temperature.cpp 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "menu.h"
  27. #include "conv2str.h"
  28. #include "sound.h"
  29. #include "temperature.h"
  30. #include "cardreader.h"
  31. #include "SdFatUtil.h"
  32. #include <avr/wdt.h>
  33. #include "adc.h"
  34. #include "ConfigurationStore.h"
  35. #include "messages.h"
  36. #include "Timer.h"
  37. #include "Configuration_prusa.h"
  38. #include "config.h"
  39. //===========================================================================
  40. //=============================public variables============================
  41. //===========================================================================
  42. int target_temperature[EXTRUDERS] = { 0 };
  43. int target_temperature_bed = 0;
  44. int current_temperature_raw[EXTRUDERS] = { 0 };
  45. float current_temperature[EXTRUDERS] = { 0.0 };
  46. #ifdef PINDA_THERMISTOR
  47. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  48. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  49. float current_temperature_pinda = 0.0;
  50. #endif //PINDA_THERMISTOR
  51. #ifdef AMBIENT_THERMISTOR
  52. int current_temperature_raw_ambient = 0 ;
  53. float current_temperature_ambient = 0.0;
  54. #endif //AMBIENT_THERMISTOR
  55. #ifdef VOLT_PWR_PIN
  56. int current_voltage_raw_pwr = 0;
  57. #endif
  58. #ifdef VOLT_BED_PIN
  59. int current_voltage_raw_bed = 0;
  60. #endif
  61. #ifdef IR_SENSOR_ANALOG
  62. uint16_t current_voltage_raw_IR = 0;
  63. #endif //IR_SENSOR_ANALOG
  64. int current_temperature_bed_raw = 0;
  65. float current_temperature_bed = 0.0;
  66. #ifdef PIDTEMP
  67. float _Kp, _Ki, _Kd;
  68. int pid_cycle, pid_number_of_cycles;
  69. bool pid_tuning_finished = false;
  70. #ifdef PID_ADD_EXTRUSION_RATE
  71. float Kc=DEFAULT_Kc;
  72. #endif
  73. #endif //PIDTEMP
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. #ifdef FANCHECK
  78. volatile uint8_t fan_check_error = EFCE_OK;
  79. #endif
  80. unsigned char soft_pwm_bed;
  81. #ifdef BABYSTEPPING
  82. volatile int babystepsTodo[3]={0,0,0};
  83. #endif
  84. //===========================================================================
  85. //=============================private variables============================
  86. //===========================================================================
  87. static volatile bool temp_meas_ready = false;
  88. #ifdef PIDTEMP
  89. //static cannot be external:
  90. static float iState_sum[EXTRUDERS] = { 0 };
  91. static float dState_last[EXTRUDERS] = { 0 };
  92. static float pTerm[EXTRUDERS];
  93. static float iTerm[EXTRUDERS];
  94. static float dTerm[EXTRUDERS];
  95. //int output;
  96. static float pid_error[EXTRUDERS];
  97. static float iState_sum_min[EXTRUDERS];
  98. static float iState_sum_max[EXTRUDERS];
  99. // static float pid_input[EXTRUDERS];
  100. // static float pid_output[EXTRUDERS];
  101. static bool pid_reset[EXTRUDERS];
  102. #endif //PIDTEMP
  103. #ifdef PIDTEMPBED
  104. //static cannot be external:
  105. static float temp_iState_bed = { 0 };
  106. static float temp_dState_bed = { 0 };
  107. static float pTerm_bed;
  108. static float iTerm_bed;
  109. static float dTerm_bed;
  110. //int output;
  111. static float pid_error_bed;
  112. static float temp_iState_min_bed;
  113. static float temp_iState_max_bed;
  114. #else //PIDTEMPBED
  115. static unsigned long previous_millis_bed_heater;
  116. #endif //PIDTEMPBED
  117. static unsigned char soft_pwm[EXTRUDERS];
  118. #ifdef FAN_SOFT_PWM
  119. static unsigned char soft_pwm_fan;
  120. #endif
  121. uint8_t fanSpeedBckp = 255;
  122. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  123. unsigned long extruder_autofan_last_check = _millis();
  124. bool fan_measuring = false;
  125. uint8_t fanState = 0;
  126. #ifdef EXTRUDER_ALTFAN_DETECT
  127. struct
  128. {
  129. uint8_t isAltfan : 1;
  130. uint8_t altfanOverride : 1;
  131. } altfanStatus;
  132. #endif //EXTRUDER_ALTFAN_DETECT
  133. #endif
  134. #if EXTRUDERS > 3
  135. # error Unsupported number of extruders
  136. #elif EXTRUDERS > 2
  137. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  138. #elif EXTRUDERS > 1
  139. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  140. #else
  141. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  142. #endif
  143. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  144. // Init min and max temp with extreme values to prevent false errors during startup
  145. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  146. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  147. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  148. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  149. #ifdef BED_MINTEMP
  150. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  151. #endif
  152. #ifdef BED_MAXTEMP
  153. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  154. #endif
  155. #ifdef AMBIENT_MINTEMP
  156. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  157. #endif
  158. #ifdef AMBIENT_MAXTEMP
  159. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  160. #endif
  161. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  162. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  163. static float analog2temp(int raw, uint8_t e);
  164. static float analog2tempBed(int raw);
  165. #ifdef AMBIENT_MAXTEMP
  166. static float analog2tempAmbient(int raw);
  167. #endif
  168. static void updateTemperaturesFromRawValues();
  169. enum TempRunawayStates
  170. {
  171. TempRunaway_INACTIVE = 0,
  172. TempRunaway_PREHEAT = 1,
  173. TempRunaway_ACTIVE = 2,
  174. };
  175. #ifndef SOFT_PWM_SCALE
  176. #define SOFT_PWM_SCALE 0
  177. #endif
  178. //===========================================================================
  179. //============================= functions ============================
  180. //===========================================================================
  181. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  182. static float temp_runaway_status[4];
  183. static float temp_runaway_target[4];
  184. static float temp_runaway_timer[4];
  185. static int temp_runaway_error_counter[4];
  186. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  187. static void temp_runaway_stop(bool isPreheat, bool isBed);
  188. #endif
  189. #ifdef EXTRUDER_ALTFAN_DETECT
  190. ISR(INT6_vect) {
  191. fan_edge_counter[0]++;
  192. }
  193. bool extruder_altfan_detect()
  194. {
  195. setExtruderAutoFanState(3);
  196. SET_INPUT(TACH_0);
  197. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  198. if (overrideVal == EEPROM_EMPTY_VALUE)
  199. {
  200. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  201. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  202. }
  203. altfanStatus.altfanOverride = overrideVal;
  204. CRITICAL_SECTION_START;
  205. EICRB &= ~(1 << ISC61);
  206. EICRB |= (1 << ISC60);
  207. EIMSK |= (1 << INT6);
  208. fan_edge_counter[0] = 0;
  209. CRITICAL_SECTION_END;
  210. extruder_autofan_last_check = _millis();
  211. _delay(1000);
  212. EIMSK &= ~(1 << INT6);
  213. countFanSpeed();
  214. altfanStatus.isAltfan = fan_speed[0] > 100;
  215. setExtruderAutoFanState(1);
  216. return altfanStatus.isAltfan;
  217. }
  218. void altfanOverride_toggle()
  219. {
  220. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  221. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  222. }
  223. bool altfanOverride_get()
  224. {
  225. return altfanStatus.altfanOverride;
  226. }
  227. #endif //EXTRUDER_ALTFAN_DETECT
  228. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  229. bool checkAllHotends(void)
  230. {
  231. bool result=false;
  232. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  233. return(result);
  234. }
  235. // WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
  236. // codegen bug causing a stack overwrite issue in process_commands()
  237. void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
  238. {
  239. pid_number_of_cycles = ncycles;
  240. pid_tuning_finished = false;
  241. float input = 0.0;
  242. pid_cycle=0;
  243. bool heating = true;
  244. unsigned long temp_millis = _millis();
  245. unsigned long t1=temp_millis;
  246. unsigned long t2=temp_millis;
  247. long t_high = 0;
  248. long t_low = 0;
  249. long bias, d;
  250. float Ku, Tu;
  251. float max = 0, min = 10000;
  252. uint8_t safety_check_cycles = 0;
  253. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  254. float temp_ambient;
  255. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  256. unsigned long extruder_autofan_last_check = _millis();
  257. #endif
  258. if ((extruder >= EXTRUDERS)
  259. #if (TEMP_BED_PIN <= -1)
  260. ||(extruder < 0)
  261. #endif
  262. ){
  263. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  264. pid_tuning_finished = true;
  265. pid_cycle = 0;
  266. return;
  267. }
  268. SERIAL_ECHOLN("PID Autotune start");
  269. disable_heater(); // switch off all heaters.
