Marlin_main.cpp 213 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. //#include "spline.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // P Y - Starts filament allignment process for multicolor
  75. // G0 -> G1
  76. // G1 - Coordinated Movement X Y Z E
  77. // G2 - CW ARC
  78. // G3 - CCW ARC
  79. // G4 - Dwell S<seconds> or P<milliseconds>
  80. // G10 - retract filament according to settings of M207
  81. // G11 - retract recover filament according to settings of M208
  82. // G28 - Home all Axis
  83. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. // G30 - Single Z Probe, probes bed at current XY location.
  85. // G31 - Dock sled (Z_PROBE_SLED only)
  86. // G32 - Undock sled (Z_PROBE_SLED only)
  87. // G80 - Automatic mesh bed leveling
  88. // G81 - Print bed profile
  89. // G90 - Use Absolute Coordinates
  90. // G91 - Use Relative Coordinates
  91. // G92 - Set current position to coordinates given
  92. // M Codes
  93. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. // M1 - Same as M0
  95. // M17 - Enable/Power all stepper motors
  96. // M18 - Disable all stepper motors; same as M84
  97. // M20 - List SD card
  98. // M21 - Init SD card
  99. // M22 - Release SD card
  100. // M23 - Select SD file (M23 filename.g)
  101. // M24 - Start/resume SD print
  102. // M25 - Pause SD print
  103. // M26 - Set SD position in bytes (M26 S12345)
  104. // M27 - Report SD print status
  105. // M28 - Start SD write (M28 filename.g)
  106. // M29 - Stop SD write
  107. // M30 - Delete file from SD (M30 filename.g)
  108. // M31 - Output time since last M109 or SD card start to serial
  109. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  114. // M80 - Turn on Power Supply
  115. // M81 - Turn off Power Supply
  116. // M82 - Set E codes absolute (default)
  117. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  118. // M84 - Disable steppers until next move,
  119. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  120. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  121. // M92 - Set axis_steps_per_unit - same syntax as G92
  122. // M104 - Set extruder target temp
  123. // M105 - Read current temp
  124. // M106 - Fan on
  125. // M107 - Fan off
  126. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  127. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  128. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  129. // M112 - Emergency stop
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. unsigned long kicktime = millis()+100000;
  220. unsigned int usb_printing_counter;
  221. int lcd_change_fil_state = 0;
  222. int feedmultiplyBckp = 100;
  223. unsigned char lang_selected = 0;
  224. bool prusa_sd_card_upload = false;
  225. unsigned long total_filament_used;
  226. unsigned int heating_status;
  227. unsigned int heating_status_counter;
  228. bool custom_message;
  229. bool loading_flag = false;
  230. unsigned int custom_message_type;
  231. unsigned int custom_message_state;
  232. bool volumetric_enabled = false;
  233. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  234. #if EXTRUDERS > 1
  235. , DEFAULT_NOMINAL_FILAMENT_DIA
  236. #if EXTRUDERS > 2
  237. , DEFAULT_NOMINAL_FILAMENT_DIA
  238. #endif
  239. #endif
  240. };
  241. float volumetric_multiplier[EXTRUDERS] = {1.0
  242. #if EXTRUDERS > 1
  243. , 1.0
  244. #if EXTRUDERS > 2
  245. , 1.0
  246. #endif
  247. #endif
  248. };
  249. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  250. float add_homing[3]={0,0,0};
  251. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  252. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  253. bool axis_known_position[3] = {false, false, false};
  254. float zprobe_zoffset;
  255. // Extruder offset
  256. #if EXTRUDERS > 1
  257. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  258. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  259. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  260. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  261. #endif
  262. };
  263. #endif
  264. uint8_t active_extruder = 0;
  265. int fanSpeed=0;
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled=false;
  268. bool retracted[EXTRUDERS]={false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #endif
  274. #endif
  275. };
  276. bool retracted_swap[EXTRUDERS]={false
  277. #if EXTRUDERS > 1
  278. , false
  279. #if EXTRUDERS > 2
  280. , false
  281. #endif
  282. #endif
  283. };
  284. float retract_length = RETRACT_LENGTH;
  285. float retract_length_swap = RETRACT_LENGTH_SWAP;
  286. float retract_feedrate = RETRACT_FEEDRATE;
  287. float retract_zlift = RETRACT_ZLIFT;
  288. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  289. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  290. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  291. #endif
  292. #ifdef ULTIPANEL
  293. #ifdef PS_DEFAULT_OFF
  294. bool powersupply = false;
  295. #else
  296. bool powersupply = true;
  297. #endif
  298. #endif
  299. bool cancel_heatup = false ;
  300. #ifdef FILAMENT_SENSOR
  301. //Variables for Filament Sensor input
  302. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  303. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  304. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  305. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  306. int delay_index1=0; //index into ring buffer
  307. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  308. float delay_dist=0; //delay distance counter
  309. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  310. #endif
  311. const char errormagic[] PROGMEM = "Error:";
  312. const char echomagic[] PROGMEM = "echo:";
  313. //===========================================================================
  314. //=============================Private Variables=============================
  315. //===========================================================================
  316. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  317. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  318. static float delta[3] = {0.0, 0.0, 0.0};
  319. // For tracing an arc
  320. static float offset[3] = {0.0, 0.0, 0.0};
  321. static bool home_all_axis = true;
  322. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  323. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  324. // Determines Absolute or Relative Coordinates.
  325. // Also there is bool axis_relative_modes[] per axis flag.
  326. static bool relative_mode = false;
  327. // String circular buffer. Commands may be pushed to the buffer from both sides:
  328. // Chained commands will be pushed to the front, interactive (from LCD menu)
  329. // and printing commands (from serial line or from SD card) are pushed to the tail.
  330. // First character of each entry indicates the type of the entry:
  331. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  332. // Command in cmdbuffer was sent over USB.
  333. #define CMDBUFFER_CURRENT_TYPE_USB 1
  334. // Command in cmdbuffer was read from SDCARD.
  335. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  336. // Command in cmdbuffer was generated by the UI.
  337. #define CMDBUFFER_CURRENT_TYPE_UI 3
  338. // Command in cmdbuffer was generated by another G-code.
  339. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  340. // How much space to reserve for the chained commands
  341. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  342. // which are pushed to the front of the queue?
  343. // Maximum 5 commands of max length 20 + null terminator.
  344. #define CMDBUFFER_RESERVE_FRONT (5*21)
  345. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  346. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  347. // Head of the circular buffer, where to read.
  348. static int bufindr = 0;
  349. // Tail of the buffer, where to write.
  350. static int bufindw = 0;
  351. // Number of lines in cmdbuffer.
  352. static int buflen = 0;
  353. // Flag for processing the current command inside the main Arduino loop().
  354. // If a new command was pushed to the front of a command buffer while
  355. // processing another command, this replaces the command on the top.
  356. // Therefore don't remove the command from the queue in the loop() function.
  357. static bool cmdbuffer_front_already_processed = false;
  358. // Type of a command, which is to be executed right now.
  359. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  360. // String of a command, which is to be executed right now.
  361. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  362. // Enable debugging of the command buffer.
  363. // Debugging information will be sent to serial line.
  364. // #define CMDBUFFER_DEBUG
  365. static int serial_count = 0;
  366. static boolean comment_mode = false;
  367. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  368. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  369. //static float tt = 0;
  370. //static float bt = 0;
  371. //Inactivity shutdown variables
  372. static unsigned long previous_millis_cmd = 0;
  373. unsigned long max_inactive_time = 0;
  374. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  375. unsigned long starttime=0;
  376. unsigned long stoptime=0;
  377. unsigned long _usb_timer = 0;
  378. static uint8_t tmp_extruder;
  379. bool Stopped=false;
  380. #if NUM_SERVOS > 0
  381. Servo servos[NUM_SERVOS];
  382. #endif
  383. bool CooldownNoWait = true;
  384. bool target_direction;
  385. //Insert variables if CHDK is defined
  386. #ifdef CHDK
  387. unsigned long chdkHigh = 0;
  388. boolean chdkActive = false;
  389. #endif
  390. //===========================================================================
  391. //=============================Routines======================================
  392. //===========================================================================
  393. void get_arc_coordinates();
  394. bool setTargetedHotend(int code);
  395. void serial_echopair_P(const char *s_P, float v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. void serial_echopair_P(const char *s_P, double v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, unsigned long v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. #ifdef SDSUPPORT
  402. #include "SdFatUtil.h"
  403. int freeMemory() { return SdFatUtil::FreeRam(); }
  404. #else
  405. extern "C" {
  406. extern unsigned int __bss_end;
  407. extern unsigned int __heap_start;
  408. extern void *__brkval;
  409. int freeMemory() {
  410. int free_memory;
  411. if ((int)__brkval == 0)
  412. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  413. else
  414. free_memory = ((int)&free_memory) - ((int)__brkval);
  415. return free_memory;
  416. }
  417. }
  418. #endif //!SDSUPPORT
  419. // Pop the currently processed command from the queue.
  420. // It is expected, that there is at least one command in the queue.
  421. bool cmdqueue_pop_front()
  422. {
  423. if (buflen > 0) {
  424. #ifdef CMDBUFFER_DEBUG
  425. SERIAL_ECHOPGM("Dequeing ");
  426. SERIAL_ECHO(cmdbuffer+bufindr+1);
  427. SERIAL_ECHOLNPGM("");
  428. SERIAL_ECHOPGM("Old indices: buflen ");
  429. SERIAL_ECHO(buflen);
  430. SERIAL_ECHOPGM(", bufindr ");
  431. SERIAL_ECHO(bufindr);
  432. SERIAL_ECHOPGM(", bufindw ");
  433. SERIAL_ECHO(bufindw);
  434. SERIAL_ECHOPGM(", serial_count ");
  435. SERIAL_ECHO(serial_count);
  436. SERIAL_ECHOPGM(", bufsize ");
  437. SERIAL_ECHO(sizeof(cmdbuffer));
  438. SERIAL_ECHOLNPGM("");
  439. #endif /* CMDBUFFER_DEBUG */
  440. if (-- buflen == 0) {
  441. // Empty buffer.
  442. if (serial_count == 0)
  443. // No serial communication is pending. Reset both pointers to zero.
  444. bufindw = 0;
  445. bufindr = bufindw;
  446. } else {
  447. // There is at least one ready line in the buffer.
  448. // First skip the current command ID and iterate up to the end of the string.
  449. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  450. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  451. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  452. // If the end of the buffer was empty,
  453. if (bufindr == sizeof(cmdbuffer)) {
  454. // skip to the start and find the nonzero command.
  455. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  456. }
  457. #ifdef CMDBUFFER_DEBUG
  458. SERIAL_ECHOPGM("New indices: buflen ");
  459. SERIAL_ECHO(buflen);
  460. SERIAL_ECHOPGM(", bufindr ");
  461. SERIAL_ECHO(bufindr);
  462. SERIAL_ECHOPGM(", bufindw ");
  463. SERIAL_ECHO(bufindw);
  464. SERIAL_ECHOPGM(", serial_count ");
  465. SERIAL_ECHO(serial_count);
  466. SERIAL_ECHOPGM(" new command on the top: ");
  467. SERIAL_ECHO(cmdbuffer+bufindr+1);
  468. SERIAL_ECHOLNPGM("");
  469. #endif /* CMDBUFFER_DEBUG */
  470. }
  471. return true;
  472. }
  473. return false;
  474. }
  475. void cmdqueue_reset()
  476. {
  477. while (cmdqueue_pop_front()) ;
  478. }
  479. // How long a string could be pushed to the front of the command queue?
  480. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  481. // len_asked does not contain the zero terminator size.
  482. bool cmdqueue_could_enqueue_front(int len_asked)
  483. {
  484. // MAX_CMD_SIZE has to accommodate the zero terminator.
  485. if (len_asked >= MAX_CMD_SIZE)
  486. return false;
  487. // Remove the currently processed command from the queue.
  488. if (! cmdbuffer_front_already_processed) {
  489. cmdqueue_pop_front();
  490. cmdbuffer_front_already_processed = true;
  491. }
  492. if (bufindr == bufindw && buflen > 0)
  493. // Full buffer.
  494. return false;
  495. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  496. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  497. if (bufindw < bufindr) {
  498. int bufindr_new = bufindr - len_asked - 2;
  499. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  500. if (endw <= bufindr_new) {
  501. bufindr = bufindr_new;
  502. return true;
  503. }
  504. } else {
  505. // Otherwise the free space is split between the start and end.
  506. if (len_asked + 2 <= bufindr) {
  507. // Could fit at the start.
  508. bufindr -= len_asked + 2;
  509. return true;
  510. }
  511. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  512. if (endw <= bufindr_new) {
  513. memset(cmdbuffer, 0, bufindr);
  514. bufindr = bufindr_new;
  515. return true;
  516. }
  517. }
  518. return false;
  519. }
  520. // Could one enqueue a command of lenthg len_asked into the buffer,
  521. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  522. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  523. // len_asked does not contain the zero terminator size.
  524. bool cmdqueue_could_enqueue_back(int len_asked)
  525. {
  526. // MAX_CMD_SIZE has to accommodate the zero terminator.
  527. if (len_asked >= MAX_CMD_SIZE)
  528. return false;
  529. if (bufindr == bufindw && buflen > 0)
  530. // Full buffer.
  531. return false;
  532. if (serial_count > 0) {
  533. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  534. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  535. // serial data.
  536. // How much memory to reserve for the commands pushed to the front?
  537. // End of the queue, when pushing to the end.
  538. int endw = bufindw + len_asked + 2;
  539. if (bufindw < bufindr)
  540. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  541. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  542. // Otherwise the free space is split between the start and end.
  543. if (// Could one fit to the end, including the reserve?
  544. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  545. // Could one fit to the end, and the reserve to the start?
  546. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  547. return true;
  548. // Could one fit both to the start?
  549. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  550. // Mark the rest of the buffer as used.
  551. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  552. // and point to the start.
  553. bufindw = 0;
  554. return true;
  555. }
  556. } else {
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. }
  578. return false;
  579. }
  580. #ifdef CMDBUFFER_DEBUG
  581. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  582. {
  583. SERIAL_ECHOPGM("Entry nr: ");
  584. SERIAL_ECHO(nr);
  585. SERIAL_ECHOPGM(", type: ");
  586. SERIAL_ECHO(int(*p));
  587. SERIAL_ECHOPGM(", cmd: ");
  588. SERIAL_ECHO(p+1);
  589. SERIAL_ECHOLNPGM("");
  590. }
  591. static void cmdqueue_dump_to_serial()
  592. {
  593. if (buflen == 0) {
  594. SERIAL_ECHOLNPGM("The command buffer is empty.");
  595. } else {
  596. SERIAL_ECHOPGM("Content of the buffer: entries ");
  597. SERIAL_ECHO(buflen);
  598. SERIAL_ECHOPGM(", indr ");
  599. SERIAL_ECHO(bufindr);
  600. SERIAL_ECHOPGM(", indw ");
  601. SERIAL_ECHO(bufindw);
  602. SERIAL_ECHOLNPGM("");
  603. int nr = 0;
  604. if (bufindr < bufindw) {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  611. }
  612. } else {
  613. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  614. cmdqueue_dump_to_serial_single_line(nr, p);
  615. // Skip the command.
  616. for (++p; *p != 0; ++ p);
  617. // Skip the gaps.
  618. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  619. }
  620. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  621. cmdqueue_dump_to_serial_single_line(nr, p);
  622. // Skip the command.
  623. for (++p; *p != 0; ++ p);
  624. // Skip the gaps.
  625. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  626. }
  627. }
  628. SERIAL_ECHOLNPGM("End of the buffer.");
  629. }
  630. }
  631. #endif /* CMDBUFFER_DEBUG */
  632. //adds an command to the main command buffer
  633. //thats really done in a non-safe way.
  634. //needs overworking someday
  635. // Currently the maximum length of a command piped through this function is around 20 characters
  636. void enquecommand(const char *cmd, bool from_progmem)
  637. {
  638. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  639. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  640. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  641. if (cmdqueue_could_enqueue_back(len)) {
  642. // This is dangerous if a mixing of serial and this happens
  643. // This may easily be tested: If serial_count > 0, we have a problem.
  644. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  645. if (from_progmem)
  646. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  647. else
  648. strcpy(cmdbuffer + bufindw + 1, cmd);
  649. SERIAL_ECHO_START;
  650. SERIAL_ECHORPGM(MSG_Enqueing);
  651. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  652. SERIAL_ECHOLNPGM("\"");
  653. bufindw += len + 2;
  654. if (bufindw == sizeof(cmdbuffer))
  655. bufindw = 0;
  656. ++ buflen;
  657. #ifdef CMDBUFFER_DEBUG
  658. cmdqueue_dump_to_serial();
  659. #endif /* CMDBUFFER_DEBUG */
  660. } else {
  661. SERIAL_ERROR_START;
  662. SERIAL_ECHORPGM(MSG_Enqueing);
  663. if (from_progmem)
  664. SERIAL_PROTOCOLRPGM(cmd);
  665. else
  666. SERIAL_ECHO(cmd);
  667. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  668. #ifdef CMDBUFFER_DEBUG
  669. cmdqueue_dump_to_serial();
  670. #endif /* CMDBUFFER_DEBUG */
  671. }
  672. }
  673. void enquecommand_front(const char *cmd, bool from_progmem)
  674. {
  675. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  676. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  677. if (cmdqueue_could_enqueue_front(len)) {
  678. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  679. if (from_progmem)
  680. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  681. else
  682. strcpy(cmdbuffer + bufindr + 1, cmd);
  683. ++ buflen;
  684. SERIAL_ECHO_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  687. SERIAL_ECHOLNPGM("\"");
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. } else {
  692. SERIAL_ERROR_START;
  693. SERIAL_ECHOPGM("Enqueing to the front: \"");
  694. if (from_progmem)
  695. SERIAL_PROTOCOLRPGM(cmd);
  696. else
  697. SERIAL_ECHO(cmd);
  698. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. }
  703. }
  704. // Mark the command at the top of the command queue as new.
  705. // Therefore it will not be removed from the queue.
  706. void repeatcommand_front()
  707. {
  708. cmdbuffer_front_already_processed = true;
  709. }
  710. void setup_killpin()
  711. {
  712. #if defined(KILL_PIN) && KILL_PIN > -1
  713. SET_INPUT(KILL_PIN);
  714. WRITE(KILL_PIN,HIGH);
  715. #endif
  716. }
  717. // Set home pin
  718. void setup_homepin(void)
  719. {
  720. #if defined(HOME_PIN) && HOME_PIN > -1
  721. SET_INPUT(HOME_PIN);
  722. WRITE(HOME_PIN,HIGH);
  723. #endif
  724. }
  725. void setup_photpin()
  726. {
  727. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  728. SET_OUTPUT(PHOTOGRAPH_PIN);
  729. WRITE(PHOTOGRAPH_PIN, LOW);
  730. #endif
  731. }
  732. void setup_powerhold()
  733. {
  734. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  735. SET_OUTPUT(SUICIDE_PIN);
  736. WRITE(SUICIDE_PIN, HIGH);
  737. #endif
  738. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  739. SET_OUTPUT(PS_ON_PIN);
  740. #if defined(PS_DEFAULT_OFF)
  741. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  742. #else
  743. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  744. #endif
  745. #endif
  746. }
  747. void suicide()
  748. {
  749. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  750. SET_OUTPUT(SUICIDE_PIN);
  751. WRITE(SUICIDE_PIN, LOW);
  752. #endif
  753. }
  754. void servo_init()
  755. {
  756. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  757. servos[0].attach(SERVO0_PIN);
  758. #endif
  759. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  760. servos[1].attach(SERVO1_PIN);
  761. #endif
  762. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  763. servos[2].attach(SERVO2_PIN);
  764. #endif
  765. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  766. servos[3].attach(SERVO3_PIN);
  767. #endif
  768. #if (NUM_SERVOS >= 5)
  769. #error "TODO: enter initalisation code for more servos"
  770. #endif
  771. }
  772. static void lcd_language_menu();
  773. #ifdef MESH_BED_LEVELING
  774. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  775. #endif
  776. // Factory reset function
  777. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  778. // Level input parameter sets depth of reset
  779. // Quiet parameter masks all waitings for user interact.
  780. int er_progress = 0;
  781. void factory_reset(char level, bool quiet)
  782. {
  783. lcd_implementation_clear();
  784. switch (level) {
  785. // Level 0: Language reset
  786. case 0:
  787. WRITE(BEEPER, HIGH);
  788. _delay_ms(100);
  789. WRITE(BEEPER, LOW);
  790. lcd_force_language_selection();
  791. break;
  792. //Level 1: Reset statistics
  793. case 1:
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  798. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  799. lcd_menu_statistics();
  800. break;
  801. // Level 2: Prepare for shipping
  802. case 2:
  803. //lcd_printPGM(PSTR("Factory RESET"));
  804. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  805. // Force language selection at the next boot up.
