Marlin_main.cpp 306 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  121. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  122. //Implemented Codes
  123. //-------------------
  124. // PRUSA CODES
  125. // P F - Returns FW versions
  126. // P R - Returns revision of printer
  127. // G0 -> G1
  128. // G1 - Coordinated Movement X Y Z E
  129. // G2 - CW ARC
  130. // G3 - CCW ARC
  131. // G4 - Dwell S<seconds> or P<milliseconds>
  132. // G10 - retract filament according to settings of M207
  133. // G11 - retract recover filament according to settings of M208
  134. // G28 - Home all Axis
  135. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  136. // G30 - Single Z Probe, probes bed at current XY location.
  137. // G31 - Dock sled (Z_PROBE_SLED only)
  138. // G32 - Undock sled (Z_PROBE_SLED only)
  139. // G80 - Automatic mesh bed leveling
  140. // G81 - Print bed profile
  141. // G90 - Use Absolute Coordinates
  142. // G91 - Use Relative Coordinates
  143. // G92 - Set current position to coordinates given
  144. // M Codes
  145. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  146. // M1 - Same as M0
  147. // M17 - Enable/Power all stepper motors
  148. // M18 - Disable all stepper motors; same as M84
  149. // M20 - List SD card
  150. // M21 - Init SD card
  151. // M22 - Release SD card
  152. // M23 - Select SD file (M23 filename.g)
  153. // M24 - Start/resume SD print
  154. // M25 - Pause SD print
  155. // M26 - Set SD position in bytes (M26 S12345)
  156. // M27 - Report SD print status
  157. // M28 - Start SD write (M28 filename.g)
  158. // M29 - Stop SD write
  159. // M30 - Delete file from SD (M30 filename.g)
  160. // M31 - Output time since last M109 or SD card start to serial
  161. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  162. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  163. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  164. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  165. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  166. // M73 - Show percent done and print time remaining
  167. // M80 - Turn on Power Supply
  168. // M81 - Turn off Power Supply
  169. // M82 - Set E codes absolute (default)
  170. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  171. // M84 - Disable steppers until next move,
  172. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  173. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  174. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  175. // M92 - Set axis_steps_per_unit - same syntax as G92
  176. // M104 - Set extruder target temp
  177. // M105 - Read current temp
  178. // M106 - Fan on
  179. // M107 - Fan off
  180. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  181. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  182. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  183. // M112 - Emergency stop
  184. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  185. // M114 - Output current position to serial port
  186. // M115 - Capabilities string
  187. // M117 - display message
  188. // M119 - Output Endstop status to serial port
  189. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  190. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  191. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  193. // M140 - Set bed target temp
  194. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  195. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  196. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  197. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  198. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  199. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  200. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  201. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  202. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  203. // M206 - set additional homing offset
  204. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  205. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  206. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  207. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  208. // M220 S<factor in percent>- set speed factor override percentage
  209. // M221 S<factor in percent>- set extrude factor override percentage
  210. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  211. // M240 - Trigger a camera to take a photograph
  212. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  213. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  214. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  215. // M301 - Set PID parameters P I and D
  216. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  217. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  218. // M304 - Set bed PID parameters P I and D
  219. // M400 - Finish all moves
  220. // M401 - Lower z-probe if present
  221. // M402 - Raise z-probe if present
  222. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  223. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  224. // M406 - Turn off Filament Sensor extrusion control
  225. // M407 - Displays measured filament diameter
  226. // M500 - stores parameters in EEPROM
  227. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  228. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  229. // M503 - print the current settings (from memory not from EEPROM)
  230. // M509 - force language selection on next restart
  231. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  232. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  233. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  234. // M860 - Wait for PINDA thermistor to reach target temperature.
  235. // M861 - Set / Read PINDA temperature compensation offsets
  236. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  237. // M907 - Set digital trimpot motor current using axis codes.
  238. // M908 - Control digital trimpot directly.
  239. // M350 - Set microstepping mode.
  240. // M351 - Toggle MS1 MS2 pins directly.
  241. // M928 - Start SD logging (M928 filename.g) - ended by M29
  242. // M999 - Restart after being stopped by error
  243. //Stepper Movement Variables
  244. //===========================================================================
  245. //=============================imported variables============================
  246. //===========================================================================
  247. //===========================================================================
  248. //=============================public variables=============================
  249. //===========================================================================
  250. #ifdef SDSUPPORT
  251. CardReader card;
  252. #endif
  253. unsigned long PingTime = millis();
  254. unsigned long NcTime;
  255. //used for PINDA temp calibration and pause print
  256. #define DEFAULT_RETRACTION 1
  257. #define DEFAULT_RETRACTION_MM 4 //MM
  258. float default_retraction = DEFAULT_RETRACTION;
  259. float homing_feedrate[] = HOMING_FEEDRATE;
  260. // Currently only the extruder axis may be switched to a relative mode.
  261. // Other axes are always absolute or relative based on the common relative_mode flag.
  262. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  263. int feedmultiply=100; //100->1 200->2
  264. int extrudemultiply=100; //100->1 200->2
  265. int extruder_multiply[EXTRUDERS] = {100
  266. #if EXTRUDERS > 1
  267. , 100
  268. #if EXTRUDERS > 2
  269. , 100
  270. #endif
  271. #endif
  272. };
  273. int bowden_length[4] = {385, 385, 385, 385};
  274. bool is_usb_printing = false;
  275. bool homing_flag = false;
  276. bool temp_cal_active = false;
  277. unsigned long kicktime = millis()+100000;
  278. unsigned int usb_printing_counter;
  279. int8_t lcd_change_fil_state = 0;
  280. unsigned long pause_time = 0;
  281. unsigned long start_pause_print = millis();
  282. unsigned long t_fan_rising_edge = millis();
  283. LongTimer safetyTimer;
  284. LongTimer crashDetTimer;
  285. //unsigned long load_filament_time;
  286. bool mesh_bed_leveling_flag = false;
  287. bool mesh_bed_run_from_menu = false;
  288. int8_t FarmMode = 0;
  289. bool prusa_sd_card_upload = false;
  290. unsigned int status_number = 0;
  291. unsigned long total_filament_used;
  292. unsigned int heating_status;
  293. unsigned int heating_status_counter;
  294. bool loading_flag = false;
  295. char snmm_filaments_used = 0;
  296. bool fan_state[2];
  297. int fan_edge_counter[2];
  298. int fan_speed[2];
  299. char dir_names[3][9];
  300. bool sortAlpha = false;
  301. bool volumetric_enabled = false;
  302. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  303. #if EXTRUDERS > 1
  304. , DEFAULT_NOMINAL_FILAMENT_DIA
  305. #if EXTRUDERS > 2
  306. , DEFAULT_NOMINAL_FILAMENT_DIA
  307. #endif
  308. #endif
  309. };
  310. float extruder_multiplier[EXTRUDERS] = {1.0
  311. #if EXTRUDERS > 1
  312. , 1.0
  313. #if EXTRUDERS > 2
  314. , 1.0
  315. #endif
  316. #endif
  317. };
  318. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  319. //shortcuts for more readable code
  320. #define _x current_position[X_AXIS]
  321. #define _y current_position[Y_AXIS]
  322. #define _z current_position[Z_AXIS]
  323. #define _e current_position[E_AXIS]
  324. float add_homing[3]={0,0,0};
  325. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  326. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  327. bool axis_known_position[3] = {false, false, false};
  328. float zprobe_zoffset;
  329. // Extruder offset
  330. #if EXTRUDERS > 1
  331. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  332. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  333. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  334. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  335. #endif
  336. };
  337. #endif
  338. uint8_t active_extruder = 0;
  339. int fanSpeed=0;
  340. #ifdef FWRETRACT
  341. bool autoretract_enabled=false;
  342. bool retracted[EXTRUDERS]={false
  343. #if EXTRUDERS > 1
  344. , false
  345. #if EXTRUDERS > 2
  346. , false
  347. #endif
  348. #endif
  349. };
  350. bool retracted_swap[EXTRUDERS]={false
  351. #if EXTRUDERS > 1
  352. , false
  353. #if EXTRUDERS > 2
  354. , false
  355. #endif
  356. #endif
  357. };
  358. float retract_length = RETRACT_LENGTH;
  359. float retract_length_swap = RETRACT_LENGTH_SWAP;
  360. float retract_feedrate = RETRACT_FEEDRATE;
  361. float retract_zlift = RETRACT_ZLIFT;
  362. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  363. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  364. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  365. #endif
  366. #ifdef PS_DEFAULT_OFF
  367. bool powersupply = false;
  368. #else
  369. bool powersupply = true;
  370. #endif
  371. bool cancel_heatup = false ;
  372. #ifdef HOST_KEEPALIVE_FEATURE
  373. int busy_state = NOT_BUSY;
  374. static long prev_busy_signal_ms = -1;
  375. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  376. #else
  377. #define host_keepalive();
  378. #define KEEPALIVE_STATE(n);
  379. #endif
  380. const char errormagic[] PROGMEM = "Error:";
  381. const char echomagic[] PROGMEM = "echo:";
  382. bool no_response = false;
  383. uint8_t important_status;
  384. uint8_t saved_filament_type;
  385. // save/restore printing in case that mmu was not responding
  386. bool mmu_print_saved = false;
  387. // storing estimated time to end of print counted by slicer
  388. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  389. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  390. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  391. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  392. bool wizard_active = false; //autoload temporarily disabled during wizard
  393. //===========================================================================
  394. //=============================Private Variables=============================
  395. //===========================================================================
  396. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  397. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  398. // For tracing an arc
  399. static float offset[3] = {0.0, 0.0, 0.0};
  400. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  401. // Determines Absolute or Relative Coordinates.
  402. // Also there is bool axis_relative_modes[] per axis flag.
  403. static bool relative_mode = false;
  404. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  405. //static float tt = 0;
  406. //static float bt = 0;
  407. //Inactivity shutdown variables
  408. static unsigned long previous_millis_cmd = 0;
  409. unsigned long max_inactive_time = 0;
  410. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  411. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  412. unsigned long starttime=0;
  413. unsigned long stoptime=0;
  414. unsigned long _usb_timer = 0;
  415. bool extruder_under_pressure = true;
  416. bool Stopped=false;
  417. #if NUM_SERVOS > 0
  418. Servo servos[NUM_SERVOS];
  419. #endif
  420. bool CooldownNoWait = true;
  421. bool target_direction;
  422. //Insert variables if CHDK is defined
  423. #ifdef CHDK
  424. unsigned long chdkHigh = 0;
  425. boolean chdkActive = false;
  426. #endif
  427. //! @name RAM save/restore printing
  428. //! @{
  429. bool saved_printing = false; //!< Print is paused and saved in RAM
  430. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  431. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  432. static float saved_pos[4] = { 0, 0, 0, 0 };
  433. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  434. static float saved_feedrate2 = 0;
  435. static uint8_t saved_active_extruder = 0;
  436. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  437. static bool saved_extruder_under_pressure = false;
  438. static bool saved_extruder_relative_mode = false;
  439. static int saved_fanSpeed = 0; //!< Print fan speed
  440. //! @}
  441. //===========================================================================
  442. //=============================Routines======================================
  443. //===========================================================================
  444. static void get_arc_coordinates();
  445. static bool setTargetedHotend(int code, uint8_t &extruder);
  446. static void print_time_remaining_init();
  447. static void wait_for_heater(long codenum, uint8_t extruder);
  448. uint16_t gcode_in_progress = 0;
  449. uint16_t mcode_in_progress = 0;
  450. void serial_echopair_P(const char *s_P, float v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, double v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. void serial_echopair_P(const char *s_P, unsigned long v)
  455. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. #ifdef SDSUPPORT
  457. #include "SdFatUtil.h"
  458. int freeMemory() { return SdFatUtil::FreeRam(); }
  459. #else
  460. extern "C" {
  461. extern unsigned int __bss_end;
  462. extern unsigned int __heap_start;
  463. extern void *__brkval;
  464. int freeMemory() {
  465. int free_memory;
  466. if ((int)__brkval == 0)
  467. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  468. else
  469. free_memory = ((int)&free_memory) - ((int)__brkval);
  470. return free_memory;
  471. }
  472. }
  473. #endif //!SDSUPPORT
  474. void setup_killpin()
  475. {
  476. #if defined(KILL_PIN) && KILL_PIN > -1
  477. SET_INPUT(KILL_PIN);
  478. WRITE(KILL_PIN,HIGH);
  479. #endif
  480. }
  481. // Set home pin
  482. void setup_homepin(void)
  483. {
  484. #if defined(HOME_PIN) && HOME_PIN > -1
  485. SET_INPUT(HOME_PIN);
  486. WRITE(HOME_PIN,HIGH);
  487. #endif
  488. }
  489. void setup_photpin()
  490. {
  491. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  492. SET_OUTPUT(PHOTOGRAPH_PIN);
  493. WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. SET_OUTPUT(SUICIDE_PIN);
  500. WRITE(SUICIDE_PIN, HIGH);
  501. #endif
  502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  503. SET_OUTPUT(PS_ON_PIN);
  504. #if defined(PS_DEFAULT_OFF)
  505. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  506. #else
  507. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  508. #endif
  509. #endif
  510. }
  511. void suicide()
  512. {
  513. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  514. SET_OUTPUT(SUICIDE_PIN);
  515. WRITE(SUICIDE_PIN, LOW);
  516. #endif
  517. }
  518. void servo_init()
  519. {
  520. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  521. servos[0].attach(SERVO0_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  524. servos[1].attach(SERVO1_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  527. servos[2].attach(SERVO2_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  530. servos[3].attach(SERVO3_PIN);
  531. #endif
  532. #if (NUM_SERVOS >= 5)
  533. #error "TODO: enter initalisation code for more servos"
  534. #endif
  535. }
  536. bool fans_check_enabled = true;
  537. #ifdef TMC2130
  538. extern int8_t CrashDetectMenu;
  539. void crashdet_enable()
  540. {
  541. tmc2130_sg_stop_on_crash = true;
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  543. CrashDetectMenu = 1;
  544. }
  545. void crashdet_disable()
  546. {
  547. tmc2130_sg_stop_on_crash = false;
  548. tmc2130_sg_crash = 0;
  549. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  550. CrashDetectMenu = 0;
  551. }
  552. void crashdet_stop_and_save_print()
  553. {
  554. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  555. }
  556. void crashdet_restore_print_and_continue()
  557. {
  558. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  559. // babystep_apply();
  560. }
  561. void crashdet_stop_and_save_print2()
  562. {
  563. cli();
  564. planner_abort_hard(); //abort printing
  565. cmdqueue_reset(); //empty cmdqueue
  566. card.sdprinting = false;
  567. card.closefile();
  568. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  569. st_reset_timer();
  570. sei();
  571. }
  572. void crashdet_detected(uint8_t mask)
  573. {
  574. st_synchronize();
  575. static uint8_t crashDet_counter = 0;
  576. bool automatic_recovery_after_crash = true;
  577. if (crashDet_counter++ == 0) {
  578. crashDetTimer.start();
  579. }
  580. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  581. crashDetTimer.stop();
  582. crashDet_counter = 0;
  583. }
  584. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  585. automatic_recovery_after_crash = false;
  586. crashDetTimer.stop();
  587. crashDet_counter = 0;
  588. }
  589. else {
  590. crashDetTimer.start();
  591. }
  592. lcd_update_enable(true);
  593. lcd_clear();
  594. lcd_update(2);
  595. if (mask & X_AXIS_MASK)
  596. {
  597. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  598. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  599. }
  600. if (mask & Y_AXIS_MASK)
  601. {
  602. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  603. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  604. }
  605. lcd_update_enable(true);
  606. lcd_update(2);
  607. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  608. gcode_G28(true, true, false); //home X and Y
  609. st_synchronize();
  610. if (automatic_recovery_after_crash) {
  611. enquecommand_P(PSTR("CRASH_RECOVER"));
  612. }else{
  613. setTargetHotend(0, active_extruder);
  614. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  615. lcd_update_enable(true);
  616. if (yesno)
  617. {
  618. enquecommand_P(PSTR("CRASH_RECOVER"));
  619. }
  620. else
  621. {
  622. enquecommand_P(PSTR("CRASH_CANCEL"));
  623. }
  624. }
  625. }
  626. void crashdet_recover()
  627. {
  628. crashdet_restore_print_and_continue();
  629. tmc2130_sg_stop_on_crash = true;
  630. }
  631. void crashdet_cancel()
  632. {
  633. tmc2130_sg_stop_on_crash = true;
  634. if (saved_printing_type == PRINTING_TYPE_SD) {
  635. lcd_print_stop();
  636. }else if(saved_printing_type == PRINTING_TYPE_USB){
  637. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  638. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  639. }
  640. }
  641. #endif //TMC2130
  642. void failstats_reset_print()
  643. {
  644. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  645. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  646. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  647. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  648. }
  649. #ifdef MESH_BED_LEVELING
  650. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  651. #endif
  652. // Factory reset function
  653. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  654. // Level input parameter sets depth of reset
  655. int er_progress = 0;
  656. static void factory_reset(char level)
  657. {
  658. lcd_clear();
  659. switch (level) {
  660. // Level 0: Language reset
  661. case 0:
  662. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  663. WRITE(BEEPER, HIGH);
  664. _delay_ms(100);
  665. WRITE(BEEPER, LOW);
  666. lang_reset();
  667. break;
  668. //Level 1: Reset statistics
  669. case 1:
  670. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  671. WRITE(BEEPER, HIGH);
  672. _delay_ms(100);
  673. WRITE(BEEPER, LOW);
  674. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  675. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  676. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  677. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  678. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  680. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  681. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  682. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  684. lcd_menu_statistics();
  685. break;
  686. // Level 2: Prepare for shipping
  687. case 2:
  688. //lcd_puts_P(PSTR("Factory RESET"));
  689. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  690. // Force language selection at the next boot up.
  691. lang_reset();
  692. // Force the "Follow calibration flow" message at the next boot up.
  693. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  694. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  695. farm_no = 0;
  696. farm_mode = false;
  697. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  698. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  699. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  700. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  701. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  702. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  703. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  704. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  705. #ifdef FILAMENT_SENSOR
  706. fsensor_enable();
  707. fsensor_autoload_set(true);
  708. #endif //FILAMENT_SENSOR
  709. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  710. WRITE(BEEPER, HIGH);
  711. _delay_ms(100);
  712. WRITE(BEEPER, LOW);
  713. //_delay_ms(2000);
  714. break;
  715. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  716. case 3:
  717. lcd_puts_P(PSTR("Factory RESET"));
  718. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  719. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. er_progress = 0;
  724. lcd_puts_at_P(3, 3, PSTR(" "));
  725. lcd_set_cursor(3, 3);
  726. lcd_print(er_progress);
  727. // Erase EEPROM
  728. for (int i = 0; i < 4096; i++) {
  729. eeprom_write_byte((uint8_t*)i, 0xFF);
  730. if (i % 41 == 0) {
  731. er_progress++;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. lcd_puts_P(PSTR("%"));
  736. }
  737. }
  738. break;
  739. case 4:
  740. bowden_menu();
  741. break;
  742. default:
  743. break;
  744. }
  745. }
  746. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  747. int uart_putchar(char c, FILE *)
  748. {
  749. MYSERIAL.write(c);
  750. return 0;
  751. }
  752. void lcd_splash()
  753. {
  754. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  755. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  756. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  757. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  758. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  759. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  760. }
  761. void factory_reset()
  762. {
  763. KEEPALIVE_STATE(PAUSED_FOR_USER);
  764. if (!READ(BTN_ENC))
  765. {
  766. _delay_ms(1000);
  767. if (!READ(BTN_ENC))
  768. {
  769. lcd_clear();
  770. lcd_puts_P(PSTR("Factory RESET"));
  771. SET_OUTPUT(BEEPER);
  772. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  773. WRITE(BEEPER, HIGH);
  774. while (!READ(BTN_ENC));
  775. WRITE(BEEPER, LOW);
  776. _delay_ms(2000);
  777. char level = reset_menu();
  778. factory_reset(level);
  779. switch (level) {
  780. case 0: _delay_ms(0); break;
  781. case 1: _delay_ms(0); break;
  782. case 2: _delay_ms(0); break;
  783. case 3: _delay_ms(0); break;
  784. }
  785. }
  786. }
  787. KEEPALIVE_STATE(IN_HANDLER);
  788. }
  789. void show_fw_version_warnings() {
  790. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  791. switch (FW_DEV_VERSION) {
  792. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  793. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  794. case(FW_VERSION_DEVEL):
  795. case(FW_VERSION_DEBUG):
  796. lcd_update_enable(false);
  797. lcd_clear();
  798. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  799. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  800. #else
  801. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  802. #endif
  803. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  804. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  805. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  806. lcd_wait_for_click();
  807. break;
  808. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  809. }
  810. lcd_update_enable(true);
  811. }
  812. uint8_t check_printer_version()
  813. {
  814. uint8_t version_changed = 0;
  815. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  816. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  817. if (printer_type != PRINTER_TYPE) {
  818. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  819. else version_changed |= 0b10;
  820. }
  821. if (motherboard != MOTHERBOARD) {
  822. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  823. else version_changed |= 0b01;
  824. }
  825. return version_changed;
  826. }
  827. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  828. {
  829. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  830. }
  831. #ifdef BOOTAPP
  832. #include "bootapp.h" //bootloader support
  833. #endif //BOOTAPP
  834. #if (LANG_MODE != 0) //secondary language support
  835. #ifdef W25X20CL
  836. // language update from external flash
  837. #define LANGBOOT_BLOCKSIZE 0x1000u
  838. #define LANGBOOT_RAMBUFFER 0x0800
  839. void update_sec_lang_from_external_flash()
  840. {
  841. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  842. {
  843. uint8_t lang = boot_reserved >> 4;
  844. uint8_t state = boot_reserved & 0xf;
  845. lang_table_header_t header;
  846. uint32_t src_addr;
  847. if (lang_get_header(lang, &header, &src_addr))
  848. {
  849. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  850. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  851. delay(100);
  852. boot_reserved = (state + 1) | (lang << 4);
  853. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  854. {
  855. cli();
  856. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  857. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  858. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  859. if (state == 0)
  860. {
  861. //TODO - check header integrity
  862. }
  863. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  864. }
  865. else
  866. {
  867. //TODO - check sec lang data integrity
  868. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  869. }
  870. }
  871. }
  872. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  873. }
  874. #ifdef DEBUG_W25X20CL
  875. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  876. {
  877. lang_table_header_t header;
  878. uint8_t count = 0;
  879. uint32_t addr = 0x00000;
  880. while (1)
  881. {
  882. printf_P(_n("LANGTABLE%d:"), count);
  883. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  884. if (header.magic != LANG_MAGIC)
  885. {
  886. printf_P(_n("NG!\n"));
  887. break;
  888. }
  889. printf_P(_n("OK\n"));
  890. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  891. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  892. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  893. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  894. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  895. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  896. addr += header.size;
  897. codes[count] = header.code;
  898. count ++;
  899. }
  900. return count;
  901. }
  902. void list_sec_lang_from_external_flash()
  903. {
  904. uint16_t codes[8];
  905. uint8_t count = lang_xflash_enum_codes(codes);
  906. printf_P(_n("XFlash lang count = %hhd\n"), count);
  907. }
  908. #endif //DEBUG_W25X20CL
  909. #endif //W25X20CL
  910. #endif //(LANG_MODE != 0)
  911. // "Setup" function is called by the Arduino framework on startup.
  912. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  913. // are initialized by the main() routine provided by the Arduino framework.
  914. void setup()
  915. {
  916. mmu_init();
  917. ultralcd_init();
  918. spi_init();
  919. lcd_splash();
  920. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  921. #ifdef W25X20CL
  922. if (!w25x20cl_init())
  923. kill(_i("External SPI flash W25X20CL not responding."));
  924. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  925. optiboot_w25x20cl_enter();
  926. #endif
  927. #if (LANG_MODE != 0) //secondary language support
  928. #ifdef W25X20CL
  929. if (w25x20cl_init())
  930. update_sec_lang_from_external_flash();
  931. #endif //W25X20CL
  932. #endif //(LANG_MODE != 0)
  933. setup_killpin();
  934. setup_powerhold();
  935. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  936. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  937. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  938. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  939. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  940. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  941. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  942. if (farm_mode)
  943. {
  944. no_response = true; //we need confirmation by recieving PRUSA thx
  945. important_status = 8;
  946. prusa_statistics(8);
  947. selectedSerialPort = 1;
  948. #ifdef TMC2130
  949. //increased extruder current (PFW363)
  950. tmc2130_current_h[E_AXIS] = 36;
  951. tmc2130_current_r[E_AXIS] = 36;
  952. #endif //TMC2130
  953. #ifdef FILAMENT_SENSOR
  954. //disabled filament autoload (PFW360)
  955. fsensor_autoload_set(false);
  956. #endif //FILAMENT_SENSOR
  957. }
  958. MYSERIAL.begin(BAUDRATE);
  959. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  960. stdout = uartout;
  961. SERIAL_PROTOCOLLNPGM("start");
  962. SERIAL_ECHO_START;
  963. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  964. #ifdef DEBUG_SEC_LANG
  965. lang_table_header_t header;
  966. uint32_t src_addr = 0x00000;
  967. if (lang_get_header(1, &header, &src_addr))
  968. {
  969. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  970. #define LT_PRINT_TEST 2
  971. // flash usage
  972. // total p.test
  973. //0 252718 t+c text code
  974. //1 253142 424 170 254
  975. //2 253040 322 164 158
  976. //3 253248 530 135 395
  977. #if (LT_PRINT_TEST==1) //not optimized printf
  978. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  979. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  980. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  981. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  982. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  983. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  984. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  985. #elif (LT_PRINT_TEST==2) //optimized printf
  986. printf_P(
  987. _n(
  988. " _src_addr = 0x%08lx\n"
  989. " _lt_magic = 0x%08lx %S\n"
  990. " _lt_size = 0x%04x (%d)\n"
  991. " _lt_count = 0x%04x (%d)\n"
  992. " _lt_chsum = 0x%04x\n"
  993. " _lt_code = 0x%04x (%c%c)\n"
  994. " _lt_resv1 = 0x%08lx\n"
  995. ),
  996. src_addr,
  997. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  998. header.size, header.size,
  999. header.count, header.count,
  1000. header.checksum,
  1001. header.code, header.code >> 8, header.code & 0xff,
  1002. header.signature
  1003. );
  1004. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1005. MYSERIAL.print(" _src_addr = 0x");
  1006. MYSERIAL.println(src_addr, 16);
  1007. MYSERIAL.print(" _lt_magic = 0x");
  1008. MYSERIAL.print(header.magic, 16);
  1009. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1010. MYSERIAL.print(" _lt_size = 0x");
  1011. MYSERIAL.print(header.size, 16);
  1012. MYSERIAL.print(" (");
  1013. MYSERIAL.print(header.size, 10);
  1014. MYSERIAL.println(")");
  1015. MYSERIAL.print(" _lt_count = 0x");
  1016. MYSERIAL.print(header.count, 16);
  1017. MYSERIAL.print(" (");
  1018. MYSERIAL.print(header.count, 10);
  1019. MYSERIAL.println(")");
  1020. MYSERIAL.print(" _lt_chsum = 0x");
  1021. MYSERIAL.println(header.checksum, 16);
  1022. MYSERIAL.print(" _lt_code = 0x");
  1023. MYSERIAL.print(header.code, 16);
  1024. MYSERIAL.print(" (");
  1025. MYSERIAL.print((char)(header.code >> 8), 0);
  1026. MYSERIAL.print((char)(header.code & 0xff), 0);
  1027. MYSERIAL.println(")");
  1028. MYSERIAL.print(" _lt_resv1 = 0x");
  1029. MYSERIAL.println(header.signature, 16);
  1030. #endif //(LT_PRINT_TEST==)
  1031. #undef LT_PRINT_TEST
  1032. #if 0
  1033. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1034. for (uint16_t i = 0; i < 1024; i++)
  1035. {
  1036. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1037. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1038. if ((i % 16) == 15) putchar('\n');
  1039. }
  1040. #endif
  1041. uint16_t sum = 0;
  1042. for (uint16_t i = 0; i < header.size; i++)
  1043. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1044. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1045. sum -= header.checksum; //subtract checksum
  1046. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1047. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1048. if (sum == header.checksum)
  1049. printf_P(_n("Checksum OK\n"), sum);
  1050. else
  1051. printf_P(_n("Checksum NG\n"), sum);
  1052. }
  1053. else
  1054. printf_P(_n("lang_get_header failed!\n"));
  1055. #if 0
  1056. for (uint16_t i = 0; i < 1024*10; i++)
  1057. {
  1058. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1059. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1060. if ((i % 16) == 15) putchar('\n');
  1061. }
  1062. #endif
  1063. #if 0
  1064. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1065. for (int i = 0; i < 4096; ++i) {
  1066. int b = eeprom_read_byte((unsigned char*)i);
  1067. if (b != 255) {
  1068. SERIAL_ECHO(i);
  1069. SERIAL_ECHO(":");
  1070. SERIAL_ECHO(b);
  1071. SERIAL_ECHOLN("");
  1072. }
  1073. }
  1074. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1075. #endif
  1076. #endif //DEBUG_SEC_LANG
  1077. // Check startup - does nothing if bootloader sets MCUSR to 0
  1078. byte mcu = MCUSR;
  1079. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1080. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1081. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1082. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1083. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1084. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1085. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1086. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1087. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1088. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1089. MCUSR = 0;
  1090. //SERIAL_ECHORPGM(MSG_MARLIN);
  1091. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1092. #ifdef STRING_VERSION_CONFIG_H
  1093. #ifdef STRING_CONFIG_H_AUTHOR
  1094. SERIAL_ECHO_START;
  1095. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1096. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1097. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1098. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1099. SERIAL_ECHOPGM("Compiled: ");
  1100. SERIAL_ECHOLNPGM(__DATE__);
  1101. #endif
  1102. #endif
  1103. SERIAL_ECHO_START;
  1104. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1105. SERIAL_ECHO(freeMemory());
  1106. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1107. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1108. //lcd_update_enable(false); // why do we need this?? - andre
  1109. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1110. bool previous_settings_retrieved = false;
  1111. uint8_t hw_changed = check_printer_version();
  1112. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1113. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1114. }
  1115. else { //printer version was changed so use default settings
  1116. Config_ResetDefault();
  1117. }
  1118. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1119. tp_init(); // Initialize temperature loop
  1120. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1121. plan_init(); // Initialize planner;
  1122. factory_reset();
  1123. lcd_encoder_diff=0;
  1124. #ifdef TMC2130
  1125. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1126. if (silentMode == 0xff) silentMode = 0;
  1127. tmc2130_mode = TMC2130_MODE_NORMAL;
  1128. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1129. if (crashdet && !farm_mode)
  1130. {
  1131. crashdet_enable();
  1132. puts_P(_N("CrashDetect ENABLED!"));
  1133. }
  1134. else
  1135. {
  1136. crashdet_disable();
  1137. puts_P(_N("CrashDetect DISABLED"));
  1138. }
  1139. #ifdef TMC2130_LINEARITY_CORRECTION
  1140. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1141. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1142. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1143. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1144. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1145. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1146. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1147. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1148. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1149. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1150. #endif //TMC2130_LINEARITY_CORRECTION
  1151. #ifdef TMC2130_VARIABLE_RESOLUTION
  1152. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1153. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1154. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1155. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1156. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1157. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1158. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1159. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1160. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1161. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1162. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1163. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1164. #else //TMC2130_VARIABLE_RESOLUTION
  1165. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1166. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1167. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1168. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1169. #endif //TMC2130_VARIABLE_RESOLUTION
  1170. #endif //TMC2130
  1171. st_init(); // Initialize stepper, this enables interrupts!
