temperature.cpp 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float temp_iState[EXTRUDERS] = { 0 };
  88. static float temp_dState[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float temp_iState_min[EXTRUDERS];
  95. static float temp_iState_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. static unsigned long extruder_autofan_last_check;
  122. #endif
  123. #if EXTRUDERS > 3
  124. # error Unsupported number of extruders
  125. #elif EXTRUDERS > 2
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  127. #elif EXTRUDERS > 1
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  129. #else
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  131. #endif
  132. // Init min and max temp with extreme values to prevent false errors during startup
  133. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  134. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  135. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  136. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  137. #ifdef BED_MINTEMP
  138. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  139. #endif
  140. #ifdef BED_MAXTEMP
  141. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  142. #endif
  143. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  144. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  145. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  146. #else
  147. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  148. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  149. #endif
  150. static float analog2temp(int raw, uint8_t e);
  151. static float analog2tempBed(int raw);
  152. static float analog2tempAmbient(int raw);
  153. static void updateTemperaturesFromRawValues();
  154. enum TempRunawayStates
  155. {
  156. TempRunaway_INACTIVE = 0,
  157. TempRunaway_PREHEAT = 1,
  158. TempRunaway_ACTIVE = 2,
  159. };
  160. #ifdef WATCH_TEMP_PERIOD
  161. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  163. #endif //WATCH_TEMP_PERIOD
  164. #ifndef SOFT_PWM_SCALE
  165. #define SOFT_PWM_SCALE 0
  166. #endif
  167. //===========================================================================
  168. //============================= functions ============================
  169. //===========================================================================
  170. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  171. static float temp_runaway_status[4];
  172. static float temp_runaway_target[4];
  173. static float temp_runaway_timer[4];
  174. static int temp_runaway_error_counter[4];
  175. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  176. static void temp_runaway_stop(bool isPreheat, bool isBed);
  177. #endif
  178. void PID_autotune(float temp, int extruder, int ncycles)
  179. {
  180. pid_number_of_cycles = ncycles;
  181. pid_tuning_finished = false;
  182. float input = 0.0;
  183. pid_cycle=0;
  184. bool heating = true;
  185. unsigned long temp_millis = millis();
  186. unsigned long t1=temp_millis;
  187. unsigned long t2=temp_millis;
  188. long t_high = 0;
  189. long t_low = 0;
  190. long bias, d;
  191. float Ku, Tu;
  192. float max = 0, min = 10000;
  193. uint8_t safety_check_cycles = 0;
  194. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  195. float temp_ambient;
  196. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  197. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  198. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  199. unsigned long extruder_autofan_last_check = millis();
  200. #endif
  201. if ((extruder >= EXTRUDERS)
  202. #if (TEMP_BED_PIN <= -1)
  203. ||(extruder < 0)
  204. #endif
  205. ){
  206. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  207. pid_tuning_finished = true;
  208. pid_cycle = 0;
  209. return;
  210. }
  211. SERIAL_ECHOLN("PID Autotune start");
  212. disable_heater(); // switch off all heaters.
  213. if (extruder<0)
  214. {
  215. soft_pwm_bed = (MAX_BED_POWER)/2;
  216. bias = d = (MAX_BED_POWER)/2;
  217. }
  218. else
  219. {
  220. soft_pwm[extruder] = (PID_MAX)/2;
  221. bias = d = (PID_MAX)/2;
  222. }
  223. for(;;) {
  224. #ifdef WATCHDOG
  225. wdt_reset();
  226. #endif //WATCHDOG
  227. if(temp_meas_ready == true) { // temp sample ready
  228. updateTemperaturesFromRawValues();
  229. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  230. max=max(max,input);
  231. min=min(min,input);
  232. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  233. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  234. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  235. if(millis() - extruder_autofan_last_check > 2500) {
  236. checkExtruderAutoFans();
  237. extruder_autofan_last_check = millis();
  238. }
  239. #endif
  240. if(heating == true && input > temp) {
  241. if(millis() - t2 > 5000) {
  242. heating=false;
  243. if (extruder<0)
  244. soft_pwm_bed = (bias - d) >> 1;
  245. else
  246. soft_pwm[extruder] = (bias - d) >> 1;
  247. t1=millis();
  248. t_high=t1 - t2;
  249. max=temp;
  250. }
  251. }
  252. if(heating == false && input < temp) {
  253. if(millis() - t1 > 5000) {
  254. heating=true;
  255. t2=millis();
  256. t_low=t2 - t1;
  257. if(pid_cycle > 0) {
  258. bias += (d*(t_high - t_low))/(t_low + t_high);
  259. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  260. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  261. else d = bias;
  262. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  263. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  264. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  265. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  266. if(pid_cycle > 2) {
  267. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  268. Tu = ((float)(t_low + t_high)/1000.0);
  269. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  270. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  271. _Kp = 0.6*Ku;
  272. _Ki = 2*_Kp/Tu;
  273. _Kd = _Kp*Tu/8;
  274. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  275. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  276. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  277. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  278. /*
  279. _Kp = 0.33*Ku;
  280. _Ki = _Kp/Tu;
  281. _Kd = _Kp*Tu/3;
  282. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. _Kp = 0.2*Ku;
  287. _Ki = 2*_Kp/Tu;
  288. _Kd = _Kp*Tu/3;
  289. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  290. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  291. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  292. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  293. */
  294. }
  295. }
  296. if (extruder<0)
  297. soft_pwm_bed = (bias + d) >> 1;
  298. else
  299. soft_pwm[extruder] = (bias + d) >> 1;
  300. pid_cycle++;
  301. min=temp;
  302. }
  303. }
  304. }
  305. if(input > (temp + 20)) {
  306. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  307. pid_tuning_finished = true;
  308. pid_cycle = 0;
  309. return;
  310. }
  311. if(millis() - temp_millis > 2000) {
  312. int p;
  313. if (extruder<0){
  314. p=soft_pwm_bed;
  315. SERIAL_PROTOCOLPGM("B:");
  316. }else{
  317. p=soft_pwm[extruder];
  318. SERIAL_PROTOCOLPGM("T:");
  319. }
  320. SERIAL_PROTOCOL(input);
  321. SERIAL_PROTOCOLPGM(" @:");
  322. SERIAL_PROTOCOLLN(p);
  323. if (safety_check_cycles == 0) { //save ambient temp
  324. temp_ambient = input;
  325. //SERIAL_ECHOPGM("Ambient T: ");