  270. if (extruder<0)
  271. {
  272. soft_pwm_bed = (MAX_BED_POWER)/2;
  273. timer02_set_pwm0(soft_pwm_bed << 1);
  274. bias = d = (MAX_BED_POWER)/2;
  275. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  276. }
  277. else
  278. {
  279. soft_pwm[extruder] = (PID_MAX)/2;
  280. bias = d = (PID_MAX)/2;
  281. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  282. }
  283. for(;;) {
  284. #ifdef WATCHDOG
  285. wdt_reset();
  286. #endif //WATCHDOG
  287. if(temp_meas_ready == true) { // temp sample ready
  288. updateTemperaturesFromRawValues();
  289. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  290. max=max(max,input);
  291. min=min(min,input);
  292. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  293. if(_millis() - extruder_autofan_last_check > 2500) {
  294. checkExtruderAutoFans();
  295. extruder_autofan_last_check = _millis();
  296. }
  297. #endif
  298. if(heating == true && input > temp) {
  299. if(_millis() - t2 > 5000) {
  300. heating=false;
  301. if (extruder<0)
  302. {
  303. soft_pwm_bed = (bias - d) >> 1;
  304. timer02_set_pwm0(soft_pwm_bed << 1);
  305. }
  306. else
  307. soft_pwm[extruder] = (bias - d) >> 1;
  308. t1=_millis();
  309. t_high=t1 - t2;
  310. max=temp;
  311. }
  312. }
  313. if(heating == false && input < temp) {
  314. if(_millis() - t1 > 5000) {
  315. heating=true;
  316. t2=_millis();
  317. t_low=t2 - t1;
  318. if(pid_cycle > 0) {
  319. bias += (d*(t_high - t_low))/(t_low + t_high);
  320. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  321. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  322. else d = bias;
  323. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  324. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  325. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  326. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  327. if(pid_cycle > 2) {
  328. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  329. Tu = ((float)(t_low + t_high)/1000.0);
  330. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  331. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  332. _Kp = 0.6*Ku;
  333. _Ki = 2*_Kp/Tu;
  334. _Kd = _Kp*Tu/8;
  335. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  336. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  337. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  338. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  339. /*
  340. _Kp = 0.33*Ku;
  341. _Ki = _Kp/Tu;
  342. _Kd = _Kp*Tu/3;
  343. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  344. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  345. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  346. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  347. _Kp = 0.2*Ku;
  348. _Ki = 2*_Kp/Tu;
  349. _Kd = _Kp*Tu/3;
  350. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  351. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  352. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  353. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  354. */
  355. }
  356. }
  357. if (extruder<0)
  358. {
  359. soft_pwm_bed = (bias + d) >> 1;
  360. timer02_set_pwm0(soft_pwm_bed << 1);
  361. }
  362. else
  363. soft_pwm[extruder] = (bias + d) >> 1;
  364. pid_cycle++;
  365. min=temp;
  366. }
  367. }
  368. }
  369. if(input > (temp + 20)) {
  370. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  371. pid_tuning_finished = true;
  372. pid_cycle = 0;
  373. return;
  374. }
  375. if(_millis() - temp_millis > 2000) {
  376. int p;
  377. if (extruder<0){
  378. p=soft_pwm_bed;
  379. SERIAL_PROTOCOLPGM("B:");
  380. }else{
  381. p=soft_pwm[extruder];
  382. SERIAL_PROTOCOLPGM("T:");
  383. }
  384. SERIAL_PROTOCOL(input);
  385. SERIAL_PROTOCOLPGM(" @:");
  386. SERIAL_PROTOCOLLN(p);
  387. if (safety_check_cycles == 0) { //save ambient temp
  388. temp_ambient = input;
  389. //SERIAL_ECHOPGM("Ambient T: ");
  390. //MYSERIAL.println(temp_ambient);
  391. safety_check_cycles++;
  392. }
  393. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  394. safety_check_cycles++;
  395. }
  396. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  397. safety_check_cycles++;
  398. //SERIAL_ECHOPGM("Time from beginning: ");
  399. //MYSERIAL.print(safety_check_cycles_count * 2);
  400. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  401. //MYSERIAL.println(input - temp_ambient);
  402. if (abs(input - temp_ambient) < 5.0) {
  403. temp_runaway_stop(false, (extruder<0));
  404. pid_tuning_finished = true;
  405. return;
  406. }
  407. }
  408. temp_millis = _millis();
  409. }
  410. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  411. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  412. pid_tuning_finished = true;
  413. pid_cycle = 0;
  414. return;
  415. }
  416. if(pid_cycle > ncycles) {
  417. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  418. pid_tuning_finished = true;
  419. pid_cycle = 0;
  420. return;
  421. }
  422. lcd_update(0);
  423. }
  424. }
  425. void updatePID()
  426. {
  427. #ifdef PIDTEMP
  428. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  429. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  430. }
  431. #endif
  432. #ifdef PIDTEMPBED
  433. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  434. #endif
  435. }
  436. int getHeaterPower(int heater) {
  437. if (heater<0)
  438. return soft_pwm_bed;
  439. return soft_pwm[heater];
  440. }
  441. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  442. #if defined(FAN_PIN) && FAN_PIN > -1
  443. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  444. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  445. #endif
  446. #endif
  447. void setExtruderAutoFanState(uint8_t state)
  448. {
  449. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  450. //the fan to either On or Off during certain tests/errors.
  451. fanState = state;
  452. newFanSpeed = 0;
  453. if (fanState & 0x01)
  454. {
  455. #ifdef EXTRUDER_ALTFAN_DETECT
  456. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  457. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  458. #else //EXTRUDER_ALTFAN_DETECT
  459. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  460. #endif //EXTRUDER_ALTFAN_DETECT
  461. }
  462. timer4_set_fan0(newFanSpeed);
  463. }
  464. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  465. void countFanSpeed()
  466. {
  467. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  468. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  469. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  470. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  471. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  472. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  473. SERIAL_ECHOLNPGM(" ");*/
  474. fan_edge_counter[0] = 0;
  475. fan_edge_counter[1] = 0;
  476. }
  477. void checkFanSpeed()
  478. {
  479. uint8_t max_print_fan_errors = 0;
  480. uint8_t max_extruder_fan_errors = 0;
  481. #ifdef FAN_SOFT_PWM
  482. max_print_fan_errors = 3; //15 seconds
  483. max_extruder_fan_errors = 2; //10seconds
  484. #else //FAN_SOFT_PWM
  485. max_print_fan_errors = 15; //15 seconds
  486. max_extruder_fan_errors = 5; //5 seconds
  487. #endif //FAN_SOFT_PWM
  488. if(fans_check_enabled != false)
  489. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  490. static unsigned char fan_speed_errors[2] = { 0,0 };
  491. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  492. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  493. else fan_speed_errors[0] = 0;
  494. #endif
  495. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  496. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  497. else fan_speed_errors[1] = 0;
  498. #endif
  499. // drop the fan_check_error flag when both fans are ok
  500. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  501. // we may even send some info to the LCD from here
  502. fan_check_error = EFCE_FIXED;
  503. }
  504. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  505. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  506. lcd_reset_alert_level(); //for another fan speed error
  507. }
  508. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  509. fan_speed_errors[0] = 0;
  510. fanSpeedError(0); //extruder fan
  511. }
  512. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  513. fan_speed_errors[1] = 0;
  514. fanSpeedError(1); //print fan
  515. }
  516. }
  517. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  518. //! Extracted from fanSpeedError to save some space.
