planner.cpp 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #endif
  45. //===========================================================================
  46. //=============================public variables ============================
  47. //===========================================================================
  48. unsigned long minsegmenttime;
  49. float max_feedrate[NUM_AXIS]; // set the max speeds
  50. float axis_steps_per_unit[NUM_AXIS];
  51. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  52. float minimumfeedrate;
  53. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  54. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  55. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  56. float max_z_jerk;
  57. float max_e_jerk;
  58. float mintravelfeedrate;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  84. volatile unsigned char block_buffer_tail; // Index of the block to process now
  85. //===========================================================================
  86. //=============================private variables ============================
  87. //===========================================================================
  88. #ifdef PREVENT_DANGEROUS_EXTRUDE
  89. float extrude_min_temp=EXTRUDE_MINTEMP;
  90. #endif
  91. #ifdef XY_FREQUENCY_LIMIT
  92. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  93. // Used for the frequency limit
  94. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  95. static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
  96. static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
  97. #endif
  98. #ifdef FILAMENT_SENSOR
  99. static char meas_sample; //temporary variable to hold filament measurement sample
  100. #endif
  101. // Returns the index of the next block in the ring buffer
  102. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  103. static int8_t next_block_index(int8_t block_index) {
  104. block_index++;
  105. if (block_index == BLOCK_BUFFER_SIZE) {
  106. block_index = 0;
  107. }
  108. return(block_index);
  109. }
  110. // Returns the index of the previous block in the ring buffer
  111. static int8_t prev_block_index(int8_t block_index) {
  112. if (block_index == 0) {
  113. block_index = BLOCK_BUFFER_SIZE;
  114. }
  115. block_index--;
  116. return(block_index);
  117. }
  118. //===========================================================================
  119. //=============================functions ============================
  120. //===========================================================================
  121. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  122. // given acceleration:
  123. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  124. {
  125. if (acceleration!=0) {
  126. return((target_rate*target_rate-initial_rate*initial_rate)/
  127. (2.0*acceleration));
  128. }
  129. else {
  130. return 0.0; // acceleration was 0, set acceleration distance to 0
  131. }
  132. }
  133. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  134. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  135. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  136. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  137. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  138. {
  139. if (acceleration!=0) {
  140. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  141. (4.0*acceleration) );
  142. }
  143. else {
  144. return 0.0; // acceleration was 0, set intersection distance to 0
  145. }
  146. }
  147. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  148. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  149. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  150. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  151. // Limit minimal step rate (Otherwise the timer will overflow.)
  152. if(initial_rate <120) {
  153. initial_rate=120;
  154. }
  155. if(final_rate < 120) {
  156. final_rate=120;
  157. }
  158. long acceleration = block->acceleration_st;
  159. int32_t accelerate_steps =
  160. ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  161. int32_t decelerate_steps =
  162. floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  163. // Calculate the size of Plateau of Nominal Rate.
  164. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  165. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  166. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  167. // in order to reach the final_rate exactly at the end of this block.
  168. if (plateau_steps < 0) {
  169. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  170. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  171. accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  172. plateau_steps = 0;
  173. }
  174. #ifdef ADVANCE
  175. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  176. volatile long final_advance = block->advance*exit_factor*exit_factor;
  177. #endif // ADVANCE
  178. // block->accelerate_until = accelerate_steps;
  179. // block->decelerate_after = accelerate_steps+plateau_steps;
  180. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  181. if(block->busy == false) { // Don't update variables if block is busy.
  182. block->accelerate_until = accelerate_steps;
  183. block->decelerate_after = accelerate_steps+plateau_steps;
  184. block->initial_rate = initial_rate;
  185. block->final_rate = final_rate;
  186. #ifdef ADVANCE
  187. block->initial_advance = initial_advance;
  188. block->final_advance = final_advance;
  189. #endif //ADVANCE
  190. }
  191. CRITICAL_SECTION_END;
  192. }
  193. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  194. // acceleration within the allotted distance.