  1172. #ifdef TMC2130
  1173. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1174. update_mode_profile();
  1175. tmc2130_init();
  1176. #endif //TMC2130
  1177. setup_photpin();
  1178. servo_init();
  1179. // Reset the machine correction matrix.
  1180. // It does not make sense to load the correction matrix until the machine is homed.
  1181. world2machine_reset();
  1182. #ifdef FILAMENT_SENSOR
  1183. fsensor_init();
  1184. #endif //FILAMENT_SENSOR
  1185. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1186. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1187. #endif
  1188. setup_homepin();
  1189. #ifdef TMC2130
  1190. if (1) {
  1191. // try to run to zero phase before powering the Z motor.
  1192. // Move in negative direction
  1193. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1194. // Round the current micro-micro steps to micro steps.
  1195. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1196. // Until the phase counter is reset to zero.
  1197. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1198. delay(2);
  1199. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1200. delay(2);
  1201. }
  1202. }
  1203. #endif //TMC2130
  1204. #if defined(Z_AXIS_ALWAYS_ON)
  1205. enable_z();
  1206. #endif
  1207. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1208. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1209. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1210. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1211. if (farm_mode)
  1212. {
  1213. prusa_statistics(8);
  1214. }
  1215. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1216. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1217. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1218. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1219. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1220. // where all the EEPROM entries are set to 0x0ff.
  1221. // Once a firmware boots up, it forces at least a language selection, which changes
  1222. // EEPROM_LANG to number lower than 0x0ff.
  1223. // 1) Set a high power mode.
  1224. #ifdef TMC2130
  1225. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1226. tmc2130_mode = TMC2130_MODE_NORMAL;
  1227. #endif //TMC2130
  1228. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1229. }
  1230. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1231. // but this times out if a blocking dialog is shown in setup().
  1232. card.initsd();
  1233. #ifdef DEBUG_SD_SPEED_TEST
  1234. if (card.cardOK)
  1235. {
  1236. uint8_t* buff = (uint8_t*)block_buffer;
  1237. uint32_t block = 0;
  1238. uint32_t sumr = 0;
  1239. uint32_t sumw = 0;
  1240. for (int i = 0; i < 1024; i++)
  1241. {
  1242. uint32_t u = micros();
  1243. bool res = card.card.readBlock(i, buff);
  1244. u = micros() - u;
  1245. if (res)
  1246. {
  1247. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1248. sumr += u;
  1249. u = micros();
  1250. res = card.card.writeBlock(i, buff);
  1251. u = micros() - u;
  1252. if (res)
  1253. {
  1254. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1255. sumw += u;
  1256. }
  1257. else
  1258. {
  1259. printf_P(PSTR("writeBlock %4d error\n"), i);
  1260. break;
  1261. }
  1262. }
  1263. else
  1264. {
  1265. printf_P(PSTR("readBlock %4d error\n"), i);
  1266. break;
  1267. }
  1268. }
  1269. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1270. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1271. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1272. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1273. }
  1274. else
  1275. printf_P(PSTR("Card NG!\n"));
  1276. #endif //DEBUG_SD_SPEED_TEST
  1277. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1278. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1279. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1281. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1282. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1283. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1284. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1285. #ifdef SNMM
  1286. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1287. int _z = BOWDEN_LENGTH;
  1288. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1289. }
  1290. #endif
  1291. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1292. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1293. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1294. #if (LANG_MODE != 0) //secondary language support
  1295. #ifdef DEBUG_W25X20CL
  1296. W25X20CL_SPI_ENTER();
  1297. uint8_t uid[8]; // 64bit unique id
  1298. w25x20cl_rd_uid(uid);
  1299. puts_P(_n("W25X20CL UID="));
  1300. for (uint8_t i = 0; i < 8; i ++)
  1301. printf_P(PSTR("%02hhx"), uid[i]);
  1302. putchar('\n');
  1303. list_sec_lang_from_external_flash();
  1304. #endif //DEBUG_W25X20CL
  1305. // lang_reset();
  1306. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1307. lcd_language();
  1308. #ifdef DEBUG_SEC_LANG
  1309. uint16_t sec_lang_code = lang_get_code(1);
  1310. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1311. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1312. // lang_print_sec_lang(uartout);
  1313. #endif //DEBUG_SEC_LANG
  1314. #endif //(LANG_MODE != 0)
  1315. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1316. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1317. temp_cal_active = false;
  1318. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1320. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1321. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1322. int16_t z_shift = 0;
  1323. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1324. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1325. temp_cal_active = false;
  1326. }
  1327. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1328. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1329. }
  1330. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1331. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1332. }
  1333. check_babystep(); //checking if Z babystep is in allowed range
  1334. #ifdef UVLO_SUPPORT
  1335. setup_uvlo_interrupt();
  1336. #endif //UVLO_SUPPORT
  1337. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1338. setup_fan_interrupt();
  1339. #endif //DEBUG_DISABLE_FANCHECK
  1340. #ifdef FILAMENT_SENSOR
  1341. fsensor_setup_interrupt();
  1342. #endif //FILAMENT_SENSOR
  1343. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1344. #ifndef DEBUG_DISABLE_STARTMSGS
  1345. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1346. show_fw_version_warnings();
  1347. switch (hw_changed) {
  1348. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1349. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1350. case(0b01):
  1351. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1352. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1353. break;
  1354. case(0b10):
  1355. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1356. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1357. break;
  1358. case(0b11):
  1359. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1360. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1361. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1362. break;
  1363. default: break; //no change, show no message
  1364. }
  1365. if (!previous_settings_retrieved) {
  1366. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1367. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1368. }
  1369. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1370. lcd_wizard(0);
  1371. }
  1372. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1373. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1374. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1375. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1376. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1377. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1378. // Show the message.
  1379. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1380. }
  1381. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1382. // Show the message.
  1383. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1384. lcd_update_enable(true);
  1385. }
  1386. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1387. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1388. lcd_update_enable(true);
  1389. }
  1390. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1391. // Show the message.
  1392. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1393. }
  1394. }
  1395. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1396. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1397. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1398. update_current_firmware_version_to_eeprom();
  1399. lcd_selftest();
  1400. }
  1401. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1402. KEEPALIVE_STATE(IN_PROCESS);
  1403. #endif //DEBUG_DISABLE_STARTMSGS
  1404. lcd_update_enable(true);
  1405. lcd_clear();
  1406. lcd_update(2);
  1407. // Store the currently running firmware into an eeprom,
  1408. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1409. update_current_firmware_version_to_eeprom();
  1410. #ifdef TMC2130
  1411. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1412. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1413. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1414. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1415. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1416. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1417. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1418. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1419. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1420. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1421. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1422. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1423. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1424. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1425. #endif //TMC2130
  1426. #ifdef UVLO_SUPPORT
  1427. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1428. /*
  1429. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1430. else {
  1431. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1432. lcd_update_enable(true);
  1433. lcd_update(2);
  1434. lcd_setstatuspgm(_T(WELCOME_MSG));
  1435. }
  1436. */
  1437. manage_heater(); // Update temperatures
  1438. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1439. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1440. #endif
  1441. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1442. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1443. puts_P(_N("Automatic recovery!"));
  1444. #endif
  1445. recover_print(1);
  1446. }
  1447. else{
  1448. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1449. puts_P(_N("Normal recovery!"));
  1450. #endif
  1451. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1452. else {
  1453. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1454. lcd_update_enable(true);
  1455. lcd_update(2);
  1456. lcd_setstatuspgm(_T(WELCOME_MSG));
  1457. }
  1458. }
  1459. }
  1460. #endif //UVLO_SUPPORT
  1461. KEEPALIVE_STATE(NOT_BUSY);
  1462. #ifdef WATCHDOG
  1463. wdt_enable(WDTO_4S);
  1464. #endif //WATCHDOG
  1465. }
  1466. void trace();
  1467. #define CHUNK_SIZE 64 // bytes
  1468. #define SAFETY_MARGIN 1
  1469. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1470. int chunkHead = 0;
  1471. void serial_read_stream() {
  1472. setAllTargetHotends(0);
  1473. setTargetBed(0);
  1474. lcd_clear();
  1475. lcd_puts_P(PSTR(" Upload in progress"));
  1476. // first wait for how many bytes we will receive
  1477. uint32_t bytesToReceive;
  1478. // receive the four bytes
  1479. char bytesToReceiveBuffer[4];
  1480. for (int i=0; i<4; i++) {
  1481. int data;
  1482. while ((data = MYSERIAL.read()) == -1) {};
  1483. bytesToReceiveBuffer[i] = data;
  1484. }
  1485. // make it a uint32
  1486. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1487. // we're ready, notify the sender
  1488. MYSERIAL.write('+');
  1489. // lock in the routine
  1490. uint32_t receivedBytes = 0;
  1491. while (prusa_sd_card_upload) {
  1492. int i;
  1493. for (i=0; i<CHUNK_SIZE; i++) {
  1494. int data;
  1495. // check if we're not done
  1496. if (receivedBytes == bytesToReceive) {
  1497. break;
  1498. }
  1499. // read the next byte
  1500. while ((data = MYSERIAL.read()) == -1) {};
  1501. receivedBytes++;
  1502. // save it to the chunk
  1503. chunk[i] = data;
  1504. }
  1505. // write the chunk to SD
  1506. card.write_command_no_newline(&chunk[0]);
  1507. // notify the sender we're ready for more data
  1508. MYSERIAL.write('+');
  1509. // for safety
  1510. manage_heater();
  1511. // check if we're done
  1512. if(receivedBytes == bytesToReceive) {
  1513. trace(); // beep
  1514. card.closefile();
  1515. prusa_sd_card_upload = false;
  1516. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1517. }
  1518. }
  1519. }
  1520. #ifdef HOST_KEEPALIVE_FEATURE
  1521. /**
  1522. * Output a "busy" message at regular intervals
  1523. * while the machine is not accepting commands.
  1524. */
  1525. void host_keepalive() {
  1526. if (farm_mode) return;
  1527. long ms = millis();
  1528. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1529. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1530. switch (busy_state) {
  1531. case IN_HANDLER:
  1532. case IN_PROCESS:
  1533. SERIAL_ECHO_START;
  1534. SERIAL_ECHOLNPGM("busy: processing");
  1535. break;
  1536. case PAUSED_FOR_USER:
  1537. SERIAL_ECHO_START;
  1538. SERIAL_ECHOLNPGM("busy: paused for user");
  1539. break;
  1540. case PAUSED_FOR_INPUT:
  1541. SERIAL_ECHO_START;
  1542. SERIAL_ECHOLNPGM("busy: paused for input");
  1543. break;
  1544. default:
  1545. break;
  1546. }
  1547. }
  1548. prev_busy_signal_ms = ms;
  1549. }
  1550. #endif
  1551. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1552. // Before loop(), the setup() function is called by the main() routine.
  1553. void loop()
  1554. {
  1555. KEEPALIVE_STATE(NOT_BUSY);
  1556. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1557. {
  1558. is_usb_printing = true;
  1559. usb_printing_counter--;
  1560. _usb_timer = millis();
  1561. }
  1562. if (usb_printing_counter == 0)
  1563. {
  1564. is_usb_printing = false;
  1565. }
  1566. if (prusa_sd_card_upload)
  1567. {
  1568. //we read byte-by byte
  1569. serial_read_stream();
  1570. } else
  1571. {
  1572. get_command();
  1573. #ifdef SDSUPPORT
  1574. card.checkautostart(false);
  1575. #endif
  1576. if(buflen)
  1577. {
  1578. cmdbuffer_front_already_processed = false;
  1579. #ifdef SDSUPPORT
  1580. if(card.saving)
  1581. {
  1582. // Saving a G-code file onto an SD-card is in progress.
  1583. // Saving starts with M28, saving until M29 is seen.
  1584. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1585. card.write_command(CMDBUFFER_CURRENT_STRING);
  1586. if(card.logging)
  1587. process_commands();
  1588. else
  1589. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1590. } else {
  1591. card.closefile();
  1592. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1593. }
  1594. } else {
  1595. process_commands();
  1596. }
  1597. #else
  1598. process_commands();
  1599. #endif //SDSUPPORT
  1600. if (! cmdbuffer_front_already_processed && buflen)
  1601. {
  1602. // ptr points to the start of the block currently being processed.
  1603. // The first character in the block is the block type.
  1604. char *ptr = cmdbuffer + bufindr;
  1605. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1606. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1607. union {
  1608. struct {
  1609. char lo;
  1610. char hi;
  1611. } lohi;
  1612. uint16_t value;
  1613. } sdlen;
  1614. sdlen.value = 0;
  1615. {
  1616. // This block locks the interrupts globally for 3.25 us,
  1617. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1618. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1619. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1620. cli();
  1621. // Reset the command to something, which will be ignored by the power panic routine,
  1622. // so this buffer length will not be counted twice.
  1623. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1624. // Extract the current buffer length.
  1625. sdlen.lohi.lo = *ptr ++;
  1626. sdlen.lohi.hi = *ptr;
  1627. // and pass it to the planner queue.
  1628. planner_add_sd_length(sdlen.value);
  1629. sei();
  1630. }
  1631. }
  1632. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1633. cli();
  1634. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1635. // and one for each command to previous block in the planner queue.
  1636. planner_add_sd_length(1);
  1637. sei();
  1638. }
  1639. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1640. // this block's SD card length will not be counted twice as its command type has been replaced
  1641. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1642. cmdqueue_pop_front();
  1643. }
  1644. host_keepalive();
  1645. }
  1646. }
  1647. //check heater every n milliseconds
  1648. manage_heater();
  1649. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1650. checkHitEndstops();
  1651. lcd_update(0);
  1652. #ifdef FILAMENT_SENSOR
  1653. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1654. fsensor_update();
  1655. #endif //FILAMENT_SENSOR
  1656. #ifdef TMC2130
  1657. tmc2130_check_overtemp();
  1658. if (tmc2130_sg_crash)
  1659. {
  1660. uint8_t crash = tmc2130_sg_crash;
  1661. tmc2130_sg_crash = 0;
  1662. // crashdet_stop_and_save_print();
  1663. switch (crash)
  1664. {
  1665. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1666. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1667. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1668. }
  1669. }
  1670. #endif //TMC2130
  1671. mmu_loop();
  1672. }
  1673. #define DEFINE_PGM_READ_ANY(type, reader) \
  1674. static inline type pgm_read_any(const type *p) \
  1675. { return pgm_read_##reader##_near(p); }
  1676. DEFINE_PGM_READ_ANY(float, float);
  1677. DEFINE_PGM_READ_ANY(signed char, byte);
  1678. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1679. static const PROGMEM type array##_P[3] = \
  1680. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1681. static inline type array(int axis) \
  1682. { return pgm_read_any(&array##_P[axis]); } \
  1683. type array##_ext(int axis) \
  1684. { return pgm_read_any(&array##_P[axis]); }
  1685. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1686. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1687. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1688. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1689. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1690. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1691. static void axis_is_at_home(int axis) {
  1692. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1693. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1694. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1695. }
  1696. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1697. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1698. //! @return original feedmultiply
  1699. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1700. saved_feedrate = feedrate;
  1701. int l_feedmultiply = feedmultiply;
  1702. feedmultiply = 100;
  1703. previous_millis_cmd = millis();
  1704. enable_endstops(enable_endstops_now);
  1705. return l_feedmultiply;
  1706. }
  1707. //! @param original_feedmultiply feedmultiply to restore
  1708. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1709. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1710. enable_endstops(false);
  1711. #endif
  1712. feedrate = saved_feedrate;
  1713. feedmultiply = original_feedmultiply;
  1714. previous_millis_cmd = millis();
  1715. }
  1716. #ifdef ENABLE_AUTO_BED_LEVELING
  1717. #ifdef AUTO_BED_LEVELING_GRID
  1718. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1719. {
  1720. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1721. planeNormal.debug("planeNormal");
  1722. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1723. //bedLevel.debug("bedLevel");
  1724. //plan_bed_level_matrix.debug("bed level before");
  1725. //vector_3 uncorrected_position = plan_get_position_mm();
  1726. //uncorrected_position.debug("position before");
  1727. vector_3 corrected_position = plan_get_position();
  1728. // corrected_position.debug("position after");
  1729. current_position[X_AXIS] = corrected_position.x;
  1730. current_position[Y_AXIS] = corrected_position.y;
  1731. current_position[Z_AXIS] = corrected_position.z;
  1732. // put the bed at 0 so we don't go below it.
  1733. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1734. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1735. }
  1736. #else // not AUTO_BED_LEVELING_GRID
  1737. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1738. plan_bed_level_matrix.set_to_identity();
  1739. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1740. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1741. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1742. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1743. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1744. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1745. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1746. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1747. vector_3 corrected_position = plan_get_position();
  1748. current_position[X_AXIS] = corrected_position.x;
  1749. current_position[Y_AXIS] = corrected_position.y;
  1750. current_position[Z_AXIS] = corrected_position.z;
  1751. // put the bed at 0 so we don't go below it.
  1752. current_position[Z_AXIS] = zprobe_zoffset;
  1753. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1754. }
  1755. #endif // AUTO_BED_LEVELING_GRID
  1756. static void run_z_probe() {
  1757. plan_bed_level_matrix.set_to_identity();
  1758. feedrate = homing_feedrate[Z_AXIS];
  1759. // move down until you find the bed
  1760. float zPosition = -10;
  1761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1762. st_synchronize();
  1763. // we have to let the planner know where we are right now as it is not where we said to go.
  1764. zPosition = st_get_position_mm(Z_AXIS);
  1765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1766. // move up the retract distance
  1767. zPosition += home_retract_mm(Z_AXIS);
  1768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1769. st_synchronize();
  1770. // move back down slowly to find bed
  1771. feedrate = homing_feedrate[Z_AXIS]/4;
  1772. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1774. st_synchronize();
  1775. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1776. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1778. }
  1779. static void do_blocking_move_to(float x, float y, float z) {
  1780. float oldFeedRate = feedrate;
  1781. feedrate = homing_feedrate[Z_AXIS];
  1782. current_position[Z_AXIS] = z;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1784. st_synchronize();
  1785. feedrate = XY_TRAVEL_SPEED;
  1786. current_position[X_AXIS] = x;
  1787. current_position[Y_AXIS] = y;
  1788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. feedrate = oldFeedRate;
  1791. }
  1792. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1793. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1794. }
  1795. /// Probe bed height at position (x,y), returns the measured z value
  1796. static float probe_pt(float x, float y, float z_before) {
  1797. // move to right place
  1798. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1799. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1800. run_z_probe();
  1801. float measured_z = current_position[Z_AXIS];
  1802. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1803. SERIAL_PROTOCOLPGM(" x: ");
  1804. SERIAL_PROTOCOL(x);
  1805. SERIAL_PROTOCOLPGM(" y: ");
  1806. SERIAL_PROTOCOL(y);
  1807. SERIAL_PROTOCOLPGM(" z: ");
  1808. SERIAL_PROTOCOL(measured_z);
  1809. SERIAL_PROTOCOLPGM("\n");
  1810. return measured_z;
  1811. }
  1812. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1813. #ifdef LIN_ADVANCE
  1814. /**
  1815. * M900: Set and/or Get advance K factor and WH/D ratio
  1816. *
  1817. * K<factor> Set advance K factor
  1818. * R<ratio> Set ratio directly (overrides WH/D)
  1819. * W<width> H<height> D<diam> Set ratio from WH/D
  1820. */
  1821. inline void gcode_M900() {
  1822. st_synchronize();
  1823. const float newK = code_seen('K') ? code_value_float() : -1;
  1824. if (newK >= 0) extruder_advance_k = newK;
  1825. float newR = code_seen('R') ? code_value_float() : -1;
  1826. if (newR < 0) {
  1827. const float newD = code_seen('D') ? code_value_float() : -1,
  1828. newW = code_seen('W') ? code_value_float() : -1,
  1829. newH = code_seen('H') ? code_value_float() : -1;
  1830. if (newD >= 0 && newW >= 0 && newH >= 0)
  1831. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1832. }
  1833. if (newR >= 0) advance_ed_ratio = newR;
  1834. SERIAL_ECHO_START;
  1835. SERIAL_ECHOPGM("Advance K=");
  1836. SERIAL_ECHOLN(extruder_advance_k);
  1837. SERIAL_ECHOPGM(" E/D=");
  1838. const float ratio = advance_ed_ratio;
  1839. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1840. }
  1841. #endif // LIN_ADVANCE
  1842. bool check_commands() {
  1843. bool end_command_found = false;
  1844. while (buflen)
  1845. {
  1846. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1847. if (!cmdbuffer_front_already_processed)
  1848. cmdqueue_pop_front();
  1849. cmdbuffer_front_already_processed = false;
  1850. }
  1851. return end_command_found;
  1852. }
  1853. #ifdef TMC2130
  1854. bool calibrate_z_auto()
  1855. {
  1856. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1857. lcd_clear();
  1858. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1859. bool endstops_enabled = enable_endstops(true);
  1860. int axis_up_dir = -home_dir(Z_AXIS);
  1861. tmc2130_home_enter(Z_AXIS_MASK);
  1862. current_position[Z_AXIS] = 0;
  1863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1864. set_destination_to_current();
  1865. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1866. feedrate = homing_feedrate[Z_AXIS];
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. // current_position[axis] = 0;
  1870. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1871. tmc2130_home_exit();
  1872. enable_endstops(false);
  1873. current_position[Z_AXIS] = 0;
  1874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1875. set_destination_to_current();
  1876. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1877. feedrate = homing_feedrate[Z_AXIS] / 2;
  1878. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1879. st_synchronize();
  1880. enable_endstops(endstops_enabled);
  1881. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1882. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1883. return true;
  1884. }
  1885. #endif //TMC2130
  1886. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1887. {
  1888. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1889. #define HOMEAXIS_DO(LETTER) \
  1890. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1891. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1892. {
  1893. int axis_home_dir = home_dir(axis);
  1894. feedrate = homing_feedrate[axis];
  1895. #ifdef TMC2130
  1896. tmc2130_home_enter(X_AXIS_MASK << axis);
  1897. #endif //TMC2130
  1898. // Move away a bit, so that the print head does not touch the end position,
  1899. // and the following movement to endstop has a chance to achieve the required velocity
  1900. // for the stall guard to work.
  1901. current_position[axis] = 0;
  1902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1903. set_destination_to_current();
  1904. // destination[axis] = 11.f;
  1905. destination[axis] = -3.f * axis_home_dir;
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1909. endstops_hit_on_purpose();
  1910. enable_endstops(false);
  1911. current_position[axis] = 0;
  1912. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1913. destination[axis] = 1. * axis_home_dir;
  1914. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1915. st_synchronize();
  1916. // Now continue to move up to the left end stop with the collision detection enabled.
  1917. enable_endstops(true);
  1918. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1919. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1920. st_synchronize();
  1921. for (uint8_t i = 0; i < cnt; i++)
  1922. {
  1923. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1924. endstops_hit_on_purpose();
  1925. enable_endstops(false);
  1926. current_position[axis] = 0;
  1927. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1928. destination[axis] = -10.f * axis_home_dir;
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. endstops_hit_on_purpose();
  1932. // Now move left up to the collision, this time with a repeatable velocity.
  1933. enable_endstops(true);
  1934. destination[axis] = 11.f * axis_home_dir;
  1935. #ifdef TMC2130
  1936. feedrate = homing_feedrate[axis];
  1937. #else //TMC2130
  1938. feedrate = homing_feedrate[axis] / 2;
  1939. #endif //TMC2130
  1940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1941. st_synchronize();
  1942. #ifdef TMC2130
  1943. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1944. if (pstep) pstep[i] = mscnt >> 4;
  1945. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1946. #endif //TMC2130
  1947. }
  1948. endstops_hit_on_purpose();
  1949. enable_endstops(false);
  1950. #ifdef TMC2130
  1951. uint8_t orig = tmc2130_home_origin[axis];
  1952. uint8_t back = tmc2130_home_bsteps[axis];
  1953. if (tmc2130_home_enabled && (orig <= 63))
  1954. {
  1955. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1956. if (back > 0)
  1957. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1958. }
  1959. else
  1960. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1961. tmc2130_home_exit();
  1962. #endif //TMC2130
  1963. axis_is_at_home(axis);
  1964. axis_known_position[axis] = true;
  1965. // Move from minimum
  1966. #ifdef TMC2130
  1967. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1968. #else //TMC2130
  1969. float dist = - axis_home_dir * 0.01f * 64;
  1970. #endif //TMC2130
  1971. current_position[axis] -= dist;
  1972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1973. current_position[axis] += dist;
  1974. destination[axis] = current_position[axis];
  1975. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1976. st_synchronize();
  1977. feedrate = 0.0;
  1978. }
  1979. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1980. {
  1981. #ifdef TMC2130
  1982. FORCE_HIGH_POWER_START;
  1983. #endif
  1984. int axis_home_dir = home_dir(axis);
  1985. current_position[axis] = 0;
  1986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1987. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1988. feedrate = homing_feedrate[axis];
  1989. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1990. st_synchronize();
  1991. #ifdef TMC2130
  1992. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1993. FORCE_HIGH_POWER_END;
  1994. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1995. return;
  1996. }
  1997. #endif //TMC2130
  1998. current_position[axis] = 0;
  1999. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2000. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2001. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2002. st_synchronize();
  2003. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2004. feedrate = homing_feedrate[axis]/2 ;
  2005. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2006. st_synchronize();
  2007. #ifdef TMC2130
  2008. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2009. FORCE_HIGH_POWER_END;
  2010. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2011. return;
  2012. }
  2013. #endif //TMC2130
  2014. axis_is_at_home(axis);
  2015. destination[axis] = current_position[axis];
  2016. feedrate = 0.0;
  2017. endstops_hit_on_purpose();
  2018. axis_known_position[axis] = true;
  2019. #ifdef TMC2130
  2020. FORCE_HIGH_POWER_END;
  2021. #endif
  2022. }
  2023. enable_endstops(endstops_enabled);
  2024. }
  2025. /**/
  2026. void home_xy()
  2027. {
  2028. set_destination_to_current();
  2029. homeaxis(X_AXIS);
  2030. homeaxis(Y_AXIS);
  2031. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2032. endstops_hit_on_purpose();
  2033. }
  2034. void refresh_cmd_timeout(void)
  2035. {
  2036. previous_millis_cmd = millis();
  2037. }
  2038. #ifdef FWRETRACT
  2039. void retract(bool retracting, bool swapretract = false) {
  2040. if(retracting && !retracted[active_extruder]) {
  2041. destination[X_AXIS]=current_position[X_AXIS];
  2042. destination[Y_AXIS]=current_position[Y_AXIS];
  2043. destination[Z_AXIS]=current_position[Z_AXIS];
  2044. destination[E_AXIS]=current_position[E_AXIS];
  2045. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2046. plan_set_e_position(current_position[E_AXIS]);
  2047. float oldFeedrate = feedrate;
  2048. feedrate=retract_feedrate*60;
  2049. retracted[active_extruder]=true;
  2050. prepare_move();
  2051. current_position[Z_AXIS]-=retract_zlift;
  2052. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2053. prepare_move();
  2054. feedrate = oldFeedrate;
  2055. } else if(!retracting && retracted[active_extruder]) {
  2056. destination[X_AXIS]=current_position[X_AXIS];
  2057. destination[Y_AXIS]=current_position[Y_AXIS];
  2058. destination[Z_AXIS]=current_position[Z_AXIS];
  2059. destination[E_AXIS]=current_position[E_AXIS];
  2060. current_position[Z_AXIS]+=retract_zlift;
  2061. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2062. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2063. plan_set_e_position(current_position[E_AXIS]);
  2064. float oldFeedrate = feedrate;
  2065. feedrate=retract_recover_feedrate*60;
  2066. retracted[active_extruder]=false;
  2067. prepare_move();
  2068. feedrate = oldFeedrate;
  2069. }
  2070. } //retract
  2071. #endif //FWRETRACT
  2072. void trace() {
  2073. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2074. tone(BEEPER, 440);
  2075. delay(25);
  2076. noTone(BEEPER);
  2077. delay(20);
  2078. }
  2079. /*
  2080. void ramming() {
  2081. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2082. if (current_temperature[0] < 230) {
  2083. //PLA
  2084. max_feedrate[E_AXIS] = 50;
  2085. //current_position[E_AXIS] -= 8;
  2086. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2087. //current_position[E_AXIS] += 8;
  2088. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2089. current_position[E_AXIS] += 5.4;
  2090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2091. current_position[E_AXIS] += 3.2;
  2092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2093. current_position[E_AXIS] += 3;
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2095. st_synchronize();
  2096. max_feedrate[E_AXIS] = 80;
  2097. current_position[E_AXIS] -= 82;
  2098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2099. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2100. current_position[E_AXIS] -= 20;
  2101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2102. current_position[E_AXIS] += 5;
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2104. current_position[E_AXIS] += 5;
  2105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2106. current_position[E_AXIS] -= 10;
  2107. st_synchronize();
  2108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2109. current_position[E_AXIS] += 10;
  2110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2111. current_position[E_AXIS] -= 10;
  2112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2113. current_position[E_AXIS] += 10;
  2114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2115. current_position[E_AXIS] -= 10;
  2116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2117. st_synchronize();
  2118. }
  2119. else {
  2120. //ABS
  2121. max_feedrate[E_AXIS] = 50;
  2122. //current_position[E_AXIS] -= 8;
  2123. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2124. //current_position[E_AXIS] += 8;
  2125. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2126. current_position[E_AXIS] += 3.1;
  2127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2128. current_position[E_AXIS] += 3.1;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2130. current_position[E_AXIS] += 4;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2132. st_synchronize();
  2133. //current_position[X_AXIS] += 23; //delay
  2134. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2135. //current_position[X_AXIS] -= 23; //delay
  2136. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2137. delay(4700);
  2138. max_feedrate[E_AXIS] = 80;
  2139. current_position[E_AXIS] -= 92;
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2141. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2142. current_position[E_AXIS] -= 5;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2144. current_position[E_AXIS] += 5;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2146. current_position[E_AXIS] -= 5;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2148. st_synchronize();
  2149. current_position[E_AXIS] += 5;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2151. current_position[E_AXIS] -= 5;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2153. current_position[E_AXIS] += 5;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2155. current_position[E_AXIS] -= 5;
  2156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2157. st_synchronize();
  2158. }
  2159. }
  2160. */
  2161. #ifdef TMC2130
  2162. void force_high_power_mode(bool start_high_power_section) {
  2163. uint8_t silent;
  2164. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2165. if (silent == 1) {
  2166. //we are in silent mode, set to normal mode to enable crash detection
  2167. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2168. st_synchronize();
  2169. cli();
  2170. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2171. update_mode_profile();
  2172. tmc2130_init();
  2173. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2174. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2175. st_reset_timer();
  2176. sei();
  2177. }
  2178. }
  2179. #endif //TMC2130
  2180. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2181. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2182. }
  2183. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2184. st_synchronize();
  2185. #if 0
  2186. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2187. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2188. #endif
  2189. // Flag for the display update routine and to disable the print cancelation during homing.