  519. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  520. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  521. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  522. SERIAL_ECHOLNRPGM(serialMsg);
  523. if (get_message_level() == 0) {
  524. Sound_MakeCustom(200,0,true);
  525. LCD_ALERTMESSAGERPGM(lcdMsg);
  526. }
  527. }
  528. void fanSpeedError(unsigned char _fan) {
  529. if (get_message_level() != 0 && isPrintPaused) return;
  530. //to ensure that target temp. is not set to zero in case that we are resuming print
  531. if (card.sdprinting || is_usb_printing) {
  532. if (heating_status != 0) {
  533. lcd_print_stop();
  534. }
  535. else {
  536. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  537. }
  538. }
  539. else {
  540. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  541. setTargetHotend0(0);
  542. heating_status = 0;
  543. fan_check_error = EFCE_REPORTED;
  544. }
  545. switch (_fan) {
  546. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  547. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  548. break;
  549. case 1:
  550. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  551. break;
  552. }
  553. }
  554. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  555. void checkExtruderAutoFans()
  556. {
  557. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  558. if (!(fanState & 0x02))
  559. {
  560. fanState &= ~1;
  561. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  562. }
  563. setExtruderAutoFanState(fanState);
  564. #endif
  565. }
  566. #endif // any extruder auto fan pins set
  567. // ready for eventually parameters adjusting
  568. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  569. //void resetPID(uint8_t extruder)
  570. {
  571. }
  572. void manage_heater()
  573. {
  574. #ifdef WATCHDOG
  575. wdt_reset();
  576. #endif //WATCHDOG
  577. float pid_input;
  578. float pid_output;
  579. if(temp_meas_ready != true) //better readability
  580. return;
  581. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  582. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  583. updateTemperaturesFromRawValues();
  584. check_max_temp();
  585. check_min_temp();
  586. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  587. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  588. #endif
  589. for(int e = 0; e < EXTRUDERS; e++)
  590. {
  591. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  592. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  593. #endif
  594. #ifdef PIDTEMP
  595. pid_input = current_temperature[e];
  596. #ifndef PID_OPENLOOP
  597. if(target_temperature[e] == 0) {
  598. pid_output = 0;
  599. pid_reset[e] = true;
  600. } else {
  601. pid_error[e] = target_temperature[e] - pid_input;
  602. if(pid_reset[e]) {
  603. iState_sum[e] = 0.0;
  604. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  605. pid_reset[e] = false;
  606. }
  607. #ifndef PonM
  608. pTerm[e] = cs.Kp * pid_error[e];
  609. iState_sum[e] += pid_error[e];
  610. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  611. iTerm[e] = cs.Ki * iState_sum[e];
  612. // PID_K1 defined in Configuration.h in the PID settings
  613. #define K2 (1.0-PID_K1)
  614. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  615. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  616. if (pid_output > PID_MAX) {
  617. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  618. pid_output=PID_MAX;
  619. } else if (pid_output < 0) {
  620. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  621. pid_output=0;
  622. }
  623. #else // PonM ("Proportional on Measurement" method)
  624. iState_sum[e] += cs.Ki * pid_error[e];
  625. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  626. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  627. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  628. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  629. pid_output = constrain(pid_output, 0, PID_MAX);
  630. #endif // PonM
  631. }
  632. dState_last[e] = pid_input;
  633. #else
  634. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  635. #endif //PID_OPENLOOP
  636. #ifdef PID_DEBUG
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHO(" PID_DEBUG ");
  639. SERIAL_ECHO(e);
  640. SERIAL_ECHO(": Input ");
  641. SERIAL_ECHO(pid_input);
  642. SERIAL_ECHO(" Output ");
  643. SERIAL_ECHO(pid_output);
  644. SERIAL_ECHO(" pTerm ");
  645. SERIAL_ECHO(pTerm[e]);
  646. SERIAL_ECHO(" iTerm ");
  647. SERIAL_ECHO(iTerm[e]);
  648. SERIAL_ECHO(" dTerm ");
  649. SERIAL_ECHOLN(-dTerm[e]);
  650. #endif //PID_DEBUG
  651. #else /* PID off */
  652. pid_output = 0;
  653. if(current_temperature[e] < target_temperature[e]) {
  654. pid_output = PID_MAX;
  655. }
  656. #endif
  657. // Check if temperature is within the correct range
  658. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  659. {
  660. soft_pwm[e] = (int)pid_output >> 1;
  661. }
  662. else
  663. {
  664. soft_pwm[e] = 0;
  665. }
  666. } // End extruder for loop
  667. #define FAN_CHECK_PERIOD 5000 //5s
  668. #define FAN_CHECK_DURATION 100 //100ms
  669. #ifndef DEBUG_DISABLE_FANCHECK
  670. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  671. #ifdef FAN_SOFT_PWM
  672. #ifdef FANCHECK
  673. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  674. extruder_autofan_last_check = _millis();
  675. fanSpeedBckp = fanSpeedSoftPwm;
  676. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  677. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  678. fanSpeedSoftPwm = 255;
  679. }
  680. fan_measuring = true;
  681. }
  682. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  683. countFanSpeed();
  684. checkFanSpeed();
  685. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  686. fanSpeedSoftPwm = fanSpeedBckp;
  687. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  688. extruder_autofan_last_check = _millis();
  689. fan_measuring = false;
  690. }
  691. #endif //FANCHECK
  692. checkExtruderAutoFans();
  693. #else //FAN_SOFT_PWM
  694. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  695. {
  696. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  697. countFanSpeed();
  698. checkFanSpeed();
  699. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  700. checkExtruderAutoFans();
  701. extruder_autofan_last_check = _millis();
  702. }
  703. #endif //FAN_SOFT_PWM
  704. #endif
  705. #endif //DEBUG_DISABLE_FANCHECK
  706. #ifndef PIDTEMPBED
  707. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  708. return;
  709. previous_millis_bed_heater = _millis();
  710. #endif
  711. #if TEMP_SENSOR_BED != 0
  712. #ifdef PIDTEMPBED
  713. pid_input = current_temperature_bed;
  714. #ifndef PID_OPENLOOP
  715. pid_error_bed = target_temperature_bed - pid_input;
  716. pTerm_bed = cs.bedKp * pid_error_bed;
  717. temp_iState_bed += pid_error_bed;
  718. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  719. iTerm_bed = cs.bedKi * temp_iState_bed;
  720. //PID_K1 defined in Configuration.h in the PID settings
  721. #define K2 (1.0-PID_K1)
  722. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  723. temp_dState_bed = pid_input;
  724. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  725. if (pid_output > MAX_BED_POWER) {
  726. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  727. pid_output=MAX_BED_POWER;
  728. } else if (pid_output < 0){
  729. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  730. pid_output=0;
  731. }
  732. #else
  733. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  734. #endif //PID_OPENLOOP
  735. if(current_temperature_bed < BED_MAXTEMP)
  736. {
  737. soft_pwm_bed = (int)pid_output >> 1;
  738. timer02_set_pwm0(soft_pwm_bed << 1);
  739. }
  740. else {
  741. soft_pwm_bed = 0;
  742. timer02_set_pwm0(soft_pwm_bed << 1);
  743. }
  744. #elif !defined(BED_LIMIT_SWITCHING)
  745. // Check if temperature is within the correct range
  746. if(current_temperature_bed < BED_MAXTEMP)
  747. {
  748. if(current_temperature_bed >= target_temperature_bed)
  749. {
  750. soft_pwm_bed = 0;
  751. timer02_set_pwm0(soft_pwm_bed << 1);
  752. }
  753. else
  754. {
  755. soft_pwm_bed = MAX_BED_POWER>>1;
  756. timer02_set_pwm0(soft_pwm_bed << 1);
  757. }
  758. }
  759. else
  760. {
  761. soft_pwm_bed = 0;
  762. timer02_set_pwm0(soft_pwm_bed << 1);
  763. WRITE(HEATER_BED_PIN,LOW);
  764. }
  765. #else //#ifdef BED_LIMIT_SWITCHING
  766. // Check if temperature is within the correct band
  767. if(current_temperature_bed < BED_MAXTEMP)
  768. {
  769. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  770. {
  771. soft_pwm_bed = 0;
  772. timer02_set_pwm0(soft_pwm_bed << 1);
  773. }
  774. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  775. {
  776. soft_pwm_bed = MAX_BED_POWER>>1;
  777. timer02_set_pwm0(soft_pwm_bed << 1);
  778. }
  779. }
  780. else
  781. {
  782. soft_pwm_bed = 0;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. WRITE(HEATER_BED_PIN,LOW);
  785. }
  786. #endif
  787. if(target_temperature_bed==0)
  788. {
  789. soft_pwm_bed = 0;
  790. timer02_set_pwm0(soft_pwm_bed << 1);
  791. }
  792. #endif
  793. }
  794. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  795. // Derived from RepRap FiveD extruder::getTemperature()
  796. // For hot end temperature measurement.