  195. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  196. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  197. }
  198. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  199. // This method will calculate the junction jerk as the euclidean distance between the nominal
  200. // velocities of the respective blocks.
  201. //inline float junction_jerk(block_t *before, block_t *after) {
  202. // return sqrt(
  203. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  204. //}
  205. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  206. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  207. if(!current) {
  208. return;
  209. }
  210. if (next) {
  211. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  212. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  213. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  214. if (current->entry_speed != current->max_entry_speed) {
  215. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  216. // for max allowable speed if block is decelerating and nominal length is false.
  217. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  218. current->entry_speed = min( current->max_entry_speed,
  219. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  220. }
  221. else {
  222. current->entry_speed = current->max_entry_speed;
  223. }
  224. current->recalculate_flag = true;
  225. }
  226. } // Skip last block. Already initialized and set for recalculation.
  227. }
  228. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  229. // implements the reverse pass.
  230. void planner_reverse_pass() {
  231. uint8_t block_index = block_buffer_head;
  232. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  233. CRITICAL_SECTION_START;
  234. unsigned char tail = block_buffer_tail;
  235. CRITICAL_SECTION_END
  236. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  237. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  238. block_t *block[3] = {
  239. NULL, NULL, NULL };
  240. while(block_index != tail) {
  241. block_index = prev_block_index(block_index);
  242. block[2]= block[1];
  243. block[1]= block[0];
  244. block[0] = &block_buffer[block_index];
  245. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  246. }
  247. }
  248. }
  249. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  250. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  251. if(!previous) {
  252. return;
  253. }
  254. // If the previous block is an acceleration block, but it is not long enough to complete the
  255. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  256. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  257. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  258. if (!previous->nominal_length_flag) {
  259. if (previous->entry_speed < current->entry_speed) {
  260. double entry_speed = min( current->entry_speed,
  261. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  262. // Check for junction speed change
  263. if (current->entry_speed != entry_speed) {
  264. current->entry_speed = entry_speed;
  265. current->recalculate_flag = true;
  266. }
  267. }
  268. }
  269. }
  270. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  271. // implements the forward pass.
  272. void planner_forward_pass() {
  273. uint8_t block_index = block_buffer_tail;
  274. block_t *block[3] = {
  275. NULL, NULL, NULL };
  276. while(block_index != block_buffer_head) {
  277. block[0] = block[1];
  278. block[1] = block[2];
  279. block[2] = &block_buffer[block_index];
  280. planner_forward_pass_kernel(block[0],block[1],block[2]);
  281. block_index = next_block_index(block_index);
  282. }
  283. planner_forward_pass_kernel(block[1], block[2], NULL);
  284. }
  285. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  286. // entry_factor for each junction. Must be called by planner_recalculate() after
  287. // updating the blocks.
  288. void planner_recalculate_trapezoids() {
  289. int8_t block_index = block_buffer_tail;
  290. block_t *current;
  291. block_t *next = NULL;
  292. while(block_index != block_buffer_head) {
  293. current = next;
  294. next = &block_buffer[block_index];
  295. if (current) {
  296. // Recalculate if current block entry or exit junction speed has changed.
  297. if (current->recalculate_flag || next->recalculate_flag) {
  298. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  299. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  300. next->entry_speed/current->nominal_speed);
  301. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  302. }
  303. }
  304. block_index = next_block_index( block_index );
  305. }
  306. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  307. if(next != NULL) {
  308. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  309. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  310. next->recalculate_flag = false;
  311. }
  312. }
  313. // Recalculates the motion plan according to the following algorithm:
  314. //
  315. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  316. // so that:
  317. // a. The junction jerk is within the set limit
  318. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  319. // acceleration.
  320. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  321. // a. The speed increase within one block would require faster accelleration than the one, true
  322. // constant acceleration.
  323. //
  324. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  325. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  326. // the set limit. Finally it will:
  327. //
  328. // 3. Recalculate trapezoids for all blocks.