  2190. homing_flag = true;
  2191. // Which axes should be homed?
  2192. bool home_x = home_x_axis;
  2193. bool home_y = home_y_axis;
  2194. bool home_z = home_z_axis;
  2195. // Either all X,Y,Z codes are present, or none of them.
  2196. bool home_all_axes = home_x == home_y && home_x == home_z;
  2197. if (home_all_axes)
  2198. // No X/Y/Z code provided means to home all axes.
  2199. home_x = home_y = home_z = true;
  2200. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2201. if (home_all_axes) {
  2202. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2203. feedrate = homing_feedrate[Z_AXIS];
  2204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2205. st_synchronize();
  2206. }
  2207. #ifdef ENABLE_AUTO_BED_LEVELING
  2208. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2209. #endif //ENABLE_AUTO_BED_LEVELING
  2210. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2211. // the planner will not perform any adjustments in the XY plane.
  2212. // Wait for the motors to stop and update the current position with the absolute values.
  2213. world2machine_revert_to_uncorrected();
  2214. // For mesh bed leveling deactivate the matrix temporarily.
  2215. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2216. // in a single axis only.
  2217. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2218. #ifdef MESH_BED_LEVELING
  2219. uint8_t mbl_was_active = mbl.active;
  2220. mbl.active = 0;
  2221. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2222. #endif
  2223. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2224. // consumed during the first movements following this statement.
  2225. if (home_z)
  2226. babystep_undo();
  2227. saved_feedrate = feedrate;
  2228. int l_feedmultiply = feedmultiply;
  2229. feedmultiply = 100;
  2230. previous_millis_cmd = millis();
  2231. enable_endstops(true);
  2232. memcpy(destination, current_position, sizeof(destination));
  2233. feedrate = 0.0;
  2234. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2235. if(home_z)
  2236. homeaxis(Z_AXIS);
  2237. #endif
  2238. #ifdef QUICK_HOME
  2239. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2240. if(home_x && home_y) //first diagonal move
  2241. {
  2242. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2243. int x_axis_home_dir = home_dir(X_AXIS);
  2244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2245. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2246. feedrate = homing_feedrate[X_AXIS];
  2247. if(homing_feedrate[Y_AXIS]<feedrate)
  2248. feedrate = homing_feedrate[Y_AXIS];
  2249. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2250. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2251. } else {
  2252. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2253. }
  2254. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2255. st_synchronize();
  2256. axis_is_at_home(X_AXIS);
  2257. axis_is_at_home(Y_AXIS);
  2258. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2259. destination[X_AXIS] = current_position[X_AXIS];
  2260. destination[Y_AXIS] = current_position[Y_AXIS];
  2261. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2262. feedrate = 0.0;
  2263. st_synchronize();
  2264. endstops_hit_on_purpose();
  2265. current_position[X_AXIS] = destination[X_AXIS];
  2266. current_position[Y_AXIS] = destination[Y_AXIS];
  2267. current_position[Z_AXIS] = destination[Z_AXIS];
  2268. }
  2269. #endif /* QUICK_HOME */
  2270. #ifdef TMC2130
  2271. if(home_x)
  2272. {
  2273. if (!calib)
  2274. homeaxis(X_AXIS);
  2275. else
  2276. tmc2130_home_calibrate(X_AXIS);
  2277. }
  2278. if(home_y)
  2279. {
  2280. if (!calib)
  2281. homeaxis(Y_AXIS);
  2282. else
  2283. tmc2130_home_calibrate(Y_AXIS);
  2284. }
  2285. #endif //TMC2130
  2286. if(home_x_axis && home_x_value != 0)
  2287. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2288. if(home_y_axis && home_y_value != 0)
  2289. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2290. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2291. #ifndef Z_SAFE_HOMING
  2292. if(home_z) {
  2293. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2294. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2295. feedrate = max_feedrate[Z_AXIS];
  2296. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2297. st_synchronize();
  2298. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2299. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2300. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2301. {
  2302. homeaxis(X_AXIS);
  2303. homeaxis(Y_AXIS);
  2304. }
  2305. // 1st mesh bed leveling measurement point, corrected.
  2306. world2machine_initialize();
  2307. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2308. world2machine_reset();
  2309. if (destination[Y_AXIS] < Y_MIN_POS)
  2310. destination[Y_AXIS] = Y_MIN_POS;
  2311. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2312. feedrate = homing_feedrate[Z_AXIS]/10;
  2313. current_position[Z_AXIS] = 0;
  2314. enable_endstops(false);
  2315. #ifdef DEBUG_BUILD
  2316. SERIAL_ECHOLNPGM("plan_set_position()");
  2317. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2318. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2319. #endif
  2320. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2321. #ifdef DEBUG_BUILD
  2322. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2323. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2324. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2325. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2326. #endif
  2327. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2328. st_synchronize();
  2329. current_position[X_AXIS] = destination[X_AXIS];
  2330. current_position[Y_AXIS] = destination[Y_AXIS];
  2331. enable_endstops(true);
  2332. endstops_hit_on_purpose();
  2333. homeaxis(Z_AXIS);
  2334. #else // MESH_BED_LEVELING
  2335. homeaxis(Z_AXIS);
  2336. #endif // MESH_BED_LEVELING
  2337. }
  2338. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2339. if(home_all_axes) {
  2340. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2341. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2342. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2343. feedrate = XY_TRAVEL_SPEED/60;
  2344. current_position[Z_AXIS] = 0;
  2345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2346. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2347. st_synchronize();
  2348. current_position[X_AXIS] = destination[X_AXIS];
  2349. current_position[Y_AXIS] = destination[Y_AXIS];
  2350. homeaxis(Z_AXIS);
  2351. }
  2352. // Let's see if X and Y are homed and probe is inside bed area.
  2353. if(home_z) {
  2354. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2355. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2356. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2357. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2358. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2359. current_position[Z_AXIS] = 0;
  2360. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2361. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2362. feedrate = max_feedrate[Z_AXIS];
  2363. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2364. st_synchronize();
  2365. homeaxis(Z_AXIS);
  2366. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2367. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2368. SERIAL_ECHO_START;
  2369. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2370. } else {
  2371. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2372. SERIAL_ECHO_START;
  2373. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2374. }
  2375. }
  2376. #endif // Z_SAFE_HOMING
  2377. #endif // Z_HOME_DIR < 0
  2378. if(home_z_axis && home_z_value != 0)
  2379. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2380. #ifdef ENABLE_AUTO_BED_LEVELING
  2381. if(home_z)
  2382. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2383. #endif
  2384. // Set the planner and stepper routine positions.
  2385. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2386. // contains the machine coordinates.
  2387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2388. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2389. enable_endstops(false);
  2390. #endif
  2391. feedrate = saved_feedrate;
  2392. feedmultiply = l_feedmultiply;
  2393. previous_millis_cmd = millis();
  2394. endstops_hit_on_purpose();
  2395. #ifndef MESH_BED_LEVELING
  2396. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2397. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2398. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2399. lcd_adjust_z();
  2400. #endif
  2401. // Load the machine correction matrix
  2402. world2machine_initialize();
  2403. // and correct the current_position XY axes to match the transformed coordinate system.
  2404. world2machine_update_current();
  2405. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2406. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2407. {
  2408. if (! home_z && mbl_was_active) {
  2409. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2410. mbl.active = true;
  2411. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2412. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2413. }
  2414. }
  2415. else
  2416. {
  2417. st_synchronize();
  2418. homing_flag = false;
  2419. }
  2420. #endif
  2421. if (farm_mode) { prusa_statistics(20); };
  2422. homing_flag = false;
  2423. #if 0
  2424. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2425. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2426. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2427. #endif
  2428. }
  2429. void adjust_bed_reset()
  2430. {
  2431. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2432. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2433. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2434. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2435. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2436. }
  2437. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2438. {
  2439. bool final_result = false;
  2440. #ifdef TMC2130
  2441. FORCE_HIGH_POWER_START;
  2442. #endif // TMC2130
  2443. // Only Z calibration?
  2444. if (!onlyZ)
  2445. {
  2446. setTargetBed(0);
  2447. setAllTargetHotends(0);
  2448. adjust_bed_reset(); //reset bed level correction
  2449. }
  2450. // Disable the default update procedure of the display. We will do a modal dialog.
  2451. lcd_update_enable(false);
  2452. // Let the planner use the uncorrected coordinates.
  2453. mbl.reset();
  2454. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2455. // the planner will not perform any adjustments in the XY plane.
  2456. // Wait for the motors to stop and update the current position with the absolute values.
  2457. world2machine_revert_to_uncorrected();
  2458. // Reset the baby step value applied without moving the axes.
  2459. babystep_reset();
  2460. // Mark all axes as in a need for homing.
  2461. memset(axis_known_position, 0, sizeof(axis_known_position));
  2462. // Home in the XY plane.
  2463. //set_destination_to_current();
  2464. int l_feedmultiply = setup_for_endstop_move();
  2465. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2466. home_xy();
  2467. enable_endstops(false);
  2468. current_position[X_AXIS] += 5;
  2469. current_position[Y_AXIS] += 5;
  2470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2471. st_synchronize();
  2472. // Let the user move the Z axes up to the end stoppers.
  2473. #ifdef TMC2130
  2474. if (calibrate_z_auto())
  2475. {
  2476. #else //TMC2130
  2477. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2478. {
  2479. #endif //TMC2130
  2480. refresh_cmd_timeout();
  2481. #ifndef STEEL_SHEET
  2482. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2483. {
  2484. lcd_wait_for_cool_down();
  2485. }
  2486. #endif //STEEL_SHEET
  2487. if(!onlyZ)
  2488. {
  2489. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2490. #ifdef STEEL_SHEET
  2491. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2492. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2493. #endif //STEEL_SHEET
  2494. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2495. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2496. KEEPALIVE_STATE(IN_HANDLER);
  2497. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2498. lcd_set_cursor(0, 2);
  2499. lcd_print(1);
  2500. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2501. }
  2502. // Move the print head close to the bed.
  2503. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2504. bool endstops_enabled = enable_endstops(true);
  2505. #ifdef TMC2130
  2506. tmc2130_home_enter(Z_AXIS_MASK);
  2507. #endif //TMC2130
  2508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2509. st_synchronize();
  2510. #ifdef TMC2130
  2511. tmc2130_home_exit();
  2512. #endif //TMC2130
  2513. enable_endstops(endstops_enabled);
  2514. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2515. {
  2516. if (onlyZ)
  2517. {
  2518. clean_up_after_endstop_move(l_feedmultiply);
  2519. // Z only calibration.
  2520. // Load the machine correction matrix
  2521. world2machine_initialize();
  2522. // and correct the current_position to match the transformed coordinate system.
  2523. world2machine_update_current();
  2524. //FIXME
  2525. bool result = sample_mesh_and_store_reference();
  2526. if (result)
  2527. {
  2528. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2529. // Shipped, the nozzle height has been set already. The user can start printing now.
  2530. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2531. final_result = true;
  2532. // babystep_apply();
  2533. }
  2534. }
  2535. else
  2536. {
  2537. // Reset the baby step value and the baby step applied flag.
  2538. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2539. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2540. // Complete XYZ calibration.
  2541. uint8_t point_too_far_mask = 0;
  2542. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2543. clean_up_after_endstop_move(l_feedmultiply);
  2544. // Print head up.
  2545. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2547. st_synchronize();
  2548. //#ifndef NEW_XYZCAL
  2549. if (result >= 0)
  2550. {
  2551. #ifdef HEATBED_V2
  2552. sample_z();
  2553. #else //HEATBED_V2
  2554. point_too_far_mask = 0;
  2555. // Second half: The fine adjustment.
  2556. // Let the planner use the uncorrected coordinates.
  2557. mbl.reset();
  2558. world2machine_reset();
  2559. // Home in the XY plane.
  2560. int l_feedmultiply = setup_for_endstop_move();
  2561. home_xy();
  2562. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2563. clean_up_after_endstop_move(l_feedmultiply);
  2564. // Print head up.
  2565. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2567. st_synchronize();
  2568. // if (result >= 0) babystep_apply();
  2569. #endif //HEATBED_V2
  2570. }
  2571. //#endif //NEW_XYZCAL
  2572. lcd_update_enable(true);
  2573. lcd_update(2);
  2574. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2575. if (result >= 0)
  2576. {
  2577. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2578. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2579. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2580. final_result = true;
  2581. }
  2582. }
  2583. #ifdef TMC2130
  2584. tmc2130_home_exit();
  2585. #endif
  2586. }
  2587. else
  2588. {
  2589. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2590. final_result = false;
  2591. }
  2592. }
  2593. else
  2594. {
  2595. // Timeouted.
  2596. }
  2597. lcd_update_enable(true);
  2598. #ifdef TMC2130
  2599. FORCE_HIGH_POWER_END;
  2600. #endif // TMC2130
  2601. return final_result;
  2602. }
  2603. void gcode_M114()
  2604. {
  2605. SERIAL_PROTOCOLPGM("X:");
  2606. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2607. SERIAL_PROTOCOLPGM(" Y:");
  2608. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2609. SERIAL_PROTOCOLPGM(" Z:");
  2610. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2611. SERIAL_PROTOCOLPGM(" E:");
  2612. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2613. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2614. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2615. SERIAL_PROTOCOLPGM(" Y:");
  2616. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2617. SERIAL_PROTOCOLPGM(" Z:");
  2618. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2619. SERIAL_PROTOCOLPGM(" E:");
  2620. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2621. SERIAL_PROTOCOLLN("");
  2622. }
  2623. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2624. {
  2625. st_synchronize();
  2626. float lastpos[4];
  2627. if (farm_mode)
  2628. {
  2629. prusa_statistics(22);
  2630. }
  2631. //First backup current position and settings
  2632. int feedmultiplyBckp = feedmultiply;
  2633. float HotendTempBckp = degTargetHotend(active_extruder);
  2634. int fanSpeedBckp = fanSpeed;
  2635. lastpos[X_AXIS] = current_position[X_AXIS];
  2636. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2637. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2638. lastpos[E_AXIS] = current_position[E_AXIS];
  2639. //Retract E
  2640. current_position[E_AXIS] += e_shift;
  2641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2642. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2643. st_synchronize();
  2644. //Lift Z
  2645. current_position[Z_AXIS] += z_shift;
  2646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2647. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2648. st_synchronize();
  2649. //Move XY to side
  2650. current_position[X_AXIS] = x_position;
  2651. current_position[Y_AXIS] = y_position;
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2653. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2654. st_synchronize();
  2655. //Beep, manage nozzle heater and wait for user to start unload filament
  2656. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2657. lcd_change_fil_state = 0;
  2658. // Unload filament
  2659. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2660. else unload_filament(); //unload filament for single material (used also in M702)
  2661. //finish moves
  2662. st_synchronize();
  2663. if (!mmu_enabled)
  2664. {
  2665. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2666. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2667. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2668. if (lcd_change_fil_state == 0)
  2669. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2670. lcd_update_enable(true);
  2671. }
  2672. if (mmu_enabled)
  2673. {
  2674. if (!automatic) {
  2675. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2676. mmu_M600_wait_and_beep();
  2677. if (saved_printing) {
  2678. lcd_clear();
  2679. lcd_set_cursor(0, 2);
  2680. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2681. mmu_command(MMU_CMD_R0);
  2682. manage_response(false, false);
  2683. }
  2684. }
  2685. mmu_M600_load_filament(automatic);
  2686. }
  2687. else
  2688. M600_load_filament();
  2689. if (!automatic) M600_check_state();
  2690. lcd_update_enable(true);
  2691. //Not let's go back to print
  2692. fanSpeed = fanSpeedBckp;
  2693. //Feed a little of filament to stabilize pressure
  2694. if (!automatic)
  2695. {
  2696. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2698. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2699. }
  2700. //Move XY back
  2701. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2702. FILAMENTCHANGE_XYFEED, active_extruder);
  2703. st_synchronize();
  2704. //Move Z back
  2705. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2706. FILAMENTCHANGE_ZFEED, active_extruder);
  2707. st_synchronize();
  2708. //Set E position to original
  2709. plan_set_e_position(lastpos[E_AXIS]);
  2710. memcpy(current_position, lastpos, sizeof(lastpos));
  2711. memcpy(destination, current_position, sizeof(current_position));
  2712. //Recover feed rate
  2713. feedmultiply = feedmultiplyBckp;
  2714. char cmd[9];
  2715. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2716. enquecommand(cmd);
  2717. lcd_setstatuspgm(_T(WELCOME_MSG));
  2718. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2719. }
  2720. void gcode_M701()
  2721. {
  2722. printf_P(PSTR("gcode_M701 begin\n"));
  2723. if (mmu_enabled)
  2724. {
  2725. extr_adj(tmp_extruder);//loads current extruder
  2726. mmu_extruder = tmp_extruder;
  2727. }
  2728. else
  2729. {
  2730. enable_z();
  2731. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2732. #ifdef FILAMENT_SENSOR
  2733. fsensor_oq_meassure_start(40);
  2734. #endif //FILAMENT_SENSOR
  2735. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2736. current_position[E_AXIS] += 40;
  2737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2738. st_synchronize();
  2739. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2740. current_position[E_AXIS] += 30;
  2741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2742. st_synchronize();
  2743. current_position[E_AXIS] += 25;
  2744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2745. st_synchronize();
  2746. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2747. delay_keep_alive(50);
  2748. noTone(BEEPER);
  2749. if (!farm_mode && loading_flag) {
  2750. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2751. while (!clean) {
  2752. lcd_update_enable(true);
  2753. lcd_update(2);
  2754. current_position[E_AXIS] += 25;
  2755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2756. st_synchronize();
  2757. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2758. }
  2759. }
  2760. lcd_update_enable(true);
  2761. lcd_update(2);
  2762. lcd_setstatuspgm(_T(WELCOME_MSG));
  2763. disable_z();
  2764. loading_flag = false;
  2765. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2766. #ifdef FILAMENT_SENSOR
  2767. if (mmu_enabled == false)
  2768. {
  2769. fsensor_oq_meassure_stop();
  2770. if (!fsensor_oq_result())
  2771. {
  2772. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2773. lcd_update_enable(true);
  2774. lcd_update(2);
  2775. if (disable)
  2776. fsensor_disable();
  2777. }
  2778. }
  2779. #endif //FILAMENT_SENSOR
  2780. }
  2781. }
  2782. /**
  2783. * @brief Get serial number from 32U2 processor
  2784. *
  2785. * Typical format of S/N is:CZPX0917X003XC13518
  2786. *
  2787. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2788. *
  2789. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2790. * reply is transmitted to serial port 1 character by character.
  2791. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2792. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2793. * in any case.
  2794. */
  2795. static void gcode_PRUSA_SN()
  2796. {
  2797. if (farm_mode) {
  2798. selectedSerialPort = 0;
  2799. putchar(';');
  2800. putchar('S');
  2801. int numbersRead = 0;
  2802. ShortTimer timeout;
  2803. timeout.start();
  2804. while (numbersRead < 19) {
  2805. while (MSerial.available() > 0) {
  2806. uint8_t serial_char = MSerial.read();
  2807. selectedSerialPort = 1;
  2808. putchar(serial_char);
  2809. numbersRead++;
  2810. selectedSerialPort = 0;
  2811. }
  2812. if (timeout.expired(100u)) break;
  2813. }
  2814. selectedSerialPort = 1;
  2815. putchar('\n');
  2816. #if 0
  2817. for (int b = 0; b < 3; b++) {
  2818. tone(BEEPER, 110);
  2819. delay(50);
  2820. noTone(BEEPER);
  2821. delay(50);
  2822. }
  2823. #endif
  2824. } else {
  2825. puts_P(_N("Not in farm mode."));
  2826. }
  2827. }
  2828. #ifdef BACKLASH_X
  2829. extern uint8_t st_backlash_x;
  2830. #endif //BACKLASH_X
  2831. #ifdef BACKLASH_Y
  2832. extern uint8_t st_backlash_y;
  2833. #endif //BACKLASH_Y
  2834. void process_commands()
  2835. {
  2836. if (!buflen) return; //empty command
  2837. #ifdef FILAMENT_RUNOUT_SUPPORT
  2838. SET_INPUT(FR_SENS);
  2839. #endif
  2840. #ifdef CMDBUFFER_DEBUG
  2841. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2842. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2843. SERIAL_ECHOLNPGM("");
  2844. SERIAL_ECHOPGM("In cmdqueue: ");
  2845. SERIAL_ECHO(buflen);
  2846. SERIAL_ECHOLNPGM("");
  2847. #endif /* CMDBUFFER_DEBUG */
  2848. unsigned long codenum; //throw away variable
  2849. char *starpos = NULL;
  2850. #ifdef ENABLE_AUTO_BED_LEVELING
  2851. float x_tmp, y_tmp, z_tmp, real_z;
  2852. #endif
  2853. // PRUSA GCODES
  2854. KEEPALIVE_STATE(IN_HANDLER);
  2855. #ifdef SNMM
  2856. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2857. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2858. int8_t SilentMode;
  2859. #endif
  2860. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2861. starpos = (strchr(strchr_pointer + 5, '*'));
  2862. if (starpos != NULL)
  2863. *(starpos) = '\0';
  2864. lcd_setstatus(strchr_pointer + 5);
  2865. }
  2866. #ifdef TMC2130
  2867. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2868. {
  2869. if(code_seen("CRASH_DETECTED"))
  2870. {
  2871. uint8_t mask = 0;
  2872. if (code_seen('X')) mask |= X_AXIS_MASK;
  2873. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2874. crashdet_detected(mask);
  2875. }
  2876. else if(code_seen("CRASH_RECOVER"))
  2877. crashdet_recover();
  2878. else if(code_seen("CRASH_CANCEL"))
  2879. crashdet_cancel();
  2880. }
  2881. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2882. {
  2883. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2884. {
  2885. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2886. axis = (axis == 'E')?3:(axis - 'X');
  2887. if (axis < 4)
  2888. {
  2889. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2890. tmc2130_set_wave(axis, 247, fac);
  2891. }
  2892. }
  2893. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2894. {
  2895. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2896. axis = (axis == 'E')?3:(axis - 'X');
  2897. if (axis < 4)
  2898. {
  2899. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2900. uint16_t res = tmc2130_get_res(axis);
  2901. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2902. }
  2903. }
  2904. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2905. {
  2906. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2907. axis = (axis == 'E')?3:(axis - 'X');
  2908. if (axis < 4)
  2909. {
  2910. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2911. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2912. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2913. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2914. char* str_end = 0;
  2915. if (CMDBUFFER_CURRENT_STRING[14])
  2916. {
  2917. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2918. if (str_end && *str_end)
  2919. {
  2920. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2921. if (str_end && *str_end)
  2922. {
  2923. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2924. if (str_end && *str_end)
  2925. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2926. }
  2927. }
  2928. }
  2929. tmc2130_chopper_config[axis].toff = chop0;
  2930. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2931. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2932. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2933. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2934. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2935. }
  2936. }
  2937. }
  2938. #ifdef BACKLASH_X
  2939. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2940. {
  2941. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2942. st_backlash_x = bl;
  2943. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2944. }
  2945. #endif //BACKLASH_X
  2946. #ifdef BACKLASH_Y
  2947. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2948. {
  2949. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2950. st_backlash_y = bl;
  2951. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2952. }
  2953. #endif //BACKLASH_Y
  2954. #endif //TMC2130
  2955. else if (code_seen("FSENSOR_RECOVER")) {
  2956. fsensor_restore_print_and_continue();
  2957. }
  2958. else if(code_seen("PRUSA")){
  2959. if (code_seen("Ping")) { //PRUSA Ping
  2960. if (farm_mode) {
  2961. PingTime = millis();
  2962. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2963. }
  2964. }
  2965. else if (code_seen("PRN")) {
  2966. printf_P(_N("%d"), status_number);
  2967. }else if (code_seen("FAN")) {
  2968. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2969. }else if (code_seen("fn")) {
  2970. if (farm_mode) {
  2971. printf_P(_N("%d"), farm_no);
  2972. }
  2973. else {
  2974. puts_P(_N("Not in farm mode."));
  2975. }
  2976. }
  2977. else if (code_seen("thx"))
  2978. {
  2979. no_response = false;
  2980. }
  2981. else if (code_seen("uvlo"))
  2982. {
  2983. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2984. enquecommand_P(PSTR("M24"));
  2985. }
  2986. else if (code_seen("MMURES"))
  2987. {
  2988. mmu_reset();
  2989. }
  2990. else if (code_seen("RESET")) {
  2991. // careful!
