planner.cpp 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  84. volatile unsigned char block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LA_K_DEF;
  97. float position_float[NUM_AXIS];
  98. #endif
  99. // Request the next block to start at zero E count
  100. static bool plan_reset_next_e_queue;
  101. static bool plan_reset_next_e_sched;
  102. // Returns the index of the next block in the ring buffer
  103. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  104. static inline int8_t next_block_index(int8_t block_index) {
  105. if (++ block_index == BLOCK_BUFFER_SIZE)
  106. block_index = 0;
  107. return block_index;
  108. }
  109. // Returns the index of the previous block in the ring buffer
  110. static inline int8_t prev_block_index(int8_t block_index) {
  111. if (block_index == 0)
  112. block_index = BLOCK_BUFFER_SIZE;
  113. -- block_index;
  114. return block_index;
  115. }
  116. //===========================================================================
  117. //=============================functions ============================
  118. //===========================================================================
  119. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  120. // given acceleration:
  121. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  122. {
  123. if (acceleration!=0) {
  124. return((target_rate*target_rate-initial_rate*initial_rate)/
  125. (2.0*acceleration));
  126. }
  127. else {
  128. return 0.0; // acceleration was 0, set acceleration distance to 0
  129. }
  130. }
  131. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  132. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  133. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  134. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  135. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  136. {
  137. if (acceleration!=0) {
  138. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  139. (4.0*acceleration) );
  140. }
  141. else {
  142. return 0.0; // acceleration was 0, set intersection distance to 0
  143. }
  144. }
  145. // Minimum stepper rate 120Hz.
  146. #define MINIMAL_STEP_RATE 120
  147. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  148. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  149. {
  150. // These two lines are the only floating point calculations performed in this routine.
  151. // initial_rate, final_rate in Hz.
  152. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  153. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  154. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  155. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  156. // Limit minimal step rate (Otherwise the timer will overflow.)
  157. if (initial_rate < MINIMAL_STEP_RATE)
  158. initial_rate = MINIMAL_STEP_RATE;
  159. if (initial_rate > block->nominal_rate)
  160. initial_rate = block->nominal_rate;
  161. if (final_rate < MINIMAL_STEP_RATE)
  162. final_rate = MINIMAL_STEP_RATE;
  163. if (final_rate > block->nominal_rate)
  164. final_rate = block->nominal_rate;
  165. uint32_t acceleration = block->acceleration_st;
  166. if (acceleration == 0)
  167. // Don't allow zero acceleration.
  168. acceleration = 1;
  169. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  170. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  171. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  172. //FIXME assert that this result fits a 64bit unsigned int.
  173. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  174. uint32_t final_rate_sqr = final_rate*final_rate;
  175. uint32_t acceleration_x2 = acceleration << 1;
  176. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  177. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  178. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  179. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  180. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  181. // Size of Plateau of Nominal Rate.
  182. uint32_t plateau_steps = 0;
  183. // Maximum effective speed reached in the trapezoid (step/min)
  184. float max_rate;
  185. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  186. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  187. // in order to reach the final_rate exactly at the end of this block.
  188. if (accel_decel_steps < block->step_event_count.wide) {
  189. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  190. max_rate = block->nominal_rate;
  191. } else {
  192. uint32_t acceleration_x4 = acceleration << 2;
  193. // Avoid negative numbers
  194. if (final_rate_sqr >= initial_rate_sqr) {
  195. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  196. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  197. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  198. #if 0
  199. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  200. #else
  201. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  202. if (block->step_event_count.wide & 1)
  203. accelerate_steps += acceleration_x2;
  204. accelerate_steps /= acceleration_x4;
  205. accelerate_steps += (block->step_event_count.wide >> 1);
  206. #endif
  207. if (accelerate_steps > block->step_event_count.wide)
  208. accelerate_steps = block->step_event_count.wide;
  209. } else {
  210. #if 0
  211. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  212. #else
  213. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  214. if (block->step_event_count.wide & 1)
  215. decelerate_steps += acceleration_x2;
  216. decelerate_steps /= acceleration_x4;
  217. decelerate_steps += (block->step_event_count.wide >> 1);
  218. #endif
  219. if (decelerate_steps > block->step_event_count.wide)
  220. decelerate_steps = block->step_event_count.wide;
  221. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  222. }
  223. max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
  224. }
  225. #ifdef LIN_ADVANCE
  226. uint16_t final_adv_steps = 0;
  227. uint16_t max_adv_steps = 0;
  228. if (block->use_advance_lead) {
  229. final_adv_steps = final_rate * block->adv_comp;
  230. max_adv_steps = max_rate * block->adv_comp;
  231. }
  232. #endif
  233. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  234. // This block locks the interrupts globally for 4.38 us,
  235. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  236. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  237. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  238. if (! block->busy) { // Don't update variables if block is busy.