  329. void planner_recalculate() {
  330. planner_reverse_pass();
  331. planner_forward_pass();
  332. planner_recalculate_trapezoids();
  333. }
  334. void plan_init() {
  335. block_buffer_head = 0;
  336. block_buffer_tail = 0;
  337. memset(position, 0, sizeof(position)); // clear position
  338. previous_speed[0] = 0.0;
  339. previous_speed[1] = 0.0;
  340. previous_speed[2] = 0.0;
  341. previous_speed[3] = 0.0;
  342. previous_nominal_speed = 0.0;
  343. }
  344. #ifdef AUTOTEMP
  345. void getHighESpeed()
  346. {
  347. static float oldt=0;
  348. if(!autotemp_enabled){
  349. return;
  350. }
  351. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  352. return; //do nothing
  353. }
  354. float high=0.0;
  355. uint8_t block_index = block_buffer_tail;
  356. while(block_index != block_buffer_head) {
  357. if((block_buffer[block_index].steps_x != 0) ||
  358. (block_buffer[block_index].steps_y != 0) ||
  359. (block_buffer[block_index].steps_z != 0)) {
  360. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  361. //se; mm/sec;
  362. if(se>high)
  363. {
  364. high=se;
  365. }
  366. }
  367. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  368. }
  369. float g=autotemp_min+high*autotemp_factor;
  370. float t=g;
  371. if(t<autotemp_min)
  372. t=autotemp_min;
  373. if(t>autotemp_max)
  374. t=autotemp_max;
  375. if(oldt>t)
  376. {
  377. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  378. }
  379. oldt=t;
  380. setTargetHotend0(t);
  381. }
  382. #endif
  383. void check_axes_activity()
  384. {
  385. unsigned char x_active = 0;
  386. unsigned char y_active = 0;
  387. unsigned char z_active = 0;
  388. unsigned char e_active = 0;
  389. unsigned char tail_fan_speed = fanSpeed;
  390. #ifdef BARICUDA
  391. unsigned char tail_valve_pressure = ValvePressure;
  392. unsigned char tail_e_to_p_pressure = EtoPPressure;
  393. #endif
  394. block_t *block;
  395. if(block_buffer_tail != block_buffer_head)
  396. {
  397. uint8_t block_index = block_buffer_tail;
  398. tail_fan_speed = block_buffer[block_index].fan_speed;
  399. #ifdef BARICUDA
  400. tail_valve_pressure = block_buffer[block_index].valve_pressure;
  401. tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
  402. #endif
  403. while(block_index != block_buffer_head)
  404. {
  405. block = &block_buffer[block_index];
  406. if(block->steps_x != 0) x_active++;
  407. if(block->steps_y != 0) y_active++;
  408. if(block->steps_z != 0) z_active++;
  409. if(block->steps_e != 0) e_active++;
  410. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  411. }
  412. }
  413. if((DISABLE_X) && (x_active == 0)) disable_x();
  414. if((DISABLE_Y) && (y_active == 0)) disable_y();
  415. if((DISABLE_Z) && (z_active == 0)) disable_z();
  416. if((DISABLE_E) && (e_active == 0))
  417. {
  418. disable_e0();
  419. disable_e1();
  420. disable_e2();
  421. }
  422. #if defined(FAN_PIN) && FAN_PIN > -1
  423. #ifdef FAN_KICKSTART_TIME
  424. static unsigned long fan_kick_end;
  425. if (tail_fan_speed) {
  426. if (fan_kick_end == 0) {
  427. // Just starting up fan - run at full power.
  428. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  429. tail_fan_speed = 255;
  430. } else if (fan_kick_end > millis())
  431. // Fan still spinning up.