  2992. if (farm_mode) {
  2993. #ifdef WATCHDOG
  2994. boot_app_magic = BOOT_APP_MAGIC;
  2995. boot_app_flags = BOOT_APP_FLG_RUN;
  2996. wdt_enable(WDTO_15MS);
  2997. cli();
  2998. while(1);
  2999. #else //WATCHDOG
  3000. asm volatile("jmp 0x3E000");
  3001. #endif //WATCHDOG
  3002. }
  3003. else {
  3004. MYSERIAL.println("Not in farm mode.");
  3005. }
  3006. }else if (code_seen("fv")) {
  3007. // get file version
  3008. #ifdef SDSUPPORT
  3009. card.openFile(strchr_pointer + 3,true);
  3010. while (true) {
  3011. uint16_t readByte = card.get();
  3012. MYSERIAL.write(readByte);
  3013. if (readByte=='\n') {
  3014. break;
  3015. }
  3016. }
  3017. card.closefile();
  3018. #endif // SDSUPPORT
  3019. } else if (code_seen("M28")) {
  3020. trace();
  3021. prusa_sd_card_upload = true;
  3022. card.openFile(strchr_pointer+4,false);
  3023. } else if (code_seen("SN")) {
  3024. gcode_PRUSA_SN();
  3025. } else if(code_seen("Fir")){
  3026. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3027. } else if(code_seen("Rev")){
  3028. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3029. } else if(code_seen("Lang")) {
  3030. lang_reset();
  3031. } else if(code_seen("Lz")) {
  3032. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3033. } else if(code_seen("Beat")) {
  3034. // Kick farm link timer
  3035. kicktime = millis();
  3036. } else if(code_seen("FR")) {
  3037. // Factory full reset
  3038. factory_reset(0);
  3039. }
  3040. //else if (code_seen('Cal')) {
  3041. // lcd_calibration();
  3042. // }
  3043. }
  3044. else if (code_seen('^')) {
  3045. // nothing, this is a version line
  3046. } else if(code_seen('G'))
  3047. {
  3048. gcode_in_progress = (int)code_value();
  3049. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3050. switch (gcode_in_progress)
  3051. {
  3052. case 0: // G0 -> G1
  3053. case 1: // G1
  3054. if(Stopped == false) {
  3055. #ifdef FILAMENT_RUNOUT_SUPPORT
  3056. if(READ(FR_SENS)){
  3057. int feedmultiplyBckp=feedmultiply;
  3058. float target[4];
  3059. float lastpos[4];
  3060. target[X_AXIS]=current_position[X_AXIS];
  3061. target[Y_AXIS]=current_position[Y_AXIS];
  3062. target[Z_AXIS]=current_position[Z_AXIS];
  3063. target[E_AXIS]=current_position[E_AXIS];
  3064. lastpos[X_AXIS]=current_position[X_AXIS];
  3065. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3066. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3067. lastpos[E_AXIS]=current_position[E_AXIS];
  3068. //retract by E
  3069. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3070. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3071. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3073. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3074. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3076. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3078. //finish moves
  3079. st_synchronize();
  3080. //disable extruder steppers so filament can be removed
  3081. disable_e0();
  3082. disable_e1();
  3083. disable_e2();
  3084. delay(100);
  3085. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3086. uint8_t cnt=0;
  3087. int counterBeep = 0;
  3088. lcd_wait_interact();
  3089. while(!lcd_clicked()){
  3090. cnt++;
  3091. manage_heater();
  3092. manage_inactivity(true);
  3093. //lcd_update(0);
  3094. if(cnt==0)
  3095. {
  3096. #if BEEPER > 0
  3097. if (counterBeep== 500){
  3098. counterBeep = 0;
  3099. }
  3100. SET_OUTPUT(BEEPER);
  3101. if (counterBeep== 0){
  3102. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3103. WRITE(BEEPER,HIGH);
  3104. }
  3105. if (counterBeep== 20){
  3106. WRITE(BEEPER,LOW);
  3107. }
  3108. counterBeep++;
  3109. #else
  3110. #endif
  3111. }
  3112. }
  3113. WRITE(BEEPER,LOW);
  3114. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3115. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3116. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3117. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3118. lcd_change_fil_state = 0;
  3119. lcd_loading_filament();
  3120. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3121. lcd_change_fil_state = 0;
  3122. lcd_alright();
  3123. switch(lcd_change_fil_state){
  3124. case 2:
  3125. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3127. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3129. lcd_loading_filament();
  3130. break;
  3131. case 3:
  3132. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3133. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3134. lcd_loading_color();
  3135. break;
  3136. default:
  3137. lcd_change_success();
  3138. break;
  3139. }
  3140. }
  3141. target[E_AXIS]+= 5;
  3142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3143. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3144. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3145. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3146. //plan_set_e_position(current_position[E_AXIS]);
  3147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3148. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3149. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3150. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3151. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3152. plan_set_e_position(lastpos[E_AXIS]);
  3153. feedmultiply=feedmultiplyBckp;
  3154. char cmd[9];
  3155. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3156. enquecommand(cmd);
  3157. }
  3158. #endif
  3159. get_coordinates(); // For X Y Z E F
  3160. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3161. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3162. }
  3163. #ifdef FWRETRACT
  3164. if(autoretract_enabled)
  3165. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3166. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3167. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3168. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3169. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3170. retract(!retracted[active_extruder]);
  3171. return;
  3172. }
  3173. }
  3174. #endif //FWRETRACT
  3175. prepare_move();
  3176. //ClearToSend();
  3177. }
  3178. break;
  3179. case 2: // G2 - CW ARC
  3180. if(Stopped == false) {
  3181. get_arc_coordinates();
  3182. prepare_arc_move(true);
  3183. }
  3184. break;
  3185. case 3: // G3 - CCW ARC
  3186. if(Stopped == false) {
  3187. get_arc_coordinates();
  3188. prepare_arc_move(false);
  3189. }
  3190. break;
  3191. case 4: // G4 dwell
  3192. codenum = 0;
  3193. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3194. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3195. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3196. st_synchronize();
  3197. codenum += millis(); // keep track of when we started waiting
  3198. previous_millis_cmd = millis();
  3199. while(millis() < codenum) {
  3200. manage_heater();
  3201. manage_inactivity();
  3202. lcd_update(0);
  3203. }
  3204. break;
  3205. #ifdef FWRETRACT
  3206. case 10: // G10 retract
  3207. #if EXTRUDERS > 1
  3208. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3209. retract(true,retracted_swap[active_extruder]);
  3210. #else
  3211. retract(true);
  3212. #endif
  3213. break;
  3214. case 11: // G11 retract_recover
  3215. #if EXTRUDERS > 1
  3216. retract(false,retracted_swap[active_extruder]);
  3217. #else
  3218. retract(false);
  3219. #endif
  3220. break;
  3221. #endif //FWRETRACT
  3222. case 28: //G28 Home all Axis one at a time
  3223. {
  3224. long home_x_value = 0;
  3225. long home_y_value = 0;
  3226. long home_z_value = 0;
  3227. // Which axes should be homed?
  3228. bool home_x = code_seen(axis_codes[X_AXIS]);
  3229. home_x_value = code_value_long();
  3230. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3231. home_y_value = code_value_long();
  3232. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3233. home_z_value = code_value_long();
  3234. bool without_mbl = code_seen('W');
  3235. // calibrate?
  3236. bool calib = code_seen('C');
  3237. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3238. if ((home_x || home_y || without_mbl || home_z) == false) {
  3239. // Push the commands to the front of the message queue in the reverse order!
  3240. // There shall be always enough space reserved for these commands.
  3241. goto case_G80;
  3242. }
  3243. break;
  3244. }
  3245. #ifdef ENABLE_AUTO_BED_LEVELING
  3246. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3247. {
  3248. #if Z_MIN_PIN == -1
  3249. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3250. #endif
  3251. // Prevent user from running a G29 without first homing in X and Y
  3252. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3253. {
  3254. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3255. SERIAL_ECHO_START;
  3256. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3257. break; // abort G29, since we don't know where we are
  3258. }
  3259. st_synchronize();
  3260. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3261. //vector_3 corrected_position = plan_get_position_mm();
  3262. //corrected_position.debug("position before G29");
  3263. plan_bed_level_matrix.set_to_identity();
  3264. vector_3 uncorrected_position = plan_get_position();
  3265. //uncorrected_position.debug("position durring G29");
  3266. current_position[X_AXIS] = uncorrected_position.x;
  3267. current_position[Y_AXIS] = uncorrected_position.y;
  3268. current_position[Z_AXIS] = uncorrected_position.z;
  3269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3270. int l_feedmultiply = setup_for_endstop_move();
  3271. feedrate = homing_feedrate[Z_AXIS];
  3272. #ifdef AUTO_BED_LEVELING_GRID
  3273. // probe at the points of a lattice grid
  3274. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3275. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3276. // solve the plane equation ax + by + d = z
  3277. // A is the matrix with rows [x y 1] for all the probed points
  3278. // B is the vector of the Z positions
  3279. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3280. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3281. // "A" matrix of the linear system of equations
  3282. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3283. // "B" vector of Z points
  3284. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3285. int probePointCounter = 0;
  3286. bool zig = true;
  3287. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3288. {
  3289. int xProbe, xInc;
  3290. if (zig)
  3291. {
  3292. xProbe = LEFT_PROBE_BED_POSITION;
  3293. //xEnd = RIGHT_PROBE_BED_POSITION;
  3294. xInc = xGridSpacing;
  3295. zig = false;
  3296. } else // zag
  3297. {
  3298. xProbe = RIGHT_PROBE_BED_POSITION;
  3299. //xEnd = LEFT_PROBE_BED_POSITION;
  3300. xInc = -xGridSpacing;
  3301. zig = true;
  3302. }
  3303. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3304. {
  3305. float z_before;
  3306. if (probePointCounter == 0)
  3307. {
  3308. // raise before probing
  3309. z_before = Z_RAISE_BEFORE_PROBING;
  3310. } else
  3311. {
  3312. // raise extruder
  3313. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3314. }
  3315. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3316. eqnBVector[probePointCounter] = measured_z;
  3317. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3318. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3319. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3320. probePointCounter++;
  3321. xProbe += xInc;
  3322. }
  3323. }
  3324. clean_up_after_endstop_move(l_feedmultiply);
  3325. // solve lsq problem
  3326. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3327. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3328. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3329. SERIAL_PROTOCOLPGM(" b: ");
  3330. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3331. SERIAL_PROTOCOLPGM(" d: ");
  3332. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3333. set_bed_level_equation_lsq(plane_equation_coefficients);
  3334. free(plane_equation_coefficients);
  3335. #else // AUTO_BED_LEVELING_GRID not defined
  3336. // Probe at 3 arbitrary points
  3337. // probe 1
  3338. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3339. // probe 2
  3340. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3341. // probe 3
  3342. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3343. clean_up_after_endstop_move(l_feedmultiply);
  3344. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3345. #endif // AUTO_BED_LEVELING_GRID
  3346. st_synchronize();
  3347. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3348. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3349. // When the bed is uneven, this height must be corrected.
  3350. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3351. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3352. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3353. z_tmp = current_position[Z_AXIS];
  3354. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3355. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3357. }
  3358. break;
  3359. #ifndef Z_PROBE_SLED
  3360. case 30: // G30 Single Z Probe
  3361. {
  3362. st_synchronize();
  3363. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3364. int l_feedmultiply = setup_for_endstop_move();
  3365. feedrate = homing_feedrate[Z_AXIS];
  3366. run_z_probe();
  3367. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3368. SERIAL_PROTOCOLPGM(" X: ");
  3369. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3370. SERIAL_PROTOCOLPGM(" Y: ");
  3371. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3372. SERIAL_PROTOCOLPGM(" Z: ");
  3373. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3374. SERIAL_PROTOCOLPGM("\n");
  3375. clean_up_after_endstop_move(l_feedmultiply);
  3376. }
  3377. break;
  3378. #else
  3379. case 31: // dock the sled
  3380. dock_sled(true);
  3381. break;
  3382. case 32: // undock the sled
  3383. dock_sled(false);
  3384. break;
  3385. #endif // Z_PROBE_SLED
  3386. #endif // ENABLE_AUTO_BED_LEVELING
  3387. #ifdef MESH_BED_LEVELING
  3388. case 30: // G30 Single Z Probe
  3389. {
  3390. st_synchronize();
  3391. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3392. int l_feedmultiply = setup_for_endstop_move();
  3393. feedrate = homing_feedrate[Z_AXIS];
  3394. find_bed_induction_sensor_point_z(-10.f, 3);
  3395. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3396. clean_up_after_endstop_move(l_feedmultiply);
  3397. }
  3398. break;
  3399. case 75:
  3400. {
  3401. for (int i = 40; i <= 110; i++)
  3402. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3403. }
  3404. break;
  3405. case 76: //PINDA probe temperature calibration
  3406. {
  3407. #ifdef PINDA_THERMISTOR
  3408. if (true)
  3409. {
  3410. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3411. //we need to know accurate position of first calibration point
  3412. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3413. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3414. break;
  3415. }
  3416. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3417. {
  3418. // We don't know where we are! HOME!
  3419. // Push the commands to the front of the message queue in the reverse order!
  3420. // There shall be always enough space reserved for these commands.
  3421. repeatcommand_front(); // repeat G76 with all its parameters
  3422. enquecommand_front_P((PSTR("G28 W0")));
  3423. break;
  3424. }
  3425. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3426. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3427. if (result)
  3428. {
  3429. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3431. current_position[Z_AXIS] = 50;
  3432. current_position[Y_AXIS] = 180;
  3433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3434. st_synchronize();
  3435. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3436. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3437. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3439. st_synchronize();
  3440. gcode_G28(false, false, true);
  3441. }
  3442. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3443. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3444. current_position[Z_AXIS] = 100;
  3445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3446. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3447. lcd_temp_cal_show_result(false);
  3448. break;
  3449. }
  3450. }
  3451. lcd_update_enable(true);
  3452. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3453. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3454. float zero_z;
  3455. int z_shift = 0; //unit: steps
  3456. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3457. if (start_temp < 35) start_temp = 35;
  3458. if (start_temp < current_temperature_pinda) start_temp += 5;
  3459. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3460. // setTargetHotend(200, 0);
  3461. setTargetBed(70 + (start_temp - 30));
  3462. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3463. custom_message_state = 1;
  3464. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3465. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3467. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3468. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3469. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3470. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. st_synchronize();
  3473. while (current_temperature_pinda < start_temp)
  3474. {
  3475. delay_keep_alive(1000);
  3476. serialecho_temperatures();
  3477. }
  3478. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3479. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3481. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3482. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3484. st_synchronize();
  3485. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3486. if (find_z_result == false) {
  3487. lcd_temp_cal_show_result(find_z_result);
  3488. break;
  3489. }
  3490. zero_z = current_position[Z_AXIS];
  3491. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3492. int i = -1; for (; i < 5; i++)
  3493. {
  3494. float temp = (40 + i * 5);
  3495. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3496. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3497. if (start_temp <= temp) break;
  3498. }
  3499. for (i++; i < 5; i++)
  3500. {
  3501. float temp = (40 + i * 5);
  3502. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3503. custom_message_state = i + 2;
  3504. setTargetBed(50 + 10 * (temp - 30) / 5);
  3505. // setTargetHotend(255, 0);
  3506. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3508. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3509. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3511. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3513. st_synchronize();
  3514. while (current_temperature_pinda < temp)
  3515. {
  3516. delay_keep_alive(1000);
  3517. serialecho_temperatures();
  3518. }
  3519. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3521. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3522. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3524. st_synchronize();
  3525. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3526. if (find_z_result == false) {
  3527. lcd_temp_cal_show_result(find_z_result);
  3528. break;
  3529. }
  3530. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3531. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3532. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3533. }
  3534. lcd_temp_cal_show_result(true);
  3535. break;
  3536. }
  3537. #endif //PINDA_THERMISTOR
  3538. setTargetBed(PINDA_MIN_T);
  3539. float zero_z;
  3540. int z_shift = 0; //unit: steps
  3541. int t_c; // temperature
  3542. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3543. // We don't know where we are! HOME!
  3544. // Push the commands to the front of the message queue in the reverse order!
  3545. // There shall be always enough space reserved for these commands.
  3546. repeatcommand_front(); // repeat G76 with all its parameters
  3547. enquecommand_front_P((PSTR("G28 W0")));
  3548. break;
  3549. }
  3550. puts_P(_N("PINDA probe calibration start"));
  3551. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3552. custom_message_state = 1;
  3553. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3554. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3555. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3556. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3558. st_synchronize();
  3559. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3560. delay_keep_alive(1000);
  3561. serialecho_temperatures();
  3562. }
  3563. //enquecommand_P(PSTR("M190 S50"));
  3564. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3565. delay_keep_alive(1000);
  3566. serialecho_temperatures();
  3567. }
  3568. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3569. current_position[Z_AXIS] = 5;
  3570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3571. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3572. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3574. st_synchronize();
  3575. find_bed_induction_sensor_point_z(-1.f);
  3576. zero_z = current_position[Z_AXIS];
  3577. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3578. for (int i = 0; i<5; i++) {
  3579. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3580. custom_message_state = i + 2;
  3581. t_c = 60 + i * 10;
  3582. setTargetBed(t_c);
  3583. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3584. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3585. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3587. st_synchronize();
  3588. while (degBed() < t_c) {
  3589. delay_keep_alive(1000);
  3590. serialecho_temperatures();
  3591. }
  3592. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3593. delay_keep_alive(1000);
  3594. serialecho_temperatures();
  3595. }
  3596. current_position[Z_AXIS] = 5;
  3597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3598. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3599. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3601. st_synchronize();
  3602. find_bed_induction_sensor_point_z(-1.f);
  3603. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3604. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3605. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3606. }
  3607. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3608. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3609. puts_P(_N("Temperature calibration done."));
  3610. disable_x();
  3611. disable_y();
  3612. disable_z();
  3613. disable_e0();
  3614. disable_e1();
  3615. disable_e2();
  3616. setTargetBed(0); //set bed target temperature back to 0
  3617. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3618. temp_cal_active = true;
  3619. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3620. lcd_update_enable(true);
  3621. lcd_update(2);
  3622. }
  3623. break;
  3624. #ifdef DIS
  3625. case 77:
  3626. {
  3627. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3628. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3629. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3630. float dimension_x = 40;
  3631. float dimension_y = 40;
  3632. int points_x = 40;
  3633. int points_y = 40;
  3634. float offset_x = 74;
  3635. float offset_y = 33;
  3636. if (code_seen('X')) dimension_x = code_value();
  3637. if (code_seen('Y')) dimension_y = code_value();
  3638. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3639. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3640. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3641. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3642. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3643. } break;
  3644. #endif
  3645. case 79: {
  3646. for (int i = 255; i > 0; i = i - 5) {
  3647. fanSpeed = i;
  3648. //delay_keep_alive(2000);
  3649. for (int j = 0; j < 100; j++) {
  3650. delay_keep_alive(100);
  3651. }
  3652. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3653. }
  3654. }break;
  3655. /**
  3656. * G80: Mesh-based Z probe, probes a grid and produces a
  3657. * mesh to compensate for variable bed height
  3658. *
  3659. * The S0 report the points as below
  3660. *
  3661. * +----> X-axis
  3662. * |
  3663. * |
  3664. * v Y-axis
  3665. *
  3666. */
  3667. case 80:
  3668. #ifdef MK1BP
  3669. break;
  3670. #endif //MK1BP
  3671. case_G80:
  3672. {
  3673. mesh_bed_leveling_flag = true;
  3674. static bool run = false;
  3675. #ifdef SUPPORT_VERBOSITY
  3676. int8_t verbosity_level = 0;
  3677. if (code_seen('V')) {
  3678. // Just 'V' without a number counts as V1.
  3679. char c = strchr_pointer[1];
  3680. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3681. }
  3682. #endif //SUPPORT_VERBOSITY
  3683. // Firstly check if we know where we are
  3684. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3685. // We don't know where we are! HOME!
  3686. // Push the commands to the front of the message queue in the reverse order!
  3687. // There shall be always enough space reserved for these commands.
  3688. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3689. repeatcommand_front(); // repeat G80 with all its parameters
  3690. enquecommand_front_P((PSTR("G28 W0")));
  3691. }
  3692. else {
  3693. mesh_bed_leveling_flag = false;
  3694. }
  3695. break;
  3696. }
  3697. bool temp_comp_start = true;
  3698. #ifdef PINDA_THERMISTOR
  3699. temp_comp_start = false;
  3700. #endif //PINDA_THERMISTOR
  3701. if (temp_comp_start)
  3702. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3703. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3704. temp_compensation_start();
  3705. run = true;
  3706. repeatcommand_front(); // repeat G80 with all its parameters
  3707. enquecommand_front_P((PSTR("G28 W0")));
  3708. }
  3709. else {
  3710. mesh_bed_leveling_flag = false;
  3711. }
  3712. break;
  3713. }
  3714. run = false;
  3715. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3716. mesh_bed_leveling_flag = false;
  3717. break;
  3718. }
  3719. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3720. unsigned int custom_message_type_old = custom_message_type;
  3721. unsigned int custom_message_state_old = custom_message_state;
  3722. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3723. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3724. lcd_update(1);
  3725. mbl.reset(); //reset mesh bed leveling
  3726. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3727. // consumed during the first movements following this statement.
  3728. babystep_undo();
  3729. // Cycle through all points and probe them
  3730. // First move up. During this first movement, the babystepping will be reverted.
  3731. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3733. // The move to the first calibration point.
  3734. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3735. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3736. #ifdef SUPPORT_VERBOSITY
  3737. if (verbosity_level >= 1)
  3738. {
  3739. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3740. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3741. }
  3742. #endif //SUPPORT_VERBOSITY
  3743. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3745. // Wait until the move is finished.
  3746. st_synchronize();
  3747. int mesh_point = 0; //index number of calibration point
  3748. int ix = 0;
  3749. int iy = 0;
  3750. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3751. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3752. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3753. #ifdef SUPPORT_VERBOSITY
  3754. if (verbosity_level >= 1) {
  3755. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3756. }
  3757. #endif // SUPPORT_VERBOSITY
  3758. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3759. const char *kill_message = NULL;
  3760. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3761. // Get coords of a measuring point.
  3762. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3763. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3764. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3765. float z0 = 0.f;
  3766. if (has_z && mesh_point > 0) {
  3767. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3768. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3769. //#if 0
  3770. #ifdef SUPPORT_VERBOSITY
  3771. if (verbosity_level >= 1) {
  3772. SERIAL_ECHOLNPGM("");
  3773. SERIAL_ECHOPGM("Bed leveling, point: ");
  3774. MYSERIAL.print(mesh_point);
  3775. SERIAL_ECHOPGM(", calibration z: ");
  3776. MYSERIAL.print(z0, 5);
  3777. SERIAL_ECHOLNPGM("");
  3778. }
  3779. #endif // SUPPORT_VERBOSITY
  3780. //#endif
  3781. }
  3782. // Move Z up to MESH_HOME_Z_SEARCH.
  3783. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3785. st_synchronize();
  3786. // Move to XY position of the sensor point.
  3787. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3788. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3789. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3790. #ifdef SUPPORT_VERBOSITY
  3791. if (verbosity_level >= 1) {
  3792. SERIAL_PROTOCOL(mesh_point);
  3793. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3794. }
  3795. #endif // SUPPORT_VERBOSITY
  3796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3797. st_synchronize();
  3798. // Go down until endstop is hit
  3799. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3800. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3801. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3802. break;
  3803. }
  3804. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3805. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3806. break;
  3807. }
  3808. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3809. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3810. break;
  3811. }
  3812. #ifdef SUPPORT_VERBOSITY
  3813. if (verbosity_level >= 10) {
  3814. SERIAL_ECHOPGM("X: ");
  3815. MYSERIAL.print(current_position[X_AXIS], 5);
  3816. SERIAL_ECHOLNPGM("");
  3817. SERIAL_ECHOPGM("Y: ");
  3818. MYSERIAL.print(current_position[Y_AXIS], 5);
  3819. SERIAL_PROTOCOLPGM("\n");
  3820. }
  3821. #endif // SUPPORT_VERBOSITY
  3822. float offset_z = 0;
  3823. #ifdef PINDA_THERMISTOR
  3824. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3825. #endif //PINDA_THERMISTOR
  3826. // #ifdef SUPPORT_VERBOSITY
  3827. /* if (verbosity_level >= 1)
  3828. {
  3829. SERIAL_ECHOPGM("mesh bed leveling: ");
  3830. MYSERIAL.print(current_position[Z_AXIS], 5);
  3831. SERIAL_ECHOPGM(" offset: ");
  3832. MYSERIAL.print(offset_z, 5);
  3833. SERIAL_ECHOLNPGM("");
  3834. }*/
  3835. // #endif // SUPPORT_VERBOSITY
  3836. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3837. custom_message_state--;
  3838. mesh_point++;
  3839. lcd_update(1);
  3840. }
  3841. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3842. #ifdef SUPPORT_VERBOSITY
  3843. if (verbosity_level >= 20) {
  3844. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3845. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3846. MYSERIAL.print(current_position[Z_AXIS], 5);
  3847. }
  3848. #endif // SUPPORT_VERBOSITY
  3849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3850. st_synchronize();
  3851. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3852. kill(kill_message);
  3853. SERIAL_ECHOLNPGM("killed");
  3854. }
  3855. clean_up_after_endstop_move(l_feedmultiply);
  3856. // SERIAL_ECHOLNPGM("clean up finished ");
  3857. bool apply_temp_comp = true;
  3858. #ifdef PINDA_THERMISTOR
  3859. apply_temp_comp = false;
  3860. #endif
  3861. if (apply_temp_comp)
  3862. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3863. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3864. // SERIAL_ECHOLNPGM("babystep applied");
  3865. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3866. #ifdef SUPPORT_VERBOSITY
  3867. if (verbosity_level >= 1) {
  3868. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3869. }
  3870. #endif // SUPPORT_VERBOSITY
  3871. for (uint8_t i = 0; i < 4; ++i) {
  3872. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3873. long correction = 0;
  3874. if (code_seen(codes[i]))
  3875. correction = code_value_long();
  3876. else if (eeprom_bed_correction_valid) {
  3877. unsigned char *addr = (i < 2) ?
  3878. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3879. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3880. correction = eeprom_read_int8(addr);
  3881. }
  3882. if (correction == 0)
  3883. continue;
  3884. float offset = float(correction) * 0.001f;
  3885. if (fabs(offset) > 0.101f) {
  3886. SERIAL_ERROR_START;
  3887. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3888. SERIAL_ECHO(offset);
  3889. SERIAL_ECHOLNPGM(" microns");
  3890. }
  3891. else {
  3892. switch (i) {
  3893. case 0:
  3894. for (uint8_t row = 0; row < 3; ++row) {
  3895. mbl.z_values[row][1] += 0.5f * offset;
  3896. mbl.z_values[row][0] += offset;
  3897. }
  3898. break;
  3899. case 1:
  3900. for (uint8_t row = 0; row < 3; ++row) {
  3901. mbl.z_values[row][1] += 0.5f * offset;
  3902. mbl.z_values[row][2] += offset;
  3903. }
  3904. break;
  3905. case 2:
  3906. for (uint8_t col = 0; col < 3; ++col) {
  3907. mbl.z_values[1][col] += 0.5f * offset;
  3908. mbl.z_values[0][col] += offset;
  3909. }
  3910. break;
  3911. case 3:
  3912. for (uint8_t col = 0; col < 3; ++col) {
  3913. mbl.z_values[1][col] += 0.5f * offset;
  3914. mbl.z_values[2][col] += offset;
  3915. }
  3916. break;
  3917. }
  3918. }
  3919. }
  3920. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3921. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3922. // SERIAL_ECHOLNPGM("Upsample finished");
  3923. mbl.active = 1; //activate mesh bed leveling
  3924. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3925. go_home_with_z_lift();
  3926. // SERIAL_ECHOLNPGM("Go home finished");
  3927. //unretract (after PINDA preheat retraction)
  3928. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3929. current_position[E_AXIS] += default_retraction;
  3930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3931. }
  3932. KEEPALIVE_STATE(NOT_BUSY);
  3933. // Restore custom message state
  3934. lcd_setstatuspgm(_T(WELCOME_MSG));
  3935. custom_message_type = custom_message_type_old;
  3936. custom_message_state = custom_message_state_old;
  3937. mesh_bed_leveling_flag = false;
  3938. mesh_bed_run_from_menu = false;
  3939. lcd_update(2);
  3940. }
  3941. break;
  3942. /**
  3943. * G81: Print mesh bed leveling status and bed profile if activated
  3944. */
  3945. case 81:
  3946. if (mbl.active) {
  3947. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3948. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3949. SERIAL_PROTOCOLPGM(",");
  3950. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3951. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3952. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3953. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3954. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3955. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3956. SERIAL_PROTOCOLPGM(" ");
  3957. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3958. }
  3959. SERIAL_PROTOCOLPGM("\n");
  3960. }
  3961. }
  3962. else
  3963. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3964. break;
  3965. #if 0
  3966. /**
  3967. * G82: Single Z probe at current location
  3968. *
  3969. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3970. *
  3971. */
  3972. case 82:
  3973. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3974. int l_feedmultiply = setup_for_endstop_move();
  3975. find_bed_induction_sensor_point_z();
  3976. clean_up_after_endstop_move(l_feedmultiply);
  3977. SERIAL_PROTOCOLPGM("Bed found at: ");
  3978. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3979. SERIAL_PROTOCOLPGM("\n");
  3980. break;
  3981. /**
  3982. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3983. */
  3984. case 83:
  3985. {
  3986. int babystepz = code_seen('S') ? code_value() : 0;
  3987. int BabyPosition = code_seen('P') ? code_value() : 0;
  3988. if (babystepz != 0) {
  3989. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3990. // Is the axis indexed starting with zero or one?
  3991. if (BabyPosition > 4) {
  3992. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3993. }else{
  3994. // Save it to the eeprom
  3995. babystepLoadZ = babystepz;
  3996. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3997. // adjust the Z
  3998. babystepsTodoZadd(babystepLoadZ);
  3999. }
  4000. }
  4001. }
  4002. break;
  4003. /**
  4004. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4005. */
  4006. case 84:
  4007. babystepsTodoZsubtract(babystepLoadZ);
  4008. // babystepLoadZ = 0;
  4009. break;
  4010. /**
  4011. * G85: Prusa3D specific: Pick best babystep
  4012. */
  4013. case 85:
  4014. lcd_pick_babystep();
  4015. break;
  4016. #endif
  4017. /**
  4018. * G86: Prusa3D specific: Disable babystep correction after home.
  4019. * This G-code will be performed at the start of a calibration script.
  4020. */
  4021. case 86:
  4022. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4023. break;
  4024. /**
  4025. * G87: Prusa3D specific: Enable babystep correction after home
  4026. * This G-code will be performed at the end of a calibration script.