  239. block->accelerate_until = accelerate_steps;
  240. block->decelerate_after = accelerate_steps+plateau_steps;
  241. block->initial_rate = initial_rate;
  242. block->final_rate = final_rate;
  243. #ifdef LIN_ADVANCE
  244. block->final_adv_steps = final_adv_steps;
  245. block->max_adv_steps = max_adv_steps;
  246. #endif
  247. }
  248. CRITICAL_SECTION_END;
  249. }
  250. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  251. // decceleration within the allotted distance.
  252. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  253. {
  254. // assert(decceleration < 0);
  255. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  256. }
  257. // Recalculates the motion plan according to the following algorithm:
  258. //
  259. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  260. // so that:
  261. // a. The junction jerk is within the set limit
  262. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  263. // acceleration.
  264. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  265. // a. The speed increase within one block would require faster accelleration than the one, true
  266. // constant acceleration.
  267. //
  268. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  269. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  270. // the set limit. Finally it will:
  271. //
  272. // 3. Recalculate trapezoids for all blocks.
  273. //
  274. //FIXME This routine is called 15x every time a new line is added to the planner,
  275. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  276. // if the CPU is found lacking computational power.
  277. //
  278. // Following sources may be used to optimize the 8-bit AVR code:
  279. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  280. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  281. //
  282. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  283. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  284. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  285. //
  286. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  287. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  288. // https://github.com/rekka/avrmultiplication
  289. //
  290. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  291. // https://courses.cit.cornell.edu/ee476/Math/
  292. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  293. //
  294. void planner_recalculate(const float &safe_final_speed)
  295. {
  296. // Reverse pass
  297. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  298. // by consuming the blocks, therefore shortening the queue.
  299. unsigned char tail = block_buffer_tail;
  300. uint8_t block_index;
  301. block_t *prev, *current, *next;
  302. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  303. // At least three blocks are in the queue?
  304. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  305. if (n_blocks >= 3) {
  306. // Initialize the last tripple of blocks.
  307. block_index = prev_block_index(block_buffer_head);
  308. next = block_buffer + block_index;
  309. current = block_buffer + (block_index = prev_block_index(block_index));
  310. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  311. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  312. // 1) it may already be running at the stepper interrupt,
  313. // 2) there is no way to limit it when going in the forward direction.
  314. while (block_index != tail) {
  315. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  316. // Don't modify the entry velocity of the starting block.
  317. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  318. // for the stepper interrupt routine to use them.
  319. tail = block_index;
  320. // Update the number of blocks to process.
  321. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  322. // SERIAL_ECHOLNPGM("START");
  323. break;
  324. }
  325. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  326. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  327. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  328. if (current->entry_speed != current->max_entry_speed) {
  329. // assert(current->entry_speed < current->max_entry_speed);
  330. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  331. // segment and the maximum acceleration allowed for this segment.
  332. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  333. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  334. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  335. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  336. // together with an assembly 32bit->16bit sqrt function.
  337. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  338. current->max_entry_speed :
  339. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  340. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  341. current->flag |= BLOCK_FLAG_RECALCULATE;
  342. }
  343. next = current;
  344. current = block_buffer + (block_index = prev_block_index(block_index));
  345. }
  346. }
  347. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  348. // Forward pass and recalculate the trapezoids.
  349. if (n_blocks >= 2) {
  350. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  351. block_index = tail;
  352. prev = block_buffer + block_index;
  353. current = block_buffer + (block_index = next_block_index(block_index));
  354. do {
  355. // If the previous block is an acceleration block, but it is not long enough to complete the
  356. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  357. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  358. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  359. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  360. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  361. // Check for junction speed change
  362. if (current->entry_speed != entry_speed) {
  363. current->entry_speed = entry_speed;
  364. current->flag |= BLOCK_FLAG_RECALCULATE;
  365. }
  366. }
  367. // Recalculate if current block entry or exit junction speed has changed.
  368. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  369. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  370. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  371. // Reset current only to ensure next trapezoid is computed.