  806. lcd_force_language_selection();
  807. // Force the "Follow calibration flow" message at the next boot up.
  808. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  809. farm_no = 0;
  810. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  811. farm_mode = false;
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. //_delay_ms(2000);
  816. break;
  817. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  818. case 3:
  819. lcd_printPGM(PSTR("Factory RESET"));
  820. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. er_progress = 0;
  825. lcd_print_at_PGM(3, 3, PSTR(" "));
  826. lcd_implementation_print_at(3, 3, er_progress);
  827. // Erase EEPROM
  828. for (int i = 0; i < 4096; i++) {
  829. eeprom_write_byte((uint8_t*)i, 0xFF);
  830. if (i % 41 == 0) {
  831. er_progress++;
  832. lcd_print_at_PGM(3, 3, PSTR(" "));
  833. lcd_implementation_print_at(3, 3, er_progress);
  834. lcd_printPGM(PSTR("%"));
  835. }
  836. }
  837. break;
  838. default:
  839. break;
  840. }
  841. }
  842. // "Setup" function is called by the Arduino framework on startup.
  843. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  844. // are initialized by the main() routine provided by the Arduino framework.
  845. void setup()
  846. {
  847. setup_killpin();
  848. setup_powerhold();
  849. MYSERIAL.begin(BAUDRATE);
  850. SERIAL_PROTOCOLLNPGM("start");
  851. SERIAL_ECHO_START;
  852. #if 0
  853. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  854. for (int i = 0; i < 4096; ++ i) {
  855. int b = eeprom_read_byte((unsigned char*)i);
  856. if (b != 255) {
  857. SERIAL_ECHO(i);
  858. SERIAL_ECHO(":");
  859. SERIAL_ECHO(b);
  860. SERIAL_ECHOLN("");
  861. }
  862. }
  863. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  864. #endif
  865. // Check startup - does nothing if bootloader sets MCUSR to 0
  866. byte mcu = MCUSR;
  867. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  868. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  869. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  870. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  871. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  872. MCUSR=0;
  873. //SERIAL_ECHORPGM(MSG_MARLIN);
  874. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  875. #ifdef STRING_VERSION_CONFIG_H
  876. #ifdef STRING_CONFIG_H_AUTHOR
  877. SERIAL_ECHO_START;
  878. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  879. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  880. SERIAL_ECHORPGM(MSG_AUTHOR);
  881. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  882. SERIAL_ECHOPGM("Compiled: ");
  883. SERIAL_ECHOLNPGM(__DATE__);
  884. #endif
  885. #endif
  886. SERIAL_ECHO_START;
  887. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  888. SERIAL_ECHO(freeMemory());
  889. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  890. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  891. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  892. Config_RetrieveSettings();
  893. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  894. tp_init(); // Initialize temperature loop
  895. plan_init(); // Initialize planner;
  896. watchdog_init();
  897. st_init(); // Initialize stepper, this enables interrupts!
  898. setup_photpin();
  899. servo_init();
  900. // Reset the machine correction matrix.
  901. // It does not make sense to load the correction matrix until the machine is homed.
  902. world2machine_reset();
  903. lcd_init();
  904. if (!READ(BTN_ENC))
  905. {
  906. _delay_ms(1000);
  907. if (!READ(BTN_ENC))
  908. {
  909. lcd_implementation_clear();
  910. lcd_printPGM(PSTR("Factory RESET"));
  911. SET_OUTPUT(BEEPER);
  912. WRITE(BEEPER, HIGH);
  913. while (!READ(BTN_ENC));
  914. WRITE(BEEPER, LOW);
  915. _delay_ms(2000);
  916. char level = reset_menu();
  917. factory_reset(level, false);
  918. switch (level) {
  919. case 0: _delay_ms(0); break;
  920. case 1: _delay_ms(0); break;
  921. case 2: _delay_ms(0); break;
  922. case 3: _delay_ms(0); break;
  923. }
  924. // _delay_ms(100);
  925. /*
  926. #ifdef MESH_BED_LEVELING
  927. _delay_ms(2000);
  928. if (!READ(BTN_ENC))
  929. {
  930. WRITE(BEEPER, HIGH);
  931. _delay_ms(100);
  932. WRITE(BEEPER, LOW);
  933. _delay_ms(200);
  934. WRITE(BEEPER, HIGH);
  935. _delay_ms(100);
  936. WRITE(BEEPER, LOW);
  937. int _z = 0;
  938. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  939. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  940. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  941. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  942. }
  943. else
  944. {
  945. WRITE(BEEPER, HIGH);
  946. _delay_ms(100);
  947. WRITE(BEEPER, LOW);
  948. }
  949. #endif // mesh */
  950. }
  951. }
  952. else
  953. {
  954. _delay_ms(1000); // wait 1sec to display the splash screen
  955. }
  956. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  957. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  958. #endif
  959. #ifdef DIGIPOT_I2C
  960. digipot_i2c_init();
  961. #endif
  962. setup_homepin();
  963. #if defined(Z_AXIS_ALWAYS_ON)
  964. enable_z();
  965. #endif
  966. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  967. if (farm_no > 0)
  968. {
  969. farm_mode = true;
  970. farm_no = farm_no;
  971. prusa_statistics(8);
  972. }
  973. else
  974. {
  975. farm_mode = false;
  976. farm_no = 0;
  977. }
  978. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  979. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  980. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  981. // but this times out if a blocking dialog is shown in setup().
  982. card.initsd();
  983. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  984. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  985. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  986. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  987. // where all the EEPROM entries are set to 0x0ff.
  988. // Once a firmware boots up, it forces at least a language selection, which changes
  989. // EEPROM_LANG to number lower than 0x0ff.
  990. // 1) Set a high power mode.
  991. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  992. }
  993. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  994. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  995. // is being written into the EEPROM, so the update procedure will be triggered only once.
  996. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  997. if (lang_selected >= LANG_NUM){
  998. lcd_mylang();
  999. }
  1000. check_babystep(); //checking if Z babystep is in allowed range
  1001. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1002. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1003. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1004. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1005. // Show the message.
  1006. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1007. lcd_update_enable(true);
  1008. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1009. // Show the message.
  1010. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1011. lcd_update_enable(true);
  1012. } else if (calibration_status() == CALIBRATION_STATUS_PINDA) {
  1013. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1014. lcd_update_enable(true);
  1015. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1016. // Show the message.
  1017. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1018. lcd_update_enable(true);
  1019. }
  1020. // Store the currently running firmware into an eeprom,
  1021. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1022. update_current_firmware_version_to_eeprom();
  1023. }
  1024. void trace();
  1025. #define CHUNK_SIZE 64 // bytes
  1026. #define SAFETY_MARGIN 1
  1027. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1028. int chunkHead = 0;
  1029. int serial_read_stream() {
  1030. setTargetHotend(0, 0);
  1031. setTargetBed(0);
  1032. lcd_implementation_clear();
  1033. lcd_printPGM(PSTR(" Upload in progress"));
  1034. // first wait for how many bytes we will receive
  1035. uint32_t bytesToReceive;
  1036. // receive the four bytes
  1037. char bytesToReceiveBuffer[4];
  1038. for (int i=0; i<4; i++) {
  1039. int data;
  1040. while ((data = MYSERIAL.read()) == -1) {};
  1041. bytesToReceiveBuffer[i] = data;
  1042. }
  1043. // make it a uint32
  1044. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1045. // we're ready, notify the sender
  1046. MYSERIAL.write('+');
  1047. // lock in the routine
  1048. uint32_t receivedBytes = 0;
  1049. while (prusa_sd_card_upload) {
  1050. int i;
  1051. for (i=0; i<CHUNK_SIZE; i++) {
  1052. int data;
  1053. // check if we're not done
  1054. if (receivedBytes == bytesToReceive) {
  1055. break;
  1056. }
  1057. // read the next byte
  1058. while ((data = MYSERIAL.read()) == -1) {};
  1059. receivedBytes++;
  1060. // save it to the chunk
  1061. chunk[i] = data;
  1062. }
  1063. // write the chunk to SD
  1064. card.write_command_no_newline(&chunk[0]);
  1065. // notify the sender we're ready for more data
  1066. MYSERIAL.write('+');
  1067. // for safety
  1068. manage_heater();
  1069. // check if we're done
  1070. if(receivedBytes == bytesToReceive) {
  1071. trace(); // beep
  1072. card.closefile();
  1073. prusa_sd_card_upload = false;
  1074. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1075. return 0;
  1076. }
  1077. }
  1078. }
  1079. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1080. // Before loop(), the setup() function is called by the main() routine.
  1081. void loop()
  1082. {
  1083. bool stack_integrity = true;
  1084. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1085. {
  1086. is_usb_printing = true;
  1087. usb_printing_counter--;
  1088. _usb_timer = millis();
  1089. }
  1090. if (usb_printing_counter == 0)
  1091. {
  1092. is_usb_printing = false;
  1093. }
  1094. if (prusa_sd_card_upload)
  1095. {
  1096. //we read byte-by byte
  1097. serial_read_stream();
  1098. } else
  1099. {
  1100. get_command();
  1101. #ifdef SDSUPPORT
  1102. card.checkautostart(false);
  1103. #endif
  1104. if(buflen)
  1105. {
  1106. #ifdef SDSUPPORT
  1107. if(card.saving)
  1108. {
  1109. // Saving a G-code file onto an SD-card is in progress.
  1110. // Saving starts with M28, saving until M29 is seen.
  1111. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1112. card.write_command(CMDBUFFER_CURRENT_STRING);
  1113. if(card.logging)
  1114. process_commands();
  1115. else
  1116. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1117. } else {
  1118. card.closefile();
  1119. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1120. }
  1121. } else {
  1122. process_commands();
  1123. }
  1124. #else
  1125. process_commands();
  1126. #endif //SDSUPPORT
  1127. if (! cmdbuffer_front_already_processed)
  1128. cmdqueue_pop_front();
  1129. cmdbuffer_front_already_processed = false;
  1130. }
  1131. }
  1132. //check heater every n milliseconds
  1133. manage_heater();
  1134. manage_inactivity();
  1135. checkHitEndstops();
  1136. lcd_update();
  1137. }
  1138. void get_command()
  1139. {
  1140. // Test and reserve space for the new command string.
  1141. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1142. return;
  1143. while (MYSERIAL.available() > 0) {
  1144. char serial_char = MYSERIAL.read();
  1145. TimeSent = millis();
  1146. TimeNow = millis();
  1147. if (serial_char < 0)
  1148. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1149. // and Marlin does not support such file names anyway.
  1150. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1151. // to a hang-up of the print process from an SD card.
  1152. continue;
  1153. if(serial_char == '\n' ||
  1154. serial_char == '\r' ||
  1155. (serial_char == ':' && comment_mode == false) ||
  1156. serial_count >= (MAX_CMD_SIZE - 1) )
  1157. {
  1158. if(!serial_count) { //if empty line
  1159. comment_mode = false; //for new command
  1160. return;
  1161. }
  1162. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1163. if(!comment_mode){
  1164. comment_mode = false; //for new command
  1165. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1166. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1167. {
  1168. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1169. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1170. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1171. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1172. // M110 - set current line number.
  1173. // Line numbers not sent in succession.
  1174. SERIAL_ERROR_START;
  1175. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1176. SERIAL_ERRORLN(gcode_LastN);
  1177. //Serial.println(gcode_N);
  1178. FlushSerialRequestResend();
  1179. serial_count = 0;
  1180. return;
  1181. }
  1182. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1183. {
  1184. byte checksum = 0;
  1185. char *p = cmdbuffer+bufindw+1;
  1186. while (p != strchr_pointer)
  1187. checksum = checksum^(*p++);
  1188. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1189. SERIAL_ERROR_START;
  1190. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1191. SERIAL_ERRORLN(gcode_LastN);
  1192. FlushSerialRequestResend();
  1193. serial_count = 0;
  1194. return;
  1195. }
  1196. // If no errors, remove the checksum and continue parsing.
  1197. *strchr_pointer = 0;
  1198. }
  1199. else
  1200. {
  1201. SERIAL_ERROR_START;
  1202. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1203. SERIAL_ERRORLN(gcode_LastN);
  1204. FlushSerialRequestResend();
  1205. serial_count = 0;
  1206. return;
  1207. }
  1208. gcode_LastN = gcode_N;
  1209. //if no errors, continue parsing
  1210. } // end of 'N' command
  1211. }
  1212. else // if we don't receive 'N' but still see '*'
  1213. {
  1214. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1215. {
  1216. SERIAL_ERROR_START;
  1217. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1218. SERIAL_ERRORLN(gcode_LastN);
  1219. serial_count = 0;
  1220. return;
  1221. }
  1222. } // end of '*' command
  1223. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1224. if (! IS_SD_PRINTING) {
  1225. usb_printing_counter = 10;
  1226. is_usb_printing = true;
  1227. }
  1228. if (Stopped == true) {
  1229. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1230. if (gcode >= 0 && gcode <= 3) {
  1231. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1232. LCD_MESSAGERPGM(MSG_STOPPED);
  1233. }
  1234. }
  1235. } // end of 'G' command
  1236. //If command was e-stop process now
  1237. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1238. kill();
  1239. // Store the current line into buffer, move to the next line.
  1240. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1241. #ifdef CMDBUFFER_DEBUG
  1242. SERIAL_ECHO_START;
  1243. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1244. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1245. SERIAL_ECHOLNPGM("");
  1246. #endif /* CMDBUFFER_DEBUG */
  1247. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1248. if (bufindw == sizeof(cmdbuffer))
  1249. bufindw = 0;
  1250. ++ buflen;
  1251. #ifdef CMDBUFFER_DEBUG
  1252. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1253. SERIAL_ECHO(buflen);
  1254. SERIAL_ECHOLNPGM("");
  1255. #endif /* CMDBUFFER_DEBUG */
  1256. } // end of 'not comment mode'
  1257. serial_count = 0; //clear buffer
  1258. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1259. // in the queue, as this function will reserve the memory.
  1260. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1261. return;
  1262. } // end of "end of line" processing
  1263. else {
  1264. // Not an "end of line" symbol. Store the new character into a buffer.
  1265. if(serial_char == ';') comment_mode = true;
  1266. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1267. }
  1268. } // end of serial line processing loop
  1269. if(farm_mode){
  1270. TimeNow = millis();
  1271. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1272. cmdbuffer[bufindw+serial_count+1] = 0;
  1273. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1274. if (bufindw == sizeof(cmdbuffer))
  1275. bufindw = 0;
  1276. ++ buflen;
  1277. serial_count = 0;
  1278. SERIAL_ECHOPGM("TIMEOUT:");
  1279. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1280. return;
  1281. }
  1282. }
  1283. #ifdef SDSUPPORT
  1284. if(!card.sdprinting || serial_count!=0){
  1285. // If there is a half filled buffer from serial line, wait until return before
  1286. // continuing with the serial line.
  1287. return;
  1288. }
  1289. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1290. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1291. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1292. static bool stop_buffering=false;
  1293. if(buflen==0) stop_buffering=false;
  1294. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1295. while( !card.eof() && !stop_buffering) {
  1296. int16_t n=card.get();
  1297. char serial_char = (char)n;
  1298. if(serial_char == '\n' ||
  1299. serial_char == '\r' ||
  1300. (serial_char == '#' && comment_mode == false) ||
  1301. (serial_char == ':' && comment_mode == false) ||
  1302. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1303. {
  1304. if(card.eof()){
  1305. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1306. stoptime=millis();
  1307. char time[30];
  1308. unsigned long t=(stoptime-starttime)/1000;
  1309. int hours, minutes;
  1310. minutes=(t/60)%60;
  1311. hours=t/60/60;
  1312. save_statistics(total_filament_used, t);
  1313. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1314. SERIAL_ECHO_START;
  1315. SERIAL_ECHOLN(time);
  1316. lcd_setstatus(time);
  1317. card.printingHasFinished();
  1318. card.checkautostart(true);
  1319. if (farm_mode)
  1320. {
  1321. prusa_statistics(6);
  1322. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1323. }
  1324. }
  1325. if(serial_char=='#')
  1326. stop_buffering=true;
  1327. if(!serial_count)
  1328. {
  1329. comment_mode = false; //for new command
  1330. return; //if empty line
  1331. }
  1332. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1333. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1334. ++ buflen;
  1335. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1336. if (bufindw == sizeof(cmdbuffer))
  1337. bufindw = 0;
  1338. comment_mode = false; //for new command
  1339. serial_count = 0; //clear buffer
  1340. // The following line will reserve buffer space if available.
  1341. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1342. return;
  1343. }
  1344. else
  1345. {
  1346. if(serial_char == ';') comment_mode = true;
  1347. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1348. }
  1349. }
  1350. #endif //SDSUPPORT
  1351. }
  1352. // Return True if a character was found
  1353. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1354. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1355. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1356. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1357. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1358. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1359. #define DEFINE_PGM_READ_ANY(type, reader) \
  1360. static inline type pgm_read_any(const type *p) \
  1361. { return pgm_read_##reader##_near(p); }
  1362. DEFINE_PGM_READ_ANY(float, float);
  1363. DEFINE_PGM_READ_ANY(signed char, byte);
  1364. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1365. static const PROGMEM type array##_P[3] = \
  1366. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1367. static inline type array(int axis) \
  1368. { return pgm_read_any(&array##_P[axis]); } \
  1369. type array##_ext(int axis) \
  1370. { return pgm_read_any(&array##_P[axis]); }
  1371. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1372. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1373. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1374. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1375. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1376. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1377. static void axis_is_at_home(int axis) {
  1378. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1379. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1380. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1381. }
  1382. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1383. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1384. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1385. saved_feedrate = feedrate;
  1386. saved_feedmultiply = feedmultiply;
  1387. feedmultiply = 100;
  1388. previous_millis_cmd = millis();
  1389. enable_endstops(enable_endstops_now);
  1390. }
  1391. static void clean_up_after_endstop_move() {
  1392. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1393. enable_endstops(false);
  1394. #endif
  1395. feedrate = saved_feedrate;
  1396. feedmultiply = saved_feedmultiply;
  1397. previous_millis_cmd = millis();
  1398. }
  1399. #ifdef ENABLE_AUTO_BED_LEVELING
  1400. #ifdef AUTO_BED_LEVELING_GRID
  1401. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1402. {
  1403. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1404. planeNormal.debug("planeNormal");
  1405. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1406. //bedLevel.debug("bedLevel");
  1407. //plan_bed_level_matrix.debug("bed level before");
  1408. //vector_3 uncorrected_position = plan_get_position_mm();
  1409. //uncorrected_position.debug("position before");
  1410. vector_3 corrected_position = plan_get_position();
  1411. // corrected_position.debug("position after");
  1412. current_position[X_AXIS] = corrected_position.x;
  1413. current_position[Y_AXIS] = corrected_position.y;
  1414. current_position[Z_AXIS] = corrected_position.z;
  1415. // put the bed at 0 so we don't go below it.
  1416. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1418. }
  1419. #else // not AUTO_BED_LEVELING_GRID
  1420. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1421. plan_bed_level_matrix.set_to_identity();
  1422. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1423. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1424. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1425. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1426. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1427. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1428. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1429. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1430. vector_3 corrected_position = plan_get_position();
  1431. current_position[X_AXIS] = corrected_position.x;
  1432. current_position[Y_AXIS] = corrected_position.y;
  1433. current_position[Z_AXIS] = corrected_position.z;
  1434. // put the bed at 0 so we don't go below it.
  1435. current_position[Z_AXIS] = zprobe_zoffset;
  1436. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1437. }
  1438. #endif // AUTO_BED_LEVELING_GRID
  1439. static void run_z_probe() {
  1440. plan_bed_level_matrix.set_to_identity();
  1441. feedrate = homing_feedrate[Z_AXIS];
  1442. // move down until you find the bed
  1443. float zPosition = -10;
  1444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1445. st_synchronize();
  1446. // we have to let the planner know where we are right now as it is not where we said to go.