  4027. */
  4028. case 87:
  4029. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4030. break;
  4031. /**
  4032. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4033. */
  4034. case 88:
  4035. break;
  4036. #endif // ENABLE_MESH_BED_LEVELING
  4037. case 90: // G90
  4038. relative_mode = false;
  4039. break;
  4040. case 91: // G91
  4041. relative_mode = true;
  4042. break;
  4043. case 92: // G92
  4044. if(!code_seen(axis_codes[E_AXIS]))
  4045. st_synchronize();
  4046. for(int8_t i=0; i < NUM_AXIS; i++) {
  4047. if(code_seen(axis_codes[i])) {
  4048. if(i == E_AXIS) {
  4049. current_position[i] = code_value();
  4050. plan_set_e_position(current_position[E_AXIS]);
  4051. }
  4052. else {
  4053. current_position[i] = code_value()+add_homing[i];
  4054. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4055. }
  4056. }
  4057. }
  4058. break;
  4059. case 98: // G98 (activate farm mode)
  4060. farm_mode = 1;
  4061. PingTime = millis();
  4062. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4063. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4064. SilentModeMenu = SILENT_MODE_OFF;
  4065. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4066. break;
  4067. case 99: // G99 (deactivate farm mode)
  4068. farm_mode = 0;
  4069. lcd_printer_connected();
  4070. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4071. lcd_update(2);
  4072. break;
  4073. default:
  4074. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4075. }
  4076. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4077. gcode_in_progress = 0;
  4078. } // end if(code_seen('G'))
  4079. else if(code_seen('M'))
  4080. {
  4081. int index;
  4082. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4083. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4084. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4085. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4086. } else
  4087. {
  4088. mcode_in_progress = (int)code_value();
  4089. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4090. switch(mcode_in_progress)
  4091. {
  4092. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4093. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4094. {
  4095. char *src = strchr_pointer + 2;
  4096. codenum = 0;
  4097. bool hasP = false, hasS = false;
  4098. if (code_seen('P')) {
  4099. codenum = code_value(); // milliseconds to wait
  4100. hasP = codenum > 0;
  4101. }
  4102. if (code_seen('S')) {
  4103. codenum = code_value() * 1000; // seconds to wait
  4104. hasS = codenum > 0;
  4105. }
  4106. starpos = strchr(src, '*');
  4107. if (starpos != NULL) *(starpos) = '\0';
  4108. while (*src == ' ') ++src;
  4109. if (!hasP && !hasS && *src != '\0') {
  4110. lcd_setstatus(src);
  4111. } else {
  4112. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4113. }
  4114. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4115. st_synchronize();
  4116. previous_millis_cmd = millis();
  4117. if (codenum > 0){
  4118. codenum += millis(); // keep track of when we started waiting
  4119. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4120. while(millis() < codenum && !lcd_clicked()){
  4121. manage_heater();
  4122. manage_inactivity(true);
  4123. lcd_update(0);
  4124. }
  4125. KEEPALIVE_STATE(IN_HANDLER);
  4126. lcd_ignore_click(false);
  4127. }else{
  4128. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4129. while(!lcd_clicked()){
  4130. manage_heater();
  4131. manage_inactivity(true);
  4132. lcd_update(0);
  4133. }
  4134. KEEPALIVE_STATE(IN_HANDLER);
  4135. }
  4136. if (IS_SD_PRINTING)
  4137. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4138. else
  4139. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4140. }
  4141. break;
  4142. case 17:
  4143. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4144. enable_x();
  4145. enable_y();
  4146. enable_z();
  4147. enable_e0();
  4148. enable_e1();
  4149. enable_e2();
  4150. break;
  4151. #ifdef SDSUPPORT
  4152. case 20: // M20 - list SD card
  4153. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4154. card.ls();
  4155. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4156. break;
  4157. case 21: // M21 - init SD card
  4158. card.initsd();
  4159. break;
  4160. case 22: //M22 - release SD card
  4161. card.release();
  4162. break;
  4163. case 23: //M23 - Select file
  4164. starpos = (strchr(strchr_pointer + 4,'*'));
  4165. if(starpos!=NULL)
  4166. *(starpos)='\0';
  4167. card.openFile(strchr_pointer + 4,true);
  4168. break;
  4169. case 24: //M24 - Start SD print
  4170. if (!card.paused)
  4171. failstats_reset_print();
  4172. card.startFileprint();
  4173. starttime=millis();
  4174. break;
  4175. case 25: //M25 - Pause SD print
  4176. card.pauseSDPrint();
  4177. break;
  4178. case 26: //M26 - Set SD index
  4179. if(card.cardOK && code_seen('S')) {
  4180. card.setIndex(code_value_long());
  4181. }
  4182. break;
  4183. case 27: //M27 - Get SD status
  4184. card.getStatus();
  4185. break;
  4186. case 28: //M28 - Start SD write
  4187. starpos = (strchr(strchr_pointer + 4,'*'));
  4188. if(starpos != NULL){
  4189. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4190. strchr_pointer = strchr(npos,' ') + 1;
  4191. *(starpos) = '\0';
  4192. }
  4193. card.openFile(strchr_pointer+4,false);
  4194. break;
  4195. case 29: //M29 - Stop SD write
  4196. //processed in write to file routine above
  4197. //card,saving = false;
  4198. break;
  4199. case 30: //M30 <filename> Delete File
  4200. if (card.cardOK){
  4201. card.closefile();
  4202. starpos = (strchr(strchr_pointer + 4,'*'));
  4203. if(starpos != NULL){
  4204. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4205. strchr_pointer = strchr(npos,' ') + 1;
  4206. *(starpos) = '\0';
  4207. }
  4208. card.removeFile(strchr_pointer + 4);
  4209. }
  4210. break;
  4211. case 32: //M32 - Select file and start SD print
  4212. {
  4213. if(card.sdprinting) {
  4214. st_synchronize();
  4215. }
  4216. starpos = (strchr(strchr_pointer + 4,'*'));
  4217. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4218. if(namestartpos==NULL)
  4219. {
  4220. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4221. }
  4222. else
  4223. namestartpos++; //to skip the '!'
  4224. if(starpos!=NULL)
  4225. *(starpos)='\0';
  4226. bool call_procedure=(code_seen('P'));
  4227. if(strchr_pointer>namestartpos)
  4228. call_procedure=false; //false alert, 'P' found within filename
  4229. if( card.cardOK )
  4230. {
  4231. card.openFile(namestartpos,true,!call_procedure);
  4232. if(code_seen('S'))
  4233. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4234. card.setIndex(code_value_long());
  4235. card.startFileprint();
  4236. if(!call_procedure)
  4237. starttime=millis(); //procedure calls count as normal print time.
  4238. }
  4239. } break;
  4240. case 928: //M928 - Start SD write
  4241. starpos = (strchr(strchr_pointer + 5,'*'));
  4242. if(starpos != NULL){
  4243. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4244. strchr_pointer = strchr(npos,' ') + 1;
  4245. *(starpos) = '\0';
  4246. }
  4247. card.openLogFile(strchr_pointer+5);
  4248. break;
  4249. #endif //SDSUPPORT
  4250. case 31: //M31 take time since the start of the SD print or an M109 command
  4251. {
  4252. stoptime=millis();
  4253. char time[30];
  4254. unsigned long t=(stoptime-starttime)/1000;
  4255. int sec,min;
  4256. min=t/60;
  4257. sec=t%60;
  4258. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4259. SERIAL_ECHO_START;
  4260. SERIAL_ECHOLN(time);
  4261. lcd_setstatus(time);
  4262. autotempShutdown();
  4263. }
  4264. break;
  4265. case 42: //M42 -Change pin status via gcode
  4266. if (code_seen('S'))
  4267. {
  4268. int pin_status = code_value();
  4269. int pin_number = LED_PIN;
  4270. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4271. pin_number = code_value();
  4272. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4273. {
  4274. if (sensitive_pins[i] == pin_number)
  4275. {
  4276. pin_number = -1;
  4277. break;
  4278. }
  4279. }
  4280. #if defined(FAN_PIN) && FAN_PIN > -1
  4281. if (pin_number == FAN_PIN)
  4282. fanSpeed = pin_status;
  4283. #endif
  4284. if (pin_number > -1)
  4285. {
  4286. pinMode(pin_number, OUTPUT);
  4287. digitalWrite(pin_number, pin_status);
  4288. analogWrite(pin_number, pin_status);
  4289. }
  4290. }
  4291. break;
  4292. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4293. // Reset the baby step value and the baby step applied flag.
  4294. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4295. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4296. // Reset the skew and offset in both RAM and EEPROM.
  4297. reset_bed_offset_and_skew();
  4298. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4299. // the planner will not perform any adjustments in the XY plane.
  4300. // Wait for the motors to stop and update the current position with the absolute values.
  4301. world2machine_revert_to_uncorrected();
  4302. break;
  4303. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4304. {
  4305. int8_t verbosity_level = 0;
  4306. bool only_Z = code_seen('Z');
  4307. #ifdef SUPPORT_VERBOSITY
  4308. if (code_seen('V'))
  4309. {
  4310. // Just 'V' without a number counts as V1.
  4311. char c = strchr_pointer[1];
  4312. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4313. }
  4314. #endif //SUPPORT_VERBOSITY
  4315. gcode_M45(only_Z, verbosity_level);
  4316. }
  4317. break;
  4318. /*
  4319. case 46:
  4320. {
  4321. // M46: Prusa3D: Show the assigned IP address.
  4322. uint8_t ip[4];
  4323. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4324. if (hasIP) {
  4325. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4326. SERIAL_ECHO(int(ip[0]));
  4327. SERIAL_ECHOPGM(".");
  4328. SERIAL_ECHO(int(ip[1]));
  4329. SERIAL_ECHOPGM(".");
  4330. SERIAL_ECHO(int(ip[2]));
  4331. SERIAL_ECHOPGM(".");
  4332. SERIAL_ECHO(int(ip[3]));
  4333. SERIAL_ECHOLNPGM("");
  4334. } else {
  4335. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4336. }
  4337. break;
  4338. }
  4339. */
  4340. case 47:
  4341. // M47: Prusa3D: Show end stops dialog on the display.
  4342. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4343. lcd_diag_show_end_stops();
  4344. KEEPALIVE_STATE(IN_HANDLER);
  4345. break;
  4346. #if 0
  4347. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4348. {
  4349. // Disable the default update procedure of the display. We will do a modal dialog.
  4350. lcd_update_enable(false);
  4351. // Let the planner use the uncorrected coordinates.
  4352. mbl.reset();
  4353. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4354. // the planner will not perform any adjustments in the XY plane.
  4355. // Wait for the motors to stop and update the current position with the absolute values.
  4356. world2machine_revert_to_uncorrected();
  4357. // Move the print head close to the bed.
  4358. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4360. st_synchronize();
  4361. // Home in the XY plane.
  4362. set_destination_to_current();
  4363. int l_feedmultiply = setup_for_endstop_move();
  4364. home_xy();
  4365. int8_t verbosity_level = 0;
  4366. if (code_seen('V')) {
  4367. // Just 'V' without a number counts as V1.
  4368. char c = strchr_pointer[1];
  4369. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4370. }
  4371. bool success = scan_bed_induction_points(verbosity_level);
  4372. clean_up_after_endstop_move(l_feedmultiply);
  4373. // Print head up.
  4374. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4376. st_synchronize();
  4377. lcd_update_enable(true);
  4378. break;
  4379. }
  4380. #endif
  4381. // M48 Z-Probe repeatability measurement function.
  4382. //
  4383. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4384. //
  4385. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4386. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4387. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4388. // regenerated.
  4389. //
  4390. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4391. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4392. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4393. //
  4394. #ifdef ENABLE_AUTO_BED_LEVELING
  4395. #ifdef Z_PROBE_REPEATABILITY_TEST
  4396. case 48: // M48 Z-Probe repeatability
  4397. {
  4398. #if Z_MIN_PIN == -1
  4399. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4400. #endif
  4401. double sum=0.0;
  4402. double mean=0.0;
  4403. double sigma=0.0;
  4404. double sample_set[50];
  4405. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4406. double X_current, Y_current, Z_current;
  4407. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4408. if (code_seen('V') || code_seen('v')) {
  4409. verbose_level = code_value();
  4410. if (verbose_level<0 || verbose_level>4 ) {
  4411. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4412. goto Sigma_Exit;
  4413. }
  4414. }
  4415. if (verbose_level > 0) {
  4416. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4417. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4418. }
  4419. if (code_seen('n')) {
  4420. n_samples = code_value();
  4421. if (n_samples<4 || n_samples>50 ) {
  4422. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4423. goto Sigma_Exit;
  4424. }
  4425. }
  4426. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4427. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4428. Z_current = st_get_position_mm(Z_AXIS);
  4429. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4430. ext_position = st_get_position_mm(E_AXIS);
  4431. if (code_seen('X') || code_seen('x') ) {
  4432. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4433. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4434. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4435. goto Sigma_Exit;
  4436. }
  4437. }
  4438. if (code_seen('Y') || code_seen('y') ) {
  4439. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4440. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4441. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4442. goto Sigma_Exit;
  4443. }
  4444. }
  4445. if (code_seen('L') || code_seen('l') ) {
  4446. n_legs = code_value();
  4447. if ( n_legs==1 )
  4448. n_legs = 2;
  4449. if ( n_legs<0 || n_legs>15 ) {
  4450. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4451. goto Sigma_Exit;
  4452. }
  4453. }
  4454. //
  4455. // Do all the preliminary setup work. First raise the probe.
  4456. //
  4457. st_synchronize();
  4458. plan_bed_level_matrix.set_to_identity();
  4459. plan_buffer_line( X_current, Y_current, Z_start_location,
  4460. ext_position,
  4461. homing_feedrate[Z_AXIS]/60,
  4462. active_extruder);
  4463. st_synchronize();
  4464. //
  4465. // Now get everything to the specified probe point So we can safely do a probe to
  4466. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4467. // use that as a starting point for each probe.
  4468. //
  4469. if (verbose_level > 2)
  4470. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4471. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4472. ext_position,
  4473. homing_feedrate[X_AXIS]/60,
  4474. active_extruder);
  4475. st_synchronize();
  4476. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4477. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4478. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4479. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4480. //
  4481. // OK, do the inital probe to get us close to the bed.
  4482. // Then retrace the right amount and use that in subsequent probes
  4483. //
  4484. int l_feedmultiply = setup_for_endstop_move();
  4485. run_z_probe();
  4486. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4487. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4488. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4489. ext_position,
  4490. homing_feedrate[X_AXIS]/60,
  4491. active_extruder);
  4492. st_synchronize();
  4493. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4494. for( n=0; n<n_samples; n++) {
  4495. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4496. if ( n_legs) {
  4497. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4498. int rotational_direction, l;
  4499. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4500. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4501. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4502. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4503. //SERIAL_ECHOPAIR(" theta: ",theta);
  4504. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4505. //SERIAL_PROTOCOLLNPGM("");
  4506. for( l=0; l<n_legs-1; l++) {
  4507. if (rotational_direction==1)
  4508. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4509. else
  4510. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4511. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4512. if ( radius<0.0 )
  4513. radius = -radius;
  4514. X_current = X_probe_location + cos(theta) * radius;
  4515. Y_current = Y_probe_location + sin(theta) * radius;
  4516. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4517. X_current = X_MIN_POS;
  4518. if ( X_current>X_MAX_POS)
  4519. X_current = X_MAX_POS;
  4520. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4521. Y_current = Y_MIN_POS;
  4522. if ( Y_current>Y_MAX_POS)
  4523. Y_current = Y_MAX_POS;
  4524. if (verbose_level>3 ) {
  4525. SERIAL_ECHOPAIR("x: ", X_current);
  4526. SERIAL_ECHOPAIR("y: ", Y_current);
  4527. SERIAL_PROTOCOLLNPGM("");
  4528. }
  4529. do_blocking_move_to( X_current, Y_current, Z_current );
  4530. }
  4531. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4532. }
  4533. int l_feedmultiply = setup_for_endstop_move();
  4534. run_z_probe();
  4535. sample_set[n] = current_position[Z_AXIS];
  4536. //
  4537. // Get the current mean for the data points we have so far
  4538. //
  4539. sum=0.0;
  4540. for( j=0; j<=n; j++) {
  4541. sum = sum + sample_set[j];
  4542. }
  4543. mean = sum / (double (n+1));
  4544. //
  4545. // Now, use that mean to calculate the standard deviation for the
  4546. // data points we have so far
  4547. //
  4548. sum=0.0;
  4549. for( j=0; j<=n; j++) {
  4550. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4551. }
  4552. sigma = sqrt( sum / (double (n+1)) );
  4553. if (verbose_level > 1) {
  4554. SERIAL_PROTOCOL(n+1);
  4555. SERIAL_PROTOCOL(" of ");
  4556. SERIAL_PROTOCOL(n_samples);
  4557. SERIAL_PROTOCOLPGM(" z: ");
  4558. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4559. }
  4560. if (verbose_level > 2) {
  4561. SERIAL_PROTOCOL(" mean: ");
  4562. SERIAL_PROTOCOL_F(mean,6);
  4563. SERIAL_PROTOCOL(" sigma: ");
  4564. SERIAL_PROTOCOL_F(sigma,6);
  4565. }
  4566. if (verbose_level > 0)
  4567. SERIAL_PROTOCOLPGM("\n");
  4568. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4569. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4570. st_synchronize();
  4571. }
  4572. delay(1000);
  4573. clean_up_after_endstop_move(l_feedmultiply);
  4574. // enable_endstops(true);
  4575. if (verbose_level > 0) {
  4576. SERIAL_PROTOCOLPGM("Mean: ");
  4577. SERIAL_PROTOCOL_F(mean, 6);
  4578. SERIAL_PROTOCOLPGM("\n");
  4579. }
  4580. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4581. SERIAL_PROTOCOL_F(sigma, 6);
  4582. SERIAL_PROTOCOLPGM("\n\n");
  4583. Sigma_Exit:
  4584. break;
  4585. }
  4586. #endif // Z_PROBE_REPEATABILITY_TEST
  4587. #endif // ENABLE_AUTO_BED_LEVELING
  4588. case 73: //M73 show percent done and time remaining
  4589. if(code_seen('P')) print_percent_done_normal = code_value();
  4590. if(code_seen('R')) print_time_remaining_normal = code_value();
  4591. if(code_seen('Q')) print_percent_done_silent = code_value();
  4592. if(code_seen('S')) print_time_remaining_silent = code_value();
  4593. {
  4594. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4595. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4596. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4597. }
  4598. break;
  4599. case 104: // M104
  4600. {
  4601. uint8_t extruder;
  4602. if(setTargetedHotend(104,extruder)){
  4603. break;
  4604. }
  4605. if (code_seen('S'))
  4606. {
  4607. setTargetHotendSafe(code_value(), extruder);
  4608. }
  4609. setWatch();
  4610. break;
  4611. }
  4612. case 112: // M112 -Emergency Stop
  4613. kill(_n(""), 3);
  4614. break;
  4615. case 140: // M140 set bed temp
  4616. if (code_seen('S')) setTargetBed(code_value());
  4617. break;
  4618. case 105 : // M105
  4619. {
  4620. uint8_t extruder;
  4621. if(setTargetedHotend(105, extruder)){
  4622. break;
  4623. }
  4624. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4625. SERIAL_PROTOCOLPGM("ok T:");
  4626. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4627. SERIAL_PROTOCOLPGM(" /");
  4628. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4629. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4630. SERIAL_PROTOCOLPGM(" B:");
  4631. SERIAL_PROTOCOL_F(degBed(),1);
  4632. SERIAL_PROTOCOLPGM(" /");
  4633. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4634. #endif //TEMP_BED_PIN
  4635. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4636. SERIAL_PROTOCOLPGM(" T");
  4637. SERIAL_PROTOCOL(cur_extruder);
  4638. SERIAL_PROTOCOLPGM(":");
  4639. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4640. SERIAL_PROTOCOLPGM(" /");
  4641. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4642. }
  4643. #else
  4644. SERIAL_ERROR_START;
  4645. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4646. #endif
  4647. SERIAL_PROTOCOLPGM(" @:");
  4648. #ifdef EXTRUDER_WATTS
  4649. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4650. SERIAL_PROTOCOLPGM("W");
  4651. #else
  4652. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4653. #endif
  4654. SERIAL_PROTOCOLPGM(" B@:");
  4655. #ifdef BED_WATTS
  4656. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4657. SERIAL_PROTOCOLPGM("W");
  4658. #else
  4659. SERIAL_PROTOCOL(getHeaterPower(-1));
  4660. #endif
  4661. #ifdef PINDA_THERMISTOR
  4662. SERIAL_PROTOCOLPGM(" P:");
  4663. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4664. #endif //PINDA_THERMISTOR
  4665. #ifdef AMBIENT_THERMISTOR
  4666. SERIAL_PROTOCOLPGM(" A:");
  4667. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4668. #endif //AMBIENT_THERMISTOR
  4669. #ifdef SHOW_TEMP_ADC_VALUES
  4670. {float raw = 0.0;
  4671. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4672. SERIAL_PROTOCOLPGM(" ADC B:");
  4673. SERIAL_PROTOCOL_F(degBed(),1);
  4674. SERIAL_PROTOCOLPGM("C->");
  4675. raw = rawBedTemp();
  4676. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4677. SERIAL_PROTOCOLPGM(" Rb->");
  4678. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4679. SERIAL_PROTOCOLPGM(" Rxb->");
  4680. SERIAL_PROTOCOL_F(raw, 5);
  4681. #endif
  4682. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4683. SERIAL_PROTOCOLPGM(" T");
  4684. SERIAL_PROTOCOL(cur_extruder);
  4685. SERIAL_PROTOCOLPGM(":");
  4686. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4687. SERIAL_PROTOCOLPGM("C->");
  4688. raw = rawHotendTemp(cur_extruder);
  4689. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4690. SERIAL_PROTOCOLPGM(" Rt");
  4691. SERIAL_PROTOCOL(cur_extruder);
  4692. SERIAL_PROTOCOLPGM("->");
  4693. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4694. SERIAL_PROTOCOLPGM(" Rx");
  4695. SERIAL_PROTOCOL(cur_extruder);
  4696. SERIAL_PROTOCOLPGM("->");
  4697. SERIAL_PROTOCOL_F(raw, 5);
  4698. }}
  4699. #endif
  4700. SERIAL_PROTOCOLLN("");
  4701. KEEPALIVE_STATE(NOT_BUSY);
  4702. return;
  4703. break;
  4704. }
  4705. case 109:
  4706. {// M109 - Wait for extruder heater to reach target.
  4707. uint8_t extruder;
  4708. if(setTargetedHotend(109, extruder)){
  4709. break;
  4710. }
  4711. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4712. heating_status = 1;
  4713. if (farm_mode) { prusa_statistics(1); };
  4714. #ifdef AUTOTEMP
  4715. autotemp_enabled=false;
  4716. #endif
  4717. if (code_seen('S')) {
  4718. setTargetHotendSafe(code_value(), extruder);
  4719. CooldownNoWait = true;
  4720. } else if (code_seen('R')) {
  4721. setTargetHotendSafe(code_value(), extruder);
  4722. CooldownNoWait = false;
  4723. }
  4724. #ifdef AUTOTEMP
  4725. if (code_seen('S')) autotemp_min=code_value();
  4726. if (code_seen('B')) autotemp_max=code_value();
  4727. if (code_seen('F'))
  4728. {
  4729. autotemp_factor=code_value();
  4730. autotemp_enabled=true;
  4731. }
  4732. #endif
  4733. setWatch();
  4734. codenum = millis();
  4735. /* See if we are heating up or cooling down */
  4736. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4737. KEEPALIVE_STATE(NOT_BUSY);
  4738. cancel_heatup = false;
  4739. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4740. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4741. KEEPALIVE_STATE(IN_HANDLER);
  4742. heating_status = 2;
  4743. if (farm_mode) { prusa_statistics(2); };
  4744. //starttime=millis();
  4745. previous_millis_cmd = millis();
  4746. }
  4747. break;
  4748. case 190: // M190 - Wait for bed heater to reach target.
  4749. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4750. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4751. heating_status = 3;
  4752. if (farm_mode) { prusa_statistics(1); };
  4753. if (code_seen('S'))
  4754. {
  4755. setTargetBed(code_value());
  4756. CooldownNoWait = true;
  4757. }
  4758. else if (code_seen('R'))
  4759. {
  4760. setTargetBed(code_value());
  4761. CooldownNoWait = false;
  4762. }
  4763. codenum = millis();
  4764. cancel_heatup = false;
  4765. target_direction = isHeatingBed(); // true if heating, false if cooling
  4766. KEEPALIVE_STATE(NOT_BUSY);
  4767. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4768. {
  4769. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4770. {
  4771. if (!farm_mode) {
  4772. float tt = degHotend(active_extruder);
  4773. SERIAL_PROTOCOLPGM("T:");
  4774. SERIAL_PROTOCOL(tt);
  4775. SERIAL_PROTOCOLPGM(" E:");
  4776. SERIAL_PROTOCOL((int)active_extruder);
  4777. SERIAL_PROTOCOLPGM(" B:");
  4778. SERIAL_PROTOCOL_F(degBed(), 1);
  4779. SERIAL_PROTOCOLLN("");
  4780. }
  4781. codenum = millis();
  4782. }
  4783. manage_heater();
  4784. manage_inactivity();
  4785. lcd_update(0);
  4786. }
  4787. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4788. KEEPALIVE_STATE(IN_HANDLER);
  4789. heating_status = 4;
  4790. previous_millis_cmd = millis();
  4791. #endif
  4792. break;
  4793. #if defined(FAN_PIN) && FAN_PIN > -1
  4794. case 106: //M106 Fan On
  4795. if (code_seen('S')){
  4796. fanSpeed=constrain(code_value(),0,255);
  4797. }
  4798. else {
  4799. fanSpeed=255;
  4800. }
  4801. break;
  4802. case 107: //M107 Fan Off
  4803. fanSpeed = 0;
  4804. break;
  4805. #endif //FAN_PIN
  4806. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4807. case 80: // M80 - Turn on Power Supply
  4808. SET_OUTPUT(PS_ON_PIN); //GND
  4809. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4810. // If you have a switch on suicide pin, this is useful
  4811. // if you want to start another print with suicide feature after
  4812. // a print without suicide...
  4813. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4814. SET_OUTPUT(SUICIDE_PIN);
  4815. WRITE(SUICIDE_PIN, HIGH);
  4816. #endif
  4817. powersupply = true;
  4818. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4819. lcd_update(0);
  4820. break;
  4821. #endif
  4822. case 81: // M81 - Turn off Power Supply
  4823. disable_heater();
  4824. st_synchronize();
  4825. disable_e0();
  4826. disable_e1();
  4827. disable_e2();
  4828. finishAndDisableSteppers();
  4829. fanSpeed = 0;
  4830. delay(1000); // Wait a little before to switch off
  4831. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4832. st_synchronize();
  4833. suicide();
  4834. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4835. SET_OUTPUT(PS_ON_PIN);
  4836. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4837. #endif
  4838. powersupply = false;
  4839. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4840. lcd_update(0);
  4841. break;
  4842. case 82:
  4843. axis_relative_modes[3] = false;
  4844. break;
  4845. case 83:
  4846. axis_relative_modes[3] = true;
  4847. break;
  4848. case 18: //compatibility
  4849. case 84: // M84
  4850. if(code_seen('S')){
  4851. stepper_inactive_time = code_value() * 1000;
  4852. }
  4853. else
  4854. {
  4855. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4856. if(all_axis)
  4857. {
  4858. st_synchronize();
  4859. disable_e0();
  4860. disable_e1();
  4861. disable_e2();
  4862. finishAndDisableSteppers();
  4863. }
  4864. else
  4865. {
  4866. st_synchronize();
  4867. if (code_seen('X')) disable_x();
  4868. if (code_seen('Y')) disable_y();
  4869. if (code_seen('Z')) disable_z();
  4870. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4871. if (code_seen('E')) {
  4872. disable_e0();
  4873. disable_e1();
  4874. disable_e2();
  4875. }
  4876. #endif
  4877. }
  4878. }
  4879. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4880. print_time_remaining_init();
  4881. snmm_filaments_used = 0;
  4882. break;
  4883. case 85: // M85
  4884. if(code_seen('S')) {
  4885. max_inactive_time = code_value() * 1000;
  4886. }
  4887. break;
  4888. #ifdef SAFETYTIMER
  4889. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4890. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4891. if (code_seen('S')) {
  4892. safetytimer_inactive_time = code_value() * 1000;
  4893. safetyTimer.start();
  4894. }
  4895. break;
  4896. #endif
  4897. case 92: // M92
  4898. for(int8_t i=0; i < NUM_AXIS; i++)
  4899. {
  4900. if(code_seen(axis_codes[i]))
  4901. {
  4902. if(i == 3) { // E
  4903. float value = code_value();
  4904. if(value < 20.0) {
  4905. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4906. max_jerk[E_AXIS] *= factor;
  4907. max_feedrate[i] *= factor;
  4908. axis_steps_per_sqr_second[i] *= factor;
  4909. }
  4910. axis_steps_per_unit[i] = value;
  4911. }
  4912. else {
  4913. axis_steps_per_unit[i] = code_value();
  4914. }
  4915. }
  4916. }
  4917. break;
  4918. case 110: // M110 - reset line pos
  4919. if (code_seen('N'))
  4920. gcode_LastN = code_value_long();
  4921. break;
  4922. #ifdef HOST_KEEPALIVE_FEATURE
  4923. case 113: // M113 - Get or set Host Keepalive interval
  4924. if (code_seen('S')) {
  4925. host_keepalive_interval = (uint8_t)code_value_short();
  4926. // NOMORE(host_keepalive_interval, 60);
  4927. }
  4928. else {
  4929. SERIAL_ECHO_START;
  4930. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4931. SERIAL_PROTOCOLLN("");
  4932. }
  4933. break;
  4934. #endif
  4935. case 115: // M115
  4936. if (code_seen('V')) {
  4937. // Report the Prusa version number.
  4938. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4939. } else if (code_seen('U')) {
  4940. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4941. // pause the print and ask the user to upgrade the firmware.