  432. tail_fan_speed = 255;
  433. } else {
  434. fan_kick_end = 0;
  435. }
  436. #endif//FAN_KICKSTART_TIME
  437. #ifdef FAN_SOFT_PWM
  438. fanSpeedSoftPwm = tail_fan_speed;
  439. #else
  440. analogWrite(FAN_PIN,tail_fan_speed);
  441. #endif//!FAN_SOFT_PWM
  442. #endif//FAN_PIN > -1
  443. #ifdef AUTOTEMP
  444. getHighESpeed();
  445. #endif
  446. #ifdef BARICUDA
  447. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  448. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  449. #endif
  450. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  451. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  452. #endif
  453. #endif
  454. }
  455. float junction_deviation = 0.1;
  456. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  457. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  458. // calculation the caller must also provide the physical length of the line in millimeters.
  459. #ifdef ENABLE_AUTO_BED_LEVELING
  460. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  461. #else
  462. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  463. #endif //ENABLE_AUTO_BED_LEVELING
  464. {
  465. #ifdef DEVELOPER
  466. SERIAL_PROTOCOLPGM("MESHING TO:");
  467. SERIAL_PROTOCOLPGM(" X:");
  468. SERIAL_PROTOCOL(x);
  469. SERIAL_PROTOCOLPGM(" Y:");
  470. SERIAL_PROTOCOL(y);
  471. SERIAL_PROTOCOLPGM(" Z:");
  472. SERIAL_PROTOCOL(z);
  473. SERIAL_PROTOCOLPGM(" E:");
  474. SERIAL_PROTOCOL(e);
  475. SERIAL_PROTOCOLPGM("\n");
  476. #endif
  477. // Calculate the buffer head after we push this byte
  478. int next_buffer_head = next_block_index(block_buffer_head);
  479. // If the buffer is full: good! That means we are well ahead of the robot.
  480. // Rest here until there is room in the buffer.
  481. while(block_buffer_tail == next_buffer_head)
  482. {
  483. manage_heater();
  484. manage_inactivity();
  485. lcd_update();
  486. }
  487. #ifdef ENABLE_AUTO_BED_LEVELING
  488. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  489. #endif // ENABLE_AUTO_BED_LEVELING
  490. // The target position of the tool in absolute steps
  491. // Calculate target position in absolute steps
  492. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  493. long target[4];
  494. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  495. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  496. #ifdef MESH_BED_LEVELING
  497. if (mbl.active){
  498. target[Z_AXIS] += lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  499. }else{
  500. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  501. }
  502. #else
  503. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  504. #endif // ENABLE_MESH_BED_LEVELING
  505. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  506. #ifdef PREVENT_DANGEROUS_EXTRUDE
  507. if(target[E_AXIS]!=position[E_AXIS])
  508. {
  509. if(degHotend(active_extruder)<extrude_min_temp)
  510. {
  511. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  512. SERIAL_ECHO_START;
  513. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  514. }
  515. #ifdef PREVENT_LENGTHY_EXTRUDE
  516. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  517. {
  518. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  519. SERIAL_ECHO_START;
  520. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  521. }
  522. #endif
  523. }
  524. #endif
  525. // Prepare to set up new block
  526. block_t *block = &block_buffer[block_buffer_head];
  527. // Mark block as not busy (Not executed by the stepper interrupt)
  528. block->busy = false;
  529. // Number of steps for each axis
  530. #ifndef COREXY
  531. // default non-h-bot planning
  532. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  533. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  534. #else
  535. // corexy planning
  536. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  537. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  538. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  539. #endif
  540. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  541. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  542. block->steps_e *= volumetric_multiplier[active_extruder];
  543. block->steps_e *= extrudemultiply;
  544. block->steps_e /= 100;
  545. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  546. // Bail if this is a zero-length block
  547. if (block->step_event_count <= dropsegments)
  548. {
  549. return;
  550. }
  551. block->fan_speed = fanSpeed;
  552. #ifdef BARICUDA
  553. block->valve_pressure = ValvePressure;
  554. block->e_to_p_pressure = EtoPPressure;
  555. #endif
  556. // Compute direction bits for this block
  557. block->direction_bits = 0;
  558. #ifndef COREXY
  559. if (target[X_AXIS] < position[X_AXIS])
  560. {
  561. block->direction_bits |= (1<<X_AXIS);
  562. }
  563. if (target[Y_AXIS] < position[Y_AXIS])
  564. {
  565. block->direction_bits |= (1<<Y_AXIS);
  566. }
  567. #else
  568. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  569. {
  570. block->direction_bits |= (1<<X_AXIS);
  571. }
  572. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  573. {
  574. block->direction_bits |= (1<<Y_AXIS);
  575. }
  576. #endif
  577. if (target[Z_AXIS] < position[Z_AXIS])
  578. {
  579. block->direction_bits |= (1<<Z_AXIS);
  580. }
  581. if (target[E_AXIS] < position[E_AXIS])
  582. {
  583. block->direction_bits |= (1<<E_AXIS);
  584. }
  585. block->active_extruder = extruder;
  586. //enable active axes
  587. #ifdef COREXY
  588. if((block->steps_x != 0) || (block->steps_y != 0))
  589. {
  590. enable_x();
  591. enable_y();
  592. }
  593. #else