  1447. zPosition = st_get_position_mm(Z_AXIS);
  1448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1449. // move up the retract distance
  1450. zPosition += home_retract_mm(Z_AXIS);
  1451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1452. st_synchronize();
  1453. // move back down slowly to find bed
  1454. feedrate = homing_feedrate[Z_AXIS]/4;
  1455. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1457. st_synchronize();
  1458. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1459. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. }
  1462. static void do_blocking_move_to(float x, float y, float z) {
  1463. float oldFeedRate = feedrate;
  1464. feedrate = homing_feedrate[Z_AXIS];
  1465. current_position[Z_AXIS] = z;
  1466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1467. st_synchronize();
  1468. feedrate = XY_TRAVEL_SPEED;
  1469. current_position[X_AXIS] = x;
  1470. current_position[Y_AXIS] = y;
  1471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1472. st_synchronize();
  1473. feedrate = oldFeedRate;
  1474. }
  1475. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1476. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1477. }
  1478. /// Probe bed height at position (x,y), returns the measured z value
  1479. static float probe_pt(float x, float y, float z_before) {
  1480. // move to right place
  1481. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1482. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1483. run_z_probe();
  1484. float measured_z = current_position[Z_AXIS];
  1485. SERIAL_PROTOCOLRPGM(MSG_BED);
  1486. SERIAL_PROTOCOLPGM(" x: ");
  1487. SERIAL_PROTOCOL(x);
  1488. SERIAL_PROTOCOLPGM(" y: ");
  1489. SERIAL_PROTOCOL(y);
  1490. SERIAL_PROTOCOLPGM(" z: ");
  1491. SERIAL_PROTOCOL(measured_z);
  1492. SERIAL_PROTOCOLPGM("\n");
  1493. return measured_z;
  1494. }
  1495. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1496. void homeaxis(int axis) {
  1497. #define HOMEAXIS_DO(LETTER) \
  1498. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1499. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1500. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1501. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1502. 0) {
  1503. int axis_home_dir = home_dir(axis);
  1504. current_position[axis] = 0;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1507. feedrate = homing_feedrate[axis];
  1508. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1509. st_synchronize();
  1510. current_position[axis] = 0;
  1511. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1512. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1513. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1514. st_synchronize();
  1515. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1516. feedrate = homing_feedrate[axis]/2 ;
  1517. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1518. st_synchronize();
  1519. axis_is_at_home(axis);
  1520. destination[axis] = current_position[axis];
  1521. feedrate = 0.0;
  1522. endstops_hit_on_purpose();
  1523. axis_known_position[axis] = true;
  1524. }
  1525. }
  1526. void home_xy()
  1527. {
  1528. set_destination_to_current();
  1529. homeaxis(X_AXIS);
  1530. homeaxis(Y_AXIS);
  1531. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1532. endstops_hit_on_purpose();
  1533. }
  1534. void refresh_cmd_timeout(void)
  1535. {
  1536. previous_millis_cmd = millis();
  1537. }
  1538. #ifdef FWRETRACT
  1539. void retract(bool retracting, bool swapretract = false) {
  1540. if(retracting && !retracted[active_extruder]) {
  1541. destination[X_AXIS]=current_position[X_AXIS];
  1542. destination[Y_AXIS]=current_position[Y_AXIS];
  1543. destination[Z_AXIS]=current_position[Z_AXIS];
  1544. destination[E_AXIS]=current_position[E_AXIS];
  1545. if (swapretract) {
  1546. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1547. } else {
  1548. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1549. }
  1550. plan_set_e_position(current_position[E_AXIS]);
  1551. float oldFeedrate = feedrate;
  1552. feedrate=retract_feedrate*60;
  1553. retracted[active_extruder]=true;
  1554. prepare_move();
  1555. current_position[Z_AXIS]-=retract_zlift;
  1556. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1557. prepare_move();
  1558. feedrate = oldFeedrate;
  1559. } else if(!retracting && retracted[active_extruder]) {
  1560. destination[X_AXIS]=current_position[X_AXIS];
  1561. destination[Y_AXIS]=current_position[Y_AXIS];
  1562. destination[Z_AXIS]=current_position[Z_AXIS];
  1563. destination[E_AXIS]=current_position[E_AXIS];
  1564. current_position[Z_AXIS]+=retract_zlift;
  1565. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1566. //prepare_move();
  1567. if (swapretract) {
  1568. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1569. } else {
  1570. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1571. }
  1572. plan_set_e_position(current_position[E_AXIS]);
  1573. float oldFeedrate = feedrate;
  1574. feedrate=retract_recover_feedrate*60;
  1575. retracted[active_extruder]=false;
  1576. prepare_move();
  1577. feedrate = oldFeedrate;
  1578. }
  1579. } //retract
  1580. #endif //FWRETRACT
  1581. void trace() {
  1582. tone(BEEPER, 440);
  1583. delay(25);
  1584. noTone(BEEPER);
  1585. delay(20);
  1586. }
  1587. void ramming() {
  1588. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1589. if (current_temperature[0] < 230) {
  1590. //PLA
  1591. max_feedrate[E_AXIS] = 50;
  1592. //current_position[E_AXIS] -= 8;
  1593. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1594. //current_position[E_AXIS] += 8;
  1595. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1596. current_position[E_AXIS] += 5.4;
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1598. current_position[E_AXIS] += 3.2;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1600. current_position[E_AXIS] += 3;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1602. st_synchronize();
  1603. max_feedrate[E_AXIS] = 80;
  1604. current_position[E_AXIS] -= 82;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1606. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1607. current_position[E_AXIS] -= 20;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1609. current_position[E_AXIS] += 5;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1611. current_position[E_AXIS] += 5;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1613. current_position[E_AXIS] -= 10;
  1614. st_synchronize();
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1616. current_position[E_AXIS] += 10;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1618. current_position[E_AXIS] -= 10;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1620. current_position[E_AXIS] += 10;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1622. current_position[E_AXIS] -= 10;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1624. st_synchronize();
  1625. }
  1626. else {
  1627. //ABS
  1628. max_feedrate[E_AXIS] = 50;
  1629. //current_position[E_AXIS] -= 8;
  1630. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1631. //current_position[E_AXIS] += 8;
  1632. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1633. current_position[E_AXIS] += 3.1;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1635. current_position[E_AXIS] += 3.1;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1637. current_position[E_AXIS] += 4;
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1639. st_synchronize();
  1640. /*current_position[X_AXIS] += 23; //delay
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1642. current_position[X_AXIS] -= 23; //delay
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1644. delay(4700);
  1645. max_feedrate[E_AXIS] = 80;
  1646. current_position[E_AXIS] -= 92;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1648. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1649. current_position[E_AXIS] -= 5;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1651. current_position[E_AXIS] += 5;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1653. current_position[E_AXIS] -= 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1655. st_synchronize();
  1656. current_position[E_AXIS] += 5;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1658. current_position[E_AXIS] -= 5;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1660. current_position[E_AXIS] += 5;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1662. current_position[E_AXIS] -= 5;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1664. st_synchronize();
  1665. }
  1666. }
  1667. void process_commands()
  1668. {
  1669. #ifdef FILAMENT_RUNOUT_SUPPORT
  1670. SET_INPUT(FR_SENS);
  1671. #endif
  1672. #ifdef CMDBUFFER_DEBUG
  1673. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1674. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1675. SERIAL_ECHOLNPGM("");
  1676. SERIAL_ECHOPGM("In cmdqueue: ");
  1677. SERIAL_ECHO(buflen);
  1678. SERIAL_ECHOLNPGM("");
  1679. #endif /* CMDBUFFER_DEBUG */
  1680. unsigned long codenum; //throw away variable
  1681. char *starpos = NULL;
  1682. #ifdef ENABLE_AUTO_BED_LEVELING
  1683. float x_tmp, y_tmp, z_tmp, real_z;
  1684. #endif
  1685. // PRUSA GCODES
  1686. #ifdef SNMM
  1687. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1688. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1689. int8_t SilentMode;
  1690. #endif
  1691. if(code_seen("PRUSA")){
  1692. if (code_seen("fn")) {
  1693. if (farm_mode) {
  1694. MYSERIAL.println(farm_no);
  1695. }
  1696. else {
  1697. MYSERIAL.println("Not in farm mode.");
  1698. }
  1699. }else if (code_seen("fv")) {
  1700. // get file version
  1701. #ifdef SDSUPPORT
  1702. card.openFile(strchr_pointer + 3,true);
  1703. while (true) {
  1704. uint16_t readByte = card.get();
  1705. MYSERIAL.write(readByte);
  1706. if (readByte=='\n') {
  1707. break;
  1708. }
  1709. }
  1710. card.closefile();
  1711. #endif // SDSUPPORT
  1712. } else if (code_seen("M28")) {
  1713. trace();
  1714. prusa_sd_card_upload = true;
  1715. card.openFile(strchr_pointer+4,false);
  1716. } else if(code_seen("Fir")){
  1717. SERIAL_PROTOCOLLN(FW_version);
  1718. } else if(code_seen("Rev")){
  1719. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1720. } else if(code_seen("Lang")) {
  1721. lcd_force_language_selection();
  1722. } else if(code_seen("Lz")) {
  1723. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1724. } else if (code_seen("SERIAL LOW")) {
  1725. MYSERIAL.println("SERIAL LOW");
  1726. MYSERIAL.begin(BAUDRATE);
  1727. return;
  1728. } else if (code_seen("SERIAL HIGH")) {
  1729. MYSERIAL.println("SERIAL HIGH");
  1730. MYSERIAL.begin(1152000);
  1731. return;
  1732. } else if(code_seen("Beat")) {
  1733. // Kick farm link timer
  1734. kicktime = millis();
  1735. } else if(code_seen("FR")) {
  1736. // Factory full reset
  1737. factory_reset(0,true);
  1738. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1739. #ifdef SNMM
  1740. int extr;
  1741. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1742. lcd_implementation_clear();
  1743. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1744. current_position[Z_AXIS] = 100;
  1745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1746. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1747. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1748. change_extr(extr);
  1749. ramming();
  1750. }
  1751. change_extr(0);
  1752. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1754. st_synchronize();
  1755. for (extr = 1; extr < 4; extr++) {
  1756. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1757. change_extr(extr);
  1758. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1760. st_synchronize();
  1761. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1762. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1764. st_synchronize();
  1765. }
  1766. change_extr(0);
  1767. current_position[E_AXIS] += 25;
  1768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1769. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1770. ramming();
  1771. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1772. else digipot_current(2, tmp_motor_loud[2]);
  1773. st_synchronize();
  1774. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1775. lcd_implementation_clear();
  1776. lcd_printPGM(MSG_PLEASE_WAIT);
  1777. current_position[Z_AXIS] = 0;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1779. st_synchronize();
  1780. lcd_update_enable(true);
  1781. #endif
  1782. }
  1783. else if (code_seen("SetF")) {
  1784. #ifdef SNMM
  1785. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1786. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1787. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1788. #endif
  1789. }
  1790. else if (code_seen("ResF")) {
  1791. #ifdef SNMM
  1792. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1793. #endif
  1794. }
  1795. //else if (code_seen('Cal')) {
  1796. // lcd_calibration();
  1797. // }
  1798. }
  1799. else if (code_seen('^')) {
  1800. // nothing, this is a version line
  1801. } else if(code_seen('G'))
  1802. {
  1803. switch((int)code_value())
  1804. {
  1805. case 0: // G0 -> G1
  1806. case 1: // G1
  1807. if(Stopped == false) {
  1808. #ifdef FILAMENT_RUNOUT_SUPPORT
  1809. if(READ(FR_SENS)){
  1810. feedmultiplyBckp=feedmultiply;
  1811. float target[4];
  1812. float lastpos[4];
  1813. target[X_AXIS]=current_position[X_AXIS];
  1814. target[Y_AXIS]=current_position[Y_AXIS];
  1815. target[Z_AXIS]=current_position[Z_AXIS];
  1816. target[E_AXIS]=current_position[E_AXIS];
  1817. lastpos[X_AXIS]=current_position[X_AXIS];
  1818. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1819. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1820. lastpos[E_AXIS]=current_position[E_AXIS];
  1821. //retract by E
  1822. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1824. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1826. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1827. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1829. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1831. //finish moves
  1832. st_synchronize();
  1833. //disable extruder steppers so filament can be removed
  1834. disable_e0();
  1835. disable_e1();
  1836. disable_e2();
  1837. delay(100);
  1838. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1839. uint8_t cnt=0;
  1840. int counterBeep = 0;
  1841. lcd_wait_interact();
  1842. while(!lcd_clicked()){
  1843. cnt++;
  1844. manage_heater();
  1845. manage_inactivity(true);
  1846. //lcd_update();
  1847. if(cnt==0)
  1848. {
  1849. #if BEEPER > 0
  1850. if (counterBeep== 500){
  1851. counterBeep = 0;
  1852. }
  1853. SET_OUTPUT(BEEPER);
  1854. if (counterBeep== 0){
  1855. WRITE(BEEPER,HIGH);
  1856. }
  1857. if (counterBeep== 20){
  1858. WRITE(BEEPER,LOW);
  1859. }
  1860. counterBeep++;
  1861. #else
  1862. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1863. lcd_buzz(1000/6,100);
  1864. #else
  1865. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1866. #endif
  1867. #endif
  1868. }
  1869. }
  1870. WRITE(BEEPER,LOW);
  1871. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1872. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1873. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1874. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1875. lcd_change_fil_state = 0;
  1876. lcd_loading_filament();
  1877. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1878. lcd_change_fil_state = 0;
  1879. lcd_alright();
  1880. switch(lcd_change_fil_state){
  1881. case 2:
  1882. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1884. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1886. lcd_loading_filament();
  1887. break;
  1888. case 3:
  1889. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1891. lcd_loading_color();
  1892. break;
  1893. default:
  1894. lcd_change_success();
  1895. break;
  1896. }
  1897. }
  1898. target[E_AXIS]+= 5;
  1899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1900. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1902. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1903. //plan_set_e_position(current_position[E_AXIS]);
  1904. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1905. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1906. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1907. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1908. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1909. plan_set_e_position(lastpos[E_AXIS]);
  1910. feedmultiply=feedmultiplyBckp;
  1911. char cmd[9];
  1912. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1913. enquecommand(cmd);
  1914. }
  1915. #endif
  1916. get_coordinates(); // For X Y Z E F
  1917. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1918. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1919. }
  1920. #ifdef FWRETRACT
  1921. if(autoretract_enabled)
  1922. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1923. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1924. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1925. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1926. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1927. retract(!retracted);
  1928. return;
  1929. }
  1930. }
  1931. #endif //FWRETRACT
  1932. prepare_move();
  1933. //ClearToSend();
  1934. }
  1935. break;
  1936. case 2: // G2 - CW ARC
  1937. if(Stopped == false) {
  1938. get_arc_coordinates();
  1939. prepare_arc_move(true);
  1940. }
  1941. break;
  1942. case 3: // G3 - CCW ARC
  1943. if(Stopped == false) {
  1944. get_arc_coordinates();
  1945. prepare_arc_move(false);
  1946. }
  1947. break;
  1948. case 4: // G4 dwell
  1949. LCD_MESSAGERPGM(MSG_DWELL);
  1950. codenum = 0;
  1951. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1952. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1953. st_synchronize();
  1954. codenum += millis(); // keep track of when we started waiting
  1955. previous_millis_cmd = millis();
  1956. while(millis() < codenum) {
  1957. manage_heater();
  1958. manage_inactivity();
  1959. lcd_update();
  1960. }
  1961. break;
  1962. #ifdef FWRETRACT
  1963. case 10: // G10 retract
  1964. #if EXTRUDERS > 1
  1965. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1966. retract(true,retracted_swap[active_extruder]);
  1967. #else
  1968. retract(true);
  1969. #endif
  1970. break;
  1971. case 11: // G11 retract_recover
  1972. #if EXTRUDERS > 1
  1973. retract(false,retracted_swap[active_extruder]);
  1974. #else
  1975. retract(false);
  1976. #endif
  1977. break;
  1978. #endif //FWRETRACT
  1979. case 28: //G28 Home all Axis one at a time
  1980. homing_flag = true;
  1981. #ifdef ENABLE_AUTO_BED_LEVELING
  1982. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1983. #endif //ENABLE_AUTO_BED_LEVELING
  1984. // For mesh bed leveling deactivate the matrix temporarily
  1985. #ifdef MESH_BED_LEVELING
  1986. mbl.active = 0;
  1987. #endif
  1988. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1989. // the planner will not perform any adjustments in the XY plane.
  1990. // Wait for the motors to stop and update the current position with the absolute values.
  1991. world2machine_revert_to_uncorrected();
  1992. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1993. // consumed during the first movements following this statement.
  1994. babystep_undo();
  1995. saved_feedrate = feedrate;
  1996. saved_feedmultiply = feedmultiply;
  1997. feedmultiply = 100;
  1998. previous_millis_cmd = millis();
  1999. enable_endstops(true);
  2000. for(int8_t i=0; i < NUM_AXIS; i++)
  2001. destination[i] = current_position[i];
  2002. feedrate = 0.0;
  2003. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2004. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2005. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2006. homeaxis(Z_AXIS);
  2007. }
  2008. #endif
  2009. #ifdef QUICK_HOME
  2010. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2011. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2012. {
  2013. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2014. int x_axis_home_dir = home_dir(X_AXIS);
  2015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2016. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2017. feedrate = homing_feedrate[X_AXIS];
  2018. if(homing_feedrate[Y_AXIS]<feedrate)
  2019. feedrate = homing_feedrate[Y_AXIS];
  2020. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2021. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2022. } else {
  2023. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2024. }
  2025. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2026. st_synchronize();
  2027. axis_is_at_home(X_AXIS);
  2028. axis_is_at_home(Y_AXIS);
  2029. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2030. destination[X_AXIS] = current_position[X_AXIS];
  2031. destination[Y_AXIS] = current_position[Y_AXIS];
  2032. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2033. feedrate = 0.0;
  2034. st_synchronize();
  2035. endstops_hit_on_purpose();
  2036. current_position[X_AXIS] = destination[X_AXIS];
  2037. current_position[Y_AXIS] = destination[Y_AXIS];
  2038. current_position[Z_AXIS] = destination[Z_AXIS];
  2039. }
  2040. #endif /* QUICK_HOME */
  2041. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2042. homeaxis(X_AXIS);
  2043. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2044. homeaxis(Y_AXIS);
  2045. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2046. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2047. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2048. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2049. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2050. #ifndef Z_SAFE_HOMING
  2051. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2052. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2053. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2054. feedrate = max_feedrate[Z_AXIS];
  2055. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2056. st_synchronize();
  2057. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2058. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2059. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2060. {
  2061. homeaxis(X_AXIS);
  2062. homeaxis(Y_AXIS);
  2063. }
  2064. // 1st mesh bed leveling measurement point, corrected.
  2065. world2machine_initialize();
  2066. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2067. world2machine_reset();
  2068. if (destination[Y_AXIS] < Y_MIN_POS)
  2069. destination[Y_AXIS] = Y_MIN_POS;
  2070. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2071. feedrate = homing_feedrate[Z_AXIS]/10;
  2072. current_position[Z_AXIS] = 0;
  2073. enable_endstops(false);
  2074. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2075. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2076. st_synchronize();
  2077. current_position[X_AXIS] = destination[X_AXIS];
  2078. current_position[Y_AXIS] = destination[Y_AXIS];
  2079. enable_endstops(true);
  2080. endstops_hit_on_purpose();
  2081. homeaxis(Z_AXIS);
  2082. #else // MESH_BED_LEVELING
  2083. homeaxis(Z_AXIS);
  2084. #endif // MESH_BED_LEVELING
  2085. }
  2086. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2087. if(home_all_axis) {
  2088. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2089. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2090. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2091. feedrate = XY_TRAVEL_SPEED/60;
  2092. current_position[Z_AXIS] = 0;
  2093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2094. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2095. st_synchronize();
  2096. current_position[X_AXIS] = destination[X_AXIS];
  2097. current_position[Y_AXIS] = destination[Y_AXIS];
  2098. homeaxis(Z_AXIS);
  2099. }
  2100. // Let's see if X and Y are homed and probe is inside bed area.
  2101. if(code_seen(axis_codes[Z_AXIS])) {
  2102. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2103. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2104. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2105. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2106. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2107. current_position[Z_AXIS] = 0;
  2108. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2109. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2110. feedrate = max_feedrate[Z_AXIS];
  2111. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2112. st_synchronize();
  2113. homeaxis(Z_AXIS);
  2114. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2115. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2116. SERIAL_ECHO_START;
  2117. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2118. } else {
  2119. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2120. SERIAL_ECHO_START;
  2121. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2122. }
  2123. }
  2124. #endif // Z_SAFE_HOMING
  2125. #endif // Z_HOME_DIR < 0
  2126. if(code_seen(axis_codes[Z_AXIS])) {
  2127. if(code_value_long() != 0) {
  2128. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2129. }
  2130. }
  2131. #ifdef ENABLE_AUTO_BED_LEVELING
  2132. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2133. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2134. }
  2135. #endif
  2136. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2137. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2138. enable_endstops(false);
  2139. #endif
  2140. feedrate = saved_feedrate;
  2141. feedmultiply = saved_feedmultiply;
  2142. previous_millis_cmd = millis();
  2143. endstops_hit_on_purpose();
  2144. #ifndef MESH_BED_LEVELING
  2145. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2146. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2147. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2148. lcd_adjust_z();
  2149. #endif
  2150. // Load the machine correction matrix
  2151. world2machine_initialize();
  2152. // and correct the current_position to match the transformed coordinate system.
