Marlin_main.cpp 184 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. union Data
  196. {
  197. byte b[2];
  198. int value;
  199. };
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned long kicktime = millis()+100000;
  217. unsigned int usb_printing_counter;
  218. int lcd_change_fil_state = 0;
  219. int feedmultiplyBckp = 100;
  220. unsigned char lang_selected = 0;
  221. bool prusa_sd_card_upload = false;
  222. unsigned long total_filament_used;
  223. unsigned int heating_status;
  224. unsigned int heating_status_counter;
  225. bool custom_message;
  226. unsigned int custom_message_type;
  227. unsigned int custom_message_state;
  228. bool volumetric_enabled = false;
  229. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 1
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #if EXTRUDERS > 2
  233. , DEFAULT_NOMINAL_FILAMENT_DIA
  234. #endif
  235. #endif
  236. };
  237. float volumetric_multiplier[EXTRUDERS] = {1.0
  238. #if EXTRUDERS > 1
  239. , 1.0
  240. #if EXTRUDERS > 2
  241. , 1.0
  242. #endif
  243. #endif
  244. };
  245. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  246. float add_homing[3]={0,0,0};
  247. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  248. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  249. bool axis_known_position[3] = {false, false, false};
  250. float zprobe_zoffset;
  251. // Extruder offset
  252. #if EXTRUDERS > 1
  253. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  254. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  255. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  256. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  257. #endif
  258. };
  259. #endif
  260. uint8_t active_extruder = 0;
  261. int fanSpeed=0;
  262. #ifdef FWRETRACT
  263. bool autoretract_enabled=false;
  264. bool retracted[EXTRUDERS]={false
  265. #if EXTRUDERS > 1
  266. , false
  267. #if EXTRUDERS > 2
  268. , false
  269. #endif
  270. #endif
  271. };
  272. bool retracted_swap[EXTRUDERS]={false
  273. #if EXTRUDERS > 1
  274. , false
  275. #if EXTRUDERS > 2
  276. , false
  277. #endif
  278. #endif
  279. };
  280. float retract_length = RETRACT_LENGTH;
  281. float retract_length_swap = RETRACT_LENGTH_SWAP;
  282. float retract_feedrate = RETRACT_FEEDRATE;
  283. float retract_zlift = RETRACT_ZLIFT;
  284. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  285. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  286. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  287. #endif
  288. #ifdef ULTIPANEL
  289. #ifdef PS_DEFAULT_OFF
  290. bool powersupply = false;
  291. #else
  292. bool powersupply = true;
  293. #endif
  294. #endif
  295. bool cancel_heatup = false ;
  296. #ifdef FILAMENT_SENSOR
  297. //Variables for Filament Sensor input
  298. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  299. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  300. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  301. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  302. int delay_index1=0; //index into ring buffer
  303. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  304. float delay_dist=0; //delay distance counter
  305. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  306. #endif
  307. const char errormagic[] PROGMEM = "Error:";
  308. const char echomagic[] PROGMEM = "echo:";
  309. //===========================================================================
  310. //=============================Private Variables=============================
  311. //===========================================================================
  312. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  313. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  314. static float delta[3] = {0.0, 0.0, 0.0};
  315. // For tracing an arc
  316. static float offset[3] = {0.0, 0.0, 0.0};
  317. static bool home_all_axis = true;
  318. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  319. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  320. // Determines Absolute or Relative Coordinates.
  321. // Also there is bool axis_relative_modes[] per axis flag.
  322. static bool relative_mode = false;
  323. // String circular buffer. Commands may be pushed to the buffer from both sides:
  324. // Chained commands will be pushed to the front, interactive (from LCD menu)
  325. // and printing commands (from serial line or from SD card) are pushed to the tail.
  326. // First character of each entry indicates the type of the entry:
  327. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  328. // Command in cmdbuffer was sent over USB.
  329. #define CMDBUFFER_CURRENT_TYPE_USB 1
  330. // Command in cmdbuffer was read from SDCARD.
  331. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  332. // Command in cmdbuffer was generated by the UI.
  333. #define CMDBUFFER_CURRENT_TYPE_UI 3
  334. // Command in cmdbuffer was generated by another G-code.
  335. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  336. // How much space to reserve for the chained commands
  337. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  338. // which are pushed to the front of the queue?
  339. // Maximum 5 commands of max length 20 + null terminator.
  340. #define CMDBUFFER_RESERVE_FRONT (5*21)
  341. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  342. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  343. // Head of the circular buffer, where to read.
  344. static int bufindr = 0;
  345. // Tail of the buffer, where to write.
  346. static int bufindw = 0;
  347. // Number of lines in cmdbuffer.
  348. static int buflen = 0;
  349. // Flag for processing the current command inside the main Arduino loop().
  350. // If a new command was pushed to the front of a command buffer while
  351. // processing another command, this replaces the command on the top.
  352. // Therefore don't remove the command from the queue in the loop() function.
  353. static bool cmdbuffer_front_already_processed = false;
  354. // Type of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  356. // String of a command, which is to be executed right now.
  357. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  358. // Enable debugging of the command buffer.
  359. // Debugging information will be sent to serial line.
  360. // #define CMDBUFFER_DEBUG
  361. static int serial_count = 0;
  362. static boolean comment_mode = false;
  363. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  364. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  365. //static float tt = 0;
  366. //static float bt = 0;
  367. //Inactivity shutdown variables
  368. static unsigned long previous_millis_cmd = 0;
  369. unsigned long max_inactive_time = 0;
  370. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  371. unsigned long starttime=0;
  372. unsigned long stoptime=0;
  373. unsigned long _usb_timer = 0;
  374. static uint8_t tmp_extruder;
  375. bool Stopped=false;
  376. #if NUM_SERVOS > 0
  377. Servo servos[NUM_SERVOS];
  378. #endif
  379. bool CooldownNoWait = true;
  380. bool target_direction;
  381. //Insert variables if CHDK is defined
  382. #ifdef CHDK
  383. unsigned long chdkHigh = 0;
  384. boolean chdkActive = false;
  385. #endif
  386. //===========================================================================
  387. //=============================Routines======================================
  388. //===========================================================================
  389. void get_arc_coordinates();
  390. bool setTargetedHotend(int code);
  391. void serial_echopair_P(const char *s_P, float v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, double v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, unsigned long v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. #ifdef SDSUPPORT
  398. #include "SdFatUtil.h"
  399. int freeMemory() { return SdFatUtil::FreeRam(); }
  400. #else
  401. extern "C" {
  402. extern unsigned int __bss_end;
  403. extern unsigned int __heap_start;
  404. extern void *__brkval;
  405. int freeMemory() {
  406. int free_memory;
  407. if ((int)__brkval == 0)
  408. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  409. else
  410. free_memory = ((int)&free_memory) - ((int)__brkval);
  411. return free_memory;
  412. }
  413. }
  414. #endif //!SDSUPPORT
  415. // Pop the currently processed command from the queue.
  416. // It is expected, that there is at least one command in the queue.
  417. bool cmdqueue_pop_front()
  418. {
  419. if (buflen > 0) {
  420. #ifdef CMDBUFFER_DEBUG
  421. SERIAL_ECHOPGM("Dequeing ");
  422. SERIAL_ECHO(cmdbuffer+bufindr+1);
  423. SERIAL_ECHOLNPGM("");
  424. SERIAL_ECHOPGM("Old indices: buflen ");
  425. SERIAL_ECHO(buflen);
  426. SERIAL_ECHOPGM(", bufindr ");
  427. SERIAL_ECHO(bufindr);
  428. SERIAL_ECHOPGM(", bufindw ");
  429. SERIAL_ECHO(bufindw);
  430. SERIAL_ECHOPGM(", serial_count ");
  431. SERIAL_ECHO(serial_count);
  432. SERIAL_ECHOPGM(", bufsize ");
  433. SERIAL_ECHO(sizeof(cmdbuffer));
  434. SERIAL_ECHOLNPGM("");
  435. #endif /* CMDBUFFER_DEBUG */
  436. if (-- buflen == 0) {
  437. // Empty buffer.
  438. if (serial_count == 0)
  439. // No serial communication is pending. Reset both pointers to zero.
  440. bufindw = 0;
  441. bufindr = bufindw;
  442. } else {
  443. // There is at least one ready line in the buffer.
  444. // First skip the current command ID and iterate up to the end of the string.
  445. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  446. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  447. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  448. // If the end of the buffer was empty,
  449. if (bufindr == sizeof(cmdbuffer)) {
  450. // skip to the start and find the nonzero command.
  451. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  452. }
  453. #ifdef CMDBUFFER_DEBUG
  454. SERIAL_ECHOPGM("New indices: buflen ");
  455. SERIAL_ECHO(buflen);
  456. SERIAL_ECHOPGM(", bufindr ");
  457. SERIAL_ECHO(bufindr);
  458. SERIAL_ECHOPGM(", bufindw ");
  459. SERIAL_ECHO(bufindw);
  460. SERIAL_ECHOPGM(", serial_count ");
  461. SERIAL_ECHO(serial_count);
  462. SERIAL_ECHOPGM(" new command on the top: ");
  463. SERIAL_ECHO(cmdbuffer+bufindr+1);
  464. SERIAL_ECHOLNPGM("");
  465. #endif /* CMDBUFFER_DEBUG */
  466. }
  467. return true;
  468. }
  469. return false;
  470. }
  471. void cmdqueue_reset()
  472. {
  473. while (cmdqueue_pop_front()) ;
  474. }
  475. // How long a string could be pushed to the front of the command queue?
  476. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  477. // len_asked does not contain the zero terminator size.
  478. bool cmdqueue_could_enqueue_front(int len_asked)
  479. {
  480. // MAX_CMD_SIZE has to accommodate the zero terminator.
  481. if (len_asked >= MAX_CMD_SIZE)
  482. return false;
  483. // Remove the currently processed command from the queue.
  484. if (! cmdbuffer_front_already_processed) {
  485. cmdqueue_pop_front();
  486. cmdbuffer_front_already_processed = true;
  487. }
  488. if (bufindr == bufindw && buflen > 0)
  489. // Full buffer.
  490. return false;
  491. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  492. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  493. if (bufindw < bufindr) {
  494. int bufindr_new = bufindr - len_asked - 2;
  495. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  496. if (endw <= bufindr_new) {
  497. bufindr = bufindr_new;
  498. return true;
  499. }
  500. } else {
  501. // Otherwise the free space is split between the start and end.
  502. if (len_asked + 2 <= bufindr) {
  503. // Could fit at the start.
  504. bufindr -= len_asked + 2;
  505. return true;
  506. }
  507. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  508. if (endw <= bufindr_new) {
  509. memset(cmdbuffer, 0, bufindr);
  510. bufindr = bufindr_new;
  511. return true;
  512. }
  513. }
  514. return false;
  515. }
  516. // Could one enqueue a command of lenthg len_asked into the buffer,
  517. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  518. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  519. // len_asked does not contain the zero terminator size.
  520. bool cmdqueue_could_enqueue_back(int len_asked)
  521. {
  522. // MAX_CMD_SIZE has to accommodate the zero terminator.
  523. if (len_asked >= MAX_CMD_SIZE)
  524. return false;
  525. if (bufindr == bufindw && buflen > 0)
  526. // Full buffer.
  527. return false;
  528. if (serial_count > 0) {
  529. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  530. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  531. // serial data.
  532. // How much memory to reserve for the commands pushed to the front?
  533. // End of the queue, when pushing to the end.
  534. int endw = bufindw + len_asked + 2;
  535. if (bufindw < bufindr)
  536. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  537. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  538. // Otherwise the free space is split between the start and end.
  539. if (// Could one fit to the end, including the reserve?
  540. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  541. // Could one fit to the end, and the reserve to the start?
  542. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  543. return true;
  544. // Could one fit both to the start?
  545. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  546. // Mark the rest of the buffer as used.
  547. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  548. // and point to the start.
  549. bufindw = 0;
  550. return true;
  551. }
  552. } else {
  553. // How much memory to reserve for the commands pushed to the front?
  554. // End of the queue, when pushing to the end.
  555. int endw = bufindw + len_asked + 2;
  556. if (bufindw < bufindr)
  557. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  558. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  559. // Otherwise the free space is split between the start and end.
  560. if (// Could one fit to the end, including the reserve?
  561. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  562. // Could one fit to the end, and the reserve to the start?
  563. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  564. return true;
  565. // Could one fit both to the start?
  566. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  567. // Mark the rest of the buffer as used.
  568. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  569. // and point to the start.
  570. bufindw = 0;
  571. return true;
  572. }
  573. }
  574. return false;
  575. }
  576. #ifdef CMDBUFFER_DEBUG
  577. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  578. {
  579. SERIAL_ECHOPGM("Entry nr: ");
  580. SERIAL_ECHO(nr);
  581. SERIAL_ECHOPGM(", type: ");
  582. SERIAL_ECHO(int(*p));
  583. SERIAL_ECHOPGM(", cmd: ");
  584. SERIAL_ECHO(p+1);
  585. SERIAL_ECHOLNPGM("");
  586. }
  587. static void cmdqueue_dump_to_serial()
  588. {
  589. if (buflen == 0) {
  590. SERIAL_ECHOLNPGM("The command buffer is empty.");
  591. } else {
  592. SERIAL_ECHOPGM("Content of the buffer: entries ");
  593. SERIAL_ECHO(buflen);
  594. SERIAL_ECHOPGM(", indr ");
  595. SERIAL_ECHO(bufindr);
  596. SERIAL_ECHOPGM(", indw ");
  597. SERIAL_ECHO(bufindw);
  598. SERIAL_ECHOLNPGM("");
  599. int nr = 0;
  600. if (bufindr < bufindw) {
  601. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  602. cmdqueue_dump_to_serial_single_line(nr, p);
  603. // Skip the command.
  604. for (++p; *p != 0; ++ p);
  605. // Skip the gaps.
  606. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  607. }
  608. } else {
  609. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  610. cmdqueue_dump_to_serial_single_line(nr, p);
  611. // Skip the command.
  612. for (++p; *p != 0; ++ p);
  613. // Skip the gaps.
  614. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  615. }
  616. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  617. cmdqueue_dump_to_serial_single_line(nr, p);
  618. // Skip the command.
  619. for (++p; *p != 0; ++ p);
  620. // Skip the gaps.
  621. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  622. }
  623. }
  624. SERIAL_ECHOLNPGM("End of the buffer.");
  625. }
  626. }
  627. #endif /* CMDBUFFER_DEBUG */
  628. //adds an command to the main command buffer
  629. //thats really done in a non-safe way.
  630. //needs overworking someday
  631. // Currently the maximum length of a command piped through this function is around 20 characters
  632. void enquecommand(const char *cmd, bool from_progmem)
  633. {
  634. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  635. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  636. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  637. if (cmdqueue_could_enqueue_back(len)) {
  638. // This is dangerous if a mixing of serial and this happens
  639. // This may easily be tested: If serial_count > 0, we have a problem.
  640. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  641. if (from_progmem)
  642. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  643. else
  644. strcpy(cmdbuffer + bufindw + 1, cmd);
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHORPGM(MSG_Enqueing);
  647. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  648. SERIAL_ECHOLNPGM("\"");
  649. bufindw += len + 2;
  650. if (bufindw == sizeof(cmdbuffer))
  651. bufindw = 0;
  652. ++ buflen;
  653. #ifdef CMDBUFFER_DEBUG
  654. cmdqueue_dump_to_serial();
  655. #endif /* CMDBUFFER_DEBUG */
  656. } else {
  657. SERIAL_ERROR_START;
  658. SERIAL_ECHORPGM(MSG_Enqueing);
  659. if (from_progmem)
  660. SERIAL_PROTOCOLRPGM(cmd);
  661. else
  662. SERIAL_ECHO(cmd);
  663. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  664. #ifdef CMDBUFFER_DEBUG
  665. cmdqueue_dump_to_serial();
  666. #endif /* CMDBUFFER_DEBUG */
  667. }
  668. }
  669. void enquecommand_front(const char *cmd, bool from_progmem)
  670. {
  671. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  672. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  673. if (cmdqueue_could_enqueue_front(len)) {
  674. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  675. if (from_progmem)
  676. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  677. else
  678. strcpy(cmdbuffer + bufindr + 1, cmd);
  679. ++ buflen;
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHOPGM("Enqueing to the front: \"");
  682. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  683. SERIAL_ECHOLNPGM("\"");
  684. #ifdef CMDBUFFER_DEBUG
  685. cmdqueue_dump_to_serial();
  686. #endif /* CMDBUFFER_DEBUG */
  687. } else {
  688. SERIAL_ERROR_START;
  689. SERIAL_ECHOPGM("Enqueing to the front: \"");
  690. if (from_progmem)
  691. SERIAL_PROTOCOLRPGM(cmd);
  692. else
  693. SERIAL_ECHO(cmd);
  694. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  695. #ifdef CMDBUFFER_DEBUG
  696. cmdqueue_dump_to_serial();
  697. #endif /* CMDBUFFER_DEBUG */
  698. }
  699. }
  700. // Mark the command at the top of the command queue as new.
  701. // Therefore it will not be removed from the queue.