  372. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  373. }
  374. prev = current;
  375. current = block_buffer + (block_index = next_block_index(block_index));
  376. } while (block_index != block_buffer_head);
  377. }
  378. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  379. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  380. current = block_buffer + prev_block_index(block_buffer_head);
  381. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  382. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  383. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  384. }
  385. void plan_init() {
  386. block_buffer_head = 0;
  387. block_buffer_tail = 0;
  388. memset(position, 0, sizeof(position)); // clear position
  389. #ifdef LIN_ADVANCE
  390. memset(position_float, 0, sizeof(position_float)); // clear position
  391. #endif
  392. previous_speed[0] = 0.0;
  393. previous_speed[1] = 0.0;
  394. previous_speed[2] = 0.0;
  395. previous_speed[3] = 0.0;
  396. previous_nominal_speed = 0.0;
  397. plan_reset_next_e_queue = false;
  398. plan_reset_next_e_sched = false;
  399. }
  400. #ifdef AUTOTEMP
  401. void getHighESpeed()
  402. {
  403. static float oldt=0;
  404. if(!autotemp_enabled){
  405. return;
  406. }
  407. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  408. return; //do nothing
  409. }
  410. float high=0.0;
  411. uint8_t block_index = block_buffer_tail;
  412. while(block_index != block_buffer_head) {
  413. if((block_buffer[block_index].steps_x.wide != 0) ||
  414. (block_buffer[block_index].steps_y.wide != 0) ||
  415. (block_buffer[block_index].steps_z.wide != 0)) {
  416. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  417. //se; mm/sec;
  418. if(se>high)
  419. {
  420. high=se;
  421. }
  422. }
  423. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  424. }
  425. float g=autotemp_min+high*autotemp_factor;
  426. float t=g;
  427. if(t<autotemp_min)
  428. t=autotemp_min;
  429. if(t>autotemp_max)
  430. t=autotemp_max;
  431. if(oldt>t)
  432. {
  433. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  434. }
  435. oldt=t;
  436. setTargetHotend0(t);
  437. }
  438. #endif
  439. bool e_active()
  440. {
  441. unsigned char e_active = 0;
  442. block_t *block;
  443. if(block_buffer_tail != block_buffer_head)
  444. {
  445. uint8_t block_index = block_buffer_tail;
  446. while(block_index != block_buffer_head)
  447. {
  448. block = &block_buffer[block_index];
  449. if(block->steps_e.wide != 0) e_active++;
  450. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  451. }
  452. }
  453. return (e_active > 0) ? true : false ;
  454. }
  455. void check_axes_activity()
  456. {
  457. unsigned char x_active = 0;
  458. unsigned char y_active = 0;
  459. unsigned char z_active = 0;
  460. unsigned char e_active = 0;
  461. unsigned char tail_fan_speed = fanSpeed;
  462. block_t *block;
  463. if(block_buffer_tail != block_buffer_head)
  464. {
  465. uint8_t block_index = block_buffer_tail;
  466. tail_fan_speed = block_buffer[block_index].fan_speed;
  467. while(block_index != block_buffer_head)
  468. {
  469. block = &block_buffer[block_index];
  470. if(block->steps_x.wide != 0) x_active++;
  471. if(block->steps_y.wide != 0) y_active++;
  472. if(block->steps_z.wide != 0) z_active++;
  473. if(block->steps_e.wide != 0) e_active++;
  474. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  475. }
  476. }
  477. if((DISABLE_X) && (x_active == 0)) disable_x();
  478. if((DISABLE_Y) && (y_active == 0)) disable_y();
  479. if((DISABLE_Z) && (z_active == 0)) disable_z();
  480. if((DISABLE_E) && (e_active == 0))
  481. {
  482. disable_e0();
  483. disable_e1();
  484. disable_e2();
  485. }
  486. #if defined(FAN_PIN) && FAN_PIN > -1
  487. #ifdef FAN_KICKSTART_TIME
  488. static unsigned long fan_kick_end;
  489. if (tail_fan_speed) {
  490. if (fan_kick_end == 0) {
  491. // Just starting up fan - run at full power.
  492. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  493. tail_fan_speed = 255;
  494. } else if (fan_kick_end > _millis())
  495. // Fan still spinning up.
  496. tail_fan_speed = 255;
  497. } else {
  498. fan_kick_end = 0;
  499. }
  500. #endif//FAN_KICKSTART_TIME
  501. #ifdef FAN_SOFT_PWM
  502. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  503. fanSpeedBckp = tail_fan_speed;
  504. }
  505. else {
  506. fanSpeedSoftPwm = tail_fan_speed;
  507. }
  508. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  509. #else
  510. analogWrite(FAN_PIN,tail_fan_speed);
  511. #endif//!FAN_SOFT_PWM
  512. #endif//FAN_PIN > -1
  513. #ifdef AUTOTEMP
  514. getHighESpeed();
  515. #endif
  516. }
  517. bool waiting_inside_plan_buffer_line_print_aborted = false;
  518. /*
  519. void planner_abort_soft()
  520. {
  521. // Empty the queue.
  522. while (blocks_queued()) plan_discard_current_block();
  523. // Relay to planner wait routine, that the current line shall be canceled.
  524. waiting_inside_plan_buffer_line_print_aborted = true;
  525. //current_position[i]
  526. }
  527. */
  528. #ifdef PLANNER_DIAGNOSTICS
  529. static inline void planner_update_queue_min_counter()
  530. {
  531. uint8_t new_counter = moves_planned();
  532. if (new_counter < g_cntr_planner_queue_min)
  533. g_cntr_planner_queue_min = new_counter;
  534. }
  535. #endif /* PLANNER_DIAGNOSTICS */
  536. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  537. void planner_abort_hard()
  538. {
  539. // Abort the stepper routine and flush the planner queue.
  540. DISABLE_STEPPER_DRIVER_INTERRUPT();
  541. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  542. // First update the planner's current position in the physical motor steps.
  543. position[X_AXIS] = st_get_position(X_AXIS);
  544. position[Y_AXIS] = st_get_position(Y_AXIS);
  545. position[Z_AXIS] = st_get_position(Z_AXIS);
  546. position[E_AXIS] = st_get_position(E_AXIS);
  547. // Second update the current position of the front end.