  2153. world2machine_update_current();
  2154. #ifdef MESH_BED_LEVELING
  2155. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2156. {
  2157. }
  2158. else
  2159. {
  2160. st_synchronize();
  2161. homing_flag = false;
  2162. // Push the commands to the front of the message queue in the reverse order!
  2163. // There shall be always enough space reserved for these commands.
  2164. // enquecommand_front_P((PSTR("G80")));
  2165. goto case_G80;
  2166. }
  2167. #endif
  2168. if (farm_mode) { prusa_statistics(20); };
  2169. homing_flag = false;
  2170. break;
  2171. #ifdef ENABLE_AUTO_BED_LEVELING
  2172. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2173. {
  2174. #if Z_MIN_PIN == -1
  2175. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2176. #endif
  2177. // Prevent user from running a G29 without first homing in X and Y
  2178. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2179. {
  2180. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2181. SERIAL_ECHO_START;
  2182. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2183. break; // abort G29, since we don't know where we are
  2184. }
  2185. st_synchronize();
  2186. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2187. //vector_3 corrected_position = plan_get_position_mm();
  2188. //corrected_position.debug("position before G29");
  2189. plan_bed_level_matrix.set_to_identity();
  2190. vector_3 uncorrected_position = plan_get_position();
  2191. //uncorrected_position.debug("position durring G29");
  2192. current_position[X_AXIS] = uncorrected_position.x;
  2193. current_position[Y_AXIS] = uncorrected_position.y;
  2194. current_position[Z_AXIS] = uncorrected_position.z;
  2195. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2196. setup_for_endstop_move();
  2197. feedrate = homing_feedrate[Z_AXIS];
  2198. #ifdef AUTO_BED_LEVELING_GRID
  2199. // probe at the points of a lattice grid
  2200. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2201. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2202. // solve the plane equation ax + by + d = z
  2203. // A is the matrix with rows [x y 1] for all the probed points
  2204. // B is the vector of the Z positions
  2205. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2206. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2207. // "A" matrix of the linear system of equations
  2208. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2209. // "B" vector of Z points
  2210. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2211. int probePointCounter = 0;
  2212. bool zig = true;
  2213. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2214. {
  2215. int xProbe, xInc;
  2216. if (zig)
  2217. {
  2218. xProbe = LEFT_PROBE_BED_POSITION;
  2219. //xEnd = RIGHT_PROBE_BED_POSITION;
  2220. xInc = xGridSpacing;
  2221. zig = false;
  2222. } else // zag
  2223. {
  2224. xProbe = RIGHT_PROBE_BED_POSITION;
  2225. //xEnd = LEFT_PROBE_BED_POSITION;
  2226. xInc = -xGridSpacing;
  2227. zig = true;
  2228. }
  2229. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2230. {
  2231. float z_before;
  2232. if (probePointCounter == 0)
  2233. {
  2234. // raise before probing
  2235. z_before = Z_RAISE_BEFORE_PROBING;
  2236. } else
  2237. {
  2238. // raise extruder
  2239. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2240. }
  2241. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2242. eqnBVector[probePointCounter] = measured_z;
  2243. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2244. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2245. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2246. probePointCounter++;
  2247. xProbe += xInc;
  2248. }
  2249. }
  2250. clean_up_after_endstop_move();
  2251. // solve lsq problem
  2252. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2253. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2254. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2255. SERIAL_PROTOCOLPGM(" b: ");
  2256. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2257. SERIAL_PROTOCOLPGM(" d: ");
  2258. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2259. set_bed_level_equation_lsq(plane_equation_coefficients);
  2260. free(plane_equation_coefficients);
  2261. #else // AUTO_BED_LEVELING_GRID not defined
  2262. // Probe at 3 arbitrary points
  2263. // probe 1
  2264. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2265. // probe 2
  2266. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2267. // probe 3
  2268. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2269. clean_up_after_endstop_move();
  2270. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2271. #endif // AUTO_BED_LEVELING_GRID
  2272. st_synchronize();
  2273. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2274. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2275. // When the bed is uneven, this height must be corrected.
  2276. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2277. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2278. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2279. z_tmp = current_position[Z_AXIS];
  2280. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2281. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2283. }
  2284. break;
  2285. #ifndef Z_PROBE_SLED
  2286. case 30: // G30 Single Z Probe
  2287. {
  2288. st_synchronize();
  2289. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2290. setup_for_endstop_move();
  2291. feedrate = homing_feedrate[Z_AXIS];
  2292. run_z_probe();
  2293. SERIAL_PROTOCOLPGM(MSG_BED);
  2294. SERIAL_PROTOCOLPGM(" X: ");
  2295. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2296. SERIAL_PROTOCOLPGM(" Y: ");
  2297. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2298. SERIAL_PROTOCOLPGM(" Z: ");
  2299. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2300. SERIAL_PROTOCOLPGM("\n");
  2301. clean_up_after_endstop_move();
  2302. }
  2303. break;
  2304. #else
  2305. case 31: // dock the sled
  2306. dock_sled(true);
  2307. break;
  2308. case 32: // undock the sled
  2309. dock_sled(false);
  2310. break;
  2311. #endif // Z_PROBE_SLED
  2312. #endif // ENABLE_AUTO_BED_LEVELING
  2313. #ifdef MESH_BED_LEVELING
  2314. case 30: // G30 Single Z Probe
  2315. {
  2316. st_synchronize();
  2317. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2318. setup_for_endstop_move();
  2319. feedrate = homing_feedrate[Z_AXIS];
  2320. find_bed_induction_sensor_point_z(-10.f, 3);
  2321. SERIAL_PROTOCOLRPGM(MSG_BED);
  2322. SERIAL_PROTOCOLPGM(" X: ");
  2323. MYSERIAL.print(current_position[X_AXIS], 5);
  2324. SERIAL_PROTOCOLPGM(" Y: ");
  2325. MYSERIAL.print(current_position[Y_AXIS], 5);
  2326. SERIAL_PROTOCOLPGM(" Z: ");
  2327. MYSERIAL.print(current_position[Z_AXIS], 5);
  2328. SERIAL_PROTOCOLPGM("\n");
  2329. clean_up_after_endstop_move();
  2330. }
  2331. break;
  2332. /**
  2333. * G80: Mesh-based Z probe, probes a grid and produces a
  2334. * mesh to compensate for variable bed height
  2335. *
  2336. * The S0 report the points as below
  2337. *
  2338. * +----> X-axis
  2339. * |
  2340. * |
  2341. * v Y-axis
  2342. *
  2343. */
  2344. case 76: //PINDA probe temperature calibration
  2345. {
  2346. setTargetBed(PINDA_MIN_T);
  2347. float zero_z;
  2348. int z_shift = 0; //unit: steps
  2349. int t_c; // temperature
  2350. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2351. // We don't know where we are! HOME!
  2352. // Push the commands to the front of the message queue in the reverse order!
  2353. // There shall be always enough space reserved for these commands.
  2354. repeatcommand_front(); // repeat G76 with all its parameters
  2355. enquecommand_front_P((PSTR("G28 W0")));
  2356. break;
  2357. }
  2358. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2359. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2360. current_position[Z_AXIS] = 0;
  2361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2362. st_synchronize();
  2363. while (degBed() < PINDA_MIN_T) delay_keep_alive(1000);
  2364. //enquecommand_P(PSTR("M190 S50"));
  2365. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2366. current_position[Z_AXIS] = 5;
  2367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2368. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2369. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2371. st_synchronize();
  2372. find_bed_induction_sensor_point_z(-1.f);
  2373. zero_z = current_position[Z_AXIS];
  2374. //current_position[Z_AXIS]
  2375. SERIAL_ECHOLNPGM("");
  2376. SERIAL_ECHOPGM("ZERO: ");
  2377. MYSERIAL.print(current_position[Z_AXIS]);
  2378. SERIAL_ECHOLNPGM("");
  2379. for (int i = 0; i<5; i++) {
  2380. t_c = 60 + i * 10;
  2381. setTargetBed(t_c);
  2382. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2383. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2384. current_position[Z_AXIS] = 0;
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2386. st_synchronize();
  2387. while (degBed() < t_c) delay_keep_alive(1000);
  2388. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2389. current_position[Z_AXIS] = 5;
  2390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2391. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2392. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2393. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2394. st_synchronize();
  2395. find_bed_induction_sensor_point_z(-1.f);
  2396. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2397. SERIAL_ECHOLNPGM("");
  2398. SERIAL_ECHOPGM("Temperature: ");
  2399. MYSERIAL.print(t_c);
  2400. SERIAL_ECHOPGM(" Z shift (mm):");
  2401. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2402. SERIAL_ECHOLNPGM("");
  2403. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2404. }
  2405. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2406. setTargetBed(0); //set bed target temperature back to 0
  2407. }
  2408. break;
  2409. #ifdef DIS
  2410. case 77:
  2411. {
  2412. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2413. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2414. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2415. float dimension_x = 40;
  2416. float dimension_y = 40;
  2417. int points_x = 40;
  2418. int points_y = 40;
  2419. float offset_x = 74;
  2420. float offset_y = 33;
  2421. if (code_seen('X')) dimension_x = code_value();
  2422. if (code_seen('Y')) dimension_y = code_value();
  2423. if (code_seen('XP')) points_x = code_value();
  2424. if (code_seen('YP')) points_y = code_value();
  2425. if (code_seen('XO')) offset_x = code_value();
  2426. if (code_seen('YO')) offset_y = code_value();
  2427. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2428. } break;
  2429. #endif
  2430. case 80:
  2431. case_G80:
  2432. {
  2433. int8_t verbosity_level = 0;
  2434. if (code_seen('V')) {
  2435. // Just 'V' without a number counts as V1.
  2436. char c = strchr_pointer[1];
  2437. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2438. }
  2439. // Firstly check if we know where we are
  2440. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2441. // We don't know where we are! HOME!
  2442. // Push the commands to the front of the message queue in the reverse order!
  2443. // There shall be always enough space reserved for these commands.
  2444. repeatcommand_front(); // repeat G80 with all its parameters
  2445. enquecommand_front_P((PSTR("G28 W0")));
  2446. break;
  2447. }
  2448. temp_compensation_start();
  2449. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2450. bool custom_message_old = custom_message;
  2451. unsigned int custom_message_type_old = custom_message_type;
  2452. unsigned int custom_message_state_old = custom_message_state;
  2453. custom_message = true;
  2454. custom_message_type = 1;
  2455. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2456. lcd_update(1);
  2457. mbl.reset(); //reset mesh bed leveling
  2458. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2459. // consumed during the first movements following this statement.
  2460. babystep_undo();
  2461. // Cycle through all points and probe them
  2462. // First move up. During this first movement, the babystepping will be reverted.
  2463. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2465. // The move to the first calibration point.
  2466. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2467. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2468. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2469. if (verbosity_level >= 1) {
  2470. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2471. }
  2472. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2474. // Wait until the move is finished.
  2475. st_synchronize();
  2476. int mesh_point = 0; //index number of calibration point
  2477. int ix = 0;
  2478. int iy = 0;
  2479. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2480. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2481. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2482. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2483. if (verbosity_level >= 1) {
  2484. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2485. }
  2486. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2487. const char *kill_message = NULL;
  2488. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2489. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2490. // Get coords of a measuring point.
  2491. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2492. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2493. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2494. float z0 = 0.f;
  2495. if (has_z && mesh_point > 0) {
  2496. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2497. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2498. //#if 0
  2499. if (verbosity_level >= 1) {
  2500. SERIAL_ECHOPGM("Bed leveling, point: ");
  2501. MYSERIAL.print(mesh_point);
  2502. SERIAL_ECHOPGM(", calibration z: ");
  2503. MYSERIAL.print(z0, 5);
  2504. SERIAL_ECHOLNPGM("");
  2505. }
  2506. //#endif
  2507. }
  2508. // Move Z up to MESH_HOME_Z_SEARCH.
  2509. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2511. st_synchronize();
  2512. // Move to XY position of the sensor point.
  2513. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2514. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2515. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2516. if (verbosity_level >= 1) {
  2517. SERIAL_PROTOCOL(mesh_point);
  2518. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2519. }
  2520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2521. st_synchronize();
  2522. // Go down until endstop is hit
  2523. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2524. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2525. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2526. break;
  2527. }
  2528. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2529. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2530. break;
  2531. }
  2532. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2533. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2534. break;
  2535. }
  2536. if (verbosity_level >= 10) {
  2537. SERIAL_ECHOPGM("X: ");
  2538. MYSERIAL.print(current_position[X_AXIS], 5);
  2539. SERIAL_ECHOLNPGM("");
  2540. SERIAL_ECHOPGM("Y: ");
  2541. MYSERIAL.print(current_position[Y_AXIS], 5);
  2542. SERIAL_PROTOCOLPGM("\n");
  2543. }
  2544. if (verbosity_level >= 1) {
  2545. SERIAL_ECHOPGM("mesh bed leveling: ");
  2546. MYSERIAL.print(current_position[Z_AXIS], 5);
  2547. SERIAL_ECHOLNPGM("");
  2548. }
  2549. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2550. custom_message_state--;
  2551. mesh_point++;
  2552. lcd_update(1);
  2553. }
  2554. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2555. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2556. if (verbosity_level >= 20) {
  2557. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2558. MYSERIAL.print(current_position[Z_AXIS], 5);
  2559. }
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2561. st_synchronize();
  2562. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2563. kill(kill_message);
  2564. SERIAL_ECHOLNPGM("killed");
  2565. }
  2566. clean_up_after_endstop_move();
  2567. SERIAL_ECHOLNPGM("clean up finished ");
  2568. temp_compensation_apply(); //apply PINDA temperature compensation
  2569. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2570. SERIAL_ECHOLNPGM("babystep applied");
  2571. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2572. if (verbosity_level >= 1) {
  2573. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2574. }
  2575. for (uint8_t i = 0; i < 4; ++i) {
  2576. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2577. long correction = 0;
  2578. if (code_seen(codes[i]))
  2579. correction = code_value_long();
  2580. else if (eeprom_bed_correction_valid) {
  2581. unsigned char *addr = (i < 2) ?
  2582. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2583. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2584. correction = eeprom_read_int8(addr);
  2585. }
  2586. if (correction == 0)
  2587. continue;
  2588. float offset = float(correction) * 0.001f;
  2589. if (fabs(offset) > 0.101f) {
  2590. SERIAL_ERROR_START;
  2591. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2592. SERIAL_ECHO(offset);
  2593. SERIAL_ECHOLNPGM(" microns");
  2594. }
  2595. else {
  2596. switch (i) {
  2597. case 0:
  2598. for (uint8_t row = 0; row < 3; ++row) {
  2599. mbl.z_values[row][1] += 0.5f * offset;
  2600. mbl.z_values[row][0] += offset;
  2601. }
  2602. break;
  2603. case 1:
  2604. for (uint8_t row = 0; row < 3; ++row) {
  2605. mbl.z_values[row][1] += 0.5f * offset;
  2606. mbl.z_values[row][2] += offset;
  2607. }
  2608. break;
  2609. case 2:
  2610. for (uint8_t col = 0; col < 3; ++col) {
  2611. mbl.z_values[1][col] += 0.5f * offset;
  2612. mbl.z_values[0][col] += offset;
  2613. }
  2614. break;
  2615. case 3:
  2616. for (uint8_t col = 0; col < 3; ++col) {
  2617. mbl.z_values[1][col] += 0.5f * offset;
  2618. mbl.z_values[2][col] += offset;
  2619. }
  2620. break;
  2621. }
  2622. }
  2623. }
  2624. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2625. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2626. SERIAL_ECHOLNPGM("Upsample finished");
  2627. mbl.active = 1; //activate mesh bed leveling
  2628. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2629. go_home_with_z_lift();
  2630. SERIAL_ECHOLNPGM("Go home finished");
  2631. // Restore custom message state
  2632. custom_message = custom_message_old;
  2633. custom_message_type = custom_message_type_old;
  2634. custom_message_state = custom_message_state_old;
  2635. lcd_update(1);
  2636. }
  2637. break;
  2638. /**
  2639. * G81: Print mesh bed leveling status and bed profile if activated
  2640. */
  2641. case 81:
  2642. if (mbl.active) {
  2643. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2644. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2645. SERIAL_PROTOCOLPGM(",");
  2646. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2647. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2648. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2649. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2650. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2651. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2652. SERIAL_PROTOCOLPGM(" ");
  2653. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2654. }
  2655. SERIAL_PROTOCOLPGM("\n");
  2656. }
  2657. }
  2658. else
  2659. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2660. break;
  2661. #if 0
  2662. /**
  2663. * G82: Single Z probe at current location
  2664. *
  2665. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2666. *
  2667. */
  2668. case 82:
  2669. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2670. setup_for_endstop_move();
  2671. find_bed_induction_sensor_point_z();
  2672. clean_up_after_endstop_move();
  2673. SERIAL_PROTOCOLPGM("Bed found at: ");
  2674. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2675. SERIAL_PROTOCOLPGM("\n");
  2676. break;
  2677. /**
  2678. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2679. */
  2680. case 83:
  2681. {
  2682. int babystepz = code_seen('S') ? code_value() : 0;
  2683. int BabyPosition = code_seen('P') ? code_value() : 0;
  2684. if (babystepz != 0) {
  2685. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2686. // Is the axis indexed starting with zero or one?
  2687. if (BabyPosition > 4) {
  2688. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2689. }else{
  2690. // Save it to the eeprom
  2691. babystepLoadZ = babystepz;
  2692. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2693. // adjust the Z
  2694. babystepsTodoZadd(babystepLoadZ);
  2695. }
  2696. }
  2697. }
  2698. break;
  2699. /**
  2700. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2701. */
  2702. case 84:
  2703. babystepsTodoZsubtract(babystepLoadZ);
  2704. // babystepLoadZ = 0;
  2705. break;
  2706. /**
  2707. * G85: Prusa3D specific: Pick best babystep
  2708. */
  2709. case 85:
  2710. lcd_pick_babystep();
  2711. break;
  2712. #endif
  2713. /**
  2714. * G86: Prusa3D specific: Disable babystep correction after home.
  2715. * This G-code will be performed at the start of a calibration script.
  2716. */
  2717. case 86:
  2718. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2719. break;
  2720. /**
  2721. * G87: Prusa3D specific: Enable babystep correction after home
  2722. * This G-code will be performed at the end of a calibration script.
