planner.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. unsigned long minsegmenttime;
  54. // Use M203 to override by software
  55. float max_feedrate_silent[NUM_AXIS]; // max speeds for silent mode
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long max_acceleration_units_per_sq_second_silent[NUM_AXIS];
  59. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  60. float minimumfeedrate;
  61. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  62. // Jerk is a maximum immediate velocity change.
  63. float max_jerk[NUM_AXIS];
  64. float mintravelfeedrate;
  65. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  66. #ifdef ENABLE_AUTO_BED_LEVELING
  67. // this holds the required transform to compensate for bed level
  68. matrix_3x3 plan_bed_level_matrix = {
  69. 1.0, 0.0, 0.0,
  70. 0.0, 1.0, 0.0,
  71. 0.0, 0.0, 1.0,
  72. };
  73. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  74. // The current position of the tool in absolute steps
  75. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  76. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  77. static float previous_nominal_speed; // Nominal speed of previous path line segment
  78. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  79. uint8_t maxlimit_status;
  80. #ifdef AUTOTEMP
  81. float autotemp_max=250;
  82. float autotemp_min=210;
  83. float autotemp_factor=0.1;
  84. bool autotemp_enabled=false;
  85. #endif
  86. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  87. //===========================================================================
  88. //=================semi-private variables, used in inline functions =====
  89. //===========================================================================
  90. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  91. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  92. volatile unsigned char block_buffer_tail; // Index of the block to process now
  93. #ifdef PLANNER_DIAGNOSTICS
  94. // Diagnostic function: Minimum number of planned moves since the last
  95. static uint8_t g_cntr_planner_queue_min = 0;
  96. #endif /* PLANNER_DIAGNOSTICS */
  97. //===========================================================================
  98. //=============================private variables ============================
  99. //===========================================================================
  100. #ifdef PREVENT_DANGEROUS_EXTRUDE
  101. float extrude_min_temp=EXTRUDE_MINTEMP;
  102. #endif
  103. #ifdef LIN_ADVANCE
  104. float extruder_advance_k = LIN_ADVANCE_K,
  105. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  106. position_float[NUM_AXIS] = { 0 };
  107. #endif
  108. // Returns the index of the next block in the ring buffer
  109. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  110. static inline int8_t next_block_index(int8_t block_index) {
  111. if (++ block_index == BLOCK_BUFFER_SIZE)
  112. block_index = 0;
  113. return block_index;
  114. }
  115. // Returns the index of the previous block in the ring buffer
  116. static inline int8_t prev_block_index(int8_t block_index) {
  117. if (block_index == 0)
  118. block_index = BLOCK_BUFFER_SIZE;
  119. -- block_index;
  120. return block_index;
  121. }
  122. //===========================================================================
  123. //=============================functions ============================
  124. //===========================================================================
  125. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  126. // given acceleration:
  127. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  128. {
  129. if (acceleration!=0) {
  130. return((target_rate*target_rate-initial_rate*initial_rate)/
  131. (2.0*acceleration));
  132. }
  133. else {
  134. return 0.0; // acceleration was 0, set acceleration distance to 0
  135. }
  136. }
  137. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  138. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  139. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  140. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  141. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  142. {
  143. if (acceleration!=0) {
  144. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  145. (4.0*acceleration) );
  146. }
  147. else {
  148. return 0.0; // acceleration was 0, set intersection distance to 0
  149. }
  150. }
  151. // Minimum stepper rate 120Hz.
  152. #define MINIMAL_STEP_RATE 120
  153. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  154. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  155. {
  156. // These two lines are the only floating point calculations performed in this routine.
  157. // initial_rate, final_rate in Hz.
  158. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  159. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  160. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  161. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  162. // Limit minimal step rate (Otherwise the timer will overflow.)
  163. if (initial_rate < MINIMAL_STEP_RATE)
  164. initial_rate = MINIMAL_STEP_RATE;
  165. if (initial_rate > block->nominal_rate)
  166. initial_rate = block->nominal_rate;
  167. if (final_rate < MINIMAL_STEP_RATE)
  168. final_rate = MINIMAL_STEP_RATE;
  169. if (final_rate > block->nominal_rate)
  170. final_rate = block->nominal_rate;
  171. uint32_t acceleration = block->acceleration_st;
  172. if (acceleration == 0)
  173. // Don't allow zero acceleration.
  174. acceleration = 1;
  175. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  176. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  177. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  178. //FIXME assert that this result fits a 64bit unsigned int.
  179. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  180. uint32_t final_rate_sqr = final_rate*final_rate;
  181. uint32_t acceleration_x2 = acceleration << 1;
  182. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  183. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  184. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  185. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  186. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  187. // Size of Plateau of Nominal Rate.