  702. void repeatcommand_front()
  703. {
  704. cmdbuffer_front_already_processed = true;
  705. }
  706. void setup_killpin()
  707. {
  708. #if defined(KILL_PIN) && KILL_PIN > -1
  709. SET_INPUT(KILL_PIN);
  710. WRITE(KILL_PIN,HIGH);
  711. #endif
  712. }
  713. // Set home pin
  714. void setup_homepin(void)
  715. {
  716. #if defined(HOME_PIN) && HOME_PIN > -1
  717. SET_INPUT(HOME_PIN);
  718. WRITE(HOME_PIN,HIGH);
  719. #endif
  720. }
  721. void setup_photpin()
  722. {
  723. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  724. SET_OUTPUT(PHOTOGRAPH_PIN);
  725. WRITE(PHOTOGRAPH_PIN, LOW);
  726. #endif
  727. }
  728. void setup_powerhold()
  729. {
  730. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  731. SET_OUTPUT(SUICIDE_PIN);
  732. WRITE(SUICIDE_PIN, HIGH);
  733. #endif
  734. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  735. SET_OUTPUT(PS_ON_PIN);
  736. #if defined(PS_DEFAULT_OFF)
  737. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  738. #else
  739. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  740. #endif
  741. #endif
  742. }
  743. void suicide()
  744. {
  745. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  746. SET_OUTPUT(SUICIDE_PIN);
  747. WRITE(SUICIDE_PIN, LOW);
  748. #endif
  749. }
  750. void servo_init()
  751. {
  752. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  753. servos[0].attach(SERVO0_PIN);
  754. #endif
  755. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  756. servos[1].attach(SERVO1_PIN);
  757. #endif
  758. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  759. servos[2].attach(SERVO2_PIN);
  760. #endif
  761. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  762. servos[3].attach(SERVO3_PIN);
  763. #endif
  764. #if (NUM_SERVOS >= 5)
  765. #error "TODO: enter initalisation code for more servos"
  766. #endif
  767. }
  768. static void lcd_language_menu();
  769. #ifdef MESH_BED_LEVELING
  770. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  771. #endif
  772. // "Setup" function is called by the Arduino framework on startup.
  773. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  774. // are initialized by the main() routine provided by the Arduino framework.
  775. void setup()
  776. {
  777. setup_killpin();
  778. setup_powerhold();
  779. MYSERIAL.begin(BAUDRATE);
  780. SERIAL_PROTOCOLLNPGM("start");
  781. SERIAL_ECHO_START;
  782. #if 0
  783. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  784. for (int i = 0; i < 4096; ++ i) {
  785. int b = eeprom_read_byte((unsigned char*)i);
  786. if (b != 255) {
  787. SERIAL_ECHO(i);
  788. SERIAL_ECHO(":");
  789. SERIAL_ECHO(b);
  790. SERIAL_ECHOLN("");
  791. }
  792. }
  793. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  794. #endif
  795. // Check startup - does nothing if bootloader sets MCUSR to 0
  796. byte mcu = MCUSR;
  797. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  798. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  799. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  800. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  801. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  802. MCUSR=0;
  803. //SERIAL_ECHORPGM(MSG_MARLIN);
  804. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  805. #ifdef STRING_VERSION_CONFIG_H
  806. #ifdef STRING_CONFIG_H_AUTHOR
  807. SERIAL_ECHO_START;
  808. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  809. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  810. SERIAL_ECHORPGM(MSG_AUTHOR);
  811. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  812. SERIAL_ECHOPGM("Compiled: ");
  813. SERIAL_ECHOLNPGM(__DATE__);
  814. #endif
  815. #endif
  816. SERIAL_ECHO_START;
  817. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  818. SERIAL_ECHO(freeMemory());
  819. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  820. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  821. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  822. Config_RetrieveSettings();
  823. tp_init(); // Initialize temperature loop
  824. plan_init(); // Initialize planner;
  825. watchdog_init();
  826. st_init(); // Initialize stepper, this enables interrupts!
  827. setup_photpin();
  828. servo_init();
  829. // Reset the machine correction matrix.
  830. // It does not make sense to load the correction matrix until the machine is homed.
  831. world2machine_reset();
  832. lcd_init();
  833. if (!READ(BTN_ENC))
  834. {
  835. _delay_ms(1000);
  836. if (!READ(BTN_ENC))
  837. {
  838. SET_OUTPUT(BEEPER);
  839. WRITE(BEEPER, HIGH);
  840. // Force language selection at the next boot up.
  841. lcd_force_language_selection();
  842. // Force the "Follow calibration flow" message at the next boot up.
  843. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  844. farm_no = 0;
  845. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  846. farm_mode = false;
  847. while (!READ(BTN_ENC));
  848. WRITE(BEEPER, LOW);
  849. #ifdef MESH_BED_LEVELING
  850. _delay_ms(2000);
  851. if (!READ(BTN_ENC))
  852. {
  853. WRITE(BEEPER, HIGH);
  854. _delay_ms(100);
  855. WRITE(BEEPER, LOW);
  856. _delay_ms(200);
  857. WRITE(BEEPER, HIGH);
  858. _delay_ms(100);
  859. WRITE(BEEPER, LOW);
  860. int _z = 0;
  861. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  862. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  863. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  864. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  865. }
  866. else
  867. {
  868. WRITE(BEEPER, HIGH);
  869. _delay_ms(100);
  870. WRITE(BEEPER, LOW);
  871. }
  872. #endif // mesh
  873. }
  874. }
  875. else
  876. {
  877. _delay_ms(1000); // wait 1sec to display the splash screen
  878. }
  879. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  880. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  881. #endif
  882. #ifdef DIGIPOT_I2C
  883. digipot_i2c_init();
  884. #endif
  885. setup_homepin();
  886. #if defined(Z_AXIS_ALWAYS_ON)
  887. enable_z();
  888. #endif
  889. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  890. if (farm_no > 0)
  891. {
  892. farm_mode = true;
  893. farm_no = farm_no;
  894. prusa_statistics(8);
  895. }
  896. else
  897. {
  898. farm_mode = false;
  899. farm_no = 0;
  900. }
  901. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  902. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  903. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  904. // but this times out if a blocking dialog is shown in setup().
  905. card.initsd();
  906. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  907. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  908. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  909. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  910. // where all the EEPROM entries are set to 0x0ff.
  911. // Once a firmware boots up, it forces at least a language selection, which changes
  912. // EEPROM_LANG to number lower than 0x0ff.
  913. // 1) Set a high power mode.
  914. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  915. }
  916. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  917. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  918. // is being written into the EEPROM, so the update procedure will be triggered only once.
  919. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  920. if (lang_selected >= LANG_NUM){
  921. lcd_mylang();
  922. }
  923. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  924. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  925. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  926. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  927. // Show the message.
  928. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  929. lcd_update_enable(true);
  930. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  931. // Show the message.
  932. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  933. lcd_update_enable(true);
  934. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  935. // Show the message.
  936. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  937. lcd_update_enable(true);
  938. }
  939. // Store the currently running firmware into an eeprom,
  940. // so the next time the firmware gets updated, it will know from which version it has been updated.
  941. update_current_firmware_version_to_eeprom();
  942. }
  943. void trace();
  944. #define CHUNK_SIZE 64 // bytes
  945. #define SAFETY_MARGIN 1
  946. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  947. int chunkHead = 0;
  948. int serial_read_stream() {
  949. setTargetHotend(0, 0);
  950. setTargetBed(0);
  951. lcd_implementation_clear();
  952. lcd_printPGM(PSTR(" Upload in progress"));
  953. // first wait for how many bytes we will receive
  954. uint32_t bytesToReceive;
  955. // receive the four bytes
  956. char bytesToReceiveBuffer[4];
  957. for (int i=0; i<4; i++) {
  958. int data;
  959. while ((data = MYSERIAL.read()) == -1) {};
  960. bytesToReceiveBuffer[i] = data;
  961. }
  962. // make it a uint32
  963. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  964. // we're ready, notify the sender
  965. MYSERIAL.write('+');
  966. // lock in the routine
  967. uint32_t receivedBytes = 0;
  968. while (prusa_sd_card_upload) {
  969. int i;
  970. for (i=0; i<CHUNK_SIZE; i++) {
  971. int data;
  972. // check if we're not done
  973. if (receivedBytes == bytesToReceive) {
  974. break;
  975. }
  976. // read the next byte
  977. while ((data = MYSERIAL.read()) == -1) {};
  978. receivedBytes++;
  979. // save it to the chunk
  980. chunk[i] = data;
  981. }
  982. // write the chunk to SD
  983. card.write_command_no_newline(&chunk[0]);
  984. // notify the sender we're ready for more data
  985. MYSERIAL.write('+');
  986. // for safety
  987. manage_heater();
  988. // check if we're done
  989. if(receivedBytes == bytesToReceive) {
  990. trace(); // beep
  991. card.closefile();
  992. prusa_sd_card_upload = false;
  993. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  994. return 0;
  995. }
  996. }
  997. }
  998. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  999. // Before loop(), the setup() function is called by the main() routine.
  1000. void loop()
  1001. {
  1002. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1003. {
  1004. is_usb_printing = true;
  1005. usb_printing_counter--;
  1006. _usb_timer = millis();
  1007. }
  1008. if (usb_printing_counter == 0)
  1009. {
  1010. is_usb_printing = false;
  1011. }
  1012. if (prusa_sd_card_upload)
  1013. {
  1014. //we read byte-by byte
  1015. serial_read_stream();
  1016. } else
  1017. {
  1018. get_command();
  1019. #ifdef SDSUPPORT
  1020. card.checkautostart(false);
  1021. #endif
  1022. if(buflen)
  1023. {
  1024. #ifdef SDSUPPORT
  1025. if(card.saving)
  1026. {
  1027. // Saving a G-code file onto an SD-card is in progress.
  1028. // Saving starts with M28, saving until M29 is seen.
  1029. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1030. card.write_command(CMDBUFFER_CURRENT_STRING);
  1031. if(card.logging)
  1032. process_commands();
  1033. else
  1034. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1035. } else {
  1036. card.closefile();
  1037. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1038. }
  1039. } else {
  1040. process_commands();
  1041. }
  1042. #else
  1043. process_commands();
  1044. #endif //SDSUPPORT
  1045. if (! cmdbuffer_front_already_processed)
  1046. cmdqueue_pop_front();
  1047. cmdbuffer_front_already_processed = false;
  1048. }
  1049. }
  1050. //check heater every n milliseconds
  1051. manage_heater();
  1052. manage_inactivity();
  1053. checkHitEndstops();
  1054. lcd_update();
  1055. }
  1056. void get_command()
  1057. {
  1058. // Test and reserve space for the new command string.
  1059. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1060. return;
  1061. while (MYSERIAL.available() > 0) {
  1062. char serial_char = MYSERIAL.read();
  1063. TimeSent = millis();
  1064. TimeNow = millis();
  1065. if (serial_char < 0)
  1066. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1067. // and Marlin does not support such file names anyway.
  1068. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1069. // to a hang-up of the print process from an SD card.
  1070. continue;
  1071. if(serial_char == '\n' ||
  1072. serial_char == '\r' ||
  1073. (serial_char == ':' && comment_mode == false) ||
  1074. serial_count >= (MAX_CMD_SIZE - 1) )
  1075. {
  1076. if(!serial_count) { //if empty line
  1077. comment_mode = false; //for new command
  1078. return;
  1079. }
  1080. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1081. if(!comment_mode){
  1082. comment_mode = false; //for new command
  1083. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1084. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1085. {
  1086. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1087. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1088. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1089. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1090. // M110 - set current line number.
  1091. // Line numbers not sent in succession.
  1092. SERIAL_ERROR_START;
  1093. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1094. SERIAL_ERRORLN(gcode_LastN);
  1095. //Serial.println(gcode_N);
  1096. FlushSerialRequestResend();
  1097. serial_count = 0;
  1098. return;
  1099. }
  1100. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1101. {
  1102. byte checksum = 0;
  1103. char *p = cmdbuffer+bufindw+1;
  1104. while (p != strchr_pointer)
  1105. checksum = checksum^(*p++);
  1106. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1107. SERIAL_ERROR_START;
  1108. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1109. SERIAL_ERRORLN(gcode_LastN);
  1110. FlushSerialRequestResend();
  1111. serial_count = 0;
  1112. return;
  1113. }
  1114. // If no errors, remove the checksum and continue parsing.
  1115. *strchr_pointer = 0;
  1116. }
  1117. else
  1118. {
  1119. SERIAL_ERROR_START;
  1120. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1121. SERIAL_ERRORLN(gcode_LastN);
  1122. FlushSerialRequestResend();
  1123. serial_count = 0;
  1124. return;
  1125. }
  1126. gcode_LastN = gcode_N;
  1127. //if no errors, continue parsing
  1128. } // end of 'N' command
  1129. }
  1130. else // if we don't receive 'N' but still see '*'
  1131. {
  1132. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1133. {
  1134. SERIAL_ERROR_START;
  1135. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1136. SERIAL_ERRORLN(gcode_LastN);
  1137. serial_count = 0;
  1138. return;
  1139. }
  1140. } // end of '*' command
  1141. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1142. if (! IS_SD_PRINTING) {
  1143. usb_printing_counter = 10;
  1144. is_usb_printing = true;
  1145. }
  1146. if (Stopped == true) {
  1147. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1148. if (gcode >= 0 && gcode <= 3) {
  1149. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1150. LCD_MESSAGERPGM(MSG_STOPPED);
  1151. }
  1152. }
  1153. } // end of 'G' command
  1154. //If command was e-stop process now
  1155. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1156. kill();
  1157. // Store the current line into buffer, move to the next line.
  1158. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1159. #ifdef CMDBUFFER_DEBUG
  1160. SERIAL_ECHO_START;
  1161. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1162. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1163. SERIAL_ECHOLNPGM("");
  1164. #endif /* CMDBUFFER_DEBUG */
  1165. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1166. if (bufindw == sizeof(cmdbuffer))
  1167. bufindw = 0;
  1168. ++ buflen;
  1169. #ifdef CMDBUFFER_DEBUG
  1170. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1171. SERIAL_ECHO(buflen);
  1172. SERIAL_ECHOLNPGM("");
  1173. #endif /* CMDBUFFER_DEBUG */
  1174. } // end of 'not comment mode'
  1175. serial_count = 0; //clear buffer
  1176. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1177. // in the queue, as this function will reserve the memory.
  1178. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1179. return;
  1180. } // end of "end of line" processing
  1181. else {
  1182. // Not an "end of line" symbol. Store the new character into a buffer.
  1183. if(serial_char == ';') comment_mode = true;
  1184. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1185. }
  1186. } // end of serial line processing loop
  1187. if(farm_mode){
  1188. TimeNow = millis();
  1189. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1190. cmdbuffer[bufindw+serial_count+1] = 0;
  1191. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1192. if (bufindw == sizeof(cmdbuffer))
  1193. bufindw = 0;
  1194. ++ buflen;
  1195. serial_count = 0;
  1196. SERIAL_ECHOPGM("TIMEOUT:");
  1197. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1198. return;
  1199. }
  1200. }
  1201. #ifdef SDSUPPORT
  1202. if(!card.sdprinting || serial_count!=0){
  1203. // If there is a half filled buffer from serial line, wait until return before
  1204. // continuing with the serial line.
  1205. return;
  1206. }
  1207. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1208. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1209. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1210. static bool stop_buffering=false;
  1211. if(buflen==0) stop_buffering=false;
  1212. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1213. while( !card.eof() && !stop_buffering) {
  1214. int16_t n=card.get();
  1215. char serial_char = (char)n;
  1216. if(serial_char == '\n' ||
  1217. serial_char == '\r' ||
  1218. (serial_char == '#' && comment_mode == false) ||
  1219. (serial_char == ':' && comment_mode == false) ||
  1220. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1221. {
  1222. if(card.eof()){
  1223. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1224. stoptime=millis();
  1225. char time[30];
  1226. unsigned long t=(stoptime-starttime)/1000;
  1227. int hours, minutes;
  1228. minutes=(t/60)%60;
  1229. hours=t/60/60;
  1230. save_statistics(total_filament_used, t);
  1231. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1232. SERIAL_ECHO_START;
  1233. SERIAL_ECHOLN(time);
  1234. lcd_setstatus(time);
  1235. card.printingHasFinished();
  1236. card.checkautostart(true);
  1237. if (farm_mode)
  1238. {
  1239. prusa_statistics(6);
  1240. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1241. }
  1242. }
  1243. if(serial_char=='#')
  1244. stop_buffering=true;
  1245. if(!serial_count)
  1246. {
  1247. comment_mode = false; //for new command
  1248. return; //if empty line
  1249. }
  1250. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1251. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1252. ++ buflen;
  1253. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1254. if (bufindw == sizeof(cmdbuffer))
  1255. bufindw = 0;
  1256. comment_mode = false; //for new command
  1257. serial_count = 0; //clear buffer
  1258. // The following line will reserve buffer space if available.
  1259. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1260. return;
  1261. }
  1262. else
  1263. {
  1264. if(serial_char == ';') comment_mode = true;
  1265. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1266. }
  1267. }
  1268. #endif //SDSUPPORT
  1269. }
  1270. // Return True if a character was found
  1271. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1272. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1273. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1274. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1275. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1276. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1277. #define DEFINE_PGM_READ_ANY(type, reader) \
  1278. static inline type pgm_read_any(const type *p) \
  1279. { return pgm_read_##reader##_near(p); }
  1280. DEFINE_PGM_READ_ANY(float, float);
  1281. DEFINE_PGM_READ_ANY(signed char, byte);
  1282. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1283. static const PROGMEM type array##_P[3] = \
  1284. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1285. static inline type array(int axis) \
  1286. { return pgm_read_any(&array##_P[axis]); } \
  1287. type array##_ext(int axis) \
  1288. { return pgm_read_any(&array##_P[axis]); }
  1289. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1290. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1291. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1292. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1293. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1294. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1295. static void axis_is_at_home(int axis) {
  1296. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1297. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1298. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1299. }
  1300. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1301. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1302. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1303. saved_feedrate = feedrate;
  1304. saved_feedmultiply = feedmultiply;
  1305. feedmultiply = 100;
  1306. previous_millis_cmd = millis();
  1307. enable_endstops(enable_endstops_now);
  1308. }
  1309. static void clean_up_after_endstop_move() {
  1310. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1311. enable_endstops(false);
  1312. #endif
  1313. feedrate = saved_feedrate;
  1314. feedmultiply = saved_feedmultiply;
  1315. previous_millis_cmd = millis();
  1316. }
  1317. #ifdef ENABLE_AUTO_BED_LEVELING
  1318. #ifdef AUTO_BED_LEVELING_GRID
  1319. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1320. {
  1321. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1322. planeNormal.debug("planeNormal");
  1323. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1324. //bedLevel.debug("bedLevel");
  1325. //plan_bed_level_matrix.debug("bed level before");
  1326. //vector_3 uncorrected_position = plan_get_position_mm();
  1327. //uncorrected_position.debug("position before");
  1328. vector_3 corrected_position = plan_get_position();
  1329. // corrected_position.debug("position after");
  1330. current_position[X_AXIS] = corrected_position.x;
  1331. current_position[Y_AXIS] = corrected_position.y;
  1332. current_position[Z_AXIS] = corrected_position.z;
  1333. // put the bed at 0 so we don't go below it.