  548. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  549. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  550. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  551. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  552. // Apply the mesh bed leveling correction to the Z axis.
  553. #ifdef MESH_BED_LEVELING
  554. if (mbl.active) {
  555. #if 1
  556. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  557. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  558. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  559. #else
  560. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  561. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  562. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  563. else {
  564. float t = float(step_events_completed) / float(current_block->step_event_count);
  565. float vec[3] = {
  566. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  567. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  568. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  569. };
  570. float pos1[3], pos2[3];
  571. for (int8_t i = 0; i < 3; ++ i) {
  572. if (current_block->direction_bits & (1<<i))
  573. vec[i] = - vec[i];
  574. pos1[i] = current_position[i] - vec[i] * t;
  575. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  576. }
  577. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  578. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  579. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  580. }
  581. #endif
  582. }
  583. #endif
  584. // Clear the planner queue, reset and re-enable the stepper timer.
  585. quickStop();
  586. // Apply inverse world correction matrix.
  587. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  588. memcpy(destination, current_position, sizeof(destination));
  589. #ifdef LIN_ADVANCE
  590. memcpy(position_float, current_position, sizeof(position_float));
  591. #endif
  592. // Resets planner junction speeds. Assumes start from rest.
  593. previous_nominal_speed = 0.0;
  594. previous_speed[0] = 0.0;
  595. previous_speed[1] = 0.0;
  596. previous_speed[2] = 0.0;
  597. previous_speed[3] = 0.0;
  598. plan_reset_next_e_queue = false;
  599. plan_reset_next_e_sched = false;
  600. // Relay to planner wait routine, that the current line shall be canceled.
  601. waiting_inside_plan_buffer_line_print_aborted = true;
  602. }
  603. void plan_buffer_line_curposXYZE(float feed_rate) {
  604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder );
  605. }
  606. void plan_buffer_line_destinationXYZE(float feed_rate) {
  607. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate, active_extruder);
  608. }
  609. void plan_set_position_curposXYZE(){
  610. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  611. }
  612. float junction_deviation = 0.1;
  613. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  614. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  615. // calculation the caller must also provide the physical length of the line in millimeters.
  616. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
  617. {
  618. // Calculate the buffer head after we push this byte
  619. int next_buffer_head = next_block_index(block_buffer_head);
  620. // If the buffer is full: good! That means we are well ahead of the robot.
  621. // Rest here until there is room in the buffer.
  622. waiting_inside_plan_buffer_line_print_aborted = false;
  623. if (block_buffer_tail == next_buffer_head) {
  624. do {
  625. manage_heater();
  626. // Vojtech: Don't disable motors inside the planner!
  627. manage_inactivity(false);
  628. lcd_update(0);
  629. } while (block_buffer_tail == next_buffer_head);
  630. if (waiting_inside_plan_buffer_line_print_aborted) {
  631. // Inside the lcd_update(0) routine the print has been aborted.
  632. // Cancel the print, do not plan the current line this routine is waiting on.
  633. #ifdef PLANNER_DIAGNOSTICS
  634. planner_update_queue_min_counter();
  635. #endif /* PLANNER_DIAGNOSTICS */
  636. return;
  637. }
  638. }
  639. #ifdef PLANNER_DIAGNOSTICS
  640. planner_update_queue_min_counter();
  641. #endif /* PLANNER_DIAGNOSTICS */
  642. // Prepare to set up new block
  643. block_t *block = &block_buffer[block_buffer_head];
  644. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  645. block->busy = false;
  646. // Set sdlen for calculating sd position
  647. block->sdlen = 0;
  648. // Save original destination of the move
  649. if (gcode_target)
  650. memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
  651. else
  652. {
  653. block->gcode_target[X_AXIS] = x;
  654. block->gcode_target[Y_AXIS] = y;
  655. block->gcode_target[Z_AXIS] = z;
  656. block->gcode_target[E_AXIS] = e;
  657. }
  658. // Save the global feedrate at scheduling time
  659. block->gcode_feedrate = feedrate;
  660. // Reset the starting E position when requested
  661. if (plan_reset_next_e_queue)
  662. {
  663. position[E_AXIS] = 0;
  664. #ifdef LIN_ADVANCE
  665. position_float[E_AXIS] = 0;
  666. #endif
  667. // the block might still be discarded later, but we need to ensure the lower-level
  668. // count_position is also reset correctly for consistent results!
  669. plan_reset_next_e_queue = false;
  670. plan_reset_next_e_sched = true;
  671. }
  672. #ifdef ENABLE_AUTO_BED_LEVELING
  673. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  674. #endif // ENABLE_AUTO_BED_LEVELING
  675. // Apply the machine correction matrix.