  594. if(block->steps_x != 0) enable_x();
  595. if(block->steps_y != 0) enable_y();
  596. #endif
  597. #ifndef Z_LATE_ENABLE
  598. if(block->steps_z != 0) enable_z();
  599. #endif
  600. // Enable extruder(s)
  601. if(block->steps_e != 0)
  602. {
  603. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  604. {
  605. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  606. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  607. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  608. switch(extruder)
  609. {
  610. case 0:
  611. enable_e0();
  612. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  613. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  614. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  615. break;
  616. case 1:
  617. enable_e1();
  618. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  619. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  620. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  621. break;
  622. case 2:
  623. enable_e2();
  624. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  625. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  626. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  627. break;
  628. }
  629. }
  630. else //enable all
  631. {
  632. enable_e0();
  633. enable_e1();
  634. enable_e2();
  635. }
  636. }
  637. if (block->steps_e == 0)
  638. {
  639. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  640. }
  641. else
  642. {
  643. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  644. }
  645. /* This part of the code calculates the total length of the movement.
  646. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  647. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  648. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  649. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  650. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  651. */
  652. #ifndef COREXY
  653. float delta_mm[4];
  654. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  655. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  656. #else
  657. float delta_mm[6];
  658. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  659. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  660. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  661. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  662. #endif
  663. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  664. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  665. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  666. {
  667. block->millimeters = fabs(delta_mm[E_AXIS]);
  668. }
  669. else
  670. {
  671. #ifndef COREXY
  672. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  673. #else
  674. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  675. #endif
  676. }
  677. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  678. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  679. float inverse_second = feed_rate * inverse_millimeters;
  680. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  681. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  682. #ifdef OLD_SLOWDOWN
  683. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
  684. feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  685. #endif
  686. #ifdef SLOWDOWN
  687. // segment time im micro seconds
  688. unsigned long segment_time = lround(1000000.0/inverse_second);
  689. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  690. {
  691. if (segment_time < minsegmenttime)
  692. { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  693. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  694. #ifdef XY_FREQUENCY_LIMIT
  695. segment_time = lround(1000000.0/inverse_second);
  696. #endif
  697. }
  698. }
  699. #endif
  700. // END OF SLOW DOWN SECTION
  701. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  702. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  703. #ifdef FILAMENT_SENSOR
  704. //FMM update ring buffer used for delay with filament measurements
  705. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  706. {
  707. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  708. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  709. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  710. while (delay_dist<0)
  711. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  712. delay_index1=delay_dist/10.0; //calculate index
  713. //ensure the number is within range of the array after converting from floating point
  714. if(delay_index1<0)
  715. delay_index1=0;
  716. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  717. delay_index1=MAX_MEASUREMENT_DELAY;
  718. if(delay_index1 != delay_index2) //moved index
  719. {
  720. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  721. }
  722. while( delay_index1 != delay_index2)
  723. {
  724. delay_index2 = delay_index2 + 1;
  725. if(delay_index2>MAX_MEASUREMENT_DELAY)
  726. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  727. if(delay_index2<0)
  728. delay_index2=0;
  729. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  730. delay_index2=MAX_MEASUREMENT_DELAY;
  731. measurement_delay[delay_index2]=meas_sample;
  732. }
  733. }
  734. #endif
  735. // Calculate and limit speed in mm/sec for each axis
  736. float current_speed[4];
  737. float speed_factor = 1.0; //factor <=1 do decrease speed
  738. for(int i=0; i < 4; i++)
  739. {
  740. current_speed[i] = delta_mm[i] * inverse_second;
  741. if(fabs(current_speed[i]) > max_feedrate[i])
  742. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  743. }
  744. // Max segement time in us.