  4942. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4943. } else {
  4944. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4945. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4946. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4947. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4948. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4949. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4950. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4951. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4952. SERIAL_ECHOPGM(" UUID:");
  4953. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4954. }
  4955. break;
  4956. /* case 117: // M117 display message
  4957. starpos = (strchr(strchr_pointer + 5,'*'));
  4958. if(starpos!=NULL)
  4959. *(starpos)='\0';
  4960. lcd_setstatus(strchr_pointer + 5);
  4961. break;*/
  4962. case 114: // M114
  4963. gcode_M114();
  4964. break;
  4965. case 120: // M120
  4966. enable_endstops(false) ;
  4967. break;
  4968. case 121: // M121
  4969. enable_endstops(true) ;
  4970. break;
  4971. case 119: // M119
  4972. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4973. SERIAL_PROTOCOLLN("");
  4974. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4975. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4976. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4977. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4978. }else{
  4979. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4980. }
  4981. SERIAL_PROTOCOLLN("");
  4982. #endif
  4983. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4984. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4985. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4986. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4987. }else{
  4988. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4989. }
  4990. SERIAL_PROTOCOLLN("");
  4991. #endif
  4992. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4993. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4994. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4995. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4996. }else{
  4997. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4998. }
  4999. SERIAL_PROTOCOLLN("");
  5000. #endif
  5001. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5002. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5003. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5004. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5005. }else{
  5006. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5007. }
  5008. SERIAL_PROTOCOLLN("");
  5009. #endif
  5010. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5011. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5012. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5013. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5014. }else{
  5015. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5016. }
  5017. SERIAL_PROTOCOLLN("");
  5018. #endif
  5019. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5020. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5021. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5022. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5023. }else{
  5024. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5025. }
  5026. SERIAL_PROTOCOLLN("");
  5027. #endif
  5028. break;
  5029. //TODO: update for all axis, use for loop
  5030. #ifdef BLINKM
  5031. case 150: // M150
  5032. {
  5033. byte red;
  5034. byte grn;
  5035. byte blu;
  5036. if(code_seen('R')) red = code_value();
  5037. if(code_seen('U')) grn = code_value();
  5038. if(code_seen('B')) blu = code_value();
  5039. SendColors(red,grn,blu);
  5040. }
  5041. break;
  5042. #endif //BLINKM
  5043. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5044. {
  5045. uint8_t extruder = active_extruder;
  5046. if(code_seen('T')) {
  5047. extruder = code_value();
  5048. if(extruder >= EXTRUDERS) {
  5049. SERIAL_ECHO_START;
  5050. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5051. break;
  5052. }
  5053. }
  5054. if(code_seen('D')) {
  5055. float diameter = (float)code_value();
  5056. if (diameter == 0.0) {
  5057. // setting any extruder filament size disables volumetric on the assumption that
  5058. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5059. // for all extruders
  5060. volumetric_enabled = false;
  5061. } else {
  5062. filament_size[extruder] = (float)code_value();
  5063. // make sure all extruders have some sane value for the filament size
  5064. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5065. #if EXTRUDERS > 1
  5066. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5067. #if EXTRUDERS > 2
  5068. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5069. #endif
  5070. #endif
  5071. volumetric_enabled = true;
  5072. }
  5073. } else {
  5074. //reserved for setting filament diameter via UFID or filament measuring device
  5075. break;
  5076. }
  5077. calculate_extruder_multipliers();
  5078. }
  5079. break;
  5080. case 201: // M201
  5081. for (int8_t i = 0; i < NUM_AXIS; i++)
  5082. {
  5083. if (code_seen(axis_codes[i]))
  5084. {
  5085. unsigned long val = code_value();
  5086. #ifdef TMC2130
  5087. unsigned long val_silent = val;
  5088. if ((i == X_AXIS) || (i == Y_AXIS))
  5089. {
  5090. if (val > NORMAL_MAX_ACCEL_XY)
  5091. val = NORMAL_MAX_ACCEL_XY;
  5092. if (val_silent > SILENT_MAX_ACCEL_XY)
  5093. val_silent = SILENT_MAX_ACCEL_XY;
  5094. }
  5095. max_acceleration_units_per_sq_second_normal[i] = val;
  5096. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5097. #else //TMC2130
  5098. max_acceleration_units_per_sq_second[i] = val;
  5099. #endif //TMC2130
  5100. }
  5101. }
  5102. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5103. reset_acceleration_rates();
  5104. break;
  5105. #if 0 // Not used for Sprinter/grbl gen6
  5106. case 202: // M202
  5107. for(int8_t i=0; i < NUM_AXIS; i++) {
  5108. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5109. }
  5110. break;
  5111. #endif
  5112. case 203: // M203 max feedrate mm/sec
  5113. for (int8_t i = 0; i < NUM_AXIS; i++)
  5114. {
  5115. if (code_seen(axis_codes[i]))
  5116. {
  5117. float val = code_value();
  5118. #ifdef TMC2130
  5119. float val_silent = val;
  5120. if ((i == X_AXIS) || (i == Y_AXIS))
  5121. {
  5122. if (val > NORMAL_MAX_FEEDRATE_XY)
  5123. val = NORMAL_MAX_FEEDRATE_XY;
  5124. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5125. val_silent = SILENT_MAX_FEEDRATE_XY;
  5126. }
  5127. max_feedrate_normal[i] = val;
  5128. max_feedrate_silent[i] = val_silent;
  5129. #else //TMC2130
  5130. max_feedrate[i] = val;
  5131. #endif //TMC2130
  5132. }
  5133. }
  5134. break;
  5135. case 204:
  5136. // M204 acclereration settings.
  5137. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5138. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5139. {
  5140. if(code_seen('S')) {
  5141. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5142. // and it is also generated by Slic3r to control acceleration per extrusion type
  5143. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5144. acceleration = code_value();
  5145. // Interpret the T value as retract acceleration in the old Marlin format.
  5146. if(code_seen('T'))
  5147. retract_acceleration = code_value();
  5148. } else {
  5149. // New acceleration format, compatible with the upstream Marlin.
  5150. if(code_seen('P'))
  5151. acceleration = code_value();
  5152. if(code_seen('R'))
  5153. retract_acceleration = code_value();
  5154. if(code_seen('T')) {
  5155. // Interpret the T value as the travel acceleration in the new Marlin format.
  5156. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5157. // travel_acceleration = code_value();
  5158. }
  5159. }
  5160. }
  5161. break;
  5162. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5163. {
  5164. if(code_seen('S')) minimumfeedrate = code_value();
  5165. if(code_seen('T')) mintravelfeedrate = code_value();
  5166. if(code_seen('B')) minsegmenttime = code_value() ;
  5167. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5168. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5169. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5170. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5171. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5172. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5173. }
  5174. break;
  5175. case 206: // M206 additional homing offset
  5176. for(int8_t i=0; i < 3; i++)
  5177. {
  5178. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5179. }
  5180. break;
  5181. #ifdef FWRETRACT
  5182. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5183. {
  5184. if(code_seen('S'))
  5185. {
  5186. retract_length = code_value() ;
  5187. }
  5188. if(code_seen('F'))
  5189. {
  5190. retract_feedrate = code_value()/60 ;
  5191. }
  5192. if(code_seen('Z'))
  5193. {
  5194. retract_zlift = code_value() ;
  5195. }
  5196. }break;
  5197. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5198. {
  5199. if(code_seen('S'))
  5200. {
  5201. retract_recover_length = code_value() ;
  5202. }
  5203. if(code_seen('F'))
  5204. {
  5205. retract_recover_feedrate = code_value()/60 ;
  5206. }
  5207. }break;
  5208. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5209. {
  5210. if(code_seen('S'))
  5211. {
  5212. int t= code_value() ;
  5213. switch(t)
  5214. {
  5215. case 0:
  5216. {
  5217. autoretract_enabled=false;
  5218. retracted[0]=false;
  5219. #if EXTRUDERS > 1
  5220. retracted[1]=false;
  5221. #endif
  5222. #if EXTRUDERS > 2
  5223. retracted[2]=false;
  5224. #endif
  5225. }break;
  5226. case 1:
  5227. {
  5228. autoretract_enabled=true;
  5229. retracted[0]=false;
  5230. #if EXTRUDERS > 1
  5231. retracted[1]=false;
  5232. #endif
  5233. #if EXTRUDERS > 2
  5234. retracted[2]=false;
  5235. #endif
  5236. }break;
  5237. default:
  5238. SERIAL_ECHO_START;
  5239. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5240. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5241. SERIAL_ECHOLNPGM("\"(1)");
  5242. }
  5243. }
  5244. }break;
  5245. #endif // FWRETRACT
  5246. #if EXTRUDERS > 1
  5247. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5248. {
  5249. uint8_t extruder;
  5250. if(setTargetedHotend(218, extruder)){
  5251. break;
  5252. }
  5253. if(code_seen('X'))
  5254. {
  5255. extruder_offset[X_AXIS][extruder] = code_value();
  5256. }
  5257. if(code_seen('Y'))
  5258. {
  5259. extruder_offset[Y_AXIS][extruder] = code_value();
  5260. }
  5261. SERIAL_ECHO_START;
  5262. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5263. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5264. {
  5265. SERIAL_ECHO(" ");
  5266. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5267. SERIAL_ECHO(",");
  5268. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5269. }
  5270. SERIAL_ECHOLN("");
  5271. }break;
  5272. #endif
  5273. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5274. {
  5275. if(code_seen('S'))
  5276. {
  5277. feedmultiply = code_value() ;
  5278. }
  5279. }
  5280. break;
  5281. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5282. {
  5283. if(code_seen('S'))
  5284. {
  5285. int tmp_code = code_value();
  5286. if (code_seen('T'))
  5287. {
  5288. uint8_t extruder;
  5289. if(setTargetedHotend(221, extruder)){
  5290. break;
  5291. }
  5292. extruder_multiply[extruder] = tmp_code;
  5293. }
  5294. else
  5295. {
  5296. extrudemultiply = tmp_code ;
  5297. }
  5298. }
  5299. calculate_extruder_multipliers();
  5300. }
  5301. break;
  5302. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5303. {
  5304. if(code_seen('P')){
  5305. int pin_number = code_value(); // pin number
  5306. int pin_state = -1; // required pin state - default is inverted
  5307. if(code_seen('S')) pin_state = code_value(); // required pin state
  5308. if(pin_state >= -1 && pin_state <= 1){
  5309. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5310. {
  5311. if (sensitive_pins[i] == pin_number)
  5312. {
  5313. pin_number = -1;
  5314. break;
  5315. }
  5316. }
  5317. if (pin_number > -1)
  5318. {
  5319. int target = LOW;
  5320. st_synchronize();
  5321. pinMode(pin_number, INPUT);
  5322. switch(pin_state){
  5323. case 1:
  5324. target = HIGH;
  5325. break;
  5326. case 0:
  5327. target = LOW;
  5328. break;
  5329. case -1:
  5330. target = !digitalRead(pin_number);
  5331. break;
  5332. }
  5333. while(digitalRead(pin_number) != target){
  5334. manage_heater();
  5335. manage_inactivity();
  5336. lcd_update(0);
  5337. }
  5338. }
  5339. }
  5340. }
  5341. }
  5342. break;
  5343. #if NUM_SERVOS > 0
  5344. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5345. {
  5346. int servo_index = -1;
  5347. int servo_position = 0;
  5348. if (code_seen('P'))
  5349. servo_index = code_value();
  5350. if (code_seen('S')) {
  5351. servo_position = code_value();
  5352. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5353. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5354. servos[servo_index].attach(0);
  5355. #endif
  5356. servos[servo_index].write(servo_position);
  5357. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5358. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5359. servos[servo_index].detach();
  5360. #endif
  5361. }
  5362. else {
  5363. SERIAL_ECHO_START;
  5364. SERIAL_ECHO("Servo ");
  5365. SERIAL_ECHO(servo_index);
  5366. SERIAL_ECHOLN(" out of range");
  5367. }
  5368. }
  5369. else if (servo_index >= 0) {
  5370. SERIAL_PROTOCOL(_T(MSG_OK));
  5371. SERIAL_PROTOCOL(" Servo ");
  5372. SERIAL_PROTOCOL(servo_index);
  5373. SERIAL_PROTOCOL(": ");
  5374. SERIAL_PROTOCOL(servos[servo_index].read());
  5375. SERIAL_PROTOCOLLN("");
  5376. }
  5377. }
  5378. break;
  5379. #endif // NUM_SERVOS > 0
  5380. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5381. case 300: // M300
  5382. {
  5383. int beepS = code_seen('S') ? code_value() : 110;
  5384. int beepP = code_seen('P') ? code_value() : 1000;
  5385. if (beepS > 0)
  5386. {
  5387. #if BEEPER > 0
  5388. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5389. tone(BEEPER, beepS);
  5390. delay(beepP);
  5391. noTone(BEEPER);
  5392. #endif
  5393. }
  5394. else
  5395. {
  5396. delay(beepP);
  5397. }
  5398. }
  5399. break;
  5400. #endif // M300
  5401. #ifdef PIDTEMP
  5402. case 301: // M301
  5403. {
  5404. if(code_seen('P')) Kp = code_value();
  5405. if(code_seen('I')) Ki = scalePID_i(code_value());
  5406. if(code_seen('D')) Kd = scalePID_d(code_value());
  5407. #ifdef PID_ADD_EXTRUSION_RATE
  5408. if(code_seen('C')) Kc = code_value();
  5409. #endif
  5410. updatePID();
  5411. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5412. SERIAL_PROTOCOL(" p:");
  5413. SERIAL_PROTOCOL(Kp);
  5414. SERIAL_PROTOCOL(" i:");
  5415. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5416. SERIAL_PROTOCOL(" d:");
  5417. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5418. #ifdef PID_ADD_EXTRUSION_RATE
  5419. SERIAL_PROTOCOL(" c:");
  5420. //Kc does not have scaling applied above, or in resetting defaults
  5421. SERIAL_PROTOCOL(Kc);
  5422. #endif
  5423. SERIAL_PROTOCOLLN("");
  5424. }
  5425. break;
  5426. #endif //PIDTEMP
  5427. #ifdef PIDTEMPBED
  5428. case 304: // M304
  5429. {
  5430. if(code_seen('P')) bedKp = code_value();
  5431. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5432. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5433. updatePID();
  5434. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5435. SERIAL_PROTOCOL(" p:");
  5436. SERIAL_PROTOCOL(bedKp);
  5437. SERIAL_PROTOCOL(" i:");
  5438. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5439. SERIAL_PROTOCOL(" d:");
  5440. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5441. SERIAL_PROTOCOLLN("");
  5442. }
  5443. break;
  5444. #endif //PIDTEMP
  5445. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5446. {
  5447. #ifdef CHDK
  5448. SET_OUTPUT(CHDK);
  5449. WRITE(CHDK, HIGH);
  5450. chdkHigh = millis();
  5451. chdkActive = true;
  5452. #else
  5453. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5454. const uint8_t NUM_PULSES=16;
  5455. const float PULSE_LENGTH=0.01524;
  5456. for(int i=0; i < NUM_PULSES; i++) {
  5457. WRITE(PHOTOGRAPH_PIN, HIGH);
  5458. _delay_ms(PULSE_LENGTH);
  5459. WRITE(PHOTOGRAPH_PIN, LOW);
  5460. _delay_ms(PULSE_LENGTH);
  5461. }
  5462. delay(7.33);
  5463. for(int i=0; i < NUM_PULSES; i++) {
  5464. WRITE(PHOTOGRAPH_PIN, HIGH);
  5465. _delay_ms(PULSE_LENGTH);
  5466. WRITE(PHOTOGRAPH_PIN, LOW);
  5467. _delay_ms(PULSE_LENGTH);
  5468. }
  5469. #endif
  5470. #endif //chdk end if
  5471. }
  5472. break;
  5473. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5474. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5475. {
  5476. float temp = .0;
  5477. if (code_seen('S')) temp=code_value();
  5478. set_extrude_min_temp(temp);
  5479. }
  5480. break;
  5481. #endif
  5482. case 303: // M303 PID autotune
  5483. {
  5484. float temp = 150.0;
  5485. int e=0;
  5486. int c=5;
  5487. if (code_seen('E')) e=code_value();
  5488. if (e<0)
  5489. temp=70;
  5490. if (code_seen('S')) temp=code_value();
  5491. if (code_seen('C')) c=code_value();
  5492. PID_autotune(temp, e, c);
  5493. }
  5494. break;
  5495. case 400: // M400 finish all moves
  5496. {
  5497. st_synchronize();
  5498. }
  5499. break;
  5500. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5501. {
  5502. //currently three different materials are needed (default, flex and PVA)
  5503. //add storing this information for different load/unload profiles etc. in the future
  5504. //firmware does not wait for "ok" from mmu
  5505. if (mmu_enabled)
  5506. {
  5507. uint8_t extruder = 255;
  5508. uint8_t filament = FILAMENT_UNDEFINED;
  5509. if(code_seen('E')) extruder = code_value();
  5510. if(code_seen('F')) filament = code_value();
  5511. mmu_set_filament_type(extruder, filament);
  5512. }
  5513. }
  5514. break;
  5515. case 500: // M500 Store settings in EEPROM
  5516. {
  5517. Config_StoreSettings(EEPROM_OFFSET);
  5518. }
  5519. break;
  5520. case 501: // M501 Read settings from EEPROM
  5521. {
  5522. Config_RetrieveSettings(EEPROM_OFFSET);
  5523. }
  5524. break;
  5525. case 502: // M502 Revert to default settings
  5526. {
  5527. Config_ResetDefault();
  5528. }
  5529. break;
  5530. case 503: // M503 print settings currently in memory
  5531. {
  5532. Config_PrintSettings();
  5533. }
  5534. break;
  5535. case 509: //M509 Force language selection
  5536. {
  5537. lang_reset();
  5538. SERIAL_ECHO_START;
  5539. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5540. }
  5541. break;
  5542. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5543. case 540:
  5544. {
  5545. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5546. }
  5547. break;
  5548. #endif
  5549. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5550. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5551. {
  5552. float value;
  5553. if (code_seen('Z'))
  5554. {
  5555. value = code_value();
  5556. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5557. {
  5558. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5559. SERIAL_ECHO_START;
  5560. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5561. SERIAL_PROTOCOLLN("");
  5562. }
  5563. else
  5564. {
  5565. SERIAL_ECHO_START;
  5566. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5567. SERIAL_ECHORPGM(MSG_Z_MIN);
  5568. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5569. SERIAL_ECHORPGM(MSG_Z_MAX);
  5570. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5571. SERIAL_PROTOCOLLN("");
  5572. }
  5573. }
  5574. else
  5575. {
  5576. SERIAL_ECHO_START;
  5577. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5578. SERIAL_ECHO(-zprobe_zoffset);
  5579. SERIAL_PROTOCOLLN("");
  5580. }
  5581. break;
  5582. }
  5583. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5584. #ifdef FILAMENTCHANGEENABLE
  5585. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5586. {
  5587. st_synchronize();
  5588. float x_position = current_position[X_AXIS];
  5589. float y_position = current_position[Y_AXIS];
  5590. float z_shift = 0;
  5591. float e_shift_init = 0;
  5592. float e_shift_late = 0;
  5593. bool automatic = false;
  5594. //Retract extruder
  5595. if(code_seen('E'))
  5596. {
  5597. e_shift_init = code_value();
  5598. }
  5599. else
  5600. {
  5601. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5602. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5603. #endif
  5604. }
  5605. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5606. if (code_seen('L'))
  5607. {
  5608. e_shift_late = code_value();
  5609. }
  5610. else
  5611. {
  5612. #ifdef FILAMENTCHANGE_FINALRETRACT
  5613. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5614. #endif
  5615. }
  5616. //Lift Z
  5617. if(code_seen('Z'))
  5618. {
  5619. z_shift = code_value();
  5620. }
  5621. else
  5622. {
  5623. #ifdef FILAMENTCHANGE_ZADD
  5624. z_shift= FILAMENTCHANGE_ZADD ;
  5625. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5626. #endif
  5627. }
  5628. //Move XY to side
  5629. if(code_seen('X'))
  5630. {
  5631. x_position = code_value();
  5632. }
  5633. else
  5634. {
  5635. #ifdef FILAMENTCHANGE_XPOS
  5636. x_position = FILAMENTCHANGE_XPOS;
  5637. #endif
  5638. }
  5639. if(code_seen('Y'))
  5640. {
  5641. y_position = code_value();
  5642. }
  5643. else
  5644. {
  5645. #ifdef FILAMENTCHANGE_YPOS
  5646. y_position = FILAMENTCHANGE_YPOS ;
  5647. #endif
  5648. }
  5649. if (mmu_enabled && code_seen("AUTO"))
  5650. automatic = true;
  5651. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5652. }
  5653. break;
  5654. #endif //FILAMENTCHANGEENABLE
  5655. case 601:
  5656. {
  5657. lcd_pause_print();
  5658. }
  5659. break;
  5660. case 602: {
  5661. lcd_resume_print();
  5662. }
  5663. break;
  5664. #ifdef PINDA_THERMISTOR
  5665. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5666. {
  5667. int set_target_pinda = 0;
  5668. if (code_seen('S')) {
  5669. set_target_pinda = code_value();
  5670. }
  5671. else {
  5672. break;
  5673. }
  5674. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5675. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5676. SERIAL_PROTOCOL(set_target_pinda);
  5677. SERIAL_PROTOCOLLN("");
  5678. codenum = millis();
  5679. cancel_heatup = false;
  5680. bool is_pinda_cooling = false;
  5681. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5682. is_pinda_cooling = true;
  5683. }
  5684. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5685. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5686. {
  5687. SERIAL_PROTOCOLPGM("P:");
  5688. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5689. SERIAL_PROTOCOLPGM("/");
  5690. SERIAL_PROTOCOL(set_target_pinda);
  5691. SERIAL_PROTOCOLLN("");
  5692. codenum = millis();
  5693. }
  5694. manage_heater();
  5695. manage_inactivity();
  5696. lcd_update(0);
  5697. }
  5698. LCD_MESSAGERPGM(_T(MSG_OK));
  5699. break;
  5700. }
  5701. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5702. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5703. uint8_t cal_status = calibration_status_pinda();
  5704. int16_t usteps = 0;
  5705. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5706. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5707. for (uint8_t i = 0; i < 6; i++)
  5708. {
  5709. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5710. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5711. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5712. SERIAL_PROTOCOLPGM(", ");
  5713. SERIAL_PROTOCOL(35 + (i * 5));
  5714. SERIAL_PROTOCOLPGM(", ");
  5715. SERIAL_PROTOCOL(usteps);
  5716. SERIAL_PROTOCOLPGM(", ");
  5717. SERIAL_PROTOCOL(mm * 1000);
  5718. SERIAL_PROTOCOLLN("");
  5719. }
  5720. }
  5721. else if (code_seen('!')) { // ! - Set factory default values
  5722. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5723. int16_t z_shift = 8; //40C - 20um - 8usteps
  5724. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5725. z_shift = 24; //45C - 60um - 24usteps
  5726. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5727. z_shift = 48; //50C - 120um - 48usteps
  5728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5729. z_shift = 80; //55C - 200um - 80usteps
  5730. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5731. z_shift = 120; //60C - 300um - 120usteps
  5732. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5733. SERIAL_PROTOCOLLN("factory restored");
  5734. }
  5735. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5736. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5737. int16_t z_shift = 0;
  5738. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5739. SERIAL_PROTOCOLLN("zerorized");
  5740. }
  5741. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5742. int16_t usteps = code_value();
  5743. if (code_seen('I')) {
  5744. uint8_t index = code_value();
  5745. if (index < 5) {
  5746. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5747. SERIAL_PROTOCOLLN("OK");
  5748. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5749. for (uint8_t i = 0; i < 6; i++)
  5750. {
  5751. usteps = 0;
  5752. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5753. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5754. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5755. SERIAL_PROTOCOLPGM(", ");
  5756. SERIAL_PROTOCOL(35 + (i * 5));
  5757. SERIAL_PROTOCOLPGM(", ");
  5758. SERIAL_PROTOCOL(usteps);
  5759. SERIAL_PROTOCOLPGM(", ");
  5760. SERIAL_PROTOCOL(mm * 1000);
  5761. SERIAL_PROTOCOLLN("");
  5762. }
  5763. }
  5764. }
  5765. }
  5766. else {
  5767. SERIAL_PROTOCOLPGM("no valid command");
  5768. }
  5769. break;
  5770. #endif //PINDA_THERMISTOR
  5771. #ifdef LIN_ADVANCE
  5772. case 900: // M900: Set LIN_ADVANCE options.
  5773. gcode_M900();
  5774. break;
  5775. #endif
  5776. case 907: // M907 Set digital trimpot motor current using axis codes.
  5777. {
  5778. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5779. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5780. if(code_seen('B')) st_current_set(4,code_value());
  5781. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5782. #endif
  5783. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5784. if(code_seen('X')) st_current_set(0, code_value());
  5785. #endif
  5786. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5787. if(code_seen('Z')) st_current_set(1, code_value());
  5788. #endif
  5789. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5790. if(code_seen('E')) st_current_set(2, code_value());
  5791. #endif
  5792. }
  5793. break;
  5794. case 908: // M908 Control digital trimpot directly.
  5795. {
  5796. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5797. uint8_t channel,current;
  5798. if(code_seen('P')) channel=code_value();
  5799. if(code_seen('S')) current=code_value();
  5800. digitalPotWrite(channel, current);
  5801. #endif
  5802. }
  5803. break;
  5804. #ifdef TMC2130
  5805. case 910: // M910 TMC2130 init
  5806. {
  5807. tmc2130_init();
  5808. }
  5809. break;
  5810. case 911: // M911 Set TMC2130 holding currents
  5811. {
  5812. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5813. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5814. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5815. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5816. }
  5817. break;
  5818. case 912: // M912 Set TMC2130 running currents
  5819. {
  5820. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5821. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5822. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5823. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5824. }
  5825. break;
  5826. case 913: // M913 Print TMC2130 currents
  5827. {
  5828. tmc2130_print_currents();
  5829. }
  5830. break;
  5831. case 914: // M914 Set normal mode
  5832. {
  5833. tmc2130_mode = TMC2130_MODE_NORMAL;
  5834. update_mode_profile();
  5835. tmc2130_init();
  5836. }
  5837. break;
  5838. case 915: // M915 Set silent mode
  5839. {
  5840. tmc2130_mode = TMC2130_MODE_SILENT;
  5841. update_mode_profile();
  5842. tmc2130_init();
  5843. }
  5844. break;
  5845. case 916: // M916 Set sg_thrs
  5846. {
  5847. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5848. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5849. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5850. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5851. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5852. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5853. }
  5854. break;
  5855. case 917: // M917 Set TMC2130 pwm_ampl
  5856. {
  5857. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5858. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5859. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5860. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5861. }
  5862. break;
  5863. case 918: // M918 Set TMC2130 pwm_grad
  5864. {
  5865. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5866. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5867. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5868. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5869. }
  5870. break;
  5871. #endif //TMC2130
  5872. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5873. {
  5874. #ifdef TMC2130
  5875. if(code_seen('E'))
  5876. {
  5877. uint16_t res_new = code_value();
  5878. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5879. {
  5880. st_synchronize();
  5881. uint8_t axis = E_AXIS;
  5882. uint16_t res = tmc2130_get_res(axis);
  5883. tmc2130_set_res(axis, res_new);
  5884. if (res_new > res)
  5885. {
  5886. uint16_t fac = (res_new / res);
  5887. axis_steps_per_unit[axis] *= fac;
  5888. position[E_AXIS] *= fac;
  5889. }
  5890. else
  5891. {
  5892. uint16_t fac = (res / res_new);
  5893. axis_steps_per_unit[axis] /= fac;
  5894. position[E_AXIS] /= fac;
  5895. }
  5896. }
  5897. }
  5898. #else //TMC2130
  5899. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5900. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5901. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5902. if(code_seen('B')) microstep_mode(4,code_value());
  5903. microstep_readings();
  5904. #endif
  5905. #endif //TMC2130
  5906. }
  5907. break;
  5908. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5909. {
  5910. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5911. if(code_seen('S')) switch((int)code_value())
  5912. {
  5913. case 1:
  5914. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5915. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5916. break;
  5917. case 2:
  5918. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5919. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5920. break;
  5921. }
  5922. microstep_readings();
  5923. #endif
  5924. }
  5925. break;
  5926. case 701: //M701: load filament
  5927. {
  5928. if (mmu_enabled && code_seen('E'))
  5929. tmp_extruder = code_value();
  5930. gcode_M701();
  5931. }
  5932. break;
  5933. case 702:
  5934. {
  5935. if (mmu_enabled)
  5936. {
  5937. if (code_seen('U'))
  5938. extr_unload_used(); //unload all filaments which were used in current print
  5939. else if (code_seen('C'))
  5940. extr_unload(); //unload just current filament
  5941. else
  5942. extr_unload_all(); //unload all filaments
  5943. }
  5944. else
  5945. unload_filament();
  5946. }
  5947. break;
  5948. case 999: // M999: Restart after being stopped
  5949. Stopped = false;
  5950. lcd_reset_alert_level();
  5951. gcode_LastN = Stopped_gcode_LastN;
  5952. FlushSerialRequestResend();
  5953. break;
  5954. default:
  5955. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5956. }
  5957. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5958. mcode_in_progress = 0;
  5959. }
  5960. } // end if(code_seen('M')) (end of M codes)
  5961. else if(code_seen('T'))
  5962. {
  5963. int index;
  5964. st_synchronize();
  5965. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5966. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5967. SERIAL_ECHOLNPGM("Invalid T code.");
  5968. }
  5969. else {
  5970. if (*(strchr_pointer + index) == '?') {
  5971. tmp_extruder = choose_extruder_menu();
  5972. }
  5973. else {
  5974. tmp_extruder = code_value();
  5975. }
  5976. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5977. if (mmu_enabled)
  5978. {
  5979. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5980. manage_response(true, true);
  5981. mmu_command(MMU_CMD_C0);
  5982. mmu_extruder = tmp_extruder; //filament change is finished
  5983. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5984. {
  5985. mmu_load_to_nozzle();
  5986. }
  5987. }
  5988. else
  5989. {
  5990. #ifdef SNMM
  5991. #ifdef LIN_ADVANCE
  5992. if (mmu_extruder != tmp_extruder)
  5993. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5994. #endif
  5995. mmu_extruder = tmp_extruder;
  5996. delay(100);
  5997. disable_e0();
  5998. disable_e1();
  5999. disable_e2();
  6000. pinMode(E_MUX0_PIN, OUTPUT);
  6001. pinMode(E_MUX1_PIN, OUTPUT);
  6002. delay(100);
  6003. SERIAL_ECHO_START;
  6004. SERIAL_ECHO("T:");
  6005. SERIAL_ECHOLN((int)tmp_extruder);
  6006. switch (tmp_extruder) {
  6007. case 1:
  6008. WRITE(E_MUX0_PIN, HIGH);
  6009. WRITE(E_MUX1_PIN, LOW);
  6010. break;
  6011. case 2:
  6012. WRITE(E_MUX0_PIN, LOW);
  6013. WRITE(E_MUX1_PIN, HIGH);
  6014. break;
  6015. case 3:
  6016. WRITE(E_MUX0_PIN, HIGH);
  6017. WRITE(E_MUX1_PIN, HIGH);
  6018. break;
  6019. default:
  6020. WRITE(E_MUX0_PIN, LOW);
  6021. WRITE(E_MUX1_PIN, LOW);
  6022. break;
  6023. }
  6024. delay(100);
  6025. #else //SNMM
  6026. if (tmp_extruder >= EXTRUDERS) {
  6027. SERIAL_ECHO_START;
  6028. SERIAL_ECHOPGM("T");
  6029. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6030. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6031. }
  6032. else {
  6033. #if EXTRUDERS > 1
  6034. boolean make_move = false;
  6035. #endif
  6036. if (code_seen('F')) {
  6037. #if EXTRUDERS > 1
  6038. make_move = true;
  6039. #endif
  6040. next_feedrate = code_value();
  6041. if (next_feedrate > 0.0) {
  6042. feedrate = next_feedrate;
  6043. }
  6044. }
  6045. #if EXTRUDERS > 1
  6046. if (tmp_extruder != active_extruder) {
  6047. // Save current position to return to after applying extruder offset
  6048. memcpy(destination, current_position, sizeof(destination));
  6049. // Offset extruder (only by XY)
  6050. int i;
  6051. for (i = 0; i < 2; i++) {
  6052. current_position[i] = current_position[i] -
  6053. extruder_offset[i][active_extruder] +
  6054. extruder_offset[i][tmp_extruder];
  6055. }
  6056. // Set the new active extruder and position
  6057. active_extruder = tmp_extruder;
  6058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6059. // Move to the old position if 'F' was in the parameters
  6060. if (make_move && Stopped == false) {
  6061. prepare_move();
  6062. }
  6063. }
  6064. #endif
  6065. SERIAL_ECHO_START;
  6066. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6067. SERIAL_PROTOCOLLN((int)active_extruder);
  6068. }
  6069. #endif //SNMM
  6070. }
  6071. }
  6072. } // end if(code_seen('T')) (end of T codes)
  6073. else if (code_seen('D')) // D codes (debug)
  6074. {
  6075. switch((int)code_value())
  6076. {
  6077. #ifdef DEBUG_DCODES
  6078. case -1: // D-1 - Endless loop
  6079. dcode__1(); break;
  6080. case 0: // D0 - Reset
  6081. dcode_0(); break;
  6082. case 1: // D1 - Clear EEPROM
  6083. dcode_1(); break;
  6084. case 2: // D2 - Read/Write RAM
  6085. dcode_2(); break;
  6086. #endif //DEBUG_DCODES
  6087. #ifdef DEBUG_DCODE3
  6088. case 3: // D3 - Read/Write EEPROM
  6089. dcode_3(); break;
  6090. #endif //DEBUG_DCODE3
  6091. #ifdef DEBUG_DCODES
  6092. case 4: // D4 - Read/Write PIN
  6093. dcode_4(); break;
  6094. case 5: // D5 - Read/Write FLASH
  6095. // dcode_5(); break;
  6096. break;
  6097. case 6: // D6 - Read/Write external FLASH
  6098. dcode_6(); break;
  6099. case 7: // D7 - Read/Write Bootloader
  6100. dcode_7(); break;
  6101. case 8: // D8 - Read/Write PINDA
  6102. dcode_8(); break;
  6103. case 9: // D9 - Read/Write ADC
  6104. dcode_9(); break;
  6105. case 10: // D10 - XYZ calibration = OK
  6106. dcode_10(); break;
  6107. #ifdef TMC2130
  6108. case 2130: // D9125 - TMC2130
  6109. dcode_2130(); break;
  6110. #endif //TMC2130
  6111. #ifdef FILAMENT_SENSOR
  6112. case 9125: // D9125 - FILAMENT_SENSOR
  6113. dcode_9125(); break;
  6114. #endif //FILAMENT_SENSOR
  6115. #endif //DEBUG_DCODES
  6116. }
  6117. }
  6118. else
  6119. {
  6120. SERIAL_ECHO_START;
  6121. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6122. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6123. SERIAL_ECHOLNPGM("\"(2)");
  6124. }
  6125. KEEPALIVE_STATE(NOT_BUSY);
  6126. ClearToSend();
  6127. }
  6128. void FlushSerialRequestResend()
  6129. {
  6130. //char cmdbuffer[bufindr][100]="Resend:";
  6131. MYSERIAL.flush();
  6132. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6133. }
  6134. // Confirm the execution of a command, if sent from a serial line.