  326. //MYSERIAL.println(temp_ambient);
  327. safety_check_cycles++;
  328. }
  329. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  330. safety_check_cycles++;
  331. }
  332. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  333. safety_check_cycles++;
  334. //SERIAL_ECHOPGM("Time from beginning: ");
  335. //MYSERIAL.print(safety_check_cycles_count * 2);
  336. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  337. //MYSERIAL.println(input - temp_ambient);
  338. if (abs(input - temp_ambient) < 5.0) {
  339. temp_runaway_stop(false, (extruder<0));
  340. pid_tuning_finished = true;
  341. return;
  342. }
  343. }
  344. temp_millis = millis();
  345. }
  346. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  347. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  348. pid_tuning_finished = true;
  349. pid_cycle = 0;
  350. return;
  351. }
  352. if(pid_cycle > ncycles) {
  353. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  354. pid_tuning_finished = true;
  355. pid_cycle = 0;
  356. return;
  357. }
  358. lcd_update(0);
  359. }
  360. }
  361. void updatePID()
  362. {
  363. #ifdef PIDTEMP
  364. for(int e = 0; e < EXTRUDERS; e++) {
  365. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  366. }
  367. #endif
  368. #ifdef PIDTEMPBED
  369. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  370. #endif
  371. }
  372. int getHeaterPower(int heater) {
  373. if (heater<0)
  374. return soft_pwm_bed;
  375. return soft_pwm[heater];
  376. }
  377. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  378. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  379. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  380. #if defined(FAN_PIN) && FAN_PIN > -1
  381. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  382. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  383. #endif
  384. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  385. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  386. #endif
  387. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  388. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  389. #endif
  390. #endif
  391. void setExtruderAutoFanState(int pin, bool state)
  392. {
  393. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  394. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  395. pinMode(pin, OUTPUT);
  396. digitalWrite(pin, newFanSpeed);
  397. analogWrite(pin, newFanSpeed);
  398. }
  399. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  400. void countFanSpeed()
  401. {
  402. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  403. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  404. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  405. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  406. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  407. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  408. SERIAL_ECHOLNPGM(" ");*/
  409. fan_edge_counter[0] = 0;
  410. fan_edge_counter[1] = 0;
  411. }
  412. extern bool fans_check_enabled;
  413. void checkFanSpeed()
  414. {
  415. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  416. static unsigned char fan_speed_errors[2] = { 0,0 };
  417. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  418. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  419. else fan_speed_errors[0] = 0;
  420. #endif
  421. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  422. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  423. else fan_speed_errors[1] = 0;
  424. #endif
  425. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  426. fan_speed_errors[0] = 0;
  427. fanSpeedError(0); //extruder fan
  428. }
  429. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  430. fan_speed_errors[1] = 0;
  431. fanSpeedError(1); //print fan
  432. }
  433. }
  434. void fanSpeedError(unsigned char _fan) {
  435. if (get_message_level() != 0 && isPrintPaused) return;
  436. //to ensure that target temp. is not set to zero in case taht we are resuming print
  437. if (card.sdprinting) {
  438. if (heating_status != 0) {
  439. lcd_print_stop();
  440. }
  441. else {
  442. lcd_pause_print();
  443. }
  444. }
  445. else {
  446. setTargetHotend0(0);
  447. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  448. }
  449. switch (_fan) {
  450. case 0:
  451. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  452. if (get_message_level() == 0) {
  453. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  454. WRITE(BEEPER, HIGH);
  455. delayMicroseconds(200);
  456. WRITE(BEEPER, LOW);
  457. delayMicroseconds(100);
  458. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  459. }
  460. break;
  461. case 1:
  462. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  463. if (get_message_level() == 0) {
  464. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  465. WRITE(BEEPER, HIGH);
  466. delayMicroseconds(200);
  467. WRITE(BEEPER, LOW);
  468. delayMicroseconds(100);
  469. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  470. }
  471. break;
  472. }
  473. }
  474. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  475. void checkExtruderAutoFans()
  476. {
  477. uint8_t fanState = 0;
  478. // which fan pins need to be turned on?
  479. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  480. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  481. fanState |= 1;
  482. #endif
  483. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  484. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  485. {
  486. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  487. fanState |= 1;
  488. else
  489. fanState |= 2;
  490. }
  491. #endif
  492. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  493. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  494. {
  495. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  496. fanState |= 1;
  497. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  498. fanState |= 2;
  499. else
  500. fanState |= 4;
  501. }
  502. #endif
  503. // update extruder auto fan states
  504. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  505. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  506. #endif
  507. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  508. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  509. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  510. #endif
  511. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  512. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  513. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  514. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  515. #endif
  516. }
  517. #endif // any extruder auto fan pins set
  518. void manage_heater()
  519. {
  520. #ifdef WATCHDOG
  521. wdt_reset();
  522. #endif //WATCHDOG
  523. float pid_input;
  524. float pid_output;
  525. if(temp_meas_ready != true) //better readability
  526. return;
  527. updateTemperaturesFromRawValues();
  528. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  529. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  530. #endif
  531. for(int e = 0; e < EXTRUDERS; e++)
  532. {
  533. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  534. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  535. #endif
  536. #ifdef PIDTEMP
  537. pid_input = current_temperature[e];
  538. #ifndef PID_OPENLOOP
  539. pid_error[e] = target_temperature[e] - pid_input;
  540. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  541. pid_output = BANG_MAX;
