planner.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. /*
  2. planner.h - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. // This module is to be considered a sub-module of stepper.c. Please don't include
  17. // this file from any other module.
  18. #ifndef planner_h
  19. #define planner_h
  20. #include "Marlin.h"
  21. #ifdef ENABLE_AUTO_BED_LEVELING
  22. #include "vector_3.h"
  23. #endif // ENABLE_AUTO_BED_LEVELING
  24. enum BlockFlag {
  25. // Planner flag to recalculate trapezoids on entry junction.
  26. // This flag has an optimization purpose only.
  27. BLOCK_FLAG_RECALCULATE = 1,
  28. // Planner flag for nominal speed always reached. That means, the segment is long enough, that the nominal speed
  29. // may be reached if accelerating from a safe speed (in the regard of jerking from zero speed).
  30. BLOCK_FLAG_NOMINAL_LENGTH = 2,
  31. // If set, the machine will start from a halt at the start of this block,
  32. // respecting the maximum allowed jerk.
  33. BLOCK_FLAG_START_FROM_FULL_HALT = 4,
  34. // If set, the stepper interrupt expects, that the number of steps to tick will be lower
  35. // than 32767, therefore the DDA algorithm may run with 16bit resolution only.
  36. // In addition, the stepper routine will not do any end stop checking for higher performance.
  37. BLOCK_FLAG_DDA_LOWRES = 8,
  38. // Block starts with Zeroed E counter
  39. BLOCK_FLAG_E_RESET = 16,
  40. };
  41. union dda_isteps_t
  42. {
  43. int32_t wide;
  44. struct {
  45. int16_t lo;
  46. int16_t hi;
  47. };
  48. };
  49. union dda_usteps_t
  50. {
  51. uint32_t wide;
  52. struct {
  53. uint16_t lo;
  54. uint16_t hi;
  55. };
  56. };
  57. // This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
  58. // the source g-code and may never actually be reached if acceleration management is active.
  59. typedef struct {
  60. // Fields used by the bresenham algorithm for tracing the line
  61. // steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().
  62. dda_isteps_t steps_x, steps_y, steps_z, steps_e; // Step count along each axis
  63. dda_usteps_t step_event_count; // The number of step events required to complete this block
  64. uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
  65. unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  66. unsigned char active_extruder; // Selects the active extruder
  67. // accelerate_until and decelerate_after are set by calculate_trapezoid_for_block() and they need to be synchronized with the stepper interrupt controller.
  68. uint32_t accelerate_until; // The index of the step event on which to stop acceleration
  69. uint32_t decelerate_after; // The index of the step event on which to start decelerating
  70. // Fields used by the motion planner to manage acceleration
  71. // float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
  72. // The nominal speed for this block in mm/sec.
  73. // This speed may or may not be reached due to the jerk and acceleration limits.
  74. float nominal_speed;
  75. // Entry speed at previous-current junction in mm/sec, respecting the acceleration and jerk limits.
  76. // The entry speed limit of the current block equals the exit speed of the preceding block.
  77. float entry_speed;
  78. // Maximum allowable junction entry speed in mm/sec. This value is also a maximum exit speed of the previous block.
  79. float max_entry_speed;
  80. // The total travel of this block in mm
  81. float millimeters;
  82. // acceleration mm/sec^2
  83. float acceleration;
  84. // Bit flags defined by the BlockFlag enum.
  85. uint8_t flag;
  86. // Settings for the trapezoid generator (runs inside an interrupt handler).
  87. // Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.
  88. unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
  89. unsigned long initial_rate; // The jerk-adjusted step rate at start of block
  90. unsigned long final_rate; // The minimal rate at exit
  91. unsigned long acceleration_st; // acceleration steps/sec^2
  92. //FIXME does it have to be int? Probably uint8_t would be just fine. Need to change in other places as well
  93. int fan_speed;
  94. volatile char busy;
  95. // Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster.
  96. float speed_factor;
  97. #ifdef LIN_ADVANCE
  98. bool use_advance_lead; // Whether the current block uses LA
  99. uint16_t advance_rate, // Step-rate for extruder speed
  100. max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
  101. final_adv_steps; // advance steps due to exit speed
  102. uint8_t advance_step_loops; // Number of stepper ticks for each advance isr
  103. float adv_comp; // Precomputed E compression factor
  104. #endif
  105. // Save/recovery state data
  106. float gcode_start_position[NUM_AXIS]; // Start (abs mm) of the original Gcode instruction
  107. uint16_t segment_idx; // The index of the for loop that generates segments
  108. uint16_t gcode_feedrate; // Default and/or move feedrate
  109. uint16_t sdlen; // Length of the Gcode instruction
  110. } block_t;
  111. #ifdef LIN_ADVANCE
  112. extern float extruder_advance_K; // Linear-advance K factor
  113. #endif
  114. #ifdef ENABLE_AUTO_BED_LEVELING
  115. // this holds the required transform to compensate for bed level
  116. extern matrix_3x3 plan_bed_level_matrix;
  117. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  118. // Initialize the motion plan subsystem
  119. void plan_init();
  120. // Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
  121. // millimaters. Feed rate specifies the speed of the motion.