  6135. // Execution of a command from a SD card will not be confirmed.
  6136. void ClearToSend()
  6137. {
  6138. previous_millis_cmd = millis();
  6139. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6140. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6141. }
  6142. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6143. void update_currents() {
  6144. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6145. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6146. float tmp_motor[3];
  6147. //SERIAL_ECHOLNPGM("Currents updated: ");
  6148. if (destination[Z_AXIS] < Z_SILENT) {
  6149. //SERIAL_ECHOLNPGM("LOW");
  6150. for (uint8_t i = 0; i < 3; i++) {
  6151. st_current_set(i, current_low[i]);
  6152. /*MYSERIAL.print(int(i));
  6153. SERIAL_ECHOPGM(": ");
  6154. MYSERIAL.println(current_low[i]);*/
  6155. }
  6156. }
  6157. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6158. //SERIAL_ECHOLNPGM("HIGH");
  6159. for (uint8_t i = 0; i < 3; i++) {
  6160. st_current_set(i, current_high[i]);
  6161. /*MYSERIAL.print(int(i));
  6162. SERIAL_ECHOPGM(": ");
  6163. MYSERIAL.println(current_high[i]);*/
  6164. }
  6165. }
  6166. else {
  6167. for (uint8_t i = 0; i < 3; i++) {
  6168. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6169. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6170. st_current_set(i, tmp_motor[i]);
  6171. /*MYSERIAL.print(int(i));
  6172. SERIAL_ECHOPGM(": ");
  6173. MYSERIAL.println(tmp_motor[i]);*/
  6174. }
  6175. }
  6176. }
  6177. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6178. void get_coordinates()
  6179. {
  6180. bool seen[4]={false,false,false,false};
  6181. for(int8_t i=0; i < NUM_AXIS; i++) {
  6182. if(code_seen(axis_codes[i]))
  6183. {
  6184. bool relative = axis_relative_modes[i] || relative_mode;
  6185. destination[i] = (float)code_value();
  6186. if (i == E_AXIS) {
  6187. float emult = extruder_multiplier[active_extruder];
  6188. if (emult != 1.) {
  6189. if (! relative) {
  6190. destination[i] -= current_position[i];
  6191. relative = true;
  6192. }
  6193. destination[i] *= emult;
  6194. }
  6195. }
  6196. if (relative)
  6197. destination[i] += current_position[i];
  6198. seen[i]=true;
  6199. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6200. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6201. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6202. }
  6203. else destination[i] = current_position[i]; //Are these else lines really needed?
  6204. }
  6205. if(code_seen('F')) {
  6206. next_feedrate = code_value();
  6207. #ifdef MAX_SILENT_FEEDRATE
  6208. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6209. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6210. #endif //MAX_SILENT_FEEDRATE
  6211. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6212. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6213. {
  6214. // float e_max_speed =
  6215. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6216. }
  6217. }
  6218. }
  6219. void get_arc_coordinates()
  6220. {
  6221. #ifdef SF_ARC_FIX
  6222. bool relative_mode_backup = relative_mode;
  6223. relative_mode = true;
  6224. #endif
  6225. get_coordinates();
  6226. #ifdef SF_ARC_FIX
  6227. relative_mode=relative_mode_backup;
  6228. #endif
  6229. if(code_seen('I')) {
  6230. offset[0] = code_value();
  6231. }
  6232. else {
  6233. offset[0] = 0.0;
  6234. }
  6235. if(code_seen('J')) {
  6236. offset[1] = code_value();
  6237. }
  6238. else {
  6239. offset[1] = 0.0;
  6240. }
  6241. }
  6242. void clamp_to_software_endstops(float target[3])
  6243. {
  6244. #ifdef DEBUG_DISABLE_SWLIMITS
  6245. return;
  6246. #endif //DEBUG_DISABLE_SWLIMITS
  6247. world2machine_clamp(target[0], target[1]);
  6248. // Clamp the Z coordinate.
  6249. if (min_software_endstops) {
  6250. float negative_z_offset = 0;
  6251. #ifdef ENABLE_AUTO_BED_LEVELING
  6252. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6253. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6254. #endif
  6255. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6256. }
  6257. if (max_software_endstops) {
  6258. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6259. }
  6260. }
  6261. #ifdef MESH_BED_LEVELING
  6262. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6263. float dx = x - current_position[X_AXIS];
  6264. float dy = y - current_position[Y_AXIS];
  6265. float dz = z - current_position[Z_AXIS];
  6266. int n_segments = 0;
  6267. if (mbl.active) {
  6268. float len = abs(dx) + abs(dy);
  6269. if (len > 0)
  6270. // Split to 3cm segments or shorter.
  6271. n_segments = int(ceil(len / 30.f));
  6272. }
  6273. if (n_segments > 1) {
  6274. float de = e - current_position[E_AXIS];
  6275. for (int i = 1; i < n_segments; ++ i) {
  6276. float t = float(i) / float(n_segments);
  6277. if (saved_printing || (mbl.active == false)) return;
  6278. plan_buffer_line(
  6279. current_position[X_AXIS] + t * dx,
  6280. current_position[Y_AXIS] + t * dy,
  6281. current_position[Z_AXIS] + t * dz,
  6282. current_position[E_AXIS] + t * de,
  6283. feed_rate, extruder);
  6284. }
  6285. }
  6286. // The rest of the path.
  6287. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6288. current_position[X_AXIS] = x;
  6289. current_position[Y_AXIS] = y;
  6290. current_position[Z_AXIS] = z;
  6291. current_position[E_AXIS] = e;
  6292. }
  6293. #endif // MESH_BED_LEVELING
  6294. void prepare_move()
  6295. {
  6296. clamp_to_software_endstops(destination);
  6297. previous_millis_cmd = millis();
  6298. // Do not use feedmultiply for E or Z only moves
  6299. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6300. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6301. }
  6302. else {
  6303. #ifdef MESH_BED_LEVELING
  6304. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6305. #else
  6306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6307. #endif
  6308. }
  6309. for(int8_t i=0; i < NUM_AXIS; i++) {
  6310. current_position[i] = destination[i];
  6311. }
  6312. }
  6313. void prepare_arc_move(char isclockwise) {
  6314. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6315. // Trace the arc
  6316. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6317. // As far as the parser is concerned, the position is now == target. In reality the
  6318. // motion control system might still be processing the action and the real tool position
  6319. // in any intermediate location.
  6320. for(int8_t i=0; i < NUM_AXIS; i++) {
  6321. current_position[i] = destination[i];
  6322. }
  6323. previous_millis_cmd = millis();
  6324. }
  6325. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6326. #if defined(FAN_PIN)
  6327. #if CONTROLLERFAN_PIN == FAN_PIN
  6328. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6329. #endif
  6330. #endif
  6331. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6332. unsigned long lastMotorCheck = 0;
  6333. void controllerFan()
  6334. {
  6335. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6336. {
  6337. lastMotorCheck = millis();
  6338. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6339. #if EXTRUDERS > 2
  6340. || !READ(E2_ENABLE_PIN)
  6341. #endif
  6342. #if EXTRUDER > 1
  6343. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6344. || !READ(X2_ENABLE_PIN)
  6345. #endif
  6346. || !READ(E1_ENABLE_PIN)
  6347. #endif
  6348. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6349. {
  6350. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6351. }
  6352. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6353. {
  6354. digitalWrite(CONTROLLERFAN_PIN, 0);
  6355. analogWrite(CONTROLLERFAN_PIN, 0);
  6356. }
  6357. else
  6358. {
  6359. // allows digital or PWM fan output to be used (see M42 handling)
  6360. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6361. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6362. }
  6363. }
  6364. }
  6365. #endif
  6366. #ifdef TEMP_STAT_LEDS
  6367. static bool blue_led = false;
  6368. static bool red_led = false;
  6369. static uint32_t stat_update = 0;
  6370. void handle_status_leds(void) {
  6371. float max_temp = 0.0;
  6372. if(millis() > stat_update) {
  6373. stat_update += 500; // Update every 0.5s
  6374. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6375. max_temp = max(max_temp, degHotend(cur_extruder));
  6376. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6377. }
  6378. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6379. max_temp = max(max_temp, degTargetBed());
  6380. max_temp = max(max_temp, degBed());
  6381. #endif
  6382. if((max_temp > 55.0) && (red_led == false)) {
  6383. digitalWrite(STAT_LED_RED, 1);
  6384. digitalWrite(STAT_LED_BLUE, 0);
  6385. red_led = true;
  6386. blue_led = false;
  6387. }
  6388. if((max_temp < 54.0) && (blue_led == false)) {
  6389. digitalWrite(STAT_LED_RED, 0);
  6390. digitalWrite(STAT_LED_BLUE, 1);
  6391. red_led = false;
  6392. blue_led = true;
  6393. }
  6394. }
  6395. }
  6396. #endif
  6397. #ifdef SAFETYTIMER
  6398. /**
  6399. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6400. *
  6401. * Full screen blocking notification message is shown after heater turning off.
  6402. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6403. * damage print.
  6404. *
  6405. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6406. */
  6407. static void handleSafetyTimer()
  6408. {
  6409. #if (EXTRUDERS > 1)
  6410. #error Implemented only for one extruder.
  6411. #endif //(EXTRUDERS > 1)
  6412. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6413. {
  6414. safetyTimer.stop();
  6415. }
  6416. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6417. {
  6418. safetyTimer.start();
  6419. }
  6420. else if (safetyTimer.expired(safetytimer_inactive_time))
  6421. {
  6422. setTargetBed(0);
  6423. setAllTargetHotends(0);
  6424. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6425. }
  6426. }
  6427. #endif //SAFETYTIMER
  6428. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6429. {
  6430. #ifdef FILAMENT_SENSOR
  6431. if (mmu_enabled == false)
  6432. {
  6433. if (mcode_in_progress != 600) //M600 not in progress
  6434. {
  6435. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6436. {
  6437. if (fsensor_check_autoload())
  6438. {
  6439. fsensor_autoload_check_stop();
  6440. if (degHotend0() > EXTRUDE_MINTEMP)
  6441. {
  6442. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6443. tone(BEEPER, 1000);
  6444. delay_keep_alive(50);
  6445. noTone(BEEPER);
  6446. loading_flag = true;
  6447. enquecommand_front_P((PSTR("M701")));
  6448. }
  6449. else
  6450. {
  6451. lcd_update_enable(false);
  6452. lcd_clear();
  6453. lcd_set_cursor(0, 0);
  6454. lcd_puts_P(_T(MSG_ERROR));
  6455. lcd_set_cursor(0, 2);
  6456. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6457. delay(2000);
  6458. lcd_clear();
  6459. lcd_update_enable(true);
  6460. }
  6461. }
  6462. }
  6463. else
  6464. fsensor_autoload_check_stop();
  6465. }
  6466. }
  6467. #endif //FILAMENT_SENSOR
  6468. #ifdef SAFETYTIMER
  6469. handleSafetyTimer();
  6470. #endif //SAFETYTIMER
  6471. #if defined(KILL_PIN) && KILL_PIN > -1
  6472. static int killCount = 0; // make the inactivity button a bit less responsive
  6473. const int KILL_DELAY = 10000;
  6474. #endif
  6475. if(buflen < (BUFSIZE-1)){
  6476. get_command();
  6477. }
  6478. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6479. if(max_inactive_time)
  6480. kill(_n(""), 4);
  6481. if(stepper_inactive_time) {
  6482. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6483. {
  6484. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6485. disable_x();
  6486. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6487. disable_y();
  6488. disable_z();
  6489. disable_e0();
  6490. disable_e1();
  6491. disable_e2();
  6492. }
  6493. }
  6494. }
  6495. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6496. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6497. {
  6498. chdkActive = false;
  6499. WRITE(CHDK, LOW);
  6500. }
  6501. #endif
  6502. #if defined(KILL_PIN) && KILL_PIN > -1
  6503. // Check if the kill button was pressed and wait just in case it was an accidental
  6504. // key kill key press
  6505. // -------------------------------------------------------------------------------
  6506. if( 0 == READ(KILL_PIN) )
  6507. {
  6508. killCount++;
  6509. }
  6510. else if (killCount > 0)
  6511. {
  6512. killCount--;
  6513. }
  6514. // Exceeded threshold and we can confirm that it was not accidental
  6515. // KILL the machine
  6516. // ----------------------------------------------------------------
  6517. if ( killCount >= KILL_DELAY)
  6518. {
  6519. kill("", 5);
  6520. }
  6521. #endif
  6522. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6523. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6524. #endif
  6525. #ifdef EXTRUDER_RUNOUT_PREVENT
  6526. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6527. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6528. {
  6529. bool oldstatus=READ(E0_ENABLE_PIN);
  6530. enable_e0();
  6531. float oldepos=current_position[E_AXIS];
  6532. float oldedes=destination[E_AXIS];
  6533. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6534. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6535. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6536. current_position[E_AXIS]=oldepos;
  6537. destination[E_AXIS]=oldedes;
  6538. plan_set_e_position(oldepos);
  6539. previous_millis_cmd=millis();
  6540. st_synchronize();
  6541. WRITE(E0_ENABLE_PIN,oldstatus);
  6542. }
  6543. #endif
  6544. #ifdef TEMP_STAT_LEDS
  6545. handle_status_leds();
  6546. #endif
  6547. check_axes_activity();
  6548. mmu_loop();
  6549. }
  6550. void kill(const char *full_screen_message, unsigned char id)
  6551. {
  6552. printf_P(_N("KILL: %d\n"), id);
  6553. //return;
  6554. cli(); // Stop interrupts
  6555. disable_heater();
  6556. disable_x();
  6557. // SERIAL_ECHOLNPGM("kill - disable Y");
  6558. disable_y();
  6559. disable_z();
  6560. disable_e0();
  6561. disable_e1();
  6562. disable_e2();
  6563. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6564. pinMode(PS_ON_PIN,INPUT);
  6565. #endif
  6566. SERIAL_ERROR_START;
  6567. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6568. if (full_screen_message != NULL) {
  6569. SERIAL_ERRORLNRPGM(full_screen_message);
  6570. lcd_display_message_fullscreen_P(full_screen_message);
  6571. } else {
  6572. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6573. }
  6574. // FMC small patch to update the LCD before ending
  6575. sei(); // enable interrupts
  6576. for ( int i=5; i--; lcd_update(0))
  6577. {
  6578. delay(200);
  6579. }
  6580. cli(); // disable interrupts
  6581. suicide();
  6582. while(1)
  6583. {
  6584. #ifdef WATCHDOG
  6585. wdt_reset();
  6586. #endif //WATCHDOG
  6587. /* Intentionally left empty */
  6588. } // Wait for reset
  6589. }
  6590. void Stop()
  6591. {
  6592. disable_heater();
  6593. if(Stopped == false) {
  6594. Stopped = true;
  6595. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6596. SERIAL_ERROR_START;
  6597. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6598. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6599. }
  6600. }
  6601. bool IsStopped() { return Stopped; };
  6602. #ifdef FAST_PWM_FAN
  6603. void setPwmFrequency(uint8_t pin, int val)
  6604. {
  6605. val &= 0x07;
  6606. switch(digitalPinToTimer(pin))
  6607. {
  6608. #if defined(TCCR0A)
  6609. case TIMER0A:
  6610. case TIMER0B:
  6611. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6612. // TCCR0B |= val;
  6613. break;
  6614. #endif
  6615. #if defined(TCCR1A)
  6616. case TIMER1A:
  6617. case TIMER1B:
  6618. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6619. // TCCR1B |= val;
  6620. break;
  6621. #endif
  6622. #if defined(TCCR2)
  6623. case TIMER2:
  6624. case TIMER2:
  6625. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6626. TCCR2 |= val;
  6627. break;
  6628. #endif
  6629. #if defined(TCCR2A)
  6630. case TIMER2A:
  6631. case TIMER2B:
  6632. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6633. TCCR2B |= val;
  6634. break;
  6635. #endif
  6636. #if defined(TCCR3A)
  6637. case TIMER3A:
  6638. case TIMER3B:
  6639. case TIMER3C:
  6640. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6641. TCCR3B |= val;
  6642. break;
  6643. #endif
  6644. #if defined(TCCR4A)
  6645. case TIMER4A:
  6646. case TIMER4B:
  6647. case TIMER4C:
  6648. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6649. TCCR4B |= val;
  6650. break;
  6651. #endif
  6652. #if defined(TCCR5A)
  6653. case TIMER5A:
  6654. case TIMER5B:
  6655. case TIMER5C:
  6656. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6657. TCCR5B |= val;
  6658. break;
  6659. #endif
  6660. }
  6661. }
  6662. #endif //FAST_PWM_FAN
  6663. //! @brief Get and validate extruder number
  6664. //!
  6665. //! If it is not specified, active_extruder is returned in parameter extruder.
  6666. //! @param [in] code M code number
  6667. //! @param [out] extruder
  6668. //! @return error
  6669. //! @retval true Invalid extruder specified in T code
  6670. //! @retval false Valid extruder specified in T code, or not specifiead
  6671. bool setTargetedHotend(int code, uint8_t &extruder)
  6672. {
  6673. extruder = active_extruder;
  6674. if(code_seen('T')) {
  6675. extruder = code_value();
  6676. if(extruder >= EXTRUDERS) {
  6677. SERIAL_ECHO_START;
  6678. switch(code){
  6679. case 104:
  6680. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6681. break;
  6682. case 105:
  6683. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6684. break;
  6685. case 109:
  6686. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6687. break;
  6688. case 218:
  6689. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6690. break;
  6691. case 221:
  6692. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6693. break;
  6694. }
  6695. SERIAL_PROTOCOLLN((int)extruder);
  6696. return true;
  6697. }
  6698. }
  6699. return false;
  6700. }
  6701. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6702. {
  6703. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6704. {
  6705. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6706. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6707. }
  6708. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6709. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6710. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6711. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6712. total_filament_used = 0;
  6713. }
  6714. float calculate_extruder_multiplier(float diameter) {
  6715. float out = 1.f;
  6716. if (volumetric_enabled && diameter > 0.f) {
  6717. float area = M_PI * diameter * diameter * 0.25;
  6718. out = 1.f / area;
  6719. }
  6720. if (extrudemultiply != 100)
  6721. out *= float(extrudemultiply) * 0.01f;
  6722. return out;
  6723. }
  6724. void calculate_extruder_multipliers() {
  6725. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6726. #if EXTRUDERS > 1
  6727. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6728. #if EXTRUDERS > 2
  6729. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6730. #endif
  6731. #endif
  6732. }
  6733. void delay_keep_alive(unsigned int ms)
  6734. {
  6735. for (;;) {
  6736. manage_heater();
  6737. // Manage inactivity, but don't disable steppers on timeout.
  6738. manage_inactivity(true);
  6739. lcd_update(0);
  6740. if (ms == 0)
  6741. break;
  6742. else if (ms >= 50) {
  6743. delay(50);
  6744. ms -= 50;
  6745. } else {
  6746. delay(ms);
  6747. ms = 0;
  6748. }
  6749. }
  6750. }
  6751. static void wait_for_heater(long codenum, uint8_t extruder) {
  6752. #ifdef TEMP_RESIDENCY_TIME
  6753. long residencyStart;
  6754. residencyStart = -1;
  6755. /* continue to loop until we have reached the target temp
  6756. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6757. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6758. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6759. #else
  6760. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6761. #endif //TEMP_RESIDENCY_TIME
  6762. if ((millis() - codenum) > 1000UL)
  6763. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6764. if (!farm_mode) {
  6765. SERIAL_PROTOCOLPGM("T:");
  6766. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6767. SERIAL_PROTOCOLPGM(" E:");
  6768. SERIAL_PROTOCOL((int)extruder);
  6769. #ifdef TEMP_RESIDENCY_TIME
  6770. SERIAL_PROTOCOLPGM(" W:");
  6771. if (residencyStart > -1)
  6772. {
  6773. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6774. SERIAL_PROTOCOLLN(codenum);
  6775. }
  6776. else
  6777. {
  6778. SERIAL_PROTOCOLLN("?");
  6779. }
  6780. }
  6781. #else
  6782. SERIAL_PROTOCOLLN("");
  6783. #endif
  6784. codenum = millis();
  6785. }
  6786. manage_heater();
  6787. manage_inactivity();
  6788. lcd_update(0);
  6789. #ifdef TEMP_RESIDENCY_TIME
  6790. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6791. or when current temp falls outside the hysteresis after target temp was reached */
  6792. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6793. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6794. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6795. {
  6796. residencyStart = millis();
  6797. }
  6798. #endif //TEMP_RESIDENCY_TIME
  6799. }
  6800. }
  6801. void check_babystep()
  6802. {
  6803. int babystep_z;
  6804. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6805. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6806. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6807. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6809. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6810. lcd_update_enable(true);
  6811. }
  6812. }
  6813. #ifdef DIS
  6814. void d_setup()
  6815. {
  6816. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6817. pinMode(D_DATA, INPUT_PULLUP);
  6818. pinMode(D_REQUIRE, OUTPUT);
  6819. digitalWrite(D_REQUIRE, HIGH);
  6820. }
  6821. float d_ReadData()
  6822. {
  6823. int digit[13];
  6824. String mergeOutput;
  6825. float output;
  6826. digitalWrite(D_REQUIRE, HIGH);
  6827. for (int i = 0; i<13; i++)
  6828. {
  6829. for (int j = 0; j < 4; j++)
  6830. {
  6831. while (digitalRead(D_DATACLOCK) == LOW) {}
  6832. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6833. bitWrite(digit[i], j, digitalRead(D_DATA));
  6834. }
  6835. }
  6836. digitalWrite(D_REQUIRE, LOW);
  6837. mergeOutput = "";
  6838. output = 0;
  6839. for (int r = 5; r <= 10; r++) //Merge digits
  6840. {
  6841. mergeOutput += digit[r];
  6842. }
  6843. output = mergeOutput.toFloat();
  6844. if (digit[4] == 8) //Handle sign
  6845. {
  6846. output *= -1;
  6847. }
  6848. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6849. {
  6850. output /= 10;
  6851. }
  6852. return output;
  6853. }
  6854. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6855. int t1 = 0;
  6856. int t_delay = 0;
  6857. int digit[13];
  6858. int m;
  6859. char str[3];
  6860. //String mergeOutput;
  6861. char mergeOutput[15];
  6862. float output;
  6863. int mesh_point = 0; //index number of calibration point
  6864. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6865. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6866. float mesh_home_z_search = 4;
  6867. float row[x_points_num];
  6868. int ix = 0;
  6869. int iy = 0;
  6870. const char* filename_wldsd = "wldsd.txt";
  6871. char data_wldsd[70];
  6872. char numb_wldsd[10];
  6873. d_setup();
  6874. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6875. // We don't know where we are! HOME!
  6876. // Push the commands to the front of the message queue in the reverse order!
  6877. // There shall be always enough space reserved for these commands.