  188. uint32_t plateau_steps = 0;
  189. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  190. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  191. // in order to reach the final_rate exactly at the end of this block.
  192. if (accel_decel_steps < block->step_event_count.wide) {
  193. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  194. } else {
  195. uint32_t acceleration_x4 = acceleration << 2;
  196. // Avoid negative numbers
  197. if (final_rate_sqr >= initial_rate_sqr) {
  198. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  199. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  200. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  201. #if 0
  202. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  203. #else
  204. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  205. if (block->step_event_count.wide & 1)
  206. accelerate_steps += acceleration_x2;
  207. accelerate_steps /= acceleration_x4;
  208. accelerate_steps += (block->step_event_count.wide >> 1);
  209. #endif
  210. if (accelerate_steps > block->step_event_count.wide)
  211. accelerate_steps = block->step_event_count.wide;
  212. } else {
  213. #if 0
  214. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  215. #else
  216. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  217. if (block->step_event_count.wide & 1)
  218. decelerate_steps += acceleration_x2;
  219. decelerate_steps /= acceleration_x4;
  220. decelerate_steps += (block->step_event_count.wide >> 1);
  221. #endif
  222. if (decelerate_steps > block->step_event_count.wide)
  223. decelerate_steps = block->step_event_count.wide;
  224. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  225. }
  226. }
  227. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  228. // This block locks the interrupts globally for 4.38 us,
  229. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  230. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  231. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  232. if (! block->busy) { // Don't update variables if block is busy.
  233. block->accelerate_until = accelerate_steps;
  234. block->decelerate_after = accelerate_steps+plateau_steps;
  235. block->initial_rate = initial_rate;
  236. block->final_rate = final_rate;
  237. }
  238. CRITICAL_SECTION_END;
  239. }
  240. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  241. // decceleration within the allotted distance.
  242. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  243. {
  244. // assert(decceleration < 0);
  245. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  246. }
  247. // Recalculates the motion plan according to the following algorithm:
  248. //
  249. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  250. // so that:
  251. // a. The junction jerk is within the set limit
  252. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  253. // acceleration.
  254. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  255. // a. The speed increase within one block would require faster accelleration than the one, true
  256. // constant acceleration.
  257. //
  258. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  259. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  260. // the set limit. Finally it will:
  261. //
  262. // 3. Recalculate trapezoids for all blocks.
  263. //
  264. //FIXME This routine is called 15x every time a new line is added to the planner,
  265. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  266. // if the CPU is found lacking computational power.
  267. //
  268. // Following sources may be used to optimize the 8-bit AVR code:
  269. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  270. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  271. //
  272. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  273. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  274. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  275. //
  276. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  277. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  278. // https://github.com/rekka/avrmultiplication
  279. //
  280. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  281. // https://courses.cit.cornell.edu/ee476/Math/
  282. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  283. //
  284. void planner_recalculate(const float &safe_final_speed)
  285. {
  286. // Reverse pass
  287. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  288. // by consuming the blocks, therefore shortening the queue.
  289. unsigned char tail = block_buffer_tail;
  290. uint8_t block_index;
  291. block_t *prev, *current, *next;
  292. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  293. // At least three blocks are in the queue?
  294. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  295. if (n_blocks >= 3) {
  296. // Initialize the last tripple of blocks.
  297. block_index = prev_block_index(block_buffer_head);
  298. next = block_buffer + block_index;
  299. current = block_buffer + (block_index = prev_block_index(block_index));
  300. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  301. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  302. // 1) it may already be running at the stepper interrupt,
  303. // 2) there is no way to limit it when going in the forward direction.
  304. while (block_index != tail) {
  305. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  306. // Don't modify the entry velocity of the starting block.
  307. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  308. // for the stepper interrupt routine to use them.
  309. tail = block_index;
  310. // Update the number of blocks to process.
  311. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  312. // SERIAL_ECHOLNPGM("START");
  313. break;
  314. }
  315. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  316. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  317. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  318. if (current->entry_speed != current->max_entry_speed) {
  319. // assert(current->entry_speed < current->max_entry_speed);
  320. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  321. // segment and the maximum acceleration allowed for this segment.
  322. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  323. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  324. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  325. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  326. // together with an assembly 32bit->16bit sqrt function.
  327. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  328. current->max_entry_speed :
  329. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  330. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  331. current->flag |= BLOCK_FLAG_RECALCULATE;
  332. }
  333. next = current;
  334. current = block_buffer + (block_index = prev_block_index(block_index));
  335. }
  336. }
  337. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  338. // Forward pass and recalculate the trapezoids.