  2723. */
  2724. case 87:
  2725. calibration_status_store(CALIBRATION_STATUS_PINDA);
  2726. break;
  2727. /**
  2728. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2729. */
  2730. case 88:
  2731. break;
  2732. #endif // ENABLE_MESH_BED_LEVELING
  2733. case 90: // G90
  2734. relative_mode = false;
  2735. break;
  2736. case 91: // G91
  2737. relative_mode = true;
  2738. break;
  2739. case 92: // G92
  2740. if(!code_seen(axis_codes[E_AXIS]))
  2741. st_synchronize();
  2742. for(int8_t i=0; i < NUM_AXIS; i++) {
  2743. if(code_seen(axis_codes[i])) {
  2744. if(i == E_AXIS) {
  2745. current_position[i] = code_value();
  2746. plan_set_e_position(current_position[E_AXIS]);
  2747. }
  2748. else {
  2749. current_position[i] = code_value()+add_homing[i];
  2750. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2751. }
  2752. }
  2753. }
  2754. break;
  2755. case 98:
  2756. farm_no = 21;
  2757. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2758. farm_mode = true;
  2759. break;
  2760. case 99:
  2761. farm_no = 0;
  2762. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2763. farm_mode = false;
  2764. break;
  2765. }
  2766. } // end if(code_seen('G'))
  2767. else if(code_seen('M'))
  2768. {
  2769. int index;
  2770. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2771. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2772. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2773. SERIAL_ECHOLNPGM("Invalid M code");
  2774. } else
  2775. switch((int)code_value())
  2776. {
  2777. #ifdef ULTIPANEL
  2778. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2779. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2780. {
  2781. char *src = strchr_pointer + 2;
  2782. codenum = 0;
  2783. bool hasP = false, hasS = false;
  2784. if (code_seen('P')) {
  2785. codenum = code_value(); // milliseconds to wait
  2786. hasP = codenum > 0;
  2787. }
  2788. if (code_seen('S')) {
  2789. codenum = code_value() * 1000; // seconds to wait
  2790. hasS = codenum > 0;
  2791. }
  2792. starpos = strchr(src, '*');
  2793. if (starpos != NULL) *(starpos) = '\0';
  2794. while (*src == ' ') ++src;
  2795. if (!hasP && !hasS && *src != '\0') {
  2796. lcd_setstatus(src);
  2797. } else {
  2798. LCD_MESSAGERPGM(MSG_USERWAIT);
  2799. }
  2800. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2801. st_synchronize();
  2802. previous_millis_cmd = millis();
  2803. if (codenum > 0){
  2804. codenum += millis(); // keep track of when we started waiting
  2805. while(millis() < codenum && !lcd_clicked()){
  2806. manage_heater();
  2807. manage_inactivity(true);
  2808. lcd_update();
  2809. }
  2810. lcd_ignore_click(false);
  2811. }else{
  2812. if (!lcd_detected())
  2813. break;
  2814. while(!lcd_clicked()){
  2815. manage_heater();
  2816. manage_inactivity(true);
  2817. lcd_update();
  2818. }
  2819. }
  2820. if (IS_SD_PRINTING)
  2821. LCD_MESSAGERPGM(MSG_RESUMING);
  2822. else
  2823. LCD_MESSAGERPGM(WELCOME_MSG);
  2824. }
  2825. break;
  2826. #endif
  2827. case 17:
  2828. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2829. enable_x();
  2830. enable_y();
  2831. enable_z();
  2832. enable_e0();
  2833. enable_e1();
  2834. enable_e2();
  2835. break;
  2836. #ifdef SDSUPPORT
  2837. case 20: // M20 - list SD card
  2838. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2839. card.ls();
  2840. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2841. break;
  2842. case 21: // M21 - init SD card
  2843. card.initsd();
  2844. break;
  2845. case 22: //M22 - release SD card
  2846. card.release();
  2847. break;
  2848. case 23: //M23 - Select file
  2849. starpos = (strchr(strchr_pointer + 4,'*'));
  2850. if(starpos!=NULL)
  2851. *(starpos)='\0';
  2852. card.openFile(strchr_pointer + 4,true);
  2853. break;
  2854. case 24: //M24 - Start SD print
  2855. card.startFileprint();
  2856. starttime=millis();
  2857. break;
  2858. case 25: //M25 - Pause SD print
  2859. card.pauseSDPrint();
  2860. break;
  2861. case 26: //M26 - Set SD index
  2862. if(card.cardOK && code_seen('S')) {
  2863. card.setIndex(code_value_long());
  2864. }
  2865. break;
  2866. case 27: //M27 - Get SD status
  2867. card.getStatus();
  2868. break;
  2869. case 28: //M28 - Start SD write
  2870. starpos = (strchr(strchr_pointer + 4,'*'));
  2871. if(starpos != NULL){
  2872. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2873. strchr_pointer = strchr(npos,' ') + 1;
  2874. *(starpos) = '\0';
  2875. }
  2876. card.openFile(strchr_pointer+4,false);
  2877. break;
  2878. case 29: //M29 - Stop SD write
  2879. //processed in write to file routine above
  2880. //card,saving = false;
  2881. break;
  2882. case 30: //M30 <filename> Delete File
  2883. if (card.cardOK){
  2884. card.closefile();
  2885. starpos = (strchr(strchr_pointer + 4,'*'));
  2886. if(starpos != NULL){
  2887. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2888. strchr_pointer = strchr(npos,' ') + 1;
  2889. *(starpos) = '\0';
  2890. }
  2891. card.removeFile(strchr_pointer + 4);
  2892. }
  2893. break;
  2894. case 32: //M32 - Select file and start SD print
  2895. {
  2896. if(card.sdprinting) {
  2897. st_synchronize();
  2898. }
  2899. starpos = (strchr(strchr_pointer + 4,'*'));
  2900. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2901. if(namestartpos==NULL)
  2902. {
  2903. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2904. }
  2905. else
  2906. namestartpos++; //to skip the '!'
  2907. if(starpos!=NULL)
  2908. *(starpos)='\0';
  2909. bool call_procedure=(code_seen('P'));
  2910. if(strchr_pointer>namestartpos)
  2911. call_procedure=false; //false alert, 'P' found within filename
  2912. if( card.cardOK )
  2913. {
  2914. card.openFile(namestartpos,true,!call_procedure);
  2915. if(code_seen('S'))
  2916. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2917. card.setIndex(code_value_long());
  2918. card.startFileprint();
  2919. if(!call_procedure)
  2920. starttime=millis(); //procedure calls count as normal print time.
  2921. }
  2922. } break;
  2923. case 928: //M928 - Start SD write
  2924. starpos = (strchr(strchr_pointer + 5,'*'));
  2925. if(starpos != NULL){
  2926. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2927. strchr_pointer = strchr(npos,' ') + 1;
  2928. *(starpos) = '\0';
  2929. }
  2930. card.openLogFile(strchr_pointer+5);
  2931. break;
  2932. #endif //SDSUPPORT
  2933. case 31: //M31 take time since the start of the SD print or an M109 command
  2934. {
  2935. stoptime=millis();
  2936. char time[30];
  2937. unsigned long t=(stoptime-starttime)/1000;
  2938. int sec,min;
  2939. min=t/60;
  2940. sec=t%60;
  2941. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2942. SERIAL_ECHO_START;
  2943. SERIAL_ECHOLN(time);
  2944. lcd_setstatus(time);
  2945. autotempShutdown();
  2946. }
  2947. break;
  2948. case 42: //M42 -Change pin status via gcode
  2949. if (code_seen('S'))
  2950. {
  2951. int pin_status = code_value();
  2952. int pin_number = LED_PIN;
  2953. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2954. pin_number = code_value();
  2955. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2956. {
  2957. if (sensitive_pins[i] == pin_number)
  2958. {
  2959. pin_number = -1;
  2960. break;
  2961. }
  2962. }
  2963. #if defined(FAN_PIN) && FAN_PIN > -1
  2964. if (pin_number == FAN_PIN)
  2965. fanSpeed = pin_status;
  2966. #endif
  2967. if (pin_number > -1)
  2968. {
  2969. pinMode(pin_number, OUTPUT);
  2970. digitalWrite(pin_number, pin_status);
  2971. analogWrite(pin_number, pin_status);
  2972. }
  2973. }
  2974. break;
  2975. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2976. // Reset the baby step value and the baby step applied flag.
  2977. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2978. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2979. // Reset the skew and offset in both RAM and EEPROM.
  2980. reset_bed_offset_and_skew();
  2981. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2982. // the planner will not perform any adjustments in the XY plane.
  2983. // Wait for the motors to stop and update the current position with the absolute values.
  2984. world2machine_revert_to_uncorrected();
  2985. break;
  2986. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2987. {
  2988. // Only Z calibration?
  2989. bool onlyZ = code_seen('Z');
  2990. if (!onlyZ) {
  2991. setTargetBed(0);
  2992. setTargetHotend(0, 0);
  2993. setTargetHotend(0, 1);
  2994. setTargetHotend(0, 2);
  2995. adjust_bed_reset(); //reset bed level correction
  2996. }
  2997. // Disable the default update procedure of the display. We will do a modal dialog.
  2998. lcd_update_enable(false);
  2999. // Let the planner use the uncorrected coordinates.
  3000. mbl.reset();
  3001. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3002. // the planner will not perform any adjustments in the XY plane.
  3003. // Wait for the motors to stop and update the current position with the absolute values.
  3004. world2machine_revert_to_uncorrected();
  3005. // Reset the baby step value applied without moving the axes.
  3006. babystep_reset();
  3007. // Mark all axes as in a need for homing.
  3008. memset(axis_known_position, 0, sizeof(axis_known_position));
  3009. // Let the user move the Z axes up to the end stoppers.
  3010. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3011. refresh_cmd_timeout();
  3012. if (((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION))&& (!onlyZ)) lcd_wait_for_cool_down();
  3013. lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
  3014. lcd_implementation_print_at(0, 3, 1);
  3015. lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
  3016. // Move the print head close to the bed.
  3017. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3019. st_synchronize();
  3020. // Home in the XY plane.
  3021. set_destination_to_current();
  3022. setup_for_endstop_move();
  3023. home_xy();
  3024. int8_t verbosity_level = 0;
  3025. if (code_seen('V')) {
  3026. // Just 'V' without a number counts as V1.
  3027. char c = strchr_pointer[1];
  3028. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3029. }
  3030. if (onlyZ) {
  3031. clean_up_after_endstop_move();
  3032. // Z only calibration.
  3033. // Load the machine correction matrix
  3034. world2machine_initialize();
  3035. // and correct the current_position to match the transformed coordinate system.
  3036. world2machine_update_current();
  3037. //FIXME
  3038. bool result = sample_mesh_and_store_reference();
  3039. if (result) {
  3040. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3041. // Shipped, the nozzle height has been set already. The user can start printing now.
  3042. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3043. // babystep_apply();
  3044. }
  3045. } else {
  3046. // Reset the baby step value and the baby step applied flag.
  3047. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3048. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3049. // Complete XYZ calibration.
  3050. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3051. uint8_t point_too_far_mask = 0;
  3052. clean_up_after_endstop_move();
  3053. // Print head up.
  3054. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3056. st_synchronize();
  3057. if (result >= 0) {
  3058. // Second half: The fine adjustment.
  3059. // Let the planner use the uncorrected coordinates.
  3060. mbl.reset();
  3061. world2machine_reset();
  3062. // Home in the XY plane.
  3063. setup_for_endstop_move();
  3064. home_xy();
  3065. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3066. clean_up_after_endstop_move();
  3067. // Print head up.
  3068. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3070. st_synchronize();
  3071. // if (result >= 0) babystep_apply();
  3072. }
  3073. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3074. if (result >= 0) {
  3075. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3076. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3077. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3078. }
  3079. }
  3080. } else {
  3081. // Timeouted.
  3082. }
  3083. lcd_update_enable(true);
  3084. break;
  3085. }
  3086. /*
  3087. case 46:
  3088. {
  3089. // M46: Prusa3D: Show the assigned IP address.
  3090. uint8_t ip[4];
  3091. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3092. if (hasIP) {
  3093. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3094. SERIAL_ECHO(int(ip[0]));
  3095. SERIAL_ECHOPGM(".");
  3096. SERIAL_ECHO(int(ip[1]));
  3097. SERIAL_ECHOPGM(".");
  3098. SERIAL_ECHO(int(ip[2]));
  3099. SERIAL_ECHOPGM(".");
  3100. SERIAL_ECHO(int(ip[3]));
  3101. SERIAL_ECHOLNPGM("");
  3102. } else {
  3103. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3104. }
  3105. break;
  3106. }
  3107. */
  3108. case 47:
  3109. // M47: Prusa3D: Show end stops dialog on the display.
  3110. lcd_diag_show_end_stops();
  3111. break;
  3112. #if 0
  3113. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3114. {
  3115. // Disable the default update procedure of the display. We will do a modal dialog.
  3116. lcd_update_enable(false);
  3117. // Let the planner use the uncorrected coordinates.
  3118. mbl.reset();
  3119. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3120. // the planner will not perform any adjustments in the XY plane.
  3121. // Wait for the motors to stop and update the current position with the absolute values.
  3122. world2machine_revert_to_uncorrected();
  3123. // Move the print head close to the bed.
  3124. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3126. st_synchronize();
  3127. // Home in the XY plane.
  3128. set_destination_to_current();
  3129. setup_for_endstop_move();
  3130. home_xy();
  3131. int8_t verbosity_level = 0;
  3132. if (code_seen('V')) {
  3133. // Just 'V' without a number counts as V1.
  3134. char c = strchr_pointer[1];
  3135. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3136. }
  3137. bool success = scan_bed_induction_points(verbosity_level);
  3138. clean_up_after_endstop_move();
  3139. // Print head up.
  3140. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3142. st_synchronize();
  3143. lcd_update_enable(true);
  3144. break;
  3145. }
  3146. #endif
  3147. // M48 Z-Probe repeatability measurement function.
  3148. //
  3149. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3150. //
  3151. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3152. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3153. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3154. // regenerated.
  3155. //
  3156. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3157. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3158. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3159. //
  3160. #ifdef ENABLE_AUTO_BED_LEVELING
  3161. #ifdef Z_PROBE_REPEATABILITY_TEST
  3162. case 48: // M48 Z-Probe repeatability
  3163. {
  3164. #if Z_MIN_PIN == -1
  3165. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3166. #endif
  3167. double sum=0.0;
  3168. double mean=0.0;
  3169. double sigma=0.0;
  3170. double sample_set[50];
  3171. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3172. double X_current, Y_current, Z_current;
  3173. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3174. if (code_seen('V') || code_seen('v')) {
  3175. verbose_level = code_value();
  3176. if (verbose_level<0 || verbose_level>4 ) {
  3177. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3178. goto Sigma_Exit;
  3179. }
  3180. }
  3181. if (verbose_level > 0) {
  3182. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3183. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3184. }
  3185. if (code_seen('n')) {
  3186. n_samples = code_value();
  3187. if (n_samples<4 || n_samples>50 ) {
  3188. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3189. goto Sigma_Exit;
  3190. }
  3191. }
  3192. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3193. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3194. Z_current = st_get_position_mm(Z_AXIS);
  3195. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3196. ext_position = st_get_position_mm(E_AXIS);
  3197. if (code_seen('X') || code_seen('x') ) {
  3198. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3199. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3200. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3201. goto Sigma_Exit;
  3202. }
  3203. }
  3204. if (code_seen('Y') || code_seen('y') ) {
  3205. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3206. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3207. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3208. goto Sigma_Exit;
  3209. }
  3210. }
  3211. if (code_seen('L') || code_seen('l') ) {
  3212. n_legs = code_value();
  3213. if ( n_legs==1 )
  3214. n_legs = 2;
  3215. if ( n_legs<0 || n_legs>15 ) {
  3216. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3217. goto Sigma_Exit;
  3218. }
  3219. }
  3220. //
  3221. // Do all the preliminary setup work. First raise the probe.
  3222. //
  3223. st_synchronize();
  3224. plan_bed_level_matrix.set_to_identity();
  3225. plan_buffer_line( X_current, Y_current, Z_start_location,
  3226. ext_position,
  3227. homing_feedrate[Z_AXIS]/60,
  3228. active_extruder);
  3229. st_synchronize();
  3230. //
  3231. // Now get everything to the specified probe point So we can safely do a probe to
  3232. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3233. // use that as a starting point for each probe.
  3234. //
  3235. if (verbose_level > 2)
  3236. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3237. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3238. ext_position,
  3239. homing_feedrate[X_AXIS]/60,
  3240. active_extruder);
  3241. st_synchronize();
  3242. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3243. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3244. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3245. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3246. //
  3247. // OK, do the inital probe to get us close to the bed.
  3248. // Then retrace the right amount and use that in subsequent probes
  3249. //
  3250. setup_for_endstop_move();
  3251. run_z_probe();
  3252. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3253. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3254. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3255. ext_position,
  3256. homing_feedrate[X_AXIS]/60,
  3257. active_extruder);
  3258. st_synchronize();
  3259. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3260. for( n=0; n<n_samples; n++) {
  3261. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3262. if ( n_legs) {
  3263. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3264. int rotational_direction, l;
  3265. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3266. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3267. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3268. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3269. //SERIAL_ECHOPAIR(" theta: ",theta);
  3270. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3271. //SERIAL_PROTOCOLLNPGM("");
  3272. for( l=0; l<n_legs-1; l++) {
  3273. if (rotational_direction==1)
  3274. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3275. else
  3276. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3277. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3278. if ( radius<0.0 )
  3279. radius = -radius;
  3280. X_current = X_probe_location + cos(theta) * radius;
  3281. Y_current = Y_probe_location + sin(theta) * radius;
  3282. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3283. X_current = X_MIN_POS;
  3284. if ( X_current>X_MAX_POS)
  3285. X_current = X_MAX_POS;
  3286. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3287. Y_current = Y_MIN_POS;
  3288. if ( Y_current>Y_MAX_POS)
  3289. Y_current = Y_MAX_POS;
  3290. if (verbose_level>3 ) {
  3291. SERIAL_ECHOPAIR("x: ", X_current);
  3292. SERIAL_ECHOPAIR("y: ", Y_current);
  3293. SERIAL_PROTOCOLLNPGM("");
  3294. }
  3295. do_blocking_move_to( X_current, Y_current, Z_current );
  3296. }
  3297. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3298. }
  3299. setup_for_endstop_move();
  3300. run_z_probe();
  3301. sample_set[n] = current_position[Z_AXIS];
  3302. //
  3303. // Get the current mean for the data points we have so far
  3304. //
  3305. sum=0.0;
  3306. for( j=0; j<=n; j++) {
  3307. sum = sum + sample_set[j];
  3308. }
  3309. mean = sum / (double (n+1));
  3310. //
  3311. // Now, use that mean to calculate the standard deviation for the
  3312. // data points we have so far
  3313. //
  3314. sum=0.0;
  3315. for( j=0; j<=n; j++) {
  3316. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3317. }
  3318. sigma = sqrt( sum / (double (n+1)) );
  3319. if (verbose_level > 1) {
  3320. SERIAL_PROTOCOL(n+1);
  3321. SERIAL_PROTOCOL(" of ");
  3322. SERIAL_PROTOCOL(n_samples);
  3323. SERIAL_PROTOCOLPGM(" z: ");
  3324. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3325. }
  3326. if (verbose_level > 2) {
  3327. SERIAL_PROTOCOL(" mean: ");
  3328. SERIAL_PROTOCOL_F(mean,6);
  3329. SERIAL_PROTOCOL(" sigma: ");
  3330. SERIAL_PROTOCOL_F(sigma,6);
  3331. }
  3332. if (verbose_level > 0)
  3333. SERIAL_PROTOCOLPGM("\n");
  3334. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3335. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3336. st_synchronize();
  3337. }
  3338. delay(1000);
  3339. clean_up_after_endstop_move();
  3340. // enable_endstops(true);
  3341. if (verbose_level > 0) {
  3342. SERIAL_PROTOCOLPGM("Mean: ");
  3343. SERIAL_PROTOCOL_F(mean, 6);
  3344. SERIAL_PROTOCOLPGM("\n");
  3345. }
  3346. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3347. SERIAL_PROTOCOL_F(sigma, 6);
  3348. SERIAL_PROTOCOLPGM("\n\n");
  3349. Sigma_Exit:
  3350. break;
  3351. }
  3352. #endif // Z_PROBE_REPEATABILITY_TEST
  3353. #endif // ENABLE_AUTO_BED_LEVELING
  3354. case 104: // M104
  3355. if(setTargetedHotend(104)){
  3356. break;
  3357. }
  3358. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3359. setWatch();
  3360. break;
  3361. case 112: // M112 -Emergency Stop
  3362. kill();
  3363. break;
  3364. case 140: // M140 set bed temp
  3365. if (code_seen('S')) setTargetBed(code_value());
  3366. break;
  3367. case 105 : // M105
  3368. if(setTargetedHotend(105)){
  3369. break;
  3370. }
  3371. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3372. SERIAL_PROTOCOLPGM("ok T:");
  3373. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3374. SERIAL_PROTOCOLPGM(" /");
  3375. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3376. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3377. SERIAL_PROTOCOLPGM(" B:");
  3378. SERIAL_PROTOCOL_F(degBed(),1);
  3379. SERIAL_PROTOCOLPGM(" /");
  3380. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3381. #endif //TEMP_BED_PIN
  3382. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3383. SERIAL_PROTOCOLPGM(" T");
  3384. SERIAL_PROTOCOL(cur_extruder);
  3385. SERIAL_PROTOCOLPGM(":");
  3386. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3387. SERIAL_PROTOCOLPGM(" /");
  3388. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3389. }
  3390. #else
  3391. SERIAL_ERROR_START;
  3392. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3393. #endif
  3394. SERIAL_PROTOCOLPGM(" @:");
  3395. #ifdef EXTRUDER_WATTS
  3396. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3397. SERIAL_PROTOCOLPGM("W");
  3398. #else
  3399. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3400. #endif
  3401. SERIAL_PROTOCOLPGM(" B@:");
  3402. #ifdef BED_WATTS
  3403. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3404. SERIAL_PROTOCOLPGM("W");
  3405. #else
  3406. SERIAL_PROTOCOL(getHeaterPower(-1));
  3407. #endif
  3408. #ifdef SHOW_TEMP_ADC_VALUES
  3409. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3410. SERIAL_PROTOCOLPGM(" ADC B:");
  3411. SERIAL_PROTOCOL_F(degBed(),1);
  3412. SERIAL_PROTOCOLPGM("C->");
  3413. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3414. #endif
  3415. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3416. SERIAL_PROTOCOLPGM(" T");
  3417. SERIAL_PROTOCOL(cur_extruder);
  3418. SERIAL_PROTOCOLPGM(":");
  3419. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3420. SERIAL_PROTOCOLPGM("C->");
  3421. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3422. }
  3423. #endif
  3424. SERIAL_PROTOCOLLN("");
  3425. return;
  3426. break;
  3427. case 109:
  3428. {// M109 - Wait for extruder heater to reach target.