  542. pid_reset[e] = true;
  543. }
  544. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  545. pid_output = 0;
  546. pid_reset[e] = true;
  547. }
  548. else {
  549. if(pid_reset[e] == true) {
  550. temp_iState[e] = 0.0;
  551. pid_reset[e] = false;
  552. }
  553. pTerm[e] = Kp * pid_error[e];
  554. temp_iState[e] += pid_error[e];
  555. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  556. iTerm[e] = Ki * temp_iState[e];
  557. //K1 defined in Configuration.h in the PID settings
  558. #define K2 (1.0-K1)
  559. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  560. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  561. if (pid_output > PID_MAX) {
  562. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  563. pid_output=PID_MAX;
  564. } else if (pid_output < 0){
  565. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  566. pid_output=0;
  567. }
  568. }
  569. temp_dState[e] = pid_input;
  570. #else
  571. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  572. #endif //PID_OPENLOOP
  573. #ifdef PID_DEBUG
  574. SERIAL_ECHO_START;
  575. SERIAL_ECHO(" PID_DEBUG ");
  576. SERIAL_ECHO(e);
  577. SERIAL_ECHO(": Input ");
  578. SERIAL_ECHO(pid_input);
  579. SERIAL_ECHO(" Output ");
  580. SERIAL_ECHO(pid_output);
  581. SERIAL_ECHO(" pTerm ");
  582. SERIAL_ECHO(pTerm[e]);
  583. SERIAL_ECHO(" iTerm ");
  584. SERIAL_ECHO(iTerm[e]);
  585. SERIAL_ECHO(" dTerm ");
  586. SERIAL_ECHOLN(dTerm[e]);
  587. #endif //PID_DEBUG
  588. #else /* PID off */
  589. pid_output = 0;
  590. if(current_temperature[e] < target_temperature[e]) {
  591. pid_output = PID_MAX;
  592. }
  593. #endif
  594. // Check if temperature is within the correct range
  595. #ifdef AMBIENT_THERMISTOR
  596. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  597. #else //AMBIENT_THERMISTOR
  598. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  599. #endif //AMBIENT_THERMISTOR
  600. {
  601. soft_pwm[e] = (int)pid_output >> 1;
  602. }
  603. else
  604. {
  605. soft_pwm[e] = 0;
  606. }
  607. #ifdef WATCH_TEMP_PERIOD
  608. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  609. {
  610. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  611. {
  612. setTargetHotend(0, e);
  613. LCD_MESSAGEPGM("Heating failed");
  614. SERIAL_ECHO_START;
  615. SERIAL_ECHOLN("Heating failed");
  616. }else{
  617. watchmillis[e] = 0;
  618. }
  619. }
  620. #endif
  621. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  622. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  623. disable_heater();
  624. if(IsStopped() == false) {
  625. SERIAL_ERROR_START;
  626. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  627. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  628. }
  629. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  630. Stop();
  631. #endif
  632. }
  633. #endif
  634. } // End extruder for loop
  635. #ifndef DEBUG_DISABLE_FANCHECK
  636. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  637. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  638. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  639. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  640. {
  641. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  642. countFanSpeed();
  643. checkFanSpeed();
  644. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  645. checkExtruderAutoFans();
  646. extruder_autofan_last_check = millis();
  647. }
  648. #endif
  649. #endif //DEBUG_DISABLE_FANCHECK
  650. #ifndef PIDTEMPBED
  651. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  652. return;
  653. previous_millis_bed_heater = millis();
  654. #endif
  655. #if TEMP_SENSOR_BED != 0
  656. #ifdef PIDTEMPBED
  657. pid_input = current_temperature_bed;
  658. #ifndef PID_OPENLOOP
  659. pid_error_bed = target_temperature_bed - pid_input;
  660. pTerm_bed = bedKp * pid_error_bed;
  661. temp_iState_bed += pid_error_bed;
  662. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  663. iTerm_bed = bedKi * temp_iState_bed;
  664. //K1 defined in Configuration.h in the PID settings
  665. #define K2 (1.0-K1)
  666. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  667. temp_dState_bed = pid_input;
  668. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  669. if (pid_output > MAX_BED_POWER) {
  670. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  671. pid_output=MAX_BED_POWER;
  672. } else if (pid_output < 0){
  673. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  674. pid_output=0;
  675. }
  676. #else
  677. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  678. #endif //PID_OPENLOOP
  679. #ifdef AMBIENT_THERMISTOR
  680. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  681. #else //AMBIENT_THERMISTOR
  682. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  683. #endif //AMBIENT_THERMISTOR
  684. {
  685. soft_pwm_bed = (int)pid_output >> 1;
  686. }
  687. else {
  688. soft_pwm_bed = 0;
  689. }
  690. #elif !defined(BED_LIMIT_SWITCHING)
  691. // Check if temperature is within the correct range
  692. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  693. {
  694. if(current_temperature_bed >= target_temperature_bed)
  695. {
  696. soft_pwm_bed = 0;
  697. }
  698. else
  699. {
  700. soft_pwm_bed = MAX_BED_POWER>>1;
  701. }
  702. }
  703. else
  704. {
  705. soft_pwm_bed = 0;
  706. WRITE(HEATER_BED_PIN,LOW);
  707. }
  708. #else //#ifdef BED_LIMIT_SWITCHING
  709. // Check if temperature is within the correct band
  710. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  711. {
  712. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  713. {
  714. soft_pwm_bed = 0;
  715. }
  716. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  717. {
  718. soft_pwm_bed = MAX_BED_POWER>>1;
  719. }
  720. }
  721. else
  722. {
  723. soft_pwm_bed = 0;
  724. WRITE(HEATER_BED_PIN,LOW);
  725. }
  726. #endif
  727. #endif
  728. #ifdef HOST_KEEPALIVE_FEATURE
  729. host_keepalive();
  730. #endif
  731. }
  732. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  733. // Derived from RepRap FiveD extruder::getTemperature()
  734. // For hot end temperature measurement.
  735. static float analog2temp(int raw, uint8_t e) {
  736. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  737. if(e > EXTRUDERS)
  738. #else
  739. if(e >= EXTRUDERS)
  740. #endif
  741. {
  742. SERIAL_ERROR_START;
  743. SERIAL_ERROR((int)e);
  744. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  745. kill(PSTR(""), 6);
  746. return 0.0;
  747. }
  748. #ifdef HEATER_0_USES_MAX6675
  749. if (e == 0)
  750. {
  751. return 0.25 * raw;
  752. }
  753. #endif
  754. if(heater_ttbl_map[e] != NULL)
  755. {
  756. float celsius = 0;
  757. uint8_t i;
  758. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  759. for (i=1; i<heater_ttbllen_map[e]; i++)
  760. {
  761. if (PGM_RD_W((*tt)[i][0]) > raw)
  762. {
  763. celsius = PGM_RD_W((*tt)[i-1][1]) +
  764. (raw - PGM_RD_W((*tt)[i-1][0])) *
  765. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  766. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  767. break;
  768. }
  769. }
  770. // Overflow: Set to last value in the table
  771. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  772. return celsius;
  773. }
  774. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  775. }
  776. // Derived from RepRap FiveD extruder::getTemperature()
  777. // For bed temperature measurement.