  676. {
  677. #if 0
  678. SERIAL_ECHOPGM("Planner, current position - servos: ");
  679. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  680. SERIAL_ECHOPGM(", ");
  681. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  682. SERIAL_ECHOPGM(", ");
  683. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  684. SERIAL_ECHOLNPGM("");
  685. SERIAL_ECHOPGM("Planner, target position, initial: ");
  686. MYSERIAL.print(x, 5);
  687. SERIAL_ECHOPGM(", ");
  688. MYSERIAL.print(y, 5);
  689. SERIAL_ECHOLNPGM("");
  690. SERIAL_ECHOPGM("Planner, world2machine: ");
  691. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  692. SERIAL_ECHOPGM(", ");
  693. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  694. SERIAL_ECHOPGM(", ");
  695. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  696. SERIAL_ECHOPGM(", ");
  697. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  698. SERIAL_ECHOLNPGM("");
  699. SERIAL_ECHOPGM("Planner, offset: ");
  700. MYSERIAL.print(world2machine_shift[0], 5);
  701. SERIAL_ECHOPGM(", ");
  702. MYSERIAL.print(world2machine_shift[1], 5);
  703. SERIAL_ECHOLNPGM("");
  704. #endif
  705. world2machine(x, y);
  706. #if 0
  707. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  708. MYSERIAL.print(x, 5);
  709. SERIAL_ECHOPGM(", ");
  710. MYSERIAL.print(y, 5);
  711. SERIAL_ECHOLNPGM("");
  712. #endif
  713. }
  714. // The target position of the tool in absolute steps
  715. // Calculate target position in absolute steps
  716. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  717. long target[4];
  718. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  719. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  720. #ifdef MESH_BED_LEVELING
  721. if (mbl.active){
  722. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  723. }else{
  724. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  725. }
  726. #else
  727. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  728. #endif // ENABLE_MESH_BED_LEVELING
  729. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  730. #ifdef PREVENT_DANGEROUS_EXTRUDE
  731. if(target[E_AXIS]!=position[E_AXIS])
  732. {
  733. if(degHotend(active_extruder)<extrude_min_temp)
  734. {
  735. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  736. #ifdef LIN_ADVANCE
  737. position_float[E_AXIS] = e;
  738. #endif
  739. SERIAL_ECHO_START;
  740. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  741. }
  742. #ifdef PREVENT_LENGTHY_EXTRUDE
  743. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  744. {
  745. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  746. #ifdef LIN_ADVANCE
  747. position_float[E_AXIS] = e;
  748. #endif
  749. SERIAL_ECHO_START;
  750. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  751. }
  752. #endif
  753. }
  754. #endif
  755. // Number of steps for each axis
  756. #ifndef COREXY
  757. // default non-h-bot planning
  758. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  759. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  760. #else
  761. // corexy planning
  762. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  763. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  764. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  765. #endif
  766. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  767. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  768. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  769. // Bail if this is a zero-length block
  770. if (block->step_event_count.wide <= dropsegments)
  771. {
  772. #ifdef PLANNER_DIAGNOSTICS
  773. planner_update_queue_min_counter();
  774. #endif /* PLANNER_DIAGNOSTICS */
  775. return;
  776. }
  777. block->fan_speed = fanSpeed;
  778. // Compute direction bits for this block
  779. block->direction_bits = 0;
  780. #ifndef COREXY
  781. if (target[X_AXIS] < position[X_AXIS])
  782. {
  783. block->direction_bits |= (1<<X_AXIS);
  784. }
  785. if (target[Y_AXIS] < position[Y_AXIS])
  786. {
  787. block->direction_bits |= (1<<Y_AXIS);
  788. }
  789. #else
  790. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  791. {
  792. block->direction_bits |= (1<<X_AXIS);
  793. }
  794. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  795. {
  796. block->direction_bits |= (1<<Y_AXIS);
  797. }
  798. #endif
  799. if (target[Z_AXIS] < position[Z_AXIS])
  800. {
  801. block->direction_bits |= (1<<Z_AXIS);
  802. }
  803. if (target[E_AXIS] < position[E_AXIS])
  804. {
  805. block->direction_bits |= (1<<E_AXIS);
  806. }
  807. block->active_extruder = extruder;
  808. //enable active axes
  809. #ifdef COREXY
  810. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  811. {
  812. enable_x();
  813. enable_y();
  814. }
  815. #else
  816. if(block->steps_x.wide != 0) enable_x();
  817. if(block->steps_y.wide != 0) enable_y();
  818. #endif
  819. if(block->steps_z.wide != 0) enable_z();
  820. // Enable extruder(s)
  821. if(block->steps_e.wide != 0)
  822. {
  823. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  824. {
  825. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  826. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  827. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  828. switch(extruder)
  829. {
  830. case 0:
  831. enable_e0();
  832. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  833. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  834. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  835. break;
  836. case 1:
  837. enable_e1();
  838. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  839. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  840. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  841. break;
  842. case 2:
  843. enable_e2();
  844. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  845. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  846. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  847. break;
  848. }
  849. }
  850. else //enable all
  851. {
  852. enable_e0();
  853. enable_e1();
  854. enable_e2();
  855. }
  856. }
  857. if (block->steps_e.wide == 0)
  858. {
  859. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  860. }
  861. else
  862. {
  863. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  864. }
  865. /* This part of the code calculates the total length of the movement.