  3429. if(setTargetedHotend(109)){
  3430. break;
  3431. }
  3432. LCD_MESSAGERPGM(MSG_HEATING);
  3433. heating_status = 1;
  3434. if (farm_mode) { prusa_statistics(1); };
  3435. #ifdef AUTOTEMP
  3436. autotemp_enabled=false;
  3437. #endif
  3438. if (code_seen('S')) {
  3439. setTargetHotend(code_value(), tmp_extruder);
  3440. CooldownNoWait = true;
  3441. } else if (code_seen('R')) {
  3442. setTargetHotend(code_value(), tmp_extruder);
  3443. CooldownNoWait = false;
  3444. }
  3445. #ifdef AUTOTEMP
  3446. if (code_seen('S')) autotemp_min=code_value();
  3447. if (code_seen('B')) autotemp_max=code_value();
  3448. if (code_seen('F'))
  3449. {
  3450. autotemp_factor=code_value();
  3451. autotemp_enabled=true;
  3452. }
  3453. #endif
  3454. setWatch();
  3455. codenum = millis();
  3456. /* See if we are heating up or cooling down */
  3457. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3458. cancel_heatup = false;
  3459. #ifdef TEMP_RESIDENCY_TIME
  3460. long residencyStart;
  3461. residencyStart = -1;
  3462. /* continue to loop until we have reached the target temp
  3463. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3464. while((!cancel_heatup)&&((residencyStart == -1) ||
  3465. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3466. #else
  3467. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3468. #endif //TEMP_RESIDENCY_TIME
  3469. if( (millis() - codenum) > 1000UL )
  3470. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3471. SERIAL_PROTOCOLPGM("T:");
  3472. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3473. SERIAL_PROTOCOLPGM(" E:");
  3474. SERIAL_PROTOCOL((int)tmp_extruder);
  3475. #ifdef TEMP_RESIDENCY_TIME
  3476. SERIAL_PROTOCOLPGM(" W:");
  3477. if(residencyStart > -1)
  3478. {
  3479. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3480. SERIAL_PROTOCOLLN( codenum );
  3481. }
  3482. else
  3483. {
  3484. SERIAL_PROTOCOLLN( "?" );
  3485. }
  3486. #else
  3487. SERIAL_PROTOCOLLN("");
  3488. #endif
  3489. codenum = millis();
  3490. }
  3491. manage_heater();
  3492. manage_inactivity();
  3493. lcd_update();
  3494. #ifdef TEMP_RESIDENCY_TIME
  3495. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3496. or when current temp falls outside the hysteresis after target temp was reached */
  3497. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3498. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3499. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3500. {
  3501. residencyStart = millis();
  3502. }
  3503. #endif //TEMP_RESIDENCY_TIME
  3504. }
  3505. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3506. heating_status = 2;
  3507. if (farm_mode) { prusa_statistics(2); };
  3508. starttime=millis();
  3509. previous_millis_cmd = millis();
  3510. }
  3511. break;
  3512. case 190: // M190 - Wait for bed heater to reach target.
  3513. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3514. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3515. heating_status = 3;
  3516. if (farm_mode) { prusa_statistics(1); };
  3517. if (code_seen('S'))
  3518. {
  3519. setTargetBed(code_value());
  3520. CooldownNoWait = true;
  3521. }
  3522. else if (code_seen('R'))
  3523. {
  3524. setTargetBed(code_value());
  3525. CooldownNoWait = false;
  3526. }
  3527. codenum = millis();
  3528. cancel_heatup = false;
  3529. target_direction = isHeatingBed(); // true if heating, false if cooling
  3530. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3531. {
  3532. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3533. {
  3534. float tt=degHotend(active_extruder);
  3535. SERIAL_PROTOCOLPGM("T:");
  3536. SERIAL_PROTOCOL(tt);
  3537. SERIAL_PROTOCOLPGM(" E:");
  3538. SERIAL_PROTOCOL((int)active_extruder);
  3539. SERIAL_PROTOCOLPGM(" B:");
  3540. SERIAL_PROTOCOL_F(degBed(),1);
  3541. SERIAL_PROTOCOLLN("");
  3542. codenum = millis();
  3543. }
  3544. manage_heater();
  3545. manage_inactivity();
  3546. lcd_update();
  3547. }
  3548. LCD_MESSAGERPGM(MSG_BED_DONE);
  3549. heating_status = 4;
  3550. previous_millis_cmd = millis();
  3551. #endif
  3552. break;
  3553. #if defined(FAN_PIN) && FAN_PIN > -1
  3554. case 106: //M106 Fan On
  3555. if (code_seen('S')){
  3556. fanSpeed=constrain(code_value(),0,255);
  3557. }
  3558. else {
  3559. fanSpeed=255;
  3560. }
  3561. break;
  3562. case 107: //M107 Fan Off
  3563. fanSpeed = 0;
  3564. break;
  3565. #endif //FAN_PIN
  3566. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3567. case 80: // M80 - Turn on Power Supply
  3568. SET_OUTPUT(PS_ON_PIN); //GND
  3569. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3570. // If you have a switch on suicide pin, this is useful
  3571. // if you want to start another print with suicide feature after
  3572. // a print without suicide...
  3573. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3574. SET_OUTPUT(SUICIDE_PIN);
  3575. WRITE(SUICIDE_PIN, HIGH);
  3576. #endif
  3577. #ifdef ULTIPANEL
  3578. powersupply = true;
  3579. LCD_MESSAGERPGM(WELCOME_MSG);
  3580. lcd_update();
  3581. #endif
  3582. break;
  3583. #endif
  3584. case 81: // M81 - Turn off Power Supply
  3585. disable_heater();
  3586. st_synchronize();
  3587. disable_e0();
  3588. disable_e1();
  3589. disable_e2();
  3590. finishAndDisableSteppers();
  3591. fanSpeed = 0;
  3592. delay(1000); // Wait a little before to switch off
  3593. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3594. st_synchronize();
  3595. suicide();
  3596. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3597. SET_OUTPUT(PS_ON_PIN);
  3598. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3599. #endif
  3600. #ifdef ULTIPANEL
  3601. powersupply = false;
  3602. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3603. /*
  3604. MACHNAME = "Prusa i3"
  3605. MSGOFF = "Vypnuto"
  3606. "Prusai3"" ""vypnuto""."
  3607. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3608. */
  3609. lcd_update();
  3610. #endif
  3611. break;
  3612. case 82:
  3613. axis_relative_modes[3] = false;
  3614. break;
  3615. case 83:
  3616. axis_relative_modes[3] = true;
  3617. break;
  3618. case 18: //compatibility
  3619. case 84: // M84
  3620. if(code_seen('S')){
  3621. stepper_inactive_time = code_value() * 1000;
  3622. }
  3623. else
  3624. {
  3625. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3626. if(all_axis)
  3627. {
  3628. st_synchronize();
  3629. disable_e0();
  3630. disable_e1();
  3631. disable_e2();
  3632. finishAndDisableSteppers();
  3633. }
  3634. else
  3635. {
  3636. st_synchronize();
  3637. if(code_seen('X')) disable_x();
  3638. if(code_seen('Y')) disable_y();
  3639. if(code_seen('Z')) disable_z();
  3640. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3641. if(code_seen('E')) {
  3642. disable_e0();
  3643. disable_e1();
  3644. disable_e2();
  3645. }
  3646. #endif
  3647. }
  3648. }
  3649. break;
  3650. case 85: // M85
  3651. if(code_seen('S')) {
  3652. max_inactive_time = code_value() * 1000;
  3653. }
  3654. break;
  3655. case 92: // M92
  3656. for(int8_t i=0; i < NUM_AXIS; i++)
  3657. {
  3658. if(code_seen(axis_codes[i]))
  3659. {
  3660. if(i == 3) { // E
  3661. float value = code_value();
  3662. if(value < 20.0) {
  3663. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3664. max_jerk[E_AXIS] *= factor;
  3665. max_feedrate[i] *= factor;
  3666. axis_steps_per_sqr_second[i] *= factor;
  3667. }
  3668. axis_steps_per_unit[i] = value;
  3669. }
  3670. else {
  3671. axis_steps_per_unit[i] = code_value();
  3672. }
  3673. }
  3674. }
  3675. break;
  3676. case 115: // M115
  3677. if (code_seen('V')) {
  3678. // Report the Prusa version number.
  3679. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3680. } else if (code_seen('U')) {
  3681. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3682. // pause the print and ask the user to upgrade the firmware.
  3683. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3684. } else {
  3685. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3686. }
  3687. break;
  3688. case 117: // M117 display message
  3689. starpos = (strchr(strchr_pointer + 5,'*'));
  3690. if(starpos!=NULL)
  3691. *(starpos)='\0';
  3692. lcd_setstatus(strchr_pointer + 5);
  3693. break;
  3694. case 114: // M114
  3695. SERIAL_PROTOCOLPGM("X:");
  3696. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3697. SERIAL_PROTOCOLPGM(" Y:");
  3698. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3699. SERIAL_PROTOCOLPGM(" Z:");
  3700. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3701. SERIAL_PROTOCOLPGM(" E:");
  3702. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3703. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3704. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3705. SERIAL_PROTOCOLPGM(" Y:");
  3706. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3707. SERIAL_PROTOCOLPGM(" Z:");
  3708. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3709. SERIAL_PROTOCOLLN("");
  3710. break;
  3711. case 120: // M120
  3712. enable_endstops(false) ;
  3713. break;
  3714. case 121: // M121
  3715. enable_endstops(true) ;
  3716. break;
  3717. case 119: // M119
  3718. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3719. SERIAL_PROTOCOLLN("");
  3720. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3721. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3722. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3723. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3724. }else{
  3725. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3726. }
  3727. SERIAL_PROTOCOLLN("");
  3728. #endif
  3729. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3730. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3731. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3732. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3733. }else{
  3734. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3735. }
  3736. SERIAL_PROTOCOLLN("");
  3737. #endif
  3738. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3739. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3740. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3741. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3742. }else{
  3743. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3744. }
  3745. SERIAL_PROTOCOLLN("");
  3746. #endif
  3747. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3748. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3749. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3750. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3751. }else{
  3752. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3753. }
  3754. SERIAL_PROTOCOLLN("");
  3755. #endif
  3756. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3757. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3758. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3759. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3760. }else{
  3761. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3762. }
  3763. SERIAL_PROTOCOLLN("");
  3764. #endif
  3765. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3766. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3767. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3768. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3769. }else{
  3770. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3771. }
  3772. SERIAL_PROTOCOLLN("");
  3773. #endif
  3774. break;
  3775. //TODO: update for all axis, use for loop
  3776. #ifdef BLINKM
  3777. case 150: // M150
  3778. {
  3779. byte red;
  3780. byte grn;
  3781. byte blu;
  3782. if(code_seen('R')) red = code_value();
  3783. if(code_seen('U')) grn = code_value();
  3784. if(code_seen('B')) blu = code_value();
  3785. SendColors(red,grn,blu);
  3786. }
  3787. break;
  3788. #endif //BLINKM
  3789. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3790. {
  3791. tmp_extruder = active_extruder;
  3792. if(code_seen('T')) {
  3793. tmp_extruder = code_value();
  3794. if(tmp_extruder >= EXTRUDERS) {
  3795. SERIAL_ECHO_START;
  3796. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3797. break;
  3798. }
  3799. }
  3800. float area = .0;
  3801. if(code_seen('D')) {
  3802. float diameter = (float)code_value();
  3803. if (diameter == 0.0) {
  3804. // setting any extruder filament size disables volumetric on the assumption that
  3805. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3806. // for all extruders
  3807. volumetric_enabled = false;
  3808. } else {
  3809. filament_size[tmp_extruder] = (float)code_value();
  3810. // make sure all extruders have some sane value for the filament size
  3811. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3812. #if EXTRUDERS > 1
  3813. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3814. #if EXTRUDERS > 2
  3815. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3816. #endif
  3817. #endif
  3818. volumetric_enabled = true;
  3819. }
  3820. } else {
  3821. //reserved for setting filament diameter via UFID or filament measuring device
  3822. break;
  3823. }
  3824. calculate_volumetric_multipliers();
  3825. }
  3826. break;
  3827. case 201: // M201
  3828. for(int8_t i=0; i < NUM_AXIS; i++)
  3829. {
  3830. if(code_seen(axis_codes[i]))
  3831. {
  3832. max_acceleration_units_per_sq_second[i] = code_value();
  3833. }
  3834. }
  3835. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3836. reset_acceleration_rates();
  3837. break;
  3838. #if 0 // Not used for Sprinter/grbl gen6
  3839. case 202: // M202
  3840. for(int8_t i=0; i < NUM_AXIS; i++) {
  3841. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3842. }
  3843. break;
  3844. #endif
  3845. case 203: // M203 max feedrate mm/sec
  3846. for(int8_t i=0; i < NUM_AXIS; i++) {
  3847. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3848. }
  3849. break;
  3850. case 204: // M204 acclereration S normal moves T filmanent only moves
  3851. {
  3852. if(code_seen('S')) acceleration = code_value() ;
  3853. if(code_seen('T')) retract_acceleration = code_value() ;
  3854. }
  3855. break;
  3856. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3857. {
  3858. if(code_seen('S')) minimumfeedrate = code_value();
  3859. if(code_seen('T')) mintravelfeedrate = code_value();
  3860. if(code_seen('B')) minsegmenttime = code_value() ;
  3861. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3862. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3863. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3864. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3865. }
  3866. break;
  3867. case 206: // M206 additional homing offset
  3868. for(int8_t i=0; i < 3; i++)
  3869. {
  3870. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3871. }
  3872. break;
  3873. #ifdef FWRETRACT
  3874. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3875. {
  3876. if(code_seen('S'))
  3877. {
  3878. retract_length = code_value() ;
  3879. }
  3880. if(code_seen('F'))
  3881. {
  3882. retract_feedrate = code_value()/60 ;
  3883. }
  3884. if(code_seen('Z'))
  3885. {
  3886. retract_zlift = code_value() ;
  3887. }
  3888. }break;
  3889. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3890. {
  3891. if(code_seen('S'))
  3892. {
  3893. retract_recover_length = code_value() ;
  3894. }
  3895. if(code_seen('F'))
  3896. {
  3897. retract_recover_feedrate = code_value()/60 ;
  3898. }
  3899. }break;
  3900. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3901. {
  3902. if(code_seen('S'))
  3903. {
  3904. int t= code_value() ;
  3905. switch(t)
  3906. {
  3907. case 0:
  3908. {
  3909. autoretract_enabled=false;
  3910. retracted[0]=false;
  3911. #if EXTRUDERS > 1
  3912. retracted[1]=false;
  3913. #endif
  3914. #if EXTRUDERS > 2
  3915. retracted[2]=false;
  3916. #endif
  3917. }break;
  3918. case 1:
  3919. {
  3920. autoretract_enabled=true;
  3921. retracted[0]=false;
  3922. #if EXTRUDERS > 1
  3923. retracted[1]=false;
  3924. #endif
  3925. #if EXTRUDERS > 2
  3926. retracted[2]=false;
  3927. #endif
  3928. }break;
  3929. default:
  3930. SERIAL_ECHO_START;
  3931. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3932. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3933. SERIAL_ECHOLNPGM("\"");
  3934. }
  3935. }
  3936. }break;
  3937. #endif // FWRETRACT
  3938. #if EXTRUDERS > 1
  3939. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3940. {
  3941. if(setTargetedHotend(218)){
  3942. break;
  3943. }
  3944. if(code_seen('X'))
  3945. {
  3946. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3947. }
  3948. if(code_seen('Y'))
  3949. {
  3950. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3951. }
  3952. SERIAL_ECHO_START;
  3953. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3954. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3955. {
  3956. SERIAL_ECHO(" ");
  3957. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3958. SERIAL_ECHO(",");
  3959. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3960. }
  3961. SERIAL_ECHOLN("");
  3962. }break;
  3963. #endif
  3964. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3965. {
  3966. if(code_seen('S'))
  3967. {
  3968. feedmultiply = code_value() ;
  3969. }
  3970. }
  3971. break;
  3972. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3973. {
  3974. if(code_seen('S'))
  3975. {
  3976. int tmp_code = code_value();
  3977. if (code_seen('T'))
  3978. {
  3979. if(setTargetedHotend(221)){
  3980. break;
  3981. }
  3982. extruder_multiply[tmp_extruder] = tmp_code;
  3983. }
  3984. else
  3985. {
  3986. extrudemultiply = tmp_code ;
  3987. }
  3988. }
  3989. }
  3990. break;
  3991. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3992. {
  3993. if(code_seen('P')){
  3994. int pin_number = code_value(); // pin number
  3995. int pin_state = -1; // required pin state - default is inverted
  3996. if(code_seen('S')) pin_state = code_value(); // required pin state
  3997. if(pin_state >= -1 && pin_state <= 1){
  3998. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3999. {
  4000. if (sensitive_pins[i] == pin_number)
  4001. {
  4002. pin_number = -1;
  4003. break;
  4004. }
  4005. }
  4006. if (pin_number > -1)
  4007. {
  4008. int target = LOW;
  4009. st_synchronize();
  4010. pinMode(pin_number, INPUT);
  4011. switch(pin_state){
  4012. case 1:
  4013. target = HIGH;
  4014. break;
  4015. case 0:
  4016. target = LOW;
  4017. break;
  4018. case -1:
  4019. target = !digitalRead(pin_number);
  4020. break;
  4021. }
  4022. while(digitalRead(pin_number) != target){
  4023. manage_heater();
  4024. manage_inactivity();
  4025. lcd_update();
  4026. }
  4027. }
  4028. }
  4029. }
  4030. }
  4031. break;
  4032. #if NUM_SERVOS > 0
  4033. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4034. {
  4035. int servo_index = -1;
  4036. int servo_position = 0;
  4037. if (code_seen('P'))
  4038. servo_index = code_value();
  4039. if (code_seen('S')) {
  4040. servo_position = code_value();
  4041. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4042. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4043. servos[servo_index].attach(0);
  4044. #endif
  4045. servos[servo_index].write(servo_position);
  4046. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4047. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4048. servos[servo_index].detach();
  4049. #endif
  4050. }
  4051. else {
  4052. SERIAL_ECHO_START;
  4053. SERIAL_ECHO("Servo ");
  4054. SERIAL_ECHO(servo_index);
  4055. SERIAL_ECHOLN(" out of range");
  4056. }
  4057. }
  4058. else if (servo_index >= 0) {
  4059. SERIAL_PROTOCOL(MSG_OK);
  4060. SERIAL_PROTOCOL(" Servo ");
  4061. SERIAL_PROTOCOL(servo_index);
  4062. SERIAL_PROTOCOL(": ");
  4063. SERIAL_PROTOCOL(servos[servo_index].read());
  4064. SERIAL_PROTOCOLLN("");
  4065. }
  4066. }
  4067. break;
  4068. #endif // NUM_SERVOS > 0
  4069. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4070. case 300: // M300
  4071. {
  4072. int beepS = code_seen('S') ? code_value() : 110;
  4073. int beepP = code_seen('P') ? code_value() : 1000;
  4074. if (beepS > 0)
  4075. {
  4076. #if BEEPER > 0
  4077. tone(BEEPER, beepS);
  4078. delay(beepP);
  4079. noTone(BEEPER);
  4080. #elif defined(ULTRALCD)
  4081. lcd_buzz(beepS, beepP);
  4082. #elif defined(LCD_USE_I2C_BUZZER)
  4083. lcd_buzz(beepP, beepS);
  4084. #endif
  4085. }
  4086. else
  4087. {
  4088. delay(beepP);
  4089. }
  4090. }
  4091. break;
  4092. #endif // M300
  4093. #ifdef PIDTEMP
  4094. case 301: // M301
  4095. {
  4096. if(code_seen('P')) Kp = code_value();
  4097. if(code_seen('I')) Ki = scalePID_i(code_value());
  4098. if(code_seen('D')) Kd = scalePID_d(code_value());
  4099. #ifdef PID_ADD_EXTRUSION_RATE
  4100. if(code_seen('C')) Kc = code_value();
  4101. #endif
  4102. updatePID();
  4103. SERIAL_PROTOCOLRPGM(MSG_OK);
  4104. SERIAL_PROTOCOL(" p:");
  4105. SERIAL_PROTOCOL(Kp);
  4106. SERIAL_PROTOCOL(" i:");
  4107. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4108. SERIAL_PROTOCOL(" d:");
  4109. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4110. #ifdef PID_ADD_EXTRUSION_RATE
  4111. SERIAL_PROTOCOL(" c:");
  4112. //Kc does not have scaling applied above, or in resetting defaults
  4113. SERIAL_PROTOCOL(Kc);
  4114. #endif
  4115. SERIAL_PROTOCOLLN("");
  4116. }