  778. static float analog2tempBed(int raw) {
  779. #ifdef BED_USES_THERMISTOR
  780. float celsius = 0;
  781. byte i;
  782. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  783. {
  784. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  785. {
  786. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  787. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  788. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  789. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  790. break;
  791. }
  792. }
  793. // Overflow: Set to last value in the table
  794. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  795. // temperature offset adjustment
  796. #ifdef BED_OFFSET
  797. float _offset = BED_OFFSET;
  798. float _offset_center = BED_OFFSET_CENTER;
  799. float _offset_start = BED_OFFSET_START;
  800. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  801. float _second_koef = (_offset / 2) / (100 - _offset_center);
  802. if (celsius >= _offset_start && celsius <= _offset_center)
  803. {
  804. celsius = celsius + (_first_koef * (celsius - _offset_start));
  805. }
  806. else if (celsius > _offset_center && celsius <= 100)
  807. {
  808. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  809. }
  810. else if (celsius > 100)
  811. {
  812. celsius = celsius + _offset;
  813. }
  814. #endif
  815. return celsius;
  816. #elif defined BED_USES_AD595
  817. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  818. #else
  819. return 0;
  820. #endif
  821. }
  822. #ifdef AMBIENT_THERMISTOR
  823. static float analog2tempAmbient(int raw)
  824. {
  825. float celsius = 0;
  826. byte i;
  827. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  828. {
  829. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  830. {
  831. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  832. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  833. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  834. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  835. break;
  836. }
  837. }
  838. // Overflow: Set to last value in the table
  839. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  840. return celsius;
  841. }
  842. #endif //AMBIENT_THERMISTOR
  843. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  844. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  845. static void updateTemperaturesFromRawValues()
  846. {
  847. for(uint8_t e=0;e<EXTRUDERS;e++)
  848. {
  849. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  850. }
  851. #ifdef PINDA_THERMISTOR
  852. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  853. #endif
  854. #ifdef AMBIENT_THERMISTOR
  855. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  856. #endif
  857. #ifdef DEBUG_HEATER_BED_SIM
  858. current_temperature_bed = target_temperature_bed;
  859. #else //DEBUG_HEATER_BED_SIM
  860. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  861. #endif //DEBUG_HEATER_BED_SIM
  862. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  863. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  864. #endif
  865. //Reset the watchdog after we know we have a temperature measurement.
  866. #ifdef WATCHDOG
  867. wdt_reset();
  868. #endif //WATCHDOG
  869. CRITICAL_SECTION_START;
  870. temp_meas_ready = false;
  871. CRITICAL_SECTION_END;
  872. }
  873. void tp_init()
  874. {
  875. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  876. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  877. MCUCR=(1<<JTD);
  878. MCUCR=(1<<JTD);
  879. #endif
  880. // Finish init of mult extruder arrays
  881. for(int e = 0; e < EXTRUDERS; e++) {
  882. // populate with the first value
  883. maxttemp[e] = maxttemp[0];
  884. #ifdef PIDTEMP
  885. temp_iState_min[e] = 0.0;
  886. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  887. #endif //PIDTEMP
  888. #ifdef PIDTEMPBED
  889. temp_iState_min_bed = 0.0;
  890. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  891. #endif //PIDTEMPBED
  892. }
  893. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  894. SET_OUTPUT(HEATER_0_PIN);
  895. #endif
  896. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  897. SET_OUTPUT(HEATER_1_PIN);
  898. #endif
  899. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  900. SET_OUTPUT(HEATER_2_PIN);
  901. #endif
  902. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  903. SET_OUTPUT(HEATER_BED_PIN);
  904. #endif
  905. #if defined(FAN_PIN) && (FAN_PIN > -1)
  906. SET_OUTPUT(FAN_PIN);
  907. #ifdef FAST_PWM_FAN
  908. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  909. #endif
  910. #ifdef FAN_SOFT_PWM
  911. soft_pwm_fan = fanSpeedSoftPwm / 2;
  912. #endif
  913. #endif
  914. #ifdef HEATER_0_USES_MAX6675
  915. #ifndef SDSUPPORT
  916. SET_OUTPUT(SCK_PIN);
  917. WRITE(SCK_PIN,0);
  918. SET_OUTPUT(MOSI_PIN);
  919. WRITE(MOSI_PIN,1);
  920. SET_INPUT(MISO_PIN);
  921. WRITE(MISO_PIN,1);
  922. #endif
  923. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  924. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  925. pinMode(SS_PIN, OUTPUT);
  926. digitalWrite(SS_PIN,0);
  927. pinMode(MAX6675_SS, OUTPUT);
  928. digitalWrite(MAX6675_SS,1);
  929. #endif
  930. adc_init();
  931. // Use timer0 for temperature measurement
  932. // Interleave temperature interrupt with millies interrupt
  933. OCR0B = 128;
  934. TIMSK0 |= (1<<OCIE0B);
  935. // Wait for temperature measurement to settle
  936. delay(250);
  937. #ifdef HEATER_0_MINTEMP
  938. minttemp[0] = HEATER_0_MINTEMP;
  939. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  940. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  941. minttemp_raw[0] += OVERSAMPLENR;
  942. #else
  943. minttemp_raw[0] -= OVERSAMPLENR;
  944. #endif
  945. }
  946. #endif //MINTEMP
  947. #ifdef HEATER_0_MAXTEMP
  948. maxttemp[0] = HEATER_0_MAXTEMP;
  949. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  950. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  951. maxttemp_raw[0] -= OVERSAMPLENR;
  952. #else
  953. maxttemp_raw[0] += OVERSAMPLENR;
  954. #endif
  955. }
  956. #endif //MAXTEMP
  957. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  958. minttemp[1] = HEATER_1_MINTEMP;
  959. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  960. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  961. minttemp_raw[1] += OVERSAMPLENR;
  962. #else
  963. minttemp_raw[1] -= OVERSAMPLENR;
  964. #endif
  965. }
  966. #endif // MINTEMP 1
  967. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  968. maxttemp[1] = HEATER_1_MAXTEMP;
  969. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  970. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  971. maxttemp_raw[1] -= OVERSAMPLENR;
  972. #else
  973. maxttemp_raw[1] += OVERSAMPLENR;
  974. #endif
  975. }
  976. #endif //MAXTEMP 1
  977. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  978. minttemp[2] = HEATER_2_MINTEMP;
  979. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  980. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  981. minttemp_raw[2] += OVERSAMPLENR;
  982. #else
  983. minttemp_raw[2] -= OVERSAMPLENR;
  984. #endif
  985. }
  986. #endif //MINTEMP 2
  987. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  988. maxttemp[2] = HEATER_2_MAXTEMP;
  989. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  990. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  991. maxttemp_raw[2] -= OVERSAMPLENR;
  992. #else
  993. maxttemp_raw[2] += OVERSAMPLENR;
  994. #endif
  995. }
  996. #endif //MAXTEMP 2
  997. #ifdef BED_MINTEMP
  998. /* No bed MINTEMP error implemented?!? */