  339. if (n_blocks >= 2) {
  340. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  341. block_index = tail;
  342. prev = block_buffer + block_index;
  343. current = block_buffer + (block_index = next_block_index(block_index));
  344. do {
  345. // If the previous block is an acceleration block, but it is not long enough to complete the
  346. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  347. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  348. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  349. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  350. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  351. // Check for junction speed change
  352. if (current->entry_speed != entry_speed) {
  353. current->entry_speed = entry_speed;
  354. current->flag |= BLOCK_FLAG_RECALCULATE;
  355. }
  356. }
  357. // Recalculate if current block entry or exit junction speed has changed.
  358. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  359. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  360. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  361. // Reset current only to ensure next trapezoid is computed.
  362. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  363. }
  364. prev = current;
  365. current = block_buffer + (block_index = next_block_index(block_index));
  366. } while (block_index != block_buffer_head);
  367. }
  368. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  369. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  370. current = block_buffer + prev_block_index(block_buffer_head);
  371. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  372. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  373. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  374. }
  375. void plan_init() {
  376. block_buffer_head = 0;
  377. block_buffer_tail = 0;
  378. memset(position, 0, sizeof(position)); // clear position
  379. #ifdef LIN_ADVANCE
  380. memset(position_float, 0, sizeof(position)); // clear position
  381. #endif
  382. previous_speed[0] = 0.0;
  383. previous_speed[1] = 0.0;
  384. previous_speed[2] = 0.0;
  385. previous_speed[3] = 0.0;
  386. previous_nominal_speed = 0.0;
  387. }
  388. #ifdef AUTOTEMP
  389. void getHighESpeed()
  390. {
  391. static float oldt=0;
  392. if(!autotemp_enabled){
  393. return;
  394. }
  395. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  396. return; //do nothing
  397. }
  398. float high=0.0;
  399. uint8_t block_index = block_buffer_tail;
  400. while(block_index != block_buffer_head) {
  401. if((block_buffer[block_index].steps_x.wide != 0) ||
  402. (block_buffer[block_index].steps_y.wide != 0) ||
  403. (block_buffer[block_index].steps_z.wide != 0)) {
  404. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  405. //se; mm/sec;
  406. if(se>high)
  407. {
  408. high=se;
  409. }
  410. }
  411. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  412. }
  413. float g=autotemp_min+high*autotemp_factor;
  414. float t=g;
  415. if(t<autotemp_min)
  416. t=autotemp_min;
  417. if(t>autotemp_max)
  418. t=autotemp_max;
  419. if(oldt>t)
  420. {
  421. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  422. }
  423. oldt=t;
  424. setTargetHotend0(t);
  425. }
  426. #endif
  427. bool e_active()
  428. {
  429. unsigned char e_active = 0;
  430. block_t *block;
  431. if(block_buffer_tail != block_buffer_head)
  432. {
  433. uint8_t block_index = block_buffer_tail;
  434. while(block_index != block_buffer_head)
  435. {
  436. block = &block_buffer[block_index];
  437. if(block->steps_e.wide != 0) e_active++;
  438. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  439. }
  440. }
  441. return (e_active > 0) ? true : false ;
  442. }
  443. void check_axes_activity()
  444. {
  445. unsigned char x_active = 0;
  446. unsigned char y_active = 0;
  447. unsigned char z_active = 0;
  448. unsigned char e_active = 0;
  449. unsigned char tail_fan_speed = fanSpeed;
  450. block_t *block;
  451. if(block_buffer_tail != block_buffer_head)
  452. {
  453. uint8_t block_index = block_buffer_tail;
  454. tail_fan_speed = block_buffer[block_index].fan_speed;
  455. while(block_index != block_buffer_head)
  456. {
  457. block = &block_buffer[block_index];
  458. if(block->steps_x.wide != 0) x_active++;
  459. if(block->steps_y.wide != 0) y_active++;
  460. if(block->steps_z.wide != 0) z_active++;
  461. if(block->steps_e.wide != 0) e_active++;
  462. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  463. }
  464. }
  465. if((DISABLE_X) && (x_active == 0)) disable_x();
  466. if((DISABLE_Y) && (y_active == 0)) disable_y();
  467. if((DISABLE_Z) && (z_active == 0)) disable_z();
  468. if((DISABLE_E) && (e_active == 0))
  469. {
  470. disable_e0();
  471. disable_e1();
  472. disable_e2();
  473. }
  474. #if defined(FAN_PIN) && FAN_PIN > -1
  475. #ifdef FAN_KICKSTART_TIME
  476. static unsigned long fan_kick_end;
  477. if (tail_fan_speed) {
  478. if (fan_kick_end == 0) {
  479. // Just starting up fan - run at full power.
  480. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  481. tail_fan_speed = 255;
  482. } else if (fan_kick_end > millis())
  483. // Fan still spinning up.