  745. #ifdef XY_FREQUENCY_LIMIT
  746. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  747. // Check and limit the xy direction change frequency
  748. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  749. old_direction_bits = block->direction_bits;
  750. segment_time = lround((float)segment_time / speed_factor);
  751. if((direction_change & (1<<X_AXIS)) == 0)
  752. {
  753. x_segment_time[0] += segment_time;
  754. }
  755. else
  756. {
  757. x_segment_time[2] = x_segment_time[1];
  758. x_segment_time[1] = x_segment_time[0];
  759. x_segment_time[0] = segment_time;
  760. }
  761. if((direction_change & (1<<Y_AXIS)) == 0)
  762. {
  763. y_segment_time[0] += segment_time;
  764. }
  765. else
  766. {
  767. y_segment_time[2] = y_segment_time[1];
  768. y_segment_time[1] = y_segment_time[0];
  769. y_segment_time[0] = segment_time;
  770. }
  771. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  772. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  773. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  774. if(min_xy_segment_time < MAX_FREQ_TIME)
  775. speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  776. #endif
  777. // Correct the speed
  778. if( speed_factor < 1.0)
  779. {
  780. for(unsigned char i=0; i < 4; i++)
  781. {
  782. current_speed[i] *= speed_factor;
  783. }
  784. block->nominal_speed *= speed_factor;
  785. block->nominal_rate *= speed_factor;
  786. }
  787. // Compute and limit the acceleration rate for the trapezoid generator.
  788. float steps_per_mm = block->step_event_count/block->millimeters;
  789. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  790. {
  791. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  792. }
  793. else
  794. {
  795. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  796. // Limit acceleration per axis
  797. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  798. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  799. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  800. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  801. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  802. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  803. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  804. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  805. }
  806. block->acceleration = block->acceleration_st / steps_per_mm;
  807. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  808. #if 0 // Use old jerk for now
  809. // Compute path unit vector
  810. double unit_vec[3];
  811. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  812. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  813. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  814. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  815. // Let a circle be tangent to both previous and current path line segments, where the junction
  816. // deviation is defined as the distance from the junction to the closest edge of the circle,
  817. // colinear with the circle center. The circular segment joining the two paths represents the
  818. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  819. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  820. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  821. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  822. // nonlinearities of both the junction angle and junction velocity.
  823. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  824. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  825. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  826. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  827. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  828. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  829. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  830. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  831. // Skip and use default max junction speed for 0 degree acute junction.
  832. if (cos_theta < 0.95) {
  833. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  834. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  835. if (cos_theta > -0.95) {
  836. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  837. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  838. vmax_junction = min(vmax_junction,
  839. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  840. }
  841. }
  842. }
  843. #endif
  844. // Start with a safe speed
  845. float vmax_junction = max_xy_jerk/2;
  846. float vmax_junction_factor = 1.0;
  847. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  848. vmax_junction = min(vmax_junction, max_z_jerk/2);
  849. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  850. vmax_junction = min(vmax_junction, max_e_jerk/2);
  851. vmax_junction = min(vmax_junction, block->nominal_speed);
  852. float safe_speed = vmax_junction;
  853. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  854. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  855. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  856. vmax_junction = block->nominal_speed;
  857. // }
  858. if (jerk > max_xy_jerk) {
  859. vmax_junction_factor = (max_xy_jerk/jerk);
  860. }
  861. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  862. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  863. }
  864. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  865. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  866. }
  867. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  868. }
  869. block->max_entry_speed = vmax_junction;
  870. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  871. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  872. block->entry_speed = min(vmax_junction, v_allowable);
  873. // Initialize planner efficiency flags
  874. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  875. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  876. // the current block and next block junction speeds are guaranteed to always be at their maximum
  877. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  878. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  879. // the reverse and forward planners, the corresponding block junction speed will always be at the
  880. // the maximum junction speed and may always be ignored for any speed reduction checks.