  797. static float analog2temp(int raw, uint8_t e) {
  798. if(e >= EXTRUDERS)
  799. {
  800. SERIAL_ERROR_START;
  801. SERIAL_ERROR((int)e);
  802. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  803. kill(NULL, 6);
  804. return 0.0;
  805. }
  806. #ifdef HEATER_0_USES_MAX6675
  807. if (e == 0)
  808. {
  809. return 0.25 * raw;
  810. }
  811. #endif
  812. if(heater_ttbl_map[e] != NULL)
  813. {
  814. float celsius = 0;
  815. uint8_t i;
  816. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  817. for (i=1; i<heater_ttbllen_map[e]; i++)
  818. {
  819. if (PGM_RD_W((*tt)[i][0]) > raw)
  820. {
  821. celsius = PGM_RD_W((*tt)[i-1][1]) +
  822. (raw - PGM_RD_W((*tt)[i-1][0])) *
  823. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  824. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  825. break;
  826. }
  827. }
  828. // Overflow: Set to last value in the table
  829. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  830. return celsius;
  831. }
  832. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  833. }
  834. // Derived from RepRap FiveD extruder::getTemperature()
  835. // For bed temperature measurement.
  836. static float analog2tempBed(int raw) {
  837. #ifdef BED_USES_THERMISTOR
  838. float celsius = 0;
  839. byte i;
  840. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  841. {
  842. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  843. {
  844. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  845. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  846. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  847. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  848. break;
  849. }
  850. }
  851. // Overflow: Set to last value in the table
  852. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  853. // temperature offset adjustment
  854. #ifdef BED_OFFSET
  855. float _offset = BED_OFFSET;
  856. float _offset_center = BED_OFFSET_CENTER;
  857. float _offset_start = BED_OFFSET_START;
  858. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  859. float _second_koef = (_offset / 2) / (100 - _offset_center);
  860. if (celsius >= _offset_start && celsius <= _offset_center)
  861. {
  862. celsius = celsius + (_first_koef * (celsius - _offset_start));
  863. }
  864. else if (celsius > _offset_center && celsius <= 100)
  865. {
  866. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  867. }
  868. else if (celsius > 100)
  869. {
  870. celsius = celsius + _offset;
  871. }
  872. #endif
  873. return celsius;
  874. #elif defined BED_USES_AD595
  875. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  876. #else
  877. return 0;
  878. #endif
  879. }
  880. #ifdef AMBIENT_THERMISTOR
  881. static float analog2tempAmbient(int raw)
  882. {
  883. float celsius = 0;
  884. byte i;
  885. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  886. {
  887. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  888. {
  889. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  890. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  891. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  892. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  893. break;
  894. }
  895. }
  896. // Overflow: Set to last value in the table
  897. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  898. return celsius;
  899. }
  900. #endif //AMBIENT_THERMISTOR
  901. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  902. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  903. static void updateTemperaturesFromRawValues()
  904. {
  905. for(uint8_t e=0;e<EXTRUDERS;e++)
  906. {
  907. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  908. }
  909. #ifdef PINDA_THERMISTOR
  910. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  911. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  912. #endif
  913. #ifdef AMBIENT_THERMISTOR
  914. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  915. #endif
  916. #ifdef DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = target_temperature_bed;
  918. #else //DEBUG_HEATER_BED_SIM
  919. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  920. #endif //DEBUG_HEATER_BED_SIM
  921. CRITICAL_SECTION_START;
  922. temp_meas_ready = false;
  923. CRITICAL_SECTION_END;
  924. }
  925. void tp_init()
  926. {
  927. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  928. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  929. MCUCR=(1<<JTD);
  930. MCUCR=(1<<JTD);
  931. #endif
  932. // Finish init of mult extruder arrays
  933. for(int e = 0; e < EXTRUDERS; e++) {
  934. // populate with the first value
  935. maxttemp[e] = maxttemp[0];
  936. #ifdef PIDTEMP
  937. iState_sum_min[e] = 0.0;
  938. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  939. #endif //PIDTEMP
  940. #ifdef PIDTEMPBED
  941. temp_iState_min_bed = 0.0;
  942. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  943. #endif //PIDTEMPBED
  944. }
  945. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  946. SET_OUTPUT(HEATER_0_PIN);
  947. #endif
  948. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  949. SET_OUTPUT(HEATER_1_PIN);
  950. #endif
  951. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  952. SET_OUTPUT(HEATER_2_PIN);
  953. #endif
  954. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  955. SET_OUTPUT(HEATER_BED_PIN);
  956. #endif
  957. #if defined(FAN_PIN) && (FAN_PIN > -1)
  958. SET_OUTPUT(FAN_PIN);
  959. #ifdef FAST_PWM_FAN
  960. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  961. #endif
  962. #ifdef FAN_SOFT_PWM
  963. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  964. #endif
  965. #endif
  966. #ifdef HEATER_0_USES_MAX6675
  967. #ifndef SDSUPPORT
  968. SET_OUTPUT(SCK_PIN);
  969. WRITE(SCK_PIN,0);
  970. SET_OUTPUT(MOSI_PIN);
  971. WRITE(MOSI_PIN,1);
  972. SET_INPUT(MISO_PIN);
  973. WRITE(MISO_PIN,1);
  974. #endif
  975. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  976. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  977. pinMode(SS_PIN, OUTPUT);
  978. digitalWrite(SS_PIN,0);
  979. pinMode(MAX6675_SS, OUTPUT);
  980. digitalWrite(MAX6675_SS,1);
  981. #endif
  982. adc_init();
  983. timer0_init(); //enables the heatbed timer.
  984. // timer2 already enabled earlier in the code
  985. // now enable the COMPB temperature interrupt
  986. OCR2B = 128;
  987. TIMSK2 |= (1<<OCIE2B);
  988. timer4_init(); //for tone and Extruder fan PWM
  989. // Wait for temperature measurement to settle
  990. _delay(250);
  991. #ifdef HEATER_0_MINTEMP
  992. minttemp[0] = HEATER_0_MINTEMP;
  993. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  994. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  995. minttemp_raw[0] += OVERSAMPLENR;
  996. #else
  997. minttemp_raw[0] -= OVERSAMPLENR;
  998. #endif
  999. }
  1000. #endif //MINTEMP
  1001. #ifdef HEATER_0_MAXTEMP
  1002. maxttemp[0] = HEATER_0_MAXTEMP;
  1003. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1004. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1005. maxttemp_raw[0] -= OVERSAMPLENR;
  1006. #else
  1007. maxttemp_raw[0] += OVERSAMPLENR;
  1008. #endif
  1009. }
  1010. #endif //MAXTEMP
  1011. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1012. minttemp[1] = HEATER_1_MINTEMP;
  1013. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1014. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1015. minttemp_raw[1] += OVERSAMPLENR;
  1016. #else
  1017. minttemp_raw[1] -= OVERSAMPLENR;
  1018. #endif
  1019. }
  1020. #endif // MINTEMP 1
  1021. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1022. maxttemp[1] = HEATER_1_MAXTEMP;
  1023. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1024. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1025. maxttemp_raw[1] -= OVERSAMPLENR;
  1026. #else
  1027. maxttemp_raw[1] += OVERSAMPLENR;
  1028. #endif
  1029. }
  1030. #endif //MAXTEMP 1
  1031. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1032. minttemp[2] = HEATER_2_MINTEMP;
  1033. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1034. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1035. minttemp_raw[2] += OVERSAMPLENR;
  1036. #else
  1037. minttemp_raw[2] -= OVERSAMPLENR;
  1038. #endif
  1039. }
  1040. #endif //MINTEMP 2
  1041. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1042. maxttemp[2] = HEATER_2_MAXTEMP;
  1043. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1044. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1045. maxttemp_raw[2] -= OVERSAMPLENR;
  1046. #else
  1047. maxttemp_raw[2] += OVERSAMPLENR;
  1048. #endif
  1049. }
  1050. #endif //MAXTEMP 2
  1051. #ifdef BED_MINTEMP
  1052. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1053. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1054. bed_minttemp_raw += OVERSAMPLENR;
  1055. #else
  1056. bed_minttemp_raw -= OVERSAMPLENR;
  1057. #endif
  1058. }
  1059. #endif //BED_MINTEMP
  1060. #ifdef BED_MAXTEMP
  1061. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1062. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1063. bed_maxttemp_raw -= OVERSAMPLENR;