  1334. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1335. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1336. }
  1337. #else // not AUTO_BED_LEVELING_GRID
  1338. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1339. plan_bed_level_matrix.set_to_identity();
  1340. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1341. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1342. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1343. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1344. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1345. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1346. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1347. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1348. vector_3 corrected_position = plan_get_position();
  1349. current_position[X_AXIS] = corrected_position.x;
  1350. current_position[Y_AXIS] = corrected_position.y;
  1351. current_position[Z_AXIS] = corrected_position.z;
  1352. // put the bed at 0 so we don't go below it.
  1353. current_position[Z_AXIS] = zprobe_zoffset;
  1354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1355. }
  1356. #endif // AUTO_BED_LEVELING_GRID
  1357. static void run_z_probe() {
  1358. plan_bed_level_matrix.set_to_identity();
  1359. feedrate = homing_feedrate[Z_AXIS];
  1360. // move down until you find the bed
  1361. float zPosition = -10;
  1362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1363. st_synchronize();
  1364. // we have to let the planner know where we are right now as it is not where we said to go.
  1365. zPosition = st_get_position_mm(Z_AXIS);
  1366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1367. // move up the retract distance
  1368. zPosition += home_retract_mm(Z_AXIS);
  1369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1370. st_synchronize();
  1371. // move back down slowly to find bed
  1372. feedrate = homing_feedrate[Z_AXIS]/4;
  1373. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1375. st_synchronize();
  1376. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1377. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1379. }
  1380. static void do_blocking_move_to(float x, float y, float z) {
  1381. float oldFeedRate = feedrate;
  1382. feedrate = homing_feedrate[Z_AXIS];
  1383. current_position[Z_AXIS] = z;
  1384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1385. st_synchronize();
  1386. feedrate = XY_TRAVEL_SPEED;
  1387. current_position[X_AXIS] = x;
  1388. current_position[Y_AXIS] = y;
  1389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1390. st_synchronize();
  1391. feedrate = oldFeedRate;
  1392. }
  1393. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1394. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1395. }
  1396. /// Probe bed height at position (x,y), returns the measured z value
  1397. static float probe_pt(float x, float y, float z_before) {
  1398. // move to right place
  1399. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1400. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1401. run_z_probe();
  1402. float measured_z = current_position[Z_AXIS];
  1403. SERIAL_PROTOCOLRPGM(MSG_BED);
  1404. SERIAL_PROTOCOLPGM(" x: ");
  1405. SERIAL_PROTOCOL(x);
  1406. SERIAL_PROTOCOLPGM(" y: ");
  1407. SERIAL_PROTOCOL(y);
  1408. SERIAL_PROTOCOLPGM(" z: ");
  1409. SERIAL_PROTOCOL(measured_z);
  1410. SERIAL_PROTOCOLPGM("\n");
  1411. return measured_z;
  1412. }
  1413. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1414. void homeaxis(int axis) {
  1415. #define HOMEAXIS_DO(LETTER) \
  1416. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1417. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1418. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1419. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1420. 0) {
  1421. int axis_home_dir = home_dir(axis);
  1422. current_position[axis] = 0;
  1423. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1424. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1425. feedrate = homing_feedrate[axis];
  1426. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1427. st_synchronize();
  1428. current_position[axis] = 0;
  1429. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1430. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1431. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1432. st_synchronize();
  1433. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1434. feedrate = homing_feedrate[axis]/2 ;
  1435. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1436. st_synchronize();
  1437. axis_is_at_home(axis);
  1438. destination[axis] = current_position[axis];
  1439. feedrate = 0.0;
  1440. endstops_hit_on_purpose();
  1441. axis_known_position[axis] = true;
  1442. }
  1443. }
  1444. void home_xy()
  1445. {
  1446. set_destination_to_current();
  1447. homeaxis(X_AXIS);
  1448. homeaxis(Y_AXIS);
  1449. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1450. endstops_hit_on_purpose();
  1451. }
  1452. void refresh_cmd_timeout(void)
  1453. {
  1454. previous_millis_cmd = millis();
  1455. }
  1456. #ifdef FWRETRACT
  1457. void retract(bool retracting, bool swapretract = false) {
  1458. if(retracting && !retracted[active_extruder]) {
  1459. destination[X_AXIS]=current_position[X_AXIS];
  1460. destination[Y_AXIS]=current_position[Y_AXIS];
  1461. destination[Z_AXIS]=current_position[Z_AXIS];
  1462. destination[E_AXIS]=current_position[E_AXIS];
  1463. if (swapretract) {
  1464. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1465. } else {
  1466. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1467. }
  1468. plan_set_e_position(current_position[E_AXIS]);
  1469. float oldFeedrate = feedrate;
  1470. feedrate=retract_feedrate*60;
  1471. retracted[active_extruder]=true;
  1472. prepare_move();
  1473. current_position[Z_AXIS]-=retract_zlift;
  1474. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1475. prepare_move();
  1476. feedrate = oldFeedrate;
  1477. } else if(!retracting && retracted[active_extruder]) {
  1478. destination[X_AXIS]=current_position[X_AXIS];
  1479. destination[Y_AXIS]=current_position[Y_AXIS];
  1480. destination[Z_AXIS]=current_position[Z_AXIS];
  1481. destination[E_AXIS]=current_position[E_AXIS];
  1482. current_position[Z_AXIS]+=retract_zlift;
  1483. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1484. //prepare_move();
  1485. if (swapretract) {
  1486. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1487. } else {
  1488. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1489. }
  1490. plan_set_e_position(current_position[E_AXIS]);
  1491. float oldFeedrate = feedrate;
  1492. feedrate=retract_recover_feedrate*60;
  1493. retracted[active_extruder]=false;
  1494. prepare_move();
  1495. feedrate = oldFeedrate;
  1496. }
  1497. } //retract
  1498. #endif //FWRETRACT
  1499. void trace() {
  1500. tone(BEEPER, 440);
  1501. delay(25);
  1502. noTone(BEEPER);
  1503. delay(20);
  1504. }
  1505. void process_commands()
  1506. {
  1507. #ifdef FILAMENT_RUNOUT_SUPPORT
  1508. SET_INPUT(FR_SENS);
  1509. #endif
  1510. #ifdef CMDBUFFER_DEBUG
  1511. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1512. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1513. SERIAL_ECHOLNPGM("");
  1514. SERIAL_ECHOPGM("In cmdqueue: ");
  1515. SERIAL_ECHO(buflen);
  1516. SERIAL_ECHOLNPGM("");
  1517. #endif /* CMDBUFFER_DEBUG */
  1518. unsigned long codenum; //throw away variable
  1519. char *starpos = NULL;
  1520. #ifdef ENABLE_AUTO_BED_LEVELING
  1521. float x_tmp, y_tmp, z_tmp, real_z;
  1522. #endif
  1523. // PRUSA GCODES
  1524. if(code_seen("PRUSA")){
  1525. if (code_seen("fv")) {
  1526. // get file version
  1527. #ifdef SDSUPPORT
  1528. card.openFile(strchr_pointer + 3,true);
  1529. while (true) {
  1530. uint16_t readByte = card.get();
  1531. MYSERIAL.write(readByte);
  1532. if (readByte=='\n') {
  1533. break;
  1534. }
  1535. }
  1536. card.closefile();
  1537. #endif // SDSUPPORT
  1538. } else if (code_seen("M28")) {
  1539. trace();
  1540. prusa_sd_card_upload = true;
  1541. card.openFile(strchr_pointer+4,false);
  1542. } else if(code_seen("Fir")){
  1543. SERIAL_PROTOCOLLN(FW_version);
  1544. } else if(code_seen("Rev")){
  1545. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1546. } else if(code_seen("Lang")) {
  1547. lcd_force_language_selection();
  1548. } else if(code_seen("Lz")) {
  1549. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1550. } else if (code_seen("SERIAL LOW")) {
  1551. MYSERIAL.println("SERIAL LOW");
  1552. MYSERIAL.begin(BAUDRATE);
  1553. return;
  1554. } else if (code_seen("SERIAL HIGH")) {
  1555. MYSERIAL.println("SERIAL HIGH");
  1556. MYSERIAL.begin(1152000);
  1557. return;
  1558. } else if(code_seen("Beat")) {
  1559. // Kick farm link timer
  1560. kicktime = millis();
  1561. }
  1562. //else if (code_seen('Cal')) {
  1563. // lcd_calibration();
  1564. // }
  1565. }
  1566. else if (code_seen('^')) {
  1567. // nothing, this is a version line
  1568. } else if(code_seen('G'))
  1569. {
  1570. switch((int)code_value())
  1571. {
  1572. case 0: // G0 -> G1
  1573. case 1: // G1
  1574. if(Stopped == false) {
  1575. #ifdef FILAMENT_RUNOUT_SUPPORT
  1576. if(READ(FR_SENS)){
  1577. feedmultiplyBckp=feedmultiply;
  1578. float target[4];
  1579. float lastpos[4];
  1580. target[X_AXIS]=current_position[X_AXIS];
  1581. target[Y_AXIS]=current_position[Y_AXIS];
  1582. target[Z_AXIS]=current_position[Z_AXIS];
  1583. target[E_AXIS]=current_position[E_AXIS];
  1584. lastpos[X_AXIS]=current_position[X_AXIS];
  1585. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1586. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1587. lastpos[E_AXIS]=current_position[E_AXIS];
  1588. //retract by E
  1589. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1591. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1593. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1594. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1595. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1596. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1598. //finish moves
  1599. st_synchronize();
  1600. //disable extruder steppers so filament can be removed
  1601. disable_e0();
  1602. disable_e1();
  1603. disable_e2();
  1604. delay(100);
  1605. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1606. uint8_t cnt=0;
  1607. int counterBeep = 0;
  1608. lcd_wait_interact();
  1609. while(!lcd_clicked()){
  1610. cnt++;
  1611. manage_heater();
  1612. manage_inactivity(true);
  1613. //lcd_update();
  1614. if(cnt==0)
  1615. {
  1616. #if BEEPER > 0
  1617. if (counterBeep== 500){
  1618. counterBeep = 0;
  1619. }
  1620. SET_OUTPUT(BEEPER);
  1621. if (counterBeep== 0){
  1622. WRITE(BEEPER,HIGH);
  1623. }
  1624. if (counterBeep== 20){
  1625. WRITE(BEEPER,LOW);
  1626. }
  1627. counterBeep++;
  1628. #else
  1629. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1630. lcd_buzz(1000/6,100);
  1631. #else
  1632. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1633. #endif
  1634. #endif
  1635. }
  1636. }
  1637. WRITE(BEEPER,LOW);
  1638. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1639. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1640. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1641. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1642. lcd_change_fil_state = 0;
  1643. lcd_loading_filament();
  1644. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1645. lcd_change_fil_state = 0;
  1646. lcd_alright();
  1647. switch(lcd_change_fil_state){
  1648. case 2:
  1649. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1651. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1653. lcd_loading_filament();
  1654. break;
  1655. case 3:
  1656. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1658. lcd_loading_color();
  1659. break;
  1660. default:
  1661. lcd_change_success();
  1662. break;
  1663. }
  1664. }
  1665. target[E_AXIS]+= 5;
  1666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1667. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1668. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1669. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1670. //plan_set_e_position(current_position[E_AXIS]);
  1671. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1672. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1673. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1674. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1675. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1676. plan_set_e_position(lastpos[E_AXIS]);
  1677. feedmultiply=feedmultiplyBckp;
  1678. char cmd[9];
  1679. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1680. enquecommand(cmd);
  1681. }
  1682. #endif
  1683. get_coordinates(); // For X Y Z E F
  1684. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1685. #ifdef FWRETRACT
  1686. if(autoretract_enabled)
  1687. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1688. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1689. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1690. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1691. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1692. retract(!retracted);
  1693. return;
  1694. }
  1695. }
  1696. #endif //FWRETRACT
  1697. prepare_move();
  1698. //ClearToSend();
  1699. }
  1700. break;
  1701. case 2: // G2 - CW ARC
  1702. if(Stopped == false) {
  1703. get_arc_coordinates();
  1704. prepare_arc_move(true);
  1705. }
  1706. break;
  1707. case 3: // G3 - CCW ARC
  1708. if(Stopped == false) {
  1709. get_arc_coordinates();
  1710. prepare_arc_move(false);
  1711. }
  1712. break;
  1713. case 4: // G4 dwell
  1714. LCD_MESSAGERPGM(MSG_DWELL);
  1715. codenum = 0;
  1716. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1717. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1718. st_synchronize();
  1719. codenum += millis(); // keep track of when we started waiting
  1720. previous_millis_cmd = millis();
  1721. while(millis() < codenum) {
  1722. manage_heater();
  1723. manage_inactivity();
  1724. lcd_update();
  1725. }
  1726. break;
  1727. #ifdef FWRETRACT
  1728. case 10: // G10 retract
  1729. #if EXTRUDERS > 1
  1730. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1731. retract(true,retracted_swap[active_extruder]);
  1732. #else
  1733. retract(true);
  1734. #endif
  1735. break;
  1736. case 11: // G11 retract_recover
  1737. #if EXTRUDERS > 1
  1738. retract(false,retracted_swap[active_extruder]);
  1739. #else
  1740. retract(false);
  1741. #endif
  1742. break;
  1743. #endif //FWRETRACT
  1744. case 28: //G28 Home all Axis one at a time
  1745. #ifdef ENABLE_AUTO_BED_LEVELING
  1746. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1747. #endif //ENABLE_AUTO_BED_LEVELING
  1748. // For mesh bed leveling deactivate the matrix temporarily
  1749. #ifdef MESH_BED_LEVELING
  1750. mbl.active = 0;
  1751. #endif
  1752. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1753. // the planner will not perform any adjustments in the XY plane.
  1754. // Wait for the motors to stop and update the current position with the absolute values.
  1755. world2machine_revert_to_uncorrected();
  1756. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1757. // consumed during the first movements following this statement.
  1758. babystep_undo();
  1759. saved_feedrate = feedrate;
  1760. saved_feedmultiply = feedmultiply;
  1761. feedmultiply = 100;
  1762. previous_millis_cmd = millis();
  1763. enable_endstops(true);
  1764. for(int8_t i=0; i < NUM_AXIS; i++)
  1765. destination[i] = current_position[i];
  1766. feedrate = 0.0;
  1767. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1768. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1769. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1770. homeaxis(Z_AXIS);
  1771. }
  1772. #endif
  1773. #ifdef QUICK_HOME
  1774. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1775. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1776. {
  1777. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1778. int x_axis_home_dir = home_dir(X_AXIS);
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1781. feedrate = homing_feedrate[X_AXIS];
  1782. if(homing_feedrate[Y_AXIS]<feedrate)
  1783. feedrate = homing_feedrate[Y_AXIS];
  1784. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1785. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1786. } else {
  1787. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1788. }
  1789. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1790. st_synchronize();
  1791. axis_is_at_home(X_AXIS);
  1792. axis_is_at_home(Y_AXIS);
  1793. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1794. destination[X_AXIS] = current_position[X_AXIS];
  1795. destination[Y_AXIS] = current_position[Y_AXIS];
  1796. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1797. feedrate = 0.0;
  1798. st_synchronize();
  1799. endstops_hit_on_purpose();
  1800. current_position[X_AXIS] = destination[X_AXIS];
  1801. current_position[Y_AXIS] = destination[Y_AXIS];
  1802. current_position[Z_AXIS] = destination[Z_AXIS];
  1803. }
  1804. #endif /* QUICK_HOME */
  1805. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1806. homeaxis(X_AXIS);
  1807. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1808. homeaxis(Y_AXIS);
  1809. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1810. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1811. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1812. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1813. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1814. #ifndef Z_SAFE_HOMING
  1815. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1816. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1817. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1818. feedrate = max_feedrate[Z_AXIS];
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1820. st_synchronize();
  1821. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1822. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1823. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1824. {
  1825. homeaxis(X_AXIS);
  1826. homeaxis(Y_AXIS);
  1827. }
  1828. // 1st mesh bed leveling measurement point, corrected.