  484. tail_fan_speed = 255;
  485. } else {
  486. fan_kick_end = 0;
  487. }
  488. #endif//FAN_KICKSTART_TIME
  489. #ifdef FAN_SOFT_PWM
  490. fanSpeedSoftPwm = tail_fan_speed;
  491. #else
  492. analogWrite(FAN_PIN,tail_fan_speed);
  493. #endif//!FAN_SOFT_PWM
  494. #endif//FAN_PIN > -1
  495. #ifdef AUTOTEMP
  496. getHighESpeed();
  497. #endif
  498. }
  499. bool waiting_inside_plan_buffer_line_print_aborted = false;
  500. /*
  501. void planner_abort_soft()
  502. {
  503. // Empty the queue.
  504. while (blocks_queued()) plan_discard_current_block();
  505. // Relay to planner wait routine, that the current line shall be canceled.
  506. waiting_inside_plan_buffer_line_print_aborted = true;
  507. //current_position[i]
  508. }
  509. */
  510. #ifdef PLANNER_DIAGNOSTICS
  511. static inline void planner_update_queue_min_counter()
  512. {
  513. uint8_t new_counter = moves_planned();
  514. if (new_counter < g_cntr_planner_queue_min)
  515. g_cntr_planner_queue_min = new_counter;
  516. }
  517. #endif /* PLANNER_DIAGNOSTICS */
  518. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  519. void planner_abort_hard()
  520. {
  521. // Abort the stepper routine and flush the planner queue.
  522. DISABLE_STEPPER_DRIVER_INTERRUPT();
  523. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  524. // First update the planner's current position in the physical motor steps.
  525. position[X_AXIS] = st_get_position(X_AXIS);
  526. position[Y_AXIS] = st_get_position(Y_AXIS);
  527. position[Z_AXIS] = st_get_position(Z_AXIS);
  528. position[E_AXIS] = st_get_position(E_AXIS);
  529. // Second update the current position of the front end.
  530. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  531. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  532. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  533. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  534. // Apply the mesh bed leveling correction to the Z axis.
  535. #ifdef MESH_BED_LEVELING
  536. if (mbl.active) {
  537. #if 1
  538. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  539. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  540. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  541. #else
  542. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  543. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  544. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  545. else {
  546. float t = float(step_events_completed) / float(current_block->step_event_count);
  547. float vec[3] = {
  548. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  549. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  550. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  551. };
  552. float pos1[3], pos2[3];
  553. for (int8_t i = 0; i < 3; ++ i) {
  554. if (current_block->direction_bits & (1<<i))
  555. vec[i] = - vec[i];
  556. pos1[i] = current_position[i] - vec[i] * t;
  557. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  558. }
  559. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  560. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  561. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  562. }
  563. #endif
  564. }
  565. #endif
  566. // Clear the planner queue, reset and re-enable the stepper timer.
  567. quickStop();
  568. // Apply inverse world correction matrix.
  569. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  570. memcpy(destination, current_position, sizeof(destination));
  571. // Resets planner junction speeds. Assumes start from rest.
  572. previous_nominal_speed = 0.0;
  573. previous_speed[0] = 0.0;
  574. previous_speed[1] = 0.0;
  575. previous_speed[2] = 0.0;
  576. previous_speed[3] = 0.0;
  577. // Relay to planner wait routine, that the current line shall be canceled.
  578. waiting_inside_plan_buffer_line_print_aborted = true;
  579. }
  580. float junction_deviation = 0.1;
  581. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  582. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  583. // calculation the caller must also provide the physical length of the line in millimeters.
  584. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  585. {
  586. // Calculate the buffer head after we push this byte
  587. int next_buffer_head = next_block_index(block_buffer_head);
  588. // If the buffer is full: good! That means we are well ahead of the robot.
  589. // Rest here until there is room in the buffer.
  590. if (block_buffer_tail == next_buffer_head) {
  591. waiting_inside_plan_buffer_line_print_aborted = false;
  592. do {
  593. manage_heater();
  594. // Vojtech: Don't disable motors inside the planner!
  595. manage_inactivity(false);
  596. lcd_update(0);
  597. } while (block_buffer_tail == next_buffer_head);
  598. if (waiting_inside_plan_buffer_line_print_aborted) {
  599. // Inside the lcd_update(0) routine the print has been aborted.
  600. // Cancel the print, do not plan the current line this routine is waiting on.
  601. #ifdef PLANNER_DIAGNOSTICS
  602. planner_update_queue_min_counter();
  603. #endif /* PLANNER_DIAGNOSTICS */
  604. return;
  605. }
  606. }
  607. #ifdef PLANNER_DIAGNOSTICS
  608. planner_update_queue_min_counter();
  609. #endif /* PLANNER_DIAGNOSTICS */
  610. #ifdef ENABLE_AUTO_BED_LEVELING
  611. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  612. #endif // ENABLE_AUTO_BED_LEVELING
  613. // Apply the machine correction matrix.