  881. if (block->nominal_speed <= v_allowable) {
  882. block->nominal_length_flag = true;
  883. }
  884. else {
  885. block->nominal_length_flag = false;
  886. }
  887. block->recalculate_flag = true; // Always calculate trapezoid for new block
  888. // Update previous path unit_vector and nominal speed
  889. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  890. previous_nominal_speed = block->nominal_speed;
  891. #ifdef ADVANCE
  892. // Calculate advance rate
  893. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  894. block->advance_rate = 0;
  895. block->advance = 0;
  896. }
  897. else {
  898. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  899. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  900. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
  901. block->advance = advance;
  902. if(acc_dist == 0) {
  903. block->advance_rate = 0;
  904. }
  905. else {
  906. block->advance_rate = advance / (float)acc_dist;
  907. }
  908. }
  909. /*
  910. SERIAL_ECHO_START;
  911. SERIAL_ECHOPGM("advance :");
  912. SERIAL_ECHO(block->advance/256.0);
  913. SERIAL_ECHOPGM("advance rate :");
  914. SERIAL_ECHOLN(block->advance_rate/256.0);
  915. */
  916. #endif // ADVANCE
  917. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  918. safe_speed/block->nominal_speed);
  919. // Move buffer head
  920. block_buffer_head = next_buffer_head;
  921. // Update position
  922. memcpy(position, target, sizeof(target)); // position[] = target[]
  923. planner_recalculate();
  924. st_wake_up();
  925. }
  926. #ifdef ENABLE_AUTO_BED_LEVELING
  927. vector_3 plan_get_position() {
  928. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  929. //position.debug("in plan_get position");
  930. //plan_bed_level_matrix.debug("in plan_get bed_level");
  931. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  932. //inverse.debug("in plan_get inverse");
  933. position.apply_rotation(inverse);
  934. //position.debug("after rotation");
  935. return position;
  936. }
  937. #endif // ENABLE_AUTO_BED_LEVELING
  938. #ifdef ENABLE_AUTO_BED_LEVELING
  939. void plan_set_position(float x, float y, float z, const float &e)
  940. {
  941. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  942. #else
  943. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  944. {
  945. #endif // ENABLE_AUTO_BED_LEVELING
  946. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  947. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  948. #ifdef MESH_BED_LEVELING
  949. if (mbl.active){
  950. position[Z_AXIS] += lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  951. }else{
  952. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  953. }
  954. #else
  955. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  956. #endif // ENABLE_MESH_BED_LEVELING
  957. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  958. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  959. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  960. previous_speed[0] = 0.0;
  961. previous_speed[1] = 0.0;
  962. previous_speed[2] = 0.0;
  963. previous_speed[3] = 0.0;
  964. }
  965. void plan_set_e_position(const float &e)
  966. {
  967. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  968. st_set_e_position(position[E_AXIS]);
  969. }
  970. uint8_t movesplanned()
  971. {
  972. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  973. }
  974. #ifdef PREVENT_DANGEROUS_EXTRUDE
  975. void set_extrude_min_temp(float temp)
  976. {
  977. extrude_min_temp=temp;
  978. }
  979. #endif
  980. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  981. void reset_acceleration_rates()
  982. {
  983. for(int8_t i=0; i < NUM_AXIS; i++)
  984. {
  985. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  986. }
  987. }