  1829. world2machine_initialize();
  1830. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1831. world2machine_reset();
  1832. if (destination[Y_AXIS] < Y_MIN_POS)
  1833. destination[Y_AXIS] = Y_MIN_POS;
  1834. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1835. feedrate = homing_feedrate[Z_AXIS]/10;
  1836. current_position[Z_AXIS] = 0;
  1837. enable_endstops(false);
  1838. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1839. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1840. st_synchronize();
  1841. current_position[X_AXIS] = destination[X_AXIS];
  1842. current_position[Y_AXIS] = destination[Y_AXIS];
  1843. enable_endstops(true);
  1844. endstops_hit_on_purpose();
  1845. homeaxis(Z_AXIS);
  1846. #else // MESH_BED_LEVELING
  1847. homeaxis(Z_AXIS);
  1848. #endif // MESH_BED_LEVELING
  1849. }
  1850. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1851. if(home_all_axis) {
  1852. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1853. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1854. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1855. feedrate = XY_TRAVEL_SPEED/60;
  1856. current_position[Z_AXIS] = 0;
  1857. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1858. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1859. st_synchronize();
  1860. current_position[X_AXIS] = destination[X_AXIS];
  1861. current_position[Y_AXIS] = destination[Y_AXIS];
  1862. homeaxis(Z_AXIS);
  1863. }
  1864. // Let's see if X and Y are homed and probe is inside bed area.
  1865. if(code_seen(axis_codes[Z_AXIS])) {
  1866. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1867. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1868. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1869. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1870. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1871. current_position[Z_AXIS] = 0;
  1872. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1873. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1874. feedrate = max_feedrate[Z_AXIS];
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1876. st_synchronize();
  1877. homeaxis(Z_AXIS);
  1878. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1879. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1880. SERIAL_ECHO_START;
  1881. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1882. } else {
  1883. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1884. SERIAL_ECHO_START;
  1885. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1886. }
  1887. }
  1888. #endif // Z_SAFE_HOMING
  1889. #endif // Z_HOME_DIR < 0
  1890. if(code_seen(axis_codes[Z_AXIS])) {
  1891. if(code_value_long() != 0) {
  1892. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1893. }
  1894. }
  1895. #ifdef ENABLE_AUTO_BED_LEVELING
  1896. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1897. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1898. }
  1899. #endif
  1900. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1901. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1902. enable_endstops(false);
  1903. #endif
  1904. feedrate = saved_feedrate;
  1905. feedmultiply = saved_feedmultiply;
  1906. previous_millis_cmd = millis();
  1907. endstops_hit_on_purpose();
  1908. #ifndef MESH_BED_LEVELING
  1909. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1910. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1911. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1912. lcd_adjust_z();
  1913. #endif
  1914. // Load the machine correction matrix
  1915. world2machine_initialize();
  1916. // and correct the current_position to match the transformed coordinate system.
  1917. world2machine_update_current();
  1918. #ifdef MESH_BED_LEVELING
  1919. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1920. {
  1921. }
  1922. else
  1923. {
  1924. st_synchronize();
  1925. // Push the commands to the front of the message queue in the reverse order!
  1926. // There shall be always enough space reserved for these commands.
  1927. // enquecommand_front_P((PSTR("G80")));
  1928. goto case_G80;
  1929. }
  1930. #endif
  1931. if (farm_mode) { prusa_statistics(20); };
  1932. break;
  1933. #ifdef ENABLE_AUTO_BED_LEVELING
  1934. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1935. {
  1936. #if Z_MIN_PIN == -1
  1937. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1938. #endif
  1939. // Prevent user from running a G29 without first homing in X and Y
  1940. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1941. {
  1942. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1943. SERIAL_ECHO_START;
  1944. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1945. break; // abort G29, since we don't know where we are
  1946. }
  1947. st_synchronize();
  1948. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1949. //vector_3 corrected_position = plan_get_position_mm();
  1950. //corrected_position.debug("position before G29");
  1951. plan_bed_level_matrix.set_to_identity();
  1952. vector_3 uncorrected_position = plan_get_position();
  1953. //uncorrected_position.debug("position durring G29");
  1954. current_position[X_AXIS] = uncorrected_position.x;
  1955. current_position[Y_AXIS] = uncorrected_position.y;
  1956. current_position[Z_AXIS] = uncorrected_position.z;
  1957. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1958. setup_for_endstop_move();
  1959. feedrate = homing_feedrate[Z_AXIS];
  1960. #ifdef AUTO_BED_LEVELING_GRID
  1961. // probe at the points of a lattice grid
  1962. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1963. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1964. // solve the plane equation ax + by + d = z
  1965. // A is the matrix with rows [x y 1] for all the probed points
  1966. // B is the vector of the Z positions
  1967. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1968. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1969. // "A" matrix of the linear system of equations
  1970. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1971. // "B" vector of Z points
  1972. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1973. int probePointCounter = 0;
  1974. bool zig = true;
  1975. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1976. {
  1977. int xProbe, xInc;
  1978. if (zig)
  1979. {
  1980. xProbe = LEFT_PROBE_BED_POSITION;
  1981. //xEnd = RIGHT_PROBE_BED_POSITION;
  1982. xInc = xGridSpacing;
  1983. zig = false;
  1984. } else // zag
  1985. {
  1986. xProbe = RIGHT_PROBE_BED_POSITION;
  1987. //xEnd = LEFT_PROBE_BED_POSITION;
  1988. xInc = -xGridSpacing;
  1989. zig = true;
  1990. }
  1991. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1992. {
  1993. float z_before;
  1994. if (probePointCounter == 0)
  1995. {
  1996. // raise before probing
  1997. z_before = Z_RAISE_BEFORE_PROBING;
  1998. } else
  1999. {
  2000. // raise extruder
  2001. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2002. }
  2003. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2004. eqnBVector[probePointCounter] = measured_z;
  2005. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2006. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2007. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2008. probePointCounter++;
  2009. xProbe += xInc;
  2010. }
  2011. }
  2012. clean_up_after_endstop_move();
  2013. // solve lsq problem
  2014. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2015. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2016. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2017. SERIAL_PROTOCOLPGM(" b: ");
  2018. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2019. SERIAL_PROTOCOLPGM(" d: ");
  2020. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2021. set_bed_level_equation_lsq(plane_equation_coefficients);
  2022. free(plane_equation_coefficients);
  2023. #else // AUTO_BED_LEVELING_GRID not defined
  2024. // Probe at 3 arbitrary points
  2025. // probe 1
  2026. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2027. // probe 2
  2028. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2029. // probe 3
  2030. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2031. clean_up_after_endstop_move();
  2032. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2033. #endif // AUTO_BED_LEVELING_GRID
  2034. st_synchronize();
  2035. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2036. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2037. // When the bed is uneven, this height must be corrected.
  2038. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2039. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2040. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2041. z_tmp = current_position[Z_AXIS];
  2042. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2043. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2044. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2045. }
  2046. break;
  2047. #ifndef Z_PROBE_SLED
  2048. case 30: // G30 Single Z Probe
  2049. {
  2050. st_synchronize();
  2051. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2052. setup_for_endstop_move();
  2053. feedrate = homing_feedrate[Z_AXIS];
  2054. run_z_probe();
  2055. SERIAL_PROTOCOLPGM(MSG_BED);
  2056. SERIAL_PROTOCOLPGM(" X: ");
  2057. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2058. SERIAL_PROTOCOLPGM(" Y: ");
  2059. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2060. SERIAL_PROTOCOLPGM(" Z: ");
  2061. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2062. SERIAL_PROTOCOLPGM("\n");
  2063. clean_up_after_endstop_move();
  2064. }
  2065. break;
  2066. #else
  2067. case 31: // dock the sled
  2068. dock_sled(true);
  2069. break;
  2070. case 32: // undock the sled
  2071. dock_sled(false);
  2072. break;
  2073. #endif // Z_PROBE_SLED
  2074. #endif // ENABLE_AUTO_BED_LEVELING
  2075. #ifdef MESH_BED_LEVELING
  2076. case 30: // G30 Single Z Probe
  2077. {
  2078. st_synchronize();
  2079. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2080. setup_for_endstop_move();
  2081. feedrate = homing_feedrate[Z_AXIS];
  2082. find_bed_induction_sensor_point_z(-10.f, 3);
  2083. SERIAL_PROTOCOLRPGM(MSG_BED);
  2084. SERIAL_PROTOCOLPGM(" X: ");
  2085. MYSERIAL.print(current_position[X_AXIS], 5);
  2086. SERIAL_PROTOCOLPGM(" Y: ");
  2087. MYSERIAL.print(current_position[Y_AXIS], 5);
  2088. SERIAL_PROTOCOLPGM(" Z: ");
  2089. MYSERIAL.print(current_position[Z_AXIS], 5);
  2090. SERIAL_PROTOCOLPGM("\n");
  2091. clean_up_after_endstop_move();
  2092. }
  2093. break;
  2094. /**
  2095. * G80: Mesh-based Z probe, probes a grid and produces a
  2096. * mesh to compensate for variable bed height
  2097. *
  2098. * The S0 report the points as below
  2099. *
  2100. * +----> X-axis
  2101. * |
  2102. * |
  2103. * v Y-axis
  2104. *
  2105. */
  2106. case 80:
  2107. case_G80:
  2108. {
  2109. // Firstly check if we know where we are
  2110. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2111. // We don't know where we are! HOME!
  2112. // Push the commands to the front of the message queue in the reverse order!
  2113. // There shall be always enough space reserved for these commands.
  2114. repeatcommand_front(); // repeat G80 with all its parameters
  2115. enquecommand_front_P((PSTR("G28 W0")));
  2116. break;
  2117. }
  2118. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2119. bool custom_message_old = custom_message;
  2120. unsigned int custom_message_type_old = custom_message_type;
  2121. unsigned int custom_message_state_old = custom_message_state;
  2122. custom_message = true;
  2123. custom_message_type = 1;
  2124. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2125. lcd_update(1);
  2126. mbl.reset();
  2127. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2128. // consumed during the first movements following this statement.
  2129. babystep_undo();
  2130. // Cycle through all points and probe them
  2131. // First move up. During this first movement, the babystepping will be reverted.
  2132. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2134. // The move to the first calibration point.
  2135. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2136. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2137. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2138. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2140. // Wait until the move is finished.
  2141. st_synchronize();
  2142. int mesh_point = 0;
  2143. int ix = 0;
  2144. int iy = 0;
  2145. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2146. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2147. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2148. bool has_z = is_bed_z_jitter_data_valid();
  2149. setup_for_endstop_move(false);
  2150. const char *kill_message = NULL;
  2151. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2152. // Get coords of a measuring point.
  2153. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2154. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2155. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2156. float z0 = 0.f;
  2157. if (has_z && mesh_point > 0) {
  2158. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2159. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2160. #if 0
  2161. SERIAL_ECHOPGM("Bed leveling, point: ");
  2162. MYSERIAL.print(mesh_point);
  2163. SERIAL_ECHOPGM(", calibration z: ");
  2164. MYSERIAL.print(z0, 5);
  2165. SERIAL_ECHOLNPGM("");
  2166. #endif
  2167. }
  2168. // Move Z up to MESH_HOME_Z_SEARCH.
  2169. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2171. st_synchronize();
  2172. // Move to XY position of the sensor point.
  2173. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2174. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2175. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2177. st_synchronize();
  2178. // Go down until endstop is hit
  2179. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2180. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2181. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2182. break;
  2183. }
  2184. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2185. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2186. break;
  2187. }
  2188. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2189. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2190. break;
  2191. }
  2192. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2193. custom_message_state--;
  2194. mesh_point++;
  2195. lcd_update(1);
  2196. }
  2197. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2199. st_synchronize();
  2200. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2201. kill(kill_message);
  2202. }
  2203. clean_up_after_endstop_move();
  2204. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2205. babystep_apply();
  2206. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2207. for (uint8_t i = 0; i < 4; ++ i) {
  2208. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2209. long correction = 0;
  2210. if (code_seen(codes[i]))
  2211. correction = code_value_long();
  2212. else if (eeprom_bed_correction_valid) {
  2213. unsigned char *addr = (i < 2) ?
  2214. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2215. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2216. correction = eeprom_read_int8(addr);
  2217. }
  2218. if (correction == 0)
  2219. continue;
  2220. float offset = float(correction) * 0.001f;
  2221. if (fabs(offset) > 0.101f) {
  2222. SERIAL_ERROR_START;
  2223. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2224. SERIAL_ECHO(offset);
  2225. SERIAL_ECHOLNPGM(" microns");
  2226. } else {
  2227. switch (i) {
  2228. case 0:
  2229. for (uint8_t row = 0; row < 3; ++ row) {
  2230. mbl.z_values[row][1] += 0.5f * offset;
  2231. mbl.z_values[row][0] += offset;
  2232. }
  2233. break;
  2234. case 1:
  2235. for (uint8_t row = 0; row < 3; ++ row) {
  2236. mbl.z_values[row][1] += 0.5f * offset;
  2237. mbl.z_values[row][2] += offset;
  2238. }
  2239. break;
  2240. case 2:
  2241. for (uint8_t col = 0; col < 3; ++ col) {
  2242. mbl.z_values[1][col] += 0.5f * offset;
  2243. mbl.z_values[0][col] += offset;
  2244. }
  2245. break;
  2246. case 3:
  2247. for (uint8_t col = 0; col < 3; ++ col) {
  2248. mbl.z_values[1][col] += 0.5f * offset;
  2249. mbl.z_values[2][col] += offset;
  2250. }
  2251. break;
  2252. }
  2253. }
  2254. }
  2255. mbl.upsample_3x3();
  2256. mbl.active = 1;
  2257. go_home_with_z_lift();
  2258. // Restore custom message state
  2259. custom_message = custom_message_old;
  2260. custom_message_type = custom_message_type_old;
  2261. custom_message_state = custom_message_state_old;
  2262. lcd_update(1);
  2263. }
  2264. break;
  2265. /**
  2266. * G81: Print mesh bed leveling status and bed profile if activated
  2267. */
  2268. case 81:
  2269. if (mbl.active) {
  2270. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2271. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2272. SERIAL_PROTOCOLPGM(",");
  2273. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2274. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2275. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2276. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2277. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2278. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2279. SERIAL_PROTOCOLPGM(" ");
  2280. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2281. }
  2282. SERIAL_PROTOCOLPGM("\n");
  2283. }
  2284. }
  2285. else
  2286. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2287. break;
  2288. #if 0
  2289. /**
  2290. * G82: Single Z probe at current location
  2291. *
  2292. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2293. *
  2294. */
  2295. case 82:
  2296. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2297. setup_for_endstop_move();
  2298. find_bed_induction_sensor_point_z();
  2299. clean_up_after_endstop_move();
  2300. SERIAL_PROTOCOLPGM("Bed found at: ");
  2301. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2302. SERIAL_PROTOCOLPGM("\n");
  2303. break;
  2304. /**
  2305. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2306. */
  2307. case 83:
  2308. {
  2309. int babystepz = code_seen('S') ? code_value() : 0;
  2310. int BabyPosition = code_seen('P') ? code_value() : 0;
  2311. if (babystepz != 0) {
  2312. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2313. // Is the axis indexed starting with zero or one?
  2314. if (BabyPosition > 4) {
  2315. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2316. }else{
  2317. // Save it to the eeprom
  2318. babystepLoadZ = babystepz;
  2319. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2320. // adjust the Z
  2321. babystepsTodoZadd(babystepLoadZ);
  2322. }
  2323. }
  2324. }
  2325. break;
  2326. /**
  2327. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2328. */
  2329. case 84:
  2330. babystepsTodoZsubtract(babystepLoadZ);
  2331. // babystepLoadZ = 0;
  2332. break;
  2333. /**
  2334. * G85: Prusa3D specific: Pick best babystep
  2335. */
  2336. case 85:
  2337. lcd_pick_babystep();
  2338. break;
  2339. #endif
  2340. /**
  2341. * G86: Prusa3D specific: Disable babystep correction after home.
  2342. * This G-code will be performed at the start of a calibration script.
  2343. */
  2344. case 86:
  2345. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2346. break;
  2347. /**
  2348. * G87: Prusa3D specific: Enable babystep correction after home
  2349. * This G-code will be performed at the end of a calibration script.