  999. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1000. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1001. bed_minttemp_raw += OVERSAMPLENR;
  1002. #else
  1003. bed_minttemp_raw -= OVERSAMPLENR;
  1004. #endif
  1005. }
  1006. #endif //BED_MINTEMP
  1007. #ifdef BED_MAXTEMP
  1008. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1009. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1010. bed_maxttemp_raw -= OVERSAMPLENR;
  1011. #else
  1012. bed_maxttemp_raw += OVERSAMPLENR;
  1013. #endif
  1014. }
  1015. #endif //BED_MAXTEMP
  1016. }
  1017. void setWatch()
  1018. {
  1019. #ifdef WATCH_TEMP_PERIOD
  1020. for (int e = 0; e < EXTRUDERS; e++)
  1021. {
  1022. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1023. {
  1024. watch_start_temp[e] = degHotend(e);
  1025. watchmillis[e] = millis();
  1026. }
  1027. }
  1028. #endif
  1029. }
  1030. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1031. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1032. {
  1033. float __hysteresis = 0;
  1034. int __timeout = 0;
  1035. bool temp_runaway_check_active = false;
  1036. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1037. static int __preheat_counter[2] = { 0,0};
  1038. static int __preheat_errors[2] = { 0,0};
  1039. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1040. if (_isbed)
  1041. {
  1042. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1043. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1044. }
  1045. #endif
  1046. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1047. if (!_isbed)
  1048. {
  1049. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1050. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1051. }
  1052. #endif
  1053. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1054. {
  1055. temp_runaway_timer[_heater_id] = millis();
  1056. if (_output == 0)
  1057. {
  1058. temp_runaway_check_active = false;
  1059. temp_runaway_error_counter[_heater_id] = 0;
  1060. }
  1061. if (temp_runaway_target[_heater_id] != _target_temperature)
  1062. {
  1063. if (_target_temperature > 0)
  1064. {
  1065. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1066. temp_runaway_target[_heater_id] = _target_temperature;
  1067. __preheat_start[_heater_id] = _current_temperature;
  1068. __preheat_counter[_heater_id] = 0;
  1069. }
  1070. else
  1071. {
  1072. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1073. temp_runaway_target[_heater_id] = _target_temperature;
  1074. }
  1075. }
  1076. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1077. {
  1078. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1079. {
  1080. __preheat_counter[_heater_id]++;
  1081. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1082. {
  1083. /*SERIAL_ECHOPGM("Heater:");
  1084. MYSERIAL.print(_heater_id);
  1085. SERIAL_ECHOPGM(" T:");
  1086. MYSERIAL.print(_current_temperature);
  1087. SERIAL_ECHOPGM(" Tstart:");
  1088. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1089. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1090. __preheat_errors[_heater_id]++;
  1091. /*SERIAL_ECHOPGM(" Preheat errors:");
  1092. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1093. }
  1094. else {
  1095. //SERIAL_ECHOLNPGM("");
  1096. __preheat_errors[_heater_id] = 0;
  1097. }
  1098. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1099. {
  1100. if (farm_mode) { prusa_statistics(0); }
  1101. temp_runaway_stop(true, _isbed);
  1102. if (farm_mode) { prusa_statistics(91); }
  1103. }
  1104. __preheat_start[_heater_id] = _current_temperature;
  1105. __preheat_counter[_heater_id] = 0;
  1106. }
  1107. }
  1108. }
  1109. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1110. {
  1111. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1112. temp_runaway_check_active = false;
  1113. }
  1114. if (!temp_runaway_check_active && _output > 0)
  1115. {
  1116. temp_runaway_check_active = true;
  1117. }
  1118. if (temp_runaway_check_active)
  1119. {
  1120. // we are in range
  1121. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1122. {
  1123. temp_runaway_check_active = false;
  1124. temp_runaway_error_counter[_heater_id] = 0;
  1125. }
  1126. else
  1127. {
  1128. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1129. {
  1130. temp_runaway_error_counter[_heater_id]++;
  1131. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1132. {
  1133. if (farm_mode) { prusa_statistics(0); }
  1134. temp_runaway_stop(false, _isbed);
  1135. if (farm_mode) { prusa_statistics(90); }
  1136. }
  1137. }
  1138. }
  1139. }
  1140. }
  1141. }
  1142. void temp_runaway_stop(bool isPreheat, bool isBed)
  1143. {
  1144. cancel_heatup = true;
  1145. quickStop();
  1146. if (card.sdprinting)
  1147. {
  1148. card.sdprinting = false;
  1149. card.closefile();
  1150. }
  1151. // Clean the input command queue
  1152. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1153. cmdqueue_reset();
  1154. disable_heater();
  1155. disable_x();
  1156. disable_y();
  1157. disable_e0();
  1158. disable_e1();
  1159. disable_e2();
  1160. manage_heater();
  1161. lcd_update(0);
  1162. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1163. WRITE(BEEPER, HIGH);
  1164. delayMicroseconds(500);
  1165. WRITE(BEEPER, LOW);
  1166. delayMicroseconds(100);
  1167. if (isPreheat)
  1168. {
  1169. Stop();
  1170. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1171. SERIAL_ERROR_START;
  1172. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1173. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1174. SET_OUTPUT(FAN_PIN);
  1175. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1176. analogWrite(FAN_PIN, 255);
  1177. fanSpeed = 255;
  1178. delayMicroseconds(2000);
  1179. }
  1180. else
  1181. {
  1182. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1183. SERIAL_ERROR_START;
  1184. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1185. }
  1186. }
  1187. #endif
  1188. void disable_heater()
  1189. {
  1190. setAllTargetHotends(0);
  1191. setTargetBed(0);
  1192. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1193. target_temperature[0]=0;
  1194. soft_pwm[0]=0;
  1195. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1196. WRITE(HEATER_0_PIN,LOW);
  1197. #endif
  1198. #endif
  1199. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1200. target_temperature[1]=0;
  1201. soft_pwm[1]=0;
  1202. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1203. WRITE(HEATER_1_PIN,LOW);
  1204. #endif
  1205. #endif
  1206. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1207. target_temperature[2]=0;
  1208. soft_pwm[2]=0;
  1209. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1210. WRITE(HEATER_2_PIN,LOW);
  1211. #endif
  1212. #endif
  1213. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1214. target_temperature_bed=0;
  1215. soft_pwm_bed=0;
  1216. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1217. WRITE(HEATER_BED_PIN,LOW);
  1218. #endif
  1219. #endif
  1220. }
  1221. void max_temp_error(uint8_t e) {
  1222. disable_heater();
  1223. if(IsStopped() == false) {
  1224. SERIAL_ERROR_START;
  1225. SERIAL_ERRORLN((int)e);
  1226. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1227. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1228. }
  1229. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1230. Stop();
  1231. #endif
  1232. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1233. SET_OUTPUT(FAN_PIN);
  1234. SET_OUTPUT(BEEPER);
  1235. WRITE(FAN_PIN, 1);
  1236. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1237. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1238. WRITE(BEEPER, 1);
  1239. // fanSpeed will consumed by the check_axes_activity() routine.