  6878. repeatcommand_front(); // repeat G80 with all its parameters
  6879. enquecommand_front_P((PSTR("G28 W0")));
  6880. enquecommand_front_P((PSTR("G1 Z5")));
  6881. return;
  6882. }
  6883. unsigned int custom_message_type_old = custom_message_type;
  6884. unsigned int custom_message_state_old = custom_message_state;
  6885. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6886. custom_message_state = (x_points_num * y_points_num) + 10;
  6887. lcd_update(1);
  6888. mbl.reset();
  6889. babystep_undo();
  6890. card.openFile(filename_wldsd, false);
  6891. current_position[Z_AXIS] = mesh_home_z_search;
  6892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6893. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6894. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6895. int l_feedmultiply = setup_for_endstop_move(false);
  6896. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6897. SERIAL_PROTOCOL(x_points_num);
  6898. SERIAL_PROTOCOLPGM(",");
  6899. SERIAL_PROTOCOL(y_points_num);
  6900. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6901. SERIAL_PROTOCOL(mesh_home_z_search);
  6902. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6903. SERIAL_PROTOCOL(x_dimension);
  6904. SERIAL_PROTOCOLPGM(",");
  6905. SERIAL_PROTOCOL(y_dimension);
  6906. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6907. while (mesh_point != x_points_num * y_points_num) {
  6908. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6909. iy = mesh_point / x_points_num;
  6910. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6911. float z0 = 0.f;
  6912. current_position[Z_AXIS] = mesh_home_z_search;
  6913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6914. st_synchronize();
  6915. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6916. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6918. st_synchronize();
  6919. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6920. break;
  6921. card.closefile();
  6922. }
  6923. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6924. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6925. //strcat(data_wldsd, numb_wldsd);
  6926. //MYSERIAL.println(data_wldsd);
  6927. //delay(1000);
  6928. //delay(3000);
  6929. //t1 = millis();
  6930. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6931. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6932. memset(digit, 0, sizeof(digit));
  6933. //cli();
  6934. digitalWrite(D_REQUIRE, LOW);
  6935. for (int i = 0; i<13; i++)
  6936. {
  6937. //t1 = millis();
  6938. for (int j = 0; j < 4; j++)
  6939. {
  6940. while (digitalRead(D_DATACLOCK) == LOW) {}
  6941. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6942. bitWrite(digit[i], j, digitalRead(D_DATA));
  6943. }
  6944. //t_delay = (millis() - t1);
  6945. //SERIAL_PROTOCOLPGM(" ");
  6946. //SERIAL_PROTOCOL_F(t_delay, 5);
  6947. //SERIAL_PROTOCOLPGM(" ");
  6948. }
  6949. //sei();
  6950. digitalWrite(D_REQUIRE, HIGH);
  6951. mergeOutput[0] = '\0';
  6952. output = 0;
  6953. for (int r = 5; r <= 10; r++) //Merge digits
  6954. {
  6955. sprintf(str, "%d", digit[r]);
  6956. strcat(mergeOutput, str);
  6957. }
  6958. output = atof(mergeOutput);
  6959. if (digit[4] == 8) //Handle sign
  6960. {
  6961. output *= -1;
  6962. }
  6963. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6964. {
  6965. output *= 0.1;
  6966. }
  6967. //output = d_ReadData();
  6968. //row[ix] = current_position[Z_AXIS];
  6969. memset(data_wldsd, 0, sizeof(data_wldsd));
  6970. for (int i = 0; i <3; i++) {
  6971. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6972. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6973. strcat(data_wldsd, numb_wldsd);
  6974. strcat(data_wldsd, ";");
  6975. }
  6976. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6977. dtostrf(output, 8, 5, numb_wldsd);
  6978. strcat(data_wldsd, numb_wldsd);
  6979. //strcat(data_wldsd, ";");
  6980. card.write_command(data_wldsd);
  6981. //row[ix] = d_ReadData();
  6982. row[ix] = output; // current_position[Z_AXIS];
  6983. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6984. for (int i = 0; i < x_points_num; i++) {
  6985. SERIAL_PROTOCOLPGM(" ");
  6986. SERIAL_PROTOCOL_F(row[i], 5);
  6987. }
  6988. SERIAL_PROTOCOLPGM("\n");
  6989. }
  6990. custom_message_state--;
  6991. mesh_point++;
  6992. lcd_update(1);
  6993. }
  6994. card.closefile();
  6995. clean_up_after_endstop_move(l_feedmultiply);
  6996. }
  6997. #endif
  6998. void temp_compensation_start() {
  6999. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7000. custom_message_state = PINDA_HEAT_T + 1;
  7001. lcd_update(2);
  7002. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7003. current_position[E_AXIS] -= default_retraction;
  7004. }
  7005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7006. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7007. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7008. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7010. st_synchronize();
  7011. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7012. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7013. delay_keep_alive(1000);
  7014. custom_message_state = PINDA_HEAT_T - i;
  7015. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7016. else lcd_update(1);
  7017. }
  7018. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7019. custom_message_state = 0;
  7020. }
  7021. void temp_compensation_apply() {
  7022. int i_add;
  7023. int z_shift = 0;
  7024. float z_shift_mm;
  7025. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7026. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7027. i_add = (target_temperature_bed - 60) / 10;
  7028. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7029. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7030. }else {
  7031. //interpolation
  7032. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7033. }
  7034. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7036. st_synchronize();
  7037. plan_set_z_position(current_position[Z_AXIS]);
  7038. }
  7039. else {
  7040. //we have no temp compensation data
  7041. }
  7042. }
  7043. float temp_comp_interpolation(float inp_temperature) {
  7044. //cubic spline interpolation
  7045. int n, i, j;
  7046. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7047. int shift[10];
  7048. int temp_C[10];
  7049. n = 6; //number of measured points
  7050. shift[0] = 0;
  7051. for (i = 0; i < n; i++) {
  7052. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7053. temp_C[i] = 50 + i * 10; //temperature in C
  7054. #ifdef PINDA_THERMISTOR
  7055. temp_C[i] = 35 + i * 5; //temperature in C
  7056. #else
  7057. temp_C[i] = 50 + i * 10; //temperature in C
  7058. #endif
  7059. x[i] = (float)temp_C[i];
  7060. f[i] = (float)shift[i];
  7061. }
  7062. if (inp_temperature < x[0]) return 0;
  7063. for (i = n - 1; i>0; i--) {
  7064. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7065. h[i - 1] = x[i] - x[i - 1];
  7066. }
  7067. //*********** formation of h, s , f matrix **************
  7068. for (i = 1; i<n - 1; i++) {
  7069. m[i][i] = 2 * (h[i - 1] + h[i]);
  7070. if (i != 1) {
  7071. m[i][i - 1] = h[i - 1];
  7072. m[i - 1][i] = h[i - 1];
  7073. }
  7074. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7075. }
  7076. //*********** forward elimination **************
  7077. for (i = 1; i<n - 2; i++) {
  7078. temp = (m[i + 1][i] / m[i][i]);
  7079. for (j = 1; j <= n - 1; j++)
  7080. m[i + 1][j] -= temp*m[i][j];
  7081. }
  7082. //*********** backward substitution *********
  7083. for (i = n - 2; i>0; i--) {
  7084. sum = 0;
  7085. for (j = i; j <= n - 2; j++)
  7086. sum += m[i][j] * s[j];
  7087. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7088. }
  7089. for (i = 0; i<n - 1; i++)
  7090. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7091. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7092. b = s[i] / 2;
  7093. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7094. d = f[i];
  7095. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7096. }
  7097. return sum;
  7098. }
  7099. #ifdef PINDA_THERMISTOR
  7100. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7101. {
  7102. if (!temp_cal_active) return 0;
  7103. if (!calibration_status_pinda()) return 0;
  7104. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7105. }
  7106. #endif //PINDA_THERMISTOR
  7107. void long_pause() //long pause print
  7108. {
  7109. st_synchronize();
  7110. start_pause_print = millis();
  7111. //retract
  7112. current_position[E_AXIS] -= default_retraction;
  7113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7114. //lift z
  7115. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7116. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7118. //Move XY to side
  7119. current_position[X_AXIS] = X_PAUSE_POS;
  7120. current_position[Y_AXIS] = Y_PAUSE_POS;
  7121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7122. // Turn off the print fan
  7123. fanSpeed = 0;
  7124. st_synchronize();
  7125. }
  7126. void serialecho_temperatures() {
  7127. float tt = degHotend(active_extruder);
  7128. SERIAL_PROTOCOLPGM("T:");
  7129. SERIAL_PROTOCOL(tt);
  7130. SERIAL_PROTOCOLPGM(" E:");
  7131. SERIAL_PROTOCOL((int)active_extruder);
  7132. SERIAL_PROTOCOLPGM(" B:");
  7133. SERIAL_PROTOCOL_F(degBed(), 1);
  7134. SERIAL_PROTOCOLLN("");
  7135. }
  7136. extern uint32_t sdpos_atomic;
  7137. #ifdef UVLO_SUPPORT
  7138. void uvlo_()
  7139. {
  7140. unsigned long time_start = millis();
  7141. bool sd_print = card.sdprinting;
  7142. // Conserve power as soon as possible.
  7143. disable_x();
  7144. disable_y();
  7145. #ifdef TMC2130
  7146. tmc2130_set_current_h(Z_AXIS, 20);
  7147. tmc2130_set_current_r(Z_AXIS, 20);
  7148. tmc2130_set_current_h(E_AXIS, 20);
  7149. tmc2130_set_current_r(E_AXIS, 20);
  7150. #endif //TMC2130
  7151. // Indicate that the interrupt has been triggered.
  7152. // SERIAL_ECHOLNPGM("UVLO");
  7153. // Read out the current Z motor microstep counter. This will be later used
  7154. // for reaching the zero full step before powering off.
  7155. uint16_t z_microsteps = 0;
  7156. #ifdef TMC2130
  7157. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7158. #endif //TMC2130
  7159. // Calculate the file position, from which to resume this print.
  7160. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7161. {
  7162. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7163. sd_position -= sdlen_planner;
  7164. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7165. sd_position -= sdlen_cmdqueue;
  7166. if (sd_position < 0) sd_position = 0;
  7167. }
  7168. // Backup the feedrate in mm/min.
  7169. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7170. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7171. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7172. // are in action.
  7173. planner_abort_hard();
  7174. // Store the current extruder position.
  7175. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7176. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7177. // Clean the input command queue.
  7178. cmdqueue_reset();
  7179. card.sdprinting = false;
  7180. // card.closefile();
  7181. // Enable stepper driver interrupt to move Z axis.
  7182. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7183. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7184. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7185. sei();
  7186. plan_buffer_line(
  7187. current_position[X_AXIS],
  7188. current_position[Y_AXIS],
  7189. current_position[Z_AXIS],
  7190. current_position[E_AXIS] - default_retraction,
  7191. 95, active_extruder);
  7192. st_synchronize();
  7193. disable_e0();
  7194. plan_buffer_line(
  7195. current_position[X_AXIS],
  7196. current_position[Y_AXIS],
  7197. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7198. current_position[E_AXIS] - default_retraction,
  7199. 40, active_extruder);
  7200. st_synchronize();
  7201. disable_e0();
  7202. plan_buffer_line(
  7203. current_position[X_AXIS],
  7204. current_position[Y_AXIS],
  7205. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7206. current_position[E_AXIS] - default_retraction,
  7207. 40, active_extruder);
  7208. st_synchronize();
  7209. disable_e0();
  7210. disable_z();
  7211. // Move Z up to the next 0th full step.
  7212. // Write the file position.
  7213. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7214. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7215. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7216. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7217. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7218. // Scale the z value to 1u resolution.
  7219. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7220. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7221. }
  7222. // Read out the current Z motor microstep counter. This will be later used
  7223. // for reaching the zero full step before powering off.
  7224. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7225. // Store the current position.
  7226. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7227. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7228. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7229. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7230. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7231. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7232. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7233. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7234. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7235. #if EXTRUDERS > 1
  7236. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7237. #if EXTRUDERS > 2
  7238. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7239. #endif
  7240. #endif
  7241. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7242. // Finaly store the "power outage" flag.
  7243. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7244. st_synchronize();
  7245. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7246. disable_z();
  7247. // Increment power failure counter
  7248. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7249. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7250. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7251. #if 0
  7252. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7253. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7255. st_synchronize();
  7256. #endif
  7257. wdt_enable(WDTO_500MS);
  7258. WRITE(BEEPER,HIGH);
  7259. while(1)
  7260. ;
  7261. }
  7262. void uvlo_tiny()
  7263. {
  7264. uint16_t z_microsteps=0;
  7265. // Conserve power as soon as possible.
  7266. disable_x();
  7267. disable_y();
  7268. disable_e0();
  7269. #ifdef TMC2130
  7270. tmc2130_set_current_h(Z_AXIS, 20);
  7271. tmc2130_set_current_r(Z_AXIS, 20);
  7272. #endif //TMC2130
  7273. // Read out the current Z motor microstep counter
  7274. #ifdef TMC2130
  7275. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7276. #endif //TMC2130
  7277. planner_abort_hard();
  7278. sei();
  7279. plan_buffer_line(
  7280. current_position[X_AXIS],
  7281. current_position[Y_AXIS],
  7282. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7283. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7284. current_position[E_AXIS],
  7285. 40, active_extruder);
  7286. st_synchronize();
  7287. disable_z();
  7288. // Finaly store the "power outage" flag.
  7289. //if(sd_print)
  7290. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7291. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7292. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7293. // Increment power failure counter
  7294. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7295. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7296. wdt_enable(WDTO_500MS);
  7297. WRITE(BEEPER,HIGH);
  7298. while(1)
  7299. ;
  7300. }
  7301. #endif //UVLO_SUPPORT
  7302. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7303. void setup_fan_interrupt() {
  7304. //INT7
  7305. DDRE &= ~(1 << 7); //input pin
  7306. PORTE &= ~(1 << 7); //no internal pull-up
  7307. //start with sensing rising edge
  7308. EICRB &= ~(1 << 6);
  7309. EICRB |= (1 << 7);
  7310. //enable INT7 interrupt
  7311. EIMSK |= (1 << 7);
  7312. }
  7313. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7314. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7315. ISR(INT7_vect) {
  7316. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7317. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7318. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7319. t_fan_rising_edge = millis_nc();
  7320. }
  7321. else { //interrupt was triggered by falling edge
  7322. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7323. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7324. }
  7325. }
  7326. EICRB ^= (1 << 6); //change edge
  7327. }
  7328. #endif
  7329. #ifdef UVLO_SUPPORT
  7330. void setup_uvlo_interrupt() {
  7331. DDRE &= ~(1 << 4); //input pin
  7332. PORTE &= ~(1 << 4); //no internal pull-up
  7333. //sensing falling edge
  7334. EICRB |= (1 << 0);
  7335. EICRB &= ~(1 << 1);
  7336. //enable INT4 interrupt
  7337. EIMSK |= (1 << 4);
  7338. }
  7339. ISR(INT4_vect) {
  7340. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7341. SERIAL_ECHOLNPGM("INT4");
  7342. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7343. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7344. }
  7345. void recover_print(uint8_t automatic) {
  7346. char cmd[30];
  7347. lcd_update_enable(true);
  7348. lcd_update(2);
  7349. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7350. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7351. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7352. // Lift the print head, so one may remove the excess priming material.
  7353. if(!bTiny&&(current_position[Z_AXIS]<25))
  7354. enquecommand_P(PSTR("G1 Z25 F800"));
  7355. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7356. enquecommand_P(PSTR("G28 X Y"));
  7357. // Set the target bed and nozzle temperatures and wait.
  7358. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7359. enquecommand(cmd);
  7360. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7361. enquecommand(cmd);
  7362. enquecommand_P(PSTR("M83")); //E axis relative mode
  7363. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7364. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7365. if(automatic == 0){
  7366. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7367. }
  7368. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7369. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7370. // Restart the print.
  7371. restore_print_from_eeprom();
  7372. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7373. }
  7374. void recover_machine_state_after_power_panic(bool bTiny)
  7375. {
  7376. char cmd[30];
  7377. // 1) Recover the logical cordinates at the time of the power panic.
  7378. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7379. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7380. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7381. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7382. // The current position after power panic is moved to the next closest 0th full step.
  7383. if(bTiny)
  7384. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7385. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7386. else
  7387. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7388. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7389. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7390. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7391. sprintf_P(cmd, PSTR("G92 E"));
  7392. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7393. enquecommand(cmd);
  7394. }
  7395. memcpy(destination, current_position, sizeof(destination));
  7396. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7397. print_world_coordinates();
  7398. // 2) Initialize the logical to physical coordinate system transformation.
  7399. world2machine_initialize();
  7400. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7401. mbl.active = false;
  7402. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7403. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7404. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7405. // Scale the z value to 10u resolution.
  7406. int16_t v;
  7407. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7408. if (v != 0)
  7409. mbl.active = true;
  7410. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7411. }
  7412. if (mbl.active)
  7413. mbl.upsample_3x3();
  7414. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7415. // print_mesh_bed_leveling_table();
  7416. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7417. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7418. babystep_load();
  7419. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7421. // 6) Power up the motors, mark their positions as known.
  7422. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7423. axis_known_position[X_AXIS] = true; enable_x();
  7424. axis_known_position[Y_AXIS] = true; enable_y();
  7425. axis_known_position[Z_AXIS] = true; enable_z();
  7426. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7427. print_physical_coordinates();
  7428. // 7) Recover the target temperatures.
  7429. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7430. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7431. // 8) Recover extruder multipilers
  7432. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7433. #if EXTRUDERS > 1
  7434. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7435. #if EXTRUDERS > 2
  7436. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7437. #endif
  7438. #endif
  7439. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7440. }
  7441. void restore_print_from_eeprom() {
  7442. int feedrate_rec;
  7443. uint8_t fan_speed_rec;
  7444. char cmd[30];
  7445. char filename[13];
  7446. uint8_t depth = 0;
  7447. char dir_name[9];
  7448. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7449. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7450. SERIAL_ECHOPGM("Feedrate:");
  7451. MYSERIAL.println(feedrate_rec);
  7452. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7453. MYSERIAL.println(int(depth));
  7454. for (int i = 0; i < depth; i++) {
  7455. for (int j = 0; j < 8; j++) {
  7456. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7457. }
  7458. dir_name[8] = '\0';
  7459. MYSERIAL.println(dir_name);
  7460. strcpy(dir_names[i], dir_name);
  7461. card.chdir(dir_name);
  7462. }
  7463. for (int i = 0; i < 8; i++) {
  7464. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7465. }
  7466. filename[8] = '\0';
  7467. MYSERIAL.print(filename);
  7468. strcat_P(filename, PSTR(".gco"));
  7469. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7470. enquecommand(cmd);
  7471. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7472. SERIAL_ECHOPGM("Position read from eeprom:");
  7473. MYSERIAL.println(position);
  7474. // E axis relative mode.
  7475. enquecommand_P(PSTR("M83"));
  7476. // Move to the XY print position in logical coordinates, where the print has been killed.
  7477. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7478. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7479. strcat_P(cmd, PSTR(" F2000"));
  7480. enquecommand(cmd);
  7481. // Move the Z axis down to the print, in logical coordinates.
  7482. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7483. enquecommand(cmd);
  7484. // Unretract.
  7485. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7486. // Set the feedrate saved at the power panic.
  7487. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7488. enquecommand(cmd);
  7489. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7490. {
  7491. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7492. }
  7493. // Set the fan speed saved at the power panic.
  7494. strcpy_P(cmd, PSTR("M106 S"));
  7495. strcat(cmd, itostr3(int(fan_speed_rec)));
  7496. enquecommand(cmd);
  7497. // Set a position in the file.
  7498. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7499. enquecommand(cmd);
  7500. enquecommand_P(PSTR("G4 S0"));
  7501. enquecommand_P(PSTR("PRUSA uvlo"));
  7502. }
  7503. #endif //UVLO_SUPPORT
  7504. //! @brief Immediately stop print moves
  7505. //!
  7506. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7507. //! If printing from sd card, position in file is saved.
  7508. //! If printing from USB, line number is saved.
  7509. //!
  7510. //! @param z_move
  7511. //! @param e_move
  7512. void stop_and_save_print_to_ram(float z_move, float e_move)
  7513. {
  7514. if (saved_printing) return;
  7515. #if 0
  7516. unsigned char nplanner_blocks;
  7517. #endif
  7518. unsigned char nlines;
  7519. uint16_t sdlen_planner;
  7520. uint16_t sdlen_cmdqueue;
  7521. cli();
  7522. if (card.sdprinting) {
  7523. #if 0
  7524. nplanner_blocks = number_of_blocks();
  7525. #endif
  7526. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7527. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7528. saved_sdpos -= sdlen_planner;
  7529. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7530. saved_sdpos -= sdlen_cmdqueue;
  7531. saved_printing_type = PRINTING_TYPE_SD;
  7532. }
  7533. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7534. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7535. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7536. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7537. saved_sdpos -= nlines;
  7538. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7539. saved_printing_type = PRINTING_TYPE_USB;
  7540. }
  7541. else {
  7542. //not sd printing nor usb printing
  7543. }
  7544. #if 0
  7545. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7546. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7547. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7548. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7549. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7550. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7551. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7552. {
  7553. card.setIndex(saved_sdpos);
  7554. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7555. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7556. MYSERIAL.print(char(card.get()));
  7557. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7558. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7559. MYSERIAL.print(char(card.get()));
  7560. SERIAL_ECHOLNPGM("End of command buffer");
  7561. }
  7562. {
  7563. // Print the content of the planner buffer, line by line:
  7564. card.setIndex(saved_sdpos);
  7565. int8_t iline = 0;
  7566. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7567. SERIAL_ECHOPGM("Planner line (from file): ");
  7568. MYSERIAL.print(int(iline), DEC);
  7569. SERIAL_ECHOPGM(", length: ");
  7570. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7571. SERIAL_ECHOPGM(", steps: (");
  7572. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7573. SERIAL_ECHOPGM(",");
  7574. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7575. SERIAL_ECHOPGM(",");
  7576. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7577. SERIAL_ECHOPGM(",");
  7578. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7579. SERIAL_ECHOPGM("), events: ");
  7580. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7581. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7582. MYSERIAL.print(char(card.get()));
  7583. }
  7584. }
  7585. {
  7586. // Print the content of the command buffer, line by line:
  7587. int8_t iline = 0;
  7588. union {
  7589. struct {
  7590. char lo;
  7591. char hi;
  7592. } lohi;
  7593. uint16_t value;
  7594. } sdlen_single;
  7595. int _bufindr = bufindr;
  7596. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7597. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7598. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7599. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7600. }
  7601. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7602. MYSERIAL.print(int(iline), DEC);
  7603. SERIAL_ECHOPGM(", type: ");
  7604. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7605. SERIAL_ECHOPGM(", len: ");
  7606. MYSERIAL.println(sdlen_single.value, DEC);
  7607. // Print the content of the buffer line.
  7608. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7609. SERIAL_ECHOPGM("Buffer line (from file): ");
  7610. MYSERIAL.println(int(iline), DEC);
  7611. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7612. MYSERIAL.print(char(card.get()));
  7613. if (-- _buflen == 0)
  7614. break;
  7615. // First skip the current command ID and iterate up to the end of the string.
  7616. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7617. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7618. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7619. // If the end of the buffer was empty,
  7620. if (_bufindr == sizeof(cmdbuffer)) {
  7621. // skip to the start and find the nonzero command.
  7622. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7623. }
  7624. }
  7625. }
  7626. #endif
  7627. #if 0
  7628. saved_feedrate2 = feedrate; //save feedrate
  7629. #else
  7630. // Try to deduce the feedrate from the first block of the planner.
  7631. // Speed is in mm/min.
  7632. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7633. #endif
  7634. planner_abort_hard(); //abort printing
  7635. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7636. saved_active_extruder = active_extruder; //save active_extruder
  7637. saved_extruder_temperature = degTargetHotend(active_extruder);
  7638. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7639. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7640. saved_fanSpeed = fanSpeed;
  7641. cmdqueue_reset(); //empty cmdqueue
  7642. card.sdprinting = false;
  7643. // card.closefile();
  7644. saved_printing = true;
  7645. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7646. st_reset_timer();
  7647. sei();
  7648. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7649. #if 1
  7650. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7651. char buf[48];
  7652. // First unretract (relative extrusion)
  7653. if(!saved_extruder_relative_mode){
  7654. strcpy_P(buf, PSTR("M83"));
  7655. enquecommand(buf, false);
  7656. }
  7657. //retract 45mm/s
  7658. strcpy_P(buf, PSTR("G1 E"));
  7659. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7660. strcat_P(buf, PSTR(" F"));
  7661. dtostrf(2700, 8, 3, buf + strlen(buf));
  7662. enquecommand(buf, false);
  7663. // Then lift Z axis
  7664. strcpy_P(buf, PSTR("G1 Z"));
  7665. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7666. strcat_P(buf, PSTR(" F"));
  7667. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7668. // At this point the command queue is empty.
  7669. enquecommand(buf, false);
  7670. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7671. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7672. repeatcommand_front();
  7673. #else
  7674. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7675. st_synchronize(); //wait moving
  7676. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7677. memcpy(destination, current_position, sizeof(destination));
  7678. #endif
  7679. }
  7680. }
  7681. //! @brief Restore print from ram
  7682. //!
  7683. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7684. //! waits for extruder temperature restore, then restores position and continues
  7685. //! print moves.
  7686. //! Internaly lcd_update() is called by wait_for_heater().
  7687. //!
  7688. //! @param e_move
  7689. void restore_print_from_ram_and_continue(float e_move)
  7690. {
  7691. if (!saved_printing) return;
  7692. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7693. // current_position[axis] = st_get_position_mm(axis);
  7694. active_extruder = saved_active_extruder; //restore active_extruder
  7695. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7696. heating_status = 1;
  7697. wait_for_heater(millis(),saved_active_extruder);
  7698. heating_status = 2;
  7699. feedrate = saved_feedrate2; //restore feedrate
  7700. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7701. fanSpeed = saved_fanSpeed;
  7702. float e = saved_pos[E_AXIS] - e_move;
  7703. plan_set_e_position(e);
  7704. //first move print head in XY to the saved position:
  7705. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7706. st_synchronize();
  7707. //then move Z
  7708. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7709. st_synchronize();
  7710. //and finaly unretract (35mm/s)
  7711. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7712. st_synchronize();
  7713. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7714. memcpy(destination, current_position, sizeof(destination));
  7715. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7716. card.setIndex(saved_sdpos);
  7717. sdpos_atomic = saved_sdpos;
  7718. card.sdprinting = true;
  7719. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7720. }
  7721. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7722. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7723. serial_count = 0;
  7724. FlushSerialRequestResend();
  7725. }
  7726. else {
  7727. //not sd printing nor usb printing
  7728. }
  7729. lcd_setstatuspgm(_T(WELCOME_MSG));
  7730. saved_printing = false;
  7731. }
  7732. void print_world_coordinates()
  7733. {
  7734. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7735. }
  7736. void print_physical_coordinates()
  7737. {
  7738. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7739. }
  7740. void print_mesh_bed_leveling_table()
  7741. {
  7742. SERIAL_ECHOPGM("mesh bed leveling: ");
  7743. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7744. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7745. MYSERIAL.print(mbl.z_values[y][x], 3);
  7746. SERIAL_ECHOPGM(" ");
  7747. }
  7748. SERIAL_ECHOLNPGM("");
  7749. }
  7750. uint16_t print_time_remaining() {
  7751. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7752. #ifdef TMC2130
  7753. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7754. else print_t = print_time_remaining_silent;
  7755. #else
  7756. print_t = print_time_remaining_normal;
  7757. #endif //TMC2130
  7758. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7759. return print_t;
  7760. }
  7761. uint8_t calc_percent_done()
  7762. {
  7763. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7764. uint8_t percent_done = 0;
  7765. #ifdef TMC2130
  7766. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7767. percent_done = print_percent_done_normal;
  7768. }
  7769. else if (print_percent_done_silent <= 100) {
  7770. percent_done = print_percent_done_silent;
  7771. }
  7772. #else
  7773. if (print_percent_done_normal <= 100) {
  7774. percent_done = print_percent_done_normal;
  7775. }
  7776. #endif //TMC2130
  7777. else {
  7778. percent_done = card.percentDone();
  7779. }
  7780. return percent_done;
  7781. }
  7782. static void print_time_remaining_init()
  7783. {
  7784. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7785. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7786. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7787. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7788. }
  7789. void M600_check_state()
  7790. {
  7791. //Wait for user to check the state
  7792. lcd_change_fil_state = 0;
  7793. while (lcd_change_fil_state != 1){
  7794. lcd_change_fil_state = 0;
  7795. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7796. lcd_alright();
  7797. KEEPALIVE_STATE(IN_HANDLER);
  7798. switch(lcd_change_fil_state){
  7799. // Filament failed to load so load it again
  7800. case 2:
  7801. if (mmu_enabled)
  7802. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7803. else
  7804. M600_load_filament_movements();
  7805. break;
  7806. // Filament loaded properly but color is not clear
  7807. case 3:
  7808. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7810. lcd_loading_color();
  7811. break;
  7812. // Everything good
  7813. default:
  7814. lcd_change_success();
  7815. break;
  7816. }
  7817. }
  7818. }
  7819. //! @brief Wait for user action
  7820. //!
  7821. //! Beep, manage nozzle heater and wait for user to start unload filament
  7822. //! If times out, active extruder temperature is set to 0.
  7823. //!
  7824. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7825. void M600_wait_for_user(float HotendTempBckp) {
  7826. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7827. int counterBeep = 0;
  7828. unsigned long waiting_start_time = millis();
  7829. uint8_t wait_for_user_state = 0;
  7830. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7831. bool bFirst=true;
  7832. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7833. manage_heater();
  7834. manage_inactivity(true);
  7835. #if BEEPER > 0
  7836. if (counterBeep == 500) {
  7837. counterBeep = 0;
  7838. }
  7839. SET_OUTPUT(BEEPER);
  7840. if (counterBeep == 0) {
  7841. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7842. {
  7843. bFirst=false;
  7844. WRITE(BEEPER, HIGH);
  7845. }
  7846. }
  7847. if (counterBeep == 20) {
  7848. WRITE(BEEPER, LOW);
  7849. }
  7850. counterBeep++;
  7851. #endif //BEEPER > 0
  7852. switch (wait_for_user_state) {
  7853. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7854. delay_keep_alive(4);
  7855. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7856. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7857. wait_for_user_state = 1;
  7858. setAllTargetHotends(0);
  7859. st_synchronize();
  7860. disable_e0();
  7861. disable_e1();
  7862. disable_e2();
  7863. }
  7864. break;
  7865. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7866. delay_keep_alive(4);
  7867. if (lcd_clicked()) {
  7868. setTargetHotend(HotendTempBckp, active_extruder);
  7869. lcd_wait_for_heater();
  7870. wait_for_user_state = 2;
  7871. }
  7872. break;
  7873. case 2: //waiting for nozzle to reach target temperature
  7874. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7875. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7876. waiting_start_time = millis();
  7877. wait_for_user_state = 0;
  7878. }
  7879. else {
  7880. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7881. lcd_set_cursor(1, 4);
  7882. lcd_print(ftostr3(degHotend(active_extruder)));
  7883. }
  7884. break;
  7885. }
  7886. }
  7887. WRITE(BEEPER, LOW);
  7888. }
  7889. void M600_load_filament_movements()
  7890. {
  7891. #ifdef SNMM
  7892. display_loading();
  7893. do
  7894. {
  7895. current_position[E_AXIS] += 0.002;
  7896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7897. delay_keep_alive(2);
  7898. }
  7899. while (!lcd_clicked());
  7900. st_synchronize();
  7901. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7903. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7905. current_position[E_AXIS] += 40;
  7906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7907. current_position[E_AXIS] += 10;
  7908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7909. #else
  7910. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7912. #endif
  7913. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7915. lcd_loading_filament();
  7916. }
  7917. void M600_load_filament() {
  7918. //load filament for single material and SNMM
  7919. lcd_wait_interact();
  7920. //load_filament_time = millis();
  7921. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7922. #ifdef FILAMENT_SENSOR
  7923. fsensor_autoload_check_start();
  7924. #endif //FILAMENT_SENSOR
  7925. while(!lcd_clicked())
  7926. {
  7927. manage_heater();
  7928. manage_inactivity(true);
  7929. #ifdef FILAMENT_SENSOR
  7930. if (fsensor_check_autoload())
  7931. {
  7932. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7933. tone(BEEPER, 1000);
  7934. delay_keep_alive(50);
  7935. noTone(BEEPER);
  7936. break;
  7937. }
  7938. #endif //FILAMENT_SENSOR
  7939. }
  7940. #ifdef FILAMENT_SENSOR
  7941. fsensor_autoload_check_stop();
  7942. #endif //FILAMENT_SENSOR
  7943. KEEPALIVE_STATE(IN_HANDLER);
  7944. #ifdef FILAMENT_SENSOR
  7945. fsensor_oq_meassure_start(70);
  7946. #endif //FILAMENT_SENSOR
  7947. M600_load_filament_movements();
  7948. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7949. tone(BEEPER, 500);
  7950. delay_keep_alive(50);
  7951. noTone(BEEPER);
  7952. #ifdef FILAMENT_SENSOR
  7953. fsensor_oq_meassure_stop();
  7954. if (!fsensor_oq_result())
  7955. {
  7956. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7957. lcd_update_enable(true);
  7958. lcd_update(2);
  7959. if (disable)
  7960. fsensor_disable();
  7961. }
  7962. #endif //FILAMENT_SENSOR
  7963. lcd_update_enable(false);
  7964. }
  7965. #define FIL_LOAD_LENGTH 60