  2350. */
  2351. case 87:
  2352. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2353. break;
  2354. /**
  2355. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2356. */
  2357. case 88:
  2358. break;
  2359. #endif // ENABLE_MESH_BED_LEVELING
  2360. case 90: // G90
  2361. relative_mode = false;
  2362. break;
  2363. case 91: // G91
  2364. relative_mode = true;
  2365. break;
  2366. case 92: // G92
  2367. if(!code_seen(axis_codes[E_AXIS]))
  2368. st_synchronize();
  2369. for(int8_t i=0; i < NUM_AXIS; i++) {
  2370. if(code_seen(axis_codes[i])) {
  2371. if(i == E_AXIS) {
  2372. current_position[i] = code_value();
  2373. plan_set_e_position(current_position[E_AXIS]);
  2374. }
  2375. else {
  2376. current_position[i] = code_value()+add_homing[i];
  2377. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2378. }
  2379. }
  2380. }
  2381. break;
  2382. case 98:
  2383. farm_no = 21;
  2384. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2385. farm_mode = true;
  2386. break;
  2387. case 99:
  2388. farm_no = 0;
  2389. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2390. farm_mode = false;
  2391. break;
  2392. }
  2393. } // end if(code_seen('G'))
  2394. else if(code_seen('M'))
  2395. {
  2396. switch( (int)code_value() )
  2397. {
  2398. #ifdef ULTIPANEL
  2399. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2400. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2401. {
  2402. char *src = strchr_pointer + 2;
  2403. codenum = 0;
  2404. bool hasP = false, hasS = false;
  2405. if (code_seen('P')) {
  2406. codenum = code_value(); // milliseconds to wait
  2407. hasP = codenum > 0;
  2408. }
  2409. if (code_seen('S')) {
  2410. codenum = code_value() * 1000; // seconds to wait
  2411. hasS = codenum > 0;
  2412. }
  2413. starpos = strchr(src, '*');
  2414. if (starpos != NULL) *(starpos) = '\0';
  2415. while (*src == ' ') ++src;
  2416. if (!hasP && !hasS && *src != '\0') {
  2417. lcd_setstatus(src);
  2418. } else {
  2419. LCD_MESSAGERPGM(MSG_USERWAIT);
  2420. }
  2421. lcd_ignore_click();
  2422. st_synchronize();
  2423. previous_millis_cmd = millis();
  2424. if (codenum > 0){
  2425. codenum += millis(); // keep track of when we started waiting
  2426. while(millis() < codenum && !lcd_clicked()){
  2427. manage_heater();
  2428. manage_inactivity();
  2429. lcd_update();
  2430. }
  2431. lcd_ignore_click(false);
  2432. }else{
  2433. if (!lcd_detected())
  2434. break;
  2435. while(!lcd_clicked()){
  2436. manage_heater();
  2437. manage_inactivity();
  2438. lcd_update();
  2439. }
  2440. }
  2441. if (IS_SD_PRINTING)
  2442. LCD_MESSAGERPGM(MSG_RESUMING);
  2443. else
  2444. LCD_MESSAGERPGM(WELCOME_MSG);
  2445. }
  2446. break;
  2447. #endif
  2448. case 17:
  2449. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2450. enable_x();
  2451. enable_y();
  2452. enable_z();
  2453. enable_e0();
  2454. enable_e1();
  2455. enable_e2();
  2456. break;
  2457. #ifdef SDSUPPORT
  2458. case 20: // M20 - list SD card
  2459. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2460. card.ls();
  2461. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2462. break;
  2463. case 21: // M21 - init SD card
  2464. card.initsd();
  2465. break;
  2466. case 22: //M22 - release SD card
  2467. card.release();
  2468. break;
  2469. case 23: //M23 - Select file
  2470. starpos = (strchr(strchr_pointer + 4,'*'));
  2471. if(starpos!=NULL)
  2472. *(starpos)='\0';
  2473. card.openFile(strchr_pointer + 4,true);
  2474. break;
  2475. case 24: //M24 - Start SD print
  2476. card.startFileprint();
  2477. starttime=millis();
  2478. break;
  2479. case 25: //M25 - Pause SD print
  2480. card.pauseSDPrint();
  2481. break;
  2482. case 26: //M26 - Set SD index
  2483. if(card.cardOK && code_seen('S')) {
  2484. card.setIndex(code_value_long());
  2485. }
  2486. break;
  2487. case 27: //M27 - Get SD status
  2488. card.getStatus();
  2489. break;
  2490. case 28: //M28 - Start SD write
  2491. starpos = (strchr(strchr_pointer + 4,'*'));
  2492. if(starpos != NULL){
  2493. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2494. strchr_pointer = strchr(npos,' ') + 1;
  2495. *(starpos) = '\0';
  2496. }
  2497. card.openFile(strchr_pointer+4,false);
  2498. break;
  2499. case 29: //M29 - Stop SD write
  2500. //processed in write to file routine above
  2501. //card,saving = false;
  2502. break;
  2503. case 30: //M30 <filename> Delete File
  2504. if (card.cardOK){
  2505. card.closefile();
  2506. starpos = (strchr(strchr_pointer + 4,'*'));
  2507. if(starpos != NULL){
  2508. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2509. strchr_pointer = strchr(npos,' ') + 1;
  2510. *(starpos) = '\0';
  2511. }
  2512. card.removeFile(strchr_pointer + 4);
  2513. }
  2514. break;
  2515. case 32: //M32 - Select file and start SD print
  2516. {
  2517. if(card.sdprinting) {
  2518. st_synchronize();
  2519. }
  2520. starpos = (strchr(strchr_pointer + 4,'*'));
  2521. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2522. if(namestartpos==NULL)
  2523. {
  2524. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2525. }
  2526. else
  2527. namestartpos++; //to skip the '!'
  2528. if(starpos!=NULL)
  2529. *(starpos)='\0';
  2530. bool call_procedure=(code_seen('P'));
  2531. if(strchr_pointer>namestartpos)
  2532. call_procedure=false; //false alert, 'P' found within filename
  2533. if( card.cardOK )
  2534. {
  2535. card.openFile(namestartpos,true,!call_procedure);
  2536. if(code_seen('S'))
  2537. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2538. card.setIndex(code_value_long());
  2539. card.startFileprint();
  2540. if(!call_procedure)
  2541. starttime=millis(); //procedure calls count as normal print time.
  2542. }
  2543. } break;
  2544. case 928: //M928 - Start SD write
  2545. starpos = (strchr(strchr_pointer + 5,'*'));
  2546. if(starpos != NULL){
  2547. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2548. strchr_pointer = strchr(npos,' ') + 1;
  2549. *(starpos) = '\0';
  2550. }
  2551. card.openLogFile(strchr_pointer+5);
  2552. break;
  2553. #endif //SDSUPPORT
  2554. case 31: //M31 take time since the start of the SD print or an M109 command
  2555. {
  2556. stoptime=millis();
  2557. char time[30];
  2558. unsigned long t=(stoptime-starttime)/1000;
  2559. int sec,min;
  2560. min=t/60;
  2561. sec=t%60;
  2562. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2563. SERIAL_ECHO_START;
  2564. SERIAL_ECHOLN(time);
  2565. lcd_setstatus(time);
  2566. autotempShutdown();
  2567. }
  2568. break;
  2569. case 42: //M42 -Change pin status via gcode
  2570. if (code_seen('S'))
  2571. {
  2572. int pin_status = code_value();
  2573. int pin_number = LED_PIN;
  2574. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2575. pin_number = code_value();
  2576. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2577. {
  2578. if (sensitive_pins[i] == pin_number)
  2579. {
  2580. pin_number = -1;
  2581. break;
  2582. }
  2583. }
  2584. #if defined(FAN_PIN) && FAN_PIN > -1
  2585. if (pin_number == FAN_PIN)
  2586. fanSpeed = pin_status;
  2587. #endif
  2588. if (pin_number > -1)
  2589. {
  2590. pinMode(pin_number, OUTPUT);
  2591. digitalWrite(pin_number, pin_status);
  2592. analogWrite(pin_number, pin_status);
  2593. }
  2594. }
  2595. break;
  2596. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2597. // Reset the skew and offset in both RAM and EEPROM.
  2598. reset_bed_offset_and_skew();
  2599. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2600. // the planner will not perform any adjustments in the XY plane.
  2601. // Wait for the motors to stop and update the current position with the absolute values.
  2602. world2machine_revert_to_uncorrected();
  2603. break;
  2604. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2605. {
  2606. // Disable the default update procedure of the display. We will do a modal dialog.
  2607. lcd_update_enable(false);
  2608. // Let the planner use the uncorrected coordinates.
  2609. mbl.reset();
  2610. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2611. // the planner will not perform any adjustments in the XY plane.
  2612. // Wait for the motors to stop and update the current position with the absolute values.
  2613. world2machine_revert_to_uncorrected();
  2614. // Reset the baby step value applied without moving the axes.
  2615. babystep_reset();
  2616. // Mark all axes as in a need for homing.
  2617. memset(axis_known_position, 0, sizeof(axis_known_position));
  2618. // Only Z calibration?
  2619. bool onlyZ = code_seen('Z');
  2620. // Let the user move the Z axes up to the end stoppers.
  2621. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2622. refresh_cmd_timeout();
  2623. // Move the print head close to the bed.
  2624. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2626. st_synchronize();
  2627. // Home in the XY plane.
  2628. set_destination_to_current();
  2629. setup_for_endstop_move();
  2630. home_xy();
  2631. int8_t verbosity_level = 0;
  2632. if (code_seen('V')) {
  2633. // Just 'V' without a number counts as V1.
  2634. char c = strchr_pointer[1];
  2635. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2636. }
  2637. if (onlyZ) {
  2638. clean_up_after_endstop_move();
  2639. // Z only calibration.
  2640. // Load the machine correction matrix
  2641. world2machine_initialize();
  2642. // and correct the current_position to match the transformed coordinate system.
  2643. world2machine_update_current();
  2644. //FIXME
  2645. bool result = sample_mesh_and_store_reference();
  2646. if (result) {
  2647. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2648. // Shipped, the nozzle height has been set already. The user can start printing now.
  2649. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2650. // babystep_apply();
  2651. }
  2652. } else {
  2653. // Reset the baby step value and the baby step applied flag.
  2654. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2655. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2656. // Complete XYZ calibration.
  2657. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2658. uint8_t point_too_far_mask = 0;
  2659. clean_up_after_endstop_move();
  2660. // Print head up.
  2661. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2663. st_synchronize();
  2664. if (result >= 0) {
  2665. // Second half: The fine adjustment.
  2666. // Let the planner use the uncorrected coordinates.
  2667. mbl.reset();
  2668. world2machine_reset();
  2669. // Home in the XY plane.
  2670. setup_for_endstop_move();
  2671. home_xy();
  2672. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2673. clean_up_after_endstop_move();
  2674. // Print head up.
  2675. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2677. st_synchronize();
  2678. // if (result >= 0) babystep_apply();
  2679. }
  2680. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2681. if (result >= 0) {
  2682. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2683. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2684. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2685. }
  2686. }
  2687. } else {
  2688. // Timeouted.
  2689. }
  2690. lcd_update_enable(true);
  2691. break;
  2692. }
  2693. /*
  2694. case 46:
  2695. {
  2696. // M46: Prusa3D: Show the assigned IP address.
  2697. uint8_t ip[4];
  2698. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2699. if (hasIP) {
  2700. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2701. SERIAL_ECHO(int(ip[0]));
  2702. SERIAL_ECHOPGM(".");
  2703. SERIAL_ECHO(int(ip[1]));
  2704. SERIAL_ECHOPGM(".");
  2705. SERIAL_ECHO(int(ip[2]));
  2706. SERIAL_ECHOPGM(".");
  2707. SERIAL_ECHO(int(ip[3]));
  2708. SERIAL_ECHOLNPGM("");
  2709. } else {
  2710. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2711. }
  2712. break;
  2713. }
  2714. */
  2715. case 47:
  2716. // M47: Prusa3D: Show end stops dialog on the display.
  2717. lcd_diag_show_end_stops();
  2718. break;
  2719. #if 0
  2720. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2721. {
  2722. // Disable the default update procedure of the display. We will do a modal dialog.
  2723. lcd_update_enable(false);
  2724. // Let the planner use the uncorrected coordinates.
  2725. mbl.reset();
  2726. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2727. // the planner will not perform any adjustments in the XY plane.
  2728. // Wait for the motors to stop and update the current position with the absolute values.
  2729. world2machine_revert_to_uncorrected();
  2730. // Move the print head close to the bed.
  2731. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2733. st_synchronize();
  2734. // Home in the XY plane.
  2735. set_destination_to_current();
  2736. setup_for_endstop_move();
  2737. home_xy();
  2738. int8_t verbosity_level = 0;
  2739. if (code_seen('V')) {
  2740. // Just 'V' without a number counts as V1.
  2741. char c = strchr_pointer[1];
  2742. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2743. }
  2744. bool success = scan_bed_induction_points(verbosity_level);
  2745. clean_up_after_endstop_move();
  2746. // Print head up.
  2747. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2749. st_synchronize();
  2750. lcd_update_enable(true);
  2751. break;
  2752. }
  2753. #endif
  2754. // M48 Z-Probe repeatability measurement function.
  2755. //
  2756. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2757. //
  2758. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2759. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2760. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2761. // regenerated.
  2762. //
  2763. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2764. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2765. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2766. //
  2767. #ifdef ENABLE_AUTO_BED_LEVELING
  2768. #ifdef Z_PROBE_REPEATABILITY_TEST
  2769. case 48: // M48 Z-Probe repeatability
  2770. {
  2771. #if Z_MIN_PIN == -1
  2772. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2773. #endif
  2774. double sum=0.0;
  2775. double mean=0.0;
  2776. double sigma=0.0;
  2777. double sample_set[50];
  2778. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2779. double X_current, Y_current, Z_current;
  2780. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2781. if (code_seen('V') || code_seen('v')) {
  2782. verbose_level = code_value();
  2783. if (verbose_level<0 || verbose_level>4 ) {
  2784. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2785. goto Sigma_Exit;
  2786. }
  2787. }
  2788. if (verbose_level > 0) {
  2789. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2790. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2791. }
  2792. if (code_seen('n')) {
  2793. n_samples = code_value();
  2794. if (n_samples<4 || n_samples>50 ) {
  2795. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2796. goto Sigma_Exit;
  2797. }
  2798. }
  2799. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2800. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2801. Z_current = st_get_position_mm(Z_AXIS);
  2802. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2803. ext_position = st_get_position_mm(E_AXIS);
  2804. if (code_seen('X') || code_seen('x') ) {
  2805. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2806. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2807. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2808. goto Sigma_Exit;
  2809. }
  2810. }
  2811. if (code_seen('Y') || code_seen('y') ) {
  2812. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2813. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2814. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2815. goto Sigma_Exit;
  2816. }
  2817. }
  2818. if (code_seen('L') || code_seen('l') ) {
  2819. n_legs = code_value();
  2820. if ( n_legs==1 )
  2821. n_legs = 2;
  2822. if ( n_legs<0 || n_legs>15 ) {
  2823. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2824. goto Sigma_Exit;
  2825. }
  2826. }
  2827. //
  2828. // Do all the preliminary setup work. First raise the probe.
  2829. //
  2830. st_synchronize();
  2831. plan_bed_level_matrix.set_to_identity();
  2832. plan_buffer_line( X_current, Y_current, Z_start_location,
  2833. ext_position,
  2834. homing_feedrate[Z_AXIS]/60,
  2835. active_extruder);
  2836. st_synchronize();
  2837. //
  2838. // Now get everything to the specified probe point So we can safely do a probe to
  2839. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2840. // use that as a starting point for each probe.
  2841. //
  2842. if (verbose_level > 2)
  2843. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2844. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2845. ext_position,
  2846. homing_feedrate[X_AXIS]/60,
  2847. active_extruder);
  2848. st_synchronize();
  2849. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2850. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2851. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2852. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2853. //
  2854. // OK, do the inital probe to get us close to the bed.
  2855. // Then retrace the right amount and use that in subsequent probes
  2856. //
  2857. setup_for_endstop_move();
  2858. run_z_probe();
  2859. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2860. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2861. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2862. ext_position,
  2863. homing_feedrate[X_AXIS]/60,
  2864. active_extruder);
  2865. st_synchronize();
  2866. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2867. for( n=0; n<n_samples; n++) {
  2868. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2869. if ( n_legs) {
  2870. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2871. int rotational_direction, l;
  2872. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2873. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2874. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2875. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2876. //SERIAL_ECHOPAIR(" theta: ",theta);
  2877. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2878. //SERIAL_PROTOCOLLNPGM("");
  2879. for( l=0; l<n_legs-1; l++) {
  2880. if (rotational_direction==1)
  2881. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2882. else
  2883. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2884. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2885. if ( radius<0.0 )
  2886. radius = -radius;
  2887. X_current = X_probe_location + cos(theta) * radius;
  2888. Y_current = Y_probe_location + sin(theta) * radius;
  2889. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2890. X_current = X_MIN_POS;
  2891. if ( X_current>X_MAX_POS)
  2892. X_current = X_MAX_POS;
  2893. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2894. Y_current = Y_MIN_POS;
  2895. if ( Y_current>Y_MAX_POS)
  2896. Y_current = Y_MAX_POS;
  2897. if (verbose_level>3 ) {
  2898. SERIAL_ECHOPAIR("x: ", X_current);
  2899. SERIAL_ECHOPAIR("y: ", Y_current);
  2900. SERIAL_PROTOCOLLNPGM("");
  2901. }
  2902. do_blocking_move_to( X_current, Y_current, Z_current );
  2903. }
  2904. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2905. }
  2906. setup_for_endstop_move();
  2907. run_z_probe();
  2908. sample_set[n] = current_position[Z_AXIS];
  2909. //
  2910. // Get the current mean for the data points we have so far
  2911. //
  2912. sum=0.0;
  2913. for( j=0; j<=n; j++) {
  2914. sum = sum + sample_set[j];
  2915. }
  2916. mean = sum / (double (n+1));
  2917. //
  2918. // Now, use that mean to calculate the standard deviation for the
  2919. // data points we have so far
  2920. //
  2921. sum=0.0;
  2922. for( j=0; j<=n; j++) {
  2923. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2924. }
  2925. sigma = sqrt( sum / (double (n+1)) );
  2926. if (verbose_level > 1) {
  2927. SERIAL_PROTOCOL(n+1);
  2928. SERIAL_PROTOCOL(" of ");
  2929. SERIAL_PROTOCOL(n_samples);
  2930. SERIAL_PROTOCOLPGM(" z: ");
  2931. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2932. }
  2933. if (verbose_level > 2) {
  2934. SERIAL_PROTOCOL(" mean: ");
  2935. SERIAL_PROTOCOL_F(mean,6);
  2936. SERIAL_PROTOCOL(" sigma: ");
  2937. SERIAL_PROTOCOL_F(sigma,6);
  2938. }
  2939. if (verbose_level > 0)
  2940. SERIAL_PROTOCOLPGM("\n");
  2941. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2942. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2943. st_synchronize();
  2944. }
  2945. delay(1000);
  2946. clean_up_after_endstop_move();
  2947. // enable_endstops(true);
  2948. if (verbose_level > 0) {
  2949. SERIAL_PROTOCOLPGM("Mean: ");
  2950. SERIAL_PROTOCOL_F(mean, 6);
  2951. SERIAL_PROTOCOLPGM("\n");
  2952. }
  2953. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2954. SERIAL_PROTOCOL_F(sigma, 6);
  2955. SERIAL_PROTOCOLPGM("\n\n");
  2956. Sigma_Exit:
  2957. break;
  2958. }
  2959. #endif // Z_PROBE_REPEATABILITY_TEST
  2960. #endif // ENABLE_AUTO_BED_LEVELING
  2961. case 104: // M104
  2962. if(setTargetedHotend(104)){
  2963. break;
  2964. }
  2965. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2966. setWatch();
  2967. break;
  2968. case 112: // M112 -Emergency Stop
  2969. kill();
  2970. break;
  2971. case 140: // M140 set bed temp
  2972. if (code_seen('S')) setTargetBed(code_value());
  2973. break;
  2974. case 105 : // M105
  2975. if(setTargetedHotend(105)){
  2976. break;
  2977. }
  2978. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2979. SERIAL_PROTOCOLPGM("ok T:");
  2980. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2981. SERIAL_PROTOCOLPGM(" /");
  2982. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2983. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2984. SERIAL_PROTOCOLPGM(" B:");
  2985. SERIAL_PROTOCOL_F(degBed(),1);
  2986. SERIAL_PROTOCOLPGM(" /");
  2987. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2988. #endif //TEMP_BED_PIN
  2989. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2990. SERIAL_PROTOCOLPGM(" T");
  2991. SERIAL_PROTOCOL(cur_extruder);
  2992. SERIAL_PROTOCOLPGM(":");
  2993. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2994. SERIAL_PROTOCOLPGM(" /");
  2995. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2996. }
  2997. #else
  2998. SERIAL_ERROR_START;
  2999. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3000. #endif
  3001. SERIAL_PROTOCOLPGM(" @:");
  3002. #ifdef EXTRUDER_WATTS
  3003. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3004. SERIAL_PROTOCOLPGM("W");
  3005. #else
  3006. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3007. #endif
  3008. SERIAL_PROTOCOLPGM(" B@:");
  3009. #ifdef BED_WATTS
  3010. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3011. SERIAL_PROTOCOLPGM("W");
  3012. #else
  3013. SERIAL_PROTOCOL(getHeaterPower(-1));
  3014. #endif
  3015. #ifdef SHOW_TEMP_ADC_VALUES
  3016. {float raw = 0.0;
  3017. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3018. SERIAL_PROTOCOLPGM(" ADC B:");
  3019. SERIAL_PROTOCOL_F(degBed(),1);
  3020. SERIAL_PROTOCOLPGM("C->");
  3021. raw = rawBedTemp();
  3022. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3023. SERIAL_PROTOCOLPGM(" Rb->");
  3024. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3025. SERIAL_PROTOCOLPGM(" Rxb->");
  3026. SERIAL_PROTOCOL_F(raw, 5);
  3027. #endif
  3028. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3029. SERIAL_PROTOCOLPGM(" T");
  3030. SERIAL_PROTOCOL(cur_extruder);
  3031. SERIAL_PROTOCOLPGM(":");
  3032. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3033. SERIAL_PROTOCOLPGM("C->");
  3034. raw = rawHotendTemp(cur_extruder);
  3035. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3036. SERIAL_PROTOCOLPGM(" Rt");
  3037. SERIAL_PROTOCOL(cur_extruder);
  3038. SERIAL_PROTOCOLPGM("->");
  3039. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3040. SERIAL_PROTOCOLPGM(" Rx");
  3041. SERIAL_PROTOCOL(cur_extruder);
  3042. SERIAL_PROTOCOLPGM("->");
  3043. SERIAL_PROTOCOL_F(raw, 5);
  3044. }}
  3045. #endif
  3046. SERIAL_PROTOCOLLN("");
  3047. return;
  3048. break;
  3049. case 109:
  3050. {// M109 - Wait for extruder heater to reach target.