  614. {
  615. #if 0
  616. SERIAL_ECHOPGM("Planner, current position - servos: ");
  617. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  618. SERIAL_ECHOPGM(", ");
  619. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  620. SERIAL_ECHOPGM(", ");
  621. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  622. SERIAL_ECHOLNPGM("");
  623. SERIAL_ECHOPGM("Planner, target position, initial: ");
  624. MYSERIAL.print(x, 5);
  625. SERIAL_ECHOPGM(", ");
  626. MYSERIAL.print(y, 5);
  627. SERIAL_ECHOLNPGM("");
  628. SERIAL_ECHOPGM("Planner, world2machine: ");
  629. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  630. SERIAL_ECHOPGM(", ");
  631. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  632. SERIAL_ECHOPGM(", ");
  633. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  634. SERIAL_ECHOPGM(", ");
  635. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  636. SERIAL_ECHOLNPGM("");
  637. SERIAL_ECHOPGM("Planner, offset: ");
  638. MYSERIAL.print(world2machine_shift[0], 5);
  639. SERIAL_ECHOPGM(", ");
  640. MYSERIAL.print(world2machine_shift[1], 5);
  641. SERIAL_ECHOLNPGM("");
  642. #endif
  643. world2machine(x, y);
  644. #if 0
  645. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  646. MYSERIAL.print(x, 5);
  647. SERIAL_ECHOPGM(", ");
  648. MYSERIAL.print(y, 5);
  649. SERIAL_ECHOLNPGM("");
  650. #endif
  651. }
  652. // The target position of the tool in absolute steps
  653. // Calculate target position in absolute steps
  654. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  655. long target[4];
  656. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  657. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  658. #ifdef MESH_BED_LEVELING
  659. if (mbl.active){
  660. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  661. }else{
  662. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  663. }
  664. #else
  665. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  666. #endif // ENABLE_MESH_BED_LEVELING
  667. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  668. #ifdef LIN_ADVANCE
  669. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  670. float de_float = e - position_float[E_AXIS];
  671. #endif
  672. #ifdef PREVENT_DANGEROUS_EXTRUDE
  673. if(target[E_AXIS]!=position[E_AXIS])
  674. {
  675. if(degHotend(active_extruder)<extrude_min_temp)
  676. {
  677. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  678. #ifdef LIN_ADVANCE
  679. position_float[E_AXIS] = e;
  680. de_float = 0;
  681. #endif
  682. SERIAL_ECHO_START;
  683. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  684. }
  685. #ifdef PREVENT_LENGTHY_EXTRUDE
  686. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  687. {
  688. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  689. #ifdef LIN_ADVANCE
  690. position_float[E_AXIS] = e;
  691. de_float = 0;
  692. #endif
  693. SERIAL_ECHO_START;
  694. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  695. }
  696. #endif
  697. }
  698. #endif
  699. // Prepare to set up new block
  700. block_t *block = &block_buffer[block_buffer_head];
  701. // Set sdlen for calculating sd position
  702. block->sdlen = 0;
  703. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  704. block->busy = false;
  705. // Number of steps for each axis
  706. #ifndef COREXY
  707. // default non-h-bot planning
  708. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  709. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  710. #else
  711. // corexy planning
  712. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  713. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  714. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  715. #endif
  716. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  717. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  718. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  719. // Bail if this is a zero-length block
  720. if (block->step_event_count.wide <= dropsegments)
  721. {
  722. #ifdef PLANNER_DIAGNOSTICS
  723. planner_update_queue_min_counter();
  724. #endif /* PLANNER_DIAGNOSTICS */
  725. return;
  726. }
  727. block->fan_speed = fanSpeed;
  728. // Compute direction bits for this block
  729. block->direction_bits = 0;
  730. #ifndef COREXY
  731. if (target[X_AXIS] < position[X_AXIS])
  732. {
  733. block->direction_bits |= (1<<X_AXIS);
  734. }
  735. if (target[Y_AXIS] < position[Y_AXIS])
  736. {
  737. block->direction_bits |= (1<<Y_AXIS);
  738. }
  739. #else
  740. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  741. {
  742. block->direction_bits |= (1<<X_AXIS);
  743. }
  744. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  745. {
  746. block->direction_bits |= (1<<Y_AXIS);
  747. }
  748. #endif
  749. if (target[Z_AXIS] < position[Z_AXIS])
  750. {
  751. block->direction_bits |= (1<<Z_AXIS);
  752. }
  753. if (target[E_AXIS] < position[E_AXIS])
  754. {
  755. block->direction_bits |= (1<<E_AXIS);
  756. }
  757. block->active_extruder = extruder;
  758. //enable active axes
  759. #ifdef COREXY
  760. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  761. {
  762. enable_x();
  763. enable_y();
  764. }
  765. #else
  766. if(block->steps_x.wide != 0) enable_x();
  767. if(block->steps_y.wide != 0) enable_y();
  768. #endif
  769. if(block->steps_z.wide != 0) enable_z();
  770. // Enable extruder(s)
  771. if(block->steps_e.wide != 0)
  772. {
  773. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  774. {
  775. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  776. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  777. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  778. switch(extruder)
  779. {
  780. case 0:
  781. enable_e0();
  782. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  783. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  784. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  785. break;
  786. case 1:
  787. enable_e1();
  788. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  789. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  790. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  791. break;
  792. case 2:
  793. enable_e2();
  794. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  795. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  796. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  797. break;
  798. }
  799. }
  800. else //enable all
  801. {
  802. enable_e0();
  803. enable_e1();
  804. enable_e2();
  805. }
  806. }
  807. if (block->steps_e.wide == 0)
  808. {
  809. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  810. }
  811. else
  812. {
  813. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  814. }
  815. /* This part of the code calculates the total length of the movement.