  1064. #else
  1065. bed_maxttemp_raw += OVERSAMPLENR;
  1066. #endif
  1067. }
  1068. #endif //BED_MAXTEMP
  1069. #ifdef AMBIENT_MINTEMP
  1070. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1071. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1072. ambient_minttemp_raw += OVERSAMPLENR;
  1073. #else
  1074. ambient_minttemp_raw -= OVERSAMPLENR;
  1075. #endif
  1076. }
  1077. #endif //AMBIENT_MINTEMP
  1078. #ifdef AMBIENT_MAXTEMP
  1079. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1080. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1081. ambient_maxttemp_raw -= OVERSAMPLENR;
  1082. #else
  1083. ambient_maxttemp_raw += OVERSAMPLENR;
  1084. #endif
  1085. }
  1086. #endif //AMBIENT_MAXTEMP
  1087. }
  1088. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1089. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1090. {
  1091. float __delta;
  1092. float __hysteresis = 0;
  1093. int __timeout = 0;
  1094. bool temp_runaway_check_active = false;
  1095. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1096. static int __preheat_counter[2] = { 0,0};
  1097. static int __preheat_errors[2] = { 0,0};
  1098. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1099. {
  1100. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1101. if (_isbed)
  1102. {
  1103. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1104. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1105. }
  1106. #endif
  1107. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1108. if (!_isbed)
  1109. {
  1110. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1111. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1112. }
  1113. #endif
  1114. temp_runaway_timer[_heater_id] = _millis();
  1115. if (_output == 0)
  1116. {
  1117. temp_runaway_check_active = false;
  1118. temp_runaway_error_counter[_heater_id] = 0;
  1119. }
  1120. if (temp_runaway_target[_heater_id] != _target_temperature)
  1121. {
  1122. if (_target_temperature > 0)
  1123. {
  1124. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1125. temp_runaway_target[_heater_id] = _target_temperature;
  1126. __preheat_start[_heater_id] = _current_temperature;
  1127. __preheat_counter[_heater_id] = 0;
  1128. }
  1129. else
  1130. {
  1131. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1132. temp_runaway_target[_heater_id] = _target_temperature;
  1133. }
  1134. }
  1135. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1136. {
  1137. __preheat_counter[_heater_id]++;
  1138. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1139. {
  1140. /*SERIAL_ECHOPGM("Heater:");
  1141. MYSERIAL.print(_heater_id);
  1142. SERIAL_ECHOPGM(" T:");
  1143. MYSERIAL.print(_current_temperature);
  1144. SERIAL_ECHOPGM(" Tstart:");
  1145. MYSERIAL.print(__preheat_start[_heater_id]);
  1146. SERIAL_ECHOPGM(" delta:");
  1147. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1148. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1149. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1150. __delta=2.0;
  1151. if(_isbed)
  1152. {
  1153. __delta=3.0;
  1154. if(_current_temperature>90.0) __delta=2.0;
  1155. if(_current_temperature>105.0) __delta=0.6;
  1156. }
  1157. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1158. __preheat_errors[_heater_id]++;
  1159. /*SERIAL_ECHOPGM(" Preheat errors:");
  1160. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1161. }
  1162. else {
  1163. //SERIAL_ECHOLNPGM("");
  1164. __preheat_errors[_heater_id] = 0;
  1165. }
  1166. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1167. {
  1168. if (farm_mode) { prusa_statistics(0); }
  1169. temp_runaway_stop(true, _isbed);
  1170. if (farm_mode) { prusa_statistics(91); }
  1171. }
  1172. __preheat_start[_heater_id] = _current_temperature;
  1173. __preheat_counter[_heater_id] = 0;
  1174. }
  1175. }
  1176. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1177. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1178. {
  1179. /*SERIAL_ECHOPGM("Heater:");
  1180. MYSERIAL.print(_heater_id);
  1181. MYSERIAL.println(" ->tempRunaway");*/
  1182. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1183. temp_runaway_check_active = false;
  1184. temp_runaway_error_counter[_heater_id] = 0;
  1185. }
  1186. if (_output > 0)
  1187. {
  1188. temp_runaway_check_active = true;
  1189. }
  1190. if (temp_runaway_check_active)
  1191. {
  1192. // we are in range
  1193. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1194. {
  1195. temp_runaway_check_active = false;
  1196. temp_runaway_error_counter[_heater_id] = 0;
  1197. }
  1198. else
  1199. {
  1200. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1201. {
  1202. temp_runaway_error_counter[_heater_id]++;
  1203. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1204. {
  1205. if (farm_mode) { prusa_statistics(0); }
  1206. temp_runaway_stop(false, _isbed);
  1207. if (farm_mode) { prusa_statistics(90); }
  1208. }
  1209. }
  1210. }
  1211. }
  1212. }
  1213. }
  1214. void temp_runaway_stop(bool isPreheat, bool isBed)
  1215. {
  1216. disable_heater();
  1217. Sound_MakeCustom(200,0,true);
  1218. if (isPreheat)
  1219. {
  1220. lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
  1221. SERIAL_ERROR_START;
  1222. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
  1223. #ifdef EXTRUDER_ALTFAN_DETECT
  1224. altfanStatus.altfanOverride = 1; //full speed
  1225. #endif //EXTRUDER_ALTFAN_DETECT
  1226. setExtruderAutoFanState(3);
  1227. SET_OUTPUT(FAN_PIN);
  1228. #ifdef FAN_SOFT_PWM
  1229. fanSpeedSoftPwm = 255;
  1230. #else //FAN_SOFT_PWM
  1231. analogWrite(FAN_PIN, 255);
  1232. #endif //FAN_SOFT_PWM
  1233. fanSpeed = 255;
  1234. }
  1235. else
  1236. {
  1237. lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
  1238. SERIAL_ERROR_START;
  1239. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1240. }
  1241. Stop();
  1242. }
  1243. #endif
  1244. void disable_heater()
  1245. {
  1246. cancel_heatup = true;
  1247. setAllTargetHotends(0);
  1248. setTargetBed(0);
  1249. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1250. target_temperature[0]=0;
  1251. soft_pwm[0]=0;
  1252. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1253. WRITE(HEATER_0_PIN,LOW);
  1254. #endif
  1255. #endif
  1256. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1257. target_temperature[1]=0;
  1258. soft_pwm[1]=0;
  1259. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1260. WRITE(HEATER_1_PIN,LOW);
  1261. #endif
  1262. #endif
  1263. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1264. target_temperature[2]=0;
  1265. soft_pwm[2]=0;
  1266. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1267. WRITE(HEATER_2_PIN,LOW);
  1268. #endif
  1269. #endif
  1270. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1271. target_temperature_bed=0;
  1272. soft_pwm_bed=0;
  1273. timer02_set_pwm0(soft_pwm_bed << 1);
  1274. bedPWMDisabled = 0;
  1275. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1276. //WRITE(HEATER_BED_PIN,LOW);
  1277. #endif
  1278. #endif
  1279. }
  1280. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1281. //! than raw const char * of the messages themselves.
  1282. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1283. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1284. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1285. //! remember the last alert message sent to the LCD
  1286. //! to prevent flicker and improve speed
  1287. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1288. //! update the current temperature error message
  1289. //! @param type short error abbreviation (PROGMEM)
  1290. void temp_update_messagepgm(const char* PROGMEM type)
  1291. {
  1292. char msg[LCD_WIDTH];
  1293. strcpy_P(msg, PSTR("Err: "));
  1294. strcat_P(msg, type);
  1295. lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
  1296. }
  1297. //! signal a temperature error on both the lcd and serial
  1298. //! @param type short error abbreviation (PROGMEM)
  1299. //! @param e optional extruder index for hotend errors
  1300. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1301. {
  1302. temp_update_messagepgm(type);
  1303. SERIAL_ERROR_START;
  1304. if(e != EXTRUDERS) {
  1305. SERIAL_ERROR((int)e);
  1306. SERIAL_ERRORPGM(": ");
  1307. }
  1308. SERIAL_ERRORPGM("Heaters switched off. ");
  1309. SERIAL_ERRORRPGM(type);
  1310. SERIAL_ERRORLNPGM(" triggered!");
  1311. }
  1312. void max_temp_error(uint8_t e) {
  1313. disable_heater();
  1314. if(IsStopped() == false) {
  1315. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1316. }
  1317. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1318. Stop();
  1319. #endif
  1320. SET_OUTPUT(FAN_PIN);
  1321. SET_OUTPUT(BEEPER);
  1322. WRITE(FAN_PIN, 1);
  1323. WRITE(BEEPER, 1);
  1324. #ifdef EXTRUDER_ALTFAN_DETECT
  1325. altfanStatus.altfanOverride = 1; //full speed
  1326. #endif //EXTRUDER_ALTFAN_DETECT
  1327. setExtruderAutoFanState(3);
  1328. // fanSpeed will consumed by the check_axes_activity() routine.