  3051. if(setTargetedHotend(109)){
  3052. break;
  3053. }
  3054. LCD_MESSAGERPGM(MSG_HEATING);
  3055. heating_status = 1;
  3056. if (farm_mode) { prusa_statistics(1); };
  3057. #ifdef AUTOTEMP
  3058. autotemp_enabled=false;
  3059. #endif
  3060. if (code_seen('S')) {
  3061. setTargetHotend(code_value(), tmp_extruder);
  3062. CooldownNoWait = true;
  3063. } else if (code_seen('R')) {
  3064. setTargetHotend(code_value(), tmp_extruder);
  3065. CooldownNoWait = false;
  3066. }
  3067. #ifdef AUTOTEMP
  3068. if (code_seen('S')) autotemp_min=code_value();
  3069. if (code_seen('B')) autotemp_max=code_value();
  3070. if (code_seen('F'))
  3071. {
  3072. autotemp_factor=code_value();
  3073. autotemp_enabled=true;
  3074. }
  3075. #endif
  3076. setWatch();
  3077. codenum = millis();
  3078. /* See if we are heating up or cooling down */
  3079. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3080. cancel_heatup = false;
  3081. #ifdef TEMP_RESIDENCY_TIME
  3082. long residencyStart;
  3083. residencyStart = -1;
  3084. /* continue to loop until we have reached the target temp
  3085. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3086. while((!cancel_heatup)&&((residencyStart == -1) ||
  3087. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3088. #else
  3089. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3090. #endif //TEMP_RESIDENCY_TIME
  3091. if( (millis() - codenum) > 1000UL )
  3092. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3093. SERIAL_PROTOCOLPGM("T:");
  3094. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3095. SERIAL_PROTOCOLPGM(" E:");
  3096. SERIAL_PROTOCOL((int)tmp_extruder);
  3097. #ifdef TEMP_RESIDENCY_TIME
  3098. SERIAL_PROTOCOLPGM(" W:");
  3099. if(residencyStart > -1)
  3100. {
  3101. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3102. SERIAL_PROTOCOLLN( codenum );
  3103. }
  3104. else
  3105. {
  3106. SERIAL_PROTOCOLLN( "?" );
  3107. }
  3108. #else
  3109. SERIAL_PROTOCOLLN("");
  3110. #endif
  3111. codenum = millis();
  3112. }
  3113. manage_heater();
  3114. manage_inactivity();
  3115. lcd_update();
  3116. #ifdef TEMP_RESIDENCY_TIME
  3117. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3118. or when current temp falls outside the hysteresis after target temp was reached */
  3119. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3120. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3121. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3122. {
  3123. residencyStart = millis();
  3124. }
  3125. #endif //TEMP_RESIDENCY_TIME
  3126. }
  3127. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3128. heating_status = 2;
  3129. if (farm_mode) { prusa_statistics(2); };
  3130. starttime=millis();
  3131. previous_millis_cmd = millis();
  3132. }
  3133. break;
  3134. case 190: // M190 - Wait for bed heater to reach target.
  3135. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3136. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3137. heating_status = 3;
  3138. if (farm_mode) { prusa_statistics(1); };
  3139. if (code_seen('S'))
  3140. {
  3141. setTargetBed(code_value());
  3142. CooldownNoWait = true;
  3143. }
  3144. else if (code_seen('R'))
  3145. {
  3146. setTargetBed(code_value());
  3147. CooldownNoWait = false;
  3148. }
  3149. codenum = millis();
  3150. cancel_heatup = false;
  3151. target_direction = isHeatingBed(); // true if heating, false if cooling
  3152. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3153. {
  3154. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3155. {
  3156. float tt=degHotend(active_extruder);
  3157. SERIAL_PROTOCOLPGM("T:");
  3158. SERIAL_PROTOCOL(tt);
  3159. SERIAL_PROTOCOLPGM(" E:");
  3160. SERIAL_PROTOCOL((int)active_extruder);
  3161. SERIAL_PROTOCOLPGM(" B:");
  3162. SERIAL_PROTOCOL_F(degBed(),1);
  3163. SERIAL_PROTOCOLLN("");
  3164. codenum = millis();
  3165. }
  3166. manage_heater();
  3167. manage_inactivity();
  3168. lcd_update();
  3169. }
  3170. LCD_MESSAGERPGM(MSG_BED_DONE);
  3171. heating_status = 4;
  3172. previous_millis_cmd = millis();
  3173. #endif
  3174. break;
  3175. #if defined(FAN_PIN) && FAN_PIN > -1
  3176. case 106: //M106 Fan On
  3177. if (code_seen('S')){
  3178. fanSpeed=constrain(code_value(),0,255);
  3179. }
  3180. else {
  3181. fanSpeed=255;
  3182. }
  3183. break;
  3184. case 107: //M107 Fan Off
  3185. fanSpeed = 0;
  3186. break;
  3187. #endif //FAN_PIN
  3188. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3189. case 80: // M80 - Turn on Power Supply
  3190. SET_OUTPUT(PS_ON_PIN); //GND
  3191. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3192. // If you have a switch on suicide pin, this is useful
  3193. // if you want to start another print with suicide feature after
  3194. // a print without suicide...
  3195. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3196. SET_OUTPUT(SUICIDE_PIN);
  3197. WRITE(SUICIDE_PIN, HIGH);
  3198. #endif
  3199. #ifdef ULTIPANEL
  3200. powersupply = true;
  3201. LCD_MESSAGERPGM(WELCOME_MSG);
  3202. lcd_update();
  3203. #endif
  3204. break;
  3205. #endif
  3206. case 81: // M81 - Turn off Power Supply
  3207. disable_heater();
  3208. st_synchronize();
  3209. disable_e0();
  3210. disable_e1();
  3211. disable_e2();
  3212. finishAndDisableSteppers();
  3213. fanSpeed = 0;
  3214. delay(1000); // Wait a little before to switch off
  3215. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3216. st_synchronize();
  3217. suicide();
  3218. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3219. SET_OUTPUT(PS_ON_PIN);
  3220. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3221. #endif
  3222. #ifdef ULTIPANEL
  3223. powersupply = false;
  3224. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3225. /*
  3226. MACHNAME = "Prusa i3"
  3227. MSGOFF = "Vypnuto"
  3228. "Prusai3"" ""vypnuto""."
  3229. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3230. */
  3231. lcd_update();
  3232. #endif
  3233. break;
  3234. case 82:
  3235. axis_relative_modes[3] = false;
  3236. break;
  3237. case 83:
  3238. axis_relative_modes[3] = true;
  3239. break;
  3240. case 18: //compatibility
  3241. case 84: // M84
  3242. if(code_seen('S')){
  3243. stepper_inactive_time = code_value() * 1000;
  3244. }
  3245. else
  3246. {
  3247. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3248. if(all_axis)
  3249. {
  3250. st_synchronize();
  3251. disable_e0();
  3252. disable_e1();
  3253. disable_e2();
  3254. finishAndDisableSteppers();
  3255. }
  3256. else
  3257. {
  3258. st_synchronize();
  3259. if(code_seen('X')) disable_x();
  3260. if(code_seen('Y')) disable_y();
  3261. if(code_seen('Z')) disable_z();
  3262. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3263. if(code_seen('E')) {
  3264. disable_e0();
  3265. disable_e1();
  3266. disable_e2();
  3267. }
  3268. #endif
  3269. }
  3270. }
  3271. break;
  3272. case 85: // M85
  3273. if(code_seen('S')) {
  3274. max_inactive_time = code_value() * 1000;
  3275. }
  3276. break;
  3277. case 92: // M92
  3278. for(int8_t i=0; i < NUM_AXIS; i++)
  3279. {
  3280. if(code_seen(axis_codes[i]))
  3281. {
  3282. if(i == 3) { // E
  3283. float value = code_value();
  3284. if(value < 20.0) {
  3285. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3286. max_jerk[E_AXIS] *= factor;
  3287. max_feedrate[i] *= factor;
  3288. axis_steps_per_sqr_second[i] *= factor;
  3289. }
  3290. axis_steps_per_unit[i] = value;
  3291. }
  3292. else {
  3293. axis_steps_per_unit[i] = code_value();
  3294. }
  3295. }
  3296. }
  3297. break;
  3298. case 115: // M115
  3299. if (code_seen('V')) {
  3300. // Report the Prusa version number.
  3301. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3302. } else if (code_seen('U')) {
  3303. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3304. // pause the print and ask the user to upgrade the firmware.
  3305. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3306. } else {
  3307. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3308. }
  3309. break;
  3310. case 117: // M117 display message
  3311. starpos = (strchr(strchr_pointer + 5,'*'));
  3312. if(starpos!=NULL)
  3313. *(starpos)='\0';
  3314. lcd_setstatus(strchr_pointer + 5);
  3315. break;
  3316. case 114: // M114
  3317. SERIAL_PROTOCOLPGM("X:");
  3318. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3319. SERIAL_PROTOCOLPGM(" Y:");
  3320. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3321. SERIAL_PROTOCOLPGM(" Z:");
  3322. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3323. SERIAL_PROTOCOLPGM(" E:");
  3324. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3325. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3326. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3327. SERIAL_PROTOCOLPGM(" Y:");
  3328. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3329. SERIAL_PROTOCOLPGM(" Z:");
  3330. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3331. SERIAL_PROTOCOLLN("");
  3332. break;
  3333. case 120: // M120
  3334. enable_endstops(false) ;
  3335. break;
  3336. case 121: // M121
  3337. enable_endstops(true) ;
  3338. break;
  3339. case 119: // M119
  3340. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3341. SERIAL_PROTOCOLLN("");
  3342. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3343. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3344. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3345. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3346. }else{
  3347. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3348. }
  3349. SERIAL_PROTOCOLLN("");
  3350. #endif
  3351. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3352. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3353. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3354. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3355. }else{
  3356. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3357. }
  3358. SERIAL_PROTOCOLLN("");
  3359. #endif
  3360. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3361. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3362. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3363. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3364. }else{
  3365. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3366. }
  3367. SERIAL_PROTOCOLLN("");
  3368. #endif
  3369. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3370. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3371. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3372. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3373. }else{
  3374. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3375. }
  3376. SERIAL_PROTOCOLLN("");
  3377. #endif
  3378. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3379. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3380. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3381. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3382. }else{
  3383. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3384. }
  3385. SERIAL_PROTOCOLLN("");
  3386. #endif
  3387. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3388. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3389. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3390. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3391. }else{
  3392. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3393. }
  3394. SERIAL_PROTOCOLLN("");
  3395. #endif
  3396. break;
  3397. //TODO: update for all axis, use for loop
  3398. #ifdef BLINKM
  3399. case 150: // M150
  3400. {
  3401. byte red;
  3402. byte grn;
  3403. byte blu;
  3404. if(code_seen('R')) red = code_value();
  3405. if(code_seen('U')) grn = code_value();
  3406. if(code_seen('B')) blu = code_value();
  3407. SendColors(red,grn,blu);
  3408. }
  3409. break;
  3410. #endif //BLINKM
  3411. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3412. {
  3413. tmp_extruder = active_extruder;
  3414. if(code_seen('T')) {
  3415. tmp_extruder = code_value();
  3416. if(tmp_extruder >= EXTRUDERS) {
  3417. SERIAL_ECHO_START;
  3418. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3419. break;
  3420. }
  3421. }
  3422. float area = .0;
  3423. if(code_seen('D')) {
  3424. float diameter = (float)code_value();
  3425. if (diameter == 0.0) {
  3426. // setting any extruder filament size disables volumetric on the assumption that
  3427. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3428. // for all extruders
  3429. volumetric_enabled = false;
  3430. } else {
  3431. filament_size[tmp_extruder] = (float)code_value();
  3432. // make sure all extruders have some sane value for the filament size
  3433. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3434. #if EXTRUDERS > 1
  3435. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3436. #if EXTRUDERS > 2
  3437. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3438. #endif
  3439. #endif
  3440. volumetric_enabled = true;
  3441. }
  3442. } else {
  3443. //reserved for setting filament diameter via UFID or filament measuring device
  3444. break;
  3445. }
  3446. calculate_volumetric_multipliers();
  3447. }
  3448. break;
  3449. case 201: // M201
  3450. for(int8_t i=0; i < NUM_AXIS; i++)
  3451. {
  3452. if(code_seen(axis_codes[i]))
  3453. {
  3454. max_acceleration_units_per_sq_second[i] = code_value();
  3455. }
  3456. }
  3457. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3458. reset_acceleration_rates();
  3459. break;
  3460. #if 0 // Not used for Sprinter/grbl gen6
  3461. case 202: // M202
  3462. for(int8_t i=0; i < NUM_AXIS; i++) {
  3463. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3464. }
  3465. break;
  3466. #endif
  3467. case 203: // M203 max feedrate mm/sec
  3468. for(int8_t i=0; i < NUM_AXIS; i++) {
  3469. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3470. }
  3471. break;
  3472. case 204: // M204 acclereration S normal moves T filmanent only moves
  3473. {
  3474. if(code_seen('S')) acceleration = code_value() ;
  3475. if(code_seen('T')) retract_acceleration = code_value() ;
  3476. }
  3477. break;
  3478. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3479. {
  3480. if(code_seen('S')) minimumfeedrate = code_value();
  3481. if(code_seen('T')) mintravelfeedrate = code_value();
  3482. if(code_seen('B')) minsegmenttime = code_value() ;
  3483. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3484. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3485. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3486. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3487. }
  3488. break;
  3489. case 206: // M206 additional homing offset
  3490. for(int8_t i=0; i < 3; i++)
  3491. {
  3492. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3493. }
  3494. break;
  3495. #ifdef FWRETRACT
  3496. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3497. {
  3498. if(code_seen('S'))
  3499. {
  3500. retract_length = code_value() ;
  3501. }
  3502. if(code_seen('F'))
  3503. {
  3504. retract_feedrate = code_value()/60 ;
  3505. }
  3506. if(code_seen('Z'))
  3507. {
  3508. retract_zlift = code_value() ;
  3509. }
  3510. }break;
  3511. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3512. {
  3513. if(code_seen('S'))
  3514. {
  3515. retract_recover_length = code_value() ;
  3516. }
  3517. if(code_seen('F'))
  3518. {
  3519. retract_recover_feedrate = code_value()/60 ;
  3520. }
  3521. }break;
  3522. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3523. {
  3524. if(code_seen('S'))
  3525. {
  3526. int t= code_value() ;
  3527. switch(t)
  3528. {
  3529. case 0:
  3530. {
  3531. autoretract_enabled=false;
  3532. retracted[0]=false;
  3533. #if EXTRUDERS > 1
  3534. retracted[1]=false;
  3535. #endif
  3536. #if EXTRUDERS > 2
  3537. retracted[2]=false;
  3538. #endif
  3539. }break;
  3540. case 1:
  3541. {
  3542. autoretract_enabled=true;
  3543. retracted[0]=false;
  3544. #if EXTRUDERS > 1
  3545. retracted[1]=false;
  3546. #endif
  3547. #if EXTRUDERS > 2
  3548. retracted[2]=false;
  3549. #endif
  3550. }break;
  3551. default:
  3552. SERIAL_ECHO_START;
  3553. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3554. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3555. SERIAL_ECHOLNPGM("\"");
  3556. }
  3557. }
  3558. }break;
  3559. #endif // FWRETRACT
  3560. #if EXTRUDERS > 1
  3561. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3562. {