  866. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  867. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  868. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  869. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  870. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  871. */
  872. #ifndef COREXY
  873. float delta_mm[4];
  874. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  875. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  876. #else
  877. float delta_mm[6];
  878. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  879. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  880. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  881. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  882. #endif
  883. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  884. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  885. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  886. {
  887. block->millimeters = fabs(delta_mm[E_AXIS]);
  888. }
  889. else
  890. {
  891. #ifndef COREXY
  892. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  893. #else
  894. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  895. #endif
  896. }
  897. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  898. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  899. float inverse_second = feed_rate * inverse_millimeters;
  900. int moves_queued = moves_planned();
  901. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  902. #ifdef SLOWDOWN
  903. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  904. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  905. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  906. // segment time in micro seconds
  907. unsigned long segment_time = lround(1000000.0/inverse_second);
  908. if (segment_time < cs.minsegmenttime)
  909. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  910. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  911. }
  912. #endif // SLOWDOWN
  913. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  914. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  915. // Calculate and limit speed in mm/sec for each axis
  916. float current_speed[4];
  917. float speed_factor = 1.0; //factor <=1 do decrease speed
  918. // maxlimit_status &= ~0xf;
  919. for(int i=0; i < 4; i++)
  920. {
  921. current_speed[i] = delta_mm[i] * inverse_second;
  922. if(fabs(current_speed[i]) > max_feedrate[i])
  923. {
  924. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  925. maxlimit_status |= (1 << i);
  926. }
  927. }
  928. // Correct the speed
  929. if( speed_factor < 1.0)
  930. {
  931. for(unsigned char i=0; i < 4; i++)
  932. {
  933. current_speed[i] *= speed_factor;
  934. }
  935. block->nominal_speed *= speed_factor;
  936. block->nominal_rate *= speed_factor;
  937. }
  938. #ifdef LIN_ADVANCE
  939. float e_D_ratio = 0;
  940. #endif
  941. // Compute and limit the acceleration rate for the trapezoid generator.
  942. // block->step_event_count ... event count of the fastest axis
  943. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  944. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  945. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  946. {
  947. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  948. #ifdef LIN_ADVANCE
  949. block->use_advance_lead = false;
  950. #endif
  951. }
  952. else
  953. {
  954. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  955. #ifdef LIN_ADVANCE
  956. /**
  957. * Use LIN_ADVANCE within this block if all these are true:
  958. *
  959. * extruder_advance_K : There is an advance factor set.
  960. * delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
  961. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  962. */
  963. block->use_advance_lead = extruder_advance_K > 0
  964. && delta_mm[E_AXIS] >= 0
  965. && abs(delta_mm[Z_AXIS]) < 0.5;
  966. if (block->use_advance_lead) {
  967. // all extrusion moves with LA require a compression which is proportional to the
  968. // extrusion_length to distance ratio (e/D)
  969. e_D_ratio = (e - position_float[E_AXIS]) /
  970. sqrt(sq(x - position_float[X_AXIS])
  971. + sq(y - position_float[Y_AXIS])
  972. + sq(z - position_float[Z_AXIS]));
  973. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  974. // print move due to min. steps per segment. Never execute this with advance! This assumes
  975. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  976. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  977. if (e_D_ratio > 3.0)
  978. block->use_advance_lead = false;
  979. else if (e_D_ratio > 0) {
  980. const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
  981. if (cs.acceleration > max_accel_per_s2) {
  982. block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
  983. #ifdef LA_DEBUG
  984. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  985. #endif
  986. }
  987. }
  988. }
  989. #endif
  990. // Limit acceleration per axis
  991. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  992. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  993. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  994. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  995. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  996. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  997. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  998. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  999. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  1000. }
  1001. // Acceleration of the segment, in mm/sec^2
  1002. block->acceleration = block->acceleration_st / steps_per_mm;
  1003. #if 0
  1004. // Oversample diagonal movements by a power of 2 up to 8x
  1005. // to achieve more accurate diagonal movements.
  1006. uint8_t bresenham_oversample = 1;
  1007. for (uint8_t i = 0; i < 3; ++ i) {
  1008. if (block->nominal_rate >= 5000) // 5kHz
  1009. break;
  1010. block->nominal_rate << 1;
  1011. bresenham_oversample << 1;
  1012. block->step_event_count << 1;
  1013. }
  1014. if (bresenham_oversample > 1)
  1015. // Lower the acceleration steps/sec^2 to account for the oversampling.
  1016. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  1017. #endif
  1018. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1019. // Start with a safe speed.
  1020. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1021. float safe_speed = block->nominal_speed;
  1022. bool limited = false;
  1023. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1024. float jerk = fabs(current_speed[axis]);
  1025. if (jerk > cs.max_jerk[axis]) {
  1026. // The actual jerk is lower, if it has been limited by the XY jerk.
  1027. if (limited) {
  1028. // Spare one division by a following gymnastics:
  1029. // Instead of jerk *= safe_speed / block->nominal_speed,
  1030. // multiply max_jerk[axis] by the divisor.