  816. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  817. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  818. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  819. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  820. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  821. */
  822. #ifndef COREXY
  823. float delta_mm[4];
  824. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  825. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  826. #else
  827. float delta_mm[6];
  828. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  829. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  830. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  831. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  832. #endif
  833. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  834. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  835. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  836. {
  837. block->millimeters = fabs(delta_mm[E_AXIS]);
  838. }
  839. else
  840. {
  841. #ifndef COREXY
  842. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  843. #else
  844. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  845. #endif
  846. }
  847. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  848. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  849. float inverse_second = feed_rate * inverse_millimeters;
  850. int moves_queued = moves_planned();
  851. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  852. #ifdef SLOWDOWN
  853. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  854. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  855. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  856. // segment time in micro seconds
  857. unsigned long segment_time = lround(1000000.0/inverse_second);
  858. if (segment_time < minsegmenttime)
  859. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  860. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  861. }
  862. #endif // SLOWDOWN
  863. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  864. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  865. // Calculate and limit speed in mm/sec for each axis
  866. float current_speed[4];
  867. float speed_factor = 1.0; //factor <=1 do decrease speed
  868. // maxlimit_status &= ~0xf;
  869. for(int i=0; i < 4; i++)
  870. {
  871. current_speed[i] = delta_mm[i] * inverse_second;
  872. if(fabs(current_speed[i]) > max_feedrate[i])
  873. {
  874. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  875. maxlimit_status |= (1 << i);
  876. }
  877. }
  878. // Correct the speed
  879. if( speed_factor < 1.0)
  880. {
  881. for(unsigned char i=0; i < 4; i++)
  882. {
  883. current_speed[i] *= speed_factor;
  884. }
  885. block->nominal_speed *= speed_factor;
  886. block->nominal_rate *= speed_factor;
  887. }
  888. // Compute and limit the acceleration rate for the trapezoid generator.
  889. // block->step_event_count ... event count of the fastest axis
  890. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  891. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  892. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  893. {
  894. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  895. }
  896. else
  897. {
  898. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  899. // Limit acceleration per axis
  900. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  901. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  902. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  903. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  904. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  905. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  906. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  907. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  908. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  909. }
  910. // Acceleration of the segment, in mm/sec^2
  911. block->acceleration = block->acceleration_st / steps_per_mm;
  912. #if 0
  913. // Oversample diagonal movements by a power of 2 up to 8x
  914. // to achieve more accurate diagonal movements.
  915. uint8_t bresenham_oversample = 1;
  916. for (uint8_t i = 0; i < 3; ++ i) {
  917. if (block->nominal_rate >= 5000) // 5kHz
  918. break;
  919. block->nominal_rate << 1;
  920. bresenham_oversample << 1;
  921. block->step_event_count << 1;
  922. }
  923. if (bresenham_oversample > 1)
  924. // Lower the acceleration steps/sec^2 to account for the oversampling.
  925. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  926. #endif
  927. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  928. // Start with a safe speed.
  929. // Safe speed is the speed, from which the machine may halt to stop immediately.
  930. float safe_speed = block->nominal_speed;
  931. bool limited = false;
  932. for (uint8_t axis = 0; axis < 4; ++ axis) {
  933. float jerk = fabs(current_speed[axis]);
  934. if (jerk > max_jerk[axis]) {
  935. // The actual jerk is lower, if it has been limited by the XY jerk.
  936. if (limited) {
  937. // Spare one division by a following gymnastics:
  938. // Instead of jerk *= safe_speed / block->nominal_speed,
  939. // multiply max_jerk[axis] by the divisor.