  1329. fanSpeed=255;
  1330. if (farm_mode) { prusa_statistics(93); }
  1331. }
  1332. void min_temp_error(uint8_t e) {
  1333. #ifdef DEBUG_DISABLE_MINTEMP
  1334. return;
  1335. #endif
  1336. disable_heater();
  1337. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1338. static const char err[] PROGMEM = "MINTEMP";
  1339. if(IsStopped() == false) {
  1340. temp_error_messagepgm(err, e);
  1341. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1342. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1343. // we are already stopped due to some error, only update the status message without flickering
  1344. temp_update_messagepgm(err);
  1345. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1346. }
  1347. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1348. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1349. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1350. // lcd_print_stop();
  1351. // }
  1352. Stop();
  1353. #endif
  1354. if (farm_mode) { prusa_statistics(92); }
  1355. }
  1356. void bed_max_temp_error(void) {
  1357. disable_heater();
  1358. if(IsStopped() == false) {
  1359. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1360. }
  1361. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1362. Stop();
  1363. #endif
  1364. }
  1365. void bed_min_temp_error(void) {
  1366. #ifdef DEBUG_DISABLE_MINTEMP
  1367. return;
  1368. #endif
  1369. disable_heater();
  1370. static const char err[] PROGMEM = "MINTEMP BED";
  1371. if(IsStopped() == false) {
  1372. temp_error_messagepgm(err);
  1373. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1374. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1375. // we are already stopped due to some error, only update the status message without flickering
  1376. temp_update_messagepgm(err);
  1377. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1378. }
  1379. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1380. Stop();
  1381. #endif
  1382. }
  1383. #ifdef AMBIENT_THERMISTOR
  1384. void ambient_max_temp_error(void) {
  1385. disable_heater();
  1386. if(IsStopped() == false) {
  1387. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1388. }
  1389. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1390. Stop();
  1391. #endif
  1392. }
  1393. void ambient_min_temp_error(void) {
  1394. #ifdef DEBUG_DISABLE_MINTEMP
  1395. return;
  1396. #endif
  1397. disable_heater();
  1398. if(IsStopped() == false) {
  1399. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1400. }
  1401. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1402. Stop();
  1403. #endif
  1404. }
  1405. #endif
  1406. #ifdef HEATER_0_USES_MAX6675
  1407. #define MAX6675_HEAT_INTERVAL 250
  1408. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1409. int max6675_temp = 2000;
  1410. int read_max6675()
  1411. {
  1412. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1413. return max6675_temp;
  1414. max6675_previous_millis = _millis();
  1415. max6675_temp = 0;
  1416. #ifdef PRR
  1417. PRR &= ~(1<<PRSPI);
  1418. #elif defined PRR0
  1419. PRR0 &= ~(1<<PRSPI);
  1420. #endif
  1421. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1422. // enable TT_MAX6675
  1423. WRITE(MAX6675_SS, 0);
  1424. // ensure 100ns delay - a bit extra is fine
  1425. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1426. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1427. // read MSB
  1428. SPDR = 0;
  1429. for (;(SPSR & (1<<SPIF)) == 0;);
  1430. max6675_temp = SPDR;
  1431. max6675_temp <<= 8;
  1432. // read LSB
  1433. SPDR = 0;
  1434. for (;(SPSR & (1<<SPIF)) == 0;);
  1435. max6675_temp |= SPDR;
  1436. // disable TT_MAX6675
  1437. WRITE(MAX6675_SS, 1);
  1438. if (max6675_temp & 4)
  1439. {
  1440. // thermocouple open
  1441. max6675_temp = 2000;
  1442. }
  1443. else
  1444. {
  1445. max6675_temp = max6675_temp >> 3;
  1446. }
  1447. return max6675_temp;
  1448. }
  1449. #endif
  1450. extern "C" {
  1451. void adc_ready(void) //callback from adc when sampling finished
  1452. {
  1453. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1454. #ifdef PINDA_THERMISTOR
  1455. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1456. #endif //PINDA_THERMISTOR
  1457. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1458. #ifdef VOLT_PWR_PIN
  1459. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1460. #endif
  1461. #ifdef AMBIENT_THERMISTOR
  1462. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1463. #endif //AMBIENT_THERMISTOR
  1464. #ifdef VOLT_BED_PIN
  1465. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1466. #endif
  1467. #ifdef IR_SENSOR_ANALOG
  1468. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1469. #endif //IR_SENSOR_ANALOG
  1470. temp_meas_ready = true;
  1471. }
  1472. } // extern "C"
  1473. FORCE_INLINE static void temperature_isr()
  1474. {
  1475. if (!temp_meas_ready) adc_cycle();
  1476. lcd_buttons_update();
  1477. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1478. static uint8_t soft_pwm_0;
  1479. #ifdef SLOW_PWM_HEATERS
  1480. static unsigned char slow_pwm_count = 0;
  1481. static unsigned char state_heater_0 = 0;
  1482. static unsigned char state_timer_heater_0 = 0;
  1483. #endif
  1484. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1485. static unsigned char soft_pwm_1;
  1486. #ifdef SLOW_PWM_HEATERS
  1487. static unsigned char state_heater_1 = 0;
  1488. static unsigned char state_timer_heater_1 = 0;
  1489. #endif
  1490. #endif
  1491. #if EXTRUDERS > 2
  1492. static unsigned char soft_pwm_2;
  1493. #ifdef SLOW_PWM_HEATERS
  1494. static unsigned char state_heater_2 = 0;
  1495. static unsigned char state_timer_heater_2 = 0;
  1496. #endif
  1497. #endif
  1498. #if HEATER_BED_PIN > -1
  1499. // @@DR static unsigned char soft_pwm_b;
  1500. #ifdef SLOW_PWM_HEATERS
  1501. static unsigned char state_heater_b = 0;
  1502. static unsigned char state_timer_heater_b = 0;
  1503. #endif
  1504. #endif
  1505. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1506. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1507. #endif
  1508. #ifndef SLOW_PWM_HEATERS
  1509. /*
  1510. * standard PWM modulation
  1511. */
  1512. if (pwm_count == 0)
  1513. {
  1514. soft_pwm_0 = soft_pwm[0];
  1515. if(soft_pwm_0 > 0)
  1516. {
  1517. WRITE(HEATER_0_PIN,1);
  1518. #ifdef HEATERS_PARALLEL
  1519. WRITE(HEATER_1_PIN,1);
  1520. #endif
  1521. } else WRITE(HEATER_0_PIN,0);
  1522. #if EXTRUDERS > 1
  1523. soft_pwm_1 = soft_pwm[1];
  1524. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1525. #endif
  1526. #if EXTRUDERS > 2
  1527. soft_pwm_2 = soft_pwm[2];
  1528. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1529. #endif
  1530. }
  1531. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1532. #if 0 // @@DR vypnuto pro hw pwm bedu
  1533. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1534. // teoreticky by se tato cast uz vubec nemusela poustet
  1535. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1536. {
  1537. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1538. # ifndef SYSTEM_TIMER_2
  1539. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1540. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1541. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1542. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1543. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1544. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1545. # endif //SYSTEM_TIMER_2
  1546. }
  1547. #endif
  1548. #endif
  1549. #ifdef FAN_SOFT_PWM
  1550. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1551. {
  1552. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1553. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1554. }
  1555. #endif
  1556. if(soft_pwm_0 < pwm_count)
  1557. {
  1558. WRITE(HEATER_0_PIN,0);
  1559. #ifdef HEATERS_PARALLEL
  1560. WRITE(HEATER_1_PIN,0);
  1561. #endif
  1562. }
  1563. #if EXTRUDERS > 1
  1564. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1565. #endif
  1566. #if EXTRUDERS > 2
  1567. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1568. #endif
  1569. #if 0 // @@DR
  1570. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1571. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1572. //WRITE(HEATER_BED_PIN,0);