  1031. jerk *= safe_speed;
  1032. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1033. if (jerk > mjerk) {
  1034. safe_speed *= mjerk / jerk;
  1035. limited = true;
  1036. }
  1037. } else {
  1038. safe_speed = cs.max_jerk[axis];
  1039. limited = true;
  1040. }
  1041. }
  1042. }
  1043. // Reset the block flag.
  1044. block->flag = 0;
  1045. if (plan_reset_next_e_sched)
  1046. {
  1047. // finally propagate a pending reset
  1048. block->flag |= BLOCK_FLAG_E_RESET;
  1049. plan_reset_next_e_sched = false;
  1050. }
  1051. // Initial limit on the segment entry velocity.
  1052. float vmax_junction;
  1053. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1054. // Is it because we don't want to tinker with the first buffer line, which
  1055. // is likely to be executed by the stepper interrupt routine soon?
  1056. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1057. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1058. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1059. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1060. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1061. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1062. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1063. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1064. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1065. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1066. float v_factor = 1.f;
  1067. limited = false;
  1068. // Now limit the jerk in all axes.
  1069. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1070. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1071. float v_exit = previous_speed[axis];
  1072. float v_entry = current_speed [axis];
  1073. if (prev_speed_larger)
  1074. v_exit *= smaller_speed_factor;
  1075. if (limited) {
  1076. v_exit *= v_factor;
  1077. v_entry *= v_factor;
  1078. }
  1079. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1080. float jerk =
  1081. (v_exit > v_entry) ?
  1082. ((v_entry > 0.f || v_exit < 0.f) ?
  1083. // coasting
  1084. (v_exit - v_entry) :
  1085. // axis reversal
  1086. max(v_exit, - v_entry)) :
  1087. // v_exit <= v_entry
  1088. ((v_entry < 0.f || v_exit > 0.f) ?
  1089. // coasting
  1090. (v_entry - v_exit) :
  1091. // axis reversal
  1092. max(- v_exit, v_entry));
  1093. if (jerk > cs.max_jerk[axis]) {
  1094. v_factor *= cs.max_jerk[axis] / jerk;
  1095. limited = true;
  1096. }
  1097. }
  1098. if (limited)
  1099. vmax_junction *= v_factor;
  1100. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1101. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1102. float vmax_junction_threshold = vmax_junction * 0.99f;
  1103. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1104. // Not coasting. The machine will stop and start the movements anyway,
  1105. // better to start the segment from start.
  1106. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1107. vmax_junction = safe_speed;
  1108. }
  1109. } else {
  1110. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1111. vmax_junction = safe_speed;
  1112. }
  1113. // Max entry speed of this block equals the max exit speed of the previous block.
  1114. block->max_entry_speed = vmax_junction;
  1115. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1116. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1117. block->entry_speed = min(vmax_junction, v_allowable);
  1118. // Initialize planner efficiency flags
  1119. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1120. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1121. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1122. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1123. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1124. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1125. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1126. // Always calculate trapezoid for new block
  1127. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1128. // Update previous path unit_vector and nominal speed
  1129. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1130. previous_nominal_speed = block->nominal_speed;
  1131. previous_safe_speed = safe_speed;
  1132. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1133. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1134. #ifdef LIN_ADVANCE
  1135. if (block->use_advance_lead) {
  1136. // calculate the compression ratio for the segment (the required advance steps are computed
  1137. // during trapezoid planning)
  1138. float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
  1139. block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
  1140. float advance_speed;
  1141. if (e_D_ratio > 0)
  1142. advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1143. else
  1144. advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
  1145. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1146. // still need to replicate the *exact* same step grouping policy (see below)
  1147. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1148. float advance_rate = (F_CPU / 8.0) / advance_speed;
  1149. if (advance_speed > 20000) {
  1150. block->advance_rate = advance_rate * 4;
  1151. block->advance_step_loops = 4;
  1152. }
  1153. else if (advance_speed > 10000) {
  1154. block->advance_rate = advance_rate * 2;
  1155. block->advance_step_loops = 2;
  1156. }
  1157. else
  1158. {
  1159. // never overflow the internal accumulator with very low rates
  1160. if (advance_rate < UINT16_MAX)
  1161. block->advance_rate = advance_rate;
  1162. else
  1163. block->advance_rate = UINT16_MAX;
  1164. block->advance_step_loops = 1;
  1165. }
  1166. #ifdef LA_DEBUG
  1167. if (block->advance_step_loops > 2)
  1168. // @wavexx: we should really check for the difference between step_loops and
  1169. // advance_step_loops instead. A difference of more than 1 will lead
  1170. // to uneven speed and *should* be adjusted here by furthermore
  1171. // reducing the speed.