  940. jerk *= safe_speed;
  941. float mjerk = max_jerk[axis] * block->nominal_speed;
  942. if (jerk > mjerk) {
  943. safe_speed *= mjerk / jerk;
  944. limited = true;
  945. }
  946. } else {
  947. safe_speed = max_jerk[axis];
  948. limited = true;
  949. }
  950. }
  951. }
  952. // Reset the block flag.
  953. block->flag = 0;
  954. // Initial limit on the segment entry velocity.
  955. float vmax_junction;
  956. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  957. // Is it because we don't want to tinker with the first buffer line, which
  958. // is likely to be executed by the stepper interrupt routine soon?
  959. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  960. // Estimate a maximum velocity allowed at a joint of two successive segments.
  961. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  962. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  963. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  964. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  965. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  966. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  967. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  968. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  969. float v_factor = 1.f;
  970. limited = false;
  971. // Now limit the jerk in all axes.
  972. for (uint8_t axis = 0; axis < 4; ++ axis) {
  973. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  974. float v_exit = previous_speed[axis];
  975. float v_entry = current_speed [axis];
  976. if (prev_speed_larger)
  977. v_exit *= smaller_speed_factor;
  978. if (limited) {
  979. v_exit *= v_factor;
  980. v_entry *= v_factor;
  981. }
  982. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  983. float jerk =
  984. (v_exit > v_entry) ?
  985. ((v_entry > 0.f || v_exit < 0.f) ?
  986. // coasting
  987. (v_exit - v_entry) :
  988. // axis reversal
  989. max(v_exit, - v_entry)) :
  990. // v_exit <= v_entry
  991. ((v_entry < 0.f || v_exit > 0.f) ?
  992. // coasting
  993. (v_entry - v_exit) :
  994. // axis reversal
  995. max(- v_exit, v_entry));
  996. if (jerk > max_jerk[axis]) {
  997. v_factor *= max_jerk[axis] / jerk;
  998. limited = true;
  999. }
  1000. }
  1001. if (limited)
  1002. vmax_junction *= v_factor;
  1003. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1004. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1005. float vmax_junction_threshold = vmax_junction * 0.99f;
  1006. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1007. // Not coasting. The machine will stop and start the movements anyway,
  1008. // better to start the segment from start.
  1009. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1010. vmax_junction = safe_speed;
  1011. }
  1012. } else {
  1013. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1014. vmax_junction = safe_speed;
  1015. }
  1016. // Max entry speed of this block equals the max exit speed of the previous block.
  1017. block->max_entry_speed = vmax_junction;
  1018. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1019. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1020. block->entry_speed = min(vmax_junction, v_allowable);
  1021. // Initialize planner efficiency flags
  1022. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1023. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1024. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1025. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1026. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1027. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1028. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1029. // Always calculate trapezoid for new block
  1030. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1031. // Update previous path unit_vector and nominal speed
  1032. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1033. previous_nominal_speed = block->nominal_speed;
  1034. previous_safe_speed = safe_speed;
  1035. #ifdef LIN_ADVANCE
  1036. //
  1037. // Use LIN_ADVANCE for blocks if all these are true:
  1038. //
  1039. // esteps : We have E steps todo (a printing move)
  1040. //
  1041. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1042. //
  1043. // extruder_advance_k : There is an advance factor set.
  1044. //
  1045. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1046. // In that case, the retract and move will be executed together.
  1047. // This leads to too many advance steps due to a huge e_acceleration.
  1048. // The math is good, but we must avoid retract moves with advance!
  1049. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1050. //
  1051. block->use_advance_lead = block->steps_e.wide
  1052. && (block->steps_x.wide || block->steps_y.wide)
  1053. && extruder_advance_k
  1054. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1055. && de_float > 0.0;
  1056. if (block->use_advance_lead)
  1057. block->abs_adv_steps_multiplier8 = lround(
  1058. extruder_advance_k
  1059. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1060. * (block->nominal_speed / (float)block->nominal_rate)
  1061. * cs.axis_steps_per_unit[E_AXIS] * 256.0
  1062. );
  1063. #endif
  1064. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1065. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1066. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1067. if (block->step_event_count.wide <= 32767)
  1068. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1069. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1070. block_buffer_head = next_buffer_head;
  1071. // Update position
  1072. memcpy(position, target, sizeof(target)); // position[] = target[]
  1073. #ifdef LIN_ADVANCE
  1074. position_float[X_AXIS] = x;
  1075. position_float[Y_AXIS] = y;
  1076. position_float[Z_AXIS] = z;
  1077. position_float[E_AXIS] = e;
  1078. #endif
  1079. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1080. // the machine limits (maximum acceleration and maximum jerk).