  1240. fanSpeed=255;
  1241. if (farm_mode) { prusa_statistics(93); }
  1242. }
  1243. void min_temp_error(uint8_t e) {
  1244. #ifdef DEBUG_DISABLE_MINTEMP
  1245. return;
  1246. #endif
  1247. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1248. disable_heater();
  1249. if(IsStopped() == false) {
  1250. SERIAL_ERROR_START;
  1251. SERIAL_ERRORLN((int)e);
  1252. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1253. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1254. }
  1255. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1256. Stop();
  1257. #endif
  1258. if (farm_mode) { prusa_statistics(92); }
  1259. }
  1260. void bed_max_temp_error(void) {
  1261. #if HEATER_BED_PIN > -1
  1262. WRITE(HEATER_BED_PIN, 0);
  1263. #endif
  1264. if(IsStopped() == false) {
  1265. SERIAL_ERROR_START;
  1266. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1267. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1268. }
  1269. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1270. Stop();
  1271. #endif
  1272. }
  1273. void bed_min_temp_error(void) {
  1274. #ifdef DEBUG_DISABLE_MINTEMP
  1275. return;
  1276. #endif
  1277. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1278. #if HEATER_BED_PIN > -1
  1279. WRITE(HEATER_BED_PIN, 0);
  1280. #endif
  1281. if(IsStopped() == false) {
  1282. SERIAL_ERROR_START;
  1283. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1284. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1285. }
  1286. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1287. Stop();
  1288. #endif
  1289. }
  1290. #ifdef HEATER_0_USES_MAX6675
  1291. #define MAX6675_HEAT_INTERVAL 250
  1292. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1293. int max6675_temp = 2000;
  1294. int read_max6675()
  1295. {
  1296. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1297. return max6675_temp;
  1298. max6675_previous_millis = millis();
  1299. max6675_temp = 0;
  1300. #ifdef PRR
  1301. PRR &= ~(1<<PRSPI);
  1302. #elif defined PRR0
  1303. PRR0 &= ~(1<<PRSPI);
  1304. #endif
  1305. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1306. // enable TT_MAX6675
  1307. WRITE(MAX6675_SS, 0);
  1308. // ensure 100ns delay - a bit extra is fine
  1309. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1310. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1311. // read MSB
  1312. SPDR = 0;
  1313. for (;(SPSR & (1<<SPIF)) == 0;);
  1314. max6675_temp = SPDR;
  1315. max6675_temp <<= 8;
  1316. // read LSB
  1317. SPDR = 0;
  1318. for (;(SPSR & (1<<SPIF)) == 0;);
  1319. max6675_temp |= SPDR;
  1320. // disable TT_MAX6675
  1321. WRITE(MAX6675_SS, 1);
  1322. if (max6675_temp & 4)
  1323. {
  1324. // thermocouple open
  1325. max6675_temp = 2000;
  1326. }
  1327. else
  1328. {
  1329. max6675_temp = max6675_temp >> 3;
  1330. }
  1331. return max6675_temp;
  1332. }
  1333. #endif
  1334. extern "C" {
  1335. void adc_ready(void) //callback from adc when sampling finished
  1336. {
  1337. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1338. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1339. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1340. #ifdef VOLT_PWR_PIN
  1341. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1342. #endif
  1343. #ifdef AMBIENT_THERMISTOR
  1344. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1345. #endif //AMBIENT_THERMISTOR
  1346. #ifdef VOLT_BED_PIN
  1347. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1348. #endif
  1349. temp_meas_ready = true;
  1350. }
  1351. } // extern "C"
  1352. // Timer 0 is shared with millies
  1353. ISR(TIMER0_COMPB_vect)
  1354. {
  1355. static bool _lock = false;
  1356. if (_lock) return;
  1357. _lock = true;
  1358. asm("sei");
  1359. if (!temp_meas_ready) adc_cycle();
  1360. else
  1361. {
  1362. check_max_temp();
  1363. check_min_temp();
  1364. }
  1365. lcd_buttons_update();
  1366. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1367. static unsigned char soft_pwm_0;
  1368. #ifdef SLOW_PWM_HEATERS
  1369. static unsigned char slow_pwm_count = 0;
  1370. static unsigned char state_heater_0 = 0;
  1371. static unsigned char state_timer_heater_0 = 0;
  1372. #endif
  1373. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1374. static unsigned char soft_pwm_1;
  1375. #ifdef SLOW_PWM_HEATERS
  1376. static unsigned char state_heater_1 = 0;
  1377. static unsigned char state_timer_heater_1 = 0;
  1378. #endif
  1379. #endif
  1380. #if EXTRUDERS > 2
  1381. static unsigned char soft_pwm_2;
  1382. #ifdef SLOW_PWM_HEATERS
  1383. static unsigned char state_heater_2 = 0;
  1384. static unsigned char state_timer_heater_2 = 0;
  1385. #endif
  1386. #endif
  1387. #if HEATER_BED_PIN > -1
  1388. static unsigned char soft_pwm_b;
  1389. #ifdef SLOW_PWM_HEATERS
  1390. static unsigned char state_heater_b = 0;
  1391. static unsigned char state_timer_heater_b = 0;
  1392. #endif
  1393. #endif
  1394. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1395. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1396. #endif
  1397. #ifndef SLOW_PWM_HEATERS
  1398. /*
  1399. * standard PWM modulation
  1400. */
  1401. if (pwm_count == 0)
  1402. {
  1403. soft_pwm_0 = soft_pwm[0];
  1404. if(soft_pwm_0 > 0)
  1405. {
  1406. WRITE(HEATER_0_PIN,1);
  1407. #ifdef HEATERS_PARALLEL
  1408. WRITE(HEATER_1_PIN,1);
  1409. #endif
  1410. } else WRITE(HEATER_0_PIN,0);
  1411. #if EXTRUDERS > 1