  1172. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1173. #endif
  1174. }
  1175. #endif
  1176. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1177. if (block->step_event_count.wide <= 32767)
  1178. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1179. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1180. block_buffer_head = next_buffer_head;
  1181. // Update position
  1182. memcpy(position, target, sizeof(target)); // position[] = target[]
  1183. #ifdef LIN_ADVANCE
  1184. position_float[X_AXIS] = x;
  1185. position_float[Y_AXIS] = y;
  1186. position_float[Z_AXIS] = z;
  1187. position_float[E_AXIS] = e;
  1188. #endif
  1189. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1190. // the machine limits (maximum acceleration and maximum jerk).
  1191. // This runs asynchronously with the stepper interrupt controller, which may
  1192. // interfere with the process.
  1193. planner_recalculate(safe_speed);
  1194. // SERIAL_ECHOPGM("Q");
  1195. // SERIAL_ECHO(int(moves_planned()));
  1196. // SERIAL_ECHOLNPGM("");
  1197. #ifdef PLANNER_DIAGNOSTICS
  1198. planner_update_queue_min_counter();
  1199. #endif /* PLANNER_DIAGNOSTIC */
  1200. // The stepper timer interrupt will run continuously from now on.
  1201. // If there are no planner blocks to be executed by the stepper routine,
  1202. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1203. // from the planner queue if available.
  1204. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1205. }
  1206. #ifdef ENABLE_AUTO_BED_LEVELING
  1207. vector_3 plan_get_position() {
  1208. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1209. //position.debug("in plan_get position");
  1210. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1211. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1212. //inverse.debug("in plan_get inverse");
  1213. position.apply_rotation(inverse);
  1214. //position.debug("after rotation");
  1215. return position;
  1216. }
  1217. #endif // ENABLE_AUTO_BED_LEVELING
  1218. void plan_set_position(float x, float y, float z, const float &e)
  1219. {
  1220. #ifdef ENABLE_AUTO_BED_LEVELING
  1221. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1222. #endif // ENABLE_AUTO_BED_LEVELING
  1223. world2machine(x, y);
  1224. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1225. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1226. #ifdef MESH_BED_LEVELING
  1227. position[Z_AXIS] = mbl.active ?
  1228. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1229. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1230. #else
  1231. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1232. #endif // ENABLE_MESH_BED_LEVELING
  1233. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1234. #ifdef LIN_ADVANCE
  1235. position_float[X_AXIS] = x;
  1236. position_float[Y_AXIS] = y;
  1237. position_float[Z_AXIS] = z;
  1238. position_float[E_AXIS] = e;
  1239. #endif
  1240. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1241. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1242. previous_speed[0] = 0.0;
  1243. previous_speed[1] = 0.0;
  1244. previous_speed[2] = 0.0;
  1245. previous_speed[3] = 0.0;
  1246. }
  1247. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1248. void plan_set_z_position(const float &z)
  1249. {
  1250. #ifdef LIN_ADVANCE
  1251. position_float[Z_AXIS] = z;
  1252. #endif
  1253. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1254. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1255. }
  1256. void plan_set_e_position(const float &e)
  1257. {
  1258. #ifdef LIN_ADVANCE
  1259. position_float[E_AXIS] = e;
  1260. #endif
  1261. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1262. st_set_e_position(position[E_AXIS]);
  1263. }
  1264. void plan_reset_next_e()
  1265. {
  1266. plan_reset_next_e_queue = true;
  1267. }
  1268. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1269. void set_extrude_min_temp(float temp)
  1270. {
  1271. extrude_min_temp=temp;
  1272. }
  1273. #endif
  1274. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1275. void reset_acceleration_rates()
  1276. {
  1277. for(int8_t i=0; i < NUM_AXIS; i++)
  1278. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1279. }
  1280. #ifdef TMC2130
  1281. void update_mode_profile()
  1282. {
  1283. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1284. {
  1285. max_feedrate = cs.max_feedrate_normal;
  1286. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1287. }
  1288. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1289. {
  1290. max_feedrate = cs.max_feedrate_silent;
  1291. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1292. }
  1293. reset_acceleration_rates();
  1294. }
  1295. #endif //TMC2130
  1296. unsigned char number_of_blocks()
  1297. {
  1298. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1299. }
  1300. #ifdef PLANNER_DIAGNOSTICS
  1301. uint8_t planner_queue_min()
  1302. {
  1303. return g_cntr_planner_queue_min;
  1304. }
  1305. void planner_queue_min_reset()
  1306. {
  1307. g_cntr_planner_queue_min = moves_planned();
  1308. }
  1309. #endif /* PLANNER_DIAGNOSTICS */
  1310. void planner_add_sd_length(uint16_t sdlen)
  1311. {
  1312. if (block_buffer_head != block_buffer_tail) {
  1313. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1314. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1315. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1316. } else {
  1317. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1318. // at a power panic, so the length of this command may be forgotten.
  1319. }
  1320. }
  1321. uint16_t planner_calc_sd_length()
  1322. {
  1323. unsigned char _block_buffer_head = block_buffer_head;
  1324. unsigned char _block_buffer_tail = block_buffer_tail;
  1325. uint16_t sdlen = 0;
  1326. while (_block_buffer_head != _block_buffer_tail)
  1327. {
  1328. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1329. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1330. }
  1331. return sdlen;
  1332. }