  1573. }
  1574. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1575. #endif
  1576. #endif
  1577. #ifdef FAN_SOFT_PWM
  1578. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1579. #endif
  1580. pwm_count += (1 << SOFT_PWM_SCALE);
  1581. pwm_count &= 0x7f;
  1582. #else //ifndef SLOW_PWM_HEATERS
  1583. /*
  1584. * SLOW PWM HEATERS
  1585. *
  1586. * for heaters drived by relay
  1587. */
  1588. #ifndef MIN_STATE_TIME
  1589. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1590. #endif
  1591. if (slow_pwm_count == 0) {
  1592. // EXTRUDER 0
  1593. soft_pwm_0 = soft_pwm[0];
  1594. if (soft_pwm_0 > 0) {
  1595. // turn ON heather only if the minimum time is up
  1596. if (state_timer_heater_0 == 0) {
  1597. // if change state set timer
  1598. if (state_heater_0 == 0) {
  1599. state_timer_heater_0 = MIN_STATE_TIME;
  1600. }
  1601. state_heater_0 = 1;
  1602. WRITE(HEATER_0_PIN, 1);
  1603. #ifdef HEATERS_PARALLEL
  1604. WRITE(HEATER_1_PIN, 1);
  1605. #endif
  1606. }
  1607. } else {
  1608. // turn OFF heather only if the minimum time is up
  1609. if (state_timer_heater_0 == 0) {
  1610. // if change state set timer
  1611. if (state_heater_0 == 1) {
  1612. state_timer_heater_0 = MIN_STATE_TIME;
  1613. }
  1614. state_heater_0 = 0;
  1615. WRITE(HEATER_0_PIN, 0);
  1616. #ifdef HEATERS_PARALLEL
  1617. WRITE(HEATER_1_PIN, 0);
  1618. #endif
  1619. }
  1620. }
  1621. #if EXTRUDERS > 1
  1622. // EXTRUDER 1
  1623. soft_pwm_1 = soft_pwm[1];
  1624. if (soft_pwm_1 > 0) {
  1625. // turn ON heather only if the minimum time is up
  1626. if (state_timer_heater_1 == 0) {
  1627. // if change state set timer
  1628. if (state_heater_1 == 0) {
  1629. state_timer_heater_1 = MIN_STATE_TIME;
  1630. }
  1631. state_heater_1 = 1;
  1632. WRITE(HEATER_1_PIN, 1);
  1633. }
  1634. } else {
  1635. // turn OFF heather only if the minimum time is up
  1636. if (state_timer_heater_1 == 0) {
  1637. // if change state set timer
  1638. if (state_heater_1 == 1) {
  1639. state_timer_heater_1 = MIN_STATE_TIME;
  1640. }
  1641. state_heater_1 = 0;
  1642. WRITE(HEATER_1_PIN, 0);
  1643. }
  1644. }
  1645. #endif
  1646. #if EXTRUDERS > 2
  1647. // EXTRUDER 2
  1648. soft_pwm_2 = soft_pwm[2];
  1649. if (soft_pwm_2 > 0) {
  1650. // turn ON heather only if the minimum time is up
  1651. if (state_timer_heater_2 == 0) {
  1652. // if change state set timer
  1653. if (state_heater_2 == 0) {
  1654. state_timer_heater_2 = MIN_STATE_TIME;
  1655. }
  1656. state_heater_2 = 1;
  1657. WRITE(HEATER_2_PIN, 1);
  1658. }
  1659. } else {
  1660. // turn OFF heather only if the minimum time is up
  1661. if (state_timer_heater_2 == 0) {
  1662. // if change state set timer
  1663. if (state_heater_2 == 1) {
  1664. state_timer_heater_2 = MIN_STATE_TIME;
  1665. }
  1666. state_heater_2 = 0;
  1667. WRITE(HEATER_2_PIN, 0);
  1668. }
  1669. }
  1670. #endif
  1671. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1672. // BED
  1673. soft_pwm_b = soft_pwm_bed;
  1674. if (soft_pwm_b > 0) {
  1675. // turn ON heather only if the minimum time is up
  1676. if (state_timer_heater_b == 0) {
  1677. // if change state set timer
  1678. if (state_heater_b == 0) {
  1679. state_timer_heater_b = MIN_STATE_TIME;
  1680. }
  1681. state_heater_b = 1;
  1682. //WRITE(HEATER_BED_PIN, 1);
  1683. }
  1684. } else {
  1685. // turn OFF heather only if the minimum time is up
  1686. if (state_timer_heater_b == 0) {
  1687. // if change state set timer
  1688. if (state_heater_b == 1) {
  1689. state_timer_heater_b = MIN_STATE_TIME;
  1690. }
  1691. state_heater_b = 0;
  1692. WRITE(HEATER_BED_PIN, 0);
  1693. }
  1694. }
  1695. #endif
  1696. } // if (slow_pwm_count == 0)
  1697. // EXTRUDER 0
  1698. if (soft_pwm_0 < slow_pwm_count) {
  1699. // turn OFF heather only if the minimum time is up
  1700. if (state_timer_heater_0 == 0) {
  1701. // if change state set timer
  1702. if (state_heater_0 == 1) {
  1703. state_timer_heater_0 = MIN_STATE_TIME;
  1704. }
  1705. state_heater_0 = 0;
  1706. WRITE(HEATER_0_PIN, 0);
  1707. #ifdef HEATERS_PARALLEL
  1708. WRITE(HEATER_1_PIN, 0);
  1709. #endif
  1710. }
  1711. }
  1712. #if EXTRUDERS > 1
  1713. // EXTRUDER 1
  1714. if (soft_pwm_1 < slow_pwm_count) {
  1715. // turn OFF heather only if the minimum time is up
  1716. if (state_timer_heater_1 == 0) {
  1717. // if change state set timer
  1718. if (state_heater_1 == 1) {
  1719. state_timer_heater_1 = MIN_STATE_TIME;
  1720. }
  1721. state_heater_1 = 0;
  1722. WRITE(HEATER_1_PIN, 0);
  1723. }
  1724. }
  1725. #endif
  1726. #if EXTRUDERS > 2
  1727. // EXTRUDER 2
  1728. if (soft_pwm_2 < slow_pwm_count) {
  1729. // turn OFF heather only if the minimum time is up
  1730. if (state_timer_heater_2 == 0) {
  1731. // if change state set timer
  1732. if (state_heater_2 == 1) {
  1733. state_timer_heater_2 = MIN_STATE_TIME;
  1734. }
  1735. state_heater_2 = 0;
  1736. WRITE(HEATER_2_PIN, 0);
  1737. }
  1738. }
  1739. #endif
  1740. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1741. // BED
  1742. if (soft_pwm_b < slow_pwm_count) {
  1743. // turn OFF heather only if the minimum time is up
  1744. if (state_timer_heater_b == 0) {
  1745. // if change state set timer
  1746. if (state_heater_b == 1) {
  1747. state_timer_heater_b = MIN_STATE_TIME;
  1748. }
  1749. state_heater_b = 0;
  1750. WRITE(HEATER_BED_PIN, 0);
  1751. }
  1752. }
  1753. #endif
  1754. #ifdef FAN_SOFT_PWM
  1755. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1756. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1757. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1758. }
  1759. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1760. #endif
  1761. pwm_count += (1 << SOFT_PWM_SCALE);
  1762. pwm_count &= 0x7f;
  1763. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1764. if ((pwm_count % 64) == 0) {
  1765. slow_pwm_count++;
  1766. slow_pwm_count &= 0x7f;
  1767. // Extruder 0
  1768. if (state_timer_heater_0 > 0) {
  1769. state_timer_heater_0--;
  1770. }
  1771. #if EXTRUDERS > 1
  1772. // Extruder 1
  1773. if (state_timer_heater_1 > 0)
  1774. state_timer_heater_1--;
  1775. #endif
  1776. #if EXTRUDERS > 2
  1777. // Extruder 2
  1778. if (state_timer_heater_2 > 0)
  1779. state_timer_heater_2--;
  1780. #endif
  1781. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1782. // Bed
  1783. if (state_timer_heater_b > 0)
  1784. state_timer_heater_b--;
  1785. #endif
  1786. } //if ((pwm_count % 64) == 0) {
  1787. #endif //ifndef SLOW_PWM_HEATERS
  1788. #ifdef BABYSTEPPING
  1789. for(uint8_t axis=0;axis<3;axis++)
  1790. {
  1791. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1792. if(curTodo>0)
  1793. {
  1794. CRITICAL_SECTION_START;
  1795. babystep(axis,/*fwd*/true);
  1796. babystepsTodo[axis]--; //less to do next time
  1797. CRITICAL_SECTION_END;
  1798. }
  1799. else
  1800. if(curTodo<0)
  1801. {
  1802. CRITICAL_SECTION_START;
  1803. babystep(axis,/*fwd*/false);
  1804. babystepsTodo[axis]++; //less to do next time
  1805. CRITICAL_SECTION_END;
  1806. }
  1807. }
  1808. #endif //BABYSTEPPING
  1809. // Check if a stack overflow happened
  1810. if (!SdFatUtil::test_stack_integrity()) stack_error();
  1811. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1812. check_fans();
  1813. #endif //(defined(TACH_0))
  1814. }
  1815. // Timer2 (originaly timer0) is shared with millies
  1816. #ifdef SYSTEM_TIMER_2
  1817. ISR(TIMER2_COMPB_vect)
  1818. #else //SYSTEM_TIMER_2
  1819. ISR(TIMER0_COMPB_vect)
  1820. #endif //SYSTEM_TIMER_2
  1821. {
  1822. static bool _lock = false;
  1823. if (!_lock)
  1824. {
  1825. _lock = true;
  1826. sei();
  1827. temperature_isr();
  1828. cli();
  1829. _lock = false;
  1830. }
  1831. }
  1832. void check_max_temp()
  1833. {
  1834. //heater
  1835. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1836. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1837. #else
  1838. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1839. #endif
  1840. max_temp_error(0);
  1841. }
  1842. //bed
  1843. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1844. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1845. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1846. #else
  1847. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1848. #endif
  1849. bed_max_temp_error();
  1850. }
  1851. #endif
  1852. //ambient
  1853. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1854. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1855. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1856. #else
  1857. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1858. #endif
  1859. ambient_max_temp_error();
  1860. }
  1861. #endif
  1862. }
  1863. //! number of repeating the same state with consecutive step() calls
  1864. //! used to slow down text switching
  1865. struct alert_automaton_mintemp {
  1866. const char *m2;
  1867. alert_automaton_mintemp(const char *m2):m2(m2){}
  1868. private:
  1869. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1870. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1871. States state = States::Init;
  1872. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1873. void substep(States next_state){
  1874. if( repeat == 0 ){
  1875. state = next_state; // advance to the next state
  1876. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1877. } else {
  1878. --repeat;
  1879. }
  1880. }
  1881. public:
  1882. //! brief state automaton step routine
  1883. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1884. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1885. void step(float current_temp, float mintemp){
  1886. static const char m1[] PROGMEM = "Please restart";
  1887. switch(state){
  1888. case States::Init: // initial state - check hysteresis
  1889. if( current_temp > mintemp ){
  1890. state = States::TempAboveMintemp;
  1891. }
  1892. // otherwise keep the Err MINTEMP alert message on the display,
  1893. // i.e. do not transfer to state 1
  1894. break;
  1895. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1896. lcd_setalertstatuspgm(m2);
  1897. substep(States::ShowMintemp);
  1898. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1899. break;
  1900. case States::ShowPleaseRestart: // displaying "Please restart"
  1901. lcd_updatestatuspgm(m1);
  1902. substep(States::ShowMintemp);
  1903. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1904. break;
  1905. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1906. lcd_updatestatuspgm(m2);
  1907. substep(States::ShowPleaseRestart);
  1908. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1909. break;
  1910. }
  1911. }
  1912. };
  1913. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1914. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1915. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1916. void check_min_temp_heater0()
  1917. {
  1918. //heater
  1919. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1920. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1921. #else
  1922. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1923. #endif
  1924. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1925. min_temp_error(0);
  1926. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1927. // no recovery, just force the user to restart the printer
  1928. // which is a safer variant than just continuing printing
  1929. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1930. // we shall signalize, that MINTEMP has been fixed
  1931. // Code notice: normally the alert_automaton instance would have been placed here
  1932. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1933. // due to stupid compiler that takes 16 more bytes.
  1934. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1935. }
  1936. }
  1937. void check_min_temp_bed()
  1938. {
  1939. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1940. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1941. #else
  1942. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1943. #endif
  1944. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1945. bed_min_temp_error();
  1946. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1947. // no recovery, just force the user to restart the printer
  1948. // which is a safer variant than just continuing printing
  1949. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1950. }
  1951. }
  1952. #ifdef AMBIENT_MINTEMP
  1953. void check_min_temp_ambient()
  1954. {
  1955. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1956. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1957. #else
  1958. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1959. #endif
  1960. ambient_min_temp_error();
  1961. }
  1962. }
  1963. #endif
  1964. void check_min_temp()
  1965. {
  1966. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1967. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1968. #ifdef AMBIENT_THERMISTOR
  1969. #ifdef AMBIENT_MINTEMP
  1970. check_min_temp_ambient();
  1971. #endif
  1972. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1973. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1974. #else
  1975. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1976. #endif
  1977. { // ambient temperature is low
  1978. #endif //AMBIENT_THERMISTOR
  1979. // *** 'common' part of code for MK2.5 & MK3
  1980. // * nozzle checking
  1981. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1982. { // ~ nozzle heating is on
  1983. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1984. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1985. {
  1986. bCheckingOnHeater=true; // not necessary
  1987. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1988. }
  1989. }
  1990. else { // ~ nozzle heating is off
  1991. oTimer4minTempHeater.start();
  1992. bCheckingOnHeater=false;
  1993. }
  1994. // * bed checking
  1995. if(target_temperature_bed>BED_MINTEMP)
  1996. { // ~ bed heating is on
  1997. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1998. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1999. {
  2000. bCheckingOnBed=true; // not necessary
  2001. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2002. }
  2003. }
  2004. else { // ~ bed heating is off
  2005. oTimer4minTempBed.start();
  2006. bCheckingOnBed=false;
  2007. }
  2008. // *** end of 'common' part
  2009. #ifdef AMBIENT_THERMISTOR
  2010. }
  2011. else { // ambient temperature is standard
  2012. check_min_temp_heater0();
  2013. check_min_temp_bed();
  2014. }
  2015. #endif //AMBIENT_THERMISTOR
  2016. }
  2017. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2018. void check_fans() {
  2019. #ifdef FAN_SOFT_PWM
  2020. if (READ(TACH_0) != fan_state[0]) {
  2021. if(fan_measuring) fan_edge_counter[0] ++;
  2022. fan_state[0] = !fan_state[0];
  2023. }
  2024. #else //FAN_SOFT_PWM
  2025. if (READ(TACH_0) != fan_state[0]) {
  2026. fan_edge_counter[0] ++;
  2027. fan_state[0] = !fan_state[0];
  2028. }
  2029. #endif
  2030. //if (READ(TACH_1) != fan_state[1]) {
  2031. // fan_edge_counter[1] ++;
  2032. // fan_state[1] = !fan_state[1];
  2033. //}
  2034. }
  2035. #endif //TACH_0
  2036. #ifdef PIDTEMP
  2037. // Apply the scale factors to the PID values
  2038. float scalePID_i(float i)
  2039. {
  2040. return i*PID_dT;
  2041. }
  2042. float unscalePID_i(float i)
  2043. {
  2044. return i/PID_dT;
  2045. }
  2046. float scalePID_d(float d)
  2047. {
  2048. return d/PID_dT;
  2049. }
  2050. float unscalePID_d(float d)
  2051. {
  2052. return d*PID_dT;
  2053. }
  2054. #endif //PIDTEMP
  2055. #ifdef PINDA_THERMISTOR
  2056. //! @brief PINDA thermistor detected
  2057. //!
  2058. //! @retval true firmware should do temperature compensation and allow calibration
  2059. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2060. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2061. //!
  2062. bool has_temperature_compensation()
  2063. {
  2064. #ifdef SUPERPINDA_SUPPORT
  2065. #ifdef PINDA_TEMP_COMP
  2066. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2067. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2068. {
  2069. #endif //PINDA_TEMP_COMP
  2070. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2071. #ifdef PINDA_TEMP_COMP
  2072. }
  2073. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2074. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2075. #endif //PINDA_TEMP_COMP
  2076. #else
  2077. return true;
  2078. #endif
  2079. }
  2080. #endif //PINDA_THERMISTOR