  4117. break;
  4118. #endif //PIDTEMP
  4119. #ifdef PIDTEMPBED
  4120. case 304: // M304
  4121. {
  4122. if(code_seen('P')) bedKp = code_value();
  4123. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4124. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4125. updatePID();
  4126. SERIAL_PROTOCOLRPGM(MSG_OK);
  4127. SERIAL_PROTOCOL(" p:");
  4128. SERIAL_PROTOCOL(bedKp);
  4129. SERIAL_PROTOCOL(" i:");
  4130. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4131. SERIAL_PROTOCOL(" d:");
  4132. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4133. SERIAL_PROTOCOLLN("");
  4134. }
  4135. break;
  4136. #endif //PIDTEMP
  4137. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4138. {
  4139. #ifdef CHDK
  4140. SET_OUTPUT(CHDK);
  4141. WRITE(CHDK, HIGH);
  4142. chdkHigh = millis();
  4143. chdkActive = true;
  4144. #else
  4145. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4146. const uint8_t NUM_PULSES=16;
  4147. const float PULSE_LENGTH=0.01524;
  4148. for(int i=0; i < NUM_PULSES; i++) {
  4149. WRITE(PHOTOGRAPH_PIN, HIGH);
  4150. _delay_ms(PULSE_LENGTH);
  4151. WRITE(PHOTOGRAPH_PIN, LOW);
  4152. _delay_ms(PULSE_LENGTH);
  4153. }
  4154. delay(7.33);
  4155. for(int i=0; i < NUM_PULSES; i++) {
  4156. WRITE(PHOTOGRAPH_PIN, HIGH);
  4157. _delay_ms(PULSE_LENGTH);
  4158. WRITE(PHOTOGRAPH_PIN, LOW);
  4159. _delay_ms(PULSE_LENGTH);
  4160. }
  4161. #endif
  4162. #endif //chdk end if
  4163. }
  4164. break;
  4165. #ifdef DOGLCD
  4166. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4167. {
  4168. if (code_seen('C')) {
  4169. lcd_setcontrast( ((int)code_value())&63 );
  4170. }
  4171. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4172. SERIAL_PROTOCOL(lcd_contrast);
  4173. SERIAL_PROTOCOLLN("");
  4174. }
  4175. break;
  4176. #endif
  4177. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4178. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4179. {
  4180. float temp = .0;
  4181. if (code_seen('S')) temp=code_value();
  4182. set_extrude_min_temp(temp);
  4183. }
  4184. break;
  4185. #endif
  4186. case 303: // M303 PID autotune
  4187. {
  4188. float temp = 150.0;
  4189. int e=0;
  4190. int c=5;
  4191. if (code_seen('E')) e=code_value();
  4192. if (e<0)
  4193. temp=70;
  4194. if (code_seen('S')) temp=code_value();
  4195. if (code_seen('C')) c=code_value();
  4196. PID_autotune(temp, e, c);
  4197. }
  4198. break;
  4199. case 400: // M400 finish all moves
  4200. {
  4201. st_synchronize();
  4202. }
  4203. break;
  4204. #ifdef FILAMENT_SENSOR
  4205. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4206. {
  4207. #if (FILWIDTH_PIN > -1)
  4208. if(code_seen('N')) filament_width_nominal=code_value();
  4209. else{
  4210. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4211. SERIAL_PROTOCOLLN(filament_width_nominal);
  4212. }
  4213. #endif
  4214. }
  4215. break;
  4216. case 405: //M405 Turn on filament sensor for control
  4217. {
  4218. if(code_seen('D')) meas_delay_cm=code_value();
  4219. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4220. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4221. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4222. {
  4223. int temp_ratio = widthFil_to_size_ratio();
  4224. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4225. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4226. }
  4227. delay_index1=0;
  4228. delay_index2=0;
  4229. }
  4230. filament_sensor = true ;
  4231. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4232. //SERIAL_PROTOCOL(filament_width_meas);
  4233. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4234. //SERIAL_PROTOCOL(extrudemultiply);
  4235. }
  4236. break;
  4237. case 406: //M406 Turn off filament sensor for control
  4238. {
  4239. filament_sensor = false ;
  4240. }
  4241. break;
  4242. case 407: //M407 Display measured filament diameter
  4243. {
  4244. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4245. SERIAL_PROTOCOLLN(filament_width_meas);
  4246. }
  4247. break;
  4248. #endif
  4249. case 500: // M500 Store settings in EEPROM
  4250. {
  4251. Config_StoreSettings();
  4252. }
  4253. break;
  4254. case 501: // M501 Read settings from EEPROM
  4255. {
  4256. Config_RetrieveSettings();
  4257. }
  4258. break;
  4259. case 502: // M502 Revert to default settings
  4260. {
  4261. Config_ResetDefault();
  4262. }
  4263. break;
  4264. case 503: // M503 print settings currently in memory
  4265. {
  4266. Config_PrintSettings();
  4267. }
  4268. break;
  4269. case 509: //M509 Force language selection
  4270. {
  4271. lcd_force_language_selection();
  4272. SERIAL_ECHO_START;
  4273. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4274. }
  4275. break;
  4276. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4277. case 540:
  4278. {
  4279. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4280. }
  4281. break;
  4282. #endif
  4283. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4284. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4285. {
  4286. float value;
  4287. if (code_seen('Z'))
  4288. {
  4289. value = code_value();
  4290. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4291. {
  4292. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4293. SERIAL_ECHO_START;
  4294. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4295. SERIAL_PROTOCOLLN("");
  4296. }
  4297. else
  4298. {
  4299. SERIAL_ECHO_START;
  4300. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4301. SERIAL_ECHORPGM(MSG_Z_MIN);
  4302. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4303. SERIAL_ECHORPGM(MSG_Z_MAX);
  4304. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4305. SERIAL_PROTOCOLLN("");
  4306. }
  4307. }
  4308. else
  4309. {
  4310. SERIAL_ECHO_START;
  4311. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4312. SERIAL_ECHO(-zprobe_zoffset);
  4313. SERIAL_PROTOCOLLN("");
  4314. }
  4315. break;
  4316. }
  4317. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4318. #ifdef FILAMENTCHANGEENABLE
  4319. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4320. {
  4321. st_synchronize();
  4322. if (farm_mode)
  4323. {
  4324. prusa_statistics(22);
  4325. }
  4326. feedmultiplyBckp=feedmultiply;
  4327. int8_t TooLowZ = 0;
  4328. float target[4];
  4329. float lastpos[4];
  4330. target[X_AXIS]=current_position[X_AXIS];
  4331. target[Y_AXIS]=current_position[Y_AXIS];
  4332. target[Z_AXIS]=current_position[Z_AXIS];
  4333. target[E_AXIS]=current_position[E_AXIS];
  4334. lastpos[X_AXIS]=current_position[X_AXIS];
  4335. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4336. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4337. lastpos[E_AXIS]=current_position[E_AXIS];
  4338. //Restract extruder
  4339. if(code_seen('E'))
  4340. {
  4341. target[E_AXIS]+= code_value();
  4342. }
  4343. else
  4344. {
  4345. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4346. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4347. #endif
  4348. }
  4349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4350. //Lift Z
  4351. if(code_seen('Z'))
  4352. {
  4353. target[Z_AXIS]+= code_value();
  4354. }
  4355. else
  4356. {
  4357. #ifdef FILAMENTCHANGE_ZADD
  4358. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4359. if(target[Z_AXIS] < 10){
  4360. target[Z_AXIS]+= 10 ;
  4361. TooLowZ = 1;
  4362. }else{
  4363. TooLowZ = 0;
  4364. }
  4365. #endif
  4366. }
  4367. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4368. //Move XY to side
  4369. if(code_seen('X'))
  4370. {
  4371. target[X_AXIS]+= code_value();
  4372. }
  4373. else
  4374. {
  4375. #ifdef FILAMENTCHANGE_XPOS
  4376. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4377. #endif
  4378. }
  4379. if(code_seen('Y'))
  4380. {
  4381. target[Y_AXIS]= code_value();
  4382. }
  4383. else
  4384. {
  4385. #ifdef FILAMENTCHANGE_YPOS
  4386. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4387. #endif
  4388. }
  4389. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4390. // Unload filament
  4391. if(code_seen('L'))
  4392. {
  4393. target[E_AXIS]+= code_value();
  4394. }
  4395. else
  4396. {
  4397. #ifdef FILAMENTCHANGE_FINALRETRACT
  4398. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4399. #endif
  4400. }
  4401. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4402. //finish moves
  4403. st_synchronize();
  4404. //disable extruder steppers so filament can be removed
  4405. disable_e0();
  4406. disable_e1();
  4407. disable_e2();
  4408. delay(100);
  4409. //Wait for user to insert filament
  4410. uint8_t cnt=0;
  4411. int counterBeep = 0;
  4412. lcd_wait_interact();
  4413. while(!lcd_clicked()){
  4414. cnt++;
  4415. manage_heater();
  4416. manage_inactivity(true);
  4417. if(cnt==0)
  4418. {
  4419. #if BEEPER > 0
  4420. if (counterBeep== 500){
  4421. counterBeep = 0;
  4422. }
  4423. SET_OUTPUT(BEEPER);
  4424. if (counterBeep== 0){
  4425. WRITE(BEEPER,HIGH);
  4426. }
  4427. if (counterBeep== 20){
  4428. WRITE(BEEPER,LOW);
  4429. }
  4430. counterBeep++;
  4431. #else
  4432. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4433. lcd_buzz(1000/6,100);
  4434. #else
  4435. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4436. #endif
  4437. #endif
  4438. }
  4439. }
  4440. //Filament inserted
  4441. WRITE(BEEPER,LOW);
  4442. //Feed the filament to the end of nozzle quickly
  4443. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4445. //Extrude some filament
  4446. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4448. //Wait for user to check the state
  4449. lcd_change_fil_state = 0;
  4450. lcd_loading_filament();
  4451. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4452. lcd_change_fil_state = 0;
  4453. lcd_alright();
  4454. switch(lcd_change_fil_state){
  4455. // Filament failed to load so load it again
  4456. case 2:
  4457. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4459. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4461. lcd_loading_filament();
  4462. break;
  4463. // Filament loaded properly but color is not clear
  4464. case 3:
  4465. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4467. lcd_loading_color();
  4468. break;
  4469. // Everything good
  4470. default:
  4471. lcd_change_success();
  4472. break;
  4473. }
  4474. }
  4475. //Not let's go back to print
  4476. //Feed a little of filament to stabilize pressure
  4477. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4479. //Retract
  4480. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4482. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4483. //Move XY back
  4484. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4485. //Move Z back
  4486. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4487. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4488. //Unretract
  4489. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4490. //Set E position to original
  4491. plan_set_e_position(lastpos[E_AXIS]);
  4492. //Recover feed rate
  4493. feedmultiply=feedmultiplyBckp;
  4494. char cmd[9];
  4495. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4496. enquecommand(cmd);
  4497. }
  4498. break;
  4499. #endif //FILAMENTCHANGEENABLE
  4500. case 907: // M907 Set digital trimpot motor current using axis codes.
  4501. {
  4502. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4503. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4504. if(code_seen('B')) digipot_current(4,code_value());
  4505. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4506. #endif
  4507. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4508. if(code_seen('X')) digipot_current(0, code_value());
  4509. #endif
  4510. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4511. if(code_seen('Z')) digipot_current(1, code_value());
  4512. #endif
  4513. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4514. if(code_seen('E')) digipot_current(2, code_value());
  4515. #endif
  4516. #ifdef DIGIPOT_I2C
  4517. // this one uses actual amps in floating point
  4518. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4519. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4520. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4521. #endif
  4522. }
  4523. break;
  4524. case 908: // M908 Control digital trimpot directly.
  4525. {
  4526. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4527. uint8_t channel,current;
  4528. if(code_seen('P')) channel=code_value();
  4529. if(code_seen('S')) current=code_value();
  4530. digitalPotWrite(channel, current);
  4531. #endif
  4532. }
  4533. break;
  4534. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4535. {
  4536. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4537. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4538. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4539. if(code_seen('B')) microstep_mode(4,code_value());
  4540. microstep_readings();
  4541. #endif
  4542. }
  4543. break;
  4544. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4545. {
  4546. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4547. if(code_seen('S')) switch((int)code_value())
  4548. {
  4549. case 1:
  4550. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4551. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4552. break;
  4553. case 2:
  4554. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4555. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4556. break;
  4557. }
  4558. microstep_readings();
  4559. #endif
  4560. }
  4561. break;
  4562. case 701: //M701: load filament
  4563. {
  4564. enable_z();
  4565. custom_message = true;
  4566. custom_message_type = 2;
  4567. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4568. current_position[E_AXIS] += 65;
  4569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4570. current_position[E_AXIS] += 40;
  4571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4572. st_synchronize();
  4573. if (!farm_mode && loading_flag) {
  4574. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4575. while (!clean) {
  4576. lcd_update_enable(true);
  4577. lcd_update(2);
  4578. current_position[E_AXIS] += 40;
  4579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4580. st_synchronize();
  4581. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4582. }
  4583. }
  4584. lcd_update_enable(true);
  4585. lcd_update(2);
  4586. lcd_setstatuspgm(WELCOME_MSG);
  4587. disable_z();
  4588. loading_flag = false;
  4589. custom_message = false;
  4590. custom_message_type = 0;
  4591. }
  4592. break;
  4593. case 702:
  4594. {
  4595. custom_message = true;
  4596. custom_message_type = 2;
  4597. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4598. current_position[E_AXIS] -= 80;
  4599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4600. st_synchronize();
  4601. lcd_setstatuspgm(WELCOME_MSG);
  4602. custom_message = false;
  4603. custom_message_type = 0;
  4604. }
  4605. break;
  4606. case 999: // M999: Restart after being stopped
  4607. Stopped = false;
  4608. lcd_reset_alert_level();
  4609. gcode_LastN = Stopped_gcode_LastN;
  4610. FlushSerialRequestResend();
  4611. break;
  4612. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4613. }
  4614. } // end if(code_seen('M')) (end of M codes)
  4615. else if(code_seen('T'))
  4616. {
  4617. int index;
  4618. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4619. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4620. SERIAL_ECHOLNPGM("Invalid T code.");
  4621. }
  4622. else {
  4623. tmp_extruder = code_value();
  4624. #ifdef SNMM
  4625. st_synchronize();
  4626. delay(100);
  4627. disable_e0();
  4628. disable_e1();
  4629. disable_e2();
  4630. pinMode(E_MUX0_PIN, OUTPUT);
  4631. pinMode(E_MUX1_PIN, OUTPUT);
  4632. pinMode(E_MUX2_PIN, OUTPUT);
  4633. delay(100);
  4634. SERIAL_ECHO_START;
  4635. SERIAL_ECHO("T:");
  4636. SERIAL_ECHOLN((int)tmp_extruder);
  4637. switch (tmp_extruder) {
  4638. case 1:
  4639. WRITE(E_MUX0_PIN, HIGH);
  4640. WRITE(E_MUX1_PIN, LOW);
  4641. WRITE(E_MUX2_PIN, LOW);
  4642. break;
  4643. case 2:
  4644. WRITE(E_MUX0_PIN, LOW);
  4645. WRITE(E_MUX1_PIN, HIGH);
  4646. WRITE(E_MUX2_PIN, LOW);
  4647. break;
  4648. case 3:
  4649. WRITE(E_MUX0_PIN, HIGH);
  4650. WRITE(E_MUX1_PIN, HIGH);
  4651. WRITE(E_MUX2_PIN, LOW);
  4652. break;
  4653. default:
  4654. WRITE(E_MUX0_PIN, LOW);
  4655. WRITE(E_MUX1_PIN, LOW);
  4656. WRITE(E_MUX2_PIN, LOW);
  4657. break;
  4658. }
  4659. delay(100);
  4660. #else
  4661. if (tmp_extruder >= EXTRUDERS) {
  4662. SERIAL_ECHO_START;
  4663. SERIAL_ECHOPGM("T");
  4664. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4665. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4666. }
  4667. else {
  4668. boolean make_move = false;
  4669. if (code_seen('F')) {
  4670. make_move = true;
  4671. next_feedrate = code_value();
  4672. if (next_feedrate > 0.0) {
  4673. feedrate = next_feedrate;
  4674. }
  4675. }
  4676. #if EXTRUDERS > 1
  4677. if (tmp_extruder != active_extruder) {
  4678. // Save current position to return to after applying extruder offset
  4679. memcpy(destination, current_position, sizeof(destination));
  4680. // Offset extruder (only by XY)
  4681. int i;
  4682. for (i = 0; i < 2; i++) {
  4683. current_position[i] = current_position[i] -
  4684. extruder_offset[i][active_extruder] +
  4685. extruder_offset[i][tmp_extruder];
  4686. }
  4687. // Set the new active extruder and position
  4688. active_extruder = tmp_extruder;
  4689. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4690. // Move to the old position if 'F' was in the parameters
  4691. if (make_move && Stopped == false) {
  4692. prepare_move();
  4693. }
  4694. }
  4695. #endif
  4696. SERIAL_ECHO_START;
  4697. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4698. SERIAL_PROTOCOLLN((int)active_extruder);
  4699. }
  4700. #endif
  4701. }
  4702. } // end if(code_seen('T')) (end of T codes)
  4703. else
  4704. {
  4705. SERIAL_ECHO_START;
  4706. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4707. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4708. SERIAL_ECHOLNPGM("\"");
  4709. }
  4710. ClearToSend();
  4711. }
  4712. void FlushSerialRequestResend()
  4713. {
  4714. //char cmdbuffer[bufindr][100]="Resend:";
  4715. MYSERIAL.flush();
  4716. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4717. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4718. ClearToSend();
  4719. }
  4720. // Confirm the execution of a command, if sent from a serial line.
  4721. // Execution of a command from a SD card will not be confirmed.
  4722. void ClearToSend()
  4723. {
  4724. previous_millis_cmd = millis();
  4725. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4726. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4727. }
  4728. void get_coordinates()
  4729. {
  4730. bool seen[4]={false,false,false,false};
  4731. for(int8_t i=0; i < NUM_AXIS; i++) {
  4732. if(code_seen(axis_codes[i]))
  4733. {
  4734. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4735. seen[i]=true;
  4736. }
  4737. else destination[i] = current_position[i]; //Are these else lines really needed?
  4738. }
  4739. if(code_seen('F')) {
  4740. next_feedrate = code_value();
  4741. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4742. }
  4743. }
  4744. void get_arc_coordinates()
  4745. {
  4746. #ifdef SF_ARC_FIX
  4747. bool relative_mode_backup = relative_mode;
  4748. relative_mode = true;
  4749. #endif
  4750. get_coordinates();
  4751. #ifdef SF_ARC_FIX
  4752. relative_mode=relative_mode_backup;
  4753. #endif
  4754. if(code_seen('I')) {
  4755. offset[0] = code_value();
  4756. }
  4757. else {
  4758. offset[0] = 0.0;
  4759. }
  4760. if(code_seen('J')) {
  4761. offset[1] = code_value();
  4762. }
  4763. else {
  4764. offset[1] = 0.0;
  4765. }
  4766. }
  4767. void clamp_to_software_endstops(float target[3])
  4768. {
  4769. world2machine_clamp(target[0], target[1]);
  4770. // Clamp the Z coordinate.
  4771. if (min_software_endstops) {
  4772. float negative_z_offset = 0;
  4773. #ifdef ENABLE_AUTO_BED_LEVELING
  4774. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4775. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4776. #endif
  4777. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4778. }
  4779. if (max_software_endstops) {
  4780. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4781. }
  4782. }
  4783. #ifdef MESH_BED_LEVELING
  4784. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4785. float dx = x - current_position[X_AXIS];
  4786. float dy = y - current_position[Y_AXIS];
  4787. float dz = z - current_position[Z_AXIS];
  4788. int n_segments = 0;
  4789. if (mbl.active) {
  4790. float len = abs(dx) + abs(dy);
  4791. if (len > 0)
  4792. // Split to 3cm segments or shorter.
  4793. n_segments = int(ceil(len / 30.f));
  4794. }
  4795. if (n_segments > 1) {
  4796. float de = e - current_position[E_AXIS];
  4797. for (int i = 1; i < n_segments; ++ i) {
  4798. float t = float(i) / float(n_segments);
  4799. plan_buffer_line(
  4800. current_position[X_AXIS] + t * dx,
  4801. current_position[Y_AXIS] + t * dy,
  4802. current_position[Z_AXIS] + t * dz,
  4803. current_position[E_AXIS] + t * de,
  4804. feed_rate, extruder);
  4805. }
  4806. }
  4807. // The rest of the path.