  1412. soft_pwm_1 = soft_pwm[1];
  1413. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1414. #endif
  1415. #if EXTRUDERS > 2
  1416. soft_pwm_2 = soft_pwm[2];
  1417. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1418. #endif
  1419. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1420. soft_pwm_b = soft_pwm_bed;
  1421. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1422. #endif
  1423. #ifdef FAN_SOFT_PWM
  1424. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1425. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1426. #endif
  1427. }
  1428. if(soft_pwm_0 < pwm_count)
  1429. {
  1430. WRITE(HEATER_0_PIN,0);
  1431. #ifdef HEATERS_PARALLEL
  1432. WRITE(HEATER_1_PIN,0);
  1433. #endif
  1434. }
  1435. #if EXTRUDERS > 1
  1436. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1437. #endif
  1438. #if EXTRUDERS > 2
  1439. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1440. #endif
  1441. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1442. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1443. #endif
  1444. #ifdef FAN_SOFT_PWM
  1445. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1446. #endif
  1447. pwm_count += (1 << SOFT_PWM_SCALE);
  1448. pwm_count &= 0x7f;
  1449. #else //ifndef SLOW_PWM_HEATERS
  1450. /*
  1451. * SLOW PWM HEATERS
  1452. *
  1453. * for heaters drived by relay
  1454. */
  1455. #ifndef MIN_STATE_TIME
  1456. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1457. #endif
  1458. if (slow_pwm_count == 0) {
  1459. // EXTRUDER 0
  1460. soft_pwm_0 = soft_pwm[0];
  1461. if (soft_pwm_0 > 0) {
  1462. // turn ON heather only if the minimum time is up
  1463. if (state_timer_heater_0 == 0) {
  1464. // if change state set timer
  1465. if (state_heater_0 == 0) {
  1466. state_timer_heater_0 = MIN_STATE_TIME;
  1467. }
  1468. state_heater_0 = 1;
  1469. WRITE(HEATER_0_PIN, 1);
  1470. #ifdef HEATERS_PARALLEL
  1471. WRITE(HEATER_1_PIN, 1);
  1472. #endif
  1473. }
  1474. } else {
  1475. // turn OFF heather only if the minimum time is up
  1476. if (state_timer_heater_0 == 0) {
  1477. // if change state set timer
  1478. if (state_heater_0 == 1) {
  1479. state_timer_heater_0 = MIN_STATE_TIME;
  1480. }
  1481. state_heater_0 = 0;
  1482. WRITE(HEATER_0_PIN, 0);
  1483. #ifdef HEATERS_PARALLEL
  1484. WRITE(HEATER_1_PIN, 0);
  1485. #endif
  1486. }
  1487. }
  1488. #if EXTRUDERS > 1
  1489. // EXTRUDER 1
  1490. soft_pwm_1 = soft_pwm[1];
  1491. if (soft_pwm_1 > 0) {
  1492. // turn ON heather only if the minimum time is up
  1493. if (state_timer_heater_1 == 0) {
  1494. // if change state set timer
  1495. if (state_heater_1 == 0) {
  1496. state_timer_heater_1 = MIN_STATE_TIME;
  1497. }
  1498. state_heater_1 = 1;
  1499. WRITE(HEATER_1_PIN, 1);
  1500. }
  1501. } else {
  1502. // turn OFF heather only if the minimum time is up
  1503. if (state_timer_heater_1 == 0) {
  1504. // if change state set timer
  1505. if (state_heater_1 == 1) {
  1506. state_timer_heater_1 = MIN_STATE_TIME;
  1507. }
  1508. state_heater_1 = 0;
  1509. WRITE(HEATER_1_PIN, 0);
  1510. }
  1511. }
  1512. #endif
  1513. #if EXTRUDERS > 2
  1514. // EXTRUDER 2
  1515. soft_pwm_2 = soft_pwm[2];
  1516. if (soft_pwm_2 > 0) {
  1517. // turn ON heather only if the minimum time is up
  1518. if (state_timer_heater_2 == 0) {
  1519. // if change state set timer
  1520. if (state_heater_2 == 0) {
  1521. state_timer_heater_2 = MIN_STATE_TIME;
  1522. }
  1523. state_heater_2 = 1;
  1524. WRITE(HEATER_2_PIN, 1);
  1525. }
  1526. } else {
  1527. // turn OFF heather only if the minimum time is up
  1528. if (state_timer_heater_2 == 0) {
  1529. // if change state set timer
  1530. if (state_heater_2 == 1) {
  1531. state_timer_heater_2 = MIN_STATE_TIME;
  1532. }
  1533. state_heater_2 = 0;
  1534. WRITE(HEATER_2_PIN, 0);
  1535. }
  1536. }
  1537. #endif
  1538. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1539. // BED
  1540. soft_pwm_b = soft_pwm_bed;
  1541. if (soft_pwm_b > 0) {
  1542. // turn ON heather only if the minimum time is up
  1543. if (state_timer_heater_b == 0) {
  1544. // if change state set timer
  1545. if (state_heater_b == 0) {
  1546. state_timer_heater_b = MIN_STATE_TIME;
  1547. }
  1548. state_heater_b = 1;
  1549. WRITE(HEATER_BED_PIN, 1);
  1550. }
  1551. } else {
  1552. // turn OFF heather only if the minimum time is up
  1553. if (state_timer_heater_b == 0) {
  1554. // if change state set timer
  1555. if (state_heater_b == 1) {
  1556. state_timer_heater_b = MIN_STATE_TIME;
  1557. }
  1558. state_heater_b = 0;
  1559. WRITE(HEATER_BED_PIN, 0);
  1560. }
  1561. }
  1562. #endif
  1563. } // if (slow_pwm_count == 0)
  1564. // EXTRUDER 0
  1565. if (soft_pwm_0 < slow_pwm_count) {
  1566. // turn OFF heather only if the minimum time is up
  1567. if (state_timer_heater_0 == 0) {
  1568. // if change state set timer
  1569. if (state_heater_0 == 1) {
  1570. state_timer_heater_0 = MIN_STATE_TIME;
  1571. }
  1572. state_heater_0 = 0;
  1573. WRITE(HEATER_0_PIN, 0);
  1574. #ifdef HEATERS_PARALLEL
  1575. WRITE(HEATER_1_PIN, 0);
  1576. #endif
  1577. }
  1578. }
  1579. #if EXTRUDERS > 1
  1580. // EXTRUDER 1
  1581. if (soft_pwm_1 < slow_pwm_count) {
  1582. // turn OFF heather only if the minimum time is up
  1583. if (state_timer_heater_1 == 0) {
  1584. // if change state set timer
  1585. if (state_heater_1 == 1) {
  1586. state_timer_heater_1 = MIN_STATE_TIME;