  1081. // This runs asynchronously with the stepper interrupt controller, which may
  1082. // interfere with the process.
  1083. planner_recalculate(safe_speed);
  1084. // SERIAL_ECHOPGM("Q");
  1085. // SERIAL_ECHO(int(moves_planned()));
  1086. // SERIAL_ECHOLNPGM("");
  1087. #ifdef PLANNER_DIAGNOSTICS
  1088. planner_update_queue_min_counter();
  1089. #endif /* PLANNER_DIAGNOSTIC */
  1090. // The stepper timer interrupt will run continuously from now on.
  1091. // If there are no planner blocks to be executed by the stepper routine,
  1092. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1093. // from the planner queue if available.
  1094. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1095. }
  1096. #ifdef ENABLE_AUTO_BED_LEVELING
  1097. vector_3 plan_get_position() {
  1098. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1099. //position.debug("in plan_get position");
  1100. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1101. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1102. //inverse.debug("in plan_get inverse");
  1103. position.apply_rotation(inverse);
  1104. //position.debug("after rotation");
  1105. return position;
  1106. }
  1107. #endif // ENABLE_AUTO_BED_LEVELING
  1108. void plan_set_position(float x, float y, float z, const float &e)
  1109. {
  1110. #ifdef ENABLE_AUTO_BED_LEVELING
  1111. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1112. #endif // ENABLE_AUTO_BED_LEVELING
  1113. // Apply the machine correction matrix.
  1114. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1115. {
  1116. float tmpx = x;
  1117. float tmpy = y;
  1118. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1119. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1120. }
  1121. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1122. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1123. #ifdef MESH_BED_LEVELING
  1124. position[Z_AXIS] = mbl.active ?
  1125. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1126. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1127. #else
  1128. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1129. #endif // ENABLE_MESH_BED_LEVELING
  1130. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1131. #ifdef LIN_ADVANCE
  1132. position_float[X_AXIS] = x;
  1133. position_float[Y_AXIS] = y;
  1134. position_float[Z_AXIS] = z;
  1135. position_float[E_AXIS] = e;
  1136. #endif
  1137. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1138. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1139. previous_speed[0] = 0.0;
  1140. previous_speed[1] = 0.0;
  1141. previous_speed[2] = 0.0;
  1142. previous_speed[3] = 0.0;
  1143. }
  1144. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1145. void plan_set_z_position(const float &z)
  1146. {
  1147. #ifdef LIN_ADVANCE
  1148. position_float[Z_AXIS] = z;
  1149. #endif
  1150. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1151. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1152. }
  1153. void plan_set_e_position(const float &e)
  1154. {
  1155. #ifdef LIN_ADVANCE
  1156. position_float[E_AXIS] = e;
  1157. #endif
  1158. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1159. st_set_e_position(position[E_AXIS]);
  1160. }
  1161. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1162. void set_extrude_min_temp(float temp)
  1163. {
  1164. extrude_min_temp=temp;
  1165. }
  1166. #endif
  1167. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1168. void reset_acceleration_rates()
  1169. {
  1170. for(int8_t i=0; i < NUM_AXIS; i++)
  1171. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1172. }
  1173. #ifdef TMC2130
  1174. void update_mode_profile()
  1175. {
  1176. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1177. {
  1178. max_feedrate = cs.max_feedrate_normal;
  1179. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1180. }
  1181. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1182. {
  1183. max_feedrate = max_feedrate_silent;
  1184. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_silent;
  1185. }
  1186. reset_acceleration_rates();
  1187. }
  1188. #endif //TMC2130
  1189. unsigned char number_of_blocks()
  1190. {
  1191. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1192. }
  1193. #ifdef PLANNER_DIAGNOSTICS
  1194. uint8_t planner_queue_min()
  1195. {
  1196. return g_cntr_planner_queue_min;
  1197. }
  1198. void planner_queue_min_reset()
  1199. {
  1200. g_cntr_planner_queue_min = moves_planned();
  1201. }
  1202. #endif /* PLANNER_DIAGNOSTICS */
  1203. void planner_add_sd_length(uint16_t sdlen)
  1204. {
  1205. if (block_buffer_head != block_buffer_tail) {
  1206. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1207. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1208. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1209. } else {
  1210. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1211. // at a power panic, so the length of this command may be forgotten.
  1212. }
  1213. }
  1214. uint16_t planner_calc_sd_length()
  1215. {
  1216. unsigned char _block_buffer_head = block_buffer_head;
  1217. unsigned char _block_buffer_tail = block_buffer_tail;
  1218. uint16_t sdlen = 0;
  1219. while (_block_buffer_head != _block_buffer_tail)
  1220. {
  1221. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1222. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1223. }
  1224. return sdlen;
  1225. }