  4808. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4809. current_position[X_AXIS] = x;
  4810. current_position[Y_AXIS] = y;
  4811. current_position[Z_AXIS] = z;
  4812. current_position[E_AXIS] = e;
  4813. }
  4814. #endif // MESH_BED_LEVELING
  4815. void prepare_move()
  4816. {
  4817. clamp_to_software_endstops(destination);
  4818. previous_millis_cmd = millis();
  4819. // Do not use feedmultiply for E or Z only moves
  4820. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4821. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4822. }
  4823. else {
  4824. #ifdef MESH_BED_LEVELING
  4825. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4826. #else
  4827. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4828. #endif
  4829. }
  4830. for(int8_t i=0; i < NUM_AXIS; i++) {
  4831. current_position[i] = destination[i];
  4832. }
  4833. }
  4834. void prepare_arc_move(char isclockwise) {
  4835. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4836. // Trace the arc
  4837. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4838. // As far as the parser is concerned, the position is now == target. In reality the
  4839. // motion control system might still be processing the action and the real tool position
  4840. // in any intermediate location.
  4841. for(int8_t i=0; i < NUM_AXIS; i++) {
  4842. current_position[i] = destination[i];
  4843. }
  4844. previous_millis_cmd = millis();
  4845. }
  4846. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4847. #if defined(FAN_PIN)
  4848. #if CONTROLLERFAN_PIN == FAN_PIN
  4849. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4850. #endif
  4851. #endif
  4852. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4853. unsigned long lastMotorCheck = 0;
  4854. void controllerFan()
  4855. {
  4856. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4857. {
  4858. lastMotorCheck = millis();
  4859. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4860. #if EXTRUDERS > 2
  4861. || !READ(E2_ENABLE_PIN)
  4862. #endif
  4863. #if EXTRUDER > 1
  4864. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4865. || !READ(X2_ENABLE_PIN)
  4866. #endif
  4867. || !READ(E1_ENABLE_PIN)
  4868. #endif
  4869. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4870. {
  4871. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4872. }
  4873. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4874. {
  4875. digitalWrite(CONTROLLERFAN_PIN, 0);
  4876. analogWrite(CONTROLLERFAN_PIN, 0);
  4877. }
  4878. else
  4879. {
  4880. // allows digital or PWM fan output to be used (see M42 handling)
  4881. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4882. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4883. }
  4884. }
  4885. }
  4886. #endif
  4887. #ifdef TEMP_STAT_LEDS
  4888. static bool blue_led = false;
  4889. static bool red_led = false;
  4890. static uint32_t stat_update = 0;
  4891. void handle_status_leds(void) {
  4892. float max_temp = 0.0;
  4893. if(millis() > stat_update) {
  4894. stat_update += 500; // Update every 0.5s
  4895. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4896. max_temp = max(max_temp, degHotend(cur_extruder));
  4897. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4898. }
  4899. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4900. max_temp = max(max_temp, degTargetBed());
  4901. max_temp = max(max_temp, degBed());
  4902. #endif
  4903. if((max_temp > 55.0) && (red_led == false)) {
  4904. digitalWrite(STAT_LED_RED, 1);
  4905. digitalWrite(STAT_LED_BLUE, 0);
  4906. red_led = true;
  4907. blue_led = false;
  4908. }
  4909. if((max_temp < 54.0) && (blue_led == false)) {
  4910. digitalWrite(STAT_LED_RED, 0);
  4911. digitalWrite(STAT_LED_BLUE, 1);
  4912. red_led = false;
  4913. blue_led = true;
  4914. }
  4915. }
  4916. }
  4917. #endif
  4918. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4919. {
  4920. #if defined(KILL_PIN) && KILL_PIN > -1
  4921. static int killCount = 0; // make the inactivity button a bit less responsive
  4922. const int KILL_DELAY = 10000;
  4923. #endif
  4924. if(buflen < (BUFSIZE-1)){
  4925. get_command();
  4926. }
  4927. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4928. if(max_inactive_time)
  4929. kill();
  4930. if(stepper_inactive_time) {
  4931. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4932. {
  4933. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4934. disable_x();
  4935. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4936. disable_y();
  4937. disable_z();
  4938. disable_e0();
  4939. disable_e1();
  4940. disable_e2();
  4941. }
  4942. }
  4943. }
  4944. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4945. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4946. {
  4947. chdkActive = false;
  4948. WRITE(CHDK, LOW);
  4949. }
  4950. #endif
  4951. #if defined(KILL_PIN) && KILL_PIN > -1
  4952. // Check if the kill button was pressed and wait just in case it was an accidental
  4953. // key kill key press
  4954. // -------------------------------------------------------------------------------
  4955. if( 0 == READ(KILL_PIN) )
  4956. {
  4957. killCount++;
  4958. }
  4959. else if (killCount > 0)
  4960. {
  4961. killCount--;
  4962. }
  4963. // Exceeded threshold and we can confirm that it was not accidental
  4964. // KILL the machine
  4965. // ----------------------------------------------------------------
  4966. if ( killCount >= KILL_DELAY)
  4967. {
  4968. kill();
  4969. }
  4970. #endif
  4971. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4972. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4973. #endif
  4974. #ifdef EXTRUDER_RUNOUT_PREVENT
  4975. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4976. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4977. {
  4978. bool oldstatus=READ(E0_ENABLE_PIN);
  4979. enable_e0();
  4980. float oldepos=current_position[E_AXIS];
  4981. float oldedes=destination[E_AXIS];
  4982. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4983. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4984. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4985. current_position[E_AXIS]=oldepos;
  4986. destination[E_AXIS]=oldedes;
  4987. plan_set_e_position(oldepos);
  4988. previous_millis_cmd=millis();
  4989. st_synchronize();
  4990. WRITE(E0_ENABLE_PIN,oldstatus);
  4991. }
  4992. #endif
  4993. #ifdef TEMP_STAT_LEDS
  4994. handle_status_leds();
  4995. #endif
  4996. check_axes_activity();
  4997. }
  4998. void kill(const char *full_screen_message)
  4999. {
  5000. cli(); // Stop interrupts
  5001. disable_heater();
  5002. disable_x();
  5003. // SERIAL_ECHOLNPGM("kill - disable Y");
  5004. disable_y();
  5005. disable_z();
  5006. disable_e0();
  5007. disable_e1();
  5008. disable_e2();
  5009. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5010. pinMode(PS_ON_PIN,INPUT);
  5011. #endif
  5012. SERIAL_ERROR_START;
  5013. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5014. if (full_screen_message != NULL) {
  5015. SERIAL_ERRORLNRPGM(full_screen_message);
  5016. lcd_display_message_fullscreen_P(full_screen_message);
  5017. } else {
  5018. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5019. }
  5020. // FMC small patch to update the LCD before ending
  5021. sei(); // enable interrupts
  5022. for ( int i=5; i--; lcd_update())
  5023. {
  5024. delay(200);
  5025. }
  5026. cli(); // disable interrupts
  5027. suicide();
  5028. while(1) { /* Intentionally left empty */ } // Wait for reset
  5029. }
  5030. void Stop()
  5031. {
  5032. disable_heater();
  5033. if(Stopped == false) {
  5034. Stopped = true;
  5035. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5036. SERIAL_ERROR_START;
  5037. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5038. LCD_MESSAGERPGM(MSG_STOPPED);
  5039. }
  5040. }
  5041. bool IsStopped() { return Stopped; };
  5042. #ifdef FAST_PWM_FAN
  5043. void setPwmFrequency(uint8_t pin, int val)
  5044. {
  5045. val &= 0x07;
  5046. switch(digitalPinToTimer(pin))
  5047. {
  5048. #if defined(TCCR0A)
  5049. case TIMER0A:
  5050. case TIMER0B:
  5051. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5052. // TCCR0B |= val;
  5053. break;
  5054. #endif
  5055. #if defined(TCCR1A)
  5056. case TIMER1A:
  5057. case TIMER1B:
  5058. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5059. // TCCR1B |= val;
  5060. break;
  5061. #endif
  5062. #if defined(TCCR2)
  5063. case TIMER2:
  5064. case TIMER2:
  5065. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5066. TCCR2 |= val;
  5067. break;
  5068. #endif
  5069. #if defined(TCCR2A)
  5070. case TIMER2A:
  5071. case TIMER2B:
  5072. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5073. TCCR2B |= val;
  5074. break;
  5075. #endif
  5076. #if defined(TCCR3A)
  5077. case TIMER3A:
  5078. case TIMER3B:
  5079. case TIMER3C:
  5080. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5081. TCCR3B |= val;
  5082. break;
  5083. #endif
  5084. #if defined(TCCR4A)
  5085. case TIMER4A:
  5086. case TIMER4B:
  5087. case TIMER4C:
  5088. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5089. TCCR4B |= val;
  5090. break;
  5091. #endif
  5092. #if defined(TCCR5A)
  5093. case TIMER5A:
  5094. case TIMER5B:
  5095. case TIMER5C:
  5096. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5097. TCCR5B |= val;
  5098. break;
  5099. #endif
  5100. }
  5101. }
  5102. #endif //FAST_PWM_FAN
  5103. bool setTargetedHotend(int code){
  5104. tmp_extruder = active_extruder;
  5105. if(code_seen('T')) {
  5106. tmp_extruder = code_value();
  5107. if(tmp_extruder >= EXTRUDERS) {
  5108. SERIAL_ECHO_START;
  5109. switch(code){
  5110. case 104:
  5111. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5112. break;
  5113. case 105:
  5114. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5115. break;
  5116. case 109:
  5117. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5118. break;
  5119. case 218:
  5120. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5121. break;
  5122. case 221:
  5123. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5124. break;
  5125. }
  5126. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5127. return true;
  5128. }
  5129. }
  5130. return false;
  5131. }
  5132. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5133. {
  5134. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5135. {
  5136. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5137. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5138. }
  5139. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5140. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5141. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5142. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5143. total_filament_used = 0;
  5144. }
  5145. float calculate_volumetric_multiplier(float diameter) {
  5146. float area = .0;
  5147. float radius = .0;
  5148. radius = diameter * .5;
  5149. if (! volumetric_enabled || radius == 0) {
  5150. area = 1;
  5151. }
  5152. else {
  5153. area = M_PI * pow(radius, 2);
  5154. }
  5155. return 1.0 / area;
  5156. }
  5157. void calculate_volumetric_multipliers() {
  5158. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5159. #if EXTRUDERS > 1
  5160. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5161. #if EXTRUDERS > 2
  5162. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5163. #endif
  5164. #endif
  5165. }
  5166. void delay_keep_alive(unsigned int ms)
  5167. {
  5168. for (;;) {
  5169. manage_heater();
  5170. // Manage inactivity, but don't disable steppers on timeout.
  5171. manage_inactivity(true);
  5172. lcd_update();
  5173. if (ms == 0)
  5174. break;
  5175. else if (ms >= 50) {
  5176. delay(50);
  5177. ms -= 50;
  5178. } else {
  5179. delay(ms);
  5180. ms = 0;
  5181. }
  5182. }
  5183. }
  5184. void check_babystep() {
  5185. int babystep_z;
  5186. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5187. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5188. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5189. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5190. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5191. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5192. lcd_update_enable(true);
  5193. }
  5194. }
  5195. #ifdef DIS
  5196. void d_setup()
  5197. {
  5198. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5199. pinMode(D_DATA, INPUT_PULLUP);
  5200. pinMode(D_REQUIRE, OUTPUT);
  5201. digitalWrite(D_REQUIRE, HIGH);
  5202. }
  5203. float d_ReadData()
  5204. {
  5205. int digit[13];
  5206. String mergeOutput;
  5207. float output;
  5208. digitalWrite(D_REQUIRE, HIGH);
  5209. for (int i = 0; i<13; i++)
  5210. {
  5211. for (int j = 0; j < 4; j++)
  5212. {
  5213. while (digitalRead(D_DATACLOCK) == LOW) {}
  5214. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5215. bitWrite(digit[i], j, digitalRead(D_DATA));
  5216. }
  5217. }
  5218. digitalWrite(D_REQUIRE, LOW);
  5219. mergeOutput = "";
  5220. output = 0;
  5221. for (int r = 5; r <= 10; r++) //Merge digits
  5222. {
  5223. mergeOutput += digit[r];
  5224. }
  5225. output = mergeOutput.toFloat();
  5226. if (digit[4] == 8) //Handle sign
  5227. {
  5228. output *= -1;
  5229. }
  5230. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5231. {
  5232. output /= 10;
  5233. }
  5234. return output;
  5235. }
  5236. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5237. int t1 = 0;
  5238. int t_delay = 0;
  5239. int digit[13];
  5240. int m;
  5241. char str[3];
  5242. //String mergeOutput;
  5243. char mergeOutput[15];
  5244. float output;
  5245. int mesh_point = 0; //index number of calibration point
  5246. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5247. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5248. float mesh_home_z_search = 4;
  5249. float row[x_points_num];
  5250. int ix = 0;
  5251. int iy = 0;
  5252. char* filename_wldsd = "wldsd.txt";
  5253. char data_wldsd[70];
  5254. char numb_wldsd[10];
  5255. d_setup();
  5256. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5257. // We don't know where we are! HOME!
  5258. // Push the commands to the front of the message queue in the reverse order!
  5259. // There shall be always enough space reserved for these commands.
  5260. repeatcommand_front(); // repeat G80 with all its parameters
  5261. enquecommand_front_P((PSTR("G28 W0")));
  5262. enquecommand_front_P((PSTR("G1 Z5")));
  5263. return;
  5264. }
  5265. bool custom_message_old = custom_message;
  5266. unsigned int custom_message_type_old = custom_message_type;
  5267. unsigned int custom_message_state_old = custom_message_state;
  5268. custom_message = true;
  5269. custom_message_type = 1;
  5270. custom_message_state = (x_points_num * y_points_num) + 10;
  5271. lcd_update(1);
  5272. mbl.reset();
  5273. babystep_undo();
  5274. card.openFile(filename_wldsd, false);
  5275. current_position[Z_AXIS] = mesh_home_z_search;
  5276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5277. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5278. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5279. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5280. setup_for_endstop_move(false);
  5281. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5282. SERIAL_PROTOCOL(x_points_num);
  5283. SERIAL_PROTOCOLPGM(",");
  5284. SERIAL_PROTOCOL(y_points_num);
  5285. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5286. SERIAL_PROTOCOL(mesh_home_z_search);
  5287. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5288. SERIAL_PROTOCOL(x_dimension);
  5289. SERIAL_PROTOCOLPGM(",");
  5290. SERIAL_PROTOCOL(y_dimension);
  5291. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5292. while (mesh_point != x_points_num * y_points_num) {
  5293. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5294. iy = mesh_point / x_points_num;
  5295. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5296. float z0 = 0.f;
  5297. current_position[Z_AXIS] = mesh_home_z_search;
  5298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5299. st_synchronize();
  5300. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5301. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5302. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5303. st_synchronize();
  5304. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5305. break;
  5306. card.closefile();
  5307. }
  5308. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5309. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5310. //strcat(data_wldsd, numb_wldsd);
  5311. //MYSERIAL.println(data_wldsd);
  5312. //delay(1000);
  5313. //delay(3000);
  5314. //t1 = millis();
  5315. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5316. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5317. memset(digit, 0, sizeof(digit));
  5318. //cli();
  5319. digitalWrite(D_REQUIRE, LOW);
  5320. for (int i = 0; i<13; i++)
  5321. {
  5322. //t1 = millis();
  5323. for (int j = 0; j < 4; j++)
  5324. {
  5325. while (digitalRead(D_DATACLOCK) == LOW) {}
  5326. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5327. bitWrite(digit[i], j, digitalRead(D_DATA));
  5328. }
  5329. //t_delay = (millis() - t1);
  5330. //SERIAL_PROTOCOLPGM(" ");
  5331. //SERIAL_PROTOCOL_F(t_delay, 5);
  5332. //SERIAL_PROTOCOLPGM(" ");
  5333. }
  5334. //sei();
  5335. digitalWrite(D_REQUIRE, HIGH);
  5336. mergeOutput[0] = '\0';
  5337. output = 0;
  5338. for (int r = 5; r <= 10; r++) //Merge digits
  5339. {
  5340. sprintf(str, "%d", digit[r]);
  5341. strcat(mergeOutput, str);
  5342. }
  5343. output = atof(mergeOutput);
  5344. if (digit[4] == 8) //Handle sign
  5345. {
  5346. output *= -1;
  5347. }
  5348. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5349. {
  5350. output *= 0.1;
  5351. }
  5352. //output = d_ReadData();
  5353. //row[ix] = current_position[Z_AXIS];
  5354. memset(data_wldsd, 0, sizeof(data_wldsd));
  5355. for (int i = 0; i <3; i++) {
  5356. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5357. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5358. strcat(data_wldsd, numb_wldsd);
  5359. strcat(data_wldsd, ";");
  5360. }
  5361. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5362. dtostrf(output, 8, 5, numb_wldsd);
  5363. strcat(data_wldsd, numb_wldsd);
  5364. //strcat(data_wldsd, ";");
  5365. card.write_command(data_wldsd);
  5366. //row[ix] = d_ReadData();
  5367. row[ix] = output; // current_position[Z_AXIS];
  5368. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5369. for (int i = 0; i < x_points_num; i++) {
  5370. SERIAL_PROTOCOLPGM(" ");
  5371. SERIAL_PROTOCOL_F(row[i], 5);
  5372. }
  5373. SERIAL_PROTOCOLPGM("\n");
  5374. }
  5375. custom_message_state--;
  5376. mesh_point++;
  5377. lcd_update(1);
  5378. }
  5379. card.closefile();
  5380. }
  5381. #endif
  5382. void temp_compensation_start() {
  5383. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5384. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5385. current_position[Z_AXIS] = 0;
  5386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5387. st_synchronize();
  5388. while (fabs(degBed() - target_temperature_bed) > 3) delay_keep_alive(1000);
  5389. for(int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  5390. }
  5391. void temp_compensation_apply() {
  5392. int i_add;
  5393. int compensation_value;
  5394. int z_shift = 0;
  5395. float z_shift_mm;
  5396. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5397. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 50 && target_temperature_bed <= 100) {
  5398. i_add = (target_temperature_bed - 60) / 10;
  5399. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5400. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5401. }
  5402. else {
  5403. //interpolation
  5404. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5405. }
  5406. SERIAL_PROTOCOLPGM("\n");
  5407. SERIAL_PROTOCOLPGM("Z shift applied:");
  5408. MYSERIAL.print(z_shift_mm);
  5409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5410. st_synchronize();
  5411. plan_set_z_position(current_position[Z_AXIS]);
  5412. }
  5413. else {
  5414. //message that we have no temp compensation data
  5415. }
  5416. }
  5417. float temp_comp_interpolation(float inp_temperature) {
  5418. //cubic spline interpolation
  5419. int n, i, j, k;
  5420. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], p, m[10][10] = { 0 }, temp;
  5421. int shift[10];
  5422. int temp_C[10];
  5423. p = inp_temperature;
  5424. n = 6; //number of measured points
  5425. shift[0] = 0;
  5426. for (i = 0; i < n; i++) {
  5427. //scanf_s("%f%f", &x[i], &f[i]);
  5428. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5429. temp_C[i] = 50 + i * 10; //temperature in C
  5430. x[i] = (float)temp_C[i];
  5431. f[i] = (float)shift[i];
  5432. }
  5433. for (i = n - 1; i>0; i--) {
  5434. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5435. h[i - 1] = x[i] - x[i - 1];
  5436. }
  5437. //*********** formation of h, s , f matrix **************
  5438. for (i = 1; i<n - 1; i++) {
  5439. m[i][i] = 2 * (h[i - 1] + h[i]);
  5440. if (i != 1) {
  5441. m[i][i - 1] = h[i - 1];
  5442. m[i - 1][i] = h[i - 1];
  5443. }
  5444. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5445. }
  5446. //*********** forward elimination **************
  5447. for (i = 1; i<n - 2; i++) {
  5448. temp = (m[i + 1][i] / m[i][i]);
  5449. for (j = 1; j <= n - 1; j++)
  5450. m[i + 1][j] -= temp*m[i][j];
  5451. }
  5452. //*********** backward substitution *********
  5453. for (i = n - 2; i>0; i--) {
  5454. sum = 0;
  5455. for (j = i; j <= n - 2; j++)
  5456. sum += m[i][j] * s[j];
  5457. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5458. }
  5459. for (i = 0; i<n - 1; i++)
  5460. if (x[i] <= p&&p <= x[i + 1]) {
  5461. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5462. b = s[i] / 2;
  5463. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5464. d = f[i];
  5465. sum = a*pow((p - x[i]), 3) + b*pow((p - x[i]), 2) + c*(p - x[i]) + d;
  5466. }
  5467. return sum;
  5468. }