  3563. if(setTargetedHotend(218)){
  3564. break;
  3565. }
  3566. if(code_seen('X'))
  3567. {
  3568. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3569. }
  3570. if(code_seen('Y'))
  3571. {
  3572. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3573. }
  3574. SERIAL_ECHO_START;
  3575. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3576. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3577. {
  3578. SERIAL_ECHO(" ");
  3579. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3580. SERIAL_ECHO(",");
  3581. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3582. }
  3583. SERIAL_ECHOLN("");
  3584. }break;
  3585. #endif
  3586. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3587. {
  3588. if(code_seen('S'))
  3589. {
  3590. feedmultiply = code_value() ;
  3591. }
  3592. }
  3593. break;
  3594. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3595. {
  3596. if(code_seen('S'))
  3597. {
  3598. int tmp_code = code_value();
  3599. if (code_seen('T'))
  3600. {
  3601. if(setTargetedHotend(221)){
  3602. break;
  3603. }
  3604. extruder_multiply[tmp_extruder] = tmp_code;
  3605. }
  3606. else
  3607. {
  3608. extrudemultiply = tmp_code ;
  3609. }
  3610. }
  3611. }
  3612. break;
  3613. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3614. {
  3615. if(code_seen('P')){
  3616. int pin_number = code_value(); // pin number
  3617. int pin_state = -1; // required pin state - default is inverted
  3618. if(code_seen('S')) pin_state = code_value(); // required pin state
  3619. if(pin_state >= -1 && pin_state <= 1){
  3620. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3621. {
  3622. if (sensitive_pins[i] == pin_number)
  3623. {
  3624. pin_number = -1;
  3625. break;
  3626. }
  3627. }
  3628. if (pin_number > -1)
  3629. {
  3630. int target = LOW;
  3631. st_synchronize();
  3632. pinMode(pin_number, INPUT);
  3633. switch(pin_state){
  3634. case 1:
  3635. target = HIGH;
  3636. break;
  3637. case 0:
  3638. target = LOW;
  3639. break;
  3640. case -1:
  3641. target = !digitalRead(pin_number);
  3642. break;
  3643. }
  3644. while(digitalRead(pin_number) != target){
  3645. manage_heater();
  3646. manage_inactivity();
  3647. lcd_update();
  3648. }
  3649. }
  3650. }
  3651. }
  3652. }
  3653. break;
  3654. #if NUM_SERVOS > 0
  3655. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3656. {
  3657. int servo_index = -1;
  3658. int servo_position = 0;
  3659. if (code_seen('P'))
  3660. servo_index = code_value();
  3661. if (code_seen('S')) {
  3662. servo_position = code_value();
  3663. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3664. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3665. servos[servo_index].attach(0);
  3666. #endif
  3667. servos[servo_index].write(servo_position);
  3668. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3669. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3670. servos[servo_index].detach();
  3671. #endif
  3672. }
  3673. else {
  3674. SERIAL_ECHO_START;
  3675. SERIAL_ECHO("Servo ");
  3676. SERIAL_ECHO(servo_index);
  3677. SERIAL_ECHOLN(" out of range");
  3678. }
  3679. }
  3680. else if (servo_index >= 0) {
  3681. SERIAL_PROTOCOL(MSG_OK);
  3682. SERIAL_PROTOCOL(" Servo ");
  3683. SERIAL_PROTOCOL(servo_index);
  3684. SERIAL_PROTOCOL(": ");
  3685. SERIAL_PROTOCOL(servos[servo_index].read());
  3686. SERIAL_PROTOCOLLN("");
  3687. }
  3688. }
  3689. break;
  3690. #endif // NUM_SERVOS > 0
  3691. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3692. case 300: // M300
  3693. {
  3694. int beepS = code_seen('S') ? code_value() : 110;
  3695. int beepP = code_seen('P') ? code_value() : 1000;
  3696. if (beepS > 0)
  3697. {
  3698. #if BEEPER > 0
  3699. tone(BEEPER, beepS);
  3700. delay(beepP);
  3701. noTone(BEEPER);
  3702. #elif defined(ULTRALCD)
  3703. lcd_buzz(beepS, beepP);
  3704. #elif defined(LCD_USE_I2C_BUZZER)
  3705. lcd_buzz(beepP, beepS);
  3706. #endif
  3707. }
  3708. else
  3709. {
  3710. delay(beepP);
  3711. }
  3712. }
  3713. break;
  3714. #endif // M300
  3715. #ifdef PIDTEMP
  3716. case 301: // M301
  3717. {
  3718. if(code_seen('P')) Kp = code_value();
  3719. if(code_seen('I')) Ki = scalePID_i(code_value());
  3720. if(code_seen('D')) Kd = scalePID_d(code_value());
  3721. #ifdef PID_ADD_EXTRUSION_RATE
  3722. if(code_seen('C')) Kc = code_value();
  3723. #endif
  3724. updatePID();
  3725. SERIAL_PROTOCOL(MSG_OK);
  3726. SERIAL_PROTOCOL(" p:");
  3727. SERIAL_PROTOCOL(Kp);
  3728. SERIAL_PROTOCOL(" i:");
  3729. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3730. SERIAL_PROTOCOL(" d:");
  3731. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3732. #ifdef PID_ADD_EXTRUSION_RATE
  3733. SERIAL_PROTOCOL(" c:");
  3734. //Kc does not have scaling applied above, or in resetting defaults
  3735. SERIAL_PROTOCOL(Kc);
  3736. #endif
  3737. SERIAL_PROTOCOLLN("");
  3738. }
  3739. break;
  3740. #endif //PIDTEMP
  3741. #ifdef PIDTEMPBED
  3742. case 304: // M304
  3743. {
  3744. if(code_seen('P')) bedKp = code_value();
  3745. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3746. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3747. updatePID();
  3748. SERIAL_PROTOCOL(MSG_OK);
  3749. SERIAL_PROTOCOL(" p:");
  3750. SERIAL_PROTOCOL(bedKp);
  3751. SERIAL_PROTOCOL(" i:");
  3752. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3753. SERIAL_PROTOCOL(" d:");
  3754. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3755. SERIAL_PROTOCOLLN("");
  3756. }
  3757. break;
  3758. #endif //PIDTEMP
  3759. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3760. {
  3761. #ifdef CHDK
  3762. SET_OUTPUT(CHDK);
  3763. WRITE(CHDK, HIGH);
  3764. chdkHigh = millis();
  3765. chdkActive = true;
  3766. #else
  3767. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3768. const uint8_t NUM_PULSES=16;
  3769. const float PULSE_LENGTH=0.01524;
  3770. for(int i=0; i < NUM_PULSES; i++) {
  3771. WRITE(PHOTOGRAPH_PIN, HIGH);
  3772. _delay_ms(PULSE_LENGTH);
  3773. WRITE(PHOTOGRAPH_PIN, LOW);
  3774. _delay_ms(PULSE_LENGTH);
  3775. }
  3776. delay(7.33);
  3777. for(int i=0; i < NUM_PULSES; i++) {
  3778. WRITE(PHOTOGRAPH_PIN, HIGH);
  3779. _delay_ms(PULSE_LENGTH);
  3780. WRITE(PHOTOGRAPH_PIN, LOW);
  3781. _delay_ms(PULSE_LENGTH);
  3782. }
  3783. #endif
  3784. #endif //chdk end if
  3785. }
  3786. break;
  3787. #ifdef DOGLCD
  3788. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3789. {
  3790. if (code_seen('C')) {
  3791. lcd_setcontrast( ((int)code_value())&63 );
  3792. }
  3793. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3794. SERIAL_PROTOCOL(lcd_contrast);
  3795. SERIAL_PROTOCOLLN("");
  3796. }
  3797. break;
  3798. #endif
  3799. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3800. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3801. {
  3802. float temp = .0;
  3803. if (code_seen('S')) temp=code_value();
  3804. set_extrude_min_temp(temp);
  3805. }
  3806. break;
  3807. #endif
  3808. case 303: // M303 PID autotune
  3809. {
  3810. float temp = 150.0;
  3811. int e=0;
  3812. int c=5;
  3813. if (code_seen('E')) e=code_value();
  3814. if (e<0)
  3815. temp=70;
  3816. if (code_seen('S')) temp=code_value();
  3817. if (code_seen('C')) c=code_value();
  3818. PID_autotune(temp, e, c);
  3819. }
  3820. break;
  3821. case 400: // M400 finish all moves
  3822. {
  3823. st_synchronize();
  3824. }
  3825. break;
  3826. #ifdef FILAMENT_SENSOR
  3827. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3828. {
  3829. #if (FILWIDTH_PIN > -1)
  3830. if(code_seen('N')) filament_width_nominal=code_value();
  3831. else{
  3832. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3833. SERIAL_PROTOCOLLN(filament_width_nominal);
  3834. }
  3835. #endif
  3836. }
  3837. break;
  3838. case 405: //M405 Turn on filament sensor for control
  3839. {
  3840. if(code_seen('D')) meas_delay_cm=code_value();
  3841. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3842. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3843. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3844. {
  3845. int temp_ratio = widthFil_to_size_ratio();
  3846. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3847. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3848. }
  3849. delay_index1=0;
  3850. delay_index2=0;
  3851. }
  3852. filament_sensor = true ;
  3853. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3854. //SERIAL_PROTOCOL(filament_width_meas);
  3855. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3856. //SERIAL_PROTOCOL(extrudemultiply);
  3857. }
  3858. break;
  3859. case 406: //M406 Turn off filament sensor for control
  3860. {
  3861. filament_sensor = false ;
  3862. }
  3863. break;
  3864. case 407: //M407 Display measured filament diameter
  3865. {
  3866. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3867. SERIAL_PROTOCOLLN(filament_width_meas);
  3868. }
  3869. break;
  3870. #endif
  3871. case 500: // M500 Store settings in EEPROM
  3872. {
  3873. Config_StoreSettings();
  3874. }
  3875. break;
  3876. case 501: // M501 Read settings from EEPROM
  3877. {
  3878. Config_RetrieveSettings();
  3879. }
  3880. break;
  3881. case 502: // M502 Revert to default settings
  3882. {
  3883. Config_ResetDefault();
  3884. }
  3885. break;
  3886. case 503: // M503 print settings currently in memory
  3887. {
  3888. Config_PrintSettings();
  3889. }
  3890. break;
  3891. case 509: //M509 Force language selection
  3892. {
  3893. lcd_force_language_selection();
  3894. SERIAL_ECHO_START;
  3895. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3896. }
  3897. break;
  3898. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3899. case 540:
  3900. {
  3901. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3902. }
  3903. break;
  3904. #endif
  3905. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3906. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3907. {
  3908. float value;
  3909. if (code_seen('Z'))
  3910. {
  3911. value = code_value();
  3912. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3913. {
  3914. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3915. SERIAL_ECHO_START;
  3916. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3917. SERIAL_PROTOCOLLN("");
  3918. }
  3919. else
  3920. {
  3921. SERIAL_ECHO_START;
  3922. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3923. SERIAL_ECHORPGM(MSG_Z_MIN);
  3924. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3925. SERIAL_ECHORPGM(MSG_Z_MAX);
  3926. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3927. SERIAL_PROTOCOLLN("");
  3928. }
  3929. }
  3930. else
  3931. {
  3932. SERIAL_ECHO_START;
  3933. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3934. SERIAL_ECHO(-zprobe_zoffset);
  3935. SERIAL_PROTOCOLLN("");
  3936. }
  3937. break;
  3938. }
  3939. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3940. #ifdef FILAMENTCHANGEENABLE
  3941. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3942. {
  3943. st_synchronize();
  3944. if (farm_mode)
  3945. {
  3946. prusa_statistics(22);
  3947. }
  3948. feedmultiplyBckp=feedmultiply;
  3949. int8_t TooLowZ = 0;
  3950. float target[4];
  3951. float lastpos[4];
  3952. target[X_AXIS]=current_position[X_AXIS];
  3953. target[Y_AXIS]=current_position[Y_AXIS];
  3954. target[Z_AXIS]=current_position[Z_AXIS];
  3955. target[E_AXIS]=current_position[E_AXIS];
  3956. lastpos[X_AXIS]=current_position[X_AXIS];
  3957. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3958. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3959. lastpos[E_AXIS]=current_position[E_AXIS];
  3960. //Restract extruder
  3961. if(code_seen('E'))
  3962. {
  3963. target[E_AXIS]+= code_value();
  3964. }
  3965. else
  3966. {
  3967. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3968. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3969. #endif
  3970. }
  3971. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3972. //Lift Z
  3973. if(code_seen('Z'))
  3974. {
  3975. target[Z_AXIS]+= code_value();
  3976. }
  3977. else
  3978. {
  3979. #ifdef FILAMENTCHANGE_ZADD
  3980. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3981. if(target[Z_AXIS] < 10){
  3982. target[Z_AXIS]+= 10 ;
  3983. TooLowZ = 1;
  3984. }else{
  3985. TooLowZ = 0;
  3986. }
  3987. #endif
  3988. }
  3989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3990. //Move XY to side
  3991. if(code_seen('X'))
  3992. {
  3993. target[X_AXIS]+= code_value();
  3994. }
  3995. else
  3996. {
  3997. #ifdef FILAMENTCHANGE_XPOS
  3998. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3999. #endif
  4000. }
  4001. if(code_seen('Y'))
  4002. {
  4003. target[Y_AXIS]= code_value();
  4004. }
  4005. else
  4006. {
  4007. #ifdef FILAMENTCHANGE_YPOS
  4008. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4009. #endif
  4010. }
  4011. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4012. // Unload filament
  4013. if(code_seen('L'))
  4014. {
  4015. target[E_AXIS]+= code_value();
  4016. }
  4017. else
  4018. {
  4019. #ifdef FILAMENTCHANGE_FINALRETRACT
  4020. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4021. #endif
  4022. }
  4023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4024. //finish moves
  4025. st_synchronize();
  4026. //disable extruder steppers so filament can be removed
  4027. disable_e0();
  4028. disable_e1();
  4029. disable_e2();
  4030. delay(100);
  4031. //Wait for user to insert filament
  4032. uint8_t cnt=0;
  4033. int counterBeep = 0;
  4034. lcd_wait_interact();
  4035. while(!lcd_clicked()){
  4036. cnt++;
  4037. manage_heater();
  4038. manage_inactivity(true);
  4039. if(cnt==0)
  4040. {
  4041. #if BEEPER > 0
  4042. if (counterBeep== 500){
  4043. counterBeep = 0;
  4044. }
  4045. SET_OUTPUT(BEEPER);
  4046. if (counterBeep== 0){
  4047. WRITE(BEEPER,HIGH);
  4048. }
  4049. if (counterBeep== 20){
  4050. WRITE(BEEPER,LOW);
  4051. }
  4052. counterBeep++;
  4053. #else
  4054. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4055. lcd_buzz(1000/6,100);
  4056. #else
  4057. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4058. #endif
  4059. #endif
  4060. }
  4061. }
  4062. //Filament inserted
  4063. WRITE(BEEPER,LOW);
  4064. //Feed the filament to the end of nozzle quickly
  4065. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4067. //Extrude some filament
  4068. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4070. //Wait for user to check the state
  4071. lcd_change_fil_state = 0;
  4072. lcd_loading_filament();
  4073. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4074. lcd_change_fil_state = 0;
  4075. lcd_alright();
  4076. switch(lcd_change_fil_state){
  4077. // Filament failed to load so load it again
  4078. case 2:
  4079. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4081. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4083. lcd_loading_filament();
  4084. break;
  4085. // Filament loaded properly but color is not clear
  4086. case 3:
  4087. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4088. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4089. lcd_loading_color();
  4090. break;
  4091. // Everything good
  4092. default:
  4093. lcd_change_success();
  4094. break;
  4095. }
  4096. }
  4097. //Not let's go back to print
  4098. //Feed a little of filament to stabilize pressure
  4099. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4100. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4101. //Retract
  4102. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4103. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4104. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4105. //Move XY back
  4106. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4107. //Move Z back
  4108. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4109. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4110. //Unretract
  4111. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4112. //Set E position to original
  4113. plan_set_e_position(lastpos[E_AXIS]);
  4114. //Recover feed rate
  4115. feedmultiply=feedmultiplyBckp;
  4116. char cmd[9];
  4117. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4118. enquecommand(cmd);
  4119. }
  4120. break;
  4121. #endif //FILAMENTCHANGEENABLE
  4122. case 907: // M907 Set digital trimpot motor current using axis codes.