  122. #ifdef ENABLE_AUTO_BED_LEVELING
  123. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
  124. // Get the position applying the bed level matrix if enabled
  125. vector_3 plan_get_position();
  126. #else
  127. /// Extracting common call of
  128. /// plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], ...
  129. /// saves almost 5KB.
  130. /// The performance penalty is negligible, since these planned lines are usually maintenance moves with the extruder.
  131. void plan_buffer_line_curposXYZE(float feed_rate);
  132. void plan_buffer_line_destinationXYZE(float feed_rate);
  133. void plan_set_position_curposXYZE();
  134. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_start_position = NULL, uint16_t segment_idx = 0);
  135. //void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
  136. #endif // ENABLE_AUTO_BED_LEVELING
  137. // Set position. Used for G92 instructions.
  138. //#ifdef ENABLE_AUTO_BED_LEVELING
  139. void plan_set_position(float x, float y, float z, const float &e);
  140. //#else
  141. //void plan_set_position(const float &x, const float &y, const float &z, const float &e);
  142. //#endif // ENABLE_AUTO_BED_LEVELING
  143. void plan_set_z_position(const float &z);
  144. void plan_set_e_position(const float &e);
  145. // Reset the E position to zero at the start of the next segment
  146. void plan_reset_next_e();
  147. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  148. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  149. extern bool e_active();
  150. void check_axes_activity();
  151. // Use M203 to override by software
  152. extern float* max_feedrate;
  153. // Use M201 to override by software
  154. extern unsigned long* max_acceleration_units_per_sq_second;
  155. extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  156. extern long position[NUM_AXIS];
  157. #ifdef AUTOTEMP
  158. extern bool autotemp_enabled;
  159. extern float autotemp_max;
  160. extern float autotemp_min;
  161. extern float autotemp_factor;
  162. #endif
  163. // Check for BLOCK_BUFFER_SIZE requirements
  164. static_assert(!(BLOCK_BUFFER_SIZE & (BLOCK_BUFFER_SIZE - 1)),
  165. "BLOCK_BUFFER_SIZE must be a power of two");
  166. static_assert(BLOCK_BUFFER_SIZE <= (UINT8_MAX>>1),
  167. "BLOCK_BUFFER_SIZE too large for uint8_t");
  168. extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  169. // Index of the next block to be pushed into the planner queue.
  170. extern volatile uint8_t block_buffer_head;
  171. // Index of the first block in the planner queue.
  172. // This is the block, which is being currently processed by the stepper routine,
  173. // or which is first to be processed by the stepper routine.
  174. extern volatile uint8_t block_buffer_tail;
  175. // Called when the current block is no longer needed. Discards the block and makes the memory
  176. // available for new blocks.
  177. FORCE_INLINE void plan_discard_current_block()
  178. {
  179. if (block_buffer_head != block_buffer_tail) {
  180. block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  181. }
  182. }
  183. // Gets the current block. This is the block to be exectuted by the stepper routine.
  184. // Mark this block as busy, so its velocities and acceperations will be no more recalculated
  185. // by the planner routine.
  186. // Returns NULL if buffer empty
  187. FORCE_INLINE block_t *plan_get_current_block()
  188. {
  189. if (block_buffer_head == block_buffer_tail) {
  190. return(NULL);
  191. }
  192. block_t *block = &block_buffer[block_buffer_tail];
  193. block->busy = true;
  194. return(block);
  195. }
  196. // Returns true if the buffer has a queued block, false otherwise
  197. FORCE_INLINE bool blocks_queued() {
  198. return (block_buffer_head != block_buffer_tail);
  199. }
  200. //return the nr of buffered moves
  201. FORCE_INLINE uint8_t moves_planned() {
  202. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  203. }
  204. FORCE_INLINE bool planner_queue_full() {
  205. uint8_t next_block_index = block_buffer_head;
  206. if (++ next_block_index == BLOCK_BUFFER_SIZE)
  207. next_block_index = 0;
  208. return block_buffer_tail == next_block_index;
  209. }
  210. // Reset machine position from stepper counters
  211. extern void planner_reset_position();
  212. // Abort the stepper routine, clean up the block queue,
  213. // wait for the steppers to stop,
  214. // update planner's current position and the current_position of the front end.
  215. extern void planner_abort_hard();
  216. extern bool planner_aborted;
  217. #ifdef PREVENT_DANGEROUS_EXTRUDE
  218. extern int extrude_min_temp;
  219. void set_extrude_min_temp(int temp);
  220. #endif
  221. void reset_acceleration_rates();
  222. #endif
  223. void update_mode_profile();
  224. uint8_t number_of_blocks();
  225. // #define PLANNER_DIAGNOSTICS
  226. #ifdef PLANNER_DIAGNOSTICS
  227. // Diagnostic functions to display planner buffer underflow on the display.
  228. extern uint8_t planner_queue_min();
  229. // Diagnostic function: Reset the minimum planner segments.
  230. extern void planner_queue_min_reset();
  231. #endif /* PLANNER_DIAGNOSTICS */
  232. extern void planner_add_sd_length(uint16_t sdlen);
  233. extern uint16_t planner_calc_sd_length();