  1587. }
  1588. state_heater_1 = 0;
  1589. WRITE(HEATER_1_PIN, 0);
  1590. }
  1591. }
  1592. #endif
  1593. #if EXTRUDERS > 2
  1594. // EXTRUDER 2
  1595. if (soft_pwm_2 < slow_pwm_count) {
  1596. // turn OFF heather only if the minimum time is up
  1597. if (state_timer_heater_2 == 0) {
  1598. // if change state set timer
  1599. if (state_heater_2 == 1) {
  1600. state_timer_heater_2 = MIN_STATE_TIME;
  1601. }
  1602. state_heater_2 = 0;
  1603. WRITE(HEATER_2_PIN, 0);
  1604. }
  1605. }
  1606. #endif
  1607. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1608. // BED
  1609. if (soft_pwm_b < slow_pwm_count) {
  1610. // turn OFF heather only if the minimum time is up
  1611. if (state_timer_heater_b == 0) {
  1612. // if change state set timer
  1613. if (state_heater_b == 1) {
  1614. state_timer_heater_b = MIN_STATE_TIME;
  1615. }
  1616. state_heater_b = 0;
  1617. WRITE(HEATER_BED_PIN, 0);
  1618. }
  1619. }
  1620. #endif
  1621. #ifdef FAN_SOFT_PWM
  1622. if (pwm_count == 0){
  1623. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1624. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1625. }
  1626. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1627. #endif
  1628. pwm_count += (1 << SOFT_PWM_SCALE);
  1629. pwm_count &= 0x7f;
  1630. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1631. if ((pwm_count % 64) == 0) {
  1632. slow_pwm_count++;
  1633. slow_pwm_count &= 0x7f;
  1634. // Extruder 0
  1635. if (state_timer_heater_0 > 0) {
  1636. state_timer_heater_0--;
  1637. }
  1638. #if EXTRUDERS > 1
  1639. // Extruder 1
  1640. if (state_timer_heater_1 > 0)
  1641. state_timer_heater_1--;
  1642. #endif
  1643. #if EXTRUDERS > 2
  1644. // Extruder 2
  1645. if (state_timer_heater_2 > 0)
  1646. state_timer_heater_2--;
  1647. #endif
  1648. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1649. // Bed
  1650. if (state_timer_heater_b > 0)
  1651. state_timer_heater_b--;
  1652. #endif
  1653. } //if ((pwm_count % 64) == 0) {
  1654. #endif //ifndef SLOW_PWM_HEATERS
  1655. #ifdef BABYSTEPPING
  1656. for(uint8_t axis=0;axis<3;axis++)
  1657. {
  1658. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1659. if(curTodo>0)
  1660. {
  1661. asm("cli");
  1662. babystep(axis,/*fwd*/true);
  1663. babystepsTodo[axis]--; //less to do next time
  1664. asm("sei");
  1665. }
  1666. else
  1667. if(curTodo<0)
  1668. {
  1669. asm("cli");
  1670. babystep(axis,/*fwd*/false);
  1671. babystepsTodo[axis]++; //less to do next time
  1672. asm("sei");
  1673. }
  1674. }
  1675. #endif //BABYSTEPPING
  1676. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1677. check_fans();
  1678. #endif //(defined(TACH_0))
  1679. _lock = false;
  1680. }
  1681. void check_max_temp()
  1682. {
  1683. //heater
  1684. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1685. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1686. #else
  1687. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1688. #endif
  1689. max_temp_error(0);
  1690. }
  1691. //bed
  1692. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1693. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1694. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1695. #else
  1696. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1697. #endif
  1698. target_temperature_bed = 0;
  1699. bed_max_temp_error();
  1700. }
  1701. #endif
  1702. }
  1703. void check_min_temp_heater0()
  1704. {
  1705. //heater
  1706. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1707. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1708. #else
  1709. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1710. #endif
  1711. min_temp_error(0);
  1712. }
  1713. }
  1714. void check_min_temp_bed()
  1715. {
  1716. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1717. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1718. #else
  1719. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1720. #endif
  1721. bed_min_temp_error();
  1722. }
  1723. }
  1724. void check_min_temp()
  1725. {
  1726. #ifdef AMBIENT_THERMISTOR
  1727. static uint8_t heat_cycles = 0;
  1728. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1729. {
  1730. if (READ(HEATER_0_PIN) == HIGH)
  1731. {
  1732. // if ((heat_cycles % 10) == 0)
  1733. // printf_P(PSTR("X%d\n"), heat_cycles);
  1734. if (heat_cycles > 50) //reaction time 5-10s
  1735. check_min_temp_heater0();
  1736. else
  1737. heat_cycles++;
  1738. }
  1739. else
  1740. heat_cycles = 0;
  1741. return;
  1742. }
  1743. #endif //AMBIENT_THERMISTOR
  1744. check_min_temp_heater0();
  1745. check_min_temp_bed();
  1746. }
  1747. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1748. void check_fans() {
  1749. if (READ(TACH_0) != fan_state[0]) {
  1750. fan_edge_counter[0] ++;
  1751. fan_state[0] = !fan_state[0];
  1752. }
  1753. //if (READ(TACH_1) != fan_state[1]) {
  1754. // fan_edge_counter[1] ++;
  1755. // fan_state[1] = !fan_state[1];
  1756. //}
  1757. }
  1758. #endif //TACH_0
  1759. #ifdef PIDTEMP
  1760. // Apply the scale factors to the PID values
  1761. float scalePID_i(float i)
  1762. {
  1763. return i*PID_dT;
  1764. }
  1765. float unscalePID_i(float i)
  1766. {
  1767. return i/PID_dT;
  1768. }
  1769. float scalePID_d(float d)
  1770. {
  1771. return d/PID_dT;
  1772. }
  1773. float unscalePID_d(float d)
  1774. {
  1775. return d*PID_dT;
  1776. }
  1777. #endif //PIDTEMP