  4123. {
  4124. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4125. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4126. if(code_seen('B')) digipot_current(4,code_value());
  4127. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4128. #endif
  4129. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4130. if(code_seen('X')) digipot_current(0, code_value());
  4131. #endif
  4132. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4133. if(code_seen('Z')) digipot_current(1, code_value());
  4134. #endif
  4135. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4136. if(code_seen('E')) digipot_current(2, code_value());
  4137. #endif
  4138. #ifdef DIGIPOT_I2C
  4139. // this one uses actual amps in floating point
  4140. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4141. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4142. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4143. #endif
  4144. }
  4145. break;
  4146. case 908: // M908 Control digital trimpot directly.
  4147. {
  4148. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4149. uint8_t channel,current;
  4150. if(code_seen('P')) channel=code_value();
  4151. if(code_seen('S')) current=code_value();
  4152. digitalPotWrite(channel, current);
  4153. #endif
  4154. }
  4155. break;
  4156. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4157. {
  4158. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4159. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4160. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4161. if(code_seen('B')) microstep_mode(4,code_value());
  4162. microstep_readings();
  4163. #endif
  4164. }
  4165. break;
  4166. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4167. {
  4168. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4169. if(code_seen('S')) switch((int)code_value())
  4170. {
  4171. case 1:
  4172. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4173. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4174. break;
  4175. case 2:
  4176. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4177. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4178. break;
  4179. }
  4180. microstep_readings();
  4181. #endif
  4182. }
  4183. break;
  4184. case 999: // M999: Restart after being stopped
  4185. Stopped = false;
  4186. lcd_reset_alert_level();
  4187. gcode_LastN = Stopped_gcode_LastN;
  4188. FlushSerialRequestResend();
  4189. break;
  4190. }
  4191. } // end if(code_seen('M')) (end of M codes)
  4192. else if(code_seen('T'))
  4193. {
  4194. tmp_extruder = code_value();
  4195. if(tmp_extruder >= EXTRUDERS) {
  4196. SERIAL_ECHO_START;
  4197. SERIAL_ECHO("T");
  4198. SERIAL_ECHO(tmp_extruder);
  4199. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4200. }
  4201. else {
  4202. boolean make_move = false;
  4203. if(code_seen('F')) {
  4204. make_move = true;
  4205. next_feedrate = code_value();
  4206. if(next_feedrate > 0.0) {
  4207. feedrate = next_feedrate;
  4208. }
  4209. }
  4210. #if EXTRUDERS > 1
  4211. if(tmp_extruder != active_extruder) {
  4212. // Save current position to return to after applying extruder offset
  4213. memcpy(destination, current_position, sizeof(destination));
  4214. // Offset extruder (only by XY)
  4215. int i;
  4216. for(i = 0; i < 2; i++) {
  4217. current_position[i] = current_position[i] -
  4218. extruder_offset[i][active_extruder] +
  4219. extruder_offset[i][tmp_extruder];
  4220. }
  4221. // Set the new active extruder and position
  4222. active_extruder = tmp_extruder;
  4223. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4224. // Move to the old position if 'F' was in the parameters
  4225. if(make_move && Stopped == false) {
  4226. prepare_move();
  4227. }
  4228. }
  4229. #endif
  4230. SERIAL_ECHO_START;
  4231. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4232. SERIAL_PROTOCOLLN((int)active_extruder);
  4233. }
  4234. } // end if(code_seen('T')) (end of T codes)
  4235. else
  4236. {
  4237. SERIAL_ECHO_START;
  4238. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4239. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4240. SERIAL_ECHOLNPGM("\"");
  4241. }
  4242. ClearToSend();
  4243. }
  4244. void FlushSerialRequestResend()
  4245. {
  4246. //char cmdbuffer[bufindr][100]="Resend:";
  4247. MYSERIAL.flush();
  4248. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4249. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4250. ClearToSend();
  4251. }
  4252. // Confirm the execution of a command, if sent from a serial line.
  4253. // Execution of a command from a SD card will not be confirmed.
  4254. void ClearToSend()
  4255. {
  4256. previous_millis_cmd = millis();
  4257. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4258. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4259. }
  4260. void get_coordinates()
  4261. {
  4262. bool seen[4]={false,false,false,false};
  4263. for(int8_t i=0; i < NUM_AXIS; i++) {
  4264. if(code_seen(axis_codes[i]))
  4265. {
  4266. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4267. seen[i]=true;
  4268. }
  4269. else destination[i] = current_position[i]; //Are these else lines really needed?
  4270. }
  4271. if(code_seen('F')) {
  4272. next_feedrate = code_value();
  4273. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4274. }
  4275. }
  4276. void get_arc_coordinates()
  4277. {
  4278. #ifdef SF_ARC_FIX
  4279. bool relative_mode_backup = relative_mode;
  4280. relative_mode = true;
  4281. #endif
  4282. get_coordinates();
  4283. #ifdef SF_ARC_FIX
  4284. relative_mode=relative_mode_backup;
  4285. #endif
  4286. if(code_seen('I')) {
  4287. offset[0] = code_value();
  4288. }
  4289. else {
  4290. offset[0] = 0.0;
  4291. }
  4292. if(code_seen('J')) {
  4293. offset[1] = code_value();
  4294. }
  4295. else {
  4296. offset[1] = 0.0;
  4297. }
  4298. }
  4299. void clamp_to_software_endstops(float target[3])
  4300. {
  4301. world2machine_clamp(target[0], target[1]);
  4302. // Clamp the Z coordinate.
  4303. if (min_software_endstops) {
  4304. float negative_z_offset = 0;
  4305. #ifdef ENABLE_AUTO_BED_LEVELING
  4306. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4307. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4308. #endif
  4309. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4310. }
  4311. if (max_software_endstops) {
  4312. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4313. }
  4314. }
  4315. #ifdef MESH_BED_LEVELING
  4316. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4317. float dx = x - current_position[X_AXIS];
  4318. float dy = y - current_position[Y_AXIS];
  4319. float dz = z - current_position[Z_AXIS];
  4320. int n_segments = 0;
  4321. if (mbl.active) {
  4322. float len = abs(dx) + abs(dy);
  4323. if (len > 0)
  4324. // Split to 3cm segments or shorter.
  4325. n_segments = int(ceil(len / 30.f));
  4326. }
  4327. if (n_segments > 1) {
  4328. float de = e - current_position[E_AXIS];
  4329. for (int i = 1; i < n_segments; ++ i) {
  4330. float t = float(i) / float(n_segments);
  4331. plan_buffer_line(
  4332. current_position[X_AXIS] + t * dx,
  4333. current_position[Y_AXIS] + t * dy,
  4334. current_position[Z_AXIS] + t * dz,
  4335. current_position[E_AXIS] + t * de,
  4336. feed_rate, extruder);
  4337. }
  4338. }
  4339. // The rest of the path.
  4340. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4341. current_position[X_AXIS] = x;
  4342. current_position[Y_AXIS] = y;
  4343. current_position[Z_AXIS] = z;
  4344. current_position[E_AXIS] = e;
  4345. }
  4346. #endif // MESH_BED_LEVELING
  4347. void prepare_move()
  4348. {
  4349. clamp_to_software_endstops(destination);
  4350. previous_millis_cmd = millis();
  4351. // Do not use feedmultiply for E or Z only moves
  4352. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4353. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4354. }
  4355. else {
  4356. #ifdef MESH_BED_LEVELING
  4357. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4358. #else
  4359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4360. #endif
  4361. }
  4362. for(int8_t i=0; i < NUM_AXIS; i++) {
  4363. current_position[i] = destination[i];
  4364. }
  4365. }
  4366. void prepare_arc_move(char isclockwise) {
  4367. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4368. // Trace the arc
  4369. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4370. // As far as the parser is concerned, the position is now == target. In reality the
  4371. // motion control system might still be processing the action and the real tool position
  4372. // in any intermediate location.
  4373. for(int8_t i=0; i < NUM_AXIS; i++) {
  4374. current_position[i] = destination[i];
  4375. }
  4376. previous_millis_cmd = millis();
  4377. }
  4378. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4379. #if defined(FAN_PIN)
  4380. #if CONTROLLERFAN_PIN == FAN_PIN
  4381. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4382. #endif
  4383. #endif
  4384. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4385. unsigned long lastMotorCheck = 0;
  4386. void controllerFan()
  4387. {
  4388. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4389. {
  4390. lastMotorCheck = millis();
  4391. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4392. #if EXTRUDERS > 2
  4393. || !READ(E2_ENABLE_PIN)
  4394. #endif
  4395. #if EXTRUDER > 1
  4396. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4397. || !READ(X2_ENABLE_PIN)
  4398. #endif
  4399. || !READ(E1_ENABLE_PIN)
  4400. #endif
  4401. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4402. {
  4403. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4404. }
  4405. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4406. {
  4407. digitalWrite(CONTROLLERFAN_PIN, 0);
  4408. analogWrite(CONTROLLERFAN_PIN, 0);
  4409. }
  4410. else
  4411. {
  4412. // allows digital or PWM fan output to be used (see M42 handling)
  4413. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4414. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4415. }
  4416. }
  4417. }
  4418. #endif
  4419. #ifdef TEMP_STAT_LEDS
  4420. static bool blue_led = false;
  4421. static bool red_led = false;
  4422. static uint32_t stat_update = 0;
  4423. void handle_status_leds(void) {
  4424. float max_temp = 0.0;
  4425. if(millis() > stat_update) {
  4426. stat_update += 500; // Update every 0.5s
  4427. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4428. max_temp = max(max_temp, degHotend(cur_extruder));
  4429. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4430. }
  4431. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4432. max_temp = max(max_temp, degTargetBed());
  4433. max_temp = max(max_temp, degBed());
  4434. #endif
  4435. if((max_temp > 55.0) && (red_led == false)) {
  4436. digitalWrite(STAT_LED_RED, 1);
  4437. digitalWrite(STAT_LED_BLUE, 0);
  4438. red_led = true;
  4439. blue_led = false;
  4440. }
  4441. if((max_temp < 54.0) && (blue_led == false)) {
  4442. digitalWrite(STAT_LED_RED, 0);
  4443. digitalWrite(STAT_LED_BLUE, 1);
  4444. red_led = false;
  4445. blue_led = true;
  4446. }
  4447. }
  4448. }
  4449. #endif
  4450. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4451. {
  4452. #if defined(KILL_PIN) && KILL_PIN > -1
  4453. static int killCount = 0; // make the inactivity button a bit less responsive
  4454. const int KILL_DELAY = 10000;
  4455. #endif
  4456. if(buflen < (BUFSIZE-1)){
  4457. get_command();
  4458. }
  4459. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4460. if(max_inactive_time)
  4461. kill();
  4462. if(stepper_inactive_time) {
  4463. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4464. {
  4465. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4466. disable_x();
  4467. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4468. disable_y();
  4469. disable_z();
  4470. disable_e0();
  4471. disable_e1();
  4472. disable_e2();
  4473. }
  4474. }
  4475. }
  4476. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4477. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4478. {
  4479. chdkActive = false;
  4480. WRITE(CHDK, LOW);
  4481. }
  4482. #endif
  4483. #if defined(KILL_PIN) && KILL_PIN > -1
  4484. // Check if the kill button was pressed and wait just in case it was an accidental
  4485. // key kill key press
  4486. // -------------------------------------------------------------------------------
  4487. if( 0 == READ(KILL_PIN) )
  4488. {
  4489. killCount++;
  4490. }
  4491. else if (killCount > 0)
  4492. {
  4493. killCount--;
  4494. }
  4495. // Exceeded threshold and we can confirm that it was not accidental
  4496. // KILL the machine
  4497. // ----------------------------------------------------------------
  4498. if ( killCount >= KILL_DELAY)
  4499. {
  4500. kill();
  4501. }
  4502. #endif
  4503. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4504. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4505. #endif
  4506. #ifdef EXTRUDER_RUNOUT_PREVENT
  4507. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4508. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4509. {
  4510. bool oldstatus=READ(E0_ENABLE_PIN);
  4511. enable_e0();
  4512. float oldepos=current_position[E_AXIS];
  4513. float oldedes=destination[E_AXIS];
  4514. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4515. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4516. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4517. current_position[E_AXIS]=oldepos;
  4518. destination[E_AXIS]=oldedes;
  4519. plan_set_e_position(oldepos);
  4520. previous_millis_cmd=millis();
  4521. st_synchronize();
  4522. WRITE(E0_ENABLE_PIN,oldstatus);
  4523. }
  4524. #endif
  4525. #ifdef TEMP_STAT_LEDS
  4526. handle_status_leds();
  4527. #endif
  4528. check_axes_activity();
  4529. }
  4530. void kill(const char *full_screen_message)
  4531. {
  4532. cli(); // Stop interrupts
  4533. disable_heater();
  4534. disable_x();
  4535. // SERIAL_ECHOLNPGM("kill - disable Y");
  4536. disable_y();
  4537. disable_z();
  4538. disable_e0();
  4539. disable_e1();
  4540. disable_e2();
  4541. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4542. pinMode(PS_ON_PIN,INPUT);
  4543. #endif
  4544. SERIAL_ERROR_START;
  4545. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4546. if (full_screen_message != NULL) {
  4547. SERIAL_ERRORLNRPGM(full_screen_message);
  4548. lcd_display_message_fullscreen_P(full_screen_message);
  4549. } else {
  4550. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4551. }
  4552. // FMC small patch to update the LCD before ending
  4553. sei(); // enable interrupts
  4554. for ( int i=5; i--; lcd_update())
  4555. {
  4556. delay(200);
  4557. }
  4558. cli(); // disable interrupts
  4559. suicide();
  4560. while(1) { /* Intentionally left empty */ } // Wait for reset
  4561. }
  4562. void Stop()
  4563. {
  4564. disable_heater();
  4565. if(Stopped == false) {
  4566. Stopped = true;
  4567. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4568. SERIAL_ERROR_START;
  4569. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4570. LCD_MESSAGERPGM(MSG_STOPPED);
  4571. }
  4572. }
  4573. bool IsStopped() { return Stopped; };
  4574. #ifdef FAST_PWM_FAN
  4575. void setPwmFrequency(uint8_t pin, int val)
  4576. {
  4577. val &= 0x07;
  4578. switch(digitalPinToTimer(pin))
  4579. {
  4580. #if defined(TCCR0A)
  4581. case TIMER0A:
  4582. case TIMER0B:
  4583. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4584. // TCCR0B |= val;
  4585. break;
  4586. #endif
  4587. #if defined(TCCR1A)
  4588. case TIMER1A:
  4589. case TIMER1B:
  4590. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4591. // TCCR1B |= val;
  4592. break;
  4593. #endif
  4594. #if defined(TCCR2)
  4595. case TIMER2:
  4596. case TIMER2:
  4597. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4598. TCCR2 |= val;
  4599. break;
  4600. #endif
  4601. #if defined(TCCR2A)
  4602. case TIMER2A:
  4603. case TIMER2B:
  4604. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4605. TCCR2B |= val;
  4606. break;
  4607. #endif
  4608. #if defined(TCCR3A)
  4609. case TIMER3A:
  4610. case TIMER3B:
  4611. case TIMER3C:
  4612. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4613. TCCR3B |= val;
  4614. break;
  4615. #endif
  4616. #if defined(TCCR4A)
  4617. case TIMER4A:
  4618. case TIMER4B:
  4619. case TIMER4C:
  4620. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4621. TCCR4B |= val;
  4622. break;
  4623. #endif
  4624. #if defined(TCCR5A)
  4625. case TIMER5A:
  4626. case TIMER5B:
  4627. case TIMER5C:
  4628. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4629. TCCR5B |= val;
  4630. break;
  4631. #endif
  4632. }
  4633. }
  4634. #endif //FAST_PWM_FAN
  4635. bool setTargetedHotend(int code){
  4636. tmp_extruder = active_extruder;
  4637. if(code_seen('T')) {
  4638. tmp_extruder = code_value();
  4639. if(tmp_extruder >= EXTRUDERS) {
  4640. SERIAL_ECHO_START;
  4641. switch(code){
  4642. case 104:
  4643. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4644. break;
  4645. case 105:
  4646. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4647. break;
  4648. case 109:
  4649. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4650. break;
  4651. case 218:
  4652. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4653. break;
  4654. case 221:
  4655. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4656. break;
  4657. }
  4658. SERIAL_ECHOLN(tmp_extruder);
  4659. return true;
  4660. }
  4661. }
  4662. return false;
  4663. }
  4664. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4665. {
  4666. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4667. {
  4668. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4669. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4670. }
  4671. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4672. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4673. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4674. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4675. total_filament_used = 0;
  4676. }
  4677. float calculate_volumetric_multiplier(float diameter) {
  4678. float area = .0;
  4679. float radius = .0;
  4680. radius = diameter * .5;
  4681. if (! volumetric_enabled || radius == 0) {
  4682. area = 1;
  4683. }
  4684. else {
  4685. area = M_PI * pow(radius, 2);
  4686. }
  4687. return 1.0 / area;
  4688. }
  4689. void calculate_volumetric_multipliers() {
  4690. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4691. #if EXTRUDERS > 1
  4692. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4693. #if EXTRUDERS > 2
  4694. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4695. #endif
  4696. #endif
  4697. }
  4698. void delay_keep_alive(int ms)
  4699. {
  4700. for (;;) {
  4701. manage_heater();
  4702. // Manage inactivity, but don't disable steppers on timeout.
  4703. manage_inactivity(true);
  4704. lcd_update();
  4705. if (ms == 0)
  4706. break;
  4707. else if (ms >= 50) {
  4708. delay(50);
  4709. ms -= 50;
  4710. } else {
  4711. delay(ms);
  4712. ms = 0;
  4713. }
  4714. }
  4715. }