, degHotend(cur_extruder));
  7431. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7432. }
  7433. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7434. max_temp = max(max_temp, degTargetBed());
  7435. max_temp = max(max_temp, degBed());
  7436. #endif
  7437. if((max_temp > 55.0) && (red_led == false)) {
  7438. digitalWrite(STAT_LED_RED, 1);
  7439. digitalWrite(STAT_LED_BLUE, 0);
  7440. red_led = true;
  7441. blue_led = false;
  7442. }
  7443. if((max_temp < 54.0) && (blue_led == false)) {
  7444. digitalWrite(STAT_LED_RED, 0);
  7445. digitalWrite(STAT_LED_BLUE, 1);
  7446. red_led = false;
  7447. blue_led = true;
  7448. }
  7449. }
  7450. }
  7451. #endif
  7452. #ifdef SAFETYTIMER
  7453. /**
  7454. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7455. *
  7456. * Full screen blocking notification message is shown after heater turning off.
  7457. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7458. * damage print.
  7459. *
  7460. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7461. */
  7462. static void handleSafetyTimer()
  7463. {
  7464. #if (EXTRUDERS > 1)
  7465. #error Implemented only for one extruder.
  7466. #endif //(EXTRUDERS > 1)
  7467. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7468. {
  7469. safetyTimer.stop();
  7470. }
  7471. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7472. {
  7473. safetyTimer.start();
  7474. }
  7475. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7476. {
  7477. setTargetBed(0);
  7478. setAllTargetHotends(0);
  7479. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7480. }
  7481. }
  7482. #endif //SAFETYTIMER
  7483. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7484. {
  7485. bool bInhibitFlag;
  7486. #ifdef FILAMENT_SENSOR
  7487. if (mmu_enabled == false)
  7488. {
  7489. //-// if (mcode_in_progress != 600) //M600 not in progress
  7490. #ifdef PAT9125
  7491. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7492. #endif // PAT9125
  7493. #ifdef IR_SENSOR
  7494. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7495. #endif // IR_SENSOR
  7496. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7497. {
  7498. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7499. {
  7500. if (fsensor_check_autoload())
  7501. {
  7502. #ifdef PAT9125
  7503. fsensor_autoload_check_stop();
  7504. #endif //PAT9125
  7505. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7506. if(0)
  7507. {
  7508. Sound_MakeCustom(50,1000,false);
  7509. loading_flag = true;
  7510. enquecommand_front_P((PSTR("M701")));
  7511. }
  7512. else
  7513. {
  7514. /*
  7515. lcd_update_enable(false);
  7516. show_preheat_nozzle_warning();
  7517. lcd_update_enable(true);
  7518. */
  7519. eFilamentAction=FilamentAction::AutoLoad;
  7520. bFilamentFirstRun=false;
  7521. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7522. {
  7523. bFilamentPreheatState=true;
  7524. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7525. menu_submenu(mFilamentItemForce);
  7526. }
  7527. else
  7528. {
  7529. menu_submenu(lcd_generic_preheat_menu);
  7530. lcd_timeoutToStatus.start();
  7531. }
  7532. }
  7533. }
  7534. }
  7535. else
  7536. {
  7537. #ifdef PAT9125
  7538. fsensor_autoload_check_stop();
  7539. #endif //PAT9125
  7540. fsensor_update();
  7541. }
  7542. }
  7543. }
  7544. #endif //FILAMENT_SENSOR
  7545. #ifdef SAFETYTIMER
  7546. handleSafetyTimer();
  7547. #endif //SAFETYTIMER
  7548. #if defined(KILL_PIN) && KILL_PIN > -1
  7549. static int killCount = 0; // make the inactivity button a bit less responsive
  7550. const int KILL_DELAY = 10000;
  7551. #endif
  7552. if(buflen < (BUFSIZE-1)){
  7553. get_command();
  7554. }
  7555. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7556. if(max_inactive_time)
  7557. kill(_n("Inactivity Shutdown"), 4);
  7558. if(stepper_inactive_time) {
  7559. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7560. {
  7561. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7562. disable_x();
  7563. disable_y();
  7564. disable_z();
  7565. disable_e0();
  7566. disable_e1();
  7567. disable_e2();
  7568. }
  7569. }
  7570. }
  7571. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7572. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7573. {
  7574. chdkActive = false;
  7575. WRITE(CHDK, LOW);
  7576. }
  7577. #endif
  7578. #if defined(KILL_PIN) && KILL_PIN > -1
  7579. // Check if the kill button was pressed and wait just in case it was an accidental
  7580. // key kill key press
  7581. // -------------------------------------------------------------------------------
  7582. if( 0 == READ(KILL_PIN) )
  7583. {
  7584. killCount++;
  7585. }
  7586. else if (killCount > 0)
  7587. {
  7588. killCount--;
  7589. }
  7590. // Exceeded threshold and we can confirm that it was not accidental
  7591. // KILL the machine
  7592. // ----------------------------------------------------------------
  7593. if ( killCount >= KILL_DELAY)
  7594. {
  7595. kill(NULL, 5);
  7596. }
  7597. #endif
  7598. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7599. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7600. #endif
  7601. #ifdef EXTRUDER_RUNOUT_PREVENT
  7602. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7603. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7604. {
  7605. bool oldstatus=READ(E0_ENABLE_PIN);
  7606. enable_e0();
  7607. float oldepos=current_position[E_AXIS];
  7608. float oldedes=destination[E_AXIS];
  7609. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7610. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7611. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7612. current_position[E_AXIS]=oldepos;
  7613. destination[E_AXIS]=oldedes;
  7614. plan_set_e_position(oldepos);
  7615. previous_millis_cmd=_millis();
  7616. st_synchronize();
  7617. WRITE(E0_ENABLE_PIN,oldstatus);
  7618. }
  7619. #endif
  7620. #ifdef TEMP_STAT_LEDS
  7621. handle_status_leds();
  7622. #endif
  7623. check_axes_activity();
  7624. mmu_loop();
  7625. }
  7626. void kill(const char *full_screen_message, unsigned char id)
  7627. {
  7628. printf_P(_N("KILL: %d\n"), id);
  7629. //return;
  7630. cli(); // Stop interrupts
  7631. disable_heater();
  7632. disable_x();
  7633. // SERIAL_ECHOLNPGM("kill - disable Y");
  7634. disable_y();
  7635. disable_z();
  7636. disable_e0();
  7637. disable_e1();
  7638. disable_e2();
  7639. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7640. pinMode(PS_ON_PIN,INPUT);
  7641. #endif
  7642. SERIAL_ERROR_START;
  7643. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7644. if (full_screen_message != NULL) {
  7645. SERIAL_ERRORLNRPGM(full_screen_message);
  7646. lcd_display_message_fullscreen_P(full_screen_message);
  7647. } else {
  7648. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7649. }
  7650. // FMC small patch to update the LCD before ending
  7651. sei(); // enable interrupts
  7652. for ( int i=5; i--; lcd_update(0))
  7653. {
  7654. _delay(200);
  7655. }
  7656. cli(); // disable interrupts
  7657. suicide();
  7658. while(1)
  7659. {
  7660. #ifdef WATCHDOG
  7661. wdt_reset();
  7662. #endif //WATCHDOG
  7663. /* Intentionally left empty */
  7664. } // Wait for reset
  7665. }
  7666. // Stop: Emergency stop used by overtemp functions which allows recovery
  7667. //
  7668. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  7669. // processed via USB (using "Stopped") until the print is resumed via M999 or
  7670. // manually started from scratch with the LCD.
  7671. //
  7672. // Note that the current instruction is completely discarded, so resuming from Stop()
  7673. // will introduce either over/under extrusion on the current segment, and will not
  7674. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  7675. // the addition of disabling the headers) could allow true recovery in the future.
  7676. void Stop()
  7677. {
  7678. disable_heater();
  7679. if(Stopped == false) {
  7680. Stopped = true;
  7681. lcd_print_stop();
  7682. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7683. SERIAL_ERROR_START;
  7684. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7685. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7686. }
  7687. }
  7688. bool IsStopped() { return Stopped; };
  7689. #ifdef FAST_PWM_FAN
  7690. void setPwmFrequency(uint8_t pin, int val)
  7691. {
  7692. val &= 0x07;
  7693. switch(digitalPinToTimer(pin))
  7694. {
  7695. #if defined(TCCR0A)
  7696. case TIMER0A:
  7697. case TIMER0B:
  7698. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7699. // TCCR0B |= val;
  7700. break;
  7701. #endif
  7702. #if defined(TCCR1A)
  7703. case TIMER1A:
  7704. case TIMER1B:
  7705. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7706. // TCCR1B |= val;
  7707. break;
  7708. #endif
  7709. #if defined(TCCR2)
  7710. case TIMER2:
  7711. case TIMER2:
  7712. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7713. TCCR2 |= val;
  7714. break;
  7715. #endif
  7716. #if defined(TCCR2A)
  7717. case TIMER2A:
  7718. case TIMER2B:
  7719. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7720. TCCR2B |= val;
  7721. break;
  7722. #endif
  7723. #if defined(TCCR3A)
  7724. case TIMER3A:
  7725. case TIMER3B:
  7726. case TIMER3C:
  7727. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7728. TCCR3B |= val;
  7729. break;
  7730. #endif
  7731. #if defined(TCCR4A)
  7732. case TIMER4A:
  7733. case TIMER4B:
  7734. case TIMER4C:
  7735. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7736. TCCR4B |= val;
  7737. break;
  7738. #endif
  7739. #if defined(TCCR5A)
  7740. case TIMER5A:
  7741. case TIMER5B:
  7742. case TIMER5C:
  7743. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7744. TCCR5B |= val;
  7745. break;
  7746. #endif
  7747. }
  7748. }
  7749. #endif //FAST_PWM_FAN
  7750. //! @brief Get and validate extruder number
  7751. //!
  7752. //! If it is not specified, active_extruder is returned in parameter extruder.
  7753. //! @param [in] code M code number
  7754. //! @param [out] extruder
  7755. //! @return error
  7756. //! @retval true Invalid extruder specified in T code
  7757. //! @retval false Valid extruder specified in T code, or not specifiead
  7758. bool setTargetedHotend(int code, uint8_t &extruder)
  7759. {
  7760. extruder = active_extruder;
  7761. if(code_seen('T')) {
  7762. extruder = code_value();
  7763. if(extruder >= EXTRUDERS) {
  7764. SERIAL_ECHO_START;
  7765. switch(code){
  7766. case 104:
  7767. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7768. break;
  7769. case 105:
  7770. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7771. break;
  7772. case 109:
  7773. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7774. break;
  7775. case 218:
  7776. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7777. break;
  7778. case 221:
  7779. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7780. break;
  7781. }
  7782. SERIAL_PROTOCOLLN((int)extruder);
  7783. return true;
  7784. }
  7785. }
  7786. return false;
  7787. }
  7788. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7789. {
  7790. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7791. {
  7792. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7793. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7794. }
  7795. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7796. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7797. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7798. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7799. total_filament_used = 0;
  7800. }
  7801. float calculate_extruder_multiplier(float diameter) {
  7802. float out = 1.f;
  7803. if (cs.volumetric_enabled && diameter > 0.f) {
  7804. float area = M_PI * diameter * diameter * 0.25;
  7805. out = 1.f / area;
  7806. }
  7807. if (extrudemultiply != 100)
  7808. out *= float(extrudemultiply) * 0.01f;
  7809. return out;
  7810. }
  7811. void calculate_extruder_multipliers() {
  7812. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7813. #if EXTRUDERS > 1
  7814. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7815. #if EXTRUDERS > 2
  7816. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7817. #endif
  7818. #endif
  7819. }
  7820. void delay_keep_alive(unsigned int ms)
  7821. {
  7822. for (;;) {
  7823. manage_heater();
  7824. // Manage inactivity, but don't disable steppers on timeout.
  7825. manage_inactivity(true);
  7826. lcd_update(0);
  7827. if (ms == 0)
  7828. break;
  7829. else if (ms >= 50) {
  7830. _delay(50);
  7831. ms -= 50;
  7832. } else {
  7833. _delay(ms);
  7834. ms = 0;
  7835. }
  7836. }
  7837. }
  7838. static void wait_for_heater(long codenum, uint8_t extruder) {
  7839. if (!degTargetHotend(extruder))
  7840. return;
  7841. #ifdef TEMP_RESIDENCY_TIME
  7842. long residencyStart;
  7843. residencyStart = -1;
  7844. /* continue to loop until we have reached the target temp
  7845. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7846. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7847. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7848. #else
  7849. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7850. #endif //TEMP_RESIDENCY_TIME
  7851. if ((_millis() - codenum) > 1000UL)
  7852. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7853. if (!farm_mode) {
  7854. SERIAL_PROTOCOLPGM("T:");
  7855. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7856. SERIAL_PROTOCOLPGM(" E:");
  7857. SERIAL_PROTOCOL((int)extruder);
  7858. #ifdef TEMP_RESIDENCY_TIME
  7859. SERIAL_PROTOCOLPGM(" W:");
  7860. if (residencyStart > -1)
  7861. {
  7862. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7863. SERIAL_PROTOCOLLN(codenum);
  7864. }
  7865. else
  7866. {
  7867. SERIAL_PROTOCOLLN("?");
  7868. }
  7869. }
  7870. #else
  7871. SERIAL_PROTOCOLLN("");
  7872. #endif
  7873. codenum = _millis();
  7874. }
  7875. manage_heater();
  7876. manage_inactivity(true); //do not disable steppers
  7877. lcd_update(0);
  7878. #ifdef TEMP_RESIDENCY_TIME
  7879. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7880. or when current temp falls outside the hysteresis after target temp was reached */
  7881. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7882. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7883. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7884. {
  7885. residencyStart = _millis();
  7886. }
  7887. #endif //TEMP_RESIDENCY_TIME
  7888. }
  7889. }
  7890. void check_babystep()
  7891. {
  7892. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7893. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7894. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7895. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7896. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7897. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7898. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7899. babystep_z);
  7900. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7901. lcd_update_enable(true);
  7902. }
  7903. }
  7904. #ifdef HEATBED_ANALYSIS
  7905. void d_setup()
  7906. {
  7907. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7908. pinMode(D_DATA, INPUT_PULLUP);
  7909. pinMode(D_REQUIRE, OUTPUT);
  7910. digitalWrite(D_REQUIRE, HIGH);
  7911. }
  7912. float d_ReadData()
  7913. {
  7914. int digit[13];
  7915. String mergeOutput;
  7916. float output;
  7917. digitalWrite(D_REQUIRE, HIGH);
  7918. for (int i = 0; i<13; i++)
  7919. {
  7920. for (int j = 0; j < 4; j++)
  7921. {
  7922. while (digitalRead(D_DATACLOCK) == LOW) {}
  7923. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7924. bitWrite(digit[i], j, digitalRead(D_DATA));
  7925. }
  7926. }
  7927. digitalWrite(D_REQUIRE, LOW);
  7928. mergeOutput = "";
  7929. output = 0;
  7930. for (int r = 5; r <= 10; r++) //Merge digits
  7931. {
  7932. mergeOutput += digit[r];
  7933. }
  7934. output = mergeOutput.toFloat();
  7935. if (digit[4] == 8) //Handle sign
  7936. {
  7937. output *= -1;
  7938. }
  7939. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7940. {
  7941. output /= 10;
  7942. }
  7943. return output;
  7944. }
  7945. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7946. int t1 = 0;
  7947. int t_delay = 0;
  7948. int digit[13];
  7949. int m;
  7950. char str[3];
  7951. //String mergeOutput;
  7952. char mergeOutput[15];
  7953. float output;
  7954. int mesh_point = 0; //index number of calibration point
  7955. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7956. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7957. float mesh_home_z_search = 4;
  7958. float measure_z_height = 0.2f;
  7959. float row[x_points_num];
  7960. int ix = 0;
  7961. int iy = 0;
  7962. const char* filename_wldsd = "mesh.txt";
  7963. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7964. char numb_wldsd[8]; // (" -A.BCD" + null)
  7965. #ifdef MICROMETER_LOGGING
  7966. d_setup();
  7967. #endif //MICROMETER_LOGGING
  7968. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7969. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7970. unsigned int custom_message_type_old = custom_message_type;
  7971. unsigned int custom_message_state_old = custom_message_state;
  7972. custom_message_type = CustomMsg::MeshBedLeveling;
  7973. custom_message_state = (x_points_num * y_points_num) + 10;
  7974. lcd_update(1);
  7975. //mbl.reset();
  7976. babystep_undo();
  7977. card.openFile(filename_wldsd, false);
  7978. /*destination[Z_AXIS] = mesh_home_z_search;
  7979. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7981. for(int8_t i=0; i < NUM_AXIS; i++) {
  7982. current_position[i] = destination[i];
  7983. }
  7984. st_synchronize();
  7985. */
  7986. destination[Z_AXIS] = measure_z_height;
  7987. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7988. for(int8_t i=0; i < NUM_AXIS; i++) {
  7989. current_position[i] = destination[i];
  7990. }
  7991. st_synchronize();
  7992. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7993. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7994. SERIAL_PROTOCOL(x_points_num);
  7995. SERIAL_PROTOCOLPGM(",");
  7996. SERIAL_PROTOCOL(y_points_num);
  7997. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7998. SERIAL_PROTOCOL(mesh_home_z_search);
  7999. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8000. SERIAL_PROTOCOL(x_dimension);
  8001. SERIAL_PROTOCOLPGM(",");
  8002. SERIAL_PROTOCOL(y_dimension);
  8003. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8004. while (mesh_point != x_points_num * y_points_num) {
  8005. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8006. iy = mesh_point / x_points_num;
  8007. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8008. float z0 = 0.f;
  8009. /*destination[Z_AXIS] = mesh_home_z_search;
  8010. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8012. for(int8_t i=0; i < NUM_AXIS; i++) {
  8013. current_position[i] = destination[i];
  8014. }
  8015. st_synchronize();*/
  8016. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8017. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8018. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8019. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8020. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  8021. set_current_to_destination();
  8022. st_synchronize();
  8023. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8024. delay_keep_alive(1000);
  8025. #ifdef MICROMETER_LOGGING
  8026. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8027. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8028. //strcat(data_wldsd, numb_wldsd);
  8029. //MYSERIAL.println(data_wldsd);
  8030. //delay(1000);
  8031. //delay(3000);
  8032. //t1 = millis();
  8033. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8034. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8035. memset(digit, 0, sizeof(digit));
  8036. //cli();
  8037. digitalWrite(D_REQUIRE, LOW);
  8038. for (int i = 0; i<13; i++)
  8039. {
  8040. //t1 = millis();
  8041. for (int j = 0; j < 4; j++)
  8042. {
  8043. while (digitalRead(D_DATACLOCK) == LOW) {}
  8044. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8045. //printf_P(PSTR("Done %d\n"), j);
  8046. bitWrite(digit[i], j, digitalRead(D_DATA));
  8047. }
  8048. //t_delay = (millis() - t1);
  8049. //SERIAL_PROTOCOLPGM(" ");
  8050. //SERIAL_PROTOCOL_F(t_delay, 5);
  8051. //SERIAL_PROTOCOLPGM(" ");
  8052. }
  8053. //sei();
  8054. digitalWrite(D_REQUIRE, HIGH);
  8055. mergeOutput[0] = '\0';
  8056. output = 0;
  8057. for (int r = 5; r <= 10; r++) //Merge digits
  8058. {
  8059. sprintf(str, "%d", digit[r]);
  8060. strcat(mergeOutput, str);
  8061. }
  8062. output = atof(mergeOutput);
  8063. if (digit[4] == 8) //Handle sign
  8064. {
  8065. output *= -1;
  8066. }
  8067. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8068. {
  8069. output *= 0.1;
  8070. }
  8071. //output = d_ReadData();
  8072. //row[ix] = current_position[Z_AXIS];
  8073. //row[ix] = d_ReadData();
  8074. row[ix] = output;
  8075. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8076. memset(data_wldsd, 0, sizeof(data_wldsd));
  8077. for (int i = 0; i < x_points_num; i++) {
  8078. SERIAL_PROTOCOLPGM(" ");
  8079. SERIAL_PROTOCOL_F(row[i], 5);
  8080. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8081. dtostrf(row[i], 7, 3, numb_wldsd);
  8082. strcat(data_wldsd, numb_wldsd);
  8083. }
  8084. card.write_command(data_wldsd);
  8085. SERIAL_PROTOCOLPGM("\n");
  8086. }
  8087. custom_message_state--;
  8088. mesh_point++;
  8089. lcd_update(1);
  8090. }
  8091. #endif //MICROMETER_LOGGING
  8092. card.closefile();
  8093. //clean_up_after_endstop_move(l_feedmultiply);
  8094. }
  8095. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8096. int t1 = 0;
  8097. int t_delay = 0;
  8098. int digit[13];
  8099. int m;
  8100. char str[3];
  8101. //String mergeOutput;
  8102. char mergeOutput[15];
  8103. float output;
  8104. int mesh_point = 0; //index number of calibration point
  8105. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8106. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8107. float mesh_home_z_search = 4;
  8108. float row[x_points_num];
  8109. int ix = 0;
  8110. int iy = 0;
  8111. const char* filename_wldsd = "wldsd.txt";
  8112. char data_wldsd[70];
  8113. char numb_wldsd[10];
  8114. d_setup();
  8115. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8116. // We don't know where we are! HOME!
  8117. // Push the commands to the front of the message queue in the reverse order!
  8118. // There shall be always enough space reserved for these commands.
  8119. repeatcommand_front(); // repeat G80 with all its parameters
  8120. enquecommand_front_P((PSTR("G28 W0")));
  8121. enquecommand_front_P((PSTR("G1 Z5")));
  8122. return;
  8123. }
  8124. unsigned int custom_message_type_old = custom_message_type;
  8125. unsigned int custom_message_state_old = custom_message_state;
  8126. custom_message_type = CustomMsg::MeshBedLeveling;
  8127. custom_message_state = (x_points_num * y_points_num) + 10;
  8128. lcd_update(1);
  8129. mbl.reset();
  8130. babystep_undo();
  8131. card.openFile(filename_wldsd, false);
  8132. current_position[Z_AXIS] = mesh_home_z_search;
  8133. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8134. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8135. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8136. int l_feedmultiply = setup_for_endstop_move(false);
  8137. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8138. SERIAL_PROTOCOL(x_points_num);
  8139. SERIAL_PROTOCOLPGM(",");
  8140. SERIAL_PROTOCOL(y_points_num);
  8141. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8142. SERIAL_PROTOCOL(mesh_home_z_search);
  8143. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8144. SERIAL_PROTOCOL(x_dimension);
  8145. SERIAL_PROTOCOLPGM(",");
  8146. SERIAL_PROTOCOL(y_dimension);
  8147. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8148. while (mesh_point != x_points_num * y_points_num) {
  8149. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8150. iy = mesh_point / x_points_num;
  8151. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8152. float z0 = 0.f;
  8153. current_position[Z_AXIS] = mesh_home_z_search;
  8154. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8155. st_synchronize();
  8156. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8157. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8158. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8159. st_synchronize();
  8160. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8161. break;
  8162. card.closefile();
  8163. }
  8164. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8165. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8166. //strcat(data_wldsd, numb_wldsd);
  8167. //MYSERIAL.println(data_wldsd);
  8168. //_delay(1000);
  8169. //_delay(3000);
  8170. //t1 = _millis();
  8171. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8172. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8173. memset(digit, 0, sizeof(digit));
  8174. //cli();
  8175. digitalWrite(D_REQUIRE, LOW);
  8176. for (int i = 0; i<13; i++)
  8177. {
  8178. //t1 = _millis();
  8179. for (int j = 0; j < 4; j++)
  8180. {
  8181. while (digitalRead(D_DATACLOCK) == LOW) {}
  8182. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8183. bitWrite(digit[i], j, digitalRead(D_DATA));
  8184. }
  8185. //t_delay = (_millis() - t1);
  8186. //SERIAL_PROTOCOLPGM(" ");
  8187. //SERIAL_PROTOCOL_F(t_delay, 5);
  8188. //SERIAL_PROTOCOLPGM(" ");
  8189. }
  8190. //sei();
  8191. digitalWrite(D_REQUIRE, HIGH);
  8192. mergeOutput[0] = '\0';
  8193. output = 0;
  8194. for (int r = 5; r <= 10; r++) //Merge digits
  8195. {
  8196. sprintf(str, "%d", digit[r]);
  8197. strcat(mergeOutput, str);
  8198. }
  8199. output = atof(mergeOutput);
  8200. if (digit[4] == 8) //Handle sign
  8201. {
  8202. output *= -1;
  8203. }
  8204. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8205. {
  8206. output *= 0.1;
  8207. }
  8208. //output = d_ReadData();
  8209. //row[ix] = current_position[Z_AXIS];
  8210. memset(data_wldsd, 0, sizeof(data_wldsd));
  8211. for (int i = 0; i <3; i++) {
  8212. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8213. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8214. strcat(data_wldsd, numb_wldsd);
  8215. strcat(data_wldsd, ";");
  8216. }
  8217. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8218. dtostrf(output, 8, 5, numb_wldsd);
  8219. strcat(data_wldsd, numb_wldsd);
  8220. //strcat(data_wldsd, ";");
  8221. card.write_command(data_wldsd);
  8222. //row[ix] = d_ReadData();
  8223. row[ix] = output; // current_position[Z_AXIS];
  8224. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8225. for (int i = 0; i < x_points_num; i++) {
  8226. SERIAL_PROTOCOLPGM(" ");
  8227. SERIAL_PROTOCOL_F(row[i], 5);
  8228. }
  8229. SERIAL_PROTOCOLPGM("\n");
  8230. }
  8231. custom_message_state--;
  8232. mesh_point++;
  8233. lcd_update(1);
  8234. }
  8235. card.closefile();
  8236. clean_up_after_endstop_move(l_feedmultiply);
  8237. }
  8238. #endif //HEATBED_ANALYSIS
  8239. #ifndef PINDA_THERMISTOR
  8240. static void temp_compensation_start() {
  8241. custom_message_type = CustomMsg::TempCompPreheat;
  8242. custom_message_state = PINDA_HEAT_T + 1;
  8243. lcd_update(2);
  8244. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8245. current_position[E_AXIS] -= default_retraction;
  8246. }
  8247. plan_buffer_line_curposXYZE(400, active_extruder);
  8248. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8249. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8250. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8251. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8252. st_synchronize();
  8253. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8254. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8255. delay_keep_alive(1000);
  8256. custom_message_state = PINDA_HEAT_T - i;
  8257. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8258. else lcd_update(1);
  8259. }
  8260. custom_message_type = CustomMsg::Status;
  8261. custom_message_state = 0;
  8262. }
  8263. static void temp_compensation_apply() {
  8264. int i_add;
  8265. int z_shift = 0;
  8266. float z_shift_mm;
  8267. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8268. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8269. i_add = (target_temperature_bed - 60) / 10;
  8270. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8271. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8272. }else {
  8273. //interpolation
  8274. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8275. }
  8276. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8278. st_synchronize();
  8279. plan_set_z_position(current_position[Z_AXIS]);
  8280. }
  8281. else {
  8282. //we have no temp compensation data
  8283. }
  8284. }
  8285. #endif //ndef PINDA_THERMISTOR
  8286. float temp_comp_interpolation(float inp_temperature) {
  8287. //cubic spline interpolation
  8288. int n, i, j;
  8289. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8290. int shift[10];
  8291. int temp_C[10];
  8292. n = 6; //number of measured points
  8293. shift[0] = 0;
  8294. for (i = 0; i < n; i++) {
  8295. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8296. temp_C[i] = 50 + i * 10; //temperature in C
  8297. #ifdef PINDA_THERMISTOR
  8298. temp_C[i] = 35 + i * 5; //temperature in C
  8299. #else
  8300. temp_C[i] = 50 + i * 10; //temperature in C
  8301. #endif
  8302. x[i] = (float)temp_C[i];
  8303. f[i] = (float)shift[i];
  8304. }
  8305. if (inp_temperature < x[0]) return 0;
  8306. for (i = n - 1; i>0; i--) {
  8307. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8308. h[i - 1] = x[i] - x[i - 1];
  8309. }
  8310. //*********** formation of h, s , f matrix **************
  8311. for (i = 1; i<n - 1; i++) {
  8312. m[i][i] = 2 * (h[i - 1] + h[i]);
  8313. if (i != 1) {
  8314. m[i][i - 1] = h[i - 1];
  8315. m[i - 1][i] = h[i - 1];
  8316. }
  8317. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8318. }
  8319. //*********** forward elimination **************
  8320. for (i = 1; i<n - 2; i++) {
  8321. temp = (m[i + 1][i] / m[i][i]);
  8322. for (j = 1; j <= n - 1; j++)
  8323. m[i + 1][j] -= temp*m[i][j];
  8324. }
  8325. //*********** backward substitution *********
  8326. for (i = n - 2; i>0; i--) {
  8327. sum = 0;
  8328. for (j = i; j <= n - 2; j++)
  8329. sum += m[i][j] * s[j];
  8330. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8331. }
  8332. for (i = 0; i<n - 1; i++)
  8333. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8334. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8335. b = s[i] / 2;
  8336. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8337. d = f[i];
  8338. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8339. }
  8340. return sum;
  8341. }
  8342. #ifdef PINDA_THERMISTOR
  8343. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8344. {
  8345. if (!temp_cal_active) return 0;
  8346. if (!calibration_status_pinda()) return 0;
  8347. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8348. }
  8349. #endif //PINDA_THERMISTOR
  8350. void long_pause() //long pause print
  8351. {
  8352. st_synchronize();
  8353. start_pause_print = _millis();
  8354. // Stop heaters
  8355. setAllTargetHotends(0);
  8356. //retract
  8357. current_position[E_AXIS] -= default_retraction;
  8358. plan_buffer_line_curposXYZE(400, active_extruder);
  8359. //lift z
  8360. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8361. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8362. plan_buffer_line_curposXYZE(15, active_extruder);
  8363. //Move XY to side
  8364. current_position[X_AXIS] = X_PAUSE_POS;
  8365. current_position[Y_AXIS] = Y_PAUSE_POS;
  8366. plan_buffer_line_curposXYZE(50, active_extruder);
  8367. // Turn off the print fan
  8368. fanSpeed = 0;
  8369. }
  8370. void serialecho_temperatures() {
  8371. float tt = degHotend(active_extruder);
  8372. SERIAL_PROTOCOLPGM("T:");
  8373. SERIAL_PROTOCOL(tt);
  8374. SERIAL_PROTOCOLPGM(" E:");
  8375. SERIAL_PROTOCOL((int)active_extruder);
  8376. SERIAL_PROTOCOLPGM(" B:");
  8377. SERIAL_PROTOCOL_F(degBed(), 1);
  8378. SERIAL_PROTOCOLLN("");
  8379. }
  8380. #ifdef UVLO_SUPPORT
  8381. void uvlo_()
  8382. {
  8383. unsigned long time_start = _millis();
  8384. bool sd_print = card.sdprinting;
  8385. // Conserve power as soon as possible.
  8386. #ifdef LCD_BL_PIN
  8387. backlightMode = BACKLIGHT_MODE_DIM;
  8388. backlightLevel_LOW = 0;
  8389. backlight_update();
  8390. #endif //LCD_BL_PIN
  8391. disable_x();
  8392. disable_y();
  8393. #ifdef TMC2130
  8394. tmc2130_set_current_h(Z_AXIS, 20);
  8395. tmc2130_set_current_r(Z_AXIS, 20);
  8396. tmc2130_set_current_h(E_AXIS, 20);
  8397. tmc2130_set_current_r(E_AXIS, 20);
  8398. #endif //TMC2130
  8399. // Indicate that the interrupt has been triggered.
  8400. // SERIAL_ECHOLNPGM("UVLO");
  8401. // Read out the current Z motor microstep counter. This will be later used
  8402. // for reaching the zero full step before powering off.
  8403. uint16_t z_microsteps = 0;
  8404. #ifdef TMC2130
  8405. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8406. #endif //TMC2130
  8407. // Calculate the file position, from which to resume this print.
  8408. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8409. {
  8410. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8411. sd_position -= sdlen_planner;
  8412. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8413. sd_position -= sdlen_cmdqueue;
  8414. if (sd_position < 0) sd_position = 0;
  8415. }
  8416. // save the global state at planning time
  8417. uint16_t feedrate_bckp;
  8418. if (blocks_queued())
  8419. {
  8420. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8421. feedrate_bckp = current_block->gcode_feedrate;
  8422. }
  8423. else
  8424. {
  8425. saved_target[0] = SAVED_TARGET_UNSET;
  8426. feedrate_bckp = feedrate;
  8427. }
  8428. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8429. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8430. // are in action.
  8431. planner_abort_hard();
  8432. // Store the current extruder position.
  8433. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8434. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8435. // Clean the input command queue.
  8436. cmdqueue_reset();
  8437. card.sdprinting = false;
  8438. // card.closefile();
  8439. // Enable stepper driver interrupt to move Z axis.
  8440. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8441. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8442. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8443. sei();
  8444. plan_buffer_line(
  8445. current_position[X_AXIS],
  8446. current_position[Y_AXIS],
  8447. current_position[Z_AXIS],
  8448. current_position[E_AXIS] - default_retraction,
  8449. 95, active_extruder);
  8450. st_synchronize();
  8451. disable_e0();
  8452. plan_buffer_line(
  8453. current_position[X_AXIS],
  8454. current_position[Y_AXIS],
  8455. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8456. current_position[E_AXIS] - default_retraction,
  8457. 40, active_extruder);
  8458. st_synchronize();
  8459. disable_e0();
  8460. plan_buffer_line(
  8461. current_position[X_AXIS],
  8462. current_position[Y_AXIS],
  8463. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8464. current_position[E_AXIS] - default_retraction,
  8465. 40, active_extruder);
  8466. st_synchronize();
  8467. disable_e0();
  8468. // Move Z up to the next 0th full step.
  8469. // Write the file position.
  8470. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8471. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8472. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8473. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8474. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8475. // Scale the z value to 1u resolution.
  8476. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8477. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8478. }
  8479. // Read out the current Z motor microstep counter. This will be later used
  8480. // for reaching the zero full step before powering off.
  8481. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8482. // Store the current position.
  8483. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8484. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8485. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8486. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8487. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  8488. EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
  8489. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8490. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8491. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8492. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8493. #if EXTRUDERS > 1
  8494. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8495. #if EXTRUDERS > 2
  8496. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8497. #endif
  8498. #endif
  8499. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8500. // Store the saved target
  8501. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  8502. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  8503. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  8504. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  8505. #ifdef LIN_ADVANCE
  8506. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  8507. #endif
  8508. // Finaly store the "power outage" flag.
  8509. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8510. st_synchronize();
  8511. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8512. // Increment power failure counter
  8513. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8514. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8515. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8516. #if 0
  8517. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8518. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8519. plan_buffer_line_curposXYZE(500, active_extruder);
  8520. st_synchronize();
  8521. #endif
  8522. wdt_enable(WDTO_500MS);
  8523. WRITE(BEEPER,HIGH);
  8524. while(1)
  8525. ;
  8526. }
  8527. void uvlo_tiny()
  8528. {
  8529. uint16_t z_microsteps=0;
  8530. // Conserve power as soon as possible.
  8531. disable_x();
  8532. disable_y();
  8533. disable_e0();
  8534. #ifdef TMC2130
  8535. tmc2130_set_current_h(Z_AXIS, 20);
  8536. tmc2130_set_current_r(Z_AXIS, 20);
  8537. #endif //TMC2130
  8538. // Read out the current Z motor microstep counter
  8539. #ifdef TMC2130
  8540. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8541. #endif //TMC2130
  8542. planner_abort_hard();
  8543. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8544. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8545. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8546. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8547. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8548. }
  8549. //after multiple power panics current Z axis is unknow
  8550. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8551. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8552. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8553. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8554. }
  8555. // Finaly store the "power outage" flag.
  8556. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8557. // Increment power failure counter
  8558. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8559. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8560. wdt_enable(WDTO_500MS);
  8561. WRITE(BEEPER,HIGH);
  8562. while(1)
  8563. ;
  8564. }
  8565. #endif //UVLO_SUPPORT
  8566. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8567. void setup_fan_interrupt() {
  8568. //INT7
  8569. DDRE &= ~(1 << 7); //input pin
  8570. PORTE &= ~(1 << 7); //no internal pull-up
  8571. //start with sensing rising edge
  8572. EICRB &= ~(1 << 6);
  8573. EICRB |= (1 << 7);
  8574. //enable INT7 interrupt
  8575. EIMSK |= (1 << 7);
  8576. }
  8577. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8578. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8579. ISR(INT7_vect) {
  8580. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8581. #ifdef FAN_SOFT_PWM
  8582. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8583. #else //FAN_SOFT_PWM
  8584. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8585. #endif //FAN_SOFT_PWM
  8586. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8587. t_fan_rising_edge = millis_nc();
  8588. }
  8589. else { //interrupt was triggered by falling edge
  8590. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8591. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8592. }
  8593. }
  8594. EICRB ^= (1 << 6); //change edge
  8595. }
  8596. #endif
  8597. #ifdef UVLO_SUPPORT
  8598. void setup_uvlo_interrupt() {
  8599. DDRE &= ~(1 << 4); //input pin
  8600. PORTE &= ~(1 << 4); //no internal pull-up
  8601. //sensing falling edge
  8602. EICRB |= (1 << 0);
  8603. EICRB &= ~(1 << 1);
  8604. //enable INT4 interrupt
  8605. EIMSK |= (1 << 4);
  8606. }
  8607. ISR(INT4_vect) {
  8608. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8609. SERIAL_ECHOLNPGM("INT4");
  8610. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8611. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8612. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8613. }
  8614. void recover_print(uint8_t automatic) {
  8615. char cmd[30];
  8616. lcd_update_enable(true);
  8617. lcd_update(2);
  8618. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8619. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8620. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8621. // Lift the print head, so one may remove the excess priming material.
  8622. if(!bTiny&&(current_position[Z_AXIS]<25))
  8623. enquecommand_P(PSTR("G1 Z25 F800"));
  8624. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8625. enquecommand_P(PSTR("G28 X Y"));
  8626. // Set the target bed and nozzle temperatures and wait.
  8627. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8628. enquecommand(cmd);
  8629. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8630. enquecommand(cmd);
  8631. enquecommand_P(PSTR("M83")); //E axis relative mode
  8632. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8633. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8634. if(automatic == 0){
  8635. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8636. }
  8637. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8638. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8639. // Restart the print.
  8640. restore_print_from_eeprom();
  8641. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8642. }
  8643. void recover_machine_state_after_power_panic(bool bTiny)
  8644. {
  8645. char cmd[30];
  8646. // 1) Recover the logical cordinates at the time of the power panic.
  8647. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8648. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8649. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8650. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8651. mbl.active = false;
  8652. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8653. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8654. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8655. // Scale the z value to 10u resolution.
  8656. int16_t v;
  8657. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8658. if (v != 0)
  8659. mbl.active = true;
  8660. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8661. }
  8662. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8663. // The current position after power panic is moved to the next closest 0th full step.
  8664. if(bTiny){
  8665. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8666. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8667. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8668. //after multiple power panics the print is slightly in the air so get it little bit down.
  8669. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8670. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8671. }
  8672. else{
  8673. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8674. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8675. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8676. }
  8677. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8678. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8679. sprintf_P(cmd, PSTR("G92 E"));
  8680. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8681. enquecommand(cmd);
  8682. }
  8683. memcpy(destination, current_position, sizeof(destination));
  8684. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8685. print_world_coordinates();
  8686. // 3) Initialize the logical to physical coordinate system transformation.
  8687. world2machine_initialize();
  8688. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8689. // print_mesh_bed_leveling_table();
  8690. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8691. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8692. babystep_load();
  8693. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8694. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8695. // 6) Power up the motors, mark their positions as known.
  8696. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8697. axis_known_position[X_AXIS] = true; enable_x();
  8698. axis_known_position[Y_AXIS] = true; enable_y();
  8699. axis_known_position[Z_AXIS] = true; enable_z();
  8700. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8701. print_physical_coordinates();
  8702. // 7) Recover the target temperatures.
  8703. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8704. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8705. // 8) Recover extruder multipilers
  8706. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8707. #if EXTRUDERS > 1
  8708. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8709. #if EXTRUDERS > 2
  8710. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8711. #endif
  8712. #endif
  8713. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8714. // 9) Recover the saved target
  8715. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  8716. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  8717. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  8718. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  8719. #ifdef LIN_ADVANCE
  8720. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  8721. #endif
  8722. }
  8723. void restore_print_from_eeprom() {
  8724. int feedrate_rec;
  8725. int feedmultiply_rec;
  8726. uint8_t fan_speed_rec;
  8727. char cmd[30];
  8728. char filename[13];
  8729. uint8_t depth = 0;
  8730. char dir_name[9];
  8731. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8732. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  8733. EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
  8734. SERIAL_ECHOPGM("Feedrate:");
  8735. MYSERIAL.print(feedrate_rec);
  8736. SERIAL_ECHOPGM(", feedmultiply:");
  8737. MYSERIAL.println(feedmultiply_rec);
  8738. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8739. MYSERIAL.println(int(depth));
  8740. for (int i = 0; i < depth; i++) {
  8741. for (int j = 0; j < 8; j++) {
  8742. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8743. }
  8744. dir_name[8] = '\0';
  8745. MYSERIAL.println(dir_name);
  8746. strcpy(dir_names[i], dir_name);
  8747. card.chdir(dir_name);
  8748. }
  8749. for (int i = 0; i < 8; i++) {
  8750. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8751. }
  8752. filename[8] = '\0';
  8753. MYSERIAL.print(filename);
  8754. strcat_P(filename, PSTR(".gco"));
  8755. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8756. enquecommand(cmd);
  8757. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8758. SERIAL_ECHOPGM("Position read from eeprom:");
  8759. MYSERIAL.println(position);
  8760. // E axis relative mode.
  8761. enquecommand_P(PSTR("M83"));
  8762. // Move to the XY print position in logical coordinates, where the print has been killed.
  8763. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8764. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8765. strcat_P(cmd, PSTR(" F2000"));
  8766. enquecommand(cmd);
  8767. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8768. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8769. // Move the Z axis down to the print, in logical coordinates.
  8770. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8771. enquecommand(cmd);
  8772. // Unretract.
  8773. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8774. // Set the feedrates saved at the power panic.
  8775. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8776. enquecommand(cmd);
  8777. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  8778. enquecommand(cmd);
  8779. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8780. {
  8781. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8782. }
  8783. // Set the fan speed saved at the power panic.
  8784. strcpy_P(cmd, PSTR("M106 S"));
  8785. strcat(cmd, itostr3(int(fan_speed_rec)));
  8786. enquecommand(cmd);
  8787. // Set a position in the file.
  8788. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8789. enquecommand(cmd);
  8790. enquecommand_P(PSTR("G4 S0"));
  8791. enquecommand_P(PSTR("PRUSA uvlo"));
  8792. }
  8793. #endif //UVLO_SUPPORT
  8794. //! @brief Immediately stop print moves
  8795. //!
  8796. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8797. //! If printing from sd card, position in file is saved.
  8798. //! If printing from USB, line number is saved.
  8799. //!
  8800. //! @param z_move
  8801. //! @param e_move
  8802. void stop_and_save_print_to_ram(float z_move, float e_move)
  8803. {
  8804. if (saved_printing) return;
  8805. #if 0
  8806. unsigned char nplanner_blocks;
  8807. #endif
  8808. unsigned char nlines;
  8809. uint16_t sdlen_planner;
  8810. uint16_t sdlen_cmdqueue;
  8811. cli();
  8812. if (card.sdprinting) {
  8813. #if 0
  8814. nplanner_blocks = number_of_blocks();
  8815. #endif
  8816. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8817. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8818. saved_sdpos -= sdlen_planner;
  8819. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8820. saved_sdpos -= sdlen_cmdqueue;
  8821. saved_printing_type = PRINTING_TYPE_SD;
  8822. }
  8823. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8824. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8825. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8826. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8827. saved_sdpos -= nlines;
  8828. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8829. saved_printing_type = PRINTING_TYPE_USB;
  8830. }
  8831. else {
  8832. saved_printing_type = PRINTING_TYPE_NONE;
  8833. //not sd printing nor usb printing
  8834. }
  8835. #if 0
  8836. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8837. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8838. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8839. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8840. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8841. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8842. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8843. {
  8844. card.setIndex(saved_sdpos);
  8845. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8846. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8847. MYSERIAL.print(char(card.get()));
  8848. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8849. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8850. MYSERIAL.print(char(card.get()));
  8851. SERIAL_ECHOLNPGM("End of command buffer");
  8852. }
  8853. {
  8854. // Print the content of the planner buffer, line by line:
  8855. card.setIndex(saved_sdpos);
  8856. int8_t iline = 0;
  8857. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8858. SERIAL_ECHOPGM("Planner line (from file): ");
  8859. MYSERIAL.print(int(iline), DEC);
  8860. SERIAL_ECHOPGM(", length: ");
  8861. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8862. SERIAL_ECHOPGM(", steps: (");
  8863. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8864. SERIAL_ECHOPGM(",");
  8865. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8866. SERIAL_ECHOPGM(",");
  8867. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8868. SERIAL_ECHOPGM(",");
  8869. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8870. SERIAL_ECHOPGM("), events: ");
  8871. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8872. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8873. MYSERIAL.print(char(card.get()));
  8874. }
  8875. }
  8876. {
  8877. // Print the content of the command buffer, line by line:
  8878. int8_t iline = 0;
  8879. union {
  8880. struct {
  8881. char lo;
  8882. char hi;
  8883. } lohi;
  8884. uint16_t value;
  8885. } sdlen_single;
  8886. int _bufindr = bufindr;
  8887. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8888. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8889. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8890. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8891. }
  8892. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8893. MYSERIAL.print(int(iline), DEC);
  8894. SERIAL_ECHOPGM(", type: ");
  8895. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8896. SERIAL_ECHOPGM(", len: ");
  8897. MYSERIAL.println(sdlen_single.value, DEC);
  8898. // Print the content of the buffer line.
  8899. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8900. SERIAL_ECHOPGM("Buffer line (from file): ");
  8901. MYSERIAL.println(int(iline), DEC);
  8902. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8903. MYSERIAL.print(char(card.get()));
  8904. if (-- _buflen == 0)
  8905. break;
  8906. // First skip the current command ID and iterate up to the end of the string.
  8907. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8908. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8909. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8910. // If the end of the buffer was empty,
  8911. if (_bufindr == sizeof(cmdbuffer)) {
  8912. // skip to the start and find the nonzero command.
  8913. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8914. }
  8915. }
  8916. }
  8917. #endif
  8918. // save the global state at planning time
  8919. if (blocks_queued())
  8920. {
  8921. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8922. saved_feedrate2 = current_block->gcode_feedrate;
  8923. }
  8924. else
  8925. {
  8926. saved_target[0] = SAVED_TARGET_UNSET;
  8927. saved_feedrate2 = feedrate;
  8928. }
  8929. planner_abort_hard(); //abort printing
  8930. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8931. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  8932. saved_active_extruder = active_extruder; //save active_extruder
  8933. saved_extruder_temperature = degTargetHotend(active_extruder);
  8934. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8935. saved_fanSpeed = fanSpeed;
  8936. cmdqueue_reset(); //empty cmdqueue
  8937. card.sdprinting = false;
  8938. // card.closefile();
  8939. saved_printing = true;
  8940. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8941. st_reset_timer();
  8942. sei();
  8943. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8944. #if 1
  8945. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  8946. // the caller can continue processing. This is used during powerpanic to save the state as we
  8947. // move away from the print.
  8948. char buf[48];
  8949. // First unretract (relative extrusion)
  8950. if(!saved_extruder_relative_mode){
  8951. enquecommand(PSTR("M83"), true);
  8952. }
  8953. //retract 45mm/s
  8954. // A single sprintf may not be faster, but is definitely 20B shorter
  8955. // than a sequence of commands building the string piece by piece
  8956. // A snprintf would have been a safer call, but since it is not used
  8957. // in the whole program, its implementation would bring more bytes to the total size
  8958. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8959. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8960. enquecommand(buf, false);
  8961. // Then lift Z axis
  8962. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8963. // At this point the command queue is empty.
  8964. enquecommand(buf, false);
  8965. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8966. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8967. repeatcommand_front();
  8968. #else
  8969. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8970. st_synchronize(); //wait moving
  8971. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8972. memcpy(destination, current_position, sizeof(destination));
  8973. #endif
  8974. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  8975. }
  8976. }
  8977. //! @brief Restore print from ram
  8978. //!
  8979. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8980. //! print fan speed, waits for extruder temperature restore, then restores
  8981. //! position and continues print moves.
  8982. //!
  8983. //! Internally lcd_update() is called by wait_for_heater().
  8984. //!
  8985. //! @param e_move
  8986. void restore_print_from_ram_and_continue(float e_move)
  8987. {
  8988. if (!saved_printing) return;
  8989. #ifdef FANCHECK
  8990. // Do not allow resume printing if fans are still not ok
  8991. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8992. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8993. #endif
  8994. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8995. // current_position[axis] = st_get_position_mm(axis);
  8996. active_extruder = saved_active_extruder; //restore active_extruder
  8997. fanSpeed = saved_fanSpeed;
  8998. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8999. {
  9000. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9001. heating_status = 1;
  9002. wait_for_heater(_millis(), saved_active_extruder);
  9003. heating_status = 2;
  9004. }
  9005. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  9006. float e = saved_pos[E_AXIS] - e_move;
  9007. plan_set_e_position(e);
  9008. #ifdef FANCHECK
  9009. fans_check_enabled = false;
  9010. #endif
  9011. //first move print head in XY to the saved position:
  9012. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9013. st_synchronize();
  9014. //then move Z
  9015. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9016. st_synchronize();
  9017. //and finaly unretract (35mm/s)
  9018. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  9019. st_synchronize();
  9020. #ifdef FANCHECK
  9021. fans_check_enabled = true;
  9022. #endif
  9023. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9024. feedrate = saved_feedrate2;
  9025. feedmultiply = saved_feedmultiply2;
  9026. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9027. memcpy(destination, current_position, sizeof(destination));
  9028. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9029. card.setIndex(saved_sdpos);
  9030. sdpos_atomic = saved_sdpos;
  9031. card.sdprinting = true;
  9032. }
  9033. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9034. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9035. serial_count = 0;
  9036. FlushSerialRequestResend();
  9037. }
  9038. else {
  9039. //not sd printing nor usb printing
  9040. }
  9041. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9042. lcd_setstatuspgm(_T(WELCOME_MSG));
  9043. saved_printing_type = PRINTING_TYPE_NONE;
  9044. saved_printing = false;
  9045. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9046. }
  9047. void print_world_coordinates()
  9048. {
  9049. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9050. }
  9051. void print_physical_coordinates()
  9052. {
  9053. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9054. }
  9055. void print_mesh_bed_leveling_table()
  9056. {
  9057. SERIAL_ECHOPGM("mesh bed leveling: ");
  9058. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9059. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9060. MYSERIAL.print(mbl.z_values[y][x], 3);
  9061. SERIAL_ECHOPGM(" ");
  9062. }
  9063. SERIAL_ECHOLNPGM("");
  9064. }
  9065. uint16_t print_time_remaining() {
  9066. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9067. #ifdef TMC2130
  9068. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9069. else print_t = print_time_remaining_silent;
  9070. #else
  9071. print_t = print_time_remaining_normal;
  9072. #endif //TMC2130
  9073. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9074. return print_t;
  9075. }
  9076. uint8_t calc_percent_done()
  9077. {
  9078. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9079. uint8_t percent_done = 0;
  9080. #ifdef TMC2130
  9081. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9082. percent_done = print_percent_done_normal;
  9083. }
  9084. else if (print_percent_done_silent <= 100) {
  9085. percent_done = print_percent_done_silent;
  9086. }
  9087. #else
  9088. if (print_percent_done_normal <= 100) {
  9089. percent_done = print_percent_done_normal;
  9090. }
  9091. #endif //TMC2130
  9092. else {
  9093. percent_done = card.percentDone();
  9094. }
  9095. return percent_done;
  9096. }
  9097. static void print_time_remaining_init()
  9098. {
  9099. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9100. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9101. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9102. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9103. }
  9104. void load_filament_final_feed()
  9105. {
  9106. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9107. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9108. }
  9109. //! @brief Wait for user to check the state
  9110. //! @par nozzle_temp nozzle temperature to load filament
  9111. void M600_check_state(float nozzle_temp)
  9112. {
  9113. lcd_change_fil_state = 0;
  9114. while (lcd_change_fil_state != 1)
  9115. {
  9116. lcd_change_fil_state = 0;
  9117. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9118. lcd_alright();
  9119. KEEPALIVE_STATE(IN_HANDLER);
  9120. switch(lcd_change_fil_state)
  9121. {
  9122. // Filament failed to load so load it again
  9123. case 2:
  9124. if (mmu_enabled)
  9125. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9126. else
  9127. M600_load_filament_movements();
  9128. break;
  9129. // Filament loaded properly but color is not clear
  9130. case 3:
  9131. st_synchronize();
  9132. load_filament_final_feed();
  9133. lcd_loading_color();
  9134. st_synchronize();
  9135. break;
  9136. // Everything good
  9137. default:
  9138. lcd_change_success();
  9139. break;
  9140. }
  9141. }
  9142. }
  9143. //! @brief Wait for user action
  9144. //!
  9145. //! Beep, manage nozzle heater and wait for user to start unload filament
  9146. //! If times out, active extruder temperature is set to 0.
  9147. //!
  9148. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9149. void M600_wait_for_user(float HotendTempBckp) {
  9150. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9151. int counterBeep = 0;
  9152. unsigned long waiting_start_time = _millis();
  9153. uint8_t wait_for_user_state = 0;
  9154. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9155. bool bFirst=true;
  9156. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9157. manage_heater();
  9158. manage_inactivity(true);
  9159. #if BEEPER > 0
  9160. if (counterBeep == 500) {
  9161. counterBeep = 0;
  9162. }
  9163. SET_OUTPUT(BEEPER);
  9164. if (counterBeep == 0) {
  9165. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9166. {
  9167. bFirst=false;
  9168. WRITE(BEEPER, HIGH);
  9169. }
  9170. }
  9171. if (counterBeep == 20) {
  9172. WRITE(BEEPER, LOW);
  9173. }
  9174. counterBeep++;
  9175. #endif //BEEPER > 0
  9176. switch (wait_for_user_state) {
  9177. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9178. delay_keep_alive(4);
  9179. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9180. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9181. wait_for_user_state = 1;
  9182. setAllTargetHotends(0);
  9183. st_synchronize();
  9184. disable_e0();
  9185. disable_e1();
  9186. disable_e2();
  9187. }
  9188. break;
  9189. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9190. delay_keep_alive(4);
  9191. if (lcd_clicked()) {
  9192. setTargetHotend(HotendTempBckp, active_extruder);
  9193. lcd_wait_for_heater();
  9194. wait_for_user_state = 2;
  9195. }
  9196. break;
  9197. case 2: //waiting for nozzle to reach target temperature
  9198. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9199. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9200. waiting_start_time = _millis();
  9201. wait_for_user_state = 0;
  9202. }
  9203. else {
  9204. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9205. lcd_set_cursor(1, 4);
  9206. lcd_print(ftostr3(degHotend(active_extruder)));
  9207. }
  9208. break;
  9209. }
  9210. }
  9211. WRITE(BEEPER, LOW);
  9212. }
  9213. void M600_load_filament_movements()
  9214. {
  9215. #ifdef SNMM
  9216. display_loading();
  9217. do
  9218. {
  9219. current_position[E_AXIS] += 0.002;
  9220. plan_buffer_line_curposXYZE(500, active_extruder);
  9221. delay_keep_alive(2);
  9222. }
  9223. while (!lcd_clicked());
  9224. st_synchronize();
  9225. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9226. plan_buffer_line_curposXYZE(3000, active_extruder);
  9227. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9228. plan_buffer_line_curposXYZE(1400, active_extruder);
  9229. current_position[E_AXIS] += 40;
  9230. plan_buffer_line_curposXYZE(400, active_extruder);
  9231. current_position[E_AXIS] += 10;
  9232. plan_buffer_line_curposXYZE(50, active_extruder);
  9233. #else
  9234. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9235. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9236. #endif
  9237. load_filament_final_feed();
  9238. lcd_loading_filament();
  9239. st_synchronize();
  9240. }
  9241. void M600_load_filament() {
  9242. //load filament for single material and SNMM
  9243. lcd_wait_interact();
  9244. //load_filament_time = _millis();
  9245. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9246. #ifdef PAT9125
  9247. fsensor_autoload_check_start();
  9248. #endif //PAT9125
  9249. while(!lcd_clicked())
  9250. {
  9251. manage_heater();
  9252. manage_inactivity(true);
  9253. #ifdef FILAMENT_SENSOR
  9254. if (fsensor_check_autoload())
  9255. {
  9256. Sound_MakeCustom(50,1000,false);
  9257. break;
  9258. }
  9259. #endif //FILAMENT_SENSOR
  9260. }
  9261. #ifdef PAT9125
  9262. fsensor_autoload_check_stop();
  9263. #endif //PAT9125
  9264. KEEPALIVE_STATE(IN_HANDLER);
  9265. #ifdef FSENSOR_QUALITY
  9266. fsensor_oq_meassure_start(70);
  9267. #endif //FSENSOR_QUALITY
  9268. M600_load_filament_movements();
  9269. Sound_MakeCustom(50,1000,false);
  9270. #ifdef FSENSOR_QUALITY
  9271. fsensor_oq_meassure_stop();
  9272. if (!fsensor_oq_result())
  9273. {
  9274. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9275. lcd_update_enable(true);
  9276. lcd_update(2);
  9277. if (disable)
  9278. fsensor_disable();
  9279. }
  9280. #endif //FSENSOR_QUALITY
  9281. lcd_update_enable(false);
  9282. }
  9283. //! @brief Wait for click
  9284. //!
  9285. //! Set
  9286. void marlin_wait_for_click()
  9287. {
  9288. int8_t busy_state_backup = busy_state;
  9289. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9290. lcd_consume_click();
  9291. while(!lcd_clicked())
  9292. {
  9293. manage_heater();
  9294. manage_inactivity(true);
  9295. lcd_update(0);
  9296. }
  9297. KEEPALIVE_STATE(busy_state_backup);
  9298. }
  9299. #define FIL_LOAD_LENGTH 60
  9300. #ifdef PSU_Delta
  9301. bool bEnableForce_z;
  9302. void init_force_z()
  9303. {
  9304. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9305. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9306. disable_force_z();
  9307. }
  9308. void check_force_z()
  9309. {
  9310. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9311. init_force_z(); // causes enforced switching into disable-state
  9312. }
  9313. void disable_force_z()
  9314. {
  9315. uint16_t z_microsteps=0;
  9316. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9317. bEnableForce_z=false;
  9318. // switching to silent mode
  9319. #ifdef TMC2130
  9320. tmc2130_mode=TMC2130_MODE_SILENT;
  9321. update_mode_profile();
  9322. tmc2130_init(true);
  9323. #endif // TMC2130
  9324. axis_known_position[Z_AXIS]=false;
  9325. }
  9326. void enable_force_z()
  9327. {
  9328. if(bEnableForce_z)
  9329. return; // motor already enabled (may be ;-p )
  9330. bEnableForce_z=true;
  9331. // mode recovering
  9332. #ifdef TMC2130
  9333. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9334. update_mode_profile();
  9335. tmc2130_init(true);
  9336. #endif // TMC2130
  9337. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9338. }
  9339. #endif